1 /* 2 * linux/fs/namespace.c 3 * 4 * (C) Copyright Al Viro 2000, 2001 5 * Released under GPL v2. 6 * 7 * Based on code from fs/super.c, copyright Linus Torvalds and others. 8 * Heavily rewritten. 9 */ 10 11 #include <linux/syscalls.h> 12 #include <linux/slab.h> 13 #include <linux/sched.h> 14 #include <linux/smp_lock.h> 15 #include <linux/init.h> 16 #include <linux/kernel.h> 17 #include <linux/quotaops.h> 18 #include <linux/acct.h> 19 #include <linux/capability.h> 20 #include <linux/module.h> 21 #include <linux/sysfs.h> 22 #include <linux/seq_file.h> 23 #include <linux/mnt_namespace.h> 24 #include <linux/namei.h> 25 #include <linux/security.h> 26 #include <linux/mount.h> 27 #include <linux/ramfs.h> 28 #include <asm/uaccess.h> 29 #include <asm/unistd.h> 30 #include "pnode.h" 31 #include "internal.h" 32 33 /* spinlock for vfsmount related operations, inplace of dcache_lock */ 34 __cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock); 35 36 static int event; 37 38 static struct list_head *mount_hashtable __read_mostly; 39 static int hash_mask __read_mostly, hash_bits __read_mostly; 40 static struct kmem_cache *mnt_cache __read_mostly; 41 static struct rw_semaphore namespace_sem; 42 43 /* /sys/fs */ 44 struct kobject *fs_kobj; 45 EXPORT_SYMBOL_GPL(fs_kobj); 46 47 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry) 48 { 49 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); 50 tmp += ((unsigned long)dentry / L1_CACHE_BYTES); 51 tmp = tmp + (tmp >> hash_bits); 52 return tmp & hash_mask; 53 } 54 55 struct vfsmount *alloc_vfsmnt(const char *name) 56 { 57 struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); 58 if (mnt) { 59 atomic_set(&mnt->mnt_count, 1); 60 INIT_LIST_HEAD(&mnt->mnt_hash); 61 INIT_LIST_HEAD(&mnt->mnt_child); 62 INIT_LIST_HEAD(&mnt->mnt_mounts); 63 INIT_LIST_HEAD(&mnt->mnt_list); 64 INIT_LIST_HEAD(&mnt->mnt_expire); 65 INIT_LIST_HEAD(&mnt->mnt_share); 66 INIT_LIST_HEAD(&mnt->mnt_slave_list); 67 INIT_LIST_HEAD(&mnt->mnt_slave); 68 if (name) { 69 int size = strlen(name) + 1; 70 char *newname = kmalloc(size, GFP_KERNEL); 71 if (newname) { 72 memcpy(newname, name, size); 73 mnt->mnt_devname = newname; 74 } 75 } 76 } 77 return mnt; 78 } 79 80 int simple_set_mnt(struct vfsmount *mnt, struct super_block *sb) 81 { 82 mnt->mnt_sb = sb; 83 mnt->mnt_root = dget(sb->s_root); 84 return 0; 85 } 86 87 EXPORT_SYMBOL(simple_set_mnt); 88 89 void free_vfsmnt(struct vfsmount *mnt) 90 { 91 kfree(mnt->mnt_devname); 92 kmem_cache_free(mnt_cache, mnt); 93 } 94 95 /* 96 * find the first or last mount at @dentry on vfsmount @mnt depending on 97 * @dir. If @dir is set return the first mount else return the last mount. 98 */ 99 struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry, 100 int dir) 101 { 102 struct list_head *head = mount_hashtable + hash(mnt, dentry); 103 struct list_head *tmp = head; 104 struct vfsmount *p, *found = NULL; 105 106 for (;;) { 107 tmp = dir ? tmp->next : tmp->prev; 108 p = NULL; 109 if (tmp == head) 110 break; 111 p = list_entry(tmp, struct vfsmount, mnt_hash); 112 if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) { 113 found = p; 114 break; 115 } 116 } 117 return found; 118 } 119 120 /* 121 * lookup_mnt increments the ref count before returning 122 * the vfsmount struct. 123 */ 124 struct vfsmount *lookup_mnt(struct vfsmount *mnt, struct dentry *dentry) 125 { 126 struct vfsmount *child_mnt; 127 spin_lock(&vfsmount_lock); 128 if ((child_mnt = __lookup_mnt(mnt, dentry, 1))) 129 mntget(child_mnt); 130 spin_unlock(&vfsmount_lock); 131 return child_mnt; 132 } 133 134 static inline int check_mnt(struct vfsmount *mnt) 135 { 136 return mnt->mnt_ns == current->nsproxy->mnt_ns; 137 } 138 139 static void touch_mnt_namespace(struct mnt_namespace *ns) 140 { 141 if (ns) { 142 ns->event = ++event; 143 wake_up_interruptible(&ns->poll); 144 } 145 } 146 147 static void __touch_mnt_namespace(struct mnt_namespace *ns) 148 { 149 if (ns && ns->event != event) { 150 ns->event = event; 151 wake_up_interruptible(&ns->poll); 152 } 153 } 154 155 static void detach_mnt(struct vfsmount *mnt, struct nameidata *old_nd) 156 { 157 old_nd->dentry = mnt->mnt_mountpoint; 158 old_nd->mnt = mnt->mnt_parent; 159 mnt->mnt_parent = mnt; 160 mnt->mnt_mountpoint = mnt->mnt_root; 161 list_del_init(&mnt->mnt_child); 162 list_del_init(&mnt->mnt_hash); 163 old_nd->dentry->d_mounted--; 164 } 165 166 void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry, 167 struct vfsmount *child_mnt) 168 { 169 child_mnt->mnt_parent = mntget(mnt); 170 child_mnt->mnt_mountpoint = dget(dentry); 171 dentry->d_mounted++; 172 } 173 174 static void attach_mnt(struct vfsmount *mnt, struct nameidata *nd) 175 { 176 mnt_set_mountpoint(nd->mnt, nd->dentry, mnt); 177 list_add_tail(&mnt->mnt_hash, mount_hashtable + 178 hash(nd->mnt, nd->dentry)); 179 list_add_tail(&mnt->mnt_child, &nd->mnt->mnt_mounts); 180 } 181 182 /* 183 * the caller must hold vfsmount_lock 184 */ 185 static void commit_tree(struct vfsmount *mnt) 186 { 187 struct vfsmount *parent = mnt->mnt_parent; 188 struct vfsmount *m; 189 LIST_HEAD(head); 190 struct mnt_namespace *n = parent->mnt_ns; 191 192 BUG_ON(parent == mnt); 193 194 list_add_tail(&head, &mnt->mnt_list); 195 list_for_each_entry(m, &head, mnt_list) 196 m->mnt_ns = n; 197 list_splice(&head, n->list.prev); 198 199 list_add_tail(&mnt->mnt_hash, mount_hashtable + 200 hash(parent, mnt->mnt_mountpoint)); 201 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 202 touch_mnt_namespace(n); 203 } 204 205 static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root) 206 { 207 struct list_head *next = p->mnt_mounts.next; 208 if (next == &p->mnt_mounts) { 209 while (1) { 210 if (p == root) 211 return NULL; 212 next = p->mnt_child.next; 213 if (next != &p->mnt_parent->mnt_mounts) 214 break; 215 p = p->mnt_parent; 216 } 217 } 218 return list_entry(next, struct vfsmount, mnt_child); 219 } 220 221 static struct vfsmount *skip_mnt_tree(struct vfsmount *p) 222 { 223 struct list_head *prev = p->mnt_mounts.prev; 224 while (prev != &p->mnt_mounts) { 225 p = list_entry(prev, struct vfsmount, mnt_child); 226 prev = p->mnt_mounts.prev; 227 } 228 return p; 229 } 230 231 static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root, 232 int flag) 233 { 234 struct super_block *sb = old->mnt_sb; 235 struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname); 236 237 if (mnt) { 238 mnt->mnt_flags = old->mnt_flags; 239 atomic_inc(&sb->s_active); 240 mnt->mnt_sb = sb; 241 mnt->mnt_root = dget(root); 242 mnt->mnt_mountpoint = mnt->mnt_root; 243 mnt->mnt_parent = mnt; 244 245 if (flag & CL_SLAVE) { 246 list_add(&mnt->mnt_slave, &old->mnt_slave_list); 247 mnt->mnt_master = old; 248 CLEAR_MNT_SHARED(mnt); 249 } else if (!(flag & CL_PRIVATE)) { 250 if ((flag & CL_PROPAGATION) || IS_MNT_SHARED(old)) 251 list_add(&mnt->mnt_share, &old->mnt_share); 252 if (IS_MNT_SLAVE(old)) 253 list_add(&mnt->mnt_slave, &old->mnt_slave); 254 mnt->mnt_master = old->mnt_master; 255 } 256 if (flag & CL_MAKE_SHARED) 257 set_mnt_shared(mnt); 258 259 /* stick the duplicate mount on the same expiry list 260 * as the original if that was on one */ 261 if (flag & CL_EXPIRE) { 262 spin_lock(&vfsmount_lock); 263 if (!list_empty(&old->mnt_expire)) 264 list_add(&mnt->mnt_expire, &old->mnt_expire); 265 spin_unlock(&vfsmount_lock); 266 } 267 } 268 return mnt; 269 } 270 271 static inline void __mntput(struct vfsmount *mnt) 272 { 273 struct super_block *sb = mnt->mnt_sb; 274 dput(mnt->mnt_root); 275 free_vfsmnt(mnt); 276 deactivate_super(sb); 277 } 278 279 void mntput_no_expire(struct vfsmount *mnt) 280 { 281 repeat: 282 if (atomic_dec_and_lock(&mnt->mnt_count, &vfsmount_lock)) { 283 if (likely(!mnt->mnt_pinned)) { 284 spin_unlock(&vfsmount_lock); 285 __mntput(mnt); 286 return; 287 } 288 atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count); 289 mnt->mnt_pinned = 0; 290 spin_unlock(&vfsmount_lock); 291 acct_auto_close_mnt(mnt); 292 security_sb_umount_close(mnt); 293 goto repeat; 294 } 295 } 296 297 EXPORT_SYMBOL(mntput_no_expire); 298 299 void mnt_pin(struct vfsmount *mnt) 300 { 301 spin_lock(&vfsmount_lock); 302 mnt->mnt_pinned++; 303 spin_unlock(&vfsmount_lock); 304 } 305 306 EXPORT_SYMBOL(mnt_pin); 307 308 void mnt_unpin(struct vfsmount *mnt) 309 { 310 spin_lock(&vfsmount_lock); 311 if (mnt->mnt_pinned) { 312 atomic_inc(&mnt->mnt_count); 313 mnt->mnt_pinned--; 314 } 315 spin_unlock(&vfsmount_lock); 316 } 317 318 EXPORT_SYMBOL(mnt_unpin); 319 320 /* iterator */ 321 static void *m_start(struct seq_file *m, loff_t *pos) 322 { 323 struct mnt_namespace *n = m->private; 324 325 down_read(&namespace_sem); 326 return seq_list_start(&n->list, *pos); 327 } 328 329 static void *m_next(struct seq_file *m, void *v, loff_t *pos) 330 { 331 struct mnt_namespace *n = m->private; 332 333 return seq_list_next(v, &n->list, pos); 334 } 335 336 static void m_stop(struct seq_file *m, void *v) 337 { 338 up_read(&namespace_sem); 339 } 340 341 static inline void mangle(struct seq_file *m, const char *s) 342 { 343 seq_escape(m, s, " \t\n\\"); 344 } 345 346 static int show_vfsmnt(struct seq_file *m, void *v) 347 { 348 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list); 349 int err = 0; 350 static struct proc_fs_info { 351 int flag; 352 char *str; 353 } fs_info[] = { 354 { MS_SYNCHRONOUS, ",sync" }, 355 { MS_DIRSYNC, ",dirsync" }, 356 { MS_MANDLOCK, ",mand" }, 357 { 0, NULL } 358 }; 359 static struct proc_fs_info mnt_info[] = { 360 { MNT_NOSUID, ",nosuid" }, 361 { MNT_NODEV, ",nodev" }, 362 { MNT_NOEXEC, ",noexec" }, 363 { MNT_NOATIME, ",noatime" }, 364 { MNT_NODIRATIME, ",nodiratime" }, 365 { MNT_RELATIME, ",relatime" }, 366 { 0, NULL } 367 }; 368 struct proc_fs_info *fs_infop; 369 370 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none"); 371 seq_putc(m, ' '); 372 seq_path(m, mnt, mnt->mnt_root, " \t\n\\"); 373 seq_putc(m, ' '); 374 mangle(m, mnt->mnt_sb->s_type->name); 375 if (mnt->mnt_sb->s_subtype && mnt->mnt_sb->s_subtype[0]) { 376 seq_putc(m, '.'); 377 mangle(m, mnt->mnt_sb->s_subtype); 378 } 379 seq_puts(m, mnt->mnt_sb->s_flags & MS_RDONLY ? " ro" : " rw"); 380 for (fs_infop = fs_info; fs_infop->flag; fs_infop++) { 381 if (mnt->mnt_sb->s_flags & fs_infop->flag) 382 seq_puts(m, fs_infop->str); 383 } 384 for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) { 385 if (mnt->mnt_flags & fs_infop->flag) 386 seq_puts(m, fs_infop->str); 387 } 388 if (mnt->mnt_sb->s_op->show_options) 389 err = mnt->mnt_sb->s_op->show_options(m, mnt); 390 seq_puts(m, " 0 0\n"); 391 return err; 392 } 393 394 struct seq_operations mounts_op = { 395 .start = m_start, 396 .next = m_next, 397 .stop = m_stop, 398 .show = show_vfsmnt 399 }; 400 401 static int show_vfsstat(struct seq_file *m, void *v) 402 { 403 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list); 404 int err = 0; 405 406 /* device */ 407 if (mnt->mnt_devname) { 408 seq_puts(m, "device "); 409 mangle(m, mnt->mnt_devname); 410 } else 411 seq_puts(m, "no device"); 412 413 /* mount point */ 414 seq_puts(m, " mounted on "); 415 seq_path(m, mnt, mnt->mnt_root, " \t\n\\"); 416 seq_putc(m, ' '); 417 418 /* file system type */ 419 seq_puts(m, "with fstype "); 420 mangle(m, mnt->mnt_sb->s_type->name); 421 422 /* optional statistics */ 423 if (mnt->mnt_sb->s_op->show_stats) { 424 seq_putc(m, ' '); 425 err = mnt->mnt_sb->s_op->show_stats(m, mnt); 426 } 427 428 seq_putc(m, '\n'); 429 return err; 430 } 431 432 struct seq_operations mountstats_op = { 433 .start = m_start, 434 .next = m_next, 435 .stop = m_stop, 436 .show = show_vfsstat, 437 }; 438 439 /** 440 * may_umount_tree - check if a mount tree is busy 441 * @mnt: root of mount tree 442 * 443 * This is called to check if a tree of mounts has any 444 * open files, pwds, chroots or sub mounts that are 445 * busy. 446 */ 447 int may_umount_tree(struct vfsmount *mnt) 448 { 449 int actual_refs = 0; 450 int minimum_refs = 0; 451 struct vfsmount *p; 452 453 spin_lock(&vfsmount_lock); 454 for (p = mnt; p; p = next_mnt(p, mnt)) { 455 actual_refs += atomic_read(&p->mnt_count); 456 minimum_refs += 2; 457 } 458 spin_unlock(&vfsmount_lock); 459 460 if (actual_refs > minimum_refs) 461 return 0; 462 463 return 1; 464 } 465 466 EXPORT_SYMBOL(may_umount_tree); 467 468 /** 469 * may_umount - check if a mount point is busy 470 * @mnt: root of mount 471 * 472 * This is called to check if a mount point has any 473 * open files, pwds, chroots or sub mounts. If the 474 * mount has sub mounts this will return busy 475 * regardless of whether the sub mounts are busy. 476 * 477 * Doesn't take quota and stuff into account. IOW, in some cases it will 478 * give false negatives. The main reason why it's here is that we need 479 * a non-destructive way to look for easily umountable filesystems. 480 */ 481 int may_umount(struct vfsmount *mnt) 482 { 483 int ret = 1; 484 spin_lock(&vfsmount_lock); 485 if (propagate_mount_busy(mnt, 2)) 486 ret = 0; 487 spin_unlock(&vfsmount_lock); 488 return ret; 489 } 490 491 EXPORT_SYMBOL(may_umount); 492 493 void release_mounts(struct list_head *head) 494 { 495 struct vfsmount *mnt; 496 while (!list_empty(head)) { 497 mnt = list_first_entry(head, struct vfsmount, mnt_hash); 498 list_del_init(&mnt->mnt_hash); 499 if (mnt->mnt_parent != mnt) { 500 struct dentry *dentry; 501 struct vfsmount *m; 502 spin_lock(&vfsmount_lock); 503 dentry = mnt->mnt_mountpoint; 504 m = mnt->mnt_parent; 505 mnt->mnt_mountpoint = mnt->mnt_root; 506 mnt->mnt_parent = mnt; 507 spin_unlock(&vfsmount_lock); 508 dput(dentry); 509 mntput(m); 510 } 511 mntput(mnt); 512 } 513 } 514 515 void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill) 516 { 517 struct vfsmount *p; 518 519 for (p = mnt; p; p = next_mnt(p, mnt)) 520 list_move(&p->mnt_hash, kill); 521 522 if (propagate) 523 propagate_umount(kill); 524 525 list_for_each_entry(p, kill, mnt_hash) { 526 list_del_init(&p->mnt_expire); 527 list_del_init(&p->mnt_list); 528 __touch_mnt_namespace(p->mnt_ns); 529 p->mnt_ns = NULL; 530 list_del_init(&p->mnt_child); 531 if (p->mnt_parent != p) 532 p->mnt_mountpoint->d_mounted--; 533 change_mnt_propagation(p, MS_PRIVATE); 534 } 535 } 536 537 static int do_umount(struct vfsmount *mnt, int flags) 538 { 539 struct super_block *sb = mnt->mnt_sb; 540 int retval; 541 LIST_HEAD(umount_list); 542 543 retval = security_sb_umount(mnt, flags); 544 if (retval) 545 return retval; 546 547 /* 548 * Allow userspace to request a mountpoint be expired rather than 549 * unmounting unconditionally. Unmount only happens if: 550 * (1) the mark is already set (the mark is cleared by mntput()) 551 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] 552 */ 553 if (flags & MNT_EXPIRE) { 554 if (mnt == current->fs->rootmnt || 555 flags & (MNT_FORCE | MNT_DETACH)) 556 return -EINVAL; 557 558 if (atomic_read(&mnt->mnt_count) != 2) 559 return -EBUSY; 560 561 if (!xchg(&mnt->mnt_expiry_mark, 1)) 562 return -EAGAIN; 563 } 564 565 /* 566 * If we may have to abort operations to get out of this 567 * mount, and they will themselves hold resources we must 568 * allow the fs to do things. In the Unix tradition of 569 * 'Gee thats tricky lets do it in userspace' the umount_begin 570 * might fail to complete on the first run through as other tasks 571 * must return, and the like. Thats for the mount program to worry 572 * about for the moment. 573 */ 574 575 lock_kernel(); 576 if (sb->s_op->umount_begin) 577 sb->s_op->umount_begin(mnt, flags); 578 unlock_kernel(); 579 580 /* 581 * No sense to grab the lock for this test, but test itself looks 582 * somewhat bogus. Suggestions for better replacement? 583 * Ho-hum... In principle, we might treat that as umount + switch 584 * to rootfs. GC would eventually take care of the old vfsmount. 585 * Actually it makes sense, especially if rootfs would contain a 586 * /reboot - static binary that would close all descriptors and 587 * call reboot(9). Then init(8) could umount root and exec /reboot. 588 */ 589 if (mnt == current->fs->rootmnt && !(flags & MNT_DETACH)) { 590 /* 591 * Special case for "unmounting" root ... 592 * we just try to remount it readonly. 593 */ 594 down_write(&sb->s_umount); 595 if (!(sb->s_flags & MS_RDONLY)) { 596 lock_kernel(); 597 DQUOT_OFF(sb); 598 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0); 599 unlock_kernel(); 600 } 601 up_write(&sb->s_umount); 602 return retval; 603 } 604 605 down_write(&namespace_sem); 606 spin_lock(&vfsmount_lock); 607 event++; 608 609 retval = -EBUSY; 610 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) { 611 if (!list_empty(&mnt->mnt_list)) 612 umount_tree(mnt, 1, &umount_list); 613 retval = 0; 614 } 615 spin_unlock(&vfsmount_lock); 616 if (retval) 617 security_sb_umount_busy(mnt); 618 up_write(&namespace_sem); 619 release_mounts(&umount_list); 620 return retval; 621 } 622 623 /* 624 * Now umount can handle mount points as well as block devices. 625 * This is important for filesystems which use unnamed block devices. 626 * 627 * We now support a flag for forced unmount like the other 'big iron' 628 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD 629 */ 630 631 asmlinkage long sys_umount(char __user * name, int flags) 632 { 633 struct nameidata nd; 634 int retval; 635 636 retval = __user_walk(name, LOOKUP_FOLLOW, &nd); 637 if (retval) 638 goto out; 639 retval = -EINVAL; 640 if (nd.dentry != nd.mnt->mnt_root) 641 goto dput_and_out; 642 if (!check_mnt(nd.mnt)) 643 goto dput_and_out; 644 645 retval = -EPERM; 646 if (!capable(CAP_SYS_ADMIN)) 647 goto dput_and_out; 648 649 retval = do_umount(nd.mnt, flags); 650 dput_and_out: 651 path_release_on_umount(&nd); 652 out: 653 return retval; 654 } 655 656 #ifdef __ARCH_WANT_SYS_OLDUMOUNT 657 658 /* 659 * The 2.0 compatible umount. No flags. 660 */ 661 asmlinkage long sys_oldumount(char __user * name) 662 { 663 return sys_umount(name, 0); 664 } 665 666 #endif 667 668 static int mount_is_safe(struct nameidata *nd) 669 { 670 if (capable(CAP_SYS_ADMIN)) 671 return 0; 672 return -EPERM; 673 #ifdef notyet 674 if (S_ISLNK(nd->dentry->d_inode->i_mode)) 675 return -EPERM; 676 if (nd->dentry->d_inode->i_mode & S_ISVTX) { 677 if (current->uid != nd->dentry->d_inode->i_uid) 678 return -EPERM; 679 } 680 if (vfs_permission(nd, MAY_WRITE)) 681 return -EPERM; 682 return 0; 683 #endif 684 } 685 686 static int lives_below_in_same_fs(struct dentry *d, struct dentry *dentry) 687 { 688 while (1) { 689 if (d == dentry) 690 return 1; 691 if (d == NULL || d == d->d_parent) 692 return 0; 693 d = d->d_parent; 694 } 695 } 696 697 struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry, 698 int flag) 699 { 700 struct vfsmount *res, *p, *q, *r, *s; 701 struct nameidata nd; 702 703 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt)) 704 return NULL; 705 706 res = q = clone_mnt(mnt, dentry, flag); 707 if (!q) 708 goto Enomem; 709 q->mnt_mountpoint = mnt->mnt_mountpoint; 710 711 p = mnt; 712 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) { 713 if (!lives_below_in_same_fs(r->mnt_mountpoint, dentry)) 714 continue; 715 716 for (s = r; s; s = next_mnt(s, r)) { 717 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) { 718 s = skip_mnt_tree(s); 719 continue; 720 } 721 while (p != s->mnt_parent) { 722 p = p->mnt_parent; 723 q = q->mnt_parent; 724 } 725 p = s; 726 nd.mnt = q; 727 nd.dentry = p->mnt_mountpoint; 728 q = clone_mnt(p, p->mnt_root, flag); 729 if (!q) 730 goto Enomem; 731 spin_lock(&vfsmount_lock); 732 list_add_tail(&q->mnt_list, &res->mnt_list); 733 attach_mnt(q, &nd); 734 spin_unlock(&vfsmount_lock); 735 } 736 } 737 return res; 738 Enomem: 739 if (res) { 740 LIST_HEAD(umount_list); 741 spin_lock(&vfsmount_lock); 742 umount_tree(res, 0, &umount_list); 743 spin_unlock(&vfsmount_lock); 744 release_mounts(&umount_list); 745 } 746 return NULL; 747 } 748 749 struct vfsmount *collect_mounts(struct vfsmount *mnt, struct dentry *dentry) 750 { 751 struct vfsmount *tree; 752 down_read(&namespace_sem); 753 tree = copy_tree(mnt, dentry, CL_COPY_ALL | CL_PRIVATE); 754 up_read(&namespace_sem); 755 return tree; 756 } 757 758 void drop_collected_mounts(struct vfsmount *mnt) 759 { 760 LIST_HEAD(umount_list); 761 down_read(&namespace_sem); 762 spin_lock(&vfsmount_lock); 763 umount_tree(mnt, 0, &umount_list); 764 spin_unlock(&vfsmount_lock); 765 up_read(&namespace_sem); 766 release_mounts(&umount_list); 767 } 768 769 /* 770 * @source_mnt : mount tree to be attached 771 * @nd : place the mount tree @source_mnt is attached 772 * @parent_nd : if non-null, detach the source_mnt from its parent and 773 * store the parent mount and mountpoint dentry. 774 * (done when source_mnt is moved) 775 * 776 * NOTE: in the table below explains the semantics when a source mount 777 * of a given type is attached to a destination mount of a given type. 778 * --------------------------------------------------------------------------- 779 * | BIND MOUNT OPERATION | 780 * |************************************************************************** 781 * | source-->| shared | private | slave | unbindable | 782 * | dest | | | | | 783 * | | | | | | | 784 * | v | | | | | 785 * |************************************************************************** 786 * | shared | shared (++) | shared (+) | shared(+++)| invalid | 787 * | | | | | | 788 * |non-shared| shared (+) | private | slave (*) | invalid | 789 * *************************************************************************** 790 * A bind operation clones the source mount and mounts the clone on the 791 * destination mount. 792 * 793 * (++) the cloned mount is propagated to all the mounts in the propagation 794 * tree of the destination mount and the cloned mount is added to 795 * the peer group of the source mount. 796 * (+) the cloned mount is created under the destination mount and is marked 797 * as shared. The cloned mount is added to the peer group of the source 798 * mount. 799 * (+++) the mount is propagated to all the mounts in the propagation tree 800 * of the destination mount and the cloned mount is made slave 801 * of the same master as that of the source mount. The cloned mount 802 * is marked as 'shared and slave'. 803 * (*) the cloned mount is made a slave of the same master as that of the 804 * source mount. 805 * 806 * --------------------------------------------------------------------------- 807 * | MOVE MOUNT OPERATION | 808 * |************************************************************************** 809 * | source-->| shared | private | slave | unbindable | 810 * | dest | | | | | 811 * | | | | | | | 812 * | v | | | | | 813 * |************************************************************************** 814 * | shared | shared (+) | shared (+) | shared(+++) | invalid | 815 * | | | | | | 816 * |non-shared| shared (+*) | private | slave (*) | unbindable | 817 * *************************************************************************** 818 * 819 * (+) the mount is moved to the destination. And is then propagated to 820 * all the mounts in the propagation tree of the destination mount. 821 * (+*) the mount is moved to the destination. 822 * (+++) the mount is moved to the destination and is then propagated to 823 * all the mounts belonging to the destination mount's propagation tree. 824 * the mount is marked as 'shared and slave'. 825 * (*) the mount continues to be a slave at the new location. 826 * 827 * if the source mount is a tree, the operations explained above is 828 * applied to each mount in the tree. 829 * Must be called without spinlocks held, since this function can sleep 830 * in allocations. 831 */ 832 static int attach_recursive_mnt(struct vfsmount *source_mnt, 833 struct nameidata *nd, struct nameidata *parent_nd) 834 { 835 LIST_HEAD(tree_list); 836 struct vfsmount *dest_mnt = nd->mnt; 837 struct dentry *dest_dentry = nd->dentry; 838 struct vfsmount *child, *p; 839 840 if (propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list)) 841 return -EINVAL; 842 843 if (IS_MNT_SHARED(dest_mnt)) { 844 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 845 set_mnt_shared(p); 846 } 847 848 spin_lock(&vfsmount_lock); 849 if (parent_nd) { 850 detach_mnt(source_mnt, parent_nd); 851 attach_mnt(source_mnt, nd); 852 touch_mnt_namespace(current->nsproxy->mnt_ns); 853 } else { 854 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt); 855 commit_tree(source_mnt); 856 } 857 858 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) { 859 list_del_init(&child->mnt_hash); 860 commit_tree(child); 861 } 862 spin_unlock(&vfsmount_lock); 863 return 0; 864 } 865 866 static int graft_tree(struct vfsmount *mnt, struct nameidata *nd) 867 { 868 int err; 869 if (mnt->mnt_sb->s_flags & MS_NOUSER) 870 return -EINVAL; 871 872 if (S_ISDIR(nd->dentry->d_inode->i_mode) != 873 S_ISDIR(mnt->mnt_root->d_inode->i_mode)) 874 return -ENOTDIR; 875 876 err = -ENOENT; 877 mutex_lock(&nd->dentry->d_inode->i_mutex); 878 if (IS_DEADDIR(nd->dentry->d_inode)) 879 goto out_unlock; 880 881 err = security_sb_check_sb(mnt, nd); 882 if (err) 883 goto out_unlock; 884 885 err = -ENOENT; 886 if (IS_ROOT(nd->dentry) || !d_unhashed(nd->dentry)) 887 err = attach_recursive_mnt(mnt, nd, NULL); 888 out_unlock: 889 mutex_unlock(&nd->dentry->d_inode->i_mutex); 890 if (!err) 891 security_sb_post_addmount(mnt, nd); 892 return err; 893 } 894 895 /* 896 * recursively change the type of the mountpoint. 897 */ 898 static int do_change_type(struct nameidata *nd, int flag) 899 { 900 struct vfsmount *m, *mnt = nd->mnt; 901 int recurse = flag & MS_REC; 902 int type = flag & ~MS_REC; 903 904 if (!capable(CAP_SYS_ADMIN)) 905 return -EPERM; 906 907 if (nd->dentry != nd->mnt->mnt_root) 908 return -EINVAL; 909 910 down_write(&namespace_sem); 911 spin_lock(&vfsmount_lock); 912 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) 913 change_mnt_propagation(m, type); 914 spin_unlock(&vfsmount_lock); 915 up_write(&namespace_sem); 916 return 0; 917 } 918 919 /* 920 * do loopback mount. 921 */ 922 static int do_loopback(struct nameidata *nd, char *old_name, int recurse) 923 { 924 struct nameidata old_nd; 925 struct vfsmount *mnt = NULL; 926 int err = mount_is_safe(nd); 927 if (err) 928 return err; 929 if (!old_name || !*old_name) 930 return -EINVAL; 931 err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd); 932 if (err) 933 return err; 934 935 down_write(&namespace_sem); 936 err = -EINVAL; 937 if (IS_MNT_UNBINDABLE(old_nd.mnt)) 938 goto out; 939 940 if (!check_mnt(nd->mnt) || !check_mnt(old_nd.mnt)) 941 goto out; 942 943 err = -ENOMEM; 944 if (recurse) 945 mnt = copy_tree(old_nd.mnt, old_nd.dentry, 0); 946 else 947 mnt = clone_mnt(old_nd.mnt, old_nd.dentry, 0); 948 949 if (!mnt) 950 goto out; 951 952 err = graft_tree(mnt, nd); 953 if (err) { 954 LIST_HEAD(umount_list); 955 spin_lock(&vfsmount_lock); 956 umount_tree(mnt, 0, &umount_list); 957 spin_unlock(&vfsmount_lock); 958 release_mounts(&umount_list); 959 } 960 961 out: 962 up_write(&namespace_sem); 963 path_release(&old_nd); 964 return err; 965 } 966 967 /* 968 * change filesystem flags. dir should be a physical root of filesystem. 969 * If you've mounted a non-root directory somewhere and want to do remount 970 * on it - tough luck. 971 */ 972 static int do_remount(struct nameidata *nd, int flags, int mnt_flags, 973 void *data) 974 { 975 int err; 976 struct super_block *sb = nd->mnt->mnt_sb; 977 978 if (!capable(CAP_SYS_ADMIN)) 979 return -EPERM; 980 981 if (!check_mnt(nd->mnt)) 982 return -EINVAL; 983 984 if (nd->dentry != nd->mnt->mnt_root) 985 return -EINVAL; 986 987 down_write(&sb->s_umount); 988 err = do_remount_sb(sb, flags, data, 0); 989 if (!err) 990 nd->mnt->mnt_flags = mnt_flags; 991 up_write(&sb->s_umount); 992 if (!err) 993 security_sb_post_remount(nd->mnt, flags, data); 994 return err; 995 } 996 997 static inline int tree_contains_unbindable(struct vfsmount *mnt) 998 { 999 struct vfsmount *p; 1000 for (p = mnt; p; p = next_mnt(p, mnt)) { 1001 if (IS_MNT_UNBINDABLE(p)) 1002 return 1; 1003 } 1004 return 0; 1005 } 1006 1007 static int do_move_mount(struct nameidata *nd, char *old_name) 1008 { 1009 struct nameidata old_nd, parent_nd; 1010 struct vfsmount *p; 1011 int err = 0; 1012 if (!capable(CAP_SYS_ADMIN)) 1013 return -EPERM; 1014 if (!old_name || !*old_name) 1015 return -EINVAL; 1016 err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd); 1017 if (err) 1018 return err; 1019 1020 down_write(&namespace_sem); 1021 while (d_mountpoint(nd->dentry) && follow_down(&nd->mnt, &nd->dentry)) 1022 ; 1023 err = -EINVAL; 1024 if (!check_mnt(nd->mnt) || !check_mnt(old_nd.mnt)) 1025 goto out; 1026 1027 err = -ENOENT; 1028 mutex_lock(&nd->dentry->d_inode->i_mutex); 1029 if (IS_DEADDIR(nd->dentry->d_inode)) 1030 goto out1; 1031 1032 if (!IS_ROOT(nd->dentry) && d_unhashed(nd->dentry)) 1033 goto out1; 1034 1035 err = -EINVAL; 1036 if (old_nd.dentry != old_nd.mnt->mnt_root) 1037 goto out1; 1038 1039 if (old_nd.mnt == old_nd.mnt->mnt_parent) 1040 goto out1; 1041 1042 if (S_ISDIR(nd->dentry->d_inode->i_mode) != 1043 S_ISDIR(old_nd.dentry->d_inode->i_mode)) 1044 goto out1; 1045 /* 1046 * Don't move a mount residing in a shared parent. 1047 */ 1048 if (old_nd.mnt->mnt_parent && IS_MNT_SHARED(old_nd.mnt->mnt_parent)) 1049 goto out1; 1050 /* 1051 * Don't move a mount tree containing unbindable mounts to a destination 1052 * mount which is shared. 1053 */ 1054 if (IS_MNT_SHARED(nd->mnt) && tree_contains_unbindable(old_nd.mnt)) 1055 goto out1; 1056 err = -ELOOP; 1057 for (p = nd->mnt; p->mnt_parent != p; p = p->mnt_parent) 1058 if (p == old_nd.mnt) 1059 goto out1; 1060 1061 if ((err = attach_recursive_mnt(old_nd.mnt, nd, &parent_nd))) 1062 goto out1; 1063 1064 spin_lock(&vfsmount_lock); 1065 /* if the mount is moved, it should no longer be expire 1066 * automatically */ 1067 list_del_init(&old_nd.mnt->mnt_expire); 1068 spin_unlock(&vfsmount_lock); 1069 out1: 1070 mutex_unlock(&nd->dentry->d_inode->i_mutex); 1071 out: 1072 up_write(&namespace_sem); 1073 if (!err) 1074 path_release(&parent_nd); 1075 path_release(&old_nd); 1076 return err; 1077 } 1078 1079 /* 1080 * create a new mount for userspace and request it to be added into the 1081 * namespace's tree 1082 */ 1083 static int do_new_mount(struct nameidata *nd, char *type, int flags, 1084 int mnt_flags, char *name, void *data) 1085 { 1086 struct vfsmount *mnt; 1087 1088 if (!type || !memchr(type, 0, PAGE_SIZE)) 1089 return -EINVAL; 1090 1091 /* we need capabilities... */ 1092 if (!capable(CAP_SYS_ADMIN)) 1093 return -EPERM; 1094 1095 mnt = do_kern_mount(type, flags, name, data); 1096 if (IS_ERR(mnt)) 1097 return PTR_ERR(mnt); 1098 1099 return do_add_mount(mnt, nd, mnt_flags, NULL); 1100 } 1101 1102 /* 1103 * add a mount into a namespace's mount tree 1104 * - provide the option of adding the new mount to an expiration list 1105 */ 1106 int do_add_mount(struct vfsmount *newmnt, struct nameidata *nd, 1107 int mnt_flags, struct list_head *fslist) 1108 { 1109 int err; 1110 1111 down_write(&namespace_sem); 1112 /* Something was mounted here while we slept */ 1113 while (d_mountpoint(nd->dentry) && follow_down(&nd->mnt, &nd->dentry)) 1114 ; 1115 err = -EINVAL; 1116 if (!check_mnt(nd->mnt)) 1117 goto unlock; 1118 1119 /* Refuse the same filesystem on the same mount point */ 1120 err = -EBUSY; 1121 if (nd->mnt->mnt_sb == newmnt->mnt_sb && 1122 nd->mnt->mnt_root == nd->dentry) 1123 goto unlock; 1124 1125 err = -EINVAL; 1126 if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode)) 1127 goto unlock; 1128 1129 newmnt->mnt_flags = mnt_flags; 1130 if ((err = graft_tree(newmnt, nd))) 1131 goto unlock; 1132 1133 if (fslist) { 1134 /* add to the specified expiration list */ 1135 spin_lock(&vfsmount_lock); 1136 list_add_tail(&newmnt->mnt_expire, fslist); 1137 spin_unlock(&vfsmount_lock); 1138 } 1139 up_write(&namespace_sem); 1140 return 0; 1141 1142 unlock: 1143 up_write(&namespace_sem); 1144 mntput(newmnt); 1145 return err; 1146 } 1147 1148 EXPORT_SYMBOL_GPL(do_add_mount); 1149 1150 static void expire_mount(struct vfsmount *mnt, struct list_head *mounts, 1151 struct list_head *umounts) 1152 { 1153 spin_lock(&vfsmount_lock); 1154 1155 /* 1156 * Check if mount is still attached, if not, let whoever holds it deal 1157 * with the sucker 1158 */ 1159 if (mnt->mnt_parent == mnt) { 1160 spin_unlock(&vfsmount_lock); 1161 return; 1162 } 1163 1164 /* 1165 * Check that it is still dead: the count should now be 2 - as 1166 * contributed by the vfsmount parent and the mntget above 1167 */ 1168 if (!propagate_mount_busy(mnt, 2)) { 1169 /* delete from the namespace */ 1170 touch_mnt_namespace(mnt->mnt_ns); 1171 list_del_init(&mnt->mnt_list); 1172 mnt->mnt_ns = NULL; 1173 umount_tree(mnt, 1, umounts); 1174 spin_unlock(&vfsmount_lock); 1175 } else { 1176 /* 1177 * Someone brought it back to life whilst we didn't have any 1178 * locks held so return it to the expiration list 1179 */ 1180 list_add_tail(&mnt->mnt_expire, mounts); 1181 spin_unlock(&vfsmount_lock); 1182 } 1183 } 1184 1185 /* 1186 * go through the vfsmounts we've just consigned to the graveyard to 1187 * - check that they're still dead 1188 * - delete the vfsmount from the appropriate namespace under lock 1189 * - dispose of the corpse 1190 */ 1191 static void expire_mount_list(struct list_head *graveyard, struct list_head *mounts) 1192 { 1193 struct mnt_namespace *ns; 1194 struct vfsmount *mnt; 1195 1196 while (!list_empty(graveyard)) { 1197 LIST_HEAD(umounts); 1198 mnt = list_first_entry(graveyard, struct vfsmount, mnt_expire); 1199 list_del_init(&mnt->mnt_expire); 1200 1201 /* don't do anything if the namespace is dead - all the 1202 * vfsmounts from it are going away anyway */ 1203 ns = mnt->mnt_ns; 1204 if (!ns || !ns->root) 1205 continue; 1206 get_mnt_ns(ns); 1207 1208 spin_unlock(&vfsmount_lock); 1209 down_write(&namespace_sem); 1210 expire_mount(mnt, mounts, &umounts); 1211 up_write(&namespace_sem); 1212 release_mounts(&umounts); 1213 mntput(mnt); 1214 put_mnt_ns(ns); 1215 spin_lock(&vfsmount_lock); 1216 } 1217 } 1218 1219 /* 1220 * process a list of expirable mountpoints with the intent of discarding any 1221 * mountpoints that aren't in use and haven't been touched since last we came 1222 * here 1223 */ 1224 void mark_mounts_for_expiry(struct list_head *mounts) 1225 { 1226 struct vfsmount *mnt, *next; 1227 LIST_HEAD(graveyard); 1228 1229 if (list_empty(mounts)) 1230 return; 1231 1232 spin_lock(&vfsmount_lock); 1233 1234 /* extract from the expiration list every vfsmount that matches the 1235 * following criteria: 1236 * - only referenced by its parent vfsmount 1237 * - still marked for expiry (marked on the last call here; marks are 1238 * cleared by mntput()) 1239 */ 1240 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { 1241 if (!xchg(&mnt->mnt_expiry_mark, 1) || 1242 atomic_read(&mnt->mnt_count) != 1) 1243 continue; 1244 1245 mntget(mnt); 1246 list_move(&mnt->mnt_expire, &graveyard); 1247 } 1248 1249 expire_mount_list(&graveyard, mounts); 1250 1251 spin_unlock(&vfsmount_lock); 1252 } 1253 1254 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); 1255 1256 /* 1257 * Ripoff of 'select_parent()' 1258 * 1259 * search the list of submounts for a given mountpoint, and move any 1260 * shrinkable submounts to the 'graveyard' list. 1261 */ 1262 static int select_submounts(struct vfsmount *parent, struct list_head *graveyard) 1263 { 1264 struct vfsmount *this_parent = parent; 1265 struct list_head *next; 1266 int found = 0; 1267 1268 repeat: 1269 next = this_parent->mnt_mounts.next; 1270 resume: 1271 while (next != &this_parent->mnt_mounts) { 1272 struct list_head *tmp = next; 1273 struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child); 1274 1275 next = tmp->next; 1276 if (!(mnt->mnt_flags & MNT_SHRINKABLE)) 1277 continue; 1278 /* 1279 * Descend a level if the d_mounts list is non-empty. 1280 */ 1281 if (!list_empty(&mnt->mnt_mounts)) { 1282 this_parent = mnt; 1283 goto repeat; 1284 } 1285 1286 if (!propagate_mount_busy(mnt, 1)) { 1287 mntget(mnt); 1288 list_move_tail(&mnt->mnt_expire, graveyard); 1289 found++; 1290 } 1291 } 1292 /* 1293 * All done at this level ... ascend and resume the search 1294 */ 1295 if (this_parent != parent) { 1296 next = this_parent->mnt_child.next; 1297 this_parent = this_parent->mnt_parent; 1298 goto resume; 1299 } 1300 return found; 1301 } 1302 1303 /* 1304 * process a list of expirable mountpoints with the intent of discarding any 1305 * submounts of a specific parent mountpoint 1306 */ 1307 void shrink_submounts(struct vfsmount *mountpoint, struct list_head *mounts) 1308 { 1309 LIST_HEAD(graveyard); 1310 int found; 1311 1312 spin_lock(&vfsmount_lock); 1313 1314 /* extract submounts of 'mountpoint' from the expiration list */ 1315 while ((found = select_submounts(mountpoint, &graveyard)) != 0) 1316 expire_mount_list(&graveyard, mounts); 1317 1318 spin_unlock(&vfsmount_lock); 1319 } 1320 1321 EXPORT_SYMBOL_GPL(shrink_submounts); 1322 1323 /* 1324 * Some copy_from_user() implementations do not return the exact number of 1325 * bytes remaining to copy on a fault. But copy_mount_options() requires that. 1326 * Note that this function differs from copy_from_user() in that it will oops 1327 * on bad values of `to', rather than returning a short copy. 1328 */ 1329 static long exact_copy_from_user(void *to, const void __user * from, 1330 unsigned long n) 1331 { 1332 char *t = to; 1333 const char __user *f = from; 1334 char c; 1335 1336 if (!access_ok(VERIFY_READ, from, n)) 1337 return n; 1338 1339 while (n) { 1340 if (__get_user(c, f)) { 1341 memset(t, 0, n); 1342 break; 1343 } 1344 *t++ = c; 1345 f++; 1346 n--; 1347 } 1348 return n; 1349 } 1350 1351 int copy_mount_options(const void __user * data, unsigned long *where) 1352 { 1353 int i; 1354 unsigned long page; 1355 unsigned long size; 1356 1357 *where = 0; 1358 if (!data) 1359 return 0; 1360 1361 if (!(page = __get_free_page(GFP_KERNEL))) 1362 return -ENOMEM; 1363 1364 /* We only care that *some* data at the address the user 1365 * gave us is valid. Just in case, we'll zero 1366 * the remainder of the page. 1367 */ 1368 /* copy_from_user cannot cross TASK_SIZE ! */ 1369 size = TASK_SIZE - (unsigned long)data; 1370 if (size > PAGE_SIZE) 1371 size = PAGE_SIZE; 1372 1373 i = size - exact_copy_from_user((void *)page, data, size); 1374 if (!i) { 1375 free_page(page); 1376 return -EFAULT; 1377 } 1378 if (i != PAGE_SIZE) 1379 memset((char *)page + i, 0, PAGE_SIZE - i); 1380 *where = page; 1381 return 0; 1382 } 1383 1384 /* 1385 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to 1386 * be given to the mount() call (ie: read-only, no-dev, no-suid etc). 1387 * 1388 * data is a (void *) that can point to any structure up to 1389 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent 1390 * information (or be NULL). 1391 * 1392 * Pre-0.97 versions of mount() didn't have a flags word. 1393 * When the flags word was introduced its top half was required 1394 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. 1395 * Therefore, if this magic number is present, it carries no information 1396 * and must be discarded. 1397 */ 1398 long do_mount(char *dev_name, char *dir_name, char *type_page, 1399 unsigned long flags, void *data_page) 1400 { 1401 struct nameidata nd; 1402 int retval = 0; 1403 int mnt_flags = 0; 1404 1405 /* Discard magic */ 1406 if ((flags & MS_MGC_MSK) == MS_MGC_VAL) 1407 flags &= ~MS_MGC_MSK; 1408 1409 /* Basic sanity checks */ 1410 1411 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE)) 1412 return -EINVAL; 1413 if (dev_name && !memchr(dev_name, 0, PAGE_SIZE)) 1414 return -EINVAL; 1415 1416 if (data_page) 1417 ((char *)data_page)[PAGE_SIZE - 1] = 0; 1418 1419 /* Separate the per-mountpoint flags */ 1420 if (flags & MS_NOSUID) 1421 mnt_flags |= MNT_NOSUID; 1422 if (flags & MS_NODEV) 1423 mnt_flags |= MNT_NODEV; 1424 if (flags & MS_NOEXEC) 1425 mnt_flags |= MNT_NOEXEC; 1426 if (flags & MS_NOATIME) 1427 mnt_flags |= MNT_NOATIME; 1428 if (flags & MS_NODIRATIME) 1429 mnt_flags |= MNT_NODIRATIME; 1430 if (flags & MS_RELATIME) 1431 mnt_flags |= MNT_RELATIME; 1432 1433 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | 1434 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT); 1435 1436 /* ... and get the mountpoint */ 1437 retval = path_lookup(dir_name, LOOKUP_FOLLOW, &nd); 1438 if (retval) 1439 return retval; 1440 1441 retval = security_sb_mount(dev_name, &nd, type_page, flags, data_page); 1442 if (retval) 1443 goto dput_out; 1444 1445 if (flags & MS_REMOUNT) 1446 retval = do_remount(&nd, flags & ~MS_REMOUNT, mnt_flags, 1447 data_page); 1448 else if (flags & MS_BIND) 1449 retval = do_loopback(&nd, dev_name, flags & MS_REC); 1450 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 1451 retval = do_change_type(&nd, flags); 1452 else if (flags & MS_MOVE) 1453 retval = do_move_mount(&nd, dev_name); 1454 else 1455 retval = do_new_mount(&nd, type_page, flags, mnt_flags, 1456 dev_name, data_page); 1457 dput_out: 1458 path_release(&nd); 1459 return retval; 1460 } 1461 1462 /* 1463 * Allocate a new namespace structure and populate it with contents 1464 * copied from the namespace of the passed in task structure. 1465 */ 1466 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns, 1467 struct fs_struct *fs) 1468 { 1469 struct mnt_namespace *new_ns; 1470 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL, *altrootmnt = NULL; 1471 struct vfsmount *p, *q; 1472 1473 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL); 1474 if (!new_ns) 1475 return ERR_PTR(-ENOMEM); 1476 1477 atomic_set(&new_ns->count, 1); 1478 INIT_LIST_HEAD(&new_ns->list); 1479 init_waitqueue_head(&new_ns->poll); 1480 new_ns->event = 0; 1481 1482 down_write(&namespace_sem); 1483 /* First pass: copy the tree topology */ 1484 new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root, 1485 CL_COPY_ALL | CL_EXPIRE); 1486 if (!new_ns->root) { 1487 up_write(&namespace_sem); 1488 kfree(new_ns); 1489 return ERR_PTR(-ENOMEM);; 1490 } 1491 spin_lock(&vfsmount_lock); 1492 list_add_tail(&new_ns->list, &new_ns->root->mnt_list); 1493 spin_unlock(&vfsmount_lock); 1494 1495 /* 1496 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts 1497 * as belonging to new namespace. We have already acquired a private 1498 * fs_struct, so tsk->fs->lock is not needed. 1499 */ 1500 p = mnt_ns->root; 1501 q = new_ns->root; 1502 while (p) { 1503 q->mnt_ns = new_ns; 1504 if (fs) { 1505 if (p == fs->rootmnt) { 1506 rootmnt = p; 1507 fs->rootmnt = mntget(q); 1508 } 1509 if (p == fs->pwdmnt) { 1510 pwdmnt = p; 1511 fs->pwdmnt = mntget(q); 1512 } 1513 if (p == fs->altrootmnt) { 1514 altrootmnt = p; 1515 fs->altrootmnt = mntget(q); 1516 } 1517 } 1518 p = next_mnt(p, mnt_ns->root); 1519 q = next_mnt(q, new_ns->root); 1520 } 1521 up_write(&namespace_sem); 1522 1523 if (rootmnt) 1524 mntput(rootmnt); 1525 if (pwdmnt) 1526 mntput(pwdmnt); 1527 if (altrootmnt) 1528 mntput(altrootmnt); 1529 1530 return new_ns; 1531 } 1532 1533 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns, 1534 struct fs_struct *new_fs) 1535 { 1536 struct mnt_namespace *new_ns; 1537 1538 BUG_ON(!ns); 1539 get_mnt_ns(ns); 1540 1541 if (!(flags & CLONE_NEWNS)) 1542 return ns; 1543 1544 new_ns = dup_mnt_ns(ns, new_fs); 1545 1546 put_mnt_ns(ns); 1547 return new_ns; 1548 } 1549 1550 asmlinkage long sys_mount(char __user * dev_name, char __user * dir_name, 1551 char __user * type, unsigned long flags, 1552 void __user * data) 1553 { 1554 int retval; 1555 unsigned long data_page; 1556 unsigned long type_page; 1557 unsigned long dev_page; 1558 char *dir_page; 1559 1560 retval = copy_mount_options(type, &type_page); 1561 if (retval < 0) 1562 return retval; 1563 1564 dir_page = getname(dir_name); 1565 retval = PTR_ERR(dir_page); 1566 if (IS_ERR(dir_page)) 1567 goto out1; 1568 1569 retval = copy_mount_options(dev_name, &dev_page); 1570 if (retval < 0) 1571 goto out2; 1572 1573 retval = copy_mount_options(data, &data_page); 1574 if (retval < 0) 1575 goto out3; 1576 1577 lock_kernel(); 1578 retval = do_mount((char *)dev_page, dir_page, (char *)type_page, 1579 flags, (void *)data_page); 1580 unlock_kernel(); 1581 free_page(data_page); 1582 1583 out3: 1584 free_page(dev_page); 1585 out2: 1586 putname(dir_page); 1587 out1: 1588 free_page(type_page); 1589 return retval; 1590 } 1591 1592 /* 1593 * Replace the fs->{rootmnt,root} with {mnt,dentry}. Put the old values. 1594 * It can block. Requires the big lock held. 1595 */ 1596 void set_fs_root(struct fs_struct *fs, struct vfsmount *mnt, 1597 struct dentry *dentry) 1598 { 1599 struct dentry *old_root; 1600 struct vfsmount *old_rootmnt; 1601 write_lock(&fs->lock); 1602 old_root = fs->root; 1603 old_rootmnt = fs->rootmnt; 1604 fs->rootmnt = mntget(mnt); 1605 fs->root = dget(dentry); 1606 write_unlock(&fs->lock); 1607 if (old_root) { 1608 dput(old_root); 1609 mntput(old_rootmnt); 1610 } 1611 } 1612 1613 /* 1614 * Replace the fs->{pwdmnt,pwd} with {mnt,dentry}. Put the old values. 1615 * It can block. Requires the big lock held. 1616 */ 1617 void set_fs_pwd(struct fs_struct *fs, struct vfsmount *mnt, 1618 struct dentry *dentry) 1619 { 1620 struct dentry *old_pwd; 1621 struct vfsmount *old_pwdmnt; 1622 1623 write_lock(&fs->lock); 1624 old_pwd = fs->pwd; 1625 old_pwdmnt = fs->pwdmnt; 1626 fs->pwdmnt = mntget(mnt); 1627 fs->pwd = dget(dentry); 1628 write_unlock(&fs->lock); 1629 1630 if (old_pwd) { 1631 dput(old_pwd); 1632 mntput(old_pwdmnt); 1633 } 1634 } 1635 1636 static void chroot_fs_refs(struct nameidata *old_nd, struct nameidata *new_nd) 1637 { 1638 struct task_struct *g, *p; 1639 struct fs_struct *fs; 1640 1641 read_lock(&tasklist_lock); 1642 do_each_thread(g, p) { 1643 task_lock(p); 1644 fs = p->fs; 1645 if (fs) { 1646 atomic_inc(&fs->count); 1647 task_unlock(p); 1648 if (fs->root == old_nd->dentry 1649 && fs->rootmnt == old_nd->mnt) 1650 set_fs_root(fs, new_nd->mnt, new_nd->dentry); 1651 if (fs->pwd == old_nd->dentry 1652 && fs->pwdmnt == old_nd->mnt) 1653 set_fs_pwd(fs, new_nd->mnt, new_nd->dentry); 1654 put_fs_struct(fs); 1655 } else 1656 task_unlock(p); 1657 } while_each_thread(g, p); 1658 read_unlock(&tasklist_lock); 1659 } 1660 1661 /* 1662 * pivot_root Semantics: 1663 * Moves the root file system of the current process to the directory put_old, 1664 * makes new_root as the new root file system of the current process, and sets 1665 * root/cwd of all processes which had them on the current root to new_root. 1666 * 1667 * Restrictions: 1668 * The new_root and put_old must be directories, and must not be on the 1669 * same file system as the current process root. The put_old must be 1670 * underneath new_root, i.e. adding a non-zero number of /.. to the string 1671 * pointed to by put_old must yield the same directory as new_root. No other 1672 * file system may be mounted on put_old. After all, new_root is a mountpoint. 1673 * 1674 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. 1675 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives 1676 * in this situation. 1677 * 1678 * Notes: 1679 * - we don't move root/cwd if they are not at the root (reason: if something 1680 * cared enough to change them, it's probably wrong to force them elsewhere) 1681 * - it's okay to pick a root that isn't the root of a file system, e.g. 1682 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, 1683 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root 1684 * first. 1685 */ 1686 asmlinkage long sys_pivot_root(const char __user * new_root, 1687 const char __user * put_old) 1688 { 1689 struct vfsmount *tmp; 1690 struct nameidata new_nd, old_nd, parent_nd, root_parent, user_nd; 1691 int error; 1692 1693 if (!capable(CAP_SYS_ADMIN)) 1694 return -EPERM; 1695 1696 lock_kernel(); 1697 1698 error = __user_walk(new_root, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, 1699 &new_nd); 1700 if (error) 1701 goto out0; 1702 error = -EINVAL; 1703 if (!check_mnt(new_nd.mnt)) 1704 goto out1; 1705 1706 error = __user_walk(put_old, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old_nd); 1707 if (error) 1708 goto out1; 1709 1710 error = security_sb_pivotroot(&old_nd, &new_nd); 1711 if (error) { 1712 path_release(&old_nd); 1713 goto out1; 1714 } 1715 1716 read_lock(¤t->fs->lock); 1717 user_nd.mnt = mntget(current->fs->rootmnt); 1718 user_nd.dentry = dget(current->fs->root); 1719 read_unlock(¤t->fs->lock); 1720 down_write(&namespace_sem); 1721 mutex_lock(&old_nd.dentry->d_inode->i_mutex); 1722 error = -EINVAL; 1723 if (IS_MNT_SHARED(old_nd.mnt) || 1724 IS_MNT_SHARED(new_nd.mnt->mnt_parent) || 1725 IS_MNT_SHARED(user_nd.mnt->mnt_parent)) 1726 goto out2; 1727 if (!check_mnt(user_nd.mnt)) 1728 goto out2; 1729 error = -ENOENT; 1730 if (IS_DEADDIR(new_nd.dentry->d_inode)) 1731 goto out2; 1732 if (d_unhashed(new_nd.dentry) && !IS_ROOT(new_nd.dentry)) 1733 goto out2; 1734 if (d_unhashed(old_nd.dentry) && !IS_ROOT(old_nd.dentry)) 1735 goto out2; 1736 error = -EBUSY; 1737 if (new_nd.mnt == user_nd.mnt || old_nd.mnt == user_nd.mnt) 1738 goto out2; /* loop, on the same file system */ 1739 error = -EINVAL; 1740 if (user_nd.mnt->mnt_root != user_nd.dentry) 1741 goto out2; /* not a mountpoint */ 1742 if (user_nd.mnt->mnt_parent == user_nd.mnt) 1743 goto out2; /* not attached */ 1744 if (new_nd.mnt->mnt_root != new_nd.dentry) 1745 goto out2; /* not a mountpoint */ 1746 if (new_nd.mnt->mnt_parent == new_nd.mnt) 1747 goto out2; /* not attached */ 1748 tmp = old_nd.mnt; /* make sure we can reach put_old from new_root */ 1749 spin_lock(&vfsmount_lock); 1750 if (tmp != new_nd.mnt) { 1751 for (;;) { 1752 if (tmp->mnt_parent == tmp) 1753 goto out3; /* already mounted on put_old */ 1754 if (tmp->mnt_parent == new_nd.mnt) 1755 break; 1756 tmp = tmp->mnt_parent; 1757 } 1758 if (!is_subdir(tmp->mnt_mountpoint, new_nd.dentry)) 1759 goto out3; 1760 } else if (!is_subdir(old_nd.dentry, new_nd.dentry)) 1761 goto out3; 1762 detach_mnt(new_nd.mnt, &parent_nd); 1763 detach_mnt(user_nd.mnt, &root_parent); 1764 attach_mnt(user_nd.mnt, &old_nd); /* mount old root on put_old */ 1765 attach_mnt(new_nd.mnt, &root_parent); /* mount new_root on / */ 1766 touch_mnt_namespace(current->nsproxy->mnt_ns); 1767 spin_unlock(&vfsmount_lock); 1768 chroot_fs_refs(&user_nd, &new_nd); 1769 security_sb_post_pivotroot(&user_nd, &new_nd); 1770 error = 0; 1771 path_release(&root_parent); 1772 path_release(&parent_nd); 1773 out2: 1774 mutex_unlock(&old_nd.dentry->d_inode->i_mutex); 1775 up_write(&namespace_sem); 1776 path_release(&user_nd); 1777 path_release(&old_nd); 1778 out1: 1779 path_release(&new_nd); 1780 out0: 1781 unlock_kernel(); 1782 return error; 1783 out3: 1784 spin_unlock(&vfsmount_lock); 1785 goto out2; 1786 } 1787 1788 static void __init init_mount_tree(void) 1789 { 1790 struct vfsmount *mnt; 1791 struct mnt_namespace *ns; 1792 1793 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL); 1794 if (IS_ERR(mnt)) 1795 panic("Can't create rootfs"); 1796 ns = kmalloc(sizeof(*ns), GFP_KERNEL); 1797 if (!ns) 1798 panic("Can't allocate initial namespace"); 1799 atomic_set(&ns->count, 1); 1800 INIT_LIST_HEAD(&ns->list); 1801 init_waitqueue_head(&ns->poll); 1802 ns->event = 0; 1803 list_add(&mnt->mnt_list, &ns->list); 1804 ns->root = mnt; 1805 mnt->mnt_ns = ns; 1806 1807 init_task.nsproxy->mnt_ns = ns; 1808 get_mnt_ns(ns); 1809 1810 set_fs_pwd(current->fs, ns->root, ns->root->mnt_root); 1811 set_fs_root(current->fs, ns->root, ns->root->mnt_root); 1812 } 1813 1814 void __init mnt_init(void) 1815 { 1816 struct list_head *d; 1817 unsigned int nr_hash; 1818 int i; 1819 int err; 1820 1821 init_rwsem(&namespace_sem); 1822 1823 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount), 1824 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 1825 1826 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC); 1827 1828 if (!mount_hashtable) 1829 panic("Failed to allocate mount hash table\n"); 1830 1831 /* 1832 * Find the power-of-two list-heads that can fit into the allocation.. 1833 * We don't guarantee that "sizeof(struct list_head)" is necessarily 1834 * a power-of-two. 1835 */ 1836 nr_hash = PAGE_SIZE / sizeof(struct list_head); 1837 hash_bits = 0; 1838 do { 1839 hash_bits++; 1840 } while ((nr_hash >> hash_bits) != 0); 1841 hash_bits--; 1842 1843 /* 1844 * Re-calculate the actual number of entries and the mask 1845 * from the number of bits we can fit. 1846 */ 1847 nr_hash = 1UL << hash_bits; 1848 hash_mask = nr_hash - 1; 1849 1850 printk("Mount-cache hash table entries: %d\n", nr_hash); 1851 1852 /* And initialize the newly allocated array */ 1853 d = mount_hashtable; 1854 i = nr_hash; 1855 do { 1856 INIT_LIST_HEAD(d); 1857 d++; 1858 i--; 1859 } while (i); 1860 err = sysfs_init(); 1861 if (err) 1862 printk(KERN_WARNING "%s: sysfs_init error: %d\n", 1863 __FUNCTION__, err); 1864 fs_kobj = kobject_create_and_add("fs", NULL); 1865 if (!fs_kobj) 1866 printk(KERN_WARNING "%s: kobj create error\n", __FUNCTION__); 1867 init_rootfs(); 1868 init_mount_tree(); 1869 } 1870 1871 void __put_mnt_ns(struct mnt_namespace *ns) 1872 { 1873 struct vfsmount *root = ns->root; 1874 LIST_HEAD(umount_list); 1875 ns->root = NULL; 1876 spin_unlock(&vfsmount_lock); 1877 down_write(&namespace_sem); 1878 spin_lock(&vfsmount_lock); 1879 umount_tree(root, 0, &umount_list); 1880 spin_unlock(&vfsmount_lock); 1881 up_write(&namespace_sem); 1882 release_mounts(&umount_list); 1883 kfree(ns); 1884 } 1885