xref: /openbmc/linux/fs/namespace.c (revision 643d1f7f)
1 /*
2  *  linux/fs/namespace.c
3  *
4  * (C) Copyright Al Viro 2000, 2001
5  *	Released under GPL v2.
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/slab.h>
13 #include <linux/sched.h>
14 #include <linux/smp_lock.h>
15 #include <linux/init.h>
16 #include <linux/kernel.h>
17 #include <linux/quotaops.h>
18 #include <linux/acct.h>
19 #include <linux/capability.h>
20 #include <linux/module.h>
21 #include <linux/sysfs.h>
22 #include <linux/seq_file.h>
23 #include <linux/mnt_namespace.h>
24 #include <linux/namei.h>
25 #include <linux/security.h>
26 #include <linux/mount.h>
27 #include <linux/ramfs.h>
28 #include <asm/uaccess.h>
29 #include <asm/unistd.h>
30 #include "pnode.h"
31 #include "internal.h"
32 
33 /* spinlock for vfsmount related operations, inplace of dcache_lock */
34 __cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock);
35 
36 static int event;
37 
38 static struct list_head *mount_hashtable __read_mostly;
39 static int hash_mask __read_mostly, hash_bits __read_mostly;
40 static struct kmem_cache *mnt_cache __read_mostly;
41 static struct rw_semaphore namespace_sem;
42 
43 /* /sys/fs */
44 struct kobject *fs_kobj;
45 EXPORT_SYMBOL_GPL(fs_kobj);
46 
47 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
48 {
49 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
50 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
51 	tmp = tmp + (tmp >> hash_bits);
52 	return tmp & hash_mask;
53 }
54 
55 struct vfsmount *alloc_vfsmnt(const char *name)
56 {
57 	struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
58 	if (mnt) {
59 		atomic_set(&mnt->mnt_count, 1);
60 		INIT_LIST_HEAD(&mnt->mnt_hash);
61 		INIT_LIST_HEAD(&mnt->mnt_child);
62 		INIT_LIST_HEAD(&mnt->mnt_mounts);
63 		INIT_LIST_HEAD(&mnt->mnt_list);
64 		INIT_LIST_HEAD(&mnt->mnt_expire);
65 		INIT_LIST_HEAD(&mnt->mnt_share);
66 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
67 		INIT_LIST_HEAD(&mnt->mnt_slave);
68 		if (name) {
69 			int size = strlen(name) + 1;
70 			char *newname = kmalloc(size, GFP_KERNEL);
71 			if (newname) {
72 				memcpy(newname, name, size);
73 				mnt->mnt_devname = newname;
74 			}
75 		}
76 	}
77 	return mnt;
78 }
79 
80 int simple_set_mnt(struct vfsmount *mnt, struct super_block *sb)
81 {
82 	mnt->mnt_sb = sb;
83 	mnt->mnt_root = dget(sb->s_root);
84 	return 0;
85 }
86 
87 EXPORT_SYMBOL(simple_set_mnt);
88 
89 void free_vfsmnt(struct vfsmount *mnt)
90 {
91 	kfree(mnt->mnt_devname);
92 	kmem_cache_free(mnt_cache, mnt);
93 }
94 
95 /*
96  * find the first or last mount at @dentry on vfsmount @mnt depending on
97  * @dir. If @dir is set return the first mount else return the last mount.
98  */
99 struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
100 			      int dir)
101 {
102 	struct list_head *head = mount_hashtable + hash(mnt, dentry);
103 	struct list_head *tmp = head;
104 	struct vfsmount *p, *found = NULL;
105 
106 	for (;;) {
107 		tmp = dir ? tmp->next : tmp->prev;
108 		p = NULL;
109 		if (tmp == head)
110 			break;
111 		p = list_entry(tmp, struct vfsmount, mnt_hash);
112 		if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
113 			found = p;
114 			break;
115 		}
116 	}
117 	return found;
118 }
119 
120 /*
121  * lookup_mnt increments the ref count before returning
122  * the vfsmount struct.
123  */
124 struct vfsmount *lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
125 {
126 	struct vfsmount *child_mnt;
127 	spin_lock(&vfsmount_lock);
128 	if ((child_mnt = __lookup_mnt(mnt, dentry, 1)))
129 		mntget(child_mnt);
130 	spin_unlock(&vfsmount_lock);
131 	return child_mnt;
132 }
133 
134 static inline int check_mnt(struct vfsmount *mnt)
135 {
136 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
137 }
138 
139 static void touch_mnt_namespace(struct mnt_namespace *ns)
140 {
141 	if (ns) {
142 		ns->event = ++event;
143 		wake_up_interruptible(&ns->poll);
144 	}
145 }
146 
147 static void __touch_mnt_namespace(struct mnt_namespace *ns)
148 {
149 	if (ns && ns->event != event) {
150 		ns->event = event;
151 		wake_up_interruptible(&ns->poll);
152 	}
153 }
154 
155 static void detach_mnt(struct vfsmount *mnt, struct nameidata *old_nd)
156 {
157 	old_nd->dentry = mnt->mnt_mountpoint;
158 	old_nd->mnt = mnt->mnt_parent;
159 	mnt->mnt_parent = mnt;
160 	mnt->mnt_mountpoint = mnt->mnt_root;
161 	list_del_init(&mnt->mnt_child);
162 	list_del_init(&mnt->mnt_hash);
163 	old_nd->dentry->d_mounted--;
164 }
165 
166 void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
167 			struct vfsmount *child_mnt)
168 {
169 	child_mnt->mnt_parent = mntget(mnt);
170 	child_mnt->mnt_mountpoint = dget(dentry);
171 	dentry->d_mounted++;
172 }
173 
174 static void attach_mnt(struct vfsmount *mnt, struct nameidata *nd)
175 {
176 	mnt_set_mountpoint(nd->mnt, nd->dentry, mnt);
177 	list_add_tail(&mnt->mnt_hash, mount_hashtable +
178 			hash(nd->mnt, nd->dentry));
179 	list_add_tail(&mnt->mnt_child, &nd->mnt->mnt_mounts);
180 }
181 
182 /*
183  * the caller must hold vfsmount_lock
184  */
185 static void commit_tree(struct vfsmount *mnt)
186 {
187 	struct vfsmount *parent = mnt->mnt_parent;
188 	struct vfsmount *m;
189 	LIST_HEAD(head);
190 	struct mnt_namespace *n = parent->mnt_ns;
191 
192 	BUG_ON(parent == mnt);
193 
194 	list_add_tail(&head, &mnt->mnt_list);
195 	list_for_each_entry(m, &head, mnt_list)
196 		m->mnt_ns = n;
197 	list_splice(&head, n->list.prev);
198 
199 	list_add_tail(&mnt->mnt_hash, mount_hashtable +
200 				hash(parent, mnt->mnt_mountpoint));
201 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
202 	touch_mnt_namespace(n);
203 }
204 
205 static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
206 {
207 	struct list_head *next = p->mnt_mounts.next;
208 	if (next == &p->mnt_mounts) {
209 		while (1) {
210 			if (p == root)
211 				return NULL;
212 			next = p->mnt_child.next;
213 			if (next != &p->mnt_parent->mnt_mounts)
214 				break;
215 			p = p->mnt_parent;
216 		}
217 	}
218 	return list_entry(next, struct vfsmount, mnt_child);
219 }
220 
221 static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
222 {
223 	struct list_head *prev = p->mnt_mounts.prev;
224 	while (prev != &p->mnt_mounts) {
225 		p = list_entry(prev, struct vfsmount, mnt_child);
226 		prev = p->mnt_mounts.prev;
227 	}
228 	return p;
229 }
230 
231 static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
232 					int flag)
233 {
234 	struct super_block *sb = old->mnt_sb;
235 	struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
236 
237 	if (mnt) {
238 		mnt->mnt_flags = old->mnt_flags;
239 		atomic_inc(&sb->s_active);
240 		mnt->mnt_sb = sb;
241 		mnt->mnt_root = dget(root);
242 		mnt->mnt_mountpoint = mnt->mnt_root;
243 		mnt->mnt_parent = mnt;
244 
245 		if (flag & CL_SLAVE) {
246 			list_add(&mnt->mnt_slave, &old->mnt_slave_list);
247 			mnt->mnt_master = old;
248 			CLEAR_MNT_SHARED(mnt);
249 		} else if (!(flag & CL_PRIVATE)) {
250 			if ((flag & CL_PROPAGATION) || IS_MNT_SHARED(old))
251 				list_add(&mnt->mnt_share, &old->mnt_share);
252 			if (IS_MNT_SLAVE(old))
253 				list_add(&mnt->mnt_slave, &old->mnt_slave);
254 			mnt->mnt_master = old->mnt_master;
255 		}
256 		if (flag & CL_MAKE_SHARED)
257 			set_mnt_shared(mnt);
258 
259 		/* stick the duplicate mount on the same expiry list
260 		 * as the original if that was on one */
261 		if (flag & CL_EXPIRE) {
262 			spin_lock(&vfsmount_lock);
263 			if (!list_empty(&old->mnt_expire))
264 				list_add(&mnt->mnt_expire, &old->mnt_expire);
265 			spin_unlock(&vfsmount_lock);
266 		}
267 	}
268 	return mnt;
269 }
270 
271 static inline void __mntput(struct vfsmount *mnt)
272 {
273 	struct super_block *sb = mnt->mnt_sb;
274 	dput(mnt->mnt_root);
275 	free_vfsmnt(mnt);
276 	deactivate_super(sb);
277 }
278 
279 void mntput_no_expire(struct vfsmount *mnt)
280 {
281 repeat:
282 	if (atomic_dec_and_lock(&mnt->mnt_count, &vfsmount_lock)) {
283 		if (likely(!mnt->mnt_pinned)) {
284 			spin_unlock(&vfsmount_lock);
285 			__mntput(mnt);
286 			return;
287 		}
288 		atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count);
289 		mnt->mnt_pinned = 0;
290 		spin_unlock(&vfsmount_lock);
291 		acct_auto_close_mnt(mnt);
292 		security_sb_umount_close(mnt);
293 		goto repeat;
294 	}
295 }
296 
297 EXPORT_SYMBOL(mntput_no_expire);
298 
299 void mnt_pin(struct vfsmount *mnt)
300 {
301 	spin_lock(&vfsmount_lock);
302 	mnt->mnt_pinned++;
303 	spin_unlock(&vfsmount_lock);
304 }
305 
306 EXPORT_SYMBOL(mnt_pin);
307 
308 void mnt_unpin(struct vfsmount *mnt)
309 {
310 	spin_lock(&vfsmount_lock);
311 	if (mnt->mnt_pinned) {
312 		atomic_inc(&mnt->mnt_count);
313 		mnt->mnt_pinned--;
314 	}
315 	spin_unlock(&vfsmount_lock);
316 }
317 
318 EXPORT_SYMBOL(mnt_unpin);
319 
320 /* iterator */
321 static void *m_start(struct seq_file *m, loff_t *pos)
322 {
323 	struct mnt_namespace *n = m->private;
324 
325 	down_read(&namespace_sem);
326 	return seq_list_start(&n->list, *pos);
327 }
328 
329 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
330 {
331 	struct mnt_namespace *n = m->private;
332 
333 	return seq_list_next(v, &n->list, pos);
334 }
335 
336 static void m_stop(struct seq_file *m, void *v)
337 {
338 	up_read(&namespace_sem);
339 }
340 
341 static inline void mangle(struct seq_file *m, const char *s)
342 {
343 	seq_escape(m, s, " \t\n\\");
344 }
345 
346 static int show_vfsmnt(struct seq_file *m, void *v)
347 {
348 	struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
349 	int err = 0;
350 	static struct proc_fs_info {
351 		int flag;
352 		char *str;
353 	} fs_info[] = {
354 		{ MS_SYNCHRONOUS, ",sync" },
355 		{ MS_DIRSYNC, ",dirsync" },
356 		{ MS_MANDLOCK, ",mand" },
357 		{ 0, NULL }
358 	};
359 	static struct proc_fs_info mnt_info[] = {
360 		{ MNT_NOSUID, ",nosuid" },
361 		{ MNT_NODEV, ",nodev" },
362 		{ MNT_NOEXEC, ",noexec" },
363 		{ MNT_NOATIME, ",noatime" },
364 		{ MNT_NODIRATIME, ",nodiratime" },
365 		{ MNT_RELATIME, ",relatime" },
366 		{ 0, NULL }
367 	};
368 	struct proc_fs_info *fs_infop;
369 
370 	mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
371 	seq_putc(m, ' ');
372 	seq_path(m, mnt, mnt->mnt_root, " \t\n\\");
373 	seq_putc(m, ' ');
374 	mangle(m, mnt->mnt_sb->s_type->name);
375 	if (mnt->mnt_sb->s_subtype && mnt->mnt_sb->s_subtype[0]) {
376 		seq_putc(m, '.');
377 		mangle(m, mnt->mnt_sb->s_subtype);
378 	}
379 	seq_puts(m, mnt->mnt_sb->s_flags & MS_RDONLY ? " ro" : " rw");
380 	for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
381 		if (mnt->mnt_sb->s_flags & fs_infop->flag)
382 			seq_puts(m, fs_infop->str);
383 	}
384 	for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
385 		if (mnt->mnt_flags & fs_infop->flag)
386 			seq_puts(m, fs_infop->str);
387 	}
388 	if (mnt->mnt_sb->s_op->show_options)
389 		err = mnt->mnt_sb->s_op->show_options(m, mnt);
390 	seq_puts(m, " 0 0\n");
391 	return err;
392 }
393 
394 struct seq_operations mounts_op = {
395 	.start	= m_start,
396 	.next	= m_next,
397 	.stop	= m_stop,
398 	.show	= show_vfsmnt
399 };
400 
401 static int show_vfsstat(struct seq_file *m, void *v)
402 {
403 	struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
404 	int err = 0;
405 
406 	/* device */
407 	if (mnt->mnt_devname) {
408 		seq_puts(m, "device ");
409 		mangle(m, mnt->mnt_devname);
410 	} else
411 		seq_puts(m, "no device");
412 
413 	/* mount point */
414 	seq_puts(m, " mounted on ");
415 	seq_path(m, mnt, mnt->mnt_root, " \t\n\\");
416 	seq_putc(m, ' ');
417 
418 	/* file system type */
419 	seq_puts(m, "with fstype ");
420 	mangle(m, mnt->mnt_sb->s_type->name);
421 
422 	/* optional statistics */
423 	if (mnt->mnt_sb->s_op->show_stats) {
424 		seq_putc(m, ' ');
425 		err = mnt->mnt_sb->s_op->show_stats(m, mnt);
426 	}
427 
428 	seq_putc(m, '\n');
429 	return err;
430 }
431 
432 struct seq_operations mountstats_op = {
433 	.start	= m_start,
434 	.next	= m_next,
435 	.stop	= m_stop,
436 	.show	= show_vfsstat,
437 };
438 
439 /**
440  * may_umount_tree - check if a mount tree is busy
441  * @mnt: root of mount tree
442  *
443  * This is called to check if a tree of mounts has any
444  * open files, pwds, chroots or sub mounts that are
445  * busy.
446  */
447 int may_umount_tree(struct vfsmount *mnt)
448 {
449 	int actual_refs = 0;
450 	int minimum_refs = 0;
451 	struct vfsmount *p;
452 
453 	spin_lock(&vfsmount_lock);
454 	for (p = mnt; p; p = next_mnt(p, mnt)) {
455 		actual_refs += atomic_read(&p->mnt_count);
456 		minimum_refs += 2;
457 	}
458 	spin_unlock(&vfsmount_lock);
459 
460 	if (actual_refs > minimum_refs)
461 		return 0;
462 
463 	return 1;
464 }
465 
466 EXPORT_SYMBOL(may_umount_tree);
467 
468 /**
469  * may_umount - check if a mount point is busy
470  * @mnt: root of mount
471  *
472  * This is called to check if a mount point has any
473  * open files, pwds, chroots or sub mounts. If the
474  * mount has sub mounts this will return busy
475  * regardless of whether the sub mounts are busy.
476  *
477  * Doesn't take quota and stuff into account. IOW, in some cases it will
478  * give false negatives. The main reason why it's here is that we need
479  * a non-destructive way to look for easily umountable filesystems.
480  */
481 int may_umount(struct vfsmount *mnt)
482 {
483 	int ret = 1;
484 	spin_lock(&vfsmount_lock);
485 	if (propagate_mount_busy(mnt, 2))
486 		ret = 0;
487 	spin_unlock(&vfsmount_lock);
488 	return ret;
489 }
490 
491 EXPORT_SYMBOL(may_umount);
492 
493 void release_mounts(struct list_head *head)
494 {
495 	struct vfsmount *mnt;
496 	while (!list_empty(head)) {
497 		mnt = list_first_entry(head, struct vfsmount, mnt_hash);
498 		list_del_init(&mnt->mnt_hash);
499 		if (mnt->mnt_parent != mnt) {
500 			struct dentry *dentry;
501 			struct vfsmount *m;
502 			spin_lock(&vfsmount_lock);
503 			dentry = mnt->mnt_mountpoint;
504 			m = mnt->mnt_parent;
505 			mnt->mnt_mountpoint = mnt->mnt_root;
506 			mnt->mnt_parent = mnt;
507 			spin_unlock(&vfsmount_lock);
508 			dput(dentry);
509 			mntput(m);
510 		}
511 		mntput(mnt);
512 	}
513 }
514 
515 void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
516 {
517 	struct vfsmount *p;
518 
519 	for (p = mnt; p; p = next_mnt(p, mnt))
520 		list_move(&p->mnt_hash, kill);
521 
522 	if (propagate)
523 		propagate_umount(kill);
524 
525 	list_for_each_entry(p, kill, mnt_hash) {
526 		list_del_init(&p->mnt_expire);
527 		list_del_init(&p->mnt_list);
528 		__touch_mnt_namespace(p->mnt_ns);
529 		p->mnt_ns = NULL;
530 		list_del_init(&p->mnt_child);
531 		if (p->mnt_parent != p)
532 			p->mnt_mountpoint->d_mounted--;
533 		change_mnt_propagation(p, MS_PRIVATE);
534 	}
535 }
536 
537 static int do_umount(struct vfsmount *mnt, int flags)
538 {
539 	struct super_block *sb = mnt->mnt_sb;
540 	int retval;
541 	LIST_HEAD(umount_list);
542 
543 	retval = security_sb_umount(mnt, flags);
544 	if (retval)
545 		return retval;
546 
547 	/*
548 	 * Allow userspace to request a mountpoint be expired rather than
549 	 * unmounting unconditionally. Unmount only happens if:
550 	 *  (1) the mark is already set (the mark is cleared by mntput())
551 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
552 	 */
553 	if (flags & MNT_EXPIRE) {
554 		if (mnt == current->fs->rootmnt ||
555 		    flags & (MNT_FORCE | MNT_DETACH))
556 			return -EINVAL;
557 
558 		if (atomic_read(&mnt->mnt_count) != 2)
559 			return -EBUSY;
560 
561 		if (!xchg(&mnt->mnt_expiry_mark, 1))
562 			return -EAGAIN;
563 	}
564 
565 	/*
566 	 * If we may have to abort operations to get out of this
567 	 * mount, and they will themselves hold resources we must
568 	 * allow the fs to do things. In the Unix tradition of
569 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
570 	 * might fail to complete on the first run through as other tasks
571 	 * must return, and the like. Thats for the mount program to worry
572 	 * about for the moment.
573 	 */
574 
575 	lock_kernel();
576 	if (sb->s_op->umount_begin)
577 		sb->s_op->umount_begin(mnt, flags);
578 	unlock_kernel();
579 
580 	/*
581 	 * No sense to grab the lock for this test, but test itself looks
582 	 * somewhat bogus. Suggestions for better replacement?
583 	 * Ho-hum... In principle, we might treat that as umount + switch
584 	 * to rootfs. GC would eventually take care of the old vfsmount.
585 	 * Actually it makes sense, especially if rootfs would contain a
586 	 * /reboot - static binary that would close all descriptors and
587 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
588 	 */
589 	if (mnt == current->fs->rootmnt && !(flags & MNT_DETACH)) {
590 		/*
591 		 * Special case for "unmounting" root ...
592 		 * we just try to remount it readonly.
593 		 */
594 		down_write(&sb->s_umount);
595 		if (!(sb->s_flags & MS_RDONLY)) {
596 			lock_kernel();
597 			DQUOT_OFF(sb);
598 			retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
599 			unlock_kernel();
600 		}
601 		up_write(&sb->s_umount);
602 		return retval;
603 	}
604 
605 	down_write(&namespace_sem);
606 	spin_lock(&vfsmount_lock);
607 	event++;
608 
609 	retval = -EBUSY;
610 	if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
611 		if (!list_empty(&mnt->mnt_list))
612 			umount_tree(mnt, 1, &umount_list);
613 		retval = 0;
614 	}
615 	spin_unlock(&vfsmount_lock);
616 	if (retval)
617 		security_sb_umount_busy(mnt);
618 	up_write(&namespace_sem);
619 	release_mounts(&umount_list);
620 	return retval;
621 }
622 
623 /*
624  * Now umount can handle mount points as well as block devices.
625  * This is important for filesystems which use unnamed block devices.
626  *
627  * We now support a flag for forced unmount like the other 'big iron'
628  * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
629  */
630 
631 asmlinkage long sys_umount(char __user * name, int flags)
632 {
633 	struct nameidata nd;
634 	int retval;
635 
636 	retval = __user_walk(name, LOOKUP_FOLLOW, &nd);
637 	if (retval)
638 		goto out;
639 	retval = -EINVAL;
640 	if (nd.dentry != nd.mnt->mnt_root)
641 		goto dput_and_out;
642 	if (!check_mnt(nd.mnt))
643 		goto dput_and_out;
644 
645 	retval = -EPERM;
646 	if (!capable(CAP_SYS_ADMIN))
647 		goto dput_and_out;
648 
649 	retval = do_umount(nd.mnt, flags);
650 dput_and_out:
651 	path_release_on_umount(&nd);
652 out:
653 	return retval;
654 }
655 
656 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
657 
658 /*
659  *	The 2.0 compatible umount. No flags.
660  */
661 asmlinkage long sys_oldumount(char __user * name)
662 {
663 	return sys_umount(name, 0);
664 }
665 
666 #endif
667 
668 static int mount_is_safe(struct nameidata *nd)
669 {
670 	if (capable(CAP_SYS_ADMIN))
671 		return 0;
672 	return -EPERM;
673 #ifdef notyet
674 	if (S_ISLNK(nd->dentry->d_inode->i_mode))
675 		return -EPERM;
676 	if (nd->dentry->d_inode->i_mode & S_ISVTX) {
677 		if (current->uid != nd->dentry->d_inode->i_uid)
678 			return -EPERM;
679 	}
680 	if (vfs_permission(nd, MAY_WRITE))
681 		return -EPERM;
682 	return 0;
683 #endif
684 }
685 
686 static int lives_below_in_same_fs(struct dentry *d, struct dentry *dentry)
687 {
688 	while (1) {
689 		if (d == dentry)
690 			return 1;
691 		if (d == NULL || d == d->d_parent)
692 			return 0;
693 		d = d->d_parent;
694 	}
695 }
696 
697 struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
698 					int flag)
699 {
700 	struct vfsmount *res, *p, *q, *r, *s;
701 	struct nameidata nd;
702 
703 	if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
704 		return NULL;
705 
706 	res = q = clone_mnt(mnt, dentry, flag);
707 	if (!q)
708 		goto Enomem;
709 	q->mnt_mountpoint = mnt->mnt_mountpoint;
710 
711 	p = mnt;
712 	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
713 		if (!lives_below_in_same_fs(r->mnt_mountpoint, dentry))
714 			continue;
715 
716 		for (s = r; s; s = next_mnt(s, r)) {
717 			if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
718 				s = skip_mnt_tree(s);
719 				continue;
720 			}
721 			while (p != s->mnt_parent) {
722 				p = p->mnt_parent;
723 				q = q->mnt_parent;
724 			}
725 			p = s;
726 			nd.mnt = q;
727 			nd.dentry = p->mnt_mountpoint;
728 			q = clone_mnt(p, p->mnt_root, flag);
729 			if (!q)
730 				goto Enomem;
731 			spin_lock(&vfsmount_lock);
732 			list_add_tail(&q->mnt_list, &res->mnt_list);
733 			attach_mnt(q, &nd);
734 			spin_unlock(&vfsmount_lock);
735 		}
736 	}
737 	return res;
738 Enomem:
739 	if (res) {
740 		LIST_HEAD(umount_list);
741 		spin_lock(&vfsmount_lock);
742 		umount_tree(res, 0, &umount_list);
743 		spin_unlock(&vfsmount_lock);
744 		release_mounts(&umount_list);
745 	}
746 	return NULL;
747 }
748 
749 struct vfsmount *collect_mounts(struct vfsmount *mnt, struct dentry *dentry)
750 {
751 	struct vfsmount *tree;
752 	down_read(&namespace_sem);
753 	tree = copy_tree(mnt, dentry, CL_COPY_ALL | CL_PRIVATE);
754 	up_read(&namespace_sem);
755 	return tree;
756 }
757 
758 void drop_collected_mounts(struct vfsmount *mnt)
759 {
760 	LIST_HEAD(umount_list);
761 	down_read(&namespace_sem);
762 	spin_lock(&vfsmount_lock);
763 	umount_tree(mnt, 0, &umount_list);
764 	spin_unlock(&vfsmount_lock);
765 	up_read(&namespace_sem);
766 	release_mounts(&umount_list);
767 }
768 
769 /*
770  *  @source_mnt : mount tree to be attached
771  *  @nd         : place the mount tree @source_mnt is attached
772  *  @parent_nd  : if non-null, detach the source_mnt from its parent and
773  *  		   store the parent mount and mountpoint dentry.
774  *  		   (done when source_mnt is moved)
775  *
776  *  NOTE: in the table below explains the semantics when a source mount
777  *  of a given type is attached to a destination mount of a given type.
778  * ---------------------------------------------------------------------------
779  * |         BIND MOUNT OPERATION                                            |
780  * |**************************************************************************
781  * | source-->| shared        |       private  |       slave    | unbindable |
782  * | dest     |               |                |                |            |
783  * |   |      |               |                |                |            |
784  * |   v      |               |                |                |            |
785  * |**************************************************************************
786  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
787  * |          |               |                |                |            |
788  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
789  * ***************************************************************************
790  * A bind operation clones the source mount and mounts the clone on the
791  * destination mount.
792  *
793  * (++)  the cloned mount is propagated to all the mounts in the propagation
794  * 	 tree of the destination mount and the cloned mount is added to
795  * 	 the peer group of the source mount.
796  * (+)   the cloned mount is created under the destination mount and is marked
797  *       as shared. The cloned mount is added to the peer group of the source
798  *       mount.
799  * (+++) the mount is propagated to all the mounts in the propagation tree
800  *       of the destination mount and the cloned mount is made slave
801  *       of the same master as that of the source mount. The cloned mount
802  *       is marked as 'shared and slave'.
803  * (*)   the cloned mount is made a slave of the same master as that of the
804  * 	 source mount.
805  *
806  * ---------------------------------------------------------------------------
807  * |         		MOVE MOUNT OPERATION                                 |
808  * |**************************************************************************
809  * | source-->| shared        |       private  |       slave    | unbindable |
810  * | dest     |               |                |                |            |
811  * |   |      |               |                |                |            |
812  * |   v      |               |                |                |            |
813  * |**************************************************************************
814  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
815  * |          |               |                |                |            |
816  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
817  * ***************************************************************************
818  *
819  * (+)  the mount is moved to the destination. And is then propagated to
820  * 	all the mounts in the propagation tree of the destination mount.
821  * (+*)  the mount is moved to the destination.
822  * (+++)  the mount is moved to the destination and is then propagated to
823  * 	all the mounts belonging to the destination mount's propagation tree.
824  * 	the mount is marked as 'shared and slave'.
825  * (*)	the mount continues to be a slave at the new location.
826  *
827  * if the source mount is a tree, the operations explained above is
828  * applied to each mount in the tree.
829  * Must be called without spinlocks held, since this function can sleep
830  * in allocations.
831  */
832 static int attach_recursive_mnt(struct vfsmount *source_mnt,
833 			struct nameidata *nd, struct nameidata *parent_nd)
834 {
835 	LIST_HEAD(tree_list);
836 	struct vfsmount *dest_mnt = nd->mnt;
837 	struct dentry *dest_dentry = nd->dentry;
838 	struct vfsmount *child, *p;
839 
840 	if (propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list))
841 		return -EINVAL;
842 
843 	if (IS_MNT_SHARED(dest_mnt)) {
844 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
845 			set_mnt_shared(p);
846 	}
847 
848 	spin_lock(&vfsmount_lock);
849 	if (parent_nd) {
850 		detach_mnt(source_mnt, parent_nd);
851 		attach_mnt(source_mnt, nd);
852 		touch_mnt_namespace(current->nsproxy->mnt_ns);
853 	} else {
854 		mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
855 		commit_tree(source_mnt);
856 	}
857 
858 	list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
859 		list_del_init(&child->mnt_hash);
860 		commit_tree(child);
861 	}
862 	spin_unlock(&vfsmount_lock);
863 	return 0;
864 }
865 
866 static int graft_tree(struct vfsmount *mnt, struct nameidata *nd)
867 {
868 	int err;
869 	if (mnt->mnt_sb->s_flags & MS_NOUSER)
870 		return -EINVAL;
871 
872 	if (S_ISDIR(nd->dentry->d_inode->i_mode) !=
873 	      S_ISDIR(mnt->mnt_root->d_inode->i_mode))
874 		return -ENOTDIR;
875 
876 	err = -ENOENT;
877 	mutex_lock(&nd->dentry->d_inode->i_mutex);
878 	if (IS_DEADDIR(nd->dentry->d_inode))
879 		goto out_unlock;
880 
881 	err = security_sb_check_sb(mnt, nd);
882 	if (err)
883 		goto out_unlock;
884 
885 	err = -ENOENT;
886 	if (IS_ROOT(nd->dentry) || !d_unhashed(nd->dentry))
887 		err = attach_recursive_mnt(mnt, nd, NULL);
888 out_unlock:
889 	mutex_unlock(&nd->dentry->d_inode->i_mutex);
890 	if (!err)
891 		security_sb_post_addmount(mnt, nd);
892 	return err;
893 }
894 
895 /*
896  * recursively change the type of the mountpoint.
897  */
898 static int do_change_type(struct nameidata *nd, int flag)
899 {
900 	struct vfsmount *m, *mnt = nd->mnt;
901 	int recurse = flag & MS_REC;
902 	int type = flag & ~MS_REC;
903 
904 	if (!capable(CAP_SYS_ADMIN))
905 		return -EPERM;
906 
907 	if (nd->dentry != nd->mnt->mnt_root)
908 		return -EINVAL;
909 
910 	down_write(&namespace_sem);
911 	spin_lock(&vfsmount_lock);
912 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
913 		change_mnt_propagation(m, type);
914 	spin_unlock(&vfsmount_lock);
915 	up_write(&namespace_sem);
916 	return 0;
917 }
918 
919 /*
920  * do loopback mount.
921  */
922 static int do_loopback(struct nameidata *nd, char *old_name, int recurse)
923 {
924 	struct nameidata old_nd;
925 	struct vfsmount *mnt = NULL;
926 	int err = mount_is_safe(nd);
927 	if (err)
928 		return err;
929 	if (!old_name || !*old_name)
930 		return -EINVAL;
931 	err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
932 	if (err)
933 		return err;
934 
935 	down_write(&namespace_sem);
936 	err = -EINVAL;
937 	if (IS_MNT_UNBINDABLE(old_nd.mnt))
938  		goto out;
939 
940 	if (!check_mnt(nd->mnt) || !check_mnt(old_nd.mnt))
941 		goto out;
942 
943 	err = -ENOMEM;
944 	if (recurse)
945 		mnt = copy_tree(old_nd.mnt, old_nd.dentry, 0);
946 	else
947 		mnt = clone_mnt(old_nd.mnt, old_nd.dentry, 0);
948 
949 	if (!mnt)
950 		goto out;
951 
952 	err = graft_tree(mnt, nd);
953 	if (err) {
954 		LIST_HEAD(umount_list);
955 		spin_lock(&vfsmount_lock);
956 		umount_tree(mnt, 0, &umount_list);
957 		spin_unlock(&vfsmount_lock);
958 		release_mounts(&umount_list);
959 	}
960 
961 out:
962 	up_write(&namespace_sem);
963 	path_release(&old_nd);
964 	return err;
965 }
966 
967 /*
968  * change filesystem flags. dir should be a physical root of filesystem.
969  * If you've mounted a non-root directory somewhere and want to do remount
970  * on it - tough luck.
971  */
972 static int do_remount(struct nameidata *nd, int flags, int mnt_flags,
973 		      void *data)
974 {
975 	int err;
976 	struct super_block *sb = nd->mnt->mnt_sb;
977 
978 	if (!capable(CAP_SYS_ADMIN))
979 		return -EPERM;
980 
981 	if (!check_mnt(nd->mnt))
982 		return -EINVAL;
983 
984 	if (nd->dentry != nd->mnt->mnt_root)
985 		return -EINVAL;
986 
987 	down_write(&sb->s_umount);
988 	err = do_remount_sb(sb, flags, data, 0);
989 	if (!err)
990 		nd->mnt->mnt_flags = mnt_flags;
991 	up_write(&sb->s_umount);
992 	if (!err)
993 		security_sb_post_remount(nd->mnt, flags, data);
994 	return err;
995 }
996 
997 static inline int tree_contains_unbindable(struct vfsmount *mnt)
998 {
999 	struct vfsmount *p;
1000 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1001 		if (IS_MNT_UNBINDABLE(p))
1002 			return 1;
1003 	}
1004 	return 0;
1005 }
1006 
1007 static int do_move_mount(struct nameidata *nd, char *old_name)
1008 {
1009 	struct nameidata old_nd, parent_nd;
1010 	struct vfsmount *p;
1011 	int err = 0;
1012 	if (!capable(CAP_SYS_ADMIN))
1013 		return -EPERM;
1014 	if (!old_name || !*old_name)
1015 		return -EINVAL;
1016 	err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
1017 	if (err)
1018 		return err;
1019 
1020 	down_write(&namespace_sem);
1021 	while (d_mountpoint(nd->dentry) && follow_down(&nd->mnt, &nd->dentry))
1022 		;
1023 	err = -EINVAL;
1024 	if (!check_mnt(nd->mnt) || !check_mnt(old_nd.mnt))
1025 		goto out;
1026 
1027 	err = -ENOENT;
1028 	mutex_lock(&nd->dentry->d_inode->i_mutex);
1029 	if (IS_DEADDIR(nd->dentry->d_inode))
1030 		goto out1;
1031 
1032 	if (!IS_ROOT(nd->dentry) && d_unhashed(nd->dentry))
1033 		goto out1;
1034 
1035 	err = -EINVAL;
1036 	if (old_nd.dentry != old_nd.mnt->mnt_root)
1037 		goto out1;
1038 
1039 	if (old_nd.mnt == old_nd.mnt->mnt_parent)
1040 		goto out1;
1041 
1042 	if (S_ISDIR(nd->dentry->d_inode->i_mode) !=
1043 	      S_ISDIR(old_nd.dentry->d_inode->i_mode))
1044 		goto out1;
1045 	/*
1046 	 * Don't move a mount residing in a shared parent.
1047 	 */
1048 	if (old_nd.mnt->mnt_parent && IS_MNT_SHARED(old_nd.mnt->mnt_parent))
1049 		goto out1;
1050 	/*
1051 	 * Don't move a mount tree containing unbindable mounts to a destination
1052 	 * mount which is shared.
1053 	 */
1054 	if (IS_MNT_SHARED(nd->mnt) && tree_contains_unbindable(old_nd.mnt))
1055 		goto out1;
1056 	err = -ELOOP;
1057 	for (p = nd->mnt; p->mnt_parent != p; p = p->mnt_parent)
1058 		if (p == old_nd.mnt)
1059 			goto out1;
1060 
1061 	if ((err = attach_recursive_mnt(old_nd.mnt, nd, &parent_nd)))
1062 		goto out1;
1063 
1064 	spin_lock(&vfsmount_lock);
1065 	/* if the mount is moved, it should no longer be expire
1066 	 * automatically */
1067 	list_del_init(&old_nd.mnt->mnt_expire);
1068 	spin_unlock(&vfsmount_lock);
1069 out1:
1070 	mutex_unlock(&nd->dentry->d_inode->i_mutex);
1071 out:
1072 	up_write(&namespace_sem);
1073 	if (!err)
1074 		path_release(&parent_nd);
1075 	path_release(&old_nd);
1076 	return err;
1077 }
1078 
1079 /*
1080  * create a new mount for userspace and request it to be added into the
1081  * namespace's tree
1082  */
1083 static int do_new_mount(struct nameidata *nd, char *type, int flags,
1084 			int mnt_flags, char *name, void *data)
1085 {
1086 	struct vfsmount *mnt;
1087 
1088 	if (!type || !memchr(type, 0, PAGE_SIZE))
1089 		return -EINVAL;
1090 
1091 	/* we need capabilities... */
1092 	if (!capable(CAP_SYS_ADMIN))
1093 		return -EPERM;
1094 
1095 	mnt = do_kern_mount(type, flags, name, data);
1096 	if (IS_ERR(mnt))
1097 		return PTR_ERR(mnt);
1098 
1099 	return do_add_mount(mnt, nd, mnt_flags, NULL);
1100 }
1101 
1102 /*
1103  * add a mount into a namespace's mount tree
1104  * - provide the option of adding the new mount to an expiration list
1105  */
1106 int do_add_mount(struct vfsmount *newmnt, struct nameidata *nd,
1107 		 int mnt_flags, struct list_head *fslist)
1108 {
1109 	int err;
1110 
1111 	down_write(&namespace_sem);
1112 	/* Something was mounted here while we slept */
1113 	while (d_mountpoint(nd->dentry) && follow_down(&nd->mnt, &nd->dentry))
1114 		;
1115 	err = -EINVAL;
1116 	if (!check_mnt(nd->mnt))
1117 		goto unlock;
1118 
1119 	/* Refuse the same filesystem on the same mount point */
1120 	err = -EBUSY;
1121 	if (nd->mnt->mnt_sb == newmnt->mnt_sb &&
1122 	    nd->mnt->mnt_root == nd->dentry)
1123 		goto unlock;
1124 
1125 	err = -EINVAL;
1126 	if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
1127 		goto unlock;
1128 
1129 	newmnt->mnt_flags = mnt_flags;
1130 	if ((err = graft_tree(newmnt, nd)))
1131 		goto unlock;
1132 
1133 	if (fslist) {
1134 		/* add to the specified expiration list */
1135 		spin_lock(&vfsmount_lock);
1136 		list_add_tail(&newmnt->mnt_expire, fslist);
1137 		spin_unlock(&vfsmount_lock);
1138 	}
1139 	up_write(&namespace_sem);
1140 	return 0;
1141 
1142 unlock:
1143 	up_write(&namespace_sem);
1144 	mntput(newmnt);
1145 	return err;
1146 }
1147 
1148 EXPORT_SYMBOL_GPL(do_add_mount);
1149 
1150 static void expire_mount(struct vfsmount *mnt, struct list_head *mounts,
1151 				struct list_head *umounts)
1152 {
1153 	spin_lock(&vfsmount_lock);
1154 
1155 	/*
1156 	 * Check if mount is still attached, if not, let whoever holds it deal
1157 	 * with the sucker
1158 	 */
1159 	if (mnt->mnt_parent == mnt) {
1160 		spin_unlock(&vfsmount_lock);
1161 		return;
1162 	}
1163 
1164 	/*
1165 	 * Check that it is still dead: the count should now be 2 - as
1166 	 * contributed by the vfsmount parent and the mntget above
1167 	 */
1168 	if (!propagate_mount_busy(mnt, 2)) {
1169 		/* delete from the namespace */
1170 		touch_mnt_namespace(mnt->mnt_ns);
1171 		list_del_init(&mnt->mnt_list);
1172 		mnt->mnt_ns = NULL;
1173 		umount_tree(mnt, 1, umounts);
1174 		spin_unlock(&vfsmount_lock);
1175 	} else {
1176 		/*
1177 		 * Someone brought it back to life whilst we didn't have any
1178 		 * locks held so return it to the expiration list
1179 		 */
1180 		list_add_tail(&mnt->mnt_expire, mounts);
1181 		spin_unlock(&vfsmount_lock);
1182 	}
1183 }
1184 
1185 /*
1186  * go through the vfsmounts we've just consigned to the graveyard to
1187  * - check that they're still dead
1188  * - delete the vfsmount from the appropriate namespace under lock
1189  * - dispose of the corpse
1190  */
1191 static void expire_mount_list(struct list_head *graveyard, struct list_head *mounts)
1192 {
1193 	struct mnt_namespace *ns;
1194 	struct vfsmount *mnt;
1195 
1196 	while (!list_empty(graveyard)) {
1197 		LIST_HEAD(umounts);
1198 		mnt = list_first_entry(graveyard, struct vfsmount, mnt_expire);
1199 		list_del_init(&mnt->mnt_expire);
1200 
1201 		/* don't do anything if the namespace is dead - all the
1202 		 * vfsmounts from it are going away anyway */
1203 		ns = mnt->mnt_ns;
1204 		if (!ns || !ns->root)
1205 			continue;
1206 		get_mnt_ns(ns);
1207 
1208 		spin_unlock(&vfsmount_lock);
1209 		down_write(&namespace_sem);
1210 		expire_mount(mnt, mounts, &umounts);
1211 		up_write(&namespace_sem);
1212 		release_mounts(&umounts);
1213 		mntput(mnt);
1214 		put_mnt_ns(ns);
1215 		spin_lock(&vfsmount_lock);
1216 	}
1217 }
1218 
1219 /*
1220  * process a list of expirable mountpoints with the intent of discarding any
1221  * mountpoints that aren't in use and haven't been touched since last we came
1222  * here
1223  */
1224 void mark_mounts_for_expiry(struct list_head *mounts)
1225 {
1226 	struct vfsmount *mnt, *next;
1227 	LIST_HEAD(graveyard);
1228 
1229 	if (list_empty(mounts))
1230 		return;
1231 
1232 	spin_lock(&vfsmount_lock);
1233 
1234 	/* extract from the expiration list every vfsmount that matches the
1235 	 * following criteria:
1236 	 * - only referenced by its parent vfsmount
1237 	 * - still marked for expiry (marked on the last call here; marks are
1238 	 *   cleared by mntput())
1239 	 */
1240 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
1241 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1242 		    atomic_read(&mnt->mnt_count) != 1)
1243 			continue;
1244 
1245 		mntget(mnt);
1246 		list_move(&mnt->mnt_expire, &graveyard);
1247 	}
1248 
1249 	expire_mount_list(&graveyard, mounts);
1250 
1251 	spin_unlock(&vfsmount_lock);
1252 }
1253 
1254 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
1255 
1256 /*
1257  * Ripoff of 'select_parent()'
1258  *
1259  * search the list of submounts for a given mountpoint, and move any
1260  * shrinkable submounts to the 'graveyard' list.
1261  */
1262 static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
1263 {
1264 	struct vfsmount *this_parent = parent;
1265 	struct list_head *next;
1266 	int found = 0;
1267 
1268 repeat:
1269 	next = this_parent->mnt_mounts.next;
1270 resume:
1271 	while (next != &this_parent->mnt_mounts) {
1272 		struct list_head *tmp = next;
1273 		struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
1274 
1275 		next = tmp->next;
1276 		if (!(mnt->mnt_flags & MNT_SHRINKABLE))
1277 			continue;
1278 		/*
1279 		 * Descend a level if the d_mounts list is non-empty.
1280 		 */
1281 		if (!list_empty(&mnt->mnt_mounts)) {
1282 			this_parent = mnt;
1283 			goto repeat;
1284 		}
1285 
1286 		if (!propagate_mount_busy(mnt, 1)) {
1287 			mntget(mnt);
1288 			list_move_tail(&mnt->mnt_expire, graveyard);
1289 			found++;
1290 		}
1291 	}
1292 	/*
1293 	 * All done at this level ... ascend and resume the search
1294 	 */
1295 	if (this_parent != parent) {
1296 		next = this_parent->mnt_child.next;
1297 		this_parent = this_parent->mnt_parent;
1298 		goto resume;
1299 	}
1300 	return found;
1301 }
1302 
1303 /*
1304  * process a list of expirable mountpoints with the intent of discarding any
1305  * submounts of a specific parent mountpoint
1306  */
1307 void shrink_submounts(struct vfsmount *mountpoint, struct list_head *mounts)
1308 {
1309 	LIST_HEAD(graveyard);
1310 	int found;
1311 
1312 	spin_lock(&vfsmount_lock);
1313 
1314 	/* extract submounts of 'mountpoint' from the expiration list */
1315 	while ((found = select_submounts(mountpoint, &graveyard)) != 0)
1316 		expire_mount_list(&graveyard, mounts);
1317 
1318 	spin_unlock(&vfsmount_lock);
1319 }
1320 
1321 EXPORT_SYMBOL_GPL(shrink_submounts);
1322 
1323 /*
1324  * Some copy_from_user() implementations do not return the exact number of
1325  * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
1326  * Note that this function differs from copy_from_user() in that it will oops
1327  * on bad values of `to', rather than returning a short copy.
1328  */
1329 static long exact_copy_from_user(void *to, const void __user * from,
1330 				 unsigned long n)
1331 {
1332 	char *t = to;
1333 	const char __user *f = from;
1334 	char c;
1335 
1336 	if (!access_ok(VERIFY_READ, from, n))
1337 		return n;
1338 
1339 	while (n) {
1340 		if (__get_user(c, f)) {
1341 			memset(t, 0, n);
1342 			break;
1343 		}
1344 		*t++ = c;
1345 		f++;
1346 		n--;
1347 	}
1348 	return n;
1349 }
1350 
1351 int copy_mount_options(const void __user * data, unsigned long *where)
1352 {
1353 	int i;
1354 	unsigned long page;
1355 	unsigned long size;
1356 
1357 	*where = 0;
1358 	if (!data)
1359 		return 0;
1360 
1361 	if (!(page = __get_free_page(GFP_KERNEL)))
1362 		return -ENOMEM;
1363 
1364 	/* We only care that *some* data at the address the user
1365 	 * gave us is valid.  Just in case, we'll zero
1366 	 * the remainder of the page.
1367 	 */
1368 	/* copy_from_user cannot cross TASK_SIZE ! */
1369 	size = TASK_SIZE - (unsigned long)data;
1370 	if (size > PAGE_SIZE)
1371 		size = PAGE_SIZE;
1372 
1373 	i = size - exact_copy_from_user((void *)page, data, size);
1374 	if (!i) {
1375 		free_page(page);
1376 		return -EFAULT;
1377 	}
1378 	if (i != PAGE_SIZE)
1379 		memset((char *)page + i, 0, PAGE_SIZE - i);
1380 	*where = page;
1381 	return 0;
1382 }
1383 
1384 /*
1385  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
1386  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
1387  *
1388  * data is a (void *) that can point to any structure up to
1389  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
1390  * information (or be NULL).
1391  *
1392  * Pre-0.97 versions of mount() didn't have a flags word.
1393  * When the flags word was introduced its top half was required
1394  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
1395  * Therefore, if this magic number is present, it carries no information
1396  * and must be discarded.
1397  */
1398 long do_mount(char *dev_name, char *dir_name, char *type_page,
1399 		  unsigned long flags, void *data_page)
1400 {
1401 	struct nameidata nd;
1402 	int retval = 0;
1403 	int mnt_flags = 0;
1404 
1405 	/* Discard magic */
1406 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
1407 		flags &= ~MS_MGC_MSK;
1408 
1409 	/* Basic sanity checks */
1410 
1411 	if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
1412 		return -EINVAL;
1413 	if (dev_name && !memchr(dev_name, 0, PAGE_SIZE))
1414 		return -EINVAL;
1415 
1416 	if (data_page)
1417 		((char *)data_page)[PAGE_SIZE - 1] = 0;
1418 
1419 	/* Separate the per-mountpoint flags */
1420 	if (flags & MS_NOSUID)
1421 		mnt_flags |= MNT_NOSUID;
1422 	if (flags & MS_NODEV)
1423 		mnt_flags |= MNT_NODEV;
1424 	if (flags & MS_NOEXEC)
1425 		mnt_flags |= MNT_NOEXEC;
1426 	if (flags & MS_NOATIME)
1427 		mnt_flags |= MNT_NOATIME;
1428 	if (flags & MS_NODIRATIME)
1429 		mnt_flags |= MNT_NODIRATIME;
1430 	if (flags & MS_RELATIME)
1431 		mnt_flags |= MNT_RELATIME;
1432 
1433 	flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE |
1434 		   MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT);
1435 
1436 	/* ... and get the mountpoint */
1437 	retval = path_lookup(dir_name, LOOKUP_FOLLOW, &nd);
1438 	if (retval)
1439 		return retval;
1440 
1441 	retval = security_sb_mount(dev_name, &nd, type_page, flags, data_page);
1442 	if (retval)
1443 		goto dput_out;
1444 
1445 	if (flags & MS_REMOUNT)
1446 		retval = do_remount(&nd, flags & ~MS_REMOUNT, mnt_flags,
1447 				    data_page);
1448 	else if (flags & MS_BIND)
1449 		retval = do_loopback(&nd, dev_name, flags & MS_REC);
1450 	else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1451 		retval = do_change_type(&nd, flags);
1452 	else if (flags & MS_MOVE)
1453 		retval = do_move_mount(&nd, dev_name);
1454 	else
1455 		retval = do_new_mount(&nd, type_page, flags, mnt_flags,
1456 				      dev_name, data_page);
1457 dput_out:
1458 	path_release(&nd);
1459 	return retval;
1460 }
1461 
1462 /*
1463  * Allocate a new namespace structure and populate it with contents
1464  * copied from the namespace of the passed in task structure.
1465  */
1466 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
1467 		struct fs_struct *fs)
1468 {
1469 	struct mnt_namespace *new_ns;
1470 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL, *altrootmnt = NULL;
1471 	struct vfsmount *p, *q;
1472 
1473 	new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
1474 	if (!new_ns)
1475 		return ERR_PTR(-ENOMEM);
1476 
1477 	atomic_set(&new_ns->count, 1);
1478 	INIT_LIST_HEAD(&new_ns->list);
1479 	init_waitqueue_head(&new_ns->poll);
1480 	new_ns->event = 0;
1481 
1482 	down_write(&namespace_sem);
1483 	/* First pass: copy the tree topology */
1484 	new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
1485 					CL_COPY_ALL | CL_EXPIRE);
1486 	if (!new_ns->root) {
1487 		up_write(&namespace_sem);
1488 		kfree(new_ns);
1489 		return ERR_PTR(-ENOMEM);;
1490 	}
1491 	spin_lock(&vfsmount_lock);
1492 	list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
1493 	spin_unlock(&vfsmount_lock);
1494 
1495 	/*
1496 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
1497 	 * as belonging to new namespace.  We have already acquired a private
1498 	 * fs_struct, so tsk->fs->lock is not needed.
1499 	 */
1500 	p = mnt_ns->root;
1501 	q = new_ns->root;
1502 	while (p) {
1503 		q->mnt_ns = new_ns;
1504 		if (fs) {
1505 			if (p == fs->rootmnt) {
1506 				rootmnt = p;
1507 				fs->rootmnt = mntget(q);
1508 			}
1509 			if (p == fs->pwdmnt) {
1510 				pwdmnt = p;
1511 				fs->pwdmnt = mntget(q);
1512 			}
1513 			if (p == fs->altrootmnt) {
1514 				altrootmnt = p;
1515 				fs->altrootmnt = mntget(q);
1516 			}
1517 		}
1518 		p = next_mnt(p, mnt_ns->root);
1519 		q = next_mnt(q, new_ns->root);
1520 	}
1521 	up_write(&namespace_sem);
1522 
1523 	if (rootmnt)
1524 		mntput(rootmnt);
1525 	if (pwdmnt)
1526 		mntput(pwdmnt);
1527 	if (altrootmnt)
1528 		mntput(altrootmnt);
1529 
1530 	return new_ns;
1531 }
1532 
1533 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
1534 		struct fs_struct *new_fs)
1535 {
1536 	struct mnt_namespace *new_ns;
1537 
1538 	BUG_ON(!ns);
1539 	get_mnt_ns(ns);
1540 
1541 	if (!(flags & CLONE_NEWNS))
1542 		return ns;
1543 
1544 	new_ns = dup_mnt_ns(ns, new_fs);
1545 
1546 	put_mnt_ns(ns);
1547 	return new_ns;
1548 }
1549 
1550 asmlinkage long sys_mount(char __user * dev_name, char __user * dir_name,
1551 			  char __user * type, unsigned long flags,
1552 			  void __user * data)
1553 {
1554 	int retval;
1555 	unsigned long data_page;
1556 	unsigned long type_page;
1557 	unsigned long dev_page;
1558 	char *dir_page;
1559 
1560 	retval = copy_mount_options(type, &type_page);
1561 	if (retval < 0)
1562 		return retval;
1563 
1564 	dir_page = getname(dir_name);
1565 	retval = PTR_ERR(dir_page);
1566 	if (IS_ERR(dir_page))
1567 		goto out1;
1568 
1569 	retval = copy_mount_options(dev_name, &dev_page);
1570 	if (retval < 0)
1571 		goto out2;
1572 
1573 	retval = copy_mount_options(data, &data_page);
1574 	if (retval < 0)
1575 		goto out3;
1576 
1577 	lock_kernel();
1578 	retval = do_mount((char *)dev_page, dir_page, (char *)type_page,
1579 			  flags, (void *)data_page);
1580 	unlock_kernel();
1581 	free_page(data_page);
1582 
1583 out3:
1584 	free_page(dev_page);
1585 out2:
1586 	putname(dir_page);
1587 out1:
1588 	free_page(type_page);
1589 	return retval;
1590 }
1591 
1592 /*
1593  * Replace the fs->{rootmnt,root} with {mnt,dentry}. Put the old values.
1594  * It can block. Requires the big lock held.
1595  */
1596 void set_fs_root(struct fs_struct *fs, struct vfsmount *mnt,
1597 		 struct dentry *dentry)
1598 {
1599 	struct dentry *old_root;
1600 	struct vfsmount *old_rootmnt;
1601 	write_lock(&fs->lock);
1602 	old_root = fs->root;
1603 	old_rootmnt = fs->rootmnt;
1604 	fs->rootmnt = mntget(mnt);
1605 	fs->root = dget(dentry);
1606 	write_unlock(&fs->lock);
1607 	if (old_root) {
1608 		dput(old_root);
1609 		mntput(old_rootmnt);
1610 	}
1611 }
1612 
1613 /*
1614  * Replace the fs->{pwdmnt,pwd} with {mnt,dentry}. Put the old values.
1615  * It can block. Requires the big lock held.
1616  */
1617 void set_fs_pwd(struct fs_struct *fs, struct vfsmount *mnt,
1618 		struct dentry *dentry)
1619 {
1620 	struct dentry *old_pwd;
1621 	struct vfsmount *old_pwdmnt;
1622 
1623 	write_lock(&fs->lock);
1624 	old_pwd = fs->pwd;
1625 	old_pwdmnt = fs->pwdmnt;
1626 	fs->pwdmnt = mntget(mnt);
1627 	fs->pwd = dget(dentry);
1628 	write_unlock(&fs->lock);
1629 
1630 	if (old_pwd) {
1631 		dput(old_pwd);
1632 		mntput(old_pwdmnt);
1633 	}
1634 }
1635 
1636 static void chroot_fs_refs(struct nameidata *old_nd, struct nameidata *new_nd)
1637 {
1638 	struct task_struct *g, *p;
1639 	struct fs_struct *fs;
1640 
1641 	read_lock(&tasklist_lock);
1642 	do_each_thread(g, p) {
1643 		task_lock(p);
1644 		fs = p->fs;
1645 		if (fs) {
1646 			atomic_inc(&fs->count);
1647 			task_unlock(p);
1648 			if (fs->root == old_nd->dentry
1649 			    && fs->rootmnt == old_nd->mnt)
1650 				set_fs_root(fs, new_nd->mnt, new_nd->dentry);
1651 			if (fs->pwd == old_nd->dentry
1652 			    && fs->pwdmnt == old_nd->mnt)
1653 				set_fs_pwd(fs, new_nd->mnt, new_nd->dentry);
1654 			put_fs_struct(fs);
1655 		} else
1656 			task_unlock(p);
1657 	} while_each_thread(g, p);
1658 	read_unlock(&tasklist_lock);
1659 }
1660 
1661 /*
1662  * pivot_root Semantics:
1663  * Moves the root file system of the current process to the directory put_old,
1664  * makes new_root as the new root file system of the current process, and sets
1665  * root/cwd of all processes which had them on the current root to new_root.
1666  *
1667  * Restrictions:
1668  * The new_root and put_old must be directories, and  must not be on the
1669  * same file  system as the current process root. The put_old  must  be
1670  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
1671  * pointed to by put_old must yield the same directory as new_root. No other
1672  * file system may be mounted on put_old. After all, new_root is a mountpoint.
1673  *
1674  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
1675  * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
1676  * in this situation.
1677  *
1678  * Notes:
1679  *  - we don't move root/cwd if they are not at the root (reason: if something
1680  *    cared enough to change them, it's probably wrong to force them elsewhere)
1681  *  - it's okay to pick a root that isn't the root of a file system, e.g.
1682  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
1683  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
1684  *    first.
1685  */
1686 asmlinkage long sys_pivot_root(const char __user * new_root,
1687 			       const char __user * put_old)
1688 {
1689 	struct vfsmount *tmp;
1690 	struct nameidata new_nd, old_nd, parent_nd, root_parent, user_nd;
1691 	int error;
1692 
1693 	if (!capable(CAP_SYS_ADMIN))
1694 		return -EPERM;
1695 
1696 	lock_kernel();
1697 
1698 	error = __user_walk(new_root, LOOKUP_FOLLOW | LOOKUP_DIRECTORY,
1699 			    &new_nd);
1700 	if (error)
1701 		goto out0;
1702 	error = -EINVAL;
1703 	if (!check_mnt(new_nd.mnt))
1704 		goto out1;
1705 
1706 	error = __user_walk(put_old, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old_nd);
1707 	if (error)
1708 		goto out1;
1709 
1710 	error = security_sb_pivotroot(&old_nd, &new_nd);
1711 	if (error) {
1712 		path_release(&old_nd);
1713 		goto out1;
1714 	}
1715 
1716 	read_lock(&current->fs->lock);
1717 	user_nd.mnt = mntget(current->fs->rootmnt);
1718 	user_nd.dentry = dget(current->fs->root);
1719 	read_unlock(&current->fs->lock);
1720 	down_write(&namespace_sem);
1721 	mutex_lock(&old_nd.dentry->d_inode->i_mutex);
1722 	error = -EINVAL;
1723 	if (IS_MNT_SHARED(old_nd.mnt) ||
1724 		IS_MNT_SHARED(new_nd.mnt->mnt_parent) ||
1725 		IS_MNT_SHARED(user_nd.mnt->mnt_parent))
1726 		goto out2;
1727 	if (!check_mnt(user_nd.mnt))
1728 		goto out2;
1729 	error = -ENOENT;
1730 	if (IS_DEADDIR(new_nd.dentry->d_inode))
1731 		goto out2;
1732 	if (d_unhashed(new_nd.dentry) && !IS_ROOT(new_nd.dentry))
1733 		goto out2;
1734 	if (d_unhashed(old_nd.dentry) && !IS_ROOT(old_nd.dentry))
1735 		goto out2;
1736 	error = -EBUSY;
1737 	if (new_nd.mnt == user_nd.mnt || old_nd.mnt == user_nd.mnt)
1738 		goto out2; /* loop, on the same file system  */
1739 	error = -EINVAL;
1740 	if (user_nd.mnt->mnt_root != user_nd.dentry)
1741 		goto out2; /* not a mountpoint */
1742 	if (user_nd.mnt->mnt_parent == user_nd.mnt)
1743 		goto out2; /* not attached */
1744 	if (new_nd.mnt->mnt_root != new_nd.dentry)
1745 		goto out2; /* not a mountpoint */
1746 	if (new_nd.mnt->mnt_parent == new_nd.mnt)
1747 		goto out2; /* not attached */
1748 	tmp = old_nd.mnt; /* make sure we can reach put_old from new_root */
1749 	spin_lock(&vfsmount_lock);
1750 	if (tmp != new_nd.mnt) {
1751 		for (;;) {
1752 			if (tmp->mnt_parent == tmp)
1753 				goto out3; /* already mounted on put_old */
1754 			if (tmp->mnt_parent == new_nd.mnt)
1755 				break;
1756 			tmp = tmp->mnt_parent;
1757 		}
1758 		if (!is_subdir(tmp->mnt_mountpoint, new_nd.dentry))
1759 			goto out3;
1760 	} else if (!is_subdir(old_nd.dentry, new_nd.dentry))
1761 		goto out3;
1762 	detach_mnt(new_nd.mnt, &parent_nd);
1763 	detach_mnt(user_nd.mnt, &root_parent);
1764 	attach_mnt(user_nd.mnt, &old_nd);     /* mount old root on put_old */
1765 	attach_mnt(new_nd.mnt, &root_parent); /* mount new_root on / */
1766 	touch_mnt_namespace(current->nsproxy->mnt_ns);
1767 	spin_unlock(&vfsmount_lock);
1768 	chroot_fs_refs(&user_nd, &new_nd);
1769 	security_sb_post_pivotroot(&user_nd, &new_nd);
1770 	error = 0;
1771 	path_release(&root_parent);
1772 	path_release(&parent_nd);
1773 out2:
1774 	mutex_unlock(&old_nd.dentry->d_inode->i_mutex);
1775 	up_write(&namespace_sem);
1776 	path_release(&user_nd);
1777 	path_release(&old_nd);
1778 out1:
1779 	path_release(&new_nd);
1780 out0:
1781 	unlock_kernel();
1782 	return error;
1783 out3:
1784 	spin_unlock(&vfsmount_lock);
1785 	goto out2;
1786 }
1787 
1788 static void __init init_mount_tree(void)
1789 {
1790 	struct vfsmount *mnt;
1791 	struct mnt_namespace *ns;
1792 
1793 	mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
1794 	if (IS_ERR(mnt))
1795 		panic("Can't create rootfs");
1796 	ns = kmalloc(sizeof(*ns), GFP_KERNEL);
1797 	if (!ns)
1798 		panic("Can't allocate initial namespace");
1799 	atomic_set(&ns->count, 1);
1800 	INIT_LIST_HEAD(&ns->list);
1801 	init_waitqueue_head(&ns->poll);
1802 	ns->event = 0;
1803 	list_add(&mnt->mnt_list, &ns->list);
1804 	ns->root = mnt;
1805 	mnt->mnt_ns = ns;
1806 
1807 	init_task.nsproxy->mnt_ns = ns;
1808 	get_mnt_ns(ns);
1809 
1810 	set_fs_pwd(current->fs, ns->root, ns->root->mnt_root);
1811 	set_fs_root(current->fs, ns->root, ns->root->mnt_root);
1812 }
1813 
1814 void __init mnt_init(void)
1815 {
1816 	struct list_head *d;
1817 	unsigned int nr_hash;
1818 	int i;
1819 	int err;
1820 
1821 	init_rwsem(&namespace_sem);
1822 
1823 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
1824 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1825 
1826 	mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
1827 
1828 	if (!mount_hashtable)
1829 		panic("Failed to allocate mount hash table\n");
1830 
1831 	/*
1832 	 * Find the power-of-two list-heads that can fit into the allocation..
1833 	 * We don't guarantee that "sizeof(struct list_head)" is necessarily
1834 	 * a power-of-two.
1835 	 */
1836 	nr_hash = PAGE_SIZE / sizeof(struct list_head);
1837 	hash_bits = 0;
1838 	do {
1839 		hash_bits++;
1840 	} while ((nr_hash >> hash_bits) != 0);
1841 	hash_bits--;
1842 
1843 	/*
1844 	 * Re-calculate the actual number of entries and the mask
1845 	 * from the number of bits we can fit.
1846 	 */
1847 	nr_hash = 1UL << hash_bits;
1848 	hash_mask = nr_hash - 1;
1849 
1850 	printk("Mount-cache hash table entries: %d\n", nr_hash);
1851 
1852 	/* And initialize the newly allocated array */
1853 	d = mount_hashtable;
1854 	i = nr_hash;
1855 	do {
1856 		INIT_LIST_HEAD(d);
1857 		d++;
1858 		i--;
1859 	} while (i);
1860 	err = sysfs_init();
1861 	if (err)
1862 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
1863 			__FUNCTION__, err);
1864 	fs_kobj = kobject_create_and_add("fs", NULL);
1865 	if (!fs_kobj)
1866 		printk(KERN_WARNING "%s: kobj create error\n", __FUNCTION__);
1867 	init_rootfs();
1868 	init_mount_tree();
1869 }
1870 
1871 void __put_mnt_ns(struct mnt_namespace *ns)
1872 {
1873 	struct vfsmount *root = ns->root;
1874 	LIST_HEAD(umount_list);
1875 	ns->root = NULL;
1876 	spin_unlock(&vfsmount_lock);
1877 	down_write(&namespace_sem);
1878 	spin_lock(&vfsmount_lock);
1879 	umount_tree(root, 0, &umount_list);
1880 	spin_unlock(&vfsmount_lock);
1881 	up_write(&namespace_sem);
1882 	release_mounts(&umount_list);
1883 	kfree(ns);
1884 }
1885