1 /* 2 * linux/fs/namespace.c 3 * 4 * (C) Copyright Al Viro 2000, 2001 5 * Released under GPL v2. 6 * 7 * Based on code from fs/super.c, copyright Linus Torvalds and others. 8 * Heavily rewritten. 9 */ 10 11 #include <linux/syscalls.h> 12 #include <linux/export.h> 13 #include <linux/capability.h> 14 #include <linux/mnt_namespace.h> 15 #include <linux/namei.h> 16 #include <linux/security.h> 17 #include <linux/idr.h> 18 #include <linux/acct.h> /* acct_auto_close_mnt */ 19 #include <linux/ramfs.h> /* init_rootfs */ 20 #include <linux/fs_struct.h> /* get_fs_root et.al. */ 21 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */ 22 #include <linux/uaccess.h> 23 #include "pnode.h" 24 #include "internal.h" 25 26 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head)) 27 #define HASH_SIZE (1UL << HASH_SHIFT) 28 29 static int event; 30 static DEFINE_IDA(mnt_id_ida); 31 static DEFINE_IDA(mnt_group_ida); 32 static DEFINE_SPINLOCK(mnt_id_lock); 33 static int mnt_id_start = 0; 34 static int mnt_group_start = 1; 35 36 static struct list_head *mount_hashtable __read_mostly; 37 static struct kmem_cache *mnt_cache __read_mostly; 38 static struct rw_semaphore namespace_sem; 39 40 /* /sys/fs */ 41 struct kobject *fs_kobj; 42 EXPORT_SYMBOL_GPL(fs_kobj); 43 44 /* 45 * vfsmount lock may be taken for read to prevent changes to the 46 * vfsmount hash, ie. during mountpoint lookups or walking back 47 * up the tree. 48 * 49 * It should be taken for write in all cases where the vfsmount 50 * tree or hash is modified or when a vfsmount structure is modified. 51 */ 52 DEFINE_BRLOCK(vfsmount_lock); 53 54 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry) 55 { 56 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); 57 tmp += ((unsigned long)dentry / L1_CACHE_BYTES); 58 tmp = tmp + (tmp >> HASH_SHIFT); 59 return tmp & (HASH_SIZE - 1); 60 } 61 62 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16) 63 64 /* 65 * allocation is serialized by namespace_sem, but we need the spinlock to 66 * serialize with freeing. 67 */ 68 static int mnt_alloc_id(struct mount *mnt) 69 { 70 int res; 71 72 retry: 73 ida_pre_get(&mnt_id_ida, GFP_KERNEL); 74 spin_lock(&mnt_id_lock); 75 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id); 76 if (!res) 77 mnt_id_start = mnt->mnt_id + 1; 78 spin_unlock(&mnt_id_lock); 79 if (res == -EAGAIN) 80 goto retry; 81 82 return res; 83 } 84 85 static void mnt_free_id(struct mount *mnt) 86 { 87 int id = mnt->mnt_id; 88 spin_lock(&mnt_id_lock); 89 ida_remove(&mnt_id_ida, id); 90 if (mnt_id_start > id) 91 mnt_id_start = id; 92 spin_unlock(&mnt_id_lock); 93 } 94 95 /* 96 * Allocate a new peer group ID 97 * 98 * mnt_group_ida is protected by namespace_sem 99 */ 100 static int mnt_alloc_group_id(struct mount *mnt) 101 { 102 int res; 103 104 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL)) 105 return -ENOMEM; 106 107 res = ida_get_new_above(&mnt_group_ida, 108 mnt_group_start, 109 &mnt->mnt_group_id); 110 if (!res) 111 mnt_group_start = mnt->mnt_group_id + 1; 112 113 return res; 114 } 115 116 /* 117 * Release a peer group ID 118 */ 119 void mnt_release_group_id(struct mount *mnt) 120 { 121 int id = mnt->mnt_group_id; 122 ida_remove(&mnt_group_ida, id); 123 if (mnt_group_start > id) 124 mnt_group_start = id; 125 mnt->mnt_group_id = 0; 126 } 127 128 /* 129 * vfsmount lock must be held for read 130 */ 131 static inline void mnt_add_count(struct mount *mnt, int n) 132 { 133 #ifdef CONFIG_SMP 134 this_cpu_add(mnt->mnt_pcp->mnt_count, n); 135 #else 136 preempt_disable(); 137 mnt->mnt_count += n; 138 preempt_enable(); 139 #endif 140 } 141 142 /* 143 * vfsmount lock must be held for write 144 */ 145 unsigned int mnt_get_count(struct mount *mnt) 146 { 147 #ifdef CONFIG_SMP 148 unsigned int count = 0; 149 int cpu; 150 151 for_each_possible_cpu(cpu) { 152 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count; 153 } 154 155 return count; 156 #else 157 return mnt->mnt_count; 158 #endif 159 } 160 161 static struct mount *alloc_vfsmnt(const char *name) 162 { 163 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); 164 if (mnt) { 165 int err; 166 167 err = mnt_alloc_id(mnt); 168 if (err) 169 goto out_free_cache; 170 171 if (name) { 172 mnt->mnt_devname = kstrdup(name, GFP_KERNEL); 173 if (!mnt->mnt_devname) 174 goto out_free_id; 175 } 176 177 #ifdef CONFIG_SMP 178 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp); 179 if (!mnt->mnt_pcp) 180 goto out_free_devname; 181 182 this_cpu_add(mnt->mnt_pcp->mnt_count, 1); 183 #else 184 mnt->mnt_count = 1; 185 mnt->mnt_writers = 0; 186 #endif 187 188 INIT_LIST_HEAD(&mnt->mnt_hash); 189 INIT_LIST_HEAD(&mnt->mnt_child); 190 INIT_LIST_HEAD(&mnt->mnt_mounts); 191 INIT_LIST_HEAD(&mnt->mnt_list); 192 INIT_LIST_HEAD(&mnt->mnt_expire); 193 INIT_LIST_HEAD(&mnt->mnt_share); 194 INIT_LIST_HEAD(&mnt->mnt_slave_list); 195 INIT_LIST_HEAD(&mnt->mnt_slave); 196 #ifdef CONFIG_FSNOTIFY 197 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks); 198 #endif 199 } 200 return mnt; 201 202 #ifdef CONFIG_SMP 203 out_free_devname: 204 kfree(mnt->mnt_devname); 205 #endif 206 out_free_id: 207 mnt_free_id(mnt); 208 out_free_cache: 209 kmem_cache_free(mnt_cache, mnt); 210 return NULL; 211 } 212 213 /* 214 * Most r/o checks on a fs are for operations that take 215 * discrete amounts of time, like a write() or unlink(). 216 * We must keep track of when those operations start 217 * (for permission checks) and when they end, so that 218 * we can determine when writes are able to occur to 219 * a filesystem. 220 */ 221 /* 222 * __mnt_is_readonly: check whether a mount is read-only 223 * @mnt: the mount to check for its write status 224 * 225 * This shouldn't be used directly ouside of the VFS. 226 * It does not guarantee that the filesystem will stay 227 * r/w, just that it is right *now*. This can not and 228 * should not be used in place of IS_RDONLY(inode). 229 * mnt_want/drop_write() will _keep_ the filesystem 230 * r/w. 231 */ 232 int __mnt_is_readonly(struct vfsmount *mnt) 233 { 234 if (mnt->mnt_flags & MNT_READONLY) 235 return 1; 236 if (mnt->mnt_sb->s_flags & MS_RDONLY) 237 return 1; 238 return 0; 239 } 240 EXPORT_SYMBOL_GPL(__mnt_is_readonly); 241 242 static inline void mnt_inc_writers(struct mount *mnt) 243 { 244 #ifdef CONFIG_SMP 245 this_cpu_inc(mnt->mnt_pcp->mnt_writers); 246 #else 247 mnt->mnt_writers++; 248 #endif 249 } 250 251 static inline void mnt_dec_writers(struct mount *mnt) 252 { 253 #ifdef CONFIG_SMP 254 this_cpu_dec(mnt->mnt_pcp->mnt_writers); 255 #else 256 mnt->mnt_writers--; 257 #endif 258 } 259 260 static unsigned int mnt_get_writers(struct mount *mnt) 261 { 262 #ifdef CONFIG_SMP 263 unsigned int count = 0; 264 int cpu; 265 266 for_each_possible_cpu(cpu) { 267 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers; 268 } 269 270 return count; 271 #else 272 return mnt->mnt_writers; 273 #endif 274 } 275 276 static int mnt_is_readonly(struct vfsmount *mnt) 277 { 278 if (mnt->mnt_sb->s_readonly_remount) 279 return 1; 280 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */ 281 smp_rmb(); 282 return __mnt_is_readonly(mnt); 283 } 284 285 /* 286 * Most r/o checks on a fs are for operations that take 287 * discrete amounts of time, like a write() or unlink(). 288 * We must keep track of when those operations start 289 * (for permission checks) and when they end, so that 290 * we can determine when writes are able to occur to 291 * a filesystem. 292 */ 293 /** 294 * mnt_want_write - get write access to a mount 295 * @m: the mount on which to take a write 296 * 297 * This tells the low-level filesystem that a write is 298 * about to be performed to it, and makes sure that 299 * writes are allowed before returning success. When 300 * the write operation is finished, mnt_drop_write() 301 * must be called. This is effectively a refcount. 302 */ 303 int mnt_want_write(struct vfsmount *m) 304 { 305 struct mount *mnt = real_mount(m); 306 int ret = 0; 307 308 preempt_disable(); 309 mnt_inc_writers(mnt); 310 /* 311 * The store to mnt_inc_writers must be visible before we pass 312 * MNT_WRITE_HOLD loop below, so that the slowpath can see our 313 * incremented count after it has set MNT_WRITE_HOLD. 314 */ 315 smp_mb(); 316 while (mnt->mnt.mnt_flags & MNT_WRITE_HOLD) 317 cpu_relax(); 318 /* 319 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will 320 * be set to match its requirements. So we must not load that until 321 * MNT_WRITE_HOLD is cleared. 322 */ 323 smp_rmb(); 324 if (mnt_is_readonly(m)) { 325 mnt_dec_writers(mnt); 326 ret = -EROFS; 327 } 328 preempt_enable(); 329 return ret; 330 } 331 EXPORT_SYMBOL_GPL(mnt_want_write); 332 333 /** 334 * mnt_clone_write - get write access to a mount 335 * @mnt: the mount on which to take a write 336 * 337 * This is effectively like mnt_want_write, except 338 * it must only be used to take an extra write reference 339 * on a mountpoint that we already know has a write reference 340 * on it. This allows some optimisation. 341 * 342 * After finished, mnt_drop_write must be called as usual to 343 * drop the reference. 344 */ 345 int mnt_clone_write(struct vfsmount *mnt) 346 { 347 /* superblock may be r/o */ 348 if (__mnt_is_readonly(mnt)) 349 return -EROFS; 350 preempt_disable(); 351 mnt_inc_writers(real_mount(mnt)); 352 preempt_enable(); 353 return 0; 354 } 355 EXPORT_SYMBOL_GPL(mnt_clone_write); 356 357 /** 358 * mnt_want_write_file - get write access to a file's mount 359 * @file: the file who's mount on which to take a write 360 * 361 * This is like mnt_want_write, but it takes a file and can 362 * do some optimisations if the file is open for write already 363 */ 364 int mnt_want_write_file(struct file *file) 365 { 366 struct inode *inode = file->f_dentry->d_inode; 367 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode)) 368 return mnt_want_write(file->f_path.mnt); 369 else 370 return mnt_clone_write(file->f_path.mnt); 371 } 372 EXPORT_SYMBOL_GPL(mnt_want_write_file); 373 374 /** 375 * mnt_drop_write - give up write access to a mount 376 * @mnt: the mount on which to give up write access 377 * 378 * Tells the low-level filesystem that we are done 379 * performing writes to it. Must be matched with 380 * mnt_want_write() call above. 381 */ 382 void mnt_drop_write(struct vfsmount *mnt) 383 { 384 preempt_disable(); 385 mnt_dec_writers(real_mount(mnt)); 386 preempt_enable(); 387 } 388 EXPORT_SYMBOL_GPL(mnt_drop_write); 389 390 void mnt_drop_write_file(struct file *file) 391 { 392 mnt_drop_write(file->f_path.mnt); 393 } 394 EXPORT_SYMBOL(mnt_drop_write_file); 395 396 static int mnt_make_readonly(struct mount *mnt) 397 { 398 int ret = 0; 399 400 br_write_lock(vfsmount_lock); 401 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 402 /* 403 * After storing MNT_WRITE_HOLD, we'll read the counters. This store 404 * should be visible before we do. 405 */ 406 smp_mb(); 407 408 /* 409 * With writers on hold, if this value is zero, then there are 410 * definitely no active writers (although held writers may subsequently 411 * increment the count, they'll have to wait, and decrement it after 412 * seeing MNT_READONLY). 413 * 414 * It is OK to have counter incremented on one CPU and decremented on 415 * another: the sum will add up correctly. The danger would be when we 416 * sum up each counter, if we read a counter before it is incremented, 417 * but then read another CPU's count which it has been subsequently 418 * decremented from -- we would see more decrements than we should. 419 * MNT_WRITE_HOLD protects against this scenario, because 420 * mnt_want_write first increments count, then smp_mb, then spins on 421 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while 422 * we're counting up here. 423 */ 424 if (mnt_get_writers(mnt) > 0) 425 ret = -EBUSY; 426 else 427 mnt->mnt.mnt_flags |= MNT_READONLY; 428 /* 429 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers 430 * that become unheld will see MNT_READONLY. 431 */ 432 smp_wmb(); 433 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 434 br_write_unlock(vfsmount_lock); 435 return ret; 436 } 437 438 static void __mnt_unmake_readonly(struct mount *mnt) 439 { 440 br_write_lock(vfsmount_lock); 441 mnt->mnt.mnt_flags &= ~MNT_READONLY; 442 br_write_unlock(vfsmount_lock); 443 } 444 445 int sb_prepare_remount_readonly(struct super_block *sb) 446 { 447 struct mount *mnt; 448 int err = 0; 449 450 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */ 451 if (atomic_long_read(&sb->s_remove_count)) 452 return -EBUSY; 453 454 br_write_lock(vfsmount_lock); 455 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 456 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) { 457 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 458 smp_mb(); 459 if (mnt_get_writers(mnt) > 0) { 460 err = -EBUSY; 461 break; 462 } 463 } 464 } 465 if (!err && atomic_long_read(&sb->s_remove_count)) 466 err = -EBUSY; 467 468 if (!err) { 469 sb->s_readonly_remount = 1; 470 smp_wmb(); 471 } 472 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 473 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD) 474 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 475 } 476 br_write_unlock(vfsmount_lock); 477 478 return err; 479 } 480 481 static void free_vfsmnt(struct mount *mnt) 482 { 483 kfree(mnt->mnt_devname); 484 mnt_free_id(mnt); 485 #ifdef CONFIG_SMP 486 free_percpu(mnt->mnt_pcp); 487 #endif 488 kmem_cache_free(mnt_cache, mnt); 489 } 490 491 /* 492 * find the first or last mount at @dentry on vfsmount @mnt depending on 493 * @dir. If @dir is set return the first mount else return the last mount. 494 * vfsmount_lock must be held for read or write. 495 */ 496 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry, 497 int dir) 498 { 499 struct list_head *head = mount_hashtable + hash(mnt, dentry); 500 struct list_head *tmp = head; 501 struct mount *p, *found = NULL; 502 503 for (;;) { 504 tmp = dir ? tmp->next : tmp->prev; 505 p = NULL; 506 if (tmp == head) 507 break; 508 p = list_entry(tmp, struct mount, mnt_hash); 509 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) { 510 found = p; 511 break; 512 } 513 } 514 return found; 515 } 516 517 /* 518 * lookup_mnt increments the ref count before returning 519 * the vfsmount struct. 520 */ 521 struct vfsmount *lookup_mnt(struct path *path) 522 { 523 struct mount *child_mnt; 524 525 br_read_lock(vfsmount_lock); 526 child_mnt = __lookup_mnt(path->mnt, path->dentry, 1); 527 if (child_mnt) { 528 mnt_add_count(child_mnt, 1); 529 br_read_unlock(vfsmount_lock); 530 return &child_mnt->mnt; 531 } else { 532 br_read_unlock(vfsmount_lock); 533 return NULL; 534 } 535 } 536 537 static inline int check_mnt(struct mount *mnt) 538 { 539 return mnt->mnt_ns == current->nsproxy->mnt_ns; 540 } 541 542 /* 543 * vfsmount lock must be held for write 544 */ 545 static void touch_mnt_namespace(struct mnt_namespace *ns) 546 { 547 if (ns) { 548 ns->event = ++event; 549 wake_up_interruptible(&ns->poll); 550 } 551 } 552 553 /* 554 * vfsmount lock must be held for write 555 */ 556 static void __touch_mnt_namespace(struct mnt_namespace *ns) 557 { 558 if (ns && ns->event != event) { 559 ns->event = event; 560 wake_up_interruptible(&ns->poll); 561 } 562 } 563 564 /* 565 * Clear dentry's mounted state if it has no remaining mounts. 566 * vfsmount_lock must be held for write. 567 */ 568 static void dentry_reset_mounted(struct dentry *dentry) 569 { 570 unsigned u; 571 572 for (u = 0; u < HASH_SIZE; u++) { 573 struct mount *p; 574 575 list_for_each_entry(p, &mount_hashtable[u], mnt_hash) { 576 if (p->mnt_mountpoint == dentry) 577 return; 578 } 579 } 580 spin_lock(&dentry->d_lock); 581 dentry->d_flags &= ~DCACHE_MOUNTED; 582 spin_unlock(&dentry->d_lock); 583 } 584 585 /* 586 * vfsmount lock must be held for write 587 */ 588 static void detach_mnt(struct mount *mnt, struct path *old_path) 589 { 590 old_path->dentry = mnt->mnt_mountpoint; 591 old_path->mnt = &mnt->mnt_parent->mnt; 592 mnt->mnt_parent = mnt; 593 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 594 list_del_init(&mnt->mnt_child); 595 list_del_init(&mnt->mnt_hash); 596 dentry_reset_mounted(old_path->dentry); 597 } 598 599 /* 600 * vfsmount lock must be held for write 601 */ 602 void mnt_set_mountpoint(struct mount *mnt, struct dentry *dentry, 603 struct mount *child_mnt) 604 { 605 mnt_add_count(mnt, 1); /* essentially, that's mntget */ 606 child_mnt->mnt_mountpoint = dget(dentry); 607 child_mnt->mnt_parent = mnt; 608 spin_lock(&dentry->d_lock); 609 dentry->d_flags |= DCACHE_MOUNTED; 610 spin_unlock(&dentry->d_lock); 611 } 612 613 /* 614 * vfsmount lock must be held for write 615 */ 616 static void attach_mnt(struct mount *mnt, struct path *path) 617 { 618 mnt_set_mountpoint(real_mount(path->mnt), path->dentry, mnt); 619 list_add_tail(&mnt->mnt_hash, mount_hashtable + 620 hash(path->mnt, path->dentry)); 621 list_add_tail(&mnt->mnt_child, &real_mount(path->mnt)->mnt_mounts); 622 } 623 624 static inline void __mnt_make_longterm(struct mount *mnt) 625 { 626 #ifdef CONFIG_SMP 627 atomic_inc(&mnt->mnt_longterm); 628 #endif 629 } 630 631 /* needs vfsmount lock for write */ 632 static inline void __mnt_make_shortterm(struct mount *mnt) 633 { 634 #ifdef CONFIG_SMP 635 atomic_dec(&mnt->mnt_longterm); 636 #endif 637 } 638 639 /* 640 * vfsmount lock must be held for write 641 */ 642 static void commit_tree(struct mount *mnt) 643 { 644 struct mount *parent = mnt->mnt_parent; 645 struct mount *m; 646 LIST_HEAD(head); 647 struct mnt_namespace *n = parent->mnt_ns; 648 649 BUG_ON(parent == mnt); 650 651 list_add_tail(&head, &mnt->mnt_list); 652 list_for_each_entry(m, &head, mnt_list) { 653 m->mnt_ns = n; 654 __mnt_make_longterm(m); 655 } 656 657 list_splice(&head, n->list.prev); 658 659 list_add_tail(&mnt->mnt_hash, mount_hashtable + 660 hash(&parent->mnt, mnt->mnt_mountpoint)); 661 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 662 touch_mnt_namespace(n); 663 } 664 665 static struct mount *next_mnt(struct mount *p, struct mount *root) 666 { 667 struct list_head *next = p->mnt_mounts.next; 668 if (next == &p->mnt_mounts) { 669 while (1) { 670 if (p == root) 671 return NULL; 672 next = p->mnt_child.next; 673 if (next != &p->mnt_parent->mnt_mounts) 674 break; 675 p = p->mnt_parent; 676 } 677 } 678 return list_entry(next, struct mount, mnt_child); 679 } 680 681 static struct mount *skip_mnt_tree(struct mount *p) 682 { 683 struct list_head *prev = p->mnt_mounts.prev; 684 while (prev != &p->mnt_mounts) { 685 p = list_entry(prev, struct mount, mnt_child); 686 prev = p->mnt_mounts.prev; 687 } 688 return p; 689 } 690 691 struct vfsmount * 692 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data) 693 { 694 struct mount *mnt; 695 struct dentry *root; 696 697 if (!type) 698 return ERR_PTR(-ENODEV); 699 700 mnt = alloc_vfsmnt(name); 701 if (!mnt) 702 return ERR_PTR(-ENOMEM); 703 704 if (flags & MS_KERNMOUNT) 705 mnt->mnt.mnt_flags = MNT_INTERNAL; 706 707 root = mount_fs(type, flags, name, data); 708 if (IS_ERR(root)) { 709 free_vfsmnt(mnt); 710 return ERR_CAST(root); 711 } 712 713 mnt->mnt.mnt_root = root; 714 mnt->mnt.mnt_sb = root->d_sb; 715 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 716 mnt->mnt_parent = mnt; 717 br_write_lock(vfsmount_lock); 718 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts); 719 br_write_unlock(vfsmount_lock); 720 return &mnt->mnt; 721 } 722 EXPORT_SYMBOL_GPL(vfs_kern_mount); 723 724 static struct mount *clone_mnt(struct mount *old, struct dentry *root, 725 int flag) 726 { 727 struct super_block *sb = old->mnt.mnt_sb; 728 struct mount *mnt = alloc_vfsmnt(old->mnt_devname); 729 730 if (mnt) { 731 if (flag & (CL_SLAVE | CL_PRIVATE)) 732 mnt->mnt_group_id = 0; /* not a peer of original */ 733 else 734 mnt->mnt_group_id = old->mnt_group_id; 735 736 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) { 737 int err = mnt_alloc_group_id(mnt); 738 if (err) 739 goto out_free; 740 } 741 742 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD; 743 atomic_inc(&sb->s_active); 744 mnt->mnt.mnt_sb = sb; 745 mnt->mnt.mnt_root = dget(root); 746 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 747 mnt->mnt_parent = mnt; 748 br_write_lock(vfsmount_lock); 749 list_add_tail(&mnt->mnt_instance, &sb->s_mounts); 750 br_write_unlock(vfsmount_lock); 751 752 if (flag & CL_SLAVE) { 753 list_add(&mnt->mnt_slave, &old->mnt_slave_list); 754 mnt->mnt_master = old; 755 CLEAR_MNT_SHARED(mnt); 756 } else if (!(flag & CL_PRIVATE)) { 757 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old)) 758 list_add(&mnt->mnt_share, &old->mnt_share); 759 if (IS_MNT_SLAVE(old)) 760 list_add(&mnt->mnt_slave, &old->mnt_slave); 761 mnt->mnt_master = old->mnt_master; 762 } 763 if (flag & CL_MAKE_SHARED) 764 set_mnt_shared(mnt); 765 766 /* stick the duplicate mount on the same expiry list 767 * as the original if that was on one */ 768 if (flag & CL_EXPIRE) { 769 if (!list_empty(&old->mnt_expire)) 770 list_add(&mnt->mnt_expire, &old->mnt_expire); 771 } 772 } 773 return mnt; 774 775 out_free: 776 free_vfsmnt(mnt); 777 return NULL; 778 } 779 780 static inline void mntfree(struct mount *mnt) 781 { 782 struct vfsmount *m = &mnt->mnt; 783 struct super_block *sb = m->mnt_sb; 784 785 /* 786 * This probably indicates that somebody messed 787 * up a mnt_want/drop_write() pair. If this 788 * happens, the filesystem was probably unable 789 * to make r/w->r/o transitions. 790 */ 791 /* 792 * The locking used to deal with mnt_count decrement provides barriers, 793 * so mnt_get_writers() below is safe. 794 */ 795 WARN_ON(mnt_get_writers(mnt)); 796 fsnotify_vfsmount_delete(m); 797 dput(m->mnt_root); 798 free_vfsmnt(mnt); 799 deactivate_super(sb); 800 } 801 802 static void mntput_no_expire(struct mount *mnt) 803 { 804 put_again: 805 #ifdef CONFIG_SMP 806 br_read_lock(vfsmount_lock); 807 if (likely(atomic_read(&mnt->mnt_longterm))) { 808 mnt_add_count(mnt, -1); 809 br_read_unlock(vfsmount_lock); 810 return; 811 } 812 br_read_unlock(vfsmount_lock); 813 814 br_write_lock(vfsmount_lock); 815 mnt_add_count(mnt, -1); 816 if (mnt_get_count(mnt)) { 817 br_write_unlock(vfsmount_lock); 818 return; 819 } 820 #else 821 mnt_add_count(mnt, -1); 822 if (likely(mnt_get_count(mnt))) 823 return; 824 br_write_lock(vfsmount_lock); 825 #endif 826 if (unlikely(mnt->mnt_pinned)) { 827 mnt_add_count(mnt, mnt->mnt_pinned + 1); 828 mnt->mnt_pinned = 0; 829 br_write_unlock(vfsmount_lock); 830 acct_auto_close_mnt(&mnt->mnt); 831 goto put_again; 832 } 833 list_del(&mnt->mnt_instance); 834 br_write_unlock(vfsmount_lock); 835 mntfree(mnt); 836 } 837 838 void mntput(struct vfsmount *mnt) 839 { 840 if (mnt) { 841 struct mount *m = real_mount(mnt); 842 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */ 843 if (unlikely(m->mnt_expiry_mark)) 844 m->mnt_expiry_mark = 0; 845 mntput_no_expire(m); 846 } 847 } 848 EXPORT_SYMBOL(mntput); 849 850 struct vfsmount *mntget(struct vfsmount *mnt) 851 { 852 if (mnt) 853 mnt_add_count(real_mount(mnt), 1); 854 return mnt; 855 } 856 EXPORT_SYMBOL(mntget); 857 858 void mnt_pin(struct vfsmount *mnt) 859 { 860 br_write_lock(vfsmount_lock); 861 real_mount(mnt)->mnt_pinned++; 862 br_write_unlock(vfsmount_lock); 863 } 864 EXPORT_SYMBOL(mnt_pin); 865 866 void mnt_unpin(struct vfsmount *m) 867 { 868 struct mount *mnt = real_mount(m); 869 br_write_lock(vfsmount_lock); 870 if (mnt->mnt_pinned) { 871 mnt_add_count(mnt, 1); 872 mnt->mnt_pinned--; 873 } 874 br_write_unlock(vfsmount_lock); 875 } 876 EXPORT_SYMBOL(mnt_unpin); 877 878 static inline void mangle(struct seq_file *m, const char *s) 879 { 880 seq_escape(m, s, " \t\n\\"); 881 } 882 883 /* 884 * Simple .show_options callback for filesystems which don't want to 885 * implement more complex mount option showing. 886 * 887 * See also save_mount_options(). 888 */ 889 int generic_show_options(struct seq_file *m, struct dentry *root) 890 { 891 const char *options; 892 893 rcu_read_lock(); 894 options = rcu_dereference(root->d_sb->s_options); 895 896 if (options != NULL && options[0]) { 897 seq_putc(m, ','); 898 mangle(m, options); 899 } 900 rcu_read_unlock(); 901 902 return 0; 903 } 904 EXPORT_SYMBOL(generic_show_options); 905 906 /* 907 * If filesystem uses generic_show_options(), this function should be 908 * called from the fill_super() callback. 909 * 910 * The .remount_fs callback usually needs to be handled in a special 911 * way, to make sure, that previous options are not overwritten if the 912 * remount fails. 913 * 914 * Also note, that if the filesystem's .remount_fs function doesn't 915 * reset all options to their default value, but changes only newly 916 * given options, then the displayed options will not reflect reality 917 * any more. 918 */ 919 void save_mount_options(struct super_block *sb, char *options) 920 { 921 BUG_ON(sb->s_options); 922 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL)); 923 } 924 EXPORT_SYMBOL(save_mount_options); 925 926 void replace_mount_options(struct super_block *sb, char *options) 927 { 928 char *old = sb->s_options; 929 rcu_assign_pointer(sb->s_options, options); 930 if (old) { 931 synchronize_rcu(); 932 kfree(old); 933 } 934 } 935 EXPORT_SYMBOL(replace_mount_options); 936 937 #ifdef CONFIG_PROC_FS 938 /* iterator; we want it to have access to namespace_sem, thus here... */ 939 static void *m_start(struct seq_file *m, loff_t *pos) 940 { 941 struct proc_mounts *p = container_of(m, struct proc_mounts, m); 942 943 down_read(&namespace_sem); 944 return seq_list_start(&p->ns->list, *pos); 945 } 946 947 static void *m_next(struct seq_file *m, void *v, loff_t *pos) 948 { 949 struct proc_mounts *p = container_of(m, struct proc_mounts, m); 950 951 return seq_list_next(v, &p->ns->list, pos); 952 } 953 954 static void m_stop(struct seq_file *m, void *v) 955 { 956 up_read(&namespace_sem); 957 } 958 959 static int m_show(struct seq_file *m, void *v) 960 { 961 struct proc_mounts *p = container_of(m, struct proc_mounts, m); 962 struct mount *r = list_entry(v, struct mount, mnt_list); 963 return p->show(m, &r->mnt); 964 } 965 966 const struct seq_operations mounts_op = { 967 .start = m_start, 968 .next = m_next, 969 .stop = m_stop, 970 .show = m_show, 971 }; 972 #endif /* CONFIG_PROC_FS */ 973 974 /** 975 * may_umount_tree - check if a mount tree is busy 976 * @mnt: root of mount tree 977 * 978 * This is called to check if a tree of mounts has any 979 * open files, pwds, chroots or sub mounts that are 980 * busy. 981 */ 982 int may_umount_tree(struct vfsmount *m) 983 { 984 struct mount *mnt = real_mount(m); 985 int actual_refs = 0; 986 int minimum_refs = 0; 987 struct mount *p; 988 BUG_ON(!m); 989 990 /* write lock needed for mnt_get_count */ 991 br_write_lock(vfsmount_lock); 992 for (p = mnt; p; p = next_mnt(p, mnt)) { 993 actual_refs += mnt_get_count(p); 994 minimum_refs += 2; 995 } 996 br_write_unlock(vfsmount_lock); 997 998 if (actual_refs > minimum_refs) 999 return 0; 1000 1001 return 1; 1002 } 1003 1004 EXPORT_SYMBOL(may_umount_tree); 1005 1006 /** 1007 * may_umount - check if a mount point is busy 1008 * @mnt: root of mount 1009 * 1010 * This is called to check if a mount point has any 1011 * open files, pwds, chroots or sub mounts. If the 1012 * mount has sub mounts this will return busy 1013 * regardless of whether the sub mounts are busy. 1014 * 1015 * Doesn't take quota and stuff into account. IOW, in some cases it will 1016 * give false negatives. The main reason why it's here is that we need 1017 * a non-destructive way to look for easily umountable filesystems. 1018 */ 1019 int may_umount(struct vfsmount *mnt) 1020 { 1021 int ret = 1; 1022 down_read(&namespace_sem); 1023 br_write_lock(vfsmount_lock); 1024 if (propagate_mount_busy(real_mount(mnt), 2)) 1025 ret = 0; 1026 br_write_unlock(vfsmount_lock); 1027 up_read(&namespace_sem); 1028 return ret; 1029 } 1030 1031 EXPORT_SYMBOL(may_umount); 1032 1033 void release_mounts(struct list_head *head) 1034 { 1035 struct mount *mnt; 1036 while (!list_empty(head)) { 1037 mnt = list_first_entry(head, struct mount, mnt_hash); 1038 list_del_init(&mnt->mnt_hash); 1039 if (mnt_has_parent(mnt)) { 1040 struct dentry *dentry; 1041 struct mount *m; 1042 1043 br_write_lock(vfsmount_lock); 1044 dentry = mnt->mnt_mountpoint; 1045 m = mnt->mnt_parent; 1046 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 1047 mnt->mnt_parent = mnt; 1048 m->mnt_ghosts--; 1049 br_write_unlock(vfsmount_lock); 1050 dput(dentry); 1051 mntput(&m->mnt); 1052 } 1053 mntput(&mnt->mnt); 1054 } 1055 } 1056 1057 /* 1058 * vfsmount lock must be held for write 1059 * namespace_sem must be held for write 1060 */ 1061 void umount_tree(struct mount *mnt, int propagate, struct list_head *kill) 1062 { 1063 LIST_HEAD(tmp_list); 1064 struct mount *p; 1065 1066 for (p = mnt; p; p = next_mnt(p, mnt)) 1067 list_move(&p->mnt_hash, &tmp_list); 1068 1069 if (propagate) 1070 propagate_umount(&tmp_list); 1071 1072 list_for_each_entry(p, &tmp_list, mnt_hash) { 1073 list_del_init(&p->mnt_expire); 1074 list_del_init(&p->mnt_list); 1075 __touch_mnt_namespace(p->mnt_ns); 1076 p->mnt_ns = NULL; 1077 __mnt_make_shortterm(p); 1078 list_del_init(&p->mnt_child); 1079 if (mnt_has_parent(p)) { 1080 p->mnt_parent->mnt_ghosts++; 1081 dentry_reset_mounted(p->mnt_mountpoint); 1082 } 1083 change_mnt_propagation(p, MS_PRIVATE); 1084 } 1085 list_splice(&tmp_list, kill); 1086 } 1087 1088 static void shrink_submounts(struct mount *mnt, struct list_head *umounts); 1089 1090 static int do_umount(struct mount *mnt, int flags) 1091 { 1092 struct super_block *sb = mnt->mnt.mnt_sb; 1093 int retval; 1094 LIST_HEAD(umount_list); 1095 1096 retval = security_sb_umount(&mnt->mnt, flags); 1097 if (retval) 1098 return retval; 1099 1100 /* 1101 * Allow userspace to request a mountpoint be expired rather than 1102 * unmounting unconditionally. Unmount only happens if: 1103 * (1) the mark is already set (the mark is cleared by mntput()) 1104 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] 1105 */ 1106 if (flags & MNT_EXPIRE) { 1107 if (&mnt->mnt == current->fs->root.mnt || 1108 flags & (MNT_FORCE | MNT_DETACH)) 1109 return -EINVAL; 1110 1111 /* 1112 * probably don't strictly need the lock here if we examined 1113 * all race cases, but it's a slowpath. 1114 */ 1115 br_write_lock(vfsmount_lock); 1116 if (mnt_get_count(mnt) != 2) { 1117 br_write_unlock(vfsmount_lock); 1118 return -EBUSY; 1119 } 1120 br_write_unlock(vfsmount_lock); 1121 1122 if (!xchg(&mnt->mnt_expiry_mark, 1)) 1123 return -EAGAIN; 1124 } 1125 1126 /* 1127 * If we may have to abort operations to get out of this 1128 * mount, and they will themselves hold resources we must 1129 * allow the fs to do things. In the Unix tradition of 1130 * 'Gee thats tricky lets do it in userspace' the umount_begin 1131 * might fail to complete on the first run through as other tasks 1132 * must return, and the like. Thats for the mount program to worry 1133 * about for the moment. 1134 */ 1135 1136 if (flags & MNT_FORCE && sb->s_op->umount_begin) { 1137 sb->s_op->umount_begin(sb); 1138 } 1139 1140 /* 1141 * No sense to grab the lock for this test, but test itself looks 1142 * somewhat bogus. Suggestions for better replacement? 1143 * Ho-hum... In principle, we might treat that as umount + switch 1144 * to rootfs. GC would eventually take care of the old vfsmount. 1145 * Actually it makes sense, especially if rootfs would contain a 1146 * /reboot - static binary that would close all descriptors and 1147 * call reboot(9). Then init(8) could umount root and exec /reboot. 1148 */ 1149 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) { 1150 /* 1151 * Special case for "unmounting" root ... 1152 * we just try to remount it readonly. 1153 */ 1154 down_write(&sb->s_umount); 1155 if (!(sb->s_flags & MS_RDONLY)) 1156 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0); 1157 up_write(&sb->s_umount); 1158 return retval; 1159 } 1160 1161 down_write(&namespace_sem); 1162 br_write_lock(vfsmount_lock); 1163 event++; 1164 1165 if (!(flags & MNT_DETACH)) 1166 shrink_submounts(mnt, &umount_list); 1167 1168 retval = -EBUSY; 1169 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) { 1170 if (!list_empty(&mnt->mnt_list)) 1171 umount_tree(mnt, 1, &umount_list); 1172 retval = 0; 1173 } 1174 br_write_unlock(vfsmount_lock); 1175 up_write(&namespace_sem); 1176 release_mounts(&umount_list); 1177 return retval; 1178 } 1179 1180 /* 1181 * Now umount can handle mount points as well as block devices. 1182 * This is important for filesystems which use unnamed block devices. 1183 * 1184 * We now support a flag for forced unmount like the other 'big iron' 1185 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD 1186 */ 1187 1188 SYSCALL_DEFINE2(umount, char __user *, name, int, flags) 1189 { 1190 struct path path; 1191 struct mount *mnt; 1192 int retval; 1193 int lookup_flags = 0; 1194 1195 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW)) 1196 return -EINVAL; 1197 1198 if (!(flags & UMOUNT_NOFOLLOW)) 1199 lookup_flags |= LOOKUP_FOLLOW; 1200 1201 retval = user_path_at(AT_FDCWD, name, lookup_flags, &path); 1202 if (retval) 1203 goto out; 1204 mnt = real_mount(path.mnt); 1205 retval = -EINVAL; 1206 if (path.dentry != path.mnt->mnt_root) 1207 goto dput_and_out; 1208 if (!check_mnt(mnt)) 1209 goto dput_and_out; 1210 1211 retval = -EPERM; 1212 if (!capable(CAP_SYS_ADMIN)) 1213 goto dput_and_out; 1214 1215 retval = do_umount(mnt, flags); 1216 dput_and_out: 1217 /* we mustn't call path_put() as that would clear mnt_expiry_mark */ 1218 dput(path.dentry); 1219 mntput_no_expire(mnt); 1220 out: 1221 return retval; 1222 } 1223 1224 #ifdef __ARCH_WANT_SYS_OLDUMOUNT 1225 1226 /* 1227 * The 2.0 compatible umount. No flags. 1228 */ 1229 SYSCALL_DEFINE1(oldumount, char __user *, name) 1230 { 1231 return sys_umount(name, 0); 1232 } 1233 1234 #endif 1235 1236 static int mount_is_safe(struct path *path) 1237 { 1238 if (capable(CAP_SYS_ADMIN)) 1239 return 0; 1240 return -EPERM; 1241 #ifdef notyet 1242 if (S_ISLNK(path->dentry->d_inode->i_mode)) 1243 return -EPERM; 1244 if (path->dentry->d_inode->i_mode & S_ISVTX) { 1245 if (current_uid() != path->dentry->d_inode->i_uid) 1246 return -EPERM; 1247 } 1248 if (inode_permission(path->dentry->d_inode, MAY_WRITE)) 1249 return -EPERM; 1250 return 0; 1251 #endif 1252 } 1253 1254 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry, 1255 int flag) 1256 { 1257 struct mount *res, *p, *q, *r; 1258 struct path path; 1259 1260 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt)) 1261 return NULL; 1262 1263 res = q = clone_mnt(mnt, dentry, flag); 1264 if (!q) 1265 goto Enomem; 1266 q->mnt_mountpoint = mnt->mnt_mountpoint; 1267 1268 p = mnt; 1269 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) { 1270 struct mount *s; 1271 if (!is_subdir(r->mnt_mountpoint, dentry)) 1272 continue; 1273 1274 for (s = r; s; s = next_mnt(s, r)) { 1275 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) { 1276 s = skip_mnt_tree(s); 1277 continue; 1278 } 1279 while (p != s->mnt_parent) { 1280 p = p->mnt_parent; 1281 q = q->mnt_parent; 1282 } 1283 p = s; 1284 path.mnt = &q->mnt; 1285 path.dentry = p->mnt_mountpoint; 1286 q = clone_mnt(p, p->mnt.mnt_root, flag); 1287 if (!q) 1288 goto Enomem; 1289 br_write_lock(vfsmount_lock); 1290 list_add_tail(&q->mnt_list, &res->mnt_list); 1291 attach_mnt(q, &path); 1292 br_write_unlock(vfsmount_lock); 1293 } 1294 } 1295 return res; 1296 Enomem: 1297 if (res) { 1298 LIST_HEAD(umount_list); 1299 br_write_lock(vfsmount_lock); 1300 umount_tree(res, 0, &umount_list); 1301 br_write_unlock(vfsmount_lock); 1302 release_mounts(&umount_list); 1303 } 1304 return NULL; 1305 } 1306 1307 struct vfsmount *collect_mounts(struct path *path) 1308 { 1309 struct mount *tree; 1310 down_write(&namespace_sem); 1311 tree = copy_tree(real_mount(path->mnt), path->dentry, 1312 CL_COPY_ALL | CL_PRIVATE); 1313 up_write(&namespace_sem); 1314 return tree ? &tree->mnt : NULL; 1315 } 1316 1317 void drop_collected_mounts(struct vfsmount *mnt) 1318 { 1319 LIST_HEAD(umount_list); 1320 down_write(&namespace_sem); 1321 br_write_lock(vfsmount_lock); 1322 umount_tree(real_mount(mnt), 0, &umount_list); 1323 br_write_unlock(vfsmount_lock); 1324 up_write(&namespace_sem); 1325 release_mounts(&umount_list); 1326 } 1327 1328 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg, 1329 struct vfsmount *root) 1330 { 1331 struct mount *mnt; 1332 int res = f(root, arg); 1333 if (res) 1334 return res; 1335 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) { 1336 res = f(&mnt->mnt, arg); 1337 if (res) 1338 return res; 1339 } 1340 return 0; 1341 } 1342 1343 static void cleanup_group_ids(struct mount *mnt, struct mount *end) 1344 { 1345 struct mount *p; 1346 1347 for (p = mnt; p != end; p = next_mnt(p, mnt)) { 1348 if (p->mnt_group_id && !IS_MNT_SHARED(p)) 1349 mnt_release_group_id(p); 1350 } 1351 } 1352 1353 static int invent_group_ids(struct mount *mnt, bool recurse) 1354 { 1355 struct mount *p; 1356 1357 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) { 1358 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) { 1359 int err = mnt_alloc_group_id(p); 1360 if (err) { 1361 cleanup_group_ids(mnt, p); 1362 return err; 1363 } 1364 } 1365 } 1366 1367 return 0; 1368 } 1369 1370 /* 1371 * @source_mnt : mount tree to be attached 1372 * @nd : place the mount tree @source_mnt is attached 1373 * @parent_nd : if non-null, detach the source_mnt from its parent and 1374 * store the parent mount and mountpoint dentry. 1375 * (done when source_mnt is moved) 1376 * 1377 * NOTE: in the table below explains the semantics when a source mount 1378 * of a given type is attached to a destination mount of a given type. 1379 * --------------------------------------------------------------------------- 1380 * | BIND MOUNT OPERATION | 1381 * |************************************************************************** 1382 * | source-->| shared | private | slave | unbindable | 1383 * | dest | | | | | 1384 * | | | | | | | 1385 * | v | | | | | 1386 * |************************************************************************** 1387 * | shared | shared (++) | shared (+) | shared(+++)| invalid | 1388 * | | | | | | 1389 * |non-shared| shared (+) | private | slave (*) | invalid | 1390 * *************************************************************************** 1391 * A bind operation clones the source mount and mounts the clone on the 1392 * destination mount. 1393 * 1394 * (++) the cloned mount is propagated to all the mounts in the propagation 1395 * tree of the destination mount and the cloned mount is added to 1396 * the peer group of the source mount. 1397 * (+) the cloned mount is created under the destination mount and is marked 1398 * as shared. The cloned mount is added to the peer group of the source 1399 * mount. 1400 * (+++) the mount is propagated to all the mounts in the propagation tree 1401 * of the destination mount and the cloned mount is made slave 1402 * of the same master as that of the source mount. The cloned mount 1403 * is marked as 'shared and slave'. 1404 * (*) the cloned mount is made a slave of the same master as that of the 1405 * source mount. 1406 * 1407 * --------------------------------------------------------------------------- 1408 * | MOVE MOUNT OPERATION | 1409 * |************************************************************************** 1410 * | source-->| shared | private | slave | unbindable | 1411 * | dest | | | | | 1412 * | | | | | | | 1413 * | v | | | | | 1414 * |************************************************************************** 1415 * | shared | shared (+) | shared (+) | shared(+++) | invalid | 1416 * | | | | | | 1417 * |non-shared| shared (+*) | private | slave (*) | unbindable | 1418 * *************************************************************************** 1419 * 1420 * (+) the mount is moved to the destination. And is then propagated to 1421 * all the mounts in the propagation tree of the destination mount. 1422 * (+*) the mount is moved to the destination. 1423 * (+++) the mount is moved to the destination and is then propagated to 1424 * all the mounts belonging to the destination mount's propagation tree. 1425 * the mount is marked as 'shared and slave'. 1426 * (*) the mount continues to be a slave at the new location. 1427 * 1428 * if the source mount is a tree, the operations explained above is 1429 * applied to each mount in the tree. 1430 * Must be called without spinlocks held, since this function can sleep 1431 * in allocations. 1432 */ 1433 static int attach_recursive_mnt(struct mount *source_mnt, 1434 struct path *path, struct path *parent_path) 1435 { 1436 LIST_HEAD(tree_list); 1437 struct mount *dest_mnt = real_mount(path->mnt); 1438 struct dentry *dest_dentry = path->dentry; 1439 struct mount *child, *p; 1440 int err; 1441 1442 if (IS_MNT_SHARED(dest_mnt)) { 1443 err = invent_group_ids(source_mnt, true); 1444 if (err) 1445 goto out; 1446 } 1447 err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list); 1448 if (err) 1449 goto out_cleanup_ids; 1450 1451 br_write_lock(vfsmount_lock); 1452 1453 if (IS_MNT_SHARED(dest_mnt)) { 1454 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 1455 set_mnt_shared(p); 1456 } 1457 if (parent_path) { 1458 detach_mnt(source_mnt, parent_path); 1459 attach_mnt(source_mnt, path); 1460 touch_mnt_namespace(source_mnt->mnt_ns); 1461 } else { 1462 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt); 1463 commit_tree(source_mnt); 1464 } 1465 1466 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) { 1467 list_del_init(&child->mnt_hash); 1468 commit_tree(child); 1469 } 1470 br_write_unlock(vfsmount_lock); 1471 1472 return 0; 1473 1474 out_cleanup_ids: 1475 if (IS_MNT_SHARED(dest_mnt)) 1476 cleanup_group_ids(source_mnt, NULL); 1477 out: 1478 return err; 1479 } 1480 1481 static int lock_mount(struct path *path) 1482 { 1483 struct vfsmount *mnt; 1484 retry: 1485 mutex_lock(&path->dentry->d_inode->i_mutex); 1486 if (unlikely(cant_mount(path->dentry))) { 1487 mutex_unlock(&path->dentry->d_inode->i_mutex); 1488 return -ENOENT; 1489 } 1490 down_write(&namespace_sem); 1491 mnt = lookup_mnt(path); 1492 if (likely(!mnt)) 1493 return 0; 1494 up_write(&namespace_sem); 1495 mutex_unlock(&path->dentry->d_inode->i_mutex); 1496 path_put(path); 1497 path->mnt = mnt; 1498 path->dentry = dget(mnt->mnt_root); 1499 goto retry; 1500 } 1501 1502 static void unlock_mount(struct path *path) 1503 { 1504 up_write(&namespace_sem); 1505 mutex_unlock(&path->dentry->d_inode->i_mutex); 1506 } 1507 1508 static int graft_tree(struct mount *mnt, struct path *path) 1509 { 1510 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER) 1511 return -EINVAL; 1512 1513 if (S_ISDIR(path->dentry->d_inode->i_mode) != 1514 S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode)) 1515 return -ENOTDIR; 1516 1517 if (d_unlinked(path->dentry)) 1518 return -ENOENT; 1519 1520 return attach_recursive_mnt(mnt, path, NULL); 1521 } 1522 1523 /* 1524 * Sanity check the flags to change_mnt_propagation. 1525 */ 1526 1527 static int flags_to_propagation_type(int flags) 1528 { 1529 int type = flags & ~(MS_REC | MS_SILENT); 1530 1531 /* Fail if any non-propagation flags are set */ 1532 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 1533 return 0; 1534 /* Only one propagation flag should be set */ 1535 if (!is_power_of_2(type)) 1536 return 0; 1537 return type; 1538 } 1539 1540 /* 1541 * recursively change the type of the mountpoint. 1542 */ 1543 static int do_change_type(struct path *path, int flag) 1544 { 1545 struct mount *m; 1546 struct mount *mnt = real_mount(path->mnt); 1547 int recurse = flag & MS_REC; 1548 int type; 1549 int err = 0; 1550 1551 if (!capable(CAP_SYS_ADMIN)) 1552 return -EPERM; 1553 1554 if (path->dentry != path->mnt->mnt_root) 1555 return -EINVAL; 1556 1557 type = flags_to_propagation_type(flag); 1558 if (!type) 1559 return -EINVAL; 1560 1561 down_write(&namespace_sem); 1562 if (type == MS_SHARED) { 1563 err = invent_group_ids(mnt, recurse); 1564 if (err) 1565 goto out_unlock; 1566 } 1567 1568 br_write_lock(vfsmount_lock); 1569 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) 1570 change_mnt_propagation(m, type); 1571 br_write_unlock(vfsmount_lock); 1572 1573 out_unlock: 1574 up_write(&namespace_sem); 1575 return err; 1576 } 1577 1578 /* 1579 * do loopback mount. 1580 */ 1581 static int do_loopback(struct path *path, char *old_name, 1582 int recurse) 1583 { 1584 LIST_HEAD(umount_list); 1585 struct path old_path; 1586 struct mount *mnt = NULL, *old; 1587 int err = mount_is_safe(path); 1588 if (err) 1589 return err; 1590 if (!old_name || !*old_name) 1591 return -EINVAL; 1592 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path); 1593 if (err) 1594 return err; 1595 1596 err = lock_mount(path); 1597 if (err) 1598 goto out; 1599 1600 old = real_mount(old_path.mnt); 1601 1602 err = -EINVAL; 1603 if (IS_MNT_UNBINDABLE(old)) 1604 goto out2; 1605 1606 if (!check_mnt(real_mount(path->mnt)) || !check_mnt(old)) 1607 goto out2; 1608 1609 err = -ENOMEM; 1610 if (recurse) 1611 mnt = copy_tree(old, old_path.dentry, 0); 1612 else 1613 mnt = clone_mnt(old, old_path.dentry, 0); 1614 1615 if (!mnt) 1616 goto out2; 1617 1618 err = graft_tree(mnt, path); 1619 if (err) { 1620 br_write_lock(vfsmount_lock); 1621 umount_tree(mnt, 0, &umount_list); 1622 br_write_unlock(vfsmount_lock); 1623 } 1624 out2: 1625 unlock_mount(path); 1626 release_mounts(&umount_list); 1627 out: 1628 path_put(&old_path); 1629 return err; 1630 } 1631 1632 static int change_mount_flags(struct vfsmount *mnt, int ms_flags) 1633 { 1634 int error = 0; 1635 int readonly_request = 0; 1636 1637 if (ms_flags & MS_RDONLY) 1638 readonly_request = 1; 1639 if (readonly_request == __mnt_is_readonly(mnt)) 1640 return 0; 1641 1642 if (readonly_request) 1643 error = mnt_make_readonly(real_mount(mnt)); 1644 else 1645 __mnt_unmake_readonly(real_mount(mnt)); 1646 return error; 1647 } 1648 1649 /* 1650 * change filesystem flags. dir should be a physical root of filesystem. 1651 * If you've mounted a non-root directory somewhere and want to do remount 1652 * on it - tough luck. 1653 */ 1654 static int do_remount(struct path *path, int flags, int mnt_flags, 1655 void *data) 1656 { 1657 int err; 1658 struct super_block *sb = path->mnt->mnt_sb; 1659 struct mount *mnt = real_mount(path->mnt); 1660 1661 if (!capable(CAP_SYS_ADMIN)) 1662 return -EPERM; 1663 1664 if (!check_mnt(mnt)) 1665 return -EINVAL; 1666 1667 if (path->dentry != path->mnt->mnt_root) 1668 return -EINVAL; 1669 1670 err = security_sb_remount(sb, data); 1671 if (err) 1672 return err; 1673 1674 down_write(&sb->s_umount); 1675 if (flags & MS_BIND) 1676 err = change_mount_flags(path->mnt, flags); 1677 else 1678 err = do_remount_sb(sb, flags, data, 0); 1679 if (!err) { 1680 br_write_lock(vfsmount_lock); 1681 mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK; 1682 mnt->mnt.mnt_flags = mnt_flags; 1683 br_write_unlock(vfsmount_lock); 1684 } 1685 up_write(&sb->s_umount); 1686 if (!err) { 1687 br_write_lock(vfsmount_lock); 1688 touch_mnt_namespace(mnt->mnt_ns); 1689 br_write_unlock(vfsmount_lock); 1690 } 1691 return err; 1692 } 1693 1694 static inline int tree_contains_unbindable(struct mount *mnt) 1695 { 1696 struct mount *p; 1697 for (p = mnt; p; p = next_mnt(p, mnt)) { 1698 if (IS_MNT_UNBINDABLE(p)) 1699 return 1; 1700 } 1701 return 0; 1702 } 1703 1704 static int do_move_mount(struct path *path, char *old_name) 1705 { 1706 struct path old_path, parent_path; 1707 struct mount *p; 1708 struct mount *old; 1709 int err = 0; 1710 if (!capable(CAP_SYS_ADMIN)) 1711 return -EPERM; 1712 if (!old_name || !*old_name) 1713 return -EINVAL; 1714 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); 1715 if (err) 1716 return err; 1717 1718 err = lock_mount(path); 1719 if (err < 0) 1720 goto out; 1721 1722 old = real_mount(old_path.mnt); 1723 p = real_mount(path->mnt); 1724 1725 err = -EINVAL; 1726 if (!check_mnt(p) || !check_mnt(old)) 1727 goto out1; 1728 1729 if (d_unlinked(path->dentry)) 1730 goto out1; 1731 1732 err = -EINVAL; 1733 if (old_path.dentry != old_path.mnt->mnt_root) 1734 goto out1; 1735 1736 if (!mnt_has_parent(old)) 1737 goto out1; 1738 1739 if (S_ISDIR(path->dentry->d_inode->i_mode) != 1740 S_ISDIR(old_path.dentry->d_inode->i_mode)) 1741 goto out1; 1742 /* 1743 * Don't move a mount residing in a shared parent. 1744 */ 1745 if (IS_MNT_SHARED(old->mnt_parent)) 1746 goto out1; 1747 /* 1748 * Don't move a mount tree containing unbindable mounts to a destination 1749 * mount which is shared. 1750 */ 1751 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old)) 1752 goto out1; 1753 err = -ELOOP; 1754 for (; mnt_has_parent(p); p = p->mnt_parent) 1755 if (p == old) 1756 goto out1; 1757 1758 err = attach_recursive_mnt(old, path, &parent_path); 1759 if (err) 1760 goto out1; 1761 1762 /* if the mount is moved, it should no longer be expire 1763 * automatically */ 1764 list_del_init(&old->mnt_expire); 1765 out1: 1766 unlock_mount(path); 1767 out: 1768 if (!err) 1769 path_put(&parent_path); 1770 path_put(&old_path); 1771 return err; 1772 } 1773 1774 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype) 1775 { 1776 int err; 1777 const char *subtype = strchr(fstype, '.'); 1778 if (subtype) { 1779 subtype++; 1780 err = -EINVAL; 1781 if (!subtype[0]) 1782 goto err; 1783 } else 1784 subtype = ""; 1785 1786 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL); 1787 err = -ENOMEM; 1788 if (!mnt->mnt_sb->s_subtype) 1789 goto err; 1790 return mnt; 1791 1792 err: 1793 mntput(mnt); 1794 return ERR_PTR(err); 1795 } 1796 1797 static struct vfsmount * 1798 do_kern_mount(const char *fstype, int flags, const char *name, void *data) 1799 { 1800 struct file_system_type *type = get_fs_type(fstype); 1801 struct vfsmount *mnt; 1802 if (!type) 1803 return ERR_PTR(-ENODEV); 1804 mnt = vfs_kern_mount(type, flags, name, data); 1805 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) && 1806 !mnt->mnt_sb->s_subtype) 1807 mnt = fs_set_subtype(mnt, fstype); 1808 put_filesystem(type); 1809 return mnt; 1810 } 1811 1812 /* 1813 * add a mount into a namespace's mount tree 1814 */ 1815 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags) 1816 { 1817 int err; 1818 1819 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL); 1820 1821 err = lock_mount(path); 1822 if (err) 1823 return err; 1824 1825 err = -EINVAL; 1826 if (!(mnt_flags & MNT_SHRINKABLE) && !check_mnt(real_mount(path->mnt))) 1827 goto unlock; 1828 1829 /* Refuse the same filesystem on the same mount point */ 1830 err = -EBUSY; 1831 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && 1832 path->mnt->mnt_root == path->dentry) 1833 goto unlock; 1834 1835 err = -EINVAL; 1836 if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode)) 1837 goto unlock; 1838 1839 newmnt->mnt.mnt_flags = mnt_flags; 1840 err = graft_tree(newmnt, path); 1841 1842 unlock: 1843 unlock_mount(path); 1844 return err; 1845 } 1846 1847 /* 1848 * create a new mount for userspace and request it to be added into the 1849 * namespace's tree 1850 */ 1851 static int do_new_mount(struct path *path, char *type, int flags, 1852 int mnt_flags, char *name, void *data) 1853 { 1854 struct vfsmount *mnt; 1855 int err; 1856 1857 if (!type) 1858 return -EINVAL; 1859 1860 /* we need capabilities... */ 1861 if (!capable(CAP_SYS_ADMIN)) 1862 return -EPERM; 1863 1864 mnt = do_kern_mount(type, flags, name, data); 1865 if (IS_ERR(mnt)) 1866 return PTR_ERR(mnt); 1867 1868 err = do_add_mount(real_mount(mnt), path, mnt_flags); 1869 if (err) 1870 mntput(mnt); 1871 return err; 1872 } 1873 1874 int finish_automount(struct vfsmount *m, struct path *path) 1875 { 1876 struct mount *mnt = real_mount(m); 1877 int err; 1878 /* The new mount record should have at least 2 refs to prevent it being 1879 * expired before we get a chance to add it 1880 */ 1881 BUG_ON(mnt_get_count(mnt) < 2); 1882 1883 if (m->mnt_sb == path->mnt->mnt_sb && 1884 m->mnt_root == path->dentry) { 1885 err = -ELOOP; 1886 goto fail; 1887 } 1888 1889 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE); 1890 if (!err) 1891 return 0; 1892 fail: 1893 /* remove m from any expiration list it may be on */ 1894 if (!list_empty(&mnt->mnt_expire)) { 1895 down_write(&namespace_sem); 1896 br_write_lock(vfsmount_lock); 1897 list_del_init(&mnt->mnt_expire); 1898 br_write_unlock(vfsmount_lock); 1899 up_write(&namespace_sem); 1900 } 1901 mntput(m); 1902 mntput(m); 1903 return err; 1904 } 1905 1906 /** 1907 * mnt_set_expiry - Put a mount on an expiration list 1908 * @mnt: The mount to list. 1909 * @expiry_list: The list to add the mount to. 1910 */ 1911 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list) 1912 { 1913 down_write(&namespace_sem); 1914 br_write_lock(vfsmount_lock); 1915 1916 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list); 1917 1918 br_write_unlock(vfsmount_lock); 1919 up_write(&namespace_sem); 1920 } 1921 EXPORT_SYMBOL(mnt_set_expiry); 1922 1923 /* 1924 * process a list of expirable mountpoints with the intent of discarding any 1925 * mountpoints that aren't in use and haven't been touched since last we came 1926 * here 1927 */ 1928 void mark_mounts_for_expiry(struct list_head *mounts) 1929 { 1930 struct mount *mnt, *next; 1931 LIST_HEAD(graveyard); 1932 LIST_HEAD(umounts); 1933 1934 if (list_empty(mounts)) 1935 return; 1936 1937 down_write(&namespace_sem); 1938 br_write_lock(vfsmount_lock); 1939 1940 /* extract from the expiration list every vfsmount that matches the 1941 * following criteria: 1942 * - only referenced by its parent vfsmount 1943 * - still marked for expiry (marked on the last call here; marks are 1944 * cleared by mntput()) 1945 */ 1946 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { 1947 if (!xchg(&mnt->mnt_expiry_mark, 1) || 1948 propagate_mount_busy(mnt, 1)) 1949 continue; 1950 list_move(&mnt->mnt_expire, &graveyard); 1951 } 1952 while (!list_empty(&graveyard)) { 1953 mnt = list_first_entry(&graveyard, struct mount, mnt_expire); 1954 touch_mnt_namespace(mnt->mnt_ns); 1955 umount_tree(mnt, 1, &umounts); 1956 } 1957 br_write_unlock(vfsmount_lock); 1958 up_write(&namespace_sem); 1959 1960 release_mounts(&umounts); 1961 } 1962 1963 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); 1964 1965 /* 1966 * Ripoff of 'select_parent()' 1967 * 1968 * search the list of submounts for a given mountpoint, and move any 1969 * shrinkable submounts to the 'graveyard' list. 1970 */ 1971 static int select_submounts(struct mount *parent, struct list_head *graveyard) 1972 { 1973 struct mount *this_parent = parent; 1974 struct list_head *next; 1975 int found = 0; 1976 1977 repeat: 1978 next = this_parent->mnt_mounts.next; 1979 resume: 1980 while (next != &this_parent->mnt_mounts) { 1981 struct list_head *tmp = next; 1982 struct mount *mnt = list_entry(tmp, struct mount, mnt_child); 1983 1984 next = tmp->next; 1985 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE)) 1986 continue; 1987 /* 1988 * Descend a level if the d_mounts list is non-empty. 1989 */ 1990 if (!list_empty(&mnt->mnt_mounts)) { 1991 this_parent = mnt; 1992 goto repeat; 1993 } 1994 1995 if (!propagate_mount_busy(mnt, 1)) { 1996 list_move_tail(&mnt->mnt_expire, graveyard); 1997 found++; 1998 } 1999 } 2000 /* 2001 * All done at this level ... ascend and resume the search 2002 */ 2003 if (this_parent != parent) { 2004 next = this_parent->mnt_child.next; 2005 this_parent = this_parent->mnt_parent; 2006 goto resume; 2007 } 2008 return found; 2009 } 2010 2011 /* 2012 * process a list of expirable mountpoints with the intent of discarding any 2013 * submounts of a specific parent mountpoint 2014 * 2015 * vfsmount_lock must be held for write 2016 */ 2017 static void shrink_submounts(struct mount *mnt, struct list_head *umounts) 2018 { 2019 LIST_HEAD(graveyard); 2020 struct mount *m; 2021 2022 /* extract submounts of 'mountpoint' from the expiration list */ 2023 while (select_submounts(mnt, &graveyard)) { 2024 while (!list_empty(&graveyard)) { 2025 m = list_first_entry(&graveyard, struct mount, 2026 mnt_expire); 2027 touch_mnt_namespace(m->mnt_ns); 2028 umount_tree(m, 1, umounts); 2029 } 2030 } 2031 } 2032 2033 /* 2034 * Some copy_from_user() implementations do not return the exact number of 2035 * bytes remaining to copy on a fault. But copy_mount_options() requires that. 2036 * Note that this function differs from copy_from_user() in that it will oops 2037 * on bad values of `to', rather than returning a short copy. 2038 */ 2039 static long exact_copy_from_user(void *to, const void __user * from, 2040 unsigned long n) 2041 { 2042 char *t = to; 2043 const char __user *f = from; 2044 char c; 2045 2046 if (!access_ok(VERIFY_READ, from, n)) 2047 return n; 2048 2049 while (n) { 2050 if (__get_user(c, f)) { 2051 memset(t, 0, n); 2052 break; 2053 } 2054 *t++ = c; 2055 f++; 2056 n--; 2057 } 2058 return n; 2059 } 2060 2061 int copy_mount_options(const void __user * data, unsigned long *where) 2062 { 2063 int i; 2064 unsigned long page; 2065 unsigned long size; 2066 2067 *where = 0; 2068 if (!data) 2069 return 0; 2070 2071 if (!(page = __get_free_page(GFP_KERNEL))) 2072 return -ENOMEM; 2073 2074 /* We only care that *some* data at the address the user 2075 * gave us is valid. Just in case, we'll zero 2076 * the remainder of the page. 2077 */ 2078 /* copy_from_user cannot cross TASK_SIZE ! */ 2079 size = TASK_SIZE - (unsigned long)data; 2080 if (size > PAGE_SIZE) 2081 size = PAGE_SIZE; 2082 2083 i = size - exact_copy_from_user((void *)page, data, size); 2084 if (!i) { 2085 free_page(page); 2086 return -EFAULT; 2087 } 2088 if (i != PAGE_SIZE) 2089 memset((char *)page + i, 0, PAGE_SIZE - i); 2090 *where = page; 2091 return 0; 2092 } 2093 2094 int copy_mount_string(const void __user *data, char **where) 2095 { 2096 char *tmp; 2097 2098 if (!data) { 2099 *where = NULL; 2100 return 0; 2101 } 2102 2103 tmp = strndup_user(data, PAGE_SIZE); 2104 if (IS_ERR(tmp)) 2105 return PTR_ERR(tmp); 2106 2107 *where = tmp; 2108 return 0; 2109 } 2110 2111 /* 2112 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to 2113 * be given to the mount() call (ie: read-only, no-dev, no-suid etc). 2114 * 2115 * data is a (void *) that can point to any structure up to 2116 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent 2117 * information (or be NULL). 2118 * 2119 * Pre-0.97 versions of mount() didn't have a flags word. 2120 * When the flags word was introduced its top half was required 2121 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. 2122 * Therefore, if this magic number is present, it carries no information 2123 * and must be discarded. 2124 */ 2125 long do_mount(char *dev_name, char *dir_name, char *type_page, 2126 unsigned long flags, void *data_page) 2127 { 2128 struct path path; 2129 int retval = 0; 2130 int mnt_flags = 0; 2131 2132 /* Discard magic */ 2133 if ((flags & MS_MGC_MSK) == MS_MGC_VAL) 2134 flags &= ~MS_MGC_MSK; 2135 2136 /* Basic sanity checks */ 2137 2138 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE)) 2139 return -EINVAL; 2140 2141 if (data_page) 2142 ((char *)data_page)[PAGE_SIZE - 1] = 0; 2143 2144 /* ... and get the mountpoint */ 2145 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path); 2146 if (retval) 2147 return retval; 2148 2149 retval = security_sb_mount(dev_name, &path, 2150 type_page, flags, data_page); 2151 if (retval) 2152 goto dput_out; 2153 2154 /* Default to relatime unless overriden */ 2155 if (!(flags & MS_NOATIME)) 2156 mnt_flags |= MNT_RELATIME; 2157 2158 /* Separate the per-mountpoint flags */ 2159 if (flags & MS_NOSUID) 2160 mnt_flags |= MNT_NOSUID; 2161 if (flags & MS_NODEV) 2162 mnt_flags |= MNT_NODEV; 2163 if (flags & MS_NOEXEC) 2164 mnt_flags |= MNT_NOEXEC; 2165 if (flags & MS_NOATIME) 2166 mnt_flags |= MNT_NOATIME; 2167 if (flags & MS_NODIRATIME) 2168 mnt_flags |= MNT_NODIRATIME; 2169 if (flags & MS_STRICTATIME) 2170 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME); 2171 if (flags & MS_RDONLY) 2172 mnt_flags |= MNT_READONLY; 2173 2174 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN | 2175 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT | 2176 MS_STRICTATIME); 2177 2178 if (flags & MS_REMOUNT) 2179 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags, 2180 data_page); 2181 else if (flags & MS_BIND) 2182 retval = do_loopback(&path, dev_name, flags & MS_REC); 2183 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 2184 retval = do_change_type(&path, flags); 2185 else if (flags & MS_MOVE) 2186 retval = do_move_mount(&path, dev_name); 2187 else 2188 retval = do_new_mount(&path, type_page, flags, mnt_flags, 2189 dev_name, data_page); 2190 dput_out: 2191 path_put(&path); 2192 return retval; 2193 } 2194 2195 static struct mnt_namespace *alloc_mnt_ns(void) 2196 { 2197 struct mnt_namespace *new_ns; 2198 2199 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL); 2200 if (!new_ns) 2201 return ERR_PTR(-ENOMEM); 2202 atomic_set(&new_ns->count, 1); 2203 new_ns->root = NULL; 2204 INIT_LIST_HEAD(&new_ns->list); 2205 init_waitqueue_head(&new_ns->poll); 2206 new_ns->event = 0; 2207 return new_ns; 2208 } 2209 2210 void mnt_make_longterm(struct vfsmount *mnt) 2211 { 2212 __mnt_make_longterm(real_mount(mnt)); 2213 } 2214 2215 void mnt_make_shortterm(struct vfsmount *m) 2216 { 2217 #ifdef CONFIG_SMP 2218 struct mount *mnt = real_mount(m); 2219 if (atomic_add_unless(&mnt->mnt_longterm, -1, 1)) 2220 return; 2221 br_write_lock(vfsmount_lock); 2222 atomic_dec(&mnt->mnt_longterm); 2223 br_write_unlock(vfsmount_lock); 2224 #endif 2225 } 2226 2227 /* 2228 * Allocate a new namespace structure and populate it with contents 2229 * copied from the namespace of the passed in task structure. 2230 */ 2231 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns, 2232 struct fs_struct *fs) 2233 { 2234 struct mnt_namespace *new_ns; 2235 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL; 2236 struct mount *p, *q; 2237 struct mount *old = mnt_ns->root; 2238 struct mount *new; 2239 2240 new_ns = alloc_mnt_ns(); 2241 if (IS_ERR(new_ns)) 2242 return new_ns; 2243 2244 down_write(&namespace_sem); 2245 /* First pass: copy the tree topology */ 2246 new = copy_tree(old, old->mnt.mnt_root, CL_COPY_ALL | CL_EXPIRE); 2247 if (!new) { 2248 up_write(&namespace_sem); 2249 kfree(new_ns); 2250 return ERR_PTR(-ENOMEM); 2251 } 2252 new_ns->root = new; 2253 br_write_lock(vfsmount_lock); 2254 list_add_tail(&new_ns->list, &new->mnt_list); 2255 br_write_unlock(vfsmount_lock); 2256 2257 /* 2258 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts 2259 * as belonging to new namespace. We have already acquired a private 2260 * fs_struct, so tsk->fs->lock is not needed. 2261 */ 2262 p = old; 2263 q = new; 2264 while (p) { 2265 q->mnt_ns = new_ns; 2266 __mnt_make_longterm(q); 2267 if (fs) { 2268 if (&p->mnt == fs->root.mnt) { 2269 fs->root.mnt = mntget(&q->mnt); 2270 __mnt_make_longterm(q); 2271 mnt_make_shortterm(&p->mnt); 2272 rootmnt = &p->mnt; 2273 } 2274 if (&p->mnt == fs->pwd.mnt) { 2275 fs->pwd.mnt = mntget(&q->mnt); 2276 __mnt_make_longterm(q); 2277 mnt_make_shortterm(&p->mnt); 2278 pwdmnt = &p->mnt; 2279 } 2280 } 2281 p = next_mnt(p, old); 2282 q = next_mnt(q, new); 2283 } 2284 up_write(&namespace_sem); 2285 2286 if (rootmnt) 2287 mntput(rootmnt); 2288 if (pwdmnt) 2289 mntput(pwdmnt); 2290 2291 return new_ns; 2292 } 2293 2294 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns, 2295 struct fs_struct *new_fs) 2296 { 2297 struct mnt_namespace *new_ns; 2298 2299 BUG_ON(!ns); 2300 get_mnt_ns(ns); 2301 2302 if (!(flags & CLONE_NEWNS)) 2303 return ns; 2304 2305 new_ns = dup_mnt_ns(ns, new_fs); 2306 2307 put_mnt_ns(ns); 2308 return new_ns; 2309 } 2310 2311 /** 2312 * create_mnt_ns - creates a private namespace and adds a root filesystem 2313 * @mnt: pointer to the new root filesystem mountpoint 2314 */ 2315 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m) 2316 { 2317 struct mnt_namespace *new_ns = alloc_mnt_ns(); 2318 if (!IS_ERR(new_ns)) { 2319 struct mount *mnt = real_mount(m); 2320 mnt->mnt_ns = new_ns; 2321 __mnt_make_longterm(mnt); 2322 new_ns->root = mnt; 2323 list_add(&new_ns->list, &mnt->mnt_list); 2324 } else { 2325 mntput(m); 2326 } 2327 return new_ns; 2328 } 2329 2330 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name) 2331 { 2332 struct mnt_namespace *ns; 2333 struct super_block *s; 2334 struct path path; 2335 int err; 2336 2337 ns = create_mnt_ns(mnt); 2338 if (IS_ERR(ns)) 2339 return ERR_CAST(ns); 2340 2341 err = vfs_path_lookup(mnt->mnt_root, mnt, 2342 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path); 2343 2344 put_mnt_ns(ns); 2345 2346 if (err) 2347 return ERR_PTR(err); 2348 2349 /* trade a vfsmount reference for active sb one */ 2350 s = path.mnt->mnt_sb; 2351 atomic_inc(&s->s_active); 2352 mntput(path.mnt); 2353 /* lock the sucker */ 2354 down_write(&s->s_umount); 2355 /* ... and return the root of (sub)tree on it */ 2356 return path.dentry; 2357 } 2358 EXPORT_SYMBOL(mount_subtree); 2359 2360 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name, 2361 char __user *, type, unsigned long, flags, void __user *, data) 2362 { 2363 int ret; 2364 char *kernel_type; 2365 char *kernel_dir; 2366 char *kernel_dev; 2367 unsigned long data_page; 2368 2369 ret = copy_mount_string(type, &kernel_type); 2370 if (ret < 0) 2371 goto out_type; 2372 2373 kernel_dir = getname(dir_name); 2374 if (IS_ERR(kernel_dir)) { 2375 ret = PTR_ERR(kernel_dir); 2376 goto out_dir; 2377 } 2378 2379 ret = copy_mount_string(dev_name, &kernel_dev); 2380 if (ret < 0) 2381 goto out_dev; 2382 2383 ret = copy_mount_options(data, &data_page); 2384 if (ret < 0) 2385 goto out_data; 2386 2387 ret = do_mount(kernel_dev, kernel_dir, kernel_type, flags, 2388 (void *) data_page); 2389 2390 free_page(data_page); 2391 out_data: 2392 kfree(kernel_dev); 2393 out_dev: 2394 putname(kernel_dir); 2395 out_dir: 2396 kfree(kernel_type); 2397 out_type: 2398 return ret; 2399 } 2400 2401 /* 2402 * Return true if path is reachable from root 2403 * 2404 * namespace_sem or vfsmount_lock is held 2405 */ 2406 bool is_path_reachable(struct mount *mnt, struct dentry *dentry, 2407 const struct path *root) 2408 { 2409 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) { 2410 dentry = mnt->mnt_mountpoint; 2411 mnt = mnt->mnt_parent; 2412 } 2413 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry); 2414 } 2415 2416 int path_is_under(struct path *path1, struct path *path2) 2417 { 2418 int res; 2419 br_read_lock(vfsmount_lock); 2420 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2); 2421 br_read_unlock(vfsmount_lock); 2422 return res; 2423 } 2424 EXPORT_SYMBOL(path_is_under); 2425 2426 /* 2427 * pivot_root Semantics: 2428 * Moves the root file system of the current process to the directory put_old, 2429 * makes new_root as the new root file system of the current process, and sets 2430 * root/cwd of all processes which had them on the current root to new_root. 2431 * 2432 * Restrictions: 2433 * The new_root and put_old must be directories, and must not be on the 2434 * same file system as the current process root. The put_old must be 2435 * underneath new_root, i.e. adding a non-zero number of /.. to the string 2436 * pointed to by put_old must yield the same directory as new_root. No other 2437 * file system may be mounted on put_old. After all, new_root is a mountpoint. 2438 * 2439 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. 2440 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives 2441 * in this situation. 2442 * 2443 * Notes: 2444 * - we don't move root/cwd if they are not at the root (reason: if something 2445 * cared enough to change them, it's probably wrong to force them elsewhere) 2446 * - it's okay to pick a root that isn't the root of a file system, e.g. 2447 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, 2448 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root 2449 * first. 2450 */ 2451 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root, 2452 const char __user *, put_old) 2453 { 2454 struct path new, old, parent_path, root_parent, root; 2455 struct mount *new_mnt, *root_mnt; 2456 int error; 2457 2458 if (!capable(CAP_SYS_ADMIN)) 2459 return -EPERM; 2460 2461 error = user_path_dir(new_root, &new); 2462 if (error) 2463 goto out0; 2464 2465 error = user_path_dir(put_old, &old); 2466 if (error) 2467 goto out1; 2468 2469 error = security_sb_pivotroot(&old, &new); 2470 if (error) 2471 goto out2; 2472 2473 get_fs_root(current->fs, &root); 2474 error = lock_mount(&old); 2475 if (error) 2476 goto out3; 2477 2478 error = -EINVAL; 2479 new_mnt = real_mount(new.mnt); 2480 root_mnt = real_mount(root.mnt); 2481 if (IS_MNT_SHARED(real_mount(old.mnt)) || 2482 IS_MNT_SHARED(new_mnt->mnt_parent) || 2483 IS_MNT_SHARED(root_mnt->mnt_parent)) 2484 goto out4; 2485 if (!check_mnt(root_mnt) || !check_mnt(new_mnt)) 2486 goto out4; 2487 error = -ENOENT; 2488 if (d_unlinked(new.dentry)) 2489 goto out4; 2490 if (d_unlinked(old.dentry)) 2491 goto out4; 2492 error = -EBUSY; 2493 if (new.mnt == root.mnt || 2494 old.mnt == root.mnt) 2495 goto out4; /* loop, on the same file system */ 2496 error = -EINVAL; 2497 if (root.mnt->mnt_root != root.dentry) 2498 goto out4; /* not a mountpoint */ 2499 if (!mnt_has_parent(root_mnt)) 2500 goto out4; /* not attached */ 2501 if (new.mnt->mnt_root != new.dentry) 2502 goto out4; /* not a mountpoint */ 2503 if (!mnt_has_parent(new_mnt)) 2504 goto out4; /* not attached */ 2505 /* make sure we can reach put_old from new_root */ 2506 if (!is_path_reachable(real_mount(old.mnt), old.dentry, &new)) 2507 goto out4; 2508 br_write_lock(vfsmount_lock); 2509 detach_mnt(new_mnt, &parent_path); 2510 detach_mnt(root_mnt, &root_parent); 2511 /* mount old root on put_old */ 2512 attach_mnt(root_mnt, &old); 2513 /* mount new_root on / */ 2514 attach_mnt(new_mnt, &root_parent); 2515 touch_mnt_namespace(current->nsproxy->mnt_ns); 2516 br_write_unlock(vfsmount_lock); 2517 chroot_fs_refs(&root, &new); 2518 error = 0; 2519 out4: 2520 unlock_mount(&old); 2521 if (!error) { 2522 path_put(&root_parent); 2523 path_put(&parent_path); 2524 } 2525 out3: 2526 path_put(&root); 2527 out2: 2528 path_put(&old); 2529 out1: 2530 path_put(&new); 2531 out0: 2532 return error; 2533 } 2534 2535 static void __init init_mount_tree(void) 2536 { 2537 struct vfsmount *mnt; 2538 struct mnt_namespace *ns; 2539 struct path root; 2540 2541 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL); 2542 if (IS_ERR(mnt)) 2543 panic("Can't create rootfs"); 2544 2545 ns = create_mnt_ns(mnt); 2546 if (IS_ERR(ns)) 2547 panic("Can't allocate initial namespace"); 2548 2549 init_task.nsproxy->mnt_ns = ns; 2550 get_mnt_ns(ns); 2551 2552 root.mnt = mnt; 2553 root.dentry = mnt->mnt_root; 2554 2555 set_fs_pwd(current->fs, &root); 2556 set_fs_root(current->fs, &root); 2557 } 2558 2559 void __init mnt_init(void) 2560 { 2561 unsigned u; 2562 int err; 2563 2564 init_rwsem(&namespace_sem); 2565 2566 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount), 2567 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 2568 2569 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC); 2570 2571 if (!mount_hashtable) 2572 panic("Failed to allocate mount hash table\n"); 2573 2574 printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE); 2575 2576 for (u = 0; u < HASH_SIZE; u++) 2577 INIT_LIST_HEAD(&mount_hashtable[u]); 2578 2579 br_lock_init(vfsmount_lock); 2580 2581 err = sysfs_init(); 2582 if (err) 2583 printk(KERN_WARNING "%s: sysfs_init error: %d\n", 2584 __func__, err); 2585 fs_kobj = kobject_create_and_add("fs", NULL); 2586 if (!fs_kobj) 2587 printk(KERN_WARNING "%s: kobj create error\n", __func__); 2588 init_rootfs(); 2589 init_mount_tree(); 2590 } 2591 2592 void put_mnt_ns(struct mnt_namespace *ns) 2593 { 2594 LIST_HEAD(umount_list); 2595 2596 if (!atomic_dec_and_test(&ns->count)) 2597 return; 2598 down_write(&namespace_sem); 2599 br_write_lock(vfsmount_lock); 2600 umount_tree(ns->root, 0, &umount_list); 2601 br_write_unlock(vfsmount_lock); 2602 up_write(&namespace_sem); 2603 release_mounts(&umount_list); 2604 kfree(ns); 2605 } 2606 2607 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data) 2608 { 2609 struct vfsmount *mnt; 2610 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data); 2611 if (!IS_ERR(mnt)) { 2612 /* 2613 * it is a longterm mount, don't release mnt until 2614 * we unmount before file sys is unregistered 2615 */ 2616 mnt_make_longterm(mnt); 2617 } 2618 return mnt; 2619 } 2620 EXPORT_SYMBOL_GPL(kern_mount_data); 2621 2622 void kern_unmount(struct vfsmount *mnt) 2623 { 2624 /* release long term mount so mount point can be released */ 2625 if (!IS_ERR_OR_NULL(mnt)) { 2626 mnt_make_shortterm(mnt); 2627 mntput(mnt); 2628 } 2629 } 2630 EXPORT_SYMBOL(kern_unmount); 2631 2632 bool our_mnt(struct vfsmount *mnt) 2633 { 2634 return check_mnt(real_mount(mnt)); 2635 } 2636