xref: /openbmc/linux/fs/namespace.c (revision 63dc02bd)
1 /*
2  *  linux/fs/namespace.c
3  *
4  * (C) Copyright Al Viro 2000, 2001
5  *	Released under GPL v2.
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/namei.h>
16 #include <linux/security.h>
17 #include <linux/idr.h>
18 #include <linux/acct.h>		/* acct_auto_close_mnt */
19 #include <linux/ramfs.h>	/* init_rootfs */
20 #include <linux/fs_struct.h>	/* get_fs_root et.al. */
21 #include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
22 #include <linux/uaccess.h>
23 #include "pnode.h"
24 #include "internal.h"
25 
26 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
27 #define HASH_SIZE (1UL << HASH_SHIFT)
28 
29 static int event;
30 static DEFINE_IDA(mnt_id_ida);
31 static DEFINE_IDA(mnt_group_ida);
32 static DEFINE_SPINLOCK(mnt_id_lock);
33 static int mnt_id_start = 0;
34 static int mnt_group_start = 1;
35 
36 static struct list_head *mount_hashtable __read_mostly;
37 static struct kmem_cache *mnt_cache __read_mostly;
38 static struct rw_semaphore namespace_sem;
39 
40 /* /sys/fs */
41 struct kobject *fs_kobj;
42 EXPORT_SYMBOL_GPL(fs_kobj);
43 
44 /*
45  * vfsmount lock may be taken for read to prevent changes to the
46  * vfsmount hash, ie. during mountpoint lookups or walking back
47  * up the tree.
48  *
49  * It should be taken for write in all cases where the vfsmount
50  * tree or hash is modified or when a vfsmount structure is modified.
51  */
52 DEFINE_BRLOCK(vfsmount_lock);
53 
54 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
55 {
56 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
57 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
58 	tmp = tmp + (tmp >> HASH_SHIFT);
59 	return tmp & (HASH_SIZE - 1);
60 }
61 
62 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
63 
64 /*
65  * allocation is serialized by namespace_sem, but we need the spinlock to
66  * serialize with freeing.
67  */
68 static int mnt_alloc_id(struct mount *mnt)
69 {
70 	int res;
71 
72 retry:
73 	ida_pre_get(&mnt_id_ida, GFP_KERNEL);
74 	spin_lock(&mnt_id_lock);
75 	res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
76 	if (!res)
77 		mnt_id_start = mnt->mnt_id + 1;
78 	spin_unlock(&mnt_id_lock);
79 	if (res == -EAGAIN)
80 		goto retry;
81 
82 	return res;
83 }
84 
85 static void mnt_free_id(struct mount *mnt)
86 {
87 	int id = mnt->mnt_id;
88 	spin_lock(&mnt_id_lock);
89 	ida_remove(&mnt_id_ida, id);
90 	if (mnt_id_start > id)
91 		mnt_id_start = id;
92 	spin_unlock(&mnt_id_lock);
93 }
94 
95 /*
96  * Allocate a new peer group ID
97  *
98  * mnt_group_ida is protected by namespace_sem
99  */
100 static int mnt_alloc_group_id(struct mount *mnt)
101 {
102 	int res;
103 
104 	if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
105 		return -ENOMEM;
106 
107 	res = ida_get_new_above(&mnt_group_ida,
108 				mnt_group_start,
109 				&mnt->mnt_group_id);
110 	if (!res)
111 		mnt_group_start = mnt->mnt_group_id + 1;
112 
113 	return res;
114 }
115 
116 /*
117  * Release a peer group ID
118  */
119 void mnt_release_group_id(struct mount *mnt)
120 {
121 	int id = mnt->mnt_group_id;
122 	ida_remove(&mnt_group_ida, id);
123 	if (mnt_group_start > id)
124 		mnt_group_start = id;
125 	mnt->mnt_group_id = 0;
126 }
127 
128 /*
129  * vfsmount lock must be held for read
130  */
131 static inline void mnt_add_count(struct mount *mnt, int n)
132 {
133 #ifdef CONFIG_SMP
134 	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
135 #else
136 	preempt_disable();
137 	mnt->mnt_count += n;
138 	preempt_enable();
139 #endif
140 }
141 
142 /*
143  * vfsmount lock must be held for write
144  */
145 unsigned int mnt_get_count(struct mount *mnt)
146 {
147 #ifdef CONFIG_SMP
148 	unsigned int count = 0;
149 	int cpu;
150 
151 	for_each_possible_cpu(cpu) {
152 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
153 	}
154 
155 	return count;
156 #else
157 	return mnt->mnt_count;
158 #endif
159 }
160 
161 static struct mount *alloc_vfsmnt(const char *name)
162 {
163 	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
164 	if (mnt) {
165 		int err;
166 
167 		err = mnt_alloc_id(mnt);
168 		if (err)
169 			goto out_free_cache;
170 
171 		if (name) {
172 			mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
173 			if (!mnt->mnt_devname)
174 				goto out_free_id;
175 		}
176 
177 #ifdef CONFIG_SMP
178 		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
179 		if (!mnt->mnt_pcp)
180 			goto out_free_devname;
181 
182 		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
183 #else
184 		mnt->mnt_count = 1;
185 		mnt->mnt_writers = 0;
186 #endif
187 
188 		INIT_LIST_HEAD(&mnt->mnt_hash);
189 		INIT_LIST_HEAD(&mnt->mnt_child);
190 		INIT_LIST_HEAD(&mnt->mnt_mounts);
191 		INIT_LIST_HEAD(&mnt->mnt_list);
192 		INIT_LIST_HEAD(&mnt->mnt_expire);
193 		INIT_LIST_HEAD(&mnt->mnt_share);
194 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
195 		INIT_LIST_HEAD(&mnt->mnt_slave);
196 #ifdef CONFIG_FSNOTIFY
197 		INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
198 #endif
199 	}
200 	return mnt;
201 
202 #ifdef CONFIG_SMP
203 out_free_devname:
204 	kfree(mnt->mnt_devname);
205 #endif
206 out_free_id:
207 	mnt_free_id(mnt);
208 out_free_cache:
209 	kmem_cache_free(mnt_cache, mnt);
210 	return NULL;
211 }
212 
213 /*
214  * Most r/o checks on a fs are for operations that take
215  * discrete amounts of time, like a write() or unlink().
216  * We must keep track of when those operations start
217  * (for permission checks) and when they end, so that
218  * we can determine when writes are able to occur to
219  * a filesystem.
220  */
221 /*
222  * __mnt_is_readonly: check whether a mount is read-only
223  * @mnt: the mount to check for its write status
224  *
225  * This shouldn't be used directly ouside of the VFS.
226  * It does not guarantee that the filesystem will stay
227  * r/w, just that it is right *now*.  This can not and
228  * should not be used in place of IS_RDONLY(inode).
229  * mnt_want/drop_write() will _keep_ the filesystem
230  * r/w.
231  */
232 int __mnt_is_readonly(struct vfsmount *mnt)
233 {
234 	if (mnt->mnt_flags & MNT_READONLY)
235 		return 1;
236 	if (mnt->mnt_sb->s_flags & MS_RDONLY)
237 		return 1;
238 	return 0;
239 }
240 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
241 
242 static inline void mnt_inc_writers(struct mount *mnt)
243 {
244 #ifdef CONFIG_SMP
245 	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
246 #else
247 	mnt->mnt_writers++;
248 #endif
249 }
250 
251 static inline void mnt_dec_writers(struct mount *mnt)
252 {
253 #ifdef CONFIG_SMP
254 	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
255 #else
256 	mnt->mnt_writers--;
257 #endif
258 }
259 
260 static unsigned int mnt_get_writers(struct mount *mnt)
261 {
262 #ifdef CONFIG_SMP
263 	unsigned int count = 0;
264 	int cpu;
265 
266 	for_each_possible_cpu(cpu) {
267 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
268 	}
269 
270 	return count;
271 #else
272 	return mnt->mnt_writers;
273 #endif
274 }
275 
276 static int mnt_is_readonly(struct vfsmount *mnt)
277 {
278 	if (mnt->mnt_sb->s_readonly_remount)
279 		return 1;
280 	/* Order wrt setting s_flags/s_readonly_remount in do_remount() */
281 	smp_rmb();
282 	return __mnt_is_readonly(mnt);
283 }
284 
285 /*
286  * Most r/o checks on a fs are for operations that take
287  * discrete amounts of time, like a write() or unlink().
288  * We must keep track of when those operations start
289  * (for permission checks) and when they end, so that
290  * we can determine when writes are able to occur to
291  * a filesystem.
292  */
293 /**
294  * mnt_want_write - get write access to a mount
295  * @m: the mount on which to take a write
296  *
297  * This tells the low-level filesystem that a write is
298  * about to be performed to it, and makes sure that
299  * writes are allowed before returning success.  When
300  * the write operation is finished, mnt_drop_write()
301  * must be called.  This is effectively a refcount.
302  */
303 int mnt_want_write(struct vfsmount *m)
304 {
305 	struct mount *mnt = real_mount(m);
306 	int ret = 0;
307 
308 	preempt_disable();
309 	mnt_inc_writers(mnt);
310 	/*
311 	 * The store to mnt_inc_writers must be visible before we pass
312 	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
313 	 * incremented count after it has set MNT_WRITE_HOLD.
314 	 */
315 	smp_mb();
316 	while (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
317 		cpu_relax();
318 	/*
319 	 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
320 	 * be set to match its requirements. So we must not load that until
321 	 * MNT_WRITE_HOLD is cleared.
322 	 */
323 	smp_rmb();
324 	if (mnt_is_readonly(m)) {
325 		mnt_dec_writers(mnt);
326 		ret = -EROFS;
327 	}
328 	preempt_enable();
329 	return ret;
330 }
331 EXPORT_SYMBOL_GPL(mnt_want_write);
332 
333 /**
334  * mnt_clone_write - get write access to a mount
335  * @mnt: the mount on which to take a write
336  *
337  * This is effectively like mnt_want_write, except
338  * it must only be used to take an extra write reference
339  * on a mountpoint that we already know has a write reference
340  * on it. This allows some optimisation.
341  *
342  * After finished, mnt_drop_write must be called as usual to
343  * drop the reference.
344  */
345 int mnt_clone_write(struct vfsmount *mnt)
346 {
347 	/* superblock may be r/o */
348 	if (__mnt_is_readonly(mnt))
349 		return -EROFS;
350 	preempt_disable();
351 	mnt_inc_writers(real_mount(mnt));
352 	preempt_enable();
353 	return 0;
354 }
355 EXPORT_SYMBOL_GPL(mnt_clone_write);
356 
357 /**
358  * mnt_want_write_file - get write access to a file's mount
359  * @file: the file who's mount on which to take a write
360  *
361  * This is like mnt_want_write, but it takes a file and can
362  * do some optimisations if the file is open for write already
363  */
364 int mnt_want_write_file(struct file *file)
365 {
366 	struct inode *inode = file->f_dentry->d_inode;
367 	if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
368 		return mnt_want_write(file->f_path.mnt);
369 	else
370 		return mnt_clone_write(file->f_path.mnt);
371 }
372 EXPORT_SYMBOL_GPL(mnt_want_write_file);
373 
374 /**
375  * mnt_drop_write - give up write access to a mount
376  * @mnt: the mount on which to give up write access
377  *
378  * Tells the low-level filesystem that we are done
379  * performing writes to it.  Must be matched with
380  * mnt_want_write() call above.
381  */
382 void mnt_drop_write(struct vfsmount *mnt)
383 {
384 	preempt_disable();
385 	mnt_dec_writers(real_mount(mnt));
386 	preempt_enable();
387 }
388 EXPORT_SYMBOL_GPL(mnt_drop_write);
389 
390 void mnt_drop_write_file(struct file *file)
391 {
392 	mnt_drop_write(file->f_path.mnt);
393 }
394 EXPORT_SYMBOL(mnt_drop_write_file);
395 
396 static int mnt_make_readonly(struct mount *mnt)
397 {
398 	int ret = 0;
399 
400 	br_write_lock(vfsmount_lock);
401 	mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
402 	/*
403 	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
404 	 * should be visible before we do.
405 	 */
406 	smp_mb();
407 
408 	/*
409 	 * With writers on hold, if this value is zero, then there are
410 	 * definitely no active writers (although held writers may subsequently
411 	 * increment the count, they'll have to wait, and decrement it after
412 	 * seeing MNT_READONLY).
413 	 *
414 	 * It is OK to have counter incremented on one CPU and decremented on
415 	 * another: the sum will add up correctly. The danger would be when we
416 	 * sum up each counter, if we read a counter before it is incremented,
417 	 * but then read another CPU's count which it has been subsequently
418 	 * decremented from -- we would see more decrements than we should.
419 	 * MNT_WRITE_HOLD protects against this scenario, because
420 	 * mnt_want_write first increments count, then smp_mb, then spins on
421 	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
422 	 * we're counting up here.
423 	 */
424 	if (mnt_get_writers(mnt) > 0)
425 		ret = -EBUSY;
426 	else
427 		mnt->mnt.mnt_flags |= MNT_READONLY;
428 	/*
429 	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
430 	 * that become unheld will see MNT_READONLY.
431 	 */
432 	smp_wmb();
433 	mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
434 	br_write_unlock(vfsmount_lock);
435 	return ret;
436 }
437 
438 static void __mnt_unmake_readonly(struct mount *mnt)
439 {
440 	br_write_lock(vfsmount_lock);
441 	mnt->mnt.mnt_flags &= ~MNT_READONLY;
442 	br_write_unlock(vfsmount_lock);
443 }
444 
445 int sb_prepare_remount_readonly(struct super_block *sb)
446 {
447 	struct mount *mnt;
448 	int err = 0;
449 
450 	/* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
451 	if (atomic_long_read(&sb->s_remove_count))
452 		return -EBUSY;
453 
454 	br_write_lock(vfsmount_lock);
455 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
456 		if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
457 			mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
458 			smp_mb();
459 			if (mnt_get_writers(mnt) > 0) {
460 				err = -EBUSY;
461 				break;
462 			}
463 		}
464 	}
465 	if (!err && atomic_long_read(&sb->s_remove_count))
466 		err = -EBUSY;
467 
468 	if (!err) {
469 		sb->s_readonly_remount = 1;
470 		smp_wmb();
471 	}
472 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
473 		if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
474 			mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
475 	}
476 	br_write_unlock(vfsmount_lock);
477 
478 	return err;
479 }
480 
481 static void free_vfsmnt(struct mount *mnt)
482 {
483 	kfree(mnt->mnt_devname);
484 	mnt_free_id(mnt);
485 #ifdef CONFIG_SMP
486 	free_percpu(mnt->mnt_pcp);
487 #endif
488 	kmem_cache_free(mnt_cache, mnt);
489 }
490 
491 /*
492  * find the first or last mount at @dentry on vfsmount @mnt depending on
493  * @dir. If @dir is set return the first mount else return the last mount.
494  * vfsmount_lock must be held for read or write.
495  */
496 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
497 			      int dir)
498 {
499 	struct list_head *head = mount_hashtable + hash(mnt, dentry);
500 	struct list_head *tmp = head;
501 	struct mount *p, *found = NULL;
502 
503 	for (;;) {
504 		tmp = dir ? tmp->next : tmp->prev;
505 		p = NULL;
506 		if (tmp == head)
507 			break;
508 		p = list_entry(tmp, struct mount, mnt_hash);
509 		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) {
510 			found = p;
511 			break;
512 		}
513 	}
514 	return found;
515 }
516 
517 /*
518  * lookup_mnt increments the ref count before returning
519  * the vfsmount struct.
520  */
521 struct vfsmount *lookup_mnt(struct path *path)
522 {
523 	struct mount *child_mnt;
524 
525 	br_read_lock(vfsmount_lock);
526 	child_mnt = __lookup_mnt(path->mnt, path->dentry, 1);
527 	if (child_mnt) {
528 		mnt_add_count(child_mnt, 1);
529 		br_read_unlock(vfsmount_lock);
530 		return &child_mnt->mnt;
531 	} else {
532 		br_read_unlock(vfsmount_lock);
533 		return NULL;
534 	}
535 }
536 
537 static inline int check_mnt(struct mount *mnt)
538 {
539 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
540 }
541 
542 /*
543  * vfsmount lock must be held for write
544  */
545 static void touch_mnt_namespace(struct mnt_namespace *ns)
546 {
547 	if (ns) {
548 		ns->event = ++event;
549 		wake_up_interruptible(&ns->poll);
550 	}
551 }
552 
553 /*
554  * vfsmount lock must be held for write
555  */
556 static void __touch_mnt_namespace(struct mnt_namespace *ns)
557 {
558 	if (ns && ns->event != event) {
559 		ns->event = event;
560 		wake_up_interruptible(&ns->poll);
561 	}
562 }
563 
564 /*
565  * Clear dentry's mounted state if it has no remaining mounts.
566  * vfsmount_lock must be held for write.
567  */
568 static void dentry_reset_mounted(struct dentry *dentry)
569 {
570 	unsigned u;
571 
572 	for (u = 0; u < HASH_SIZE; u++) {
573 		struct mount *p;
574 
575 		list_for_each_entry(p, &mount_hashtable[u], mnt_hash) {
576 			if (p->mnt_mountpoint == dentry)
577 				return;
578 		}
579 	}
580 	spin_lock(&dentry->d_lock);
581 	dentry->d_flags &= ~DCACHE_MOUNTED;
582 	spin_unlock(&dentry->d_lock);
583 }
584 
585 /*
586  * vfsmount lock must be held for write
587  */
588 static void detach_mnt(struct mount *mnt, struct path *old_path)
589 {
590 	old_path->dentry = mnt->mnt_mountpoint;
591 	old_path->mnt = &mnt->mnt_parent->mnt;
592 	mnt->mnt_parent = mnt;
593 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
594 	list_del_init(&mnt->mnt_child);
595 	list_del_init(&mnt->mnt_hash);
596 	dentry_reset_mounted(old_path->dentry);
597 }
598 
599 /*
600  * vfsmount lock must be held for write
601  */
602 void mnt_set_mountpoint(struct mount *mnt, struct dentry *dentry,
603 			struct mount *child_mnt)
604 {
605 	mnt_add_count(mnt, 1);	/* essentially, that's mntget */
606 	child_mnt->mnt_mountpoint = dget(dentry);
607 	child_mnt->mnt_parent = mnt;
608 	spin_lock(&dentry->d_lock);
609 	dentry->d_flags |= DCACHE_MOUNTED;
610 	spin_unlock(&dentry->d_lock);
611 }
612 
613 /*
614  * vfsmount lock must be held for write
615  */
616 static void attach_mnt(struct mount *mnt, struct path *path)
617 {
618 	mnt_set_mountpoint(real_mount(path->mnt), path->dentry, mnt);
619 	list_add_tail(&mnt->mnt_hash, mount_hashtable +
620 			hash(path->mnt, path->dentry));
621 	list_add_tail(&mnt->mnt_child, &real_mount(path->mnt)->mnt_mounts);
622 }
623 
624 static inline void __mnt_make_longterm(struct mount *mnt)
625 {
626 #ifdef CONFIG_SMP
627 	atomic_inc(&mnt->mnt_longterm);
628 #endif
629 }
630 
631 /* needs vfsmount lock for write */
632 static inline void __mnt_make_shortterm(struct mount *mnt)
633 {
634 #ifdef CONFIG_SMP
635 	atomic_dec(&mnt->mnt_longterm);
636 #endif
637 }
638 
639 /*
640  * vfsmount lock must be held for write
641  */
642 static void commit_tree(struct mount *mnt)
643 {
644 	struct mount *parent = mnt->mnt_parent;
645 	struct mount *m;
646 	LIST_HEAD(head);
647 	struct mnt_namespace *n = parent->mnt_ns;
648 
649 	BUG_ON(parent == mnt);
650 
651 	list_add_tail(&head, &mnt->mnt_list);
652 	list_for_each_entry(m, &head, mnt_list) {
653 		m->mnt_ns = n;
654 		__mnt_make_longterm(m);
655 	}
656 
657 	list_splice(&head, n->list.prev);
658 
659 	list_add_tail(&mnt->mnt_hash, mount_hashtable +
660 				hash(&parent->mnt, mnt->mnt_mountpoint));
661 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
662 	touch_mnt_namespace(n);
663 }
664 
665 static struct mount *next_mnt(struct mount *p, struct mount *root)
666 {
667 	struct list_head *next = p->mnt_mounts.next;
668 	if (next == &p->mnt_mounts) {
669 		while (1) {
670 			if (p == root)
671 				return NULL;
672 			next = p->mnt_child.next;
673 			if (next != &p->mnt_parent->mnt_mounts)
674 				break;
675 			p = p->mnt_parent;
676 		}
677 	}
678 	return list_entry(next, struct mount, mnt_child);
679 }
680 
681 static struct mount *skip_mnt_tree(struct mount *p)
682 {
683 	struct list_head *prev = p->mnt_mounts.prev;
684 	while (prev != &p->mnt_mounts) {
685 		p = list_entry(prev, struct mount, mnt_child);
686 		prev = p->mnt_mounts.prev;
687 	}
688 	return p;
689 }
690 
691 struct vfsmount *
692 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
693 {
694 	struct mount *mnt;
695 	struct dentry *root;
696 
697 	if (!type)
698 		return ERR_PTR(-ENODEV);
699 
700 	mnt = alloc_vfsmnt(name);
701 	if (!mnt)
702 		return ERR_PTR(-ENOMEM);
703 
704 	if (flags & MS_KERNMOUNT)
705 		mnt->mnt.mnt_flags = MNT_INTERNAL;
706 
707 	root = mount_fs(type, flags, name, data);
708 	if (IS_ERR(root)) {
709 		free_vfsmnt(mnt);
710 		return ERR_CAST(root);
711 	}
712 
713 	mnt->mnt.mnt_root = root;
714 	mnt->mnt.mnt_sb = root->d_sb;
715 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
716 	mnt->mnt_parent = mnt;
717 	br_write_lock(vfsmount_lock);
718 	list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
719 	br_write_unlock(vfsmount_lock);
720 	return &mnt->mnt;
721 }
722 EXPORT_SYMBOL_GPL(vfs_kern_mount);
723 
724 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
725 					int flag)
726 {
727 	struct super_block *sb = old->mnt.mnt_sb;
728 	struct mount *mnt = alloc_vfsmnt(old->mnt_devname);
729 
730 	if (mnt) {
731 		if (flag & (CL_SLAVE | CL_PRIVATE))
732 			mnt->mnt_group_id = 0; /* not a peer of original */
733 		else
734 			mnt->mnt_group_id = old->mnt_group_id;
735 
736 		if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
737 			int err = mnt_alloc_group_id(mnt);
738 			if (err)
739 				goto out_free;
740 		}
741 
742 		mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD;
743 		atomic_inc(&sb->s_active);
744 		mnt->mnt.mnt_sb = sb;
745 		mnt->mnt.mnt_root = dget(root);
746 		mnt->mnt_mountpoint = mnt->mnt.mnt_root;
747 		mnt->mnt_parent = mnt;
748 		br_write_lock(vfsmount_lock);
749 		list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
750 		br_write_unlock(vfsmount_lock);
751 
752 		if (flag & CL_SLAVE) {
753 			list_add(&mnt->mnt_slave, &old->mnt_slave_list);
754 			mnt->mnt_master = old;
755 			CLEAR_MNT_SHARED(mnt);
756 		} else if (!(flag & CL_PRIVATE)) {
757 			if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
758 				list_add(&mnt->mnt_share, &old->mnt_share);
759 			if (IS_MNT_SLAVE(old))
760 				list_add(&mnt->mnt_slave, &old->mnt_slave);
761 			mnt->mnt_master = old->mnt_master;
762 		}
763 		if (flag & CL_MAKE_SHARED)
764 			set_mnt_shared(mnt);
765 
766 		/* stick the duplicate mount on the same expiry list
767 		 * as the original if that was on one */
768 		if (flag & CL_EXPIRE) {
769 			if (!list_empty(&old->mnt_expire))
770 				list_add(&mnt->mnt_expire, &old->mnt_expire);
771 		}
772 	}
773 	return mnt;
774 
775  out_free:
776 	free_vfsmnt(mnt);
777 	return NULL;
778 }
779 
780 static inline void mntfree(struct mount *mnt)
781 {
782 	struct vfsmount *m = &mnt->mnt;
783 	struct super_block *sb = m->mnt_sb;
784 
785 	/*
786 	 * This probably indicates that somebody messed
787 	 * up a mnt_want/drop_write() pair.  If this
788 	 * happens, the filesystem was probably unable
789 	 * to make r/w->r/o transitions.
790 	 */
791 	/*
792 	 * The locking used to deal with mnt_count decrement provides barriers,
793 	 * so mnt_get_writers() below is safe.
794 	 */
795 	WARN_ON(mnt_get_writers(mnt));
796 	fsnotify_vfsmount_delete(m);
797 	dput(m->mnt_root);
798 	free_vfsmnt(mnt);
799 	deactivate_super(sb);
800 }
801 
802 static void mntput_no_expire(struct mount *mnt)
803 {
804 put_again:
805 #ifdef CONFIG_SMP
806 	br_read_lock(vfsmount_lock);
807 	if (likely(atomic_read(&mnt->mnt_longterm))) {
808 		mnt_add_count(mnt, -1);
809 		br_read_unlock(vfsmount_lock);
810 		return;
811 	}
812 	br_read_unlock(vfsmount_lock);
813 
814 	br_write_lock(vfsmount_lock);
815 	mnt_add_count(mnt, -1);
816 	if (mnt_get_count(mnt)) {
817 		br_write_unlock(vfsmount_lock);
818 		return;
819 	}
820 #else
821 	mnt_add_count(mnt, -1);
822 	if (likely(mnt_get_count(mnt)))
823 		return;
824 	br_write_lock(vfsmount_lock);
825 #endif
826 	if (unlikely(mnt->mnt_pinned)) {
827 		mnt_add_count(mnt, mnt->mnt_pinned + 1);
828 		mnt->mnt_pinned = 0;
829 		br_write_unlock(vfsmount_lock);
830 		acct_auto_close_mnt(&mnt->mnt);
831 		goto put_again;
832 	}
833 	list_del(&mnt->mnt_instance);
834 	br_write_unlock(vfsmount_lock);
835 	mntfree(mnt);
836 }
837 
838 void mntput(struct vfsmount *mnt)
839 {
840 	if (mnt) {
841 		struct mount *m = real_mount(mnt);
842 		/* avoid cacheline pingpong, hope gcc doesn't get "smart" */
843 		if (unlikely(m->mnt_expiry_mark))
844 			m->mnt_expiry_mark = 0;
845 		mntput_no_expire(m);
846 	}
847 }
848 EXPORT_SYMBOL(mntput);
849 
850 struct vfsmount *mntget(struct vfsmount *mnt)
851 {
852 	if (mnt)
853 		mnt_add_count(real_mount(mnt), 1);
854 	return mnt;
855 }
856 EXPORT_SYMBOL(mntget);
857 
858 void mnt_pin(struct vfsmount *mnt)
859 {
860 	br_write_lock(vfsmount_lock);
861 	real_mount(mnt)->mnt_pinned++;
862 	br_write_unlock(vfsmount_lock);
863 }
864 EXPORT_SYMBOL(mnt_pin);
865 
866 void mnt_unpin(struct vfsmount *m)
867 {
868 	struct mount *mnt = real_mount(m);
869 	br_write_lock(vfsmount_lock);
870 	if (mnt->mnt_pinned) {
871 		mnt_add_count(mnt, 1);
872 		mnt->mnt_pinned--;
873 	}
874 	br_write_unlock(vfsmount_lock);
875 }
876 EXPORT_SYMBOL(mnt_unpin);
877 
878 static inline void mangle(struct seq_file *m, const char *s)
879 {
880 	seq_escape(m, s, " \t\n\\");
881 }
882 
883 /*
884  * Simple .show_options callback for filesystems which don't want to
885  * implement more complex mount option showing.
886  *
887  * See also save_mount_options().
888  */
889 int generic_show_options(struct seq_file *m, struct dentry *root)
890 {
891 	const char *options;
892 
893 	rcu_read_lock();
894 	options = rcu_dereference(root->d_sb->s_options);
895 
896 	if (options != NULL && options[0]) {
897 		seq_putc(m, ',');
898 		mangle(m, options);
899 	}
900 	rcu_read_unlock();
901 
902 	return 0;
903 }
904 EXPORT_SYMBOL(generic_show_options);
905 
906 /*
907  * If filesystem uses generic_show_options(), this function should be
908  * called from the fill_super() callback.
909  *
910  * The .remount_fs callback usually needs to be handled in a special
911  * way, to make sure, that previous options are not overwritten if the
912  * remount fails.
913  *
914  * Also note, that if the filesystem's .remount_fs function doesn't
915  * reset all options to their default value, but changes only newly
916  * given options, then the displayed options will not reflect reality
917  * any more.
918  */
919 void save_mount_options(struct super_block *sb, char *options)
920 {
921 	BUG_ON(sb->s_options);
922 	rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
923 }
924 EXPORT_SYMBOL(save_mount_options);
925 
926 void replace_mount_options(struct super_block *sb, char *options)
927 {
928 	char *old = sb->s_options;
929 	rcu_assign_pointer(sb->s_options, options);
930 	if (old) {
931 		synchronize_rcu();
932 		kfree(old);
933 	}
934 }
935 EXPORT_SYMBOL(replace_mount_options);
936 
937 #ifdef CONFIG_PROC_FS
938 /* iterator; we want it to have access to namespace_sem, thus here... */
939 static void *m_start(struct seq_file *m, loff_t *pos)
940 {
941 	struct proc_mounts *p = container_of(m, struct proc_mounts, m);
942 
943 	down_read(&namespace_sem);
944 	return seq_list_start(&p->ns->list, *pos);
945 }
946 
947 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
948 {
949 	struct proc_mounts *p = container_of(m, struct proc_mounts, m);
950 
951 	return seq_list_next(v, &p->ns->list, pos);
952 }
953 
954 static void m_stop(struct seq_file *m, void *v)
955 {
956 	up_read(&namespace_sem);
957 }
958 
959 static int m_show(struct seq_file *m, void *v)
960 {
961 	struct proc_mounts *p = container_of(m, struct proc_mounts, m);
962 	struct mount *r = list_entry(v, struct mount, mnt_list);
963 	return p->show(m, &r->mnt);
964 }
965 
966 const struct seq_operations mounts_op = {
967 	.start	= m_start,
968 	.next	= m_next,
969 	.stop	= m_stop,
970 	.show	= m_show,
971 };
972 #endif  /* CONFIG_PROC_FS */
973 
974 /**
975  * may_umount_tree - check if a mount tree is busy
976  * @mnt: root of mount tree
977  *
978  * This is called to check if a tree of mounts has any
979  * open files, pwds, chroots or sub mounts that are
980  * busy.
981  */
982 int may_umount_tree(struct vfsmount *m)
983 {
984 	struct mount *mnt = real_mount(m);
985 	int actual_refs = 0;
986 	int minimum_refs = 0;
987 	struct mount *p;
988 	BUG_ON(!m);
989 
990 	/* write lock needed for mnt_get_count */
991 	br_write_lock(vfsmount_lock);
992 	for (p = mnt; p; p = next_mnt(p, mnt)) {
993 		actual_refs += mnt_get_count(p);
994 		minimum_refs += 2;
995 	}
996 	br_write_unlock(vfsmount_lock);
997 
998 	if (actual_refs > minimum_refs)
999 		return 0;
1000 
1001 	return 1;
1002 }
1003 
1004 EXPORT_SYMBOL(may_umount_tree);
1005 
1006 /**
1007  * may_umount - check if a mount point is busy
1008  * @mnt: root of mount
1009  *
1010  * This is called to check if a mount point has any
1011  * open files, pwds, chroots or sub mounts. If the
1012  * mount has sub mounts this will return busy
1013  * regardless of whether the sub mounts are busy.
1014  *
1015  * Doesn't take quota and stuff into account. IOW, in some cases it will
1016  * give false negatives. The main reason why it's here is that we need
1017  * a non-destructive way to look for easily umountable filesystems.
1018  */
1019 int may_umount(struct vfsmount *mnt)
1020 {
1021 	int ret = 1;
1022 	down_read(&namespace_sem);
1023 	br_write_lock(vfsmount_lock);
1024 	if (propagate_mount_busy(real_mount(mnt), 2))
1025 		ret = 0;
1026 	br_write_unlock(vfsmount_lock);
1027 	up_read(&namespace_sem);
1028 	return ret;
1029 }
1030 
1031 EXPORT_SYMBOL(may_umount);
1032 
1033 void release_mounts(struct list_head *head)
1034 {
1035 	struct mount *mnt;
1036 	while (!list_empty(head)) {
1037 		mnt = list_first_entry(head, struct mount, mnt_hash);
1038 		list_del_init(&mnt->mnt_hash);
1039 		if (mnt_has_parent(mnt)) {
1040 			struct dentry *dentry;
1041 			struct mount *m;
1042 
1043 			br_write_lock(vfsmount_lock);
1044 			dentry = mnt->mnt_mountpoint;
1045 			m = mnt->mnt_parent;
1046 			mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1047 			mnt->mnt_parent = mnt;
1048 			m->mnt_ghosts--;
1049 			br_write_unlock(vfsmount_lock);
1050 			dput(dentry);
1051 			mntput(&m->mnt);
1052 		}
1053 		mntput(&mnt->mnt);
1054 	}
1055 }
1056 
1057 /*
1058  * vfsmount lock must be held for write
1059  * namespace_sem must be held for write
1060  */
1061 void umount_tree(struct mount *mnt, int propagate, struct list_head *kill)
1062 {
1063 	LIST_HEAD(tmp_list);
1064 	struct mount *p;
1065 
1066 	for (p = mnt; p; p = next_mnt(p, mnt))
1067 		list_move(&p->mnt_hash, &tmp_list);
1068 
1069 	if (propagate)
1070 		propagate_umount(&tmp_list);
1071 
1072 	list_for_each_entry(p, &tmp_list, mnt_hash) {
1073 		list_del_init(&p->mnt_expire);
1074 		list_del_init(&p->mnt_list);
1075 		__touch_mnt_namespace(p->mnt_ns);
1076 		p->mnt_ns = NULL;
1077 		__mnt_make_shortterm(p);
1078 		list_del_init(&p->mnt_child);
1079 		if (mnt_has_parent(p)) {
1080 			p->mnt_parent->mnt_ghosts++;
1081 			dentry_reset_mounted(p->mnt_mountpoint);
1082 		}
1083 		change_mnt_propagation(p, MS_PRIVATE);
1084 	}
1085 	list_splice(&tmp_list, kill);
1086 }
1087 
1088 static void shrink_submounts(struct mount *mnt, struct list_head *umounts);
1089 
1090 static int do_umount(struct mount *mnt, int flags)
1091 {
1092 	struct super_block *sb = mnt->mnt.mnt_sb;
1093 	int retval;
1094 	LIST_HEAD(umount_list);
1095 
1096 	retval = security_sb_umount(&mnt->mnt, flags);
1097 	if (retval)
1098 		return retval;
1099 
1100 	/*
1101 	 * Allow userspace to request a mountpoint be expired rather than
1102 	 * unmounting unconditionally. Unmount only happens if:
1103 	 *  (1) the mark is already set (the mark is cleared by mntput())
1104 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1105 	 */
1106 	if (flags & MNT_EXPIRE) {
1107 		if (&mnt->mnt == current->fs->root.mnt ||
1108 		    flags & (MNT_FORCE | MNT_DETACH))
1109 			return -EINVAL;
1110 
1111 		/*
1112 		 * probably don't strictly need the lock here if we examined
1113 		 * all race cases, but it's a slowpath.
1114 		 */
1115 		br_write_lock(vfsmount_lock);
1116 		if (mnt_get_count(mnt) != 2) {
1117 			br_write_unlock(vfsmount_lock);
1118 			return -EBUSY;
1119 		}
1120 		br_write_unlock(vfsmount_lock);
1121 
1122 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1123 			return -EAGAIN;
1124 	}
1125 
1126 	/*
1127 	 * If we may have to abort operations to get out of this
1128 	 * mount, and they will themselves hold resources we must
1129 	 * allow the fs to do things. In the Unix tradition of
1130 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1131 	 * might fail to complete on the first run through as other tasks
1132 	 * must return, and the like. Thats for the mount program to worry
1133 	 * about for the moment.
1134 	 */
1135 
1136 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1137 		sb->s_op->umount_begin(sb);
1138 	}
1139 
1140 	/*
1141 	 * No sense to grab the lock for this test, but test itself looks
1142 	 * somewhat bogus. Suggestions for better replacement?
1143 	 * Ho-hum... In principle, we might treat that as umount + switch
1144 	 * to rootfs. GC would eventually take care of the old vfsmount.
1145 	 * Actually it makes sense, especially if rootfs would contain a
1146 	 * /reboot - static binary that would close all descriptors and
1147 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1148 	 */
1149 	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1150 		/*
1151 		 * Special case for "unmounting" root ...
1152 		 * we just try to remount it readonly.
1153 		 */
1154 		down_write(&sb->s_umount);
1155 		if (!(sb->s_flags & MS_RDONLY))
1156 			retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1157 		up_write(&sb->s_umount);
1158 		return retval;
1159 	}
1160 
1161 	down_write(&namespace_sem);
1162 	br_write_lock(vfsmount_lock);
1163 	event++;
1164 
1165 	if (!(flags & MNT_DETACH))
1166 		shrink_submounts(mnt, &umount_list);
1167 
1168 	retval = -EBUSY;
1169 	if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1170 		if (!list_empty(&mnt->mnt_list))
1171 			umount_tree(mnt, 1, &umount_list);
1172 		retval = 0;
1173 	}
1174 	br_write_unlock(vfsmount_lock);
1175 	up_write(&namespace_sem);
1176 	release_mounts(&umount_list);
1177 	return retval;
1178 }
1179 
1180 /*
1181  * Now umount can handle mount points as well as block devices.
1182  * This is important for filesystems which use unnamed block devices.
1183  *
1184  * We now support a flag for forced unmount like the other 'big iron'
1185  * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1186  */
1187 
1188 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1189 {
1190 	struct path path;
1191 	struct mount *mnt;
1192 	int retval;
1193 	int lookup_flags = 0;
1194 
1195 	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1196 		return -EINVAL;
1197 
1198 	if (!(flags & UMOUNT_NOFOLLOW))
1199 		lookup_flags |= LOOKUP_FOLLOW;
1200 
1201 	retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1202 	if (retval)
1203 		goto out;
1204 	mnt = real_mount(path.mnt);
1205 	retval = -EINVAL;
1206 	if (path.dentry != path.mnt->mnt_root)
1207 		goto dput_and_out;
1208 	if (!check_mnt(mnt))
1209 		goto dput_and_out;
1210 
1211 	retval = -EPERM;
1212 	if (!capable(CAP_SYS_ADMIN))
1213 		goto dput_and_out;
1214 
1215 	retval = do_umount(mnt, flags);
1216 dput_and_out:
1217 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
1218 	dput(path.dentry);
1219 	mntput_no_expire(mnt);
1220 out:
1221 	return retval;
1222 }
1223 
1224 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1225 
1226 /*
1227  *	The 2.0 compatible umount. No flags.
1228  */
1229 SYSCALL_DEFINE1(oldumount, char __user *, name)
1230 {
1231 	return sys_umount(name, 0);
1232 }
1233 
1234 #endif
1235 
1236 static int mount_is_safe(struct path *path)
1237 {
1238 	if (capable(CAP_SYS_ADMIN))
1239 		return 0;
1240 	return -EPERM;
1241 #ifdef notyet
1242 	if (S_ISLNK(path->dentry->d_inode->i_mode))
1243 		return -EPERM;
1244 	if (path->dentry->d_inode->i_mode & S_ISVTX) {
1245 		if (current_uid() != path->dentry->d_inode->i_uid)
1246 			return -EPERM;
1247 	}
1248 	if (inode_permission(path->dentry->d_inode, MAY_WRITE))
1249 		return -EPERM;
1250 	return 0;
1251 #endif
1252 }
1253 
1254 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1255 					int flag)
1256 {
1257 	struct mount *res, *p, *q, *r;
1258 	struct path path;
1259 
1260 	if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1261 		return NULL;
1262 
1263 	res = q = clone_mnt(mnt, dentry, flag);
1264 	if (!q)
1265 		goto Enomem;
1266 	q->mnt_mountpoint = mnt->mnt_mountpoint;
1267 
1268 	p = mnt;
1269 	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1270 		struct mount *s;
1271 		if (!is_subdir(r->mnt_mountpoint, dentry))
1272 			continue;
1273 
1274 		for (s = r; s; s = next_mnt(s, r)) {
1275 			if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
1276 				s = skip_mnt_tree(s);
1277 				continue;
1278 			}
1279 			while (p != s->mnt_parent) {
1280 				p = p->mnt_parent;
1281 				q = q->mnt_parent;
1282 			}
1283 			p = s;
1284 			path.mnt = &q->mnt;
1285 			path.dentry = p->mnt_mountpoint;
1286 			q = clone_mnt(p, p->mnt.mnt_root, flag);
1287 			if (!q)
1288 				goto Enomem;
1289 			br_write_lock(vfsmount_lock);
1290 			list_add_tail(&q->mnt_list, &res->mnt_list);
1291 			attach_mnt(q, &path);
1292 			br_write_unlock(vfsmount_lock);
1293 		}
1294 	}
1295 	return res;
1296 Enomem:
1297 	if (res) {
1298 		LIST_HEAD(umount_list);
1299 		br_write_lock(vfsmount_lock);
1300 		umount_tree(res, 0, &umount_list);
1301 		br_write_unlock(vfsmount_lock);
1302 		release_mounts(&umount_list);
1303 	}
1304 	return NULL;
1305 }
1306 
1307 struct vfsmount *collect_mounts(struct path *path)
1308 {
1309 	struct mount *tree;
1310 	down_write(&namespace_sem);
1311 	tree = copy_tree(real_mount(path->mnt), path->dentry,
1312 			 CL_COPY_ALL | CL_PRIVATE);
1313 	up_write(&namespace_sem);
1314 	return tree ? &tree->mnt : NULL;
1315 }
1316 
1317 void drop_collected_mounts(struct vfsmount *mnt)
1318 {
1319 	LIST_HEAD(umount_list);
1320 	down_write(&namespace_sem);
1321 	br_write_lock(vfsmount_lock);
1322 	umount_tree(real_mount(mnt), 0, &umount_list);
1323 	br_write_unlock(vfsmount_lock);
1324 	up_write(&namespace_sem);
1325 	release_mounts(&umount_list);
1326 }
1327 
1328 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1329 		   struct vfsmount *root)
1330 {
1331 	struct mount *mnt;
1332 	int res = f(root, arg);
1333 	if (res)
1334 		return res;
1335 	list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1336 		res = f(&mnt->mnt, arg);
1337 		if (res)
1338 			return res;
1339 	}
1340 	return 0;
1341 }
1342 
1343 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1344 {
1345 	struct mount *p;
1346 
1347 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1348 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
1349 			mnt_release_group_id(p);
1350 	}
1351 }
1352 
1353 static int invent_group_ids(struct mount *mnt, bool recurse)
1354 {
1355 	struct mount *p;
1356 
1357 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1358 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1359 			int err = mnt_alloc_group_id(p);
1360 			if (err) {
1361 				cleanup_group_ids(mnt, p);
1362 				return err;
1363 			}
1364 		}
1365 	}
1366 
1367 	return 0;
1368 }
1369 
1370 /*
1371  *  @source_mnt : mount tree to be attached
1372  *  @nd         : place the mount tree @source_mnt is attached
1373  *  @parent_nd  : if non-null, detach the source_mnt from its parent and
1374  *  		   store the parent mount and mountpoint dentry.
1375  *  		   (done when source_mnt is moved)
1376  *
1377  *  NOTE: in the table below explains the semantics when a source mount
1378  *  of a given type is attached to a destination mount of a given type.
1379  * ---------------------------------------------------------------------------
1380  * |         BIND MOUNT OPERATION                                            |
1381  * |**************************************************************************
1382  * | source-->| shared        |       private  |       slave    | unbindable |
1383  * | dest     |               |                |                |            |
1384  * |   |      |               |                |                |            |
1385  * |   v      |               |                |                |            |
1386  * |**************************************************************************
1387  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
1388  * |          |               |                |                |            |
1389  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
1390  * ***************************************************************************
1391  * A bind operation clones the source mount and mounts the clone on the
1392  * destination mount.
1393  *
1394  * (++)  the cloned mount is propagated to all the mounts in the propagation
1395  * 	 tree of the destination mount and the cloned mount is added to
1396  * 	 the peer group of the source mount.
1397  * (+)   the cloned mount is created under the destination mount and is marked
1398  *       as shared. The cloned mount is added to the peer group of the source
1399  *       mount.
1400  * (+++) the mount is propagated to all the mounts in the propagation tree
1401  *       of the destination mount and the cloned mount is made slave
1402  *       of the same master as that of the source mount. The cloned mount
1403  *       is marked as 'shared and slave'.
1404  * (*)   the cloned mount is made a slave of the same master as that of the
1405  * 	 source mount.
1406  *
1407  * ---------------------------------------------------------------------------
1408  * |         		MOVE MOUNT OPERATION                                 |
1409  * |**************************************************************************
1410  * | source-->| shared        |       private  |       slave    | unbindable |
1411  * | dest     |               |                |                |            |
1412  * |   |      |               |                |                |            |
1413  * |   v      |               |                |                |            |
1414  * |**************************************************************************
1415  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
1416  * |          |               |                |                |            |
1417  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
1418  * ***************************************************************************
1419  *
1420  * (+)  the mount is moved to the destination. And is then propagated to
1421  * 	all the mounts in the propagation tree of the destination mount.
1422  * (+*)  the mount is moved to the destination.
1423  * (+++)  the mount is moved to the destination and is then propagated to
1424  * 	all the mounts belonging to the destination mount's propagation tree.
1425  * 	the mount is marked as 'shared and slave'.
1426  * (*)	the mount continues to be a slave at the new location.
1427  *
1428  * if the source mount is a tree, the operations explained above is
1429  * applied to each mount in the tree.
1430  * Must be called without spinlocks held, since this function can sleep
1431  * in allocations.
1432  */
1433 static int attach_recursive_mnt(struct mount *source_mnt,
1434 			struct path *path, struct path *parent_path)
1435 {
1436 	LIST_HEAD(tree_list);
1437 	struct mount *dest_mnt = real_mount(path->mnt);
1438 	struct dentry *dest_dentry = path->dentry;
1439 	struct mount *child, *p;
1440 	int err;
1441 
1442 	if (IS_MNT_SHARED(dest_mnt)) {
1443 		err = invent_group_ids(source_mnt, true);
1444 		if (err)
1445 			goto out;
1446 	}
1447 	err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
1448 	if (err)
1449 		goto out_cleanup_ids;
1450 
1451 	br_write_lock(vfsmount_lock);
1452 
1453 	if (IS_MNT_SHARED(dest_mnt)) {
1454 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1455 			set_mnt_shared(p);
1456 	}
1457 	if (parent_path) {
1458 		detach_mnt(source_mnt, parent_path);
1459 		attach_mnt(source_mnt, path);
1460 		touch_mnt_namespace(source_mnt->mnt_ns);
1461 	} else {
1462 		mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
1463 		commit_tree(source_mnt);
1464 	}
1465 
1466 	list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1467 		list_del_init(&child->mnt_hash);
1468 		commit_tree(child);
1469 	}
1470 	br_write_unlock(vfsmount_lock);
1471 
1472 	return 0;
1473 
1474  out_cleanup_ids:
1475 	if (IS_MNT_SHARED(dest_mnt))
1476 		cleanup_group_ids(source_mnt, NULL);
1477  out:
1478 	return err;
1479 }
1480 
1481 static int lock_mount(struct path *path)
1482 {
1483 	struct vfsmount *mnt;
1484 retry:
1485 	mutex_lock(&path->dentry->d_inode->i_mutex);
1486 	if (unlikely(cant_mount(path->dentry))) {
1487 		mutex_unlock(&path->dentry->d_inode->i_mutex);
1488 		return -ENOENT;
1489 	}
1490 	down_write(&namespace_sem);
1491 	mnt = lookup_mnt(path);
1492 	if (likely(!mnt))
1493 		return 0;
1494 	up_write(&namespace_sem);
1495 	mutex_unlock(&path->dentry->d_inode->i_mutex);
1496 	path_put(path);
1497 	path->mnt = mnt;
1498 	path->dentry = dget(mnt->mnt_root);
1499 	goto retry;
1500 }
1501 
1502 static void unlock_mount(struct path *path)
1503 {
1504 	up_write(&namespace_sem);
1505 	mutex_unlock(&path->dentry->d_inode->i_mutex);
1506 }
1507 
1508 static int graft_tree(struct mount *mnt, struct path *path)
1509 {
1510 	if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1511 		return -EINVAL;
1512 
1513 	if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1514 	      S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1515 		return -ENOTDIR;
1516 
1517 	if (d_unlinked(path->dentry))
1518 		return -ENOENT;
1519 
1520 	return attach_recursive_mnt(mnt, path, NULL);
1521 }
1522 
1523 /*
1524  * Sanity check the flags to change_mnt_propagation.
1525  */
1526 
1527 static int flags_to_propagation_type(int flags)
1528 {
1529 	int type = flags & ~(MS_REC | MS_SILENT);
1530 
1531 	/* Fail if any non-propagation flags are set */
1532 	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1533 		return 0;
1534 	/* Only one propagation flag should be set */
1535 	if (!is_power_of_2(type))
1536 		return 0;
1537 	return type;
1538 }
1539 
1540 /*
1541  * recursively change the type of the mountpoint.
1542  */
1543 static int do_change_type(struct path *path, int flag)
1544 {
1545 	struct mount *m;
1546 	struct mount *mnt = real_mount(path->mnt);
1547 	int recurse = flag & MS_REC;
1548 	int type;
1549 	int err = 0;
1550 
1551 	if (!capable(CAP_SYS_ADMIN))
1552 		return -EPERM;
1553 
1554 	if (path->dentry != path->mnt->mnt_root)
1555 		return -EINVAL;
1556 
1557 	type = flags_to_propagation_type(flag);
1558 	if (!type)
1559 		return -EINVAL;
1560 
1561 	down_write(&namespace_sem);
1562 	if (type == MS_SHARED) {
1563 		err = invent_group_ids(mnt, recurse);
1564 		if (err)
1565 			goto out_unlock;
1566 	}
1567 
1568 	br_write_lock(vfsmount_lock);
1569 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1570 		change_mnt_propagation(m, type);
1571 	br_write_unlock(vfsmount_lock);
1572 
1573  out_unlock:
1574 	up_write(&namespace_sem);
1575 	return err;
1576 }
1577 
1578 /*
1579  * do loopback mount.
1580  */
1581 static int do_loopback(struct path *path, char *old_name,
1582 				int recurse)
1583 {
1584 	LIST_HEAD(umount_list);
1585 	struct path old_path;
1586 	struct mount *mnt = NULL, *old;
1587 	int err = mount_is_safe(path);
1588 	if (err)
1589 		return err;
1590 	if (!old_name || !*old_name)
1591 		return -EINVAL;
1592 	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1593 	if (err)
1594 		return err;
1595 
1596 	err = lock_mount(path);
1597 	if (err)
1598 		goto out;
1599 
1600 	old = real_mount(old_path.mnt);
1601 
1602 	err = -EINVAL;
1603 	if (IS_MNT_UNBINDABLE(old))
1604 		goto out2;
1605 
1606 	if (!check_mnt(real_mount(path->mnt)) || !check_mnt(old))
1607 		goto out2;
1608 
1609 	err = -ENOMEM;
1610 	if (recurse)
1611 		mnt = copy_tree(old, old_path.dentry, 0);
1612 	else
1613 		mnt = clone_mnt(old, old_path.dentry, 0);
1614 
1615 	if (!mnt)
1616 		goto out2;
1617 
1618 	err = graft_tree(mnt, path);
1619 	if (err) {
1620 		br_write_lock(vfsmount_lock);
1621 		umount_tree(mnt, 0, &umount_list);
1622 		br_write_unlock(vfsmount_lock);
1623 	}
1624 out2:
1625 	unlock_mount(path);
1626 	release_mounts(&umount_list);
1627 out:
1628 	path_put(&old_path);
1629 	return err;
1630 }
1631 
1632 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1633 {
1634 	int error = 0;
1635 	int readonly_request = 0;
1636 
1637 	if (ms_flags & MS_RDONLY)
1638 		readonly_request = 1;
1639 	if (readonly_request == __mnt_is_readonly(mnt))
1640 		return 0;
1641 
1642 	if (readonly_request)
1643 		error = mnt_make_readonly(real_mount(mnt));
1644 	else
1645 		__mnt_unmake_readonly(real_mount(mnt));
1646 	return error;
1647 }
1648 
1649 /*
1650  * change filesystem flags. dir should be a physical root of filesystem.
1651  * If you've mounted a non-root directory somewhere and want to do remount
1652  * on it - tough luck.
1653  */
1654 static int do_remount(struct path *path, int flags, int mnt_flags,
1655 		      void *data)
1656 {
1657 	int err;
1658 	struct super_block *sb = path->mnt->mnt_sb;
1659 	struct mount *mnt = real_mount(path->mnt);
1660 
1661 	if (!capable(CAP_SYS_ADMIN))
1662 		return -EPERM;
1663 
1664 	if (!check_mnt(mnt))
1665 		return -EINVAL;
1666 
1667 	if (path->dentry != path->mnt->mnt_root)
1668 		return -EINVAL;
1669 
1670 	err = security_sb_remount(sb, data);
1671 	if (err)
1672 		return err;
1673 
1674 	down_write(&sb->s_umount);
1675 	if (flags & MS_BIND)
1676 		err = change_mount_flags(path->mnt, flags);
1677 	else
1678 		err = do_remount_sb(sb, flags, data, 0);
1679 	if (!err) {
1680 		br_write_lock(vfsmount_lock);
1681 		mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK;
1682 		mnt->mnt.mnt_flags = mnt_flags;
1683 		br_write_unlock(vfsmount_lock);
1684 	}
1685 	up_write(&sb->s_umount);
1686 	if (!err) {
1687 		br_write_lock(vfsmount_lock);
1688 		touch_mnt_namespace(mnt->mnt_ns);
1689 		br_write_unlock(vfsmount_lock);
1690 	}
1691 	return err;
1692 }
1693 
1694 static inline int tree_contains_unbindable(struct mount *mnt)
1695 {
1696 	struct mount *p;
1697 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1698 		if (IS_MNT_UNBINDABLE(p))
1699 			return 1;
1700 	}
1701 	return 0;
1702 }
1703 
1704 static int do_move_mount(struct path *path, char *old_name)
1705 {
1706 	struct path old_path, parent_path;
1707 	struct mount *p;
1708 	struct mount *old;
1709 	int err = 0;
1710 	if (!capable(CAP_SYS_ADMIN))
1711 		return -EPERM;
1712 	if (!old_name || !*old_name)
1713 		return -EINVAL;
1714 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1715 	if (err)
1716 		return err;
1717 
1718 	err = lock_mount(path);
1719 	if (err < 0)
1720 		goto out;
1721 
1722 	old = real_mount(old_path.mnt);
1723 	p = real_mount(path->mnt);
1724 
1725 	err = -EINVAL;
1726 	if (!check_mnt(p) || !check_mnt(old))
1727 		goto out1;
1728 
1729 	if (d_unlinked(path->dentry))
1730 		goto out1;
1731 
1732 	err = -EINVAL;
1733 	if (old_path.dentry != old_path.mnt->mnt_root)
1734 		goto out1;
1735 
1736 	if (!mnt_has_parent(old))
1737 		goto out1;
1738 
1739 	if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1740 	      S_ISDIR(old_path.dentry->d_inode->i_mode))
1741 		goto out1;
1742 	/*
1743 	 * Don't move a mount residing in a shared parent.
1744 	 */
1745 	if (IS_MNT_SHARED(old->mnt_parent))
1746 		goto out1;
1747 	/*
1748 	 * Don't move a mount tree containing unbindable mounts to a destination
1749 	 * mount which is shared.
1750 	 */
1751 	if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
1752 		goto out1;
1753 	err = -ELOOP;
1754 	for (; mnt_has_parent(p); p = p->mnt_parent)
1755 		if (p == old)
1756 			goto out1;
1757 
1758 	err = attach_recursive_mnt(old, path, &parent_path);
1759 	if (err)
1760 		goto out1;
1761 
1762 	/* if the mount is moved, it should no longer be expire
1763 	 * automatically */
1764 	list_del_init(&old->mnt_expire);
1765 out1:
1766 	unlock_mount(path);
1767 out:
1768 	if (!err)
1769 		path_put(&parent_path);
1770 	path_put(&old_path);
1771 	return err;
1772 }
1773 
1774 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1775 {
1776 	int err;
1777 	const char *subtype = strchr(fstype, '.');
1778 	if (subtype) {
1779 		subtype++;
1780 		err = -EINVAL;
1781 		if (!subtype[0])
1782 			goto err;
1783 	} else
1784 		subtype = "";
1785 
1786 	mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1787 	err = -ENOMEM;
1788 	if (!mnt->mnt_sb->s_subtype)
1789 		goto err;
1790 	return mnt;
1791 
1792  err:
1793 	mntput(mnt);
1794 	return ERR_PTR(err);
1795 }
1796 
1797 static struct vfsmount *
1798 do_kern_mount(const char *fstype, int flags, const char *name, void *data)
1799 {
1800 	struct file_system_type *type = get_fs_type(fstype);
1801 	struct vfsmount *mnt;
1802 	if (!type)
1803 		return ERR_PTR(-ENODEV);
1804 	mnt = vfs_kern_mount(type, flags, name, data);
1805 	if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
1806 	    !mnt->mnt_sb->s_subtype)
1807 		mnt = fs_set_subtype(mnt, fstype);
1808 	put_filesystem(type);
1809 	return mnt;
1810 }
1811 
1812 /*
1813  * add a mount into a namespace's mount tree
1814  */
1815 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
1816 {
1817 	int err;
1818 
1819 	mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
1820 
1821 	err = lock_mount(path);
1822 	if (err)
1823 		return err;
1824 
1825 	err = -EINVAL;
1826 	if (!(mnt_flags & MNT_SHRINKABLE) && !check_mnt(real_mount(path->mnt)))
1827 		goto unlock;
1828 
1829 	/* Refuse the same filesystem on the same mount point */
1830 	err = -EBUSY;
1831 	if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
1832 	    path->mnt->mnt_root == path->dentry)
1833 		goto unlock;
1834 
1835 	err = -EINVAL;
1836 	if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
1837 		goto unlock;
1838 
1839 	newmnt->mnt.mnt_flags = mnt_flags;
1840 	err = graft_tree(newmnt, path);
1841 
1842 unlock:
1843 	unlock_mount(path);
1844 	return err;
1845 }
1846 
1847 /*
1848  * create a new mount for userspace and request it to be added into the
1849  * namespace's tree
1850  */
1851 static int do_new_mount(struct path *path, char *type, int flags,
1852 			int mnt_flags, char *name, void *data)
1853 {
1854 	struct vfsmount *mnt;
1855 	int err;
1856 
1857 	if (!type)
1858 		return -EINVAL;
1859 
1860 	/* we need capabilities... */
1861 	if (!capable(CAP_SYS_ADMIN))
1862 		return -EPERM;
1863 
1864 	mnt = do_kern_mount(type, flags, name, data);
1865 	if (IS_ERR(mnt))
1866 		return PTR_ERR(mnt);
1867 
1868 	err = do_add_mount(real_mount(mnt), path, mnt_flags);
1869 	if (err)
1870 		mntput(mnt);
1871 	return err;
1872 }
1873 
1874 int finish_automount(struct vfsmount *m, struct path *path)
1875 {
1876 	struct mount *mnt = real_mount(m);
1877 	int err;
1878 	/* The new mount record should have at least 2 refs to prevent it being
1879 	 * expired before we get a chance to add it
1880 	 */
1881 	BUG_ON(mnt_get_count(mnt) < 2);
1882 
1883 	if (m->mnt_sb == path->mnt->mnt_sb &&
1884 	    m->mnt_root == path->dentry) {
1885 		err = -ELOOP;
1886 		goto fail;
1887 	}
1888 
1889 	err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
1890 	if (!err)
1891 		return 0;
1892 fail:
1893 	/* remove m from any expiration list it may be on */
1894 	if (!list_empty(&mnt->mnt_expire)) {
1895 		down_write(&namespace_sem);
1896 		br_write_lock(vfsmount_lock);
1897 		list_del_init(&mnt->mnt_expire);
1898 		br_write_unlock(vfsmount_lock);
1899 		up_write(&namespace_sem);
1900 	}
1901 	mntput(m);
1902 	mntput(m);
1903 	return err;
1904 }
1905 
1906 /**
1907  * mnt_set_expiry - Put a mount on an expiration list
1908  * @mnt: The mount to list.
1909  * @expiry_list: The list to add the mount to.
1910  */
1911 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
1912 {
1913 	down_write(&namespace_sem);
1914 	br_write_lock(vfsmount_lock);
1915 
1916 	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
1917 
1918 	br_write_unlock(vfsmount_lock);
1919 	up_write(&namespace_sem);
1920 }
1921 EXPORT_SYMBOL(mnt_set_expiry);
1922 
1923 /*
1924  * process a list of expirable mountpoints with the intent of discarding any
1925  * mountpoints that aren't in use and haven't been touched since last we came
1926  * here
1927  */
1928 void mark_mounts_for_expiry(struct list_head *mounts)
1929 {
1930 	struct mount *mnt, *next;
1931 	LIST_HEAD(graveyard);
1932 	LIST_HEAD(umounts);
1933 
1934 	if (list_empty(mounts))
1935 		return;
1936 
1937 	down_write(&namespace_sem);
1938 	br_write_lock(vfsmount_lock);
1939 
1940 	/* extract from the expiration list every vfsmount that matches the
1941 	 * following criteria:
1942 	 * - only referenced by its parent vfsmount
1943 	 * - still marked for expiry (marked on the last call here; marks are
1944 	 *   cleared by mntput())
1945 	 */
1946 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
1947 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1948 			propagate_mount_busy(mnt, 1))
1949 			continue;
1950 		list_move(&mnt->mnt_expire, &graveyard);
1951 	}
1952 	while (!list_empty(&graveyard)) {
1953 		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
1954 		touch_mnt_namespace(mnt->mnt_ns);
1955 		umount_tree(mnt, 1, &umounts);
1956 	}
1957 	br_write_unlock(vfsmount_lock);
1958 	up_write(&namespace_sem);
1959 
1960 	release_mounts(&umounts);
1961 }
1962 
1963 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
1964 
1965 /*
1966  * Ripoff of 'select_parent()'
1967  *
1968  * search the list of submounts for a given mountpoint, and move any
1969  * shrinkable submounts to the 'graveyard' list.
1970  */
1971 static int select_submounts(struct mount *parent, struct list_head *graveyard)
1972 {
1973 	struct mount *this_parent = parent;
1974 	struct list_head *next;
1975 	int found = 0;
1976 
1977 repeat:
1978 	next = this_parent->mnt_mounts.next;
1979 resume:
1980 	while (next != &this_parent->mnt_mounts) {
1981 		struct list_head *tmp = next;
1982 		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
1983 
1984 		next = tmp->next;
1985 		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
1986 			continue;
1987 		/*
1988 		 * Descend a level if the d_mounts list is non-empty.
1989 		 */
1990 		if (!list_empty(&mnt->mnt_mounts)) {
1991 			this_parent = mnt;
1992 			goto repeat;
1993 		}
1994 
1995 		if (!propagate_mount_busy(mnt, 1)) {
1996 			list_move_tail(&mnt->mnt_expire, graveyard);
1997 			found++;
1998 		}
1999 	}
2000 	/*
2001 	 * All done at this level ... ascend and resume the search
2002 	 */
2003 	if (this_parent != parent) {
2004 		next = this_parent->mnt_child.next;
2005 		this_parent = this_parent->mnt_parent;
2006 		goto resume;
2007 	}
2008 	return found;
2009 }
2010 
2011 /*
2012  * process a list of expirable mountpoints with the intent of discarding any
2013  * submounts of a specific parent mountpoint
2014  *
2015  * vfsmount_lock must be held for write
2016  */
2017 static void shrink_submounts(struct mount *mnt, struct list_head *umounts)
2018 {
2019 	LIST_HEAD(graveyard);
2020 	struct mount *m;
2021 
2022 	/* extract submounts of 'mountpoint' from the expiration list */
2023 	while (select_submounts(mnt, &graveyard)) {
2024 		while (!list_empty(&graveyard)) {
2025 			m = list_first_entry(&graveyard, struct mount,
2026 						mnt_expire);
2027 			touch_mnt_namespace(m->mnt_ns);
2028 			umount_tree(m, 1, umounts);
2029 		}
2030 	}
2031 }
2032 
2033 /*
2034  * Some copy_from_user() implementations do not return the exact number of
2035  * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
2036  * Note that this function differs from copy_from_user() in that it will oops
2037  * on bad values of `to', rather than returning a short copy.
2038  */
2039 static long exact_copy_from_user(void *to, const void __user * from,
2040 				 unsigned long n)
2041 {
2042 	char *t = to;
2043 	const char __user *f = from;
2044 	char c;
2045 
2046 	if (!access_ok(VERIFY_READ, from, n))
2047 		return n;
2048 
2049 	while (n) {
2050 		if (__get_user(c, f)) {
2051 			memset(t, 0, n);
2052 			break;
2053 		}
2054 		*t++ = c;
2055 		f++;
2056 		n--;
2057 	}
2058 	return n;
2059 }
2060 
2061 int copy_mount_options(const void __user * data, unsigned long *where)
2062 {
2063 	int i;
2064 	unsigned long page;
2065 	unsigned long size;
2066 
2067 	*where = 0;
2068 	if (!data)
2069 		return 0;
2070 
2071 	if (!(page = __get_free_page(GFP_KERNEL)))
2072 		return -ENOMEM;
2073 
2074 	/* We only care that *some* data at the address the user
2075 	 * gave us is valid.  Just in case, we'll zero
2076 	 * the remainder of the page.
2077 	 */
2078 	/* copy_from_user cannot cross TASK_SIZE ! */
2079 	size = TASK_SIZE - (unsigned long)data;
2080 	if (size > PAGE_SIZE)
2081 		size = PAGE_SIZE;
2082 
2083 	i = size - exact_copy_from_user((void *)page, data, size);
2084 	if (!i) {
2085 		free_page(page);
2086 		return -EFAULT;
2087 	}
2088 	if (i != PAGE_SIZE)
2089 		memset((char *)page + i, 0, PAGE_SIZE - i);
2090 	*where = page;
2091 	return 0;
2092 }
2093 
2094 int copy_mount_string(const void __user *data, char **where)
2095 {
2096 	char *tmp;
2097 
2098 	if (!data) {
2099 		*where = NULL;
2100 		return 0;
2101 	}
2102 
2103 	tmp = strndup_user(data, PAGE_SIZE);
2104 	if (IS_ERR(tmp))
2105 		return PTR_ERR(tmp);
2106 
2107 	*where = tmp;
2108 	return 0;
2109 }
2110 
2111 /*
2112  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2113  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2114  *
2115  * data is a (void *) that can point to any structure up to
2116  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2117  * information (or be NULL).
2118  *
2119  * Pre-0.97 versions of mount() didn't have a flags word.
2120  * When the flags word was introduced its top half was required
2121  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2122  * Therefore, if this magic number is present, it carries no information
2123  * and must be discarded.
2124  */
2125 long do_mount(char *dev_name, char *dir_name, char *type_page,
2126 		  unsigned long flags, void *data_page)
2127 {
2128 	struct path path;
2129 	int retval = 0;
2130 	int mnt_flags = 0;
2131 
2132 	/* Discard magic */
2133 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2134 		flags &= ~MS_MGC_MSK;
2135 
2136 	/* Basic sanity checks */
2137 
2138 	if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2139 		return -EINVAL;
2140 
2141 	if (data_page)
2142 		((char *)data_page)[PAGE_SIZE - 1] = 0;
2143 
2144 	/* ... and get the mountpoint */
2145 	retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2146 	if (retval)
2147 		return retval;
2148 
2149 	retval = security_sb_mount(dev_name, &path,
2150 				   type_page, flags, data_page);
2151 	if (retval)
2152 		goto dput_out;
2153 
2154 	/* Default to relatime unless overriden */
2155 	if (!(flags & MS_NOATIME))
2156 		mnt_flags |= MNT_RELATIME;
2157 
2158 	/* Separate the per-mountpoint flags */
2159 	if (flags & MS_NOSUID)
2160 		mnt_flags |= MNT_NOSUID;
2161 	if (flags & MS_NODEV)
2162 		mnt_flags |= MNT_NODEV;
2163 	if (flags & MS_NOEXEC)
2164 		mnt_flags |= MNT_NOEXEC;
2165 	if (flags & MS_NOATIME)
2166 		mnt_flags |= MNT_NOATIME;
2167 	if (flags & MS_NODIRATIME)
2168 		mnt_flags |= MNT_NODIRATIME;
2169 	if (flags & MS_STRICTATIME)
2170 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2171 	if (flags & MS_RDONLY)
2172 		mnt_flags |= MNT_READONLY;
2173 
2174 	flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2175 		   MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2176 		   MS_STRICTATIME);
2177 
2178 	if (flags & MS_REMOUNT)
2179 		retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2180 				    data_page);
2181 	else if (flags & MS_BIND)
2182 		retval = do_loopback(&path, dev_name, flags & MS_REC);
2183 	else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2184 		retval = do_change_type(&path, flags);
2185 	else if (flags & MS_MOVE)
2186 		retval = do_move_mount(&path, dev_name);
2187 	else
2188 		retval = do_new_mount(&path, type_page, flags, mnt_flags,
2189 				      dev_name, data_page);
2190 dput_out:
2191 	path_put(&path);
2192 	return retval;
2193 }
2194 
2195 static struct mnt_namespace *alloc_mnt_ns(void)
2196 {
2197 	struct mnt_namespace *new_ns;
2198 
2199 	new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2200 	if (!new_ns)
2201 		return ERR_PTR(-ENOMEM);
2202 	atomic_set(&new_ns->count, 1);
2203 	new_ns->root = NULL;
2204 	INIT_LIST_HEAD(&new_ns->list);
2205 	init_waitqueue_head(&new_ns->poll);
2206 	new_ns->event = 0;
2207 	return new_ns;
2208 }
2209 
2210 void mnt_make_longterm(struct vfsmount *mnt)
2211 {
2212 	__mnt_make_longterm(real_mount(mnt));
2213 }
2214 
2215 void mnt_make_shortterm(struct vfsmount *m)
2216 {
2217 #ifdef CONFIG_SMP
2218 	struct mount *mnt = real_mount(m);
2219 	if (atomic_add_unless(&mnt->mnt_longterm, -1, 1))
2220 		return;
2221 	br_write_lock(vfsmount_lock);
2222 	atomic_dec(&mnt->mnt_longterm);
2223 	br_write_unlock(vfsmount_lock);
2224 #endif
2225 }
2226 
2227 /*
2228  * Allocate a new namespace structure and populate it with contents
2229  * copied from the namespace of the passed in task structure.
2230  */
2231 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
2232 		struct fs_struct *fs)
2233 {
2234 	struct mnt_namespace *new_ns;
2235 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2236 	struct mount *p, *q;
2237 	struct mount *old = mnt_ns->root;
2238 	struct mount *new;
2239 
2240 	new_ns = alloc_mnt_ns();
2241 	if (IS_ERR(new_ns))
2242 		return new_ns;
2243 
2244 	down_write(&namespace_sem);
2245 	/* First pass: copy the tree topology */
2246 	new = copy_tree(old, old->mnt.mnt_root, CL_COPY_ALL | CL_EXPIRE);
2247 	if (!new) {
2248 		up_write(&namespace_sem);
2249 		kfree(new_ns);
2250 		return ERR_PTR(-ENOMEM);
2251 	}
2252 	new_ns->root = new;
2253 	br_write_lock(vfsmount_lock);
2254 	list_add_tail(&new_ns->list, &new->mnt_list);
2255 	br_write_unlock(vfsmount_lock);
2256 
2257 	/*
2258 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2259 	 * as belonging to new namespace.  We have already acquired a private
2260 	 * fs_struct, so tsk->fs->lock is not needed.
2261 	 */
2262 	p = old;
2263 	q = new;
2264 	while (p) {
2265 		q->mnt_ns = new_ns;
2266 		__mnt_make_longterm(q);
2267 		if (fs) {
2268 			if (&p->mnt == fs->root.mnt) {
2269 				fs->root.mnt = mntget(&q->mnt);
2270 				__mnt_make_longterm(q);
2271 				mnt_make_shortterm(&p->mnt);
2272 				rootmnt = &p->mnt;
2273 			}
2274 			if (&p->mnt == fs->pwd.mnt) {
2275 				fs->pwd.mnt = mntget(&q->mnt);
2276 				__mnt_make_longterm(q);
2277 				mnt_make_shortterm(&p->mnt);
2278 				pwdmnt = &p->mnt;
2279 			}
2280 		}
2281 		p = next_mnt(p, old);
2282 		q = next_mnt(q, new);
2283 	}
2284 	up_write(&namespace_sem);
2285 
2286 	if (rootmnt)
2287 		mntput(rootmnt);
2288 	if (pwdmnt)
2289 		mntput(pwdmnt);
2290 
2291 	return new_ns;
2292 }
2293 
2294 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2295 		struct fs_struct *new_fs)
2296 {
2297 	struct mnt_namespace *new_ns;
2298 
2299 	BUG_ON(!ns);
2300 	get_mnt_ns(ns);
2301 
2302 	if (!(flags & CLONE_NEWNS))
2303 		return ns;
2304 
2305 	new_ns = dup_mnt_ns(ns, new_fs);
2306 
2307 	put_mnt_ns(ns);
2308 	return new_ns;
2309 }
2310 
2311 /**
2312  * create_mnt_ns - creates a private namespace and adds a root filesystem
2313  * @mnt: pointer to the new root filesystem mountpoint
2314  */
2315 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2316 {
2317 	struct mnt_namespace *new_ns = alloc_mnt_ns();
2318 	if (!IS_ERR(new_ns)) {
2319 		struct mount *mnt = real_mount(m);
2320 		mnt->mnt_ns = new_ns;
2321 		__mnt_make_longterm(mnt);
2322 		new_ns->root = mnt;
2323 		list_add(&new_ns->list, &mnt->mnt_list);
2324 	} else {
2325 		mntput(m);
2326 	}
2327 	return new_ns;
2328 }
2329 
2330 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2331 {
2332 	struct mnt_namespace *ns;
2333 	struct super_block *s;
2334 	struct path path;
2335 	int err;
2336 
2337 	ns = create_mnt_ns(mnt);
2338 	if (IS_ERR(ns))
2339 		return ERR_CAST(ns);
2340 
2341 	err = vfs_path_lookup(mnt->mnt_root, mnt,
2342 			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2343 
2344 	put_mnt_ns(ns);
2345 
2346 	if (err)
2347 		return ERR_PTR(err);
2348 
2349 	/* trade a vfsmount reference for active sb one */
2350 	s = path.mnt->mnt_sb;
2351 	atomic_inc(&s->s_active);
2352 	mntput(path.mnt);
2353 	/* lock the sucker */
2354 	down_write(&s->s_umount);
2355 	/* ... and return the root of (sub)tree on it */
2356 	return path.dentry;
2357 }
2358 EXPORT_SYMBOL(mount_subtree);
2359 
2360 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2361 		char __user *, type, unsigned long, flags, void __user *, data)
2362 {
2363 	int ret;
2364 	char *kernel_type;
2365 	char *kernel_dir;
2366 	char *kernel_dev;
2367 	unsigned long data_page;
2368 
2369 	ret = copy_mount_string(type, &kernel_type);
2370 	if (ret < 0)
2371 		goto out_type;
2372 
2373 	kernel_dir = getname(dir_name);
2374 	if (IS_ERR(kernel_dir)) {
2375 		ret = PTR_ERR(kernel_dir);
2376 		goto out_dir;
2377 	}
2378 
2379 	ret = copy_mount_string(dev_name, &kernel_dev);
2380 	if (ret < 0)
2381 		goto out_dev;
2382 
2383 	ret = copy_mount_options(data, &data_page);
2384 	if (ret < 0)
2385 		goto out_data;
2386 
2387 	ret = do_mount(kernel_dev, kernel_dir, kernel_type, flags,
2388 		(void *) data_page);
2389 
2390 	free_page(data_page);
2391 out_data:
2392 	kfree(kernel_dev);
2393 out_dev:
2394 	putname(kernel_dir);
2395 out_dir:
2396 	kfree(kernel_type);
2397 out_type:
2398 	return ret;
2399 }
2400 
2401 /*
2402  * Return true if path is reachable from root
2403  *
2404  * namespace_sem or vfsmount_lock is held
2405  */
2406 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
2407 			 const struct path *root)
2408 {
2409 	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
2410 		dentry = mnt->mnt_mountpoint;
2411 		mnt = mnt->mnt_parent;
2412 	}
2413 	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
2414 }
2415 
2416 int path_is_under(struct path *path1, struct path *path2)
2417 {
2418 	int res;
2419 	br_read_lock(vfsmount_lock);
2420 	res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
2421 	br_read_unlock(vfsmount_lock);
2422 	return res;
2423 }
2424 EXPORT_SYMBOL(path_is_under);
2425 
2426 /*
2427  * pivot_root Semantics:
2428  * Moves the root file system of the current process to the directory put_old,
2429  * makes new_root as the new root file system of the current process, and sets
2430  * root/cwd of all processes which had them on the current root to new_root.
2431  *
2432  * Restrictions:
2433  * The new_root and put_old must be directories, and  must not be on the
2434  * same file  system as the current process root. The put_old  must  be
2435  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
2436  * pointed to by put_old must yield the same directory as new_root. No other
2437  * file system may be mounted on put_old. After all, new_root is a mountpoint.
2438  *
2439  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2440  * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2441  * in this situation.
2442  *
2443  * Notes:
2444  *  - we don't move root/cwd if they are not at the root (reason: if something
2445  *    cared enough to change them, it's probably wrong to force them elsewhere)
2446  *  - it's okay to pick a root that isn't the root of a file system, e.g.
2447  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2448  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2449  *    first.
2450  */
2451 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2452 		const char __user *, put_old)
2453 {
2454 	struct path new, old, parent_path, root_parent, root;
2455 	struct mount *new_mnt, *root_mnt;
2456 	int error;
2457 
2458 	if (!capable(CAP_SYS_ADMIN))
2459 		return -EPERM;
2460 
2461 	error = user_path_dir(new_root, &new);
2462 	if (error)
2463 		goto out0;
2464 
2465 	error = user_path_dir(put_old, &old);
2466 	if (error)
2467 		goto out1;
2468 
2469 	error = security_sb_pivotroot(&old, &new);
2470 	if (error)
2471 		goto out2;
2472 
2473 	get_fs_root(current->fs, &root);
2474 	error = lock_mount(&old);
2475 	if (error)
2476 		goto out3;
2477 
2478 	error = -EINVAL;
2479 	new_mnt = real_mount(new.mnt);
2480 	root_mnt = real_mount(root.mnt);
2481 	if (IS_MNT_SHARED(real_mount(old.mnt)) ||
2482 		IS_MNT_SHARED(new_mnt->mnt_parent) ||
2483 		IS_MNT_SHARED(root_mnt->mnt_parent))
2484 		goto out4;
2485 	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
2486 		goto out4;
2487 	error = -ENOENT;
2488 	if (d_unlinked(new.dentry))
2489 		goto out4;
2490 	if (d_unlinked(old.dentry))
2491 		goto out4;
2492 	error = -EBUSY;
2493 	if (new.mnt == root.mnt ||
2494 	    old.mnt == root.mnt)
2495 		goto out4; /* loop, on the same file system  */
2496 	error = -EINVAL;
2497 	if (root.mnt->mnt_root != root.dentry)
2498 		goto out4; /* not a mountpoint */
2499 	if (!mnt_has_parent(root_mnt))
2500 		goto out4; /* not attached */
2501 	if (new.mnt->mnt_root != new.dentry)
2502 		goto out4; /* not a mountpoint */
2503 	if (!mnt_has_parent(new_mnt))
2504 		goto out4; /* not attached */
2505 	/* make sure we can reach put_old from new_root */
2506 	if (!is_path_reachable(real_mount(old.mnt), old.dentry, &new))
2507 		goto out4;
2508 	br_write_lock(vfsmount_lock);
2509 	detach_mnt(new_mnt, &parent_path);
2510 	detach_mnt(root_mnt, &root_parent);
2511 	/* mount old root on put_old */
2512 	attach_mnt(root_mnt, &old);
2513 	/* mount new_root on / */
2514 	attach_mnt(new_mnt, &root_parent);
2515 	touch_mnt_namespace(current->nsproxy->mnt_ns);
2516 	br_write_unlock(vfsmount_lock);
2517 	chroot_fs_refs(&root, &new);
2518 	error = 0;
2519 out4:
2520 	unlock_mount(&old);
2521 	if (!error) {
2522 		path_put(&root_parent);
2523 		path_put(&parent_path);
2524 	}
2525 out3:
2526 	path_put(&root);
2527 out2:
2528 	path_put(&old);
2529 out1:
2530 	path_put(&new);
2531 out0:
2532 	return error;
2533 }
2534 
2535 static void __init init_mount_tree(void)
2536 {
2537 	struct vfsmount *mnt;
2538 	struct mnt_namespace *ns;
2539 	struct path root;
2540 
2541 	mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2542 	if (IS_ERR(mnt))
2543 		panic("Can't create rootfs");
2544 
2545 	ns = create_mnt_ns(mnt);
2546 	if (IS_ERR(ns))
2547 		panic("Can't allocate initial namespace");
2548 
2549 	init_task.nsproxy->mnt_ns = ns;
2550 	get_mnt_ns(ns);
2551 
2552 	root.mnt = mnt;
2553 	root.dentry = mnt->mnt_root;
2554 
2555 	set_fs_pwd(current->fs, &root);
2556 	set_fs_root(current->fs, &root);
2557 }
2558 
2559 void __init mnt_init(void)
2560 {
2561 	unsigned u;
2562 	int err;
2563 
2564 	init_rwsem(&namespace_sem);
2565 
2566 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
2567 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2568 
2569 	mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2570 
2571 	if (!mount_hashtable)
2572 		panic("Failed to allocate mount hash table\n");
2573 
2574 	printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
2575 
2576 	for (u = 0; u < HASH_SIZE; u++)
2577 		INIT_LIST_HEAD(&mount_hashtable[u]);
2578 
2579 	br_lock_init(vfsmount_lock);
2580 
2581 	err = sysfs_init();
2582 	if (err)
2583 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2584 			__func__, err);
2585 	fs_kobj = kobject_create_and_add("fs", NULL);
2586 	if (!fs_kobj)
2587 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
2588 	init_rootfs();
2589 	init_mount_tree();
2590 }
2591 
2592 void put_mnt_ns(struct mnt_namespace *ns)
2593 {
2594 	LIST_HEAD(umount_list);
2595 
2596 	if (!atomic_dec_and_test(&ns->count))
2597 		return;
2598 	down_write(&namespace_sem);
2599 	br_write_lock(vfsmount_lock);
2600 	umount_tree(ns->root, 0, &umount_list);
2601 	br_write_unlock(vfsmount_lock);
2602 	up_write(&namespace_sem);
2603 	release_mounts(&umount_list);
2604 	kfree(ns);
2605 }
2606 
2607 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2608 {
2609 	struct vfsmount *mnt;
2610 	mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2611 	if (!IS_ERR(mnt)) {
2612 		/*
2613 		 * it is a longterm mount, don't release mnt until
2614 		 * we unmount before file sys is unregistered
2615 		*/
2616 		mnt_make_longterm(mnt);
2617 	}
2618 	return mnt;
2619 }
2620 EXPORT_SYMBOL_GPL(kern_mount_data);
2621 
2622 void kern_unmount(struct vfsmount *mnt)
2623 {
2624 	/* release long term mount so mount point can be released */
2625 	if (!IS_ERR_OR_NULL(mnt)) {
2626 		mnt_make_shortterm(mnt);
2627 		mntput(mnt);
2628 	}
2629 }
2630 EXPORT_SYMBOL(kern_unmount);
2631 
2632 bool our_mnt(struct vfsmount *mnt)
2633 {
2634 	return check_mnt(real_mount(mnt));
2635 }
2636