1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/namespace.c 4 * 5 * (C) Copyright Al Viro 2000, 2001 6 * 7 * Based on code from fs/super.c, copyright Linus Torvalds and others. 8 * Heavily rewritten. 9 */ 10 11 #include <linux/syscalls.h> 12 #include <linux/export.h> 13 #include <linux/capability.h> 14 #include <linux/mnt_namespace.h> 15 #include <linux/user_namespace.h> 16 #include <linux/namei.h> 17 #include <linux/security.h> 18 #include <linux/cred.h> 19 #include <linux/idr.h> 20 #include <linux/init.h> /* init_rootfs */ 21 #include <linux/fs_struct.h> /* get_fs_root et.al. */ 22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */ 23 #include <linux/file.h> 24 #include <linux/uaccess.h> 25 #include <linux/proc_ns.h> 26 #include <linux/magic.h> 27 #include <linux/memblock.h> 28 #include <linux/proc_fs.h> 29 #include <linux/task_work.h> 30 #include <linux/sched/task.h> 31 #include <uapi/linux/mount.h> 32 #include <linux/fs_context.h> 33 #include <linux/shmem_fs.h> 34 #include <linux/mnt_idmapping.h> 35 36 #include "pnode.h" 37 #include "internal.h" 38 39 /* Maximum number of mounts in a mount namespace */ 40 static unsigned int sysctl_mount_max __read_mostly = 100000; 41 42 static unsigned int m_hash_mask __read_mostly; 43 static unsigned int m_hash_shift __read_mostly; 44 static unsigned int mp_hash_mask __read_mostly; 45 static unsigned int mp_hash_shift __read_mostly; 46 47 static __initdata unsigned long mhash_entries; 48 static int __init set_mhash_entries(char *str) 49 { 50 if (!str) 51 return 0; 52 mhash_entries = simple_strtoul(str, &str, 0); 53 return 1; 54 } 55 __setup("mhash_entries=", set_mhash_entries); 56 57 static __initdata unsigned long mphash_entries; 58 static int __init set_mphash_entries(char *str) 59 { 60 if (!str) 61 return 0; 62 mphash_entries = simple_strtoul(str, &str, 0); 63 return 1; 64 } 65 __setup("mphash_entries=", set_mphash_entries); 66 67 static u64 event; 68 static DEFINE_IDA(mnt_id_ida); 69 static DEFINE_IDA(mnt_group_ida); 70 71 static struct hlist_head *mount_hashtable __read_mostly; 72 static struct hlist_head *mountpoint_hashtable __read_mostly; 73 static struct kmem_cache *mnt_cache __read_mostly; 74 static DECLARE_RWSEM(namespace_sem); 75 static HLIST_HEAD(unmounted); /* protected by namespace_sem */ 76 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */ 77 78 struct mnt_idmap { 79 struct user_namespace *owner; 80 refcount_t count; 81 }; 82 83 /* 84 * Carries the initial idmapping of 0:0:4294967295 which is an identity 85 * mapping. This means that {g,u}id 0 is mapped to {g,u}id 0, {g,u}id 1 is 86 * mapped to {g,u}id 1, [...], {g,u}id 1000 to {g,u}id 1000, [...]. 87 */ 88 struct mnt_idmap nop_mnt_idmap = { 89 .owner = &init_user_ns, 90 .count = REFCOUNT_INIT(1), 91 }; 92 EXPORT_SYMBOL_GPL(nop_mnt_idmap); 93 94 struct mount_kattr { 95 unsigned int attr_set; 96 unsigned int attr_clr; 97 unsigned int propagation; 98 unsigned int lookup_flags; 99 bool recurse; 100 struct user_namespace *mnt_userns; 101 struct mnt_idmap *mnt_idmap; 102 }; 103 104 /* /sys/fs */ 105 struct kobject *fs_kobj; 106 EXPORT_SYMBOL_GPL(fs_kobj); 107 108 /* 109 * vfsmount lock may be taken for read to prevent changes to the 110 * vfsmount hash, ie. during mountpoint lookups or walking back 111 * up the tree. 112 * 113 * It should be taken for write in all cases where the vfsmount 114 * tree or hash is modified or when a vfsmount structure is modified. 115 */ 116 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock); 117 118 static inline void lock_mount_hash(void) 119 { 120 write_seqlock(&mount_lock); 121 } 122 123 static inline void unlock_mount_hash(void) 124 { 125 write_sequnlock(&mount_lock); 126 } 127 128 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry) 129 { 130 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); 131 tmp += ((unsigned long)dentry / L1_CACHE_BYTES); 132 tmp = tmp + (tmp >> m_hash_shift); 133 return &mount_hashtable[tmp & m_hash_mask]; 134 } 135 136 static inline struct hlist_head *mp_hash(struct dentry *dentry) 137 { 138 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES); 139 tmp = tmp + (tmp >> mp_hash_shift); 140 return &mountpoint_hashtable[tmp & mp_hash_mask]; 141 } 142 143 static int mnt_alloc_id(struct mount *mnt) 144 { 145 int res = ida_alloc(&mnt_id_ida, GFP_KERNEL); 146 147 if (res < 0) 148 return res; 149 mnt->mnt_id = res; 150 return 0; 151 } 152 153 static void mnt_free_id(struct mount *mnt) 154 { 155 ida_free(&mnt_id_ida, mnt->mnt_id); 156 } 157 158 /* 159 * Allocate a new peer group ID 160 */ 161 static int mnt_alloc_group_id(struct mount *mnt) 162 { 163 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL); 164 165 if (res < 0) 166 return res; 167 mnt->mnt_group_id = res; 168 return 0; 169 } 170 171 /* 172 * Release a peer group ID 173 */ 174 void mnt_release_group_id(struct mount *mnt) 175 { 176 ida_free(&mnt_group_ida, mnt->mnt_group_id); 177 mnt->mnt_group_id = 0; 178 } 179 180 /* 181 * vfsmount lock must be held for read 182 */ 183 static inline void mnt_add_count(struct mount *mnt, int n) 184 { 185 #ifdef CONFIG_SMP 186 this_cpu_add(mnt->mnt_pcp->mnt_count, n); 187 #else 188 preempt_disable(); 189 mnt->mnt_count += n; 190 preempt_enable(); 191 #endif 192 } 193 194 /* 195 * vfsmount lock must be held for write 196 */ 197 int mnt_get_count(struct mount *mnt) 198 { 199 #ifdef CONFIG_SMP 200 int count = 0; 201 int cpu; 202 203 for_each_possible_cpu(cpu) { 204 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count; 205 } 206 207 return count; 208 #else 209 return mnt->mnt_count; 210 #endif 211 } 212 213 /** 214 * mnt_idmap_owner - retrieve owner of the mount's idmapping 215 * @idmap: mount idmapping 216 * 217 * This helper will go away once the conversion to use struct mnt_idmap 218 * everywhere has finished at which point the helper will be unexported. 219 * 220 * Only code that needs to perform permission checks based on the owner of the 221 * idmapping will get access to it. All other code will solely rely on 222 * idmappings. This will get us type safety so it's impossible to conflate 223 * filesystems idmappings with mount idmappings. 224 * 225 * Return: The owner of the idmapping. 226 */ 227 struct user_namespace *mnt_idmap_owner(const struct mnt_idmap *idmap) 228 { 229 return idmap->owner; 230 } 231 EXPORT_SYMBOL_GPL(mnt_idmap_owner); 232 233 /** 234 * mnt_user_ns - retrieve owner of an idmapped mount 235 * @mnt: the relevant vfsmount 236 * 237 * This helper will go away once the conversion to use struct mnt_idmap 238 * everywhere has finished at which point the helper will be unexported. 239 * 240 * Only code that needs to perform permission checks based on the owner of the 241 * idmapping will get access to it. All other code will solely rely on 242 * idmappings. This will get us type safety so it's impossible to conflate 243 * filesystems idmappings with mount idmappings. 244 * 245 * Return: The owner of the idmapped. 246 */ 247 struct user_namespace *mnt_user_ns(const struct vfsmount *mnt) 248 { 249 struct mnt_idmap *idmap = mnt_idmap(mnt); 250 251 /* Return the actual owner of the filesystem instead of the nop. */ 252 if (idmap == &nop_mnt_idmap && 253 !initial_idmapping(mnt->mnt_sb->s_user_ns)) 254 return mnt->mnt_sb->s_user_ns; 255 return mnt_idmap_owner(idmap); 256 } 257 EXPORT_SYMBOL_GPL(mnt_user_ns); 258 259 /** 260 * alloc_mnt_idmap - allocate a new idmapping for the mount 261 * @mnt_userns: owning userns of the idmapping 262 * 263 * Allocate a new struct mnt_idmap which carries the idmapping of the mount. 264 * 265 * Return: On success a new idmap, on error an error pointer is returned. 266 */ 267 static struct mnt_idmap *alloc_mnt_idmap(struct user_namespace *mnt_userns) 268 { 269 struct mnt_idmap *idmap; 270 271 idmap = kzalloc(sizeof(struct mnt_idmap), GFP_KERNEL_ACCOUNT); 272 if (!idmap) 273 return ERR_PTR(-ENOMEM); 274 275 idmap->owner = get_user_ns(mnt_userns); 276 refcount_set(&idmap->count, 1); 277 return idmap; 278 } 279 280 /** 281 * mnt_idmap_get - get a reference to an idmapping 282 * @idmap: the idmap to bump the reference on 283 * 284 * If @idmap is not the @nop_mnt_idmap bump the reference count. 285 * 286 * Return: @idmap with reference count bumped if @not_mnt_idmap isn't passed. 287 */ 288 static inline struct mnt_idmap *mnt_idmap_get(struct mnt_idmap *idmap) 289 { 290 if (idmap != &nop_mnt_idmap) 291 refcount_inc(&idmap->count); 292 293 return idmap; 294 } 295 296 /** 297 * mnt_idmap_put - put a reference to an idmapping 298 * @idmap: the idmap to put the reference on 299 * 300 * If this is a non-initial idmapping, put the reference count when a mount is 301 * released and free it if we're the last user. 302 */ 303 static inline void mnt_idmap_put(struct mnt_idmap *idmap) 304 { 305 if (idmap != &nop_mnt_idmap && refcount_dec_and_test(&idmap->count)) { 306 put_user_ns(idmap->owner); 307 kfree(idmap); 308 } 309 } 310 311 static struct mount *alloc_vfsmnt(const char *name) 312 { 313 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); 314 if (mnt) { 315 int err; 316 317 err = mnt_alloc_id(mnt); 318 if (err) 319 goto out_free_cache; 320 321 if (name) { 322 mnt->mnt_devname = kstrdup_const(name, 323 GFP_KERNEL_ACCOUNT); 324 if (!mnt->mnt_devname) 325 goto out_free_id; 326 } 327 328 #ifdef CONFIG_SMP 329 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp); 330 if (!mnt->mnt_pcp) 331 goto out_free_devname; 332 333 this_cpu_add(mnt->mnt_pcp->mnt_count, 1); 334 #else 335 mnt->mnt_count = 1; 336 mnt->mnt_writers = 0; 337 #endif 338 339 INIT_HLIST_NODE(&mnt->mnt_hash); 340 INIT_LIST_HEAD(&mnt->mnt_child); 341 INIT_LIST_HEAD(&mnt->mnt_mounts); 342 INIT_LIST_HEAD(&mnt->mnt_list); 343 INIT_LIST_HEAD(&mnt->mnt_expire); 344 INIT_LIST_HEAD(&mnt->mnt_share); 345 INIT_LIST_HEAD(&mnt->mnt_slave_list); 346 INIT_LIST_HEAD(&mnt->mnt_slave); 347 INIT_HLIST_NODE(&mnt->mnt_mp_list); 348 INIT_LIST_HEAD(&mnt->mnt_umounting); 349 INIT_HLIST_HEAD(&mnt->mnt_stuck_children); 350 mnt->mnt.mnt_idmap = &nop_mnt_idmap; 351 } 352 return mnt; 353 354 #ifdef CONFIG_SMP 355 out_free_devname: 356 kfree_const(mnt->mnt_devname); 357 #endif 358 out_free_id: 359 mnt_free_id(mnt); 360 out_free_cache: 361 kmem_cache_free(mnt_cache, mnt); 362 return NULL; 363 } 364 365 /* 366 * Most r/o checks on a fs are for operations that take 367 * discrete amounts of time, like a write() or unlink(). 368 * We must keep track of when those operations start 369 * (for permission checks) and when they end, so that 370 * we can determine when writes are able to occur to 371 * a filesystem. 372 */ 373 /* 374 * __mnt_is_readonly: check whether a mount is read-only 375 * @mnt: the mount to check for its write status 376 * 377 * This shouldn't be used directly ouside of the VFS. 378 * It does not guarantee that the filesystem will stay 379 * r/w, just that it is right *now*. This can not and 380 * should not be used in place of IS_RDONLY(inode). 381 * mnt_want/drop_write() will _keep_ the filesystem 382 * r/w. 383 */ 384 bool __mnt_is_readonly(struct vfsmount *mnt) 385 { 386 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb); 387 } 388 EXPORT_SYMBOL_GPL(__mnt_is_readonly); 389 390 static inline void mnt_inc_writers(struct mount *mnt) 391 { 392 #ifdef CONFIG_SMP 393 this_cpu_inc(mnt->mnt_pcp->mnt_writers); 394 #else 395 mnt->mnt_writers++; 396 #endif 397 } 398 399 static inline void mnt_dec_writers(struct mount *mnt) 400 { 401 #ifdef CONFIG_SMP 402 this_cpu_dec(mnt->mnt_pcp->mnt_writers); 403 #else 404 mnt->mnt_writers--; 405 #endif 406 } 407 408 static unsigned int mnt_get_writers(struct mount *mnt) 409 { 410 #ifdef CONFIG_SMP 411 unsigned int count = 0; 412 int cpu; 413 414 for_each_possible_cpu(cpu) { 415 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers; 416 } 417 418 return count; 419 #else 420 return mnt->mnt_writers; 421 #endif 422 } 423 424 static int mnt_is_readonly(struct vfsmount *mnt) 425 { 426 if (mnt->mnt_sb->s_readonly_remount) 427 return 1; 428 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */ 429 smp_rmb(); 430 return __mnt_is_readonly(mnt); 431 } 432 433 /* 434 * Most r/o & frozen checks on a fs are for operations that take discrete 435 * amounts of time, like a write() or unlink(). We must keep track of when 436 * those operations start (for permission checks) and when they end, so that we 437 * can determine when writes are able to occur to a filesystem. 438 */ 439 /** 440 * __mnt_want_write - get write access to a mount without freeze protection 441 * @m: the mount on which to take a write 442 * 443 * This tells the low-level filesystem that a write is about to be performed to 444 * it, and makes sure that writes are allowed (mnt it read-write) before 445 * returning success. This operation does not protect against filesystem being 446 * frozen. When the write operation is finished, __mnt_drop_write() must be 447 * called. This is effectively a refcount. 448 */ 449 int __mnt_want_write(struct vfsmount *m) 450 { 451 struct mount *mnt = real_mount(m); 452 int ret = 0; 453 454 preempt_disable(); 455 mnt_inc_writers(mnt); 456 /* 457 * The store to mnt_inc_writers must be visible before we pass 458 * MNT_WRITE_HOLD loop below, so that the slowpath can see our 459 * incremented count after it has set MNT_WRITE_HOLD. 460 */ 461 smp_mb(); 462 might_lock(&mount_lock.lock); 463 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) { 464 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) { 465 cpu_relax(); 466 } else { 467 /* 468 * This prevents priority inversion, if the task 469 * setting MNT_WRITE_HOLD got preempted on a remote 470 * CPU, and it prevents life lock if the task setting 471 * MNT_WRITE_HOLD has a lower priority and is bound to 472 * the same CPU as the task that is spinning here. 473 */ 474 preempt_enable(); 475 lock_mount_hash(); 476 unlock_mount_hash(); 477 preempt_disable(); 478 } 479 } 480 /* 481 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will 482 * be set to match its requirements. So we must not load that until 483 * MNT_WRITE_HOLD is cleared. 484 */ 485 smp_rmb(); 486 if (mnt_is_readonly(m)) { 487 mnt_dec_writers(mnt); 488 ret = -EROFS; 489 } 490 preempt_enable(); 491 492 return ret; 493 } 494 495 /** 496 * mnt_want_write - get write access to a mount 497 * @m: the mount on which to take a write 498 * 499 * This tells the low-level filesystem that a write is about to be performed to 500 * it, and makes sure that writes are allowed (mount is read-write, filesystem 501 * is not frozen) before returning success. When the write operation is 502 * finished, mnt_drop_write() must be called. This is effectively a refcount. 503 */ 504 int mnt_want_write(struct vfsmount *m) 505 { 506 int ret; 507 508 sb_start_write(m->mnt_sb); 509 ret = __mnt_want_write(m); 510 if (ret) 511 sb_end_write(m->mnt_sb); 512 return ret; 513 } 514 EXPORT_SYMBOL_GPL(mnt_want_write); 515 516 /** 517 * __mnt_want_write_file - get write access to a file's mount 518 * @file: the file who's mount on which to take a write 519 * 520 * This is like __mnt_want_write, but if the file is already open for writing it 521 * skips incrementing mnt_writers (since the open file already has a reference) 522 * and instead only does the check for emergency r/o remounts. This must be 523 * paired with __mnt_drop_write_file. 524 */ 525 int __mnt_want_write_file(struct file *file) 526 { 527 if (file->f_mode & FMODE_WRITER) { 528 /* 529 * Superblock may have become readonly while there are still 530 * writable fd's, e.g. due to a fs error with errors=remount-ro 531 */ 532 if (__mnt_is_readonly(file->f_path.mnt)) 533 return -EROFS; 534 return 0; 535 } 536 return __mnt_want_write(file->f_path.mnt); 537 } 538 539 /** 540 * mnt_want_write_file - get write access to a file's mount 541 * @file: the file who's mount on which to take a write 542 * 543 * This is like mnt_want_write, but if the file is already open for writing it 544 * skips incrementing mnt_writers (since the open file already has a reference) 545 * and instead only does the freeze protection and the check for emergency r/o 546 * remounts. This must be paired with mnt_drop_write_file. 547 */ 548 int mnt_want_write_file(struct file *file) 549 { 550 int ret; 551 552 sb_start_write(file_inode(file)->i_sb); 553 ret = __mnt_want_write_file(file); 554 if (ret) 555 sb_end_write(file_inode(file)->i_sb); 556 return ret; 557 } 558 EXPORT_SYMBOL_GPL(mnt_want_write_file); 559 560 /** 561 * __mnt_drop_write - give up write access to a mount 562 * @mnt: the mount on which to give up write access 563 * 564 * Tells the low-level filesystem that we are done 565 * performing writes to it. Must be matched with 566 * __mnt_want_write() call above. 567 */ 568 void __mnt_drop_write(struct vfsmount *mnt) 569 { 570 preempt_disable(); 571 mnt_dec_writers(real_mount(mnt)); 572 preempt_enable(); 573 } 574 575 /** 576 * mnt_drop_write - give up write access to a mount 577 * @mnt: the mount on which to give up write access 578 * 579 * Tells the low-level filesystem that we are done performing writes to it and 580 * also allows filesystem to be frozen again. Must be matched with 581 * mnt_want_write() call above. 582 */ 583 void mnt_drop_write(struct vfsmount *mnt) 584 { 585 __mnt_drop_write(mnt); 586 sb_end_write(mnt->mnt_sb); 587 } 588 EXPORT_SYMBOL_GPL(mnt_drop_write); 589 590 void __mnt_drop_write_file(struct file *file) 591 { 592 if (!(file->f_mode & FMODE_WRITER)) 593 __mnt_drop_write(file->f_path.mnt); 594 } 595 596 void mnt_drop_write_file(struct file *file) 597 { 598 __mnt_drop_write_file(file); 599 sb_end_write(file_inode(file)->i_sb); 600 } 601 EXPORT_SYMBOL(mnt_drop_write_file); 602 603 /** 604 * mnt_hold_writers - prevent write access to the given mount 605 * @mnt: mnt to prevent write access to 606 * 607 * Prevents write access to @mnt if there are no active writers for @mnt. 608 * This function needs to be called and return successfully before changing 609 * properties of @mnt that need to remain stable for callers with write access 610 * to @mnt. 611 * 612 * After this functions has been called successfully callers must pair it with 613 * a call to mnt_unhold_writers() in order to stop preventing write access to 614 * @mnt. 615 * 616 * Context: This function expects lock_mount_hash() to be held serializing 617 * setting MNT_WRITE_HOLD. 618 * Return: On success 0 is returned. 619 * On error, -EBUSY is returned. 620 */ 621 static inline int mnt_hold_writers(struct mount *mnt) 622 { 623 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 624 /* 625 * After storing MNT_WRITE_HOLD, we'll read the counters. This store 626 * should be visible before we do. 627 */ 628 smp_mb(); 629 630 /* 631 * With writers on hold, if this value is zero, then there are 632 * definitely no active writers (although held writers may subsequently 633 * increment the count, they'll have to wait, and decrement it after 634 * seeing MNT_READONLY). 635 * 636 * It is OK to have counter incremented on one CPU and decremented on 637 * another: the sum will add up correctly. The danger would be when we 638 * sum up each counter, if we read a counter before it is incremented, 639 * but then read another CPU's count which it has been subsequently 640 * decremented from -- we would see more decrements than we should. 641 * MNT_WRITE_HOLD protects against this scenario, because 642 * mnt_want_write first increments count, then smp_mb, then spins on 643 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while 644 * we're counting up here. 645 */ 646 if (mnt_get_writers(mnt) > 0) 647 return -EBUSY; 648 649 return 0; 650 } 651 652 /** 653 * mnt_unhold_writers - stop preventing write access to the given mount 654 * @mnt: mnt to stop preventing write access to 655 * 656 * Stop preventing write access to @mnt allowing callers to gain write access 657 * to @mnt again. 658 * 659 * This function can only be called after a successful call to 660 * mnt_hold_writers(). 661 * 662 * Context: This function expects lock_mount_hash() to be held. 663 */ 664 static inline void mnt_unhold_writers(struct mount *mnt) 665 { 666 /* 667 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers 668 * that become unheld will see MNT_READONLY. 669 */ 670 smp_wmb(); 671 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 672 } 673 674 static int mnt_make_readonly(struct mount *mnt) 675 { 676 int ret; 677 678 ret = mnt_hold_writers(mnt); 679 if (!ret) 680 mnt->mnt.mnt_flags |= MNT_READONLY; 681 mnt_unhold_writers(mnt); 682 return ret; 683 } 684 685 int sb_prepare_remount_readonly(struct super_block *sb) 686 { 687 struct mount *mnt; 688 int err = 0; 689 690 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */ 691 if (atomic_long_read(&sb->s_remove_count)) 692 return -EBUSY; 693 694 lock_mount_hash(); 695 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 696 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) { 697 err = mnt_hold_writers(mnt); 698 if (err) 699 break; 700 } 701 } 702 if (!err && atomic_long_read(&sb->s_remove_count)) 703 err = -EBUSY; 704 705 if (!err) { 706 sb->s_readonly_remount = 1; 707 smp_wmb(); 708 } 709 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 710 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD) 711 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 712 } 713 unlock_mount_hash(); 714 715 return err; 716 } 717 718 static void free_vfsmnt(struct mount *mnt) 719 { 720 mnt_idmap_put(mnt_idmap(&mnt->mnt)); 721 kfree_const(mnt->mnt_devname); 722 #ifdef CONFIG_SMP 723 free_percpu(mnt->mnt_pcp); 724 #endif 725 kmem_cache_free(mnt_cache, mnt); 726 } 727 728 static void delayed_free_vfsmnt(struct rcu_head *head) 729 { 730 free_vfsmnt(container_of(head, struct mount, mnt_rcu)); 731 } 732 733 /* call under rcu_read_lock */ 734 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq) 735 { 736 struct mount *mnt; 737 if (read_seqretry(&mount_lock, seq)) 738 return 1; 739 if (bastard == NULL) 740 return 0; 741 mnt = real_mount(bastard); 742 mnt_add_count(mnt, 1); 743 smp_mb(); // see mntput_no_expire() 744 if (likely(!read_seqretry(&mount_lock, seq))) 745 return 0; 746 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) { 747 mnt_add_count(mnt, -1); 748 return 1; 749 } 750 lock_mount_hash(); 751 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) { 752 mnt_add_count(mnt, -1); 753 unlock_mount_hash(); 754 return 1; 755 } 756 unlock_mount_hash(); 757 /* caller will mntput() */ 758 return -1; 759 } 760 761 /* call under rcu_read_lock */ 762 static bool legitimize_mnt(struct vfsmount *bastard, unsigned seq) 763 { 764 int res = __legitimize_mnt(bastard, seq); 765 if (likely(!res)) 766 return true; 767 if (unlikely(res < 0)) { 768 rcu_read_unlock(); 769 mntput(bastard); 770 rcu_read_lock(); 771 } 772 return false; 773 } 774 775 /* 776 * find the first mount at @dentry on vfsmount @mnt. 777 * call under rcu_read_lock() 778 */ 779 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry) 780 { 781 struct hlist_head *head = m_hash(mnt, dentry); 782 struct mount *p; 783 784 hlist_for_each_entry_rcu(p, head, mnt_hash) 785 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) 786 return p; 787 return NULL; 788 } 789 790 /* 791 * lookup_mnt - Return the first child mount mounted at path 792 * 793 * "First" means first mounted chronologically. If you create the 794 * following mounts: 795 * 796 * mount /dev/sda1 /mnt 797 * mount /dev/sda2 /mnt 798 * mount /dev/sda3 /mnt 799 * 800 * Then lookup_mnt() on the base /mnt dentry in the root mount will 801 * return successively the root dentry and vfsmount of /dev/sda1, then 802 * /dev/sda2, then /dev/sda3, then NULL. 803 * 804 * lookup_mnt takes a reference to the found vfsmount. 805 */ 806 struct vfsmount *lookup_mnt(const struct path *path) 807 { 808 struct mount *child_mnt; 809 struct vfsmount *m; 810 unsigned seq; 811 812 rcu_read_lock(); 813 do { 814 seq = read_seqbegin(&mount_lock); 815 child_mnt = __lookup_mnt(path->mnt, path->dentry); 816 m = child_mnt ? &child_mnt->mnt : NULL; 817 } while (!legitimize_mnt(m, seq)); 818 rcu_read_unlock(); 819 return m; 820 } 821 822 static inline void lock_ns_list(struct mnt_namespace *ns) 823 { 824 spin_lock(&ns->ns_lock); 825 } 826 827 static inline void unlock_ns_list(struct mnt_namespace *ns) 828 { 829 spin_unlock(&ns->ns_lock); 830 } 831 832 static inline bool mnt_is_cursor(struct mount *mnt) 833 { 834 return mnt->mnt.mnt_flags & MNT_CURSOR; 835 } 836 837 /* 838 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the 839 * current mount namespace. 840 * 841 * The common case is dentries are not mountpoints at all and that 842 * test is handled inline. For the slow case when we are actually 843 * dealing with a mountpoint of some kind, walk through all of the 844 * mounts in the current mount namespace and test to see if the dentry 845 * is a mountpoint. 846 * 847 * The mount_hashtable is not usable in the context because we 848 * need to identify all mounts that may be in the current mount 849 * namespace not just a mount that happens to have some specified 850 * parent mount. 851 */ 852 bool __is_local_mountpoint(struct dentry *dentry) 853 { 854 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 855 struct mount *mnt; 856 bool is_covered = false; 857 858 down_read(&namespace_sem); 859 lock_ns_list(ns); 860 list_for_each_entry(mnt, &ns->list, mnt_list) { 861 if (mnt_is_cursor(mnt)) 862 continue; 863 is_covered = (mnt->mnt_mountpoint == dentry); 864 if (is_covered) 865 break; 866 } 867 unlock_ns_list(ns); 868 up_read(&namespace_sem); 869 870 return is_covered; 871 } 872 873 static struct mountpoint *lookup_mountpoint(struct dentry *dentry) 874 { 875 struct hlist_head *chain = mp_hash(dentry); 876 struct mountpoint *mp; 877 878 hlist_for_each_entry(mp, chain, m_hash) { 879 if (mp->m_dentry == dentry) { 880 mp->m_count++; 881 return mp; 882 } 883 } 884 return NULL; 885 } 886 887 static struct mountpoint *get_mountpoint(struct dentry *dentry) 888 { 889 struct mountpoint *mp, *new = NULL; 890 int ret; 891 892 if (d_mountpoint(dentry)) { 893 /* might be worth a WARN_ON() */ 894 if (d_unlinked(dentry)) 895 return ERR_PTR(-ENOENT); 896 mountpoint: 897 read_seqlock_excl(&mount_lock); 898 mp = lookup_mountpoint(dentry); 899 read_sequnlock_excl(&mount_lock); 900 if (mp) 901 goto done; 902 } 903 904 if (!new) 905 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL); 906 if (!new) 907 return ERR_PTR(-ENOMEM); 908 909 910 /* Exactly one processes may set d_mounted */ 911 ret = d_set_mounted(dentry); 912 913 /* Someone else set d_mounted? */ 914 if (ret == -EBUSY) 915 goto mountpoint; 916 917 /* The dentry is not available as a mountpoint? */ 918 mp = ERR_PTR(ret); 919 if (ret) 920 goto done; 921 922 /* Add the new mountpoint to the hash table */ 923 read_seqlock_excl(&mount_lock); 924 new->m_dentry = dget(dentry); 925 new->m_count = 1; 926 hlist_add_head(&new->m_hash, mp_hash(dentry)); 927 INIT_HLIST_HEAD(&new->m_list); 928 read_sequnlock_excl(&mount_lock); 929 930 mp = new; 931 new = NULL; 932 done: 933 kfree(new); 934 return mp; 935 } 936 937 /* 938 * vfsmount lock must be held. Additionally, the caller is responsible 939 * for serializing calls for given disposal list. 940 */ 941 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list) 942 { 943 if (!--mp->m_count) { 944 struct dentry *dentry = mp->m_dentry; 945 BUG_ON(!hlist_empty(&mp->m_list)); 946 spin_lock(&dentry->d_lock); 947 dentry->d_flags &= ~DCACHE_MOUNTED; 948 spin_unlock(&dentry->d_lock); 949 dput_to_list(dentry, list); 950 hlist_del(&mp->m_hash); 951 kfree(mp); 952 } 953 } 954 955 /* called with namespace_lock and vfsmount lock */ 956 static void put_mountpoint(struct mountpoint *mp) 957 { 958 __put_mountpoint(mp, &ex_mountpoints); 959 } 960 961 static inline int check_mnt(struct mount *mnt) 962 { 963 return mnt->mnt_ns == current->nsproxy->mnt_ns; 964 } 965 966 /* 967 * vfsmount lock must be held for write 968 */ 969 static void touch_mnt_namespace(struct mnt_namespace *ns) 970 { 971 if (ns) { 972 ns->event = ++event; 973 wake_up_interruptible(&ns->poll); 974 } 975 } 976 977 /* 978 * vfsmount lock must be held for write 979 */ 980 static void __touch_mnt_namespace(struct mnt_namespace *ns) 981 { 982 if (ns && ns->event != event) { 983 ns->event = event; 984 wake_up_interruptible(&ns->poll); 985 } 986 } 987 988 /* 989 * vfsmount lock must be held for write 990 */ 991 static struct mountpoint *unhash_mnt(struct mount *mnt) 992 { 993 struct mountpoint *mp; 994 mnt->mnt_parent = mnt; 995 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 996 list_del_init(&mnt->mnt_child); 997 hlist_del_init_rcu(&mnt->mnt_hash); 998 hlist_del_init(&mnt->mnt_mp_list); 999 mp = mnt->mnt_mp; 1000 mnt->mnt_mp = NULL; 1001 return mp; 1002 } 1003 1004 /* 1005 * vfsmount lock must be held for write 1006 */ 1007 static void umount_mnt(struct mount *mnt) 1008 { 1009 put_mountpoint(unhash_mnt(mnt)); 1010 } 1011 1012 /* 1013 * vfsmount lock must be held for write 1014 */ 1015 void mnt_set_mountpoint(struct mount *mnt, 1016 struct mountpoint *mp, 1017 struct mount *child_mnt) 1018 { 1019 mp->m_count++; 1020 mnt_add_count(mnt, 1); /* essentially, that's mntget */ 1021 child_mnt->mnt_mountpoint = mp->m_dentry; 1022 child_mnt->mnt_parent = mnt; 1023 child_mnt->mnt_mp = mp; 1024 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list); 1025 } 1026 1027 static void __attach_mnt(struct mount *mnt, struct mount *parent) 1028 { 1029 hlist_add_head_rcu(&mnt->mnt_hash, 1030 m_hash(&parent->mnt, mnt->mnt_mountpoint)); 1031 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 1032 } 1033 1034 /* 1035 * vfsmount lock must be held for write 1036 */ 1037 static void attach_mnt(struct mount *mnt, 1038 struct mount *parent, 1039 struct mountpoint *mp) 1040 { 1041 mnt_set_mountpoint(parent, mp, mnt); 1042 __attach_mnt(mnt, parent); 1043 } 1044 1045 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt) 1046 { 1047 struct mountpoint *old_mp = mnt->mnt_mp; 1048 struct mount *old_parent = mnt->mnt_parent; 1049 1050 list_del_init(&mnt->mnt_child); 1051 hlist_del_init(&mnt->mnt_mp_list); 1052 hlist_del_init_rcu(&mnt->mnt_hash); 1053 1054 attach_mnt(mnt, parent, mp); 1055 1056 put_mountpoint(old_mp); 1057 mnt_add_count(old_parent, -1); 1058 } 1059 1060 /* 1061 * vfsmount lock must be held for write 1062 */ 1063 static void commit_tree(struct mount *mnt) 1064 { 1065 struct mount *parent = mnt->mnt_parent; 1066 struct mount *m; 1067 LIST_HEAD(head); 1068 struct mnt_namespace *n = parent->mnt_ns; 1069 1070 BUG_ON(parent == mnt); 1071 1072 list_add_tail(&head, &mnt->mnt_list); 1073 list_for_each_entry(m, &head, mnt_list) 1074 m->mnt_ns = n; 1075 1076 list_splice(&head, n->list.prev); 1077 1078 n->mounts += n->pending_mounts; 1079 n->pending_mounts = 0; 1080 1081 __attach_mnt(mnt, parent); 1082 touch_mnt_namespace(n); 1083 } 1084 1085 static struct mount *next_mnt(struct mount *p, struct mount *root) 1086 { 1087 struct list_head *next = p->mnt_mounts.next; 1088 if (next == &p->mnt_mounts) { 1089 while (1) { 1090 if (p == root) 1091 return NULL; 1092 next = p->mnt_child.next; 1093 if (next != &p->mnt_parent->mnt_mounts) 1094 break; 1095 p = p->mnt_parent; 1096 } 1097 } 1098 return list_entry(next, struct mount, mnt_child); 1099 } 1100 1101 static struct mount *skip_mnt_tree(struct mount *p) 1102 { 1103 struct list_head *prev = p->mnt_mounts.prev; 1104 while (prev != &p->mnt_mounts) { 1105 p = list_entry(prev, struct mount, mnt_child); 1106 prev = p->mnt_mounts.prev; 1107 } 1108 return p; 1109 } 1110 1111 /** 1112 * vfs_create_mount - Create a mount for a configured superblock 1113 * @fc: The configuration context with the superblock attached 1114 * 1115 * Create a mount to an already configured superblock. If necessary, the 1116 * caller should invoke vfs_get_tree() before calling this. 1117 * 1118 * Note that this does not attach the mount to anything. 1119 */ 1120 struct vfsmount *vfs_create_mount(struct fs_context *fc) 1121 { 1122 struct mount *mnt; 1123 1124 if (!fc->root) 1125 return ERR_PTR(-EINVAL); 1126 1127 mnt = alloc_vfsmnt(fc->source ?: "none"); 1128 if (!mnt) 1129 return ERR_PTR(-ENOMEM); 1130 1131 if (fc->sb_flags & SB_KERNMOUNT) 1132 mnt->mnt.mnt_flags = MNT_INTERNAL; 1133 1134 atomic_inc(&fc->root->d_sb->s_active); 1135 mnt->mnt.mnt_sb = fc->root->d_sb; 1136 mnt->mnt.mnt_root = dget(fc->root); 1137 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 1138 mnt->mnt_parent = mnt; 1139 1140 lock_mount_hash(); 1141 list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts); 1142 unlock_mount_hash(); 1143 return &mnt->mnt; 1144 } 1145 EXPORT_SYMBOL(vfs_create_mount); 1146 1147 struct vfsmount *fc_mount(struct fs_context *fc) 1148 { 1149 int err = vfs_get_tree(fc); 1150 if (!err) { 1151 up_write(&fc->root->d_sb->s_umount); 1152 return vfs_create_mount(fc); 1153 } 1154 return ERR_PTR(err); 1155 } 1156 EXPORT_SYMBOL(fc_mount); 1157 1158 struct vfsmount *vfs_kern_mount(struct file_system_type *type, 1159 int flags, const char *name, 1160 void *data) 1161 { 1162 struct fs_context *fc; 1163 struct vfsmount *mnt; 1164 int ret = 0; 1165 1166 if (!type) 1167 return ERR_PTR(-EINVAL); 1168 1169 fc = fs_context_for_mount(type, flags); 1170 if (IS_ERR(fc)) 1171 return ERR_CAST(fc); 1172 1173 if (name) 1174 ret = vfs_parse_fs_string(fc, "source", 1175 name, strlen(name)); 1176 if (!ret) 1177 ret = parse_monolithic_mount_data(fc, data); 1178 if (!ret) 1179 mnt = fc_mount(fc); 1180 else 1181 mnt = ERR_PTR(ret); 1182 1183 put_fs_context(fc); 1184 return mnt; 1185 } 1186 EXPORT_SYMBOL_GPL(vfs_kern_mount); 1187 1188 struct vfsmount * 1189 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type, 1190 const char *name, void *data) 1191 { 1192 /* Until it is worked out how to pass the user namespace 1193 * through from the parent mount to the submount don't support 1194 * unprivileged mounts with submounts. 1195 */ 1196 if (mountpoint->d_sb->s_user_ns != &init_user_ns) 1197 return ERR_PTR(-EPERM); 1198 1199 return vfs_kern_mount(type, SB_SUBMOUNT, name, data); 1200 } 1201 EXPORT_SYMBOL_GPL(vfs_submount); 1202 1203 static struct mount *clone_mnt(struct mount *old, struct dentry *root, 1204 int flag) 1205 { 1206 struct super_block *sb = old->mnt.mnt_sb; 1207 struct mount *mnt; 1208 int err; 1209 1210 mnt = alloc_vfsmnt(old->mnt_devname); 1211 if (!mnt) 1212 return ERR_PTR(-ENOMEM); 1213 1214 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE)) 1215 mnt->mnt_group_id = 0; /* not a peer of original */ 1216 else 1217 mnt->mnt_group_id = old->mnt_group_id; 1218 1219 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) { 1220 err = mnt_alloc_group_id(mnt); 1221 if (err) 1222 goto out_free; 1223 } 1224 1225 mnt->mnt.mnt_flags = old->mnt.mnt_flags; 1226 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL); 1227 1228 atomic_inc(&sb->s_active); 1229 mnt->mnt.mnt_idmap = mnt_idmap_get(mnt_idmap(&old->mnt)); 1230 1231 mnt->mnt.mnt_sb = sb; 1232 mnt->mnt.mnt_root = dget(root); 1233 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 1234 mnt->mnt_parent = mnt; 1235 lock_mount_hash(); 1236 list_add_tail(&mnt->mnt_instance, &sb->s_mounts); 1237 unlock_mount_hash(); 1238 1239 if ((flag & CL_SLAVE) || 1240 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) { 1241 list_add(&mnt->mnt_slave, &old->mnt_slave_list); 1242 mnt->mnt_master = old; 1243 CLEAR_MNT_SHARED(mnt); 1244 } else if (!(flag & CL_PRIVATE)) { 1245 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old)) 1246 list_add(&mnt->mnt_share, &old->mnt_share); 1247 if (IS_MNT_SLAVE(old)) 1248 list_add(&mnt->mnt_slave, &old->mnt_slave); 1249 mnt->mnt_master = old->mnt_master; 1250 } else { 1251 CLEAR_MNT_SHARED(mnt); 1252 } 1253 if (flag & CL_MAKE_SHARED) 1254 set_mnt_shared(mnt); 1255 1256 /* stick the duplicate mount on the same expiry list 1257 * as the original if that was on one */ 1258 if (flag & CL_EXPIRE) { 1259 if (!list_empty(&old->mnt_expire)) 1260 list_add(&mnt->mnt_expire, &old->mnt_expire); 1261 } 1262 1263 return mnt; 1264 1265 out_free: 1266 mnt_free_id(mnt); 1267 free_vfsmnt(mnt); 1268 return ERR_PTR(err); 1269 } 1270 1271 static void cleanup_mnt(struct mount *mnt) 1272 { 1273 struct hlist_node *p; 1274 struct mount *m; 1275 /* 1276 * The warning here probably indicates that somebody messed 1277 * up a mnt_want/drop_write() pair. If this happens, the 1278 * filesystem was probably unable to make r/w->r/o transitions. 1279 * The locking used to deal with mnt_count decrement provides barriers, 1280 * so mnt_get_writers() below is safe. 1281 */ 1282 WARN_ON(mnt_get_writers(mnt)); 1283 if (unlikely(mnt->mnt_pins.first)) 1284 mnt_pin_kill(mnt); 1285 hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) { 1286 hlist_del(&m->mnt_umount); 1287 mntput(&m->mnt); 1288 } 1289 fsnotify_vfsmount_delete(&mnt->mnt); 1290 dput(mnt->mnt.mnt_root); 1291 deactivate_super(mnt->mnt.mnt_sb); 1292 mnt_free_id(mnt); 1293 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt); 1294 } 1295 1296 static void __cleanup_mnt(struct rcu_head *head) 1297 { 1298 cleanup_mnt(container_of(head, struct mount, mnt_rcu)); 1299 } 1300 1301 static LLIST_HEAD(delayed_mntput_list); 1302 static void delayed_mntput(struct work_struct *unused) 1303 { 1304 struct llist_node *node = llist_del_all(&delayed_mntput_list); 1305 struct mount *m, *t; 1306 1307 llist_for_each_entry_safe(m, t, node, mnt_llist) 1308 cleanup_mnt(m); 1309 } 1310 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput); 1311 1312 static void mntput_no_expire(struct mount *mnt) 1313 { 1314 LIST_HEAD(list); 1315 int count; 1316 1317 rcu_read_lock(); 1318 if (likely(READ_ONCE(mnt->mnt_ns))) { 1319 /* 1320 * Since we don't do lock_mount_hash() here, 1321 * ->mnt_ns can change under us. However, if it's 1322 * non-NULL, then there's a reference that won't 1323 * be dropped until after an RCU delay done after 1324 * turning ->mnt_ns NULL. So if we observe it 1325 * non-NULL under rcu_read_lock(), the reference 1326 * we are dropping is not the final one. 1327 */ 1328 mnt_add_count(mnt, -1); 1329 rcu_read_unlock(); 1330 return; 1331 } 1332 lock_mount_hash(); 1333 /* 1334 * make sure that if __legitimize_mnt() has not seen us grab 1335 * mount_lock, we'll see their refcount increment here. 1336 */ 1337 smp_mb(); 1338 mnt_add_count(mnt, -1); 1339 count = mnt_get_count(mnt); 1340 if (count != 0) { 1341 WARN_ON(count < 0); 1342 rcu_read_unlock(); 1343 unlock_mount_hash(); 1344 return; 1345 } 1346 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) { 1347 rcu_read_unlock(); 1348 unlock_mount_hash(); 1349 return; 1350 } 1351 mnt->mnt.mnt_flags |= MNT_DOOMED; 1352 rcu_read_unlock(); 1353 1354 list_del(&mnt->mnt_instance); 1355 1356 if (unlikely(!list_empty(&mnt->mnt_mounts))) { 1357 struct mount *p, *tmp; 1358 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) { 1359 __put_mountpoint(unhash_mnt(p), &list); 1360 hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children); 1361 } 1362 } 1363 unlock_mount_hash(); 1364 shrink_dentry_list(&list); 1365 1366 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) { 1367 struct task_struct *task = current; 1368 if (likely(!(task->flags & PF_KTHREAD))) { 1369 init_task_work(&mnt->mnt_rcu, __cleanup_mnt); 1370 if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME)) 1371 return; 1372 } 1373 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list)) 1374 schedule_delayed_work(&delayed_mntput_work, 1); 1375 return; 1376 } 1377 cleanup_mnt(mnt); 1378 } 1379 1380 void mntput(struct vfsmount *mnt) 1381 { 1382 if (mnt) { 1383 struct mount *m = real_mount(mnt); 1384 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */ 1385 if (unlikely(m->mnt_expiry_mark)) 1386 m->mnt_expiry_mark = 0; 1387 mntput_no_expire(m); 1388 } 1389 } 1390 EXPORT_SYMBOL(mntput); 1391 1392 struct vfsmount *mntget(struct vfsmount *mnt) 1393 { 1394 if (mnt) 1395 mnt_add_count(real_mount(mnt), 1); 1396 return mnt; 1397 } 1398 EXPORT_SYMBOL(mntget); 1399 1400 /** 1401 * path_is_mountpoint() - Check if path is a mount in the current namespace. 1402 * @path: path to check 1403 * 1404 * d_mountpoint() can only be used reliably to establish if a dentry is 1405 * not mounted in any namespace and that common case is handled inline. 1406 * d_mountpoint() isn't aware of the possibility there may be multiple 1407 * mounts using a given dentry in a different namespace. This function 1408 * checks if the passed in path is a mountpoint rather than the dentry 1409 * alone. 1410 */ 1411 bool path_is_mountpoint(const struct path *path) 1412 { 1413 unsigned seq; 1414 bool res; 1415 1416 if (!d_mountpoint(path->dentry)) 1417 return false; 1418 1419 rcu_read_lock(); 1420 do { 1421 seq = read_seqbegin(&mount_lock); 1422 res = __path_is_mountpoint(path); 1423 } while (read_seqretry(&mount_lock, seq)); 1424 rcu_read_unlock(); 1425 1426 return res; 1427 } 1428 EXPORT_SYMBOL(path_is_mountpoint); 1429 1430 struct vfsmount *mnt_clone_internal(const struct path *path) 1431 { 1432 struct mount *p; 1433 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE); 1434 if (IS_ERR(p)) 1435 return ERR_CAST(p); 1436 p->mnt.mnt_flags |= MNT_INTERNAL; 1437 return &p->mnt; 1438 } 1439 1440 #ifdef CONFIG_PROC_FS 1441 static struct mount *mnt_list_next(struct mnt_namespace *ns, 1442 struct list_head *p) 1443 { 1444 struct mount *mnt, *ret = NULL; 1445 1446 lock_ns_list(ns); 1447 list_for_each_continue(p, &ns->list) { 1448 mnt = list_entry(p, typeof(*mnt), mnt_list); 1449 if (!mnt_is_cursor(mnt)) { 1450 ret = mnt; 1451 break; 1452 } 1453 } 1454 unlock_ns_list(ns); 1455 1456 return ret; 1457 } 1458 1459 /* iterator; we want it to have access to namespace_sem, thus here... */ 1460 static void *m_start(struct seq_file *m, loff_t *pos) 1461 { 1462 struct proc_mounts *p = m->private; 1463 struct list_head *prev; 1464 1465 down_read(&namespace_sem); 1466 if (!*pos) { 1467 prev = &p->ns->list; 1468 } else { 1469 prev = &p->cursor.mnt_list; 1470 1471 /* Read after we'd reached the end? */ 1472 if (list_empty(prev)) 1473 return NULL; 1474 } 1475 1476 return mnt_list_next(p->ns, prev); 1477 } 1478 1479 static void *m_next(struct seq_file *m, void *v, loff_t *pos) 1480 { 1481 struct proc_mounts *p = m->private; 1482 struct mount *mnt = v; 1483 1484 ++*pos; 1485 return mnt_list_next(p->ns, &mnt->mnt_list); 1486 } 1487 1488 static void m_stop(struct seq_file *m, void *v) 1489 { 1490 struct proc_mounts *p = m->private; 1491 struct mount *mnt = v; 1492 1493 lock_ns_list(p->ns); 1494 if (mnt) 1495 list_move_tail(&p->cursor.mnt_list, &mnt->mnt_list); 1496 else 1497 list_del_init(&p->cursor.mnt_list); 1498 unlock_ns_list(p->ns); 1499 up_read(&namespace_sem); 1500 } 1501 1502 static int m_show(struct seq_file *m, void *v) 1503 { 1504 struct proc_mounts *p = m->private; 1505 struct mount *r = v; 1506 return p->show(m, &r->mnt); 1507 } 1508 1509 const struct seq_operations mounts_op = { 1510 .start = m_start, 1511 .next = m_next, 1512 .stop = m_stop, 1513 .show = m_show, 1514 }; 1515 1516 void mnt_cursor_del(struct mnt_namespace *ns, struct mount *cursor) 1517 { 1518 down_read(&namespace_sem); 1519 lock_ns_list(ns); 1520 list_del(&cursor->mnt_list); 1521 unlock_ns_list(ns); 1522 up_read(&namespace_sem); 1523 } 1524 #endif /* CONFIG_PROC_FS */ 1525 1526 /** 1527 * may_umount_tree - check if a mount tree is busy 1528 * @m: root of mount tree 1529 * 1530 * This is called to check if a tree of mounts has any 1531 * open files, pwds, chroots or sub mounts that are 1532 * busy. 1533 */ 1534 int may_umount_tree(struct vfsmount *m) 1535 { 1536 struct mount *mnt = real_mount(m); 1537 int actual_refs = 0; 1538 int minimum_refs = 0; 1539 struct mount *p; 1540 BUG_ON(!m); 1541 1542 /* write lock needed for mnt_get_count */ 1543 lock_mount_hash(); 1544 for (p = mnt; p; p = next_mnt(p, mnt)) { 1545 actual_refs += mnt_get_count(p); 1546 minimum_refs += 2; 1547 } 1548 unlock_mount_hash(); 1549 1550 if (actual_refs > minimum_refs) 1551 return 0; 1552 1553 return 1; 1554 } 1555 1556 EXPORT_SYMBOL(may_umount_tree); 1557 1558 /** 1559 * may_umount - check if a mount point is busy 1560 * @mnt: root of mount 1561 * 1562 * This is called to check if a mount point has any 1563 * open files, pwds, chroots or sub mounts. If the 1564 * mount has sub mounts this will return busy 1565 * regardless of whether the sub mounts are busy. 1566 * 1567 * Doesn't take quota and stuff into account. IOW, in some cases it will 1568 * give false negatives. The main reason why it's here is that we need 1569 * a non-destructive way to look for easily umountable filesystems. 1570 */ 1571 int may_umount(struct vfsmount *mnt) 1572 { 1573 int ret = 1; 1574 down_read(&namespace_sem); 1575 lock_mount_hash(); 1576 if (propagate_mount_busy(real_mount(mnt), 2)) 1577 ret = 0; 1578 unlock_mount_hash(); 1579 up_read(&namespace_sem); 1580 return ret; 1581 } 1582 1583 EXPORT_SYMBOL(may_umount); 1584 1585 static void namespace_unlock(void) 1586 { 1587 struct hlist_head head; 1588 struct hlist_node *p; 1589 struct mount *m; 1590 LIST_HEAD(list); 1591 1592 hlist_move_list(&unmounted, &head); 1593 list_splice_init(&ex_mountpoints, &list); 1594 1595 up_write(&namespace_sem); 1596 1597 shrink_dentry_list(&list); 1598 1599 if (likely(hlist_empty(&head))) 1600 return; 1601 1602 synchronize_rcu_expedited(); 1603 1604 hlist_for_each_entry_safe(m, p, &head, mnt_umount) { 1605 hlist_del(&m->mnt_umount); 1606 mntput(&m->mnt); 1607 } 1608 } 1609 1610 static inline void namespace_lock(void) 1611 { 1612 down_write(&namespace_sem); 1613 } 1614 1615 enum umount_tree_flags { 1616 UMOUNT_SYNC = 1, 1617 UMOUNT_PROPAGATE = 2, 1618 UMOUNT_CONNECTED = 4, 1619 }; 1620 1621 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how) 1622 { 1623 /* Leaving mounts connected is only valid for lazy umounts */ 1624 if (how & UMOUNT_SYNC) 1625 return true; 1626 1627 /* A mount without a parent has nothing to be connected to */ 1628 if (!mnt_has_parent(mnt)) 1629 return true; 1630 1631 /* Because the reference counting rules change when mounts are 1632 * unmounted and connected, umounted mounts may not be 1633 * connected to mounted mounts. 1634 */ 1635 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT)) 1636 return true; 1637 1638 /* Has it been requested that the mount remain connected? */ 1639 if (how & UMOUNT_CONNECTED) 1640 return false; 1641 1642 /* Is the mount locked such that it needs to remain connected? */ 1643 if (IS_MNT_LOCKED(mnt)) 1644 return false; 1645 1646 /* By default disconnect the mount */ 1647 return true; 1648 } 1649 1650 /* 1651 * mount_lock must be held 1652 * namespace_sem must be held for write 1653 */ 1654 static void umount_tree(struct mount *mnt, enum umount_tree_flags how) 1655 { 1656 LIST_HEAD(tmp_list); 1657 struct mount *p; 1658 1659 if (how & UMOUNT_PROPAGATE) 1660 propagate_mount_unlock(mnt); 1661 1662 /* Gather the mounts to umount */ 1663 for (p = mnt; p; p = next_mnt(p, mnt)) { 1664 p->mnt.mnt_flags |= MNT_UMOUNT; 1665 list_move(&p->mnt_list, &tmp_list); 1666 } 1667 1668 /* Hide the mounts from mnt_mounts */ 1669 list_for_each_entry(p, &tmp_list, mnt_list) { 1670 list_del_init(&p->mnt_child); 1671 } 1672 1673 /* Add propogated mounts to the tmp_list */ 1674 if (how & UMOUNT_PROPAGATE) 1675 propagate_umount(&tmp_list); 1676 1677 while (!list_empty(&tmp_list)) { 1678 struct mnt_namespace *ns; 1679 bool disconnect; 1680 p = list_first_entry(&tmp_list, struct mount, mnt_list); 1681 list_del_init(&p->mnt_expire); 1682 list_del_init(&p->mnt_list); 1683 ns = p->mnt_ns; 1684 if (ns) { 1685 ns->mounts--; 1686 __touch_mnt_namespace(ns); 1687 } 1688 p->mnt_ns = NULL; 1689 if (how & UMOUNT_SYNC) 1690 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT; 1691 1692 disconnect = disconnect_mount(p, how); 1693 if (mnt_has_parent(p)) { 1694 mnt_add_count(p->mnt_parent, -1); 1695 if (!disconnect) { 1696 /* Don't forget about p */ 1697 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts); 1698 } else { 1699 umount_mnt(p); 1700 } 1701 } 1702 change_mnt_propagation(p, MS_PRIVATE); 1703 if (disconnect) 1704 hlist_add_head(&p->mnt_umount, &unmounted); 1705 } 1706 } 1707 1708 static void shrink_submounts(struct mount *mnt); 1709 1710 static int do_umount_root(struct super_block *sb) 1711 { 1712 int ret = 0; 1713 1714 down_write(&sb->s_umount); 1715 if (!sb_rdonly(sb)) { 1716 struct fs_context *fc; 1717 1718 fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY, 1719 SB_RDONLY); 1720 if (IS_ERR(fc)) { 1721 ret = PTR_ERR(fc); 1722 } else { 1723 ret = parse_monolithic_mount_data(fc, NULL); 1724 if (!ret) 1725 ret = reconfigure_super(fc); 1726 put_fs_context(fc); 1727 } 1728 } 1729 up_write(&sb->s_umount); 1730 return ret; 1731 } 1732 1733 static int do_umount(struct mount *mnt, int flags) 1734 { 1735 struct super_block *sb = mnt->mnt.mnt_sb; 1736 int retval; 1737 1738 retval = security_sb_umount(&mnt->mnt, flags); 1739 if (retval) 1740 return retval; 1741 1742 /* 1743 * Allow userspace to request a mountpoint be expired rather than 1744 * unmounting unconditionally. Unmount only happens if: 1745 * (1) the mark is already set (the mark is cleared by mntput()) 1746 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] 1747 */ 1748 if (flags & MNT_EXPIRE) { 1749 if (&mnt->mnt == current->fs->root.mnt || 1750 flags & (MNT_FORCE | MNT_DETACH)) 1751 return -EINVAL; 1752 1753 /* 1754 * probably don't strictly need the lock here if we examined 1755 * all race cases, but it's a slowpath. 1756 */ 1757 lock_mount_hash(); 1758 if (mnt_get_count(mnt) != 2) { 1759 unlock_mount_hash(); 1760 return -EBUSY; 1761 } 1762 unlock_mount_hash(); 1763 1764 if (!xchg(&mnt->mnt_expiry_mark, 1)) 1765 return -EAGAIN; 1766 } 1767 1768 /* 1769 * If we may have to abort operations to get out of this 1770 * mount, and they will themselves hold resources we must 1771 * allow the fs to do things. In the Unix tradition of 1772 * 'Gee thats tricky lets do it in userspace' the umount_begin 1773 * might fail to complete on the first run through as other tasks 1774 * must return, and the like. Thats for the mount program to worry 1775 * about for the moment. 1776 */ 1777 1778 if (flags & MNT_FORCE && sb->s_op->umount_begin) { 1779 sb->s_op->umount_begin(sb); 1780 } 1781 1782 /* 1783 * No sense to grab the lock for this test, but test itself looks 1784 * somewhat bogus. Suggestions for better replacement? 1785 * Ho-hum... In principle, we might treat that as umount + switch 1786 * to rootfs. GC would eventually take care of the old vfsmount. 1787 * Actually it makes sense, especially if rootfs would contain a 1788 * /reboot - static binary that would close all descriptors and 1789 * call reboot(9). Then init(8) could umount root and exec /reboot. 1790 */ 1791 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) { 1792 /* 1793 * Special case for "unmounting" root ... 1794 * we just try to remount it readonly. 1795 */ 1796 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) 1797 return -EPERM; 1798 return do_umount_root(sb); 1799 } 1800 1801 namespace_lock(); 1802 lock_mount_hash(); 1803 1804 /* Recheck MNT_LOCKED with the locks held */ 1805 retval = -EINVAL; 1806 if (mnt->mnt.mnt_flags & MNT_LOCKED) 1807 goto out; 1808 1809 event++; 1810 if (flags & MNT_DETACH) { 1811 if (!list_empty(&mnt->mnt_list)) 1812 umount_tree(mnt, UMOUNT_PROPAGATE); 1813 retval = 0; 1814 } else { 1815 shrink_submounts(mnt); 1816 retval = -EBUSY; 1817 if (!propagate_mount_busy(mnt, 2)) { 1818 if (!list_empty(&mnt->mnt_list)) 1819 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 1820 retval = 0; 1821 } 1822 } 1823 out: 1824 unlock_mount_hash(); 1825 namespace_unlock(); 1826 return retval; 1827 } 1828 1829 /* 1830 * __detach_mounts - lazily unmount all mounts on the specified dentry 1831 * 1832 * During unlink, rmdir, and d_drop it is possible to loose the path 1833 * to an existing mountpoint, and wind up leaking the mount. 1834 * detach_mounts allows lazily unmounting those mounts instead of 1835 * leaking them. 1836 * 1837 * The caller may hold dentry->d_inode->i_mutex. 1838 */ 1839 void __detach_mounts(struct dentry *dentry) 1840 { 1841 struct mountpoint *mp; 1842 struct mount *mnt; 1843 1844 namespace_lock(); 1845 lock_mount_hash(); 1846 mp = lookup_mountpoint(dentry); 1847 if (!mp) 1848 goto out_unlock; 1849 1850 event++; 1851 while (!hlist_empty(&mp->m_list)) { 1852 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list); 1853 if (mnt->mnt.mnt_flags & MNT_UMOUNT) { 1854 umount_mnt(mnt); 1855 hlist_add_head(&mnt->mnt_umount, &unmounted); 1856 } 1857 else umount_tree(mnt, UMOUNT_CONNECTED); 1858 } 1859 put_mountpoint(mp); 1860 out_unlock: 1861 unlock_mount_hash(); 1862 namespace_unlock(); 1863 } 1864 1865 /* 1866 * Is the caller allowed to modify his namespace? 1867 */ 1868 bool may_mount(void) 1869 { 1870 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN); 1871 } 1872 1873 static void warn_mandlock(void) 1874 { 1875 pr_warn_once("=======================================================\n" 1876 "WARNING: The mand mount option has been deprecated and\n" 1877 " and is ignored by this kernel. Remove the mand\n" 1878 " option from the mount to silence this warning.\n" 1879 "=======================================================\n"); 1880 } 1881 1882 static int can_umount(const struct path *path, int flags) 1883 { 1884 struct mount *mnt = real_mount(path->mnt); 1885 1886 if (!may_mount()) 1887 return -EPERM; 1888 if (path->dentry != path->mnt->mnt_root) 1889 return -EINVAL; 1890 if (!check_mnt(mnt)) 1891 return -EINVAL; 1892 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */ 1893 return -EINVAL; 1894 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN)) 1895 return -EPERM; 1896 return 0; 1897 } 1898 1899 // caller is responsible for flags being sane 1900 int path_umount(struct path *path, int flags) 1901 { 1902 struct mount *mnt = real_mount(path->mnt); 1903 int ret; 1904 1905 ret = can_umount(path, flags); 1906 if (!ret) 1907 ret = do_umount(mnt, flags); 1908 1909 /* we mustn't call path_put() as that would clear mnt_expiry_mark */ 1910 dput(path->dentry); 1911 mntput_no_expire(mnt); 1912 return ret; 1913 } 1914 1915 static int ksys_umount(char __user *name, int flags) 1916 { 1917 int lookup_flags = LOOKUP_MOUNTPOINT; 1918 struct path path; 1919 int ret; 1920 1921 // basic validity checks done first 1922 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW)) 1923 return -EINVAL; 1924 1925 if (!(flags & UMOUNT_NOFOLLOW)) 1926 lookup_flags |= LOOKUP_FOLLOW; 1927 ret = user_path_at(AT_FDCWD, name, lookup_flags, &path); 1928 if (ret) 1929 return ret; 1930 return path_umount(&path, flags); 1931 } 1932 1933 SYSCALL_DEFINE2(umount, char __user *, name, int, flags) 1934 { 1935 return ksys_umount(name, flags); 1936 } 1937 1938 #ifdef __ARCH_WANT_SYS_OLDUMOUNT 1939 1940 /* 1941 * The 2.0 compatible umount. No flags. 1942 */ 1943 SYSCALL_DEFINE1(oldumount, char __user *, name) 1944 { 1945 return ksys_umount(name, 0); 1946 } 1947 1948 #endif 1949 1950 static bool is_mnt_ns_file(struct dentry *dentry) 1951 { 1952 /* Is this a proxy for a mount namespace? */ 1953 return dentry->d_op == &ns_dentry_operations && 1954 dentry->d_fsdata == &mntns_operations; 1955 } 1956 1957 static struct mnt_namespace *to_mnt_ns(struct ns_common *ns) 1958 { 1959 return container_of(ns, struct mnt_namespace, ns); 1960 } 1961 1962 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt) 1963 { 1964 return &mnt->ns; 1965 } 1966 1967 static bool mnt_ns_loop(struct dentry *dentry) 1968 { 1969 /* Could bind mounting the mount namespace inode cause a 1970 * mount namespace loop? 1971 */ 1972 struct mnt_namespace *mnt_ns; 1973 if (!is_mnt_ns_file(dentry)) 1974 return false; 1975 1976 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode)); 1977 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq; 1978 } 1979 1980 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry, 1981 int flag) 1982 { 1983 struct mount *res, *p, *q, *r, *parent; 1984 1985 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt)) 1986 return ERR_PTR(-EINVAL); 1987 1988 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry)) 1989 return ERR_PTR(-EINVAL); 1990 1991 res = q = clone_mnt(mnt, dentry, flag); 1992 if (IS_ERR(q)) 1993 return q; 1994 1995 q->mnt_mountpoint = mnt->mnt_mountpoint; 1996 1997 p = mnt; 1998 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) { 1999 struct mount *s; 2000 if (!is_subdir(r->mnt_mountpoint, dentry)) 2001 continue; 2002 2003 for (s = r; s; s = next_mnt(s, r)) { 2004 if (!(flag & CL_COPY_UNBINDABLE) && 2005 IS_MNT_UNBINDABLE(s)) { 2006 if (s->mnt.mnt_flags & MNT_LOCKED) { 2007 /* Both unbindable and locked. */ 2008 q = ERR_PTR(-EPERM); 2009 goto out; 2010 } else { 2011 s = skip_mnt_tree(s); 2012 continue; 2013 } 2014 } 2015 if (!(flag & CL_COPY_MNT_NS_FILE) && 2016 is_mnt_ns_file(s->mnt.mnt_root)) { 2017 s = skip_mnt_tree(s); 2018 continue; 2019 } 2020 while (p != s->mnt_parent) { 2021 p = p->mnt_parent; 2022 q = q->mnt_parent; 2023 } 2024 p = s; 2025 parent = q; 2026 q = clone_mnt(p, p->mnt.mnt_root, flag); 2027 if (IS_ERR(q)) 2028 goto out; 2029 lock_mount_hash(); 2030 list_add_tail(&q->mnt_list, &res->mnt_list); 2031 attach_mnt(q, parent, p->mnt_mp); 2032 unlock_mount_hash(); 2033 } 2034 } 2035 return res; 2036 out: 2037 if (res) { 2038 lock_mount_hash(); 2039 umount_tree(res, UMOUNT_SYNC); 2040 unlock_mount_hash(); 2041 } 2042 return q; 2043 } 2044 2045 /* Caller should check returned pointer for errors */ 2046 2047 struct vfsmount *collect_mounts(const struct path *path) 2048 { 2049 struct mount *tree; 2050 namespace_lock(); 2051 if (!check_mnt(real_mount(path->mnt))) 2052 tree = ERR_PTR(-EINVAL); 2053 else 2054 tree = copy_tree(real_mount(path->mnt), path->dentry, 2055 CL_COPY_ALL | CL_PRIVATE); 2056 namespace_unlock(); 2057 if (IS_ERR(tree)) 2058 return ERR_CAST(tree); 2059 return &tree->mnt; 2060 } 2061 2062 static void free_mnt_ns(struct mnt_namespace *); 2063 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool); 2064 2065 void dissolve_on_fput(struct vfsmount *mnt) 2066 { 2067 struct mnt_namespace *ns; 2068 namespace_lock(); 2069 lock_mount_hash(); 2070 ns = real_mount(mnt)->mnt_ns; 2071 if (ns) { 2072 if (is_anon_ns(ns)) 2073 umount_tree(real_mount(mnt), UMOUNT_CONNECTED); 2074 else 2075 ns = NULL; 2076 } 2077 unlock_mount_hash(); 2078 namespace_unlock(); 2079 if (ns) 2080 free_mnt_ns(ns); 2081 } 2082 2083 void drop_collected_mounts(struct vfsmount *mnt) 2084 { 2085 namespace_lock(); 2086 lock_mount_hash(); 2087 umount_tree(real_mount(mnt), 0); 2088 unlock_mount_hash(); 2089 namespace_unlock(); 2090 } 2091 2092 static bool has_locked_children(struct mount *mnt, struct dentry *dentry) 2093 { 2094 struct mount *child; 2095 2096 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 2097 if (!is_subdir(child->mnt_mountpoint, dentry)) 2098 continue; 2099 2100 if (child->mnt.mnt_flags & MNT_LOCKED) 2101 return true; 2102 } 2103 return false; 2104 } 2105 2106 /** 2107 * clone_private_mount - create a private clone of a path 2108 * @path: path to clone 2109 * 2110 * This creates a new vfsmount, which will be the clone of @path. The new mount 2111 * will not be attached anywhere in the namespace and will be private (i.e. 2112 * changes to the originating mount won't be propagated into this). 2113 * 2114 * Release with mntput(). 2115 */ 2116 struct vfsmount *clone_private_mount(const struct path *path) 2117 { 2118 struct mount *old_mnt = real_mount(path->mnt); 2119 struct mount *new_mnt; 2120 2121 down_read(&namespace_sem); 2122 if (IS_MNT_UNBINDABLE(old_mnt)) 2123 goto invalid; 2124 2125 if (!check_mnt(old_mnt)) 2126 goto invalid; 2127 2128 if (has_locked_children(old_mnt, path->dentry)) 2129 goto invalid; 2130 2131 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE); 2132 up_read(&namespace_sem); 2133 2134 if (IS_ERR(new_mnt)) 2135 return ERR_CAST(new_mnt); 2136 2137 /* Longterm mount to be removed by kern_unmount*() */ 2138 new_mnt->mnt_ns = MNT_NS_INTERNAL; 2139 2140 return &new_mnt->mnt; 2141 2142 invalid: 2143 up_read(&namespace_sem); 2144 return ERR_PTR(-EINVAL); 2145 } 2146 EXPORT_SYMBOL_GPL(clone_private_mount); 2147 2148 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg, 2149 struct vfsmount *root) 2150 { 2151 struct mount *mnt; 2152 int res = f(root, arg); 2153 if (res) 2154 return res; 2155 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) { 2156 res = f(&mnt->mnt, arg); 2157 if (res) 2158 return res; 2159 } 2160 return 0; 2161 } 2162 2163 static void lock_mnt_tree(struct mount *mnt) 2164 { 2165 struct mount *p; 2166 2167 for (p = mnt; p; p = next_mnt(p, mnt)) { 2168 int flags = p->mnt.mnt_flags; 2169 /* Don't allow unprivileged users to change mount flags */ 2170 flags |= MNT_LOCK_ATIME; 2171 2172 if (flags & MNT_READONLY) 2173 flags |= MNT_LOCK_READONLY; 2174 2175 if (flags & MNT_NODEV) 2176 flags |= MNT_LOCK_NODEV; 2177 2178 if (flags & MNT_NOSUID) 2179 flags |= MNT_LOCK_NOSUID; 2180 2181 if (flags & MNT_NOEXEC) 2182 flags |= MNT_LOCK_NOEXEC; 2183 /* Don't allow unprivileged users to reveal what is under a mount */ 2184 if (list_empty(&p->mnt_expire)) 2185 flags |= MNT_LOCKED; 2186 p->mnt.mnt_flags = flags; 2187 } 2188 } 2189 2190 static void cleanup_group_ids(struct mount *mnt, struct mount *end) 2191 { 2192 struct mount *p; 2193 2194 for (p = mnt; p != end; p = next_mnt(p, mnt)) { 2195 if (p->mnt_group_id && !IS_MNT_SHARED(p)) 2196 mnt_release_group_id(p); 2197 } 2198 } 2199 2200 static int invent_group_ids(struct mount *mnt, bool recurse) 2201 { 2202 struct mount *p; 2203 2204 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) { 2205 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) { 2206 int err = mnt_alloc_group_id(p); 2207 if (err) { 2208 cleanup_group_ids(mnt, p); 2209 return err; 2210 } 2211 } 2212 } 2213 2214 return 0; 2215 } 2216 2217 int count_mounts(struct mnt_namespace *ns, struct mount *mnt) 2218 { 2219 unsigned int max = READ_ONCE(sysctl_mount_max); 2220 unsigned int mounts = 0; 2221 struct mount *p; 2222 2223 if (ns->mounts >= max) 2224 return -ENOSPC; 2225 max -= ns->mounts; 2226 if (ns->pending_mounts >= max) 2227 return -ENOSPC; 2228 max -= ns->pending_mounts; 2229 2230 for (p = mnt; p; p = next_mnt(p, mnt)) 2231 mounts++; 2232 2233 if (mounts > max) 2234 return -ENOSPC; 2235 2236 ns->pending_mounts += mounts; 2237 return 0; 2238 } 2239 2240 /* 2241 * @source_mnt : mount tree to be attached 2242 * @nd : place the mount tree @source_mnt is attached 2243 * @parent_nd : if non-null, detach the source_mnt from its parent and 2244 * store the parent mount and mountpoint dentry. 2245 * (done when source_mnt is moved) 2246 * 2247 * NOTE: in the table below explains the semantics when a source mount 2248 * of a given type is attached to a destination mount of a given type. 2249 * --------------------------------------------------------------------------- 2250 * | BIND MOUNT OPERATION | 2251 * |************************************************************************** 2252 * | source-->| shared | private | slave | unbindable | 2253 * | dest | | | | | 2254 * | | | | | | | 2255 * | v | | | | | 2256 * |************************************************************************** 2257 * | shared | shared (++) | shared (+) | shared(+++)| invalid | 2258 * | | | | | | 2259 * |non-shared| shared (+) | private | slave (*) | invalid | 2260 * *************************************************************************** 2261 * A bind operation clones the source mount and mounts the clone on the 2262 * destination mount. 2263 * 2264 * (++) the cloned mount is propagated to all the mounts in the propagation 2265 * tree of the destination mount and the cloned mount is added to 2266 * the peer group of the source mount. 2267 * (+) the cloned mount is created under the destination mount and is marked 2268 * as shared. The cloned mount is added to the peer group of the source 2269 * mount. 2270 * (+++) the mount is propagated to all the mounts in the propagation tree 2271 * of the destination mount and the cloned mount is made slave 2272 * of the same master as that of the source mount. The cloned mount 2273 * is marked as 'shared and slave'. 2274 * (*) the cloned mount is made a slave of the same master as that of the 2275 * source mount. 2276 * 2277 * --------------------------------------------------------------------------- 2278 * | MOVE MOUNT OPERATION | 2279 * |************************************************************************** 2280 * | source-->| shared | private | slave | unbindable | 2281 * | dest | | | | | 2282 * | | | | | | | 2283 * | v | | | | | 2284 * |************************************************************************** 2285 * | shared | shared (+) | shared (+) | shared(+++) | invalid | 2286 * | | | | | | 2287 * |non-shared| shared (+*) | private | slave (*) | unbindable | 2288 * *************************************************************************** 2289 * 2290 * (+) the mount is moved to the destination. And is then propagated to 2291 * all the mounts in the propagation tree of the destination mount. 2292 * (+*) the mount is moved to the destination. 2293 * (+++) the mount is moved to the destination and is then propagated to 2294 * all the mounts belonging to the destination mount's propagation tree. 2295 * the mount is marked as 'shared and slave'. 2296 * (*) the mount continues to be a slave at the new location. 2297 * 2298 * if the source mount is a tree, the operations explained above is 2299 * applied to each mount in the tree. 2300 * Must be called without spinlocks held, since this function can sleep 2301 * in allocations. 2302 */ 2303 static int attach_recursive_mnt(struct mount *source_mnt, 2304 struct mount *dest_mnt, 2305 struct mountpoint *dest_mp, 2306 bool moving) 2307 { 2308 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; 2309 HLIST_HEAD(tree_list); 2310 struct mnt_namespace *ns = dest_mnt->mnt_ns; 2311 struct mountpoint *smp; 2312 struct mount *child, *p; 2313 struct hlist_node *n; 2314 int err; 2315 2316 /* Preallocate a mountpoint in case the new mounts need 2317 * to be tucked under other mounts. 2318 */ 2319 smp = get_mountpoint(source_mnt->mnt.mnt_root); 2320 if (IS_ERR(smp)) 2321 return PTR_ERR(smp); 2322 2323 /* Is there space to add these mounts to the mount namespace? */ 2324 if (!moving) { 2325 err = count_mounts(ns, source_mnt); 2326 if (err) 2327 goto out; 2328 } 2329 2330 if (IS_MNT_SHARED(dest_mnt)) { 2331 err = invent_group_ids(source_mnt, true); 2332 if (err) 2333 goto out; 2334 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list); 2335 lock_mount_hash(); 2336 if (err) 2337 goto out_cleanup_ids; 2338 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 2339 set_mnt_shared(p); 2340 } else { 2341 lock_mount_hash(); 2342 } 2343 if (moving) { 2344 unhash_mnt(source_mnt); 2345 attach_mnt(source_mnt, dest_mnt, dest_mp); 2346 touch_mnt_namespace(source_mnt->mnt_ns); 2347 } else { 2348 if (source_mnt->mnt_ns) { 2349 /* move from anon - the caller will destroy */ 2350 list_del_init(&source_mnt->mnt_ns->list); 2351 } 2352 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt); 2353 commit_tree(source_mnt); 2354 } 2355 2356 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) { 2357 struct mount *q; 2358 hlist_del_init(&child->mnt_hash); 2359 q = __lookup_mnt(&child->mnt_parent->mnt, 2360 child->mnt_mountpoint); 2361 if (q) 2362 mnt_change_mountpoint(child, smp, q); 2363 /* Notice when we are propagating across user namespaces */ 2364 if (child->mnt_parent->mnt_ns->user_ns != user_ns) 2365 lock_mnt_tree(child); 2366 child->mnt.mnt_flags &= ~MNT_LOCKED; 2367 commit_tree(child); 2368 } 2369 put_mountpoint(smp); 2370 unlock_mount_hash(); 2371 2372 return 0; 2373 2374 out_cleanup_ids: 2375 while (!hlist_empty(&tree_list)) { 2376 child = hlist_entry(tree_list.first, struct mount, mnt_hash); 2377 child->mnt_parent->mnt_ns->pending_mounts = 0; 2378 umount_tree(child, UMOUNT_SYNC); 2379 } 2380 unlock_mount_hash(); 2381 cleanup_group_ids(source_mnt, NULL); 2382 out: 2383 ns->pending_mounts = 0; 2384 2385 read_seqlock_excl(&mount_lock); 2386 put_mountpoint(smp); 2387 read_sequnlock_excl(&mount_lock); 2388 2389 return err; 2390 } 2391 2392 static struct mountpoint *lock_mount(struct path *path) 2393 { 2394 struct vfsmount *mnt; 2395 struct dentry *dentry = path->dentry; 2396 retry: 2397 inode_lock(dentry->d_inode); 2398 if (unlikely(cant_mount(dentry))) { 2399 inode_unlock(dentry->d_inode); 2400 return ERR_PTR(-ENOENT); 2401 } 2402 namespace_lock(); 2403 mnt = lookup_mnt(path); 2404 if (likely(!mnt)) { 2405 struct mountpoint *mp = get_mountpoint(dentry); 2406 if (IS_ERR(mp)) { 2407 namespace_unlock(); 2408 inode_unlock(dentry->d_inode); 2409 return mp; 2410 } 2411 return mp; 2412 } 2413 namespace_unlock(); 2414 inode_unlock(path->dentry->d_inode); 2415 path_put(path); 2416 path->mnt = mnt; 2417 dentry = path->dentry = dget(mnt->mnt_root); 2418 goto retry; 2419 } 2420 2421 static void unlock_mount(struct mountpoint *where) 2422 { 2423 struct dentry *dentry = where->m_dentry; 2424 2425 read_seqlock_excl(&mount_lock); 2426 put_mountpoint(where); 2427 read_sequnlock_excl(&mount_lock); 2428 2429 namespace_unlock(); 2430 inode_unlock(dentry->d_inode); 2431 } 2432 2433 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp) 2434 { 2435 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER) 2436 return -EINVAL; 2437 2438 if (d_is_dir(mp->m_dentry) != 2439 d_is_dir(mnt->mnt.mnt_root)) 2440 return -ENOTDIR; 2441 2442 return attach_recursive_mnt(mnt, p, mp, false); 2443 } 2444 2445 /* 2446 * Sanity check the flags to change_mnt_propagation. 2447 */ 2448 2449 static int flags_to_propagation_type(int ms_flags) 2450 { 2451 int type = ms_flags & ~(MS_REC | MS_SILENT); 2452 2453 /* Fail if any non-propagation flags are set */ 2454 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 2455 return 0; 2456 /* Only one propagation flag should be set */ 2457 if (!is_power_of_2(type)) 2458 return 0; 2459 return type; 2460 } 2461 2462 /* 2463 * recursively change the type of the mountpoint. 2464 */ 2465 static int do_change_type(struct path *path, int ms_flags) 2466 { 2467 struct mount *m; 2468 struct mount *mnt = real_mount(path->mnt); 2469 int recurse = ms_flags & MS_REC; 2470 int type; 2471 int err = 0; 2472 2473 if (path->dentry != path->mnt->mnt_root) 2474 return -EINVAL; 2475 2476 type = flags_to_propagation_type(ms_flags); 2477 if (!type) 2478 return -EINVAL; 2479 2480 namespace_lock(); 2481 if (type == MS_SHARED) { 2482 err = invent_group_ids(mnt, recurse); 2483 if (err) 2484 goto out_unlock; 2485 } 2486 2487 lock_mount_hash(); 2488 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) 2489 change_mnt_propagation(m, type); 2490 unlock_mount_hash(); 2491 2492 out_unlock: 2493 namespace_unlock(); 2494 return err; 2495 } 2496 2497 static struct mount *__do_loopback(struct path *old_path, int recurse) 2498 { 2499 struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt); 2500 2501 if (IS_MNT_UNBINDABLE(old)) 2502 return mnt; 2503 2504 if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations) 2505 return mnt; 2506 2507 if (!recurse && has_locked_children(old, old_path->dentry)) 2508 return mnt; 2509 2510 if (recurse) 2511 mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE); 2512 else 2513 mnt = clone_mnt(old, old_path->dentry, 0); 2514 2515 if (!IS_ERR(mnt)) 2516 mnt->mnt.mnt_flags &= ~MNT_LOCKED; 2517 2518 return mnt; 2519 } 2520 2521 /* 2522 * do loopback mount. 2523 */ 2524 static int do_loopback(struct path *path, const char *old_name, 2525 int recurse) 2526 { 2527 struct path old_path; 2528 struct mount *mnt = NULL, *parent; 2529 struct mountpoint *mp; 2530 int err; 2531 if (!old_name || !*old_name) 2532 return -EINVAL; 2533 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path); 2534 if (err) 2535 return err; 2536 2537 err = -EINVAL; 2538 if (mnt_ns_loop(old_path.dentry)) 2539 goto out; 2540 2541 mp = lock_mount(path); 2542 if (IS_ERR(mp)) { 2543 err = PTR_ERR(mp); 2544 goto out; 2545 } 2546 2547 parent = real_mount(path->mnt); 2548 if (!check_mnt(parent)) 2549 goto out2; 2550 2551 mnt = __do_loopback(&old_path, recurse); 2552 if (IS_ERR(mnt)) { 2553 err = PTR_ERR(mnt); 2554 goto out2; 2555 } 2556 2557 err = graft_tree(mnt, parent, mp); 2558 if (err) { 2559 lock_mount_hash(); 2560 umount_tree(mnt, UMOUNT_SYNC); 2561 unlock_mount_hash(); 2562 } 2563 out2: 2564 unlock_mount(mp); 2565 out: 2566 path_put(&old_path); 2567 return err; 2568 } 2569 2570 static struct file *open_detached_copy(struct path *path, bool recursive) 2571 { 2572 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; 2573 struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true); 2574 struct mount *mnt, *p; 2575 struct file *file; 2576 2577 if (IS_ERR(ns)) 2578 return ERR_CAST(ns); 2579 2580 namespace_lock(); 2581 mnt = __do_loopback(path, recursive); 2582 if (IS_ERR(mnt)) { 2583 namespace_unlock(); 2584 free_mnt_ns(ns); 2585 return ERR_CAST(mnt); 2586 } 2587 2588 lock_mount_hash(); 2589 for (p = mnt; p; p = next_mnt(p, mnt)) { 2590 p->mnt_ns = ns; 2591 ns->mounts++; 2592 } 2593 ns->root = mnt; 2594 list_add_tail(&ns->list, &mnt->mnt_list); 2595 mntget(&mnt->mnt); 2596 unlock_mount_hash(); 2597 namespace_unlock(); 2598 2599 mntput(path->mnt); 2600 path->mnt = &mnt->mnt; 2601 file = dentry_open(path, O_PATH, current_cred()); 2602 if (IS_ERR(file)) 2603 dissolve_on_fput(path->mnt); 2604 else 2605 file->f_mode |= FMODE_NEED_UNMOUNT; 2606 return file; 2607 } 2608 2609 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags) 2610 { 2611 struct file *file; 2612 struct path path; 2613 int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW; 2614 bool detached = flags & OPEN_TREE_CLONE; 2615 int error; 2616 int fd; 2617 2618 BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC); 2619 2620 if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE | 2621 AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE | 2622 OPEN_TREE_CLOEXEC)) 2623 return -EINVAL; 2624 2625 if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE) 2626 return -EINVAL; 2627 2628 if (flags & AT_NO_AUTOMOUNT) 2629 lookup_flags &= ~LOOKUP_AUTOMOUNT; 2630 if (flags & AT_SYMLINK_NOFOLLOW) 2631 lookup_flags &= ~LOOKUP_FOLLOW; 2632 if (flags & AT_EMPTY_PATH) 2633 lookup_flags |= LOOKUP_EMPTY; 2634 2635 if (detached && !may_mount()) 2636 return -EPERM; 2637 2638 fd = get_unused_fd_flags(flags & O_CLOEXEC); 2639 if (fd < 0) 2640 return fd; 2641 2642 error = user_path_at(dfd, filename, lookup_flags, &path); 2643 if (unlikely(error)) { 2644 file = ERR_PTR(error); 2645 } else { 2646 if (detached) 2647 file = open_detached_copy(&path, flags & AT_RECURSIVE); 2648 else 2649 file = dentry_open(&path, O_PATH, current_cred()); 2650 path_put(&path); 2651 } 2652 if (IS_ERR(file)) { 2653 put_unused_fd(fd); 2654 return PTR_ERR(file); 2655 } 2656 fd_install(fd, file); 2657 return fd; 2658 } 2659 2660 /* 2661 * Don't allow locked mount flags to be cleared. 2662 * 2663 * No locks need to be held here while testing the various MNT_LOCK 2664 * flags because those flags can never be cleared once they are set. 2665 */ 2666 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags) 2667 { 2668 unsigned int fl = mnt->mnt.mnt_flags; 2669 2670 if ((fl & MNT_LOCK_READONLY) && 2671 !(mnt_flags & MNT_READONLY)) 2672 return false; 2673 2674 if ((fl & MNT_LOCK_NODEV) && 2675 !(mnt_flags & MNT_NODEV)) 2676 return false; 2677 2678 if ((fl & MNT_LOCK_NOSUID) && 2679 !(mnt_flags & MNT_NOSUID)) 2680 return false; 2681 2682 if ((fl & MNT_LOCK_NOEXEC) && 2683 !(mnt_flags & MNT_NOEXEC)) 2684 return false; 2685 2686 if ((fl & MNT_LOCK_ATIME) && 2687 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) 2688 return false; 2689 2690 return true; 2691 } 2692 2693 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags) 2694 { 2695 bool readonly_request = (mnt_flags & MNT_READONLY); 2696 2697 if (readonly_request == __mnt_is_readonly(&mnt->mnt)) 2698 return 0; 2699 2700 if (readonly_request) 2701 return mnt_make_readonly(mnt); 2702 2703 mnt->mnt.mnt_flags &= ~MNT_READONLY; 2704 return 0; 2705 } 2706 2707 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags) 2708 { 2709 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK; 2710 mnt->mnt.mnt_flags = mnt_flags; 2711 touch_mnt_namespace(mnt->mnt_ns); 2712 } 2713 2714 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt) 2715 { 2716 struct super_block *sb = mnt->mnt_sb; 2717 2718 if (!__mnt_is_readonly(mnt) && 2719 (!(sb->s_iflags & SB_I_TS_EXPIRY_WARNED)) && 2720 (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) { 2721 char *buf = (char *)__get_free_page(GFP_KERNEL); 2722 char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM); 2723 struct tm tm; 2724 2725 time64_to_tm(sb->s_time_max, 0, &tm); 2726 2727 pr_warn("%s filesystem being %s at %s supports timestamps until %04ld (0x%llx)\n", 2728 sb->s_type->name, 2729 is_mounted(mnt) ? "remounted" : "mounted", 2730 mntpath, 2731 tm.tm_year+1900, (unsigned long long)sb->s_time_max); 2732 2733 free_page((unsigned long)buf); 2734 sb->s_iflags |= SB_I_TS_EXPIRY_WARNED; 2735 } 2736 } 2737 2738 /* 2739 * Handle reconfiguration of the mountpoint only without alteration of the 2740 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND 2741 * to mount(2). 2742 */ 2743 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags) 2744 { 2745 struct super_block *sb = path->mnt->mnt_sb; 2746 struct mount *mnt = real_mount(path->mnt); 2747 int ret; 2748 2749 if (!check_mnt(mnt)) 2750 return -EINVAL; 2751 2752 if (path->dentry != mnt->mnt.mnt_root) 2753 return -EINVAL; 2754 2755 if (!can_change_locked_flags(mnt, mnt_flags)) 2756 return -EPERM; 2757 2758 /* 2759 * We're only checking whether the superblock is read-only not 2760 * changing it, so only take down_read(&sb->s_umount). 2761 */ 2762 down_read(&sb->s_umount); 2763 lock_mount_hash(); 2764 ret = change_mount_ro_state(mnt, mnt_flags); 2765 if (ret == 0) 2766 set_mount_attributes(mnt, mnt_flags); 2767 unlock_mount_hash(); 2768 up_read(&sb->s_umount); 2769 2770 mnt_warn_timestamp_expiry(path, &mnt->mnt); 2771 2772 return ret; 2773 } 2774 2775 /* 2776 * change filesystem flags. dir should be a physical root of filesystem. 2777 * If you've mounted a non-root directory somewhere and want to do remount 2778 * on it - tough luck. 2779 */ 2780 static int do_remount(struct path *path, int ms_flags, int sb_flags, 2781 int mnt_flags, void *data) 2782 { 2783 int err; 2784 struct super_block *sb = path->mnt->mnt_sb; 2785 struct mount *mnt = real_mount(path->mnt); 2786 struct fs_context *fc; 2787 2788 if (!check_mnt(mnt)) 2789 return -EINVAL; 2790 2791 if (path->dentry != path->mnt->mnt_root) 2792 return -EINVAL; 2793 2794 if (!can_change_locked_flags(mnt, mnt_flags)) 2795 return -EPERM; 2796 2797 fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK); 2798 if (IS_ERR(fc)) 2799 return PTR_ERR(fc); 2800 2801 fc->oldapi = true; 2802 err = parse_monolithic_mount_data(fc, data); 2803 if (!err) { 2804 down_write(&sb->s_umount); 2805 err = -EPERM; 2806 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) { 2807 err = reconfigure_super(fc); 2808 if (!err) { 2809 lock_mount_hash(); 2810 set_mount_attributes(mnt, mnt_flags); 2811 unlock_mount_hash(); 2812 } 2813 } 2814 up_write(&sb->s_umount); 2815 } 2816 2817 mnt_warn_timestamp_expiry(path, &mnt->mnt); 2818 2819 put_fs_context(fc); 2820 return err; 2821 } 2822 2823 static inline int tree_contains_unbindable(struct mount *mnt) 2824 { 2825 struct mount *p; 2826 for (p = mnt; p; p = next_mnt(p, mnt)) { 2827 if (IS_MNT_UNBINDABLE(p)) 2828 return 1; 2829 } 2830 return 0; 2831 } 2832 2833 /* 2834 * Check that there aren't references to earlier/same mount namespaces in the 2835 * specified subtree. Such references can act as pins for mount namespaces 2836 * that aren't checked by the mount-cycle checking code, thereby allowing 2837 * cycles to be made. 2838 */ 2839 static bool check_for_nsfs_mounts(struct mount *subtree) 2840 { 2841 struct mount *p; 2842 bool ret = false; 2843 2844 lock_mount_hash(); 2845 for (p = subtree; p; p = next_mnt(p, subtree)) 2846 if (mnt_ns_loop(p->mnt.mnt_root)) 2847 goto out; 2848 2849 ret = true; 2850 out: 2851 unlock_mount_hash(); 2852 return ret; 2853 } 2854 2855 static int do_set_group(struct path *from_path, struct path *to_path) 2856 { 2857 struct mount *from, *to; 2858 int err; 2859 2860 from = real_mount(from_path->mnt); 2861 to = real_mount(to_path->mnt); 2862 2863 namespace_lock(); 2864 2865 err = -EINVAL; 2866 /* To and From must be mounted */ 2867 if (!is_mounted(&from->mnt)) 2868 goto out; 2869 if (!is_mounted(&to->mnt)) 2870 goto out; 2871 2872 err = -EPERM; 2873 /* We should be allowed to modify mount namespaces of both mounts */ 2874 if (!ns_capable(from->mnt_ns->user_ns, CAP_SYS_ADMIN)) 2875 goto out; 2876 if (!ns_capable(to->mnt_ns->user_ns, CAP_SYS_ADMIN)) 2877 goto out; 2878 2879 err = -EINVAL; 2880 /* To and From paths should be mount roots */ 2881 if (from_path->dentry != from_path->mnt->mnt_root) 2882 goto out; 2883 if (to_path->dentry != to_path->mnt->mnt_root) 2884 goto out; 2885 2886 /* Setting sharing groups is only allowed across same superblock */ 2887 if (from->mnt.mnt_sb != to->mnt.mnt_sb) 2888 goto out; 2889 2890 /* From mount root should be wider than To mount root */ 2891 if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root)) 2892 goto out; 2893 2894 /* From mount should not have locked children in place of To's root */ 2895 if (has_locked_children(from, to->mnt.mnt_root)) 2896 goto out; 2897 2898 /* Setting sharing groups is only allowed on private mounts */ 2899 if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to)) 2900 goto out; 2901 2902 /* From should not be private */ 2903 if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from)) 2904 goto out; 2905 2906 if (IS_MNT_SLAVE(from)) { 2907 struct mount *m = from->mnt_master; 2908 2909 list_add(&to->mnt_slave, &m->mnt_slave_list); 2910 to->mnt_master = m; 2911 } 2912 2913 if (IS_MNT_SHARED(from)) { 2914 to->mnt_group_id = from->mnt_group_id; 2915 list_add(&to->mnt_share, &from->mnt_share); 2916 lock_mount_hash(); 2917 set_mnt_shared(to); 2918 unlock_mount_hash(); 2919 } 2920 2921 err = 0; 2922 out: 2923 namespace_unlock(); 2924 return err; 2925 } 2926 2927 static int do_move_mount(struct path *old_path, struct path *new_path) 2928 { 2929 struct mnt_namespace *ns; 2930 struct mount *p; 2931 struct mount *old; 2932 struct mount *parent; 2933 struct mountpoint *mp, *old_mp; 2934 int err; 2935 bool attached; 2936 2937 mp = lock_mount(new_path); 2938 if (IS_ERR(mp)) 2939 return PTR_ERR(mp); 2940 2941 old = real_mount(old_path->mnt); 2942 p = real_mount(new_path->mnt); 2943 parent = old->mnt_parent; 2944 attached = mnt_has_parent(old); 2945 old_mp = old->mnt_mp; 2946 ns = old->mnt_ns; 2947 2948 err = -EINVAL; 2949 /* The mountpoint must be in our namespace. */ 2950 if (!check_mnt(p)) 2951 goto out; 2952 2953 /* The thing moved must be mounted... */ 2954 if (!is_mounted(&old->mnt)) 2955 goto out; 2956 2957 /* ... and either ours or the root of anon namespace */ 2958 if (!(attached ? check_mnt(old) : is_anon_ns(ns))) 2959 goto out; 2960 2961 if (old->mnt.mnt_flags & MNT_LOCKED) 2962 goto out; 2963 2964 if (old_path->dentry != old_path->mnt->mnt_root) 2965 goto out; 2966 2967 if (d_is_dir(new_path->dentry) != 2968 d_is_dir(old_path->dentry)) 2969 goto out; 2970 /* 2971 * Don't move a mount residing in a shared parent. 2972 */ 2973 if (attached && IS_MNT_SHARED(parent)) 2974 goto out; 2975 /* 2976 * Don't move a mount tree containing unbindable mounts to a destination 2977 * mount which is shared. 2978 */ 2979 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old)) 2980 goto out; 2981 err = -ELOOP; 2982 if (!check_for_nsfs_mounts(old)) 2983 goto out; 2984 for (; mnt_has_parent(p); p = p->mnt_parent) 2985 if (p == old) 2986 goto out; 2987 2988 err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp, 2989 attached); 2990 if (err) 2991 goto out; 2992 2993 /* if the mount is moved, it should no longer be expire 2994 * automatically */ 2995 list_del_init(&old->mnt_expire); 2996 if (attached) 2997 put_mountpoint(old_mp); 2998 out: 2999 unlock_mount(mp); 3000 if (!err) { 3001 if (attached) 3002 mntput_no_expire(parent); 3003 else 3004 free_mnt_ns(ns); 3005 } 3006 return err; 3007 } 3008 3009 static int do_move_mount_old(struct path *path, const char *old_name) 3010 { 3011 struct path old_path; 3012 int err; 3013 3014 if (!old_name || !*old_name) 3015 return -EINVAL; 3016 3017 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); 3018 if (err) 3019 return err; 3020 3021 err = do_move_mount(&old_path, path); 3022 path_put(&old_path); 3023 return err; 3024 } 3025 3026 /* 3027 * add a mount into a namespace's mount tree 3028 */ 3029 static int do_add_mount(struct mount *newmnt, struct mountpoint *mp, 3030 const struct path *path, int mnt_flags) 3031 { 3032 struct mount *parent = real_mount(path->mnt); 3033 3034 mnt_flags &= ~MNT_INTERNAL_FLAGS; 3035 3036 if (unlikely(!check_mnt(parent))) { 3037 /* that's acceptable only for automounts done in private ns */ 3038 if (!(mnt_flags & MNT_SHRINKABLE)) 3039 return -EINVAL; 3040 /* ... and for those we'd better have mountpoint still alive */ 3041 if (!parent->mnt_ns) 3042 return -EINVAL; 3043 } 3044 3045 /* Refuse the same filesystem on the same mount point */ 3046 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && 3047 path->mnt->mnt_root == path->dentry) 3048 return -EBUSY; 3049 3050 if (d_is_symlink(newmnt->mnt.mnt_root)) 3051 return -EINVAL; 3052 3053 newmnt->mnt.mnt_flags = mnt_flags; 3054 return graft_tree(newmnt, parent, mp); 3055 } 3056 3057 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags); 3058 3059 /* 3060 * Create a new mount using a superblock configuration and request it 3061 * be added to the namespace tree. 3062 */ 3063 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint, 3064 unsigned int mnt_flags) 3065 { 3066 struct vfsmount *mnt; 3067 struct mountpoint *mp; 3068 struct super_block *sb = fc->root->d_sb; 3069 int error; 3070 3071 error = security_sb_kern_mount(sb); 3072 if (!error && mount_too_revealing(sb, &mnt_flags)) 3073 error = -EPERM; 3074 3075 if (unlikely(error)) { 3076 fc_drop_locked(fc); 3077 return error; 3078 } 3079 3080 up_write(&sb->s_umount); 3081 3082 mnt = vfs_create_mount(fc); 3083 if (IS_ERR(mnt)) 3084 return PTR_ERR(mnt); 3085 3086 mnt_warn_timestamp_expiry(mountpoint, mnt); 3087 3088 mp = lock_mount(mountpoint); 3089 if (IS_ERR(mp)) { 3090 mntput(mnt); 3091 return PTR_ERR(mp); 3092 } 3093 error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags); 3094 unlock_mount(mp); 3095 if (error < 0) 3096 mntput(mnt); 3097 return error; 3098 } 3099 3100 /* 3101 * create a new mount for userspace and request it to be added into the 3102 * namespace's tree 3103 */ 3104 static int do_new_mount(struct path *path, const char *fstype, int sb_flags, 3105 int mnt_flags, const char *name, void *data) 3106 { 3107 struct file_system_type *type; 3108 struct fs_context *fc; 3109 const char *subtype = NULL; 3110 int err = 0; 3111 3112 if (!fstype) 3113 return -EINVAL; 3114 3115 type = get_fs_type(fstype); 3116 if (!type) 3117 return -ENODEV; 3118 3119 if (type->fs_flags & FS_HAS_SUBTYPE) { 3120 subtype = strchr(fstype, '.'); 3121 if (subtype) { 3122 subtype++; 3123 if (!*subtype) { 3124 put_filesystem(type); 3125 return -EINVAL; 3126 } 3127 } 3128 } 3129 3130 fc = fs_context_for_mount(type, sb_flags); 3131 put_filesystem(type); 3132 if (IS_ERR(fc)) 3133 return PTR_ERR(fc); 3134 3135 if (subtype) 3136 err = vfs_parse_fs_string(fc, "subtype", 3137 subtype, strlen(subtype)); 3138 if (!err && name) 3139 err = vfs_parse_fs_string(fc, "source", name, strlen(name)); 3140 if (!err) 3141 err = parse_monolithic_mount_data(fc, data); 3142 if (!err && !mount_capable(fc)) 3143 err = -EPERM; 3144 if (!err) 3145 err = vfs_get_tree(fc); 3146 if (!err) 3147 err = do_new_mount_fc(fc, path, mnt_flags); 3148 3149 put_fs_context(fc); 3150 return err; 3151 } 3152 3153 int finish_automount(struct vfsmount *m, const struct path *path) 3154 { 3155 struct dentry *dentry = path->dentry; 3156 struct mountpoint *mp; 3157 struct mount *mnt; 3158 int err; 3159 3160 if (!m) 3161 return 0; 3162 if (IS_ERR(m)) 3163 return PTR_ERR(m); 3164 3165 mnt = real_mount(m); 3166 /* The new mount record should have at least 2 refs to prevent it being 3167 * expired before we get a chance to add it 3168 */ 3169 BUG_ON(mnt_get_count(mnt) < 2); 3170 3171 if (m->mnt_sb == path->mnt->mnt_sb && 3172 m->mnt_root == dentry) { 3173 err = -ELOOP; 3174 goto discard; 3175 } 3176 3177 /* 3178 * we don't want to use lock_mount() - in this case finding something 3179 * that overmounts our mountpoint to be means "quitely drop what we've 3180 * got", not "try to mount it on top". 3181 */ 3182 inode_lock(dentry->d_inode); 3183 namespace_lock(); 3184 if (unlikely(cant_mount(dentry))) { 3185 err = -ENOENT; 3186 goto discard_locked; 3187 } 3188 rcu_read_lock(); 3189 if (unlikely(__lookup_mnt(path->mnt, dentry))) { 3190 rcu_read_unlock(); 3191 err = 0; 3192 goto discard_locked; 3193 } 3194 rcu_read_unlock(); 3195 mp = get_mountpoint(dentry); 3196 if (IS_ERR(mp)) { 3197 err = PTR_ERR(mp); 3198 goto discard_locked; 3199 } 3200 3201 err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE); 3202 unlock_mount(mp); 3203 if (unlikely(err)) 3204 goto discard; 3205 mntput(m); 3206 return 0; 3207 3208 discard_locked: 3209 namespace_unlock(); 3210 inode_unlock(dentry->d_inode); 3211 discard: 3212 /* remove m from any expiration list it may be on */ 3213 if (!list_empty(&mnt->mnt_expire)) { 3214 namespace_lock(); 3215 list_del_init(&mnt->mnt_expire); 3216 namespace_unlock(); 3217 } 3218 mntput(m); 3219 mntput(m); 3220 return err; 3221 } 3222 3223 /** 3224 * mnt_set_expiry - Put a mount on an expiration list 3225 * @mnt: The mount to list. 3226 * @expiry_list: The list to add the mount to. 3227 */ 3228 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list) 3229 { 3230 namespace_lock(); 3231 3232 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list); 3233 3234 namespace_unlock(); 3235 } 3236 EXPORT_SYMBOL(mnt_set_expiry); 3237 3238 /* 3239 * process a list of expirable mountpoints with the intent of discarding any 3240 * mountpoints that aren't in use and haven't been touched since last we came 3241 * here 3242 */ 3243 void mark_mounts_for_expiry(struct list_head *mounts) 3244 { 3245 struct mount *mnt, *next; 3246 LIST_HEAD(graveyard); 3247 3248 if (list_empty(mounts)) 3249 return; 3250 3251 namespace_lock(); 3252 lock_mount_hash(); 3253 3254 /* extract from the expiration list every vfsmount that matches the 3255 * following criteria: 3256 * - only referenced by its parent vfsmount 3257 * - still marked for expiry (marked on the last call here; marks are 3258 * cleared by mntput()) 3259 */ 3260 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { 3261 if (!xchg(&mnt->mnt_expiry_mark, 1) || 3262 propagate_mount_busy(mnt, 1)) 3263 continue; 3264 list_move(&mnt->mnt_expire, &graveyard); 3265 } 3266 while (!list_empty(&graveyard)) { 3267 mnt = list_first_entry(&graveyard, struct mount, mnt_expire); 3268 touch_mnt_namespace(mnt->mnt_ns); 3269 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 3270 } 3271 unlock_mount_hash(); 3272 namespace_unlock(); 3273 } 3274 3275 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); 3276 3277 /* 3278 * Ripoff of 'select_parent()' 3279 * 3280 * search the list of submounts for a given mountpoint, and move any 3281 * shrinkable submounts to the 'graveyard' list. 3282 */ 3283 static int select_submounts(struct mount *parent, struct list_head *graveyard) 3284 { 3285 struct mount *this_parent = parent; 3286 struct list_head *next; 3287 int found = 0; 3288 3289 repeat: 3290 next = this_parent->mnt_mounts.next; 3291 resume: 3292 while (next != &this_parent->mnt_mounts) { 3293 struct list_head *tmp = next; 3294 struct mount *mnt = list_entry(tmp, struct mount, mnt_child); 3295 3296 next = tmp->next; 3297 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE)) 3298 continue; 3299 /* 3300 * Descend a level if the d_mounts list is non-empty. 3301 */ 3302 if (!list_empty(&mnt->mnt_mounts)) { 3303 this_parent = mnt; 3304 goto repeat; 3305 } 3306 3307 if (!propagate_mount_busy(mnt, 1)) { 3308 list_move_tail(&mnt->mnt_expire, graveyard); 3309 found++; 3310 } 3311 } 3312 /* 3313 * All done at this level ... ascend and resume the search 3314 */ 3315 if (this_parent != parent) { 3316 next = this_parent->mnt_child.next; 3317 this_parent = this_parent->mnt_parent; 3318 goto resume; 3319 } 3320 return found; 3321 } 3322 3323 /* 3324 * process a list of expirable mountpoints with the intent of discarding any 3325 * submounts of a specific parent mountpoint 3326 * 3327 * mount_lock must be held for write 3328 */ 3329 static void shrink_submounts(struct mount *mnt) 3330 { 3331 LIST_HEAD(graveyard); 3332 struct mount *m; 3333 3334 /* extract submounts of 'mountpoint' from the expiration list */ 3335 while (select_submounts(mnt, &graveyard)) { 3336 while (!list_empty(&graveyard)) { 3337 m = list_first_entry(&graveyard, struct mount, 3338 mnt_expire); 3339 touch_mnt_namespace(m->mnt_ns); 3340 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC); 3341 } 3342 } 3343 } 3344 3345 static void *copy_mount_options(const void __user * data) 3346 { 3347 char *copy; 3348 unsigned left, offset; 3349 3350 if (!data) 3351 return NULL; 3352 3353 copy = kmalloc(PAGE_SIZE, GFP_KERNEL); 3354 if (!copy) 3355 return ERR_PTR(-ENOMEM); 3356 3357 left = copy_from_user(copy, data, PAGE_SIZE); 3358 3359 /* 3360 * Not all architectures have an exact copy_from_user(). Resort to 3361 * byte at a time. 3362 */ 3363 offset = PAGE_SIZE - left; 3364 while (left) { 3365 char c; 3366 if (get_user(c, (const char __user *)data + offset)) 3367 break; 3368 copy[offset] = c; 3369 left--; 3370 offset++; 3371 } 3372 3373 if (left == PAGE_SIZE) { 3374 kfree(copy); 3375 return ERR_PTR(-EFAULT); 3376 } 3377 3378 return copy; 3379 } 3380 3381 static char *copy_mount_string(const void __user *data) 3382 { 3383 return data ? strndup_user(data, PATH_MAX) : NULL; 3384 } 3385 3386 /* 3387 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to 3388 * be given to the mount() call (ie: read-only, no-dev, no-suid etc). 3389 * 3390 * data is a (void *) that can point to any structure up to 3391 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent 3392 * information (or be NULL). 3393 * 3394 * Pre-0.97 versions of mount() didn't have a flags word. 3395 * When the flags word was introduced its top half was required 3396 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. 3397 * Therefore, if this magic number is present, it carries no information 3398 * and must be discarded. 3399 */ 3400 int path_mount(const char *dev_name, struct path *path, 3401 const char *type_page, unsigned long flags, void *data_page) 3402 { 3403 unsigned int mnt_flags = 0, sb_flags; 3404 int ret; 3405 3406 /* Discard magic */ 3407 if ((flags & MS_MGC_MSK) == MS_MGC_VAL) 3408 flags &= ~MS_MGC_MSK; 3409 3410 /* Basic sanity checks */ 3411 if (data_page) 3412 ((char *)data_page)[PAGE_SIZE - 1] = 0; 3413 3414 if (flags & MS_NOUSER) 3415 return -EINVAL; 3416 3417 ret = security_sb_mount(dev_name, path, type_page, flags, data_page); 3418 if (ret) 3419 return ret; 3420 if (!may_mount()) 3421 return -EPERM; 3422 if (flags & SB_MANDLOCK) 3423 warn_mandlock(); 3424 3425 /* Default to relatime unless overriden */ 3426 if (!(flags & MS_NOATIME)) 3427 mnt_flags |= MNT_RELATIME; 3428 3429 /* Separate the per-mountpoint flags */ 3430 if (flags & MS_NOSUID) 3431 mnt_flags |= MNT_NOSUID; 3432 if (flags & MS_NODEV) 3433 mnt_flags |= MNT_NODEV; 3434 if (flags & MS_NOEXEC) 3435 mnt_flags |= MNT_NOEXEC; 3436 if (flags & MS_NOATIME) 3437 mnt_flags |= MNT_NOATIME; 3438 if (flags & MS_NODIRATIME) 3439 mnt_flags |= MNT_NODIRATIME; 3440 if (flags & MS_STRICTATIME) 3441 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME); 3442 if (flags & MS_RDONLY) 3443 mnt_flags |= MNT_READONLY; 3444 if (flags & MS_NOSYMFOLLOW) 3445 mnt_flags |= MNT_NOSYMFOLLOW; 3446 3447 /* The default atime for remount is preservation */ 3448 if ((flags & MS_REMOUNT) && 3449 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME | 3450 MS_STRICTATIME)) == 0)) { 3451 mnt_flags &= ~MNT_ATIME_MASK; 3452 mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK; 3453 } 3454 3455 sb_flags = flags & (SB_RDONLY | 3456 SB_SYNCHRONOUS | 3457 SB_MANDLOCK | 3458 SB_DIRSYNC | 3459 SB_SILENT | 3460 SB_POSIXACL | 3461 SB_LAZYTIME | 3462 SB_I_VERSION); 3463 3464 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND)) 3465 return do_reconfigure_mnt(path, mnt_flags); 3466 if (flags & MS_REMOUNT) 3467 return do_remount(path, flags, sb_flags, mnt_flags, data_page); 3468 if (flags & MS_BIND) 3469 return do_loopback(path, dev_name, flags & MS_REC); 3470 if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 3471 return do_change_type(path, flags); 3472 if (flags & MS_MOVE) 3473 return do_move_mount_old(path, dev_name); 3474 3475 return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name, 3476 data_page); 3477 } 3478 3479 long do_mount(const char *dev_name, const char __user *dir_name, 3480 const char *type_page, unsigned long flags, void *data_page) 3481 { 3482 struct path path; 3483 int ret; 3484 3485 ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path); 3486 if (ret) 3487 return ret; 3488 ret = path_mount(dev_name, &path, type_page, flags, data_page); 3489 path_put(&path); 3490 return ret; 3491 } 3492 3493 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns) 3494 { 3495 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES); 3496 } 3497 3498 static void dec_mnt_namespaces(struct ucounts *ucounts) 3499 { 3500 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES); 3501 } 3502 3503 static void free_mnt_ns(struct mnt_namespace *ns) 3504 { 3505 if (!is_anon_ns(ns)) 3506 ns_free_inum(&ns->ns); 3507 dec_mnt_namespaces(ns->ucounts); 3508 put_user_ns(ns->user_ns); 3509 kfree(ns); 3510 } 3511 3512 /* 3513 * Assign a sequence number so we can detect when we attempt to bind 3514 * mount a reference to an older mount namespace into the current 3515 * mount namespace, preventing reference counting loops. A 64bit 3516 * number incrementing at 10Ghz will take 12,427 years to wrap which 3517 * is effectively never, so we can ignore the possibility. 3518 */ 3519 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1); 3520 3521 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon) 3522 { 3523 struct mnt_namespace *new_ns; 3524 struct ucounts *ucounts; 3525 int ret; 3526 3527 ucounts = inc_mnt_namespaces(user_ns); 3528 if (!ucounts) 3529 return ERR_PTR(-ENOSPC); 3530 3531 new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT); 3532 if (!new_ns) { 3533 dec_mnt_namespaces(ucounts); 3534 return ERR_PTR(-ENOMEM); 3535 } 3536 if (!anon) { 3537 ret = ns_alloc_inum(&new_ns->ns); 3538 if (ret) { 3539 kfree(new_ns); 3540 dec_mnt_namespaces(ucounts); 3541 return ERR_PTR(ret); 3542 } 3543 } 3544 new_ns->ns.ops = &mntns_operations; 3545 if (!anon) 3546 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq); 3547 refcount_set(&new_ns->ns.count, 1); 3548 INIT_LIST_HEAD(&new_ns->list); 3549 init_waitqueue_head(&new_ns->poll); 3550 spin_lock_init(&new_ns->ns_lock); 3551 new_ns->user_ns = get_user_ns(user_ns); 3552 new_ns->ucounts = ucounts; 3553 return new_ns; 3554 } 3555 3556 __latent_entropy 3557 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns, 3558 struct user_namespace *user_ns, struct fs_struct *new_fs) 3559 { 3560 struct mnt_namespace *new_ns; 3561 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL; 3562 struct mount *p, *q; 3563 struct mount *old; 3564 struct mount *new; 3565 int copy_flags; 3566 3567 BUG_ON(!ns); 3568 3569 if (likely(!(flags & CLONE_NEWNS))) { 3570 get_mnt_ns(ns); 3571 return ns; 3572 } 3573 3574 old = ns->root; 3575 3576 new_ns = alloc_mnt_ns(user_ns, false); 3577 if (IS_ERR(new_ns)) 3578 return new_ns; 3579 3580 namespace_lock(); 3581 /* First pass: copy the tree topology */ 3582 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE; 3583 if (user_ns != ns->user_ns) 3584 copy_flags |= CL_SHARED_TO_SLAVE; 3585 new = copy_tree(old, old->mnt.mnt_root, copy_flags); 3586 if (IS_ERR(new)) { 3587 namespace_unlock(); 3588 free_mnt_ns(new_ns); 3589 return ERR_CAST(new); 3590 } 3591 if (user_ns != ns->user_ns) { 3592 lock_mount_hash(); 3593 lock_mnt_tree(new); 3594 unlock_mount_hash(); 3595 } 3596 new_ns->root = new; 3597 list_add_tail(&new_ns->list, &new->mnt_list); 3598 3599 /* 3600 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts 3601 * as belonging to new namespace. We have already acquired a private 3602 * fs_struct, so tsk->fs->lock is not needed. 3603 */ 3604 p = old; 3605 q = new; 3606 while (p) { 3607 q->mnt_ns = new_ns; 3608 new_ns->mounts++; 3609 if (new_fs) { 3610 if (&p->mnt == new_fs->root.mnt) { 3611 new_fs->root.mnt = mntget(&q->mnt); 3612 rootmnt = &p->mnt; 3613 } 3614 if (&p->mnt == new_fs->pwd.mnt) { 3615 new_fs->pwd.mnt = mntget(&q->mnt); 3616 pwdmnt = &p->mnt; 3617 } 3618 } 3619 p = next_mnt(p, old); 3620 q = next_mnt(q, new); 3621 if (!q) 3622 break; 3623 // an mntns binding we'd skipped? 3624 while (p->mnt.mnt_root != q->mnt.mnt_root) 3625 p = next_mnt(skip_mnt_tree(p), old); 3626 } 3627 namespace_unlock(); 3628 3629 if (rootmnt) 3630 mntput(rootmnt); 3631 if (pwdmnt) 3632 mntput(pwdmnt); 3633 3634 return new_ns; 3635 } 3636 3637 struct dentry *mount_subtree(struct vfsmount *m, const char *name) 3638 { 3639 struct mount *mnt = real_mount(m); 3640 struct mnt_namespace *ns; 3641 struct super_block *s; 3642 struct path path; 3643 int err; 3644 3645 ns = alloc_mnt_ns(&init_user_ns, true); 3646 if (IS_ERR(ns)) { 3647 mntput(m); 3648 return ERR_CAST(ns); 3649 } 3650 mnt->mnt_ns = ns; 3651 ns->root = mnt; 3652 ns->mounts++; 3653 list_add(&mnt->mnt_list, &ns->list); 3654 3655 err = vfs_path_lookup(m->mnt_root, m, 3656 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path); 3657 3658 put_mnt_ns(ns); 3659 3660 if (err) 3661 return ERR_PTR(err); 3662 3663 /* trade a vfsmount reference for active sb one */ 3664 s = path.mnt->mnt_sb; 3665 atomic_inc(&s->s_active); 3666 mntput(path.mnt); 3667 /* lock the sucker */ 3668 down_write(&s->s_umount); 3669 /* ... and return the root of (sub)tree on it */ 3670 return path.dentry; 3671 } 3672 EXPORT_SYMBOL(mount_subtree); 3673 3674 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name, 3675 char __user *, type, unsigned long, flags, void __user *, data) 3676 { 3677 int ret; 3678 char *kernel_type; 3679 char *kernel_dev; 3680 void *options; 3681 3682 kernel_type = copy_mount_string(type); 3683 ret = PTR_ERR(kernel_type); 3684 if (IS_ERR(kernel_type)) 3685 goto out_type; 3686 3687 kernel_dev = copy_mount_string(dev_name); 3688 ret = PTR_ERR(kernel_dev); 3689 if (IS_ERR(kernel_dev)) 3690 goto out_dev; 3691 3692 options = copy_mount_options(data); 3693 ret = PTR_ERR(options); 3694 if (IS_ERR(options)) 3695 goto out_data; 3696 3697 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options); 3698 3699 kfree(options); 3700 out_data: 3701 kfree(kernel_dev); 3702 out_dev: 3703 kfree(kernel_type); 3704 out_type: 3705 return ret; 3706 } 3707 3708 #define FSMOUNT_VALID_FLAGS \ 3709 (MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV | \ 3710 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME | \ 3711 MOUNT_ATTR_NOSYMFOLLOW) 3712 3713 #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP) 3714 3715 #define MOUNT_SETATTR_PROPAGATION_FLAGS \ 3716 (MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED) 3717 3718 static unsigned int attr_flags_to_mnt_flags(u64 attr_flags) 3719 { 3720 unsigned int mnt_flags = 0; 3721 3722 if (attr_flags & MOUNT_ATTR_RDONLY) 3723 mnt_flags |= MNT_READONLY; 3724 if (attr_flags & MOUNT_ATTR_NOSUID) 3725 mnt_flags |= MNT_NOSUID; 3726 if (attr_flags & MOUNT_ATTR_NODEV) 3727 mnt_flags |= MNT_NODEV; 3728 if (attr_flags & MOUNT_ATTR_NOEXEC) 3729 mnt_flags |= MNT_NOEXEC; 3730 if (attr_flags & MOUNT_ATTR_NODIRATIME) 3731 mnt_flags |= MNT_NODIRATIME; 3732 if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW) 3733 mnt_flags |= MNT_NOSYMFOLLOW; 3734 3735 return mnt_flags; 3736 } 3737 3738 /* 3739 * Create a kernel mount representation for a new, prepared superblock 3740 * (specified by fs_fd) and attach to an open_tree-like file descriptor. 3741 */ 3742 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags, 3743 unsigned int, attr_flags) 3744 { 3745 struct mnt_namespace *ns; 3746 struct fs_context *fc; 3747 struct file *file; 3748 struct path newmount; 3749 struct mount *mnt; 3750 struct fd f; 3751 unsigned int mnt_flags = 0; 3752 long ret; 3753 3754 if (!may_mount()) 3755 return -EPERM; 3756 3757 if ((flags & ~(FSMOUNT_CLOEXEC)) != 0) 3758 return -EINVAL; 3759 3760 if (attr_flags & ~FSMOUNT_VALID_FLAGS) 3761 return -EINVAL; 3762 3763 mnt_flags = attr_flags_to_mnt_flags(attr_flags); 3764 3765 switch (attr_flags & MOUNT_ATTR__ATIME) { 3766 case MOUNT_ATTR_STRICTATIME: 3767 break; 3768 case MOUNT_ATTR_NOATIME: 3769 mnt_flags |= MNT_NOATIME; 3770 break; 3771 case MOUNT_ATTR_RELATIME: 3772 mnt_flags |= MNT_RELATIME; 3773 break; 3774 default: 3775 return -EINVAL; 3776 } 3777 3778 f = fdget(fs_fd); 3779 if (!f.file) 3780 return -EBADF; 3781 3782 ret = -EINVAL; 3783 if (f.file->f_op != &fscontext_fops) 3784 goto err_fsfd; 3785 3786 fc = f.file->private_data; 3787 3788 ret = mutex_lock_interruptible(&fc->uapi_mutex); 3789 if (ret < 0) 3790 goto err_fsfd; 3791 3792 /* There must be a valid superblock or we can't mount it */ 3793 ret = -EINVAL; 3794 if (!fc->root) 3795 goto err_unlock; 3796 3797 ret = -EPERM; 3798 if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) { 3799 pr_warn("VFS: Mount too revealing\n"); 3800 goto err_unlock; 3801 } 3802 3803 ret = -EBUSY; 3804 if (fc->phase != FS_CONTEXT_AWAITING_MOUNT) 3805 goto err_unlock; 3806 3807 if (fc->sb_flags & SB_MANDLOCK) 3808 warn_mandlock(); 3809 3810 newmount.mnt = vfs_create_mount(fc); 3811 if (IS_ERR(newmount.mnt)) { 3812 ret = PTR_ERR(newmount.mnt); 3813 goto err_unlock; 3814 } 3815 newmount.dentry = dget(fc->root); 3816 newmount.mnt->mnt_flags = mnt_flags; 3817 3818 /* We've done the mount bit - now move the file context into more or 3819 * less the same state as if we'd done an fspick(). We don't want to 3820 * do any memory allocation or anything like that at this point as we 3821 * don't want to have to handle any errors incurred. 3822 */ 3823 vfs_clean_context(fc); 3824 3825 ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true); 3826 if (IS_ERR(ns)) { 3827 ret = PTR_ERR(ns); 3828 goto err_path; 3829 } 3830 mnt = real_mount(newmount.mnt); 3831 mnt->mnt_ns = ns; 3832 ns->root = mnt; 3833 ns->mounts = 1; 3834 list_add(&mnt->mnt_list, &ns->list); 3835 mntget(newmount.mnt); 3836 3837 /* Attach to an apparent O_PATH fd with a note that we need to unmount 3838 * it, not just simply put it. 3839 */ 3840 file = dentry_open(&newmount, O_PATH, fc->cred); 3841 if (IS_ERR(file)) { 3842 dissolve_on_fput(newmount.mnt); 3843 ret = PTR_ERR(file); 3844 goto err_path; 3845 } 3846 file->f_mode |= FMODE_NEED_UNMOUNT; 3847 3848 ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0); 3849 if (ret >= 0) 3850 fd_install(ret, file); 3851 else 3852 fput(file); 3853 3854 err_path: 3855 path_put(&newmount); 3856 err_unlock: 3857 mutex_unlock(&fc->uapi_mutex); 3858 err_fsfd: 3859 fdput(f); 3860 return ret; 3861 } 3862 3863 /* 3864 * Move a mount from one place to another. In combination with 3865 * fsopen()/fsmount() this is used to install a new mount and in combination 3866 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy 3867 * a mount subtree. 3868 * 3869 * Note the flags value is a combination of MOVE_MOUNT_* flags. 3870 */ 3871 SYSCALL_DEFINE5(move_mount, 3872 int, from_dfd, const char __user *, from_pathname, 3873 int, to_dfd, const char __user *, to_pathname, 3874 unsigned int, flags) 3875 { 3876 struct path from_path, to_path; 3877 unsigned int lflags; 3878 int ret = 0; 3879 3880 if (!may_mount()) 3881 return -EPERM; 3882 3883 if (flags & ~MOVE_MOUNT__MASK) 3884 return -EINVAL; 3885 3886 /* If someone gives a pathname, they aren't permitted to move 3887 * from an fd that requires unmount as we can't get at the flag 3888 * to clear it afterwards. 3889 */ 3890 lflags = 0; 3891 if (flags & MOVE_MOUNT_F_SYMLINKS) lflags |= LOOKUP_FOLLOW; 3892 if (flags & MOVE_MOUNT_F_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT; 3893 if (flags & MOVE_MOUNT_F_EMPTY_PATH) lflags |= LOOKUP_EMPTY; 3894 3895 ret = user_path_at(from_dfd, from_pathname, lflags, &from_path); 3896 if (ret < 0) 3897 return ret; 3898 3899 lflags = 0; 3900 if (flags & MOVE_MOUNT_T_SYMLINKS) lflags |= LOOKUP_FOLLOW; 3901 if (flags & MOVE_MOUNT_T_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT; 3902 if (flags & MOVE_MOUNT_T_EMPTY_PATH) lflags |= LOOKUP_EMPTY; 3903 3904 ret = user_path_at(to_dfd, to_pathname, lflags, &to_path); 3905 if (ret < 0) 3906 goto out_from; 3907 3908 ret = security_move_mount(&from_path, &to_path); 3909 if (ret < 0) 3910 goto out_to; 3911 3912 if (flags & MOVE_MOUNT_SET_GROUP) 3913 ret = do_set_group(&from_path, &to_path); 3914 else 3915 ret = do_move_mount(&from_path, &to_path); 3916 3917 out_to: 3918 path_put(&to_path); 3919 out_from: 3920 path_put(&from_path); 3921 return ret; 3922 } 3923 3924 /* 3925 * Return true if path is reachable from root 3926 * 3927 * namespace_sem or mount_lock is held 3928 */ 3929 bool is_path_reachable(struct mount *mnt, struct dentry *dentry, 3930 const struct path *root) 3931 { 3932 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) { 3933 dentry = mnt->mnt_mountpoint; 3934 mnt = mnt->mnt_parent; 3935 } 3936 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry); 3937 } 3938 3939 bool path_is_under(const struct path *path1, const struct path *path2) 3940 { 3941 bool res; 3942 read_seqlock_excl(&mount_lock); 3943 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2); 3944 read_sequnlock_excl(&mount_lock); 3945 return res; 3946 } 3947 EXPORT_SYMBOL(path_is_under); 3948 3949 /* 3950 * pivot_root Semantics: 3951 * Moves the root file system of the current process to the directory put_old, 3952 * makes new_root as the new root file system of the current process, and sets 3953 * root/cwd of all processes which had them on the current root to new_root. 3954 * 3955 * Restrictions: 3956 * The new_root and put_old must be directories, and must not be on the 3957 * same file system as the current process root. The put_old must be 3958 * underneath new_root, i.e. adding a non-zero number of /.. to the string 3959 * pointed to by put_old must yield the same directory as new_root. No other 3960 * file system may be mounted on put_old. After all, new_root is a mountpoint. 3961 * 3962 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. 3963 * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives 3964 * in this situation. 3965 * 3966 * Notes: 3967 * - we don't move root/cwd if they are not at the root (reason: if something 3968 * cared enough to change them, it's probably wrong to force them elsewhere) 3969 * - it's okay to pick a root that isn't the root of a file system, e.g. 3970 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, 3971 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root 3972 * first. 3973 */ 3974 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root, 3975 const char __user *, put_old) 3976 { 3977 struct path new, old, root; 3978 struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent; 3979 struct mountpoint *old_mp, *root_mp; 3980 int error; 3981 3982 if (!may_mount()) 3983 return -EPERM; 3984 3985 error = user_path_at(AT_FDCWD, new_root, 3986 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new); 3987 if (error) 3988 goto out0; 3989 3990 error = user_path_at(AT_FDCWD, put_old, 3991 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old); 3992 if (error) 3993 goto out1; 3994 3995 error = security_sb_pivotroot(&old, &new); 3996 if (error) 3997 goto out2; 3998 3999 get_fs_root(current->fs, &root); 4000 old_mp = lock_mount(&old); 4001 error = PTR_ERR(old_mp); 4002 if (IS_ERR(old_mp)) 4003 goto out3; 4004 4005 error = -EINVAL; 4006 new_mnt = real_mount(new.mnt); 4007 root_mnt = real_mount(root.mnt); 4008 old_mnt = real_mount(old.mnt); 4009 ex_parent = new_mnt->mnt_parent; 4010 root_parent = root_mnt->mnt_parent; 4011 if (IS_MNT_SHARED(old_mnt) || 4012 IS_MNT_SHARED(ex_parent) || 4013 IS_MNT_SHARED(root_parent)) 4014 goto out4; 4015 if (!check_mnt(root_mnt) || !check_mnt(new_mnt)) 4016 goto out4; 4017 if (new_mnt->mnt.mnt_flags & MNT_LOCKED) 4018 goto out4; 4019 error = -ENOENT; 4020 if (d_unlinked(new.dentry)) 4021 goto out4; 4022 error = -EBUSY; 4023 if (new_mnt == root_mnt || old_mnt == root_mnt) 4024 goto out4; /* loop, on the same file system */ 4025 error = -EINVAL; 4026 if (root.mnt->mnt_root != root.dentry) 4027 goto out4; /* not a mountpoint */ 4028 if (!mnt_has_parent(root_mnt)) 4029 goto out4; /* not attached */ 4030 if (new.mnt->mnt_root != new.dentry) 4031 goto out4; /* not a mountpoint */ 4032 if (!mnt_has_parent(new_mnt)) 4033 goto out4; /* not attached */ 4034 /* make sure we can reach put_old from new_root */ 4035 if (!is_path_reachable(old_mnt, old.dentry, &new)) 4036 goto out4; 4037 /* make certain new is below the root */ 4038 if (!is_path_reachable(new_mnt, new.dentry, &root)) 4039 goto out4; 4040 lock_mount_hash(); 4041 umount_mnt(new_mnt); 4042 root_mp = unhash_mnt(root_mnt); /* we'll need its mountpoint */ 4043 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) { 4044 new_mnt->mnt.mnt_flags |= MNT_LOCKED; 4045 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED; 4046 } 4047 /* mount old root on put_old */ 4048 attach_mnt(root_mnt, old_mnt, old_mp); 4049 /* mount new_root on / */ 4050 attach_mnt(new_mnt, root_parent, root_mp); 4051 mnt_add_count(root_parent, -1); 4052 touch_mnt_namespace(current->nsproxy->mnt_ns); 4053 /* A moved mount should not expire automatically */ 4054 list_del_init(&new_mnt->mnt_expire); 4055 put_mountpoint(root_mp); 4056 unlock_mount_hash(); 4057 chroot_fs_refs(&root, &new); 4058 error = 0; 4059 out4: 4060 unlock_mount(old_mp); 4061 if (!error) 4062 mntput_no_expire(ex_parent); 4063 out3: 4064 path_put(&root); 4065 out2: 4066 path_put(&old); 4067 out1: 4068 path_put(&new); 4069 out0: 4070 return error; 4071 } 4072 4073 static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt) 4074 { 4075 unsigned int flags = mnt->mnt.mnt_flags; 4076 4077 /* flags to clear */ 4078 flags &= ~kattr->attr_clr; 4079 /* flags to raise */ 4080 flags |= kattr->attr_set; 4081 4082 return flags; 4083 } 4084 4085 static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt) 4086 { 4087 struct vfsmount *m = &mnt->mnt; 4088 struct user_namespace *fs_userns = m->mnt_sb->s_user_ns; 4089 4090 if (!kattr->mnt_idmap) 4091 return 0; 4092 4093 /* 4094 * Creating an idmapped mount with the filesystem wide idmapping 4095 * doesn't make sense so block that. We don't allow mushy semantics. 4096 */ 4097 if (mnt_idmap_owner(kattr->mnt_idmap) == fs_userns) 4098 return -EINVAL; 4099 4100 /* 4101 * Once a mount has been idmapped we don't allow it to change its 4102 * mapping. It makes things simpler and callers can just create 4103 * another bind-mount they can idmap if they want to. 4104 */ 4105 if (is_idmapped_mnt(m)) 4106 return -EPERM; 4107 4108 /* The underlying filesystem doesn't support idmapped mounts yet. */ 4109 if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP)) 4110 return -EINVAL; 4111 4112 /* We're not controlling the superblock. */ 4113 if (!ns_capable(fs_userns, CAP_SYS_ADMIN)) 4114 return -EPERM; 4115 4116 /* Mount has already been visible in the filesystem hierarchy. */ 4117 if (!is_anon_ns(mnt->mnt_ns)) 4118 return -EINVAL; 4119 4120 return 0; 4121 } 4122 4123 /** 4124 * mnt_allow_writers() - check whether the attribute change allows writers 4125 * @kattr: the new mount attributes 4126 * @mnt: the mount to which @kattr will be applied 4127 * 4128 * Check whether thew new mount attributes in @kattr allow concurrent writers. 4129 * 4130 * Return: true if writers need to be held, false if not 4131 */ 4132 static inline bool mnt_allow_writers(const struct mount_kattr *kattr, 4133 const struct mount *mnt) 4134 { 4135 return (!(kattr->attr_set & MNT_READONLY) || 4136 (mnt->mnt.mnt_flags & MNT_READONLY)) && 4137 !kattr->mnt_idmap; 4138 } 4139 4140 static int mount_setattr_prepare(struct mount_kattr *kattr, struct mount *mnt) 4141 { 4142 struct mount *m; 4143 int err; 4144 4145 for (m = mnt; m; m = next_mnt(m, mnt)) { 4146 if (!can_change_locked_flags(m, recalc_flags(kattr, m))) { 4147 err = -EPERM; 4148 break; 4149 } 4150 4151 err = can_idmap_mount(kattr, m); 4152 if (err) 4153 break; 4154 4155 if (!mnt_allow_writers(kattr, m)) { 4156 err = mnt_hold_writers(m); 4157 if (err) 4158 break; 4159 } 4160 4161 if (!kattr->recurse) 4162 return 0; 4163 } 4164 4165 if (err) { 4166 struct mount *p; 4167 4168 /* 4169 * If we had to call mnt_hold_writers() MNT_WRITE_HOLD will 4170 * be set in @mnt_flags. The loop unsets MNT_WRITE_HOLD for all 4171 * mounts and needs to take care to include the first mount. 4172 */ 4173 for (p = mnt; p; p = next_mnt(p, mnt)) { 4174 /* If we had to hold writers unblock them. */ 4175 if (p->mnt.mnt_flags & MNT_WRITE_HOLD) 4176 mnt_unhold_writers(p); 4177 4178 /* 4179 * We're done once the first mount we changed got 4180 * MNT_WRITE_HOLD unset. 4181 */ 4182 if (p == m) 4183 break; 4184 } 4185 } 4186 return err; 4187 } 4188 4189 static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt) 4190 { 4191 if (!kattr->mnt_idmap) 4192 return; 4193 4194 /* 4195 * Pairs with smp_load_acquire() in mnt_idmap(). 4196 * 4197 * Since we only allow a mount to change the idmapping once and 4198 * verified this in can_idmap_mount() we know that the mount has 4199 * @nop_mnt_idmap attached to it. So there's no need to drop any 4200 * references. 4201 */ 4202 smp_store_release(&mnt->mnt.mnt_idmap, mnt_idmap_get(kattr->mnt_idmap)); 4203 } 4204 4205 static void mount_setattr_commit(struct mount_kattr *kattr, struct mount *mnt) 4206 { 4207 struct mount *m; 4208 4209 for (m = mnt; m; m = next_mnt(m, mnt)) { 4210 unsigned int flags; 4211 4212 do_idmap_mount(kattr, m); 4213 flags = recalc_flags(kattr, m); 4214 WRITE_ONCE(m->mnt.mnt_flags, flags); 4215 4216 /* If we had to hold writers unblock them. */ 4217 if (m->mnt.mnt_flags & MNT_WRITE_HOLD) 4218 mnt_unhold_writers(m); 4219 4220 if (kattr->propagation) 4221 change_mnt_propagation(m, kattr->propagation); 4222 if (!kattr->recurse) 4223 break; 4224 } 4225 touch_mnt_namespace(mnt->mnt_ns); 4226 } 4227 4228 static int do_mount_setattr(struct path *path, struct mount_kattr *kattr) 4229 { 4230 struct mount *mnt = real_mount(path->mnt); 4231 int err = 0; 4232 4233 if (path->dentry != mnt->mnt.mnt_root) 4234 return -EINVAL; 4235 4236 if (kattr->mnt_userns) { 4237 struct mnt_idmap *mnt_idmap; 4238 4239 mnt_idmap = alloc_mnt_idmap(kattr->mnt_userns); 4240 if (IS_ERR(mnt_idmap)) 4241 return PTR_ERR(mnt_idmap); 4242 kattr->mnt_idmap = mnt_idmap; 4243 } 4244 4245 if (kattr->propagation) { 4246 /* 4247 * Only take namespace_lock() if we're actually changing 4248 * propagation. 4249 */ 4250 namespace_lock(); 4251 if (kattr->propagation == MS_SHARED) { 4252 err = invent_group_ids(mnt, kattr->recurse); 4253 if (err) { 4254 namespace_unlock(); 4255 return err; 4256 } 4257 } 4258 } 4259 4260 err = -EINVAL; 4261 lock_mount_hash(); 4262 4263 /* Ensure that this isn't anything purely vfs internal. */ 4264 if (!is_mounted(&mnt->mnt)) 4265 goto out; 4266 4267 /* 4268 * If this is an attached mount make sure it's located in the callers 4269 * mount namespace. If it's not don't let the caller interact with it. 4270 * If this is a detached mount make sure it has an anonymous mount 4271 * namespace attached to it, i.e. we've created it via OPEN_TREE_CLONE. 4272 */ 4273 if (!(mnt_has_parent(mnt) ? check_mnt(mnt) : is_anon_ns(mnt->mnt_ns))) 4274 goto out; 4275 4276 /* 4277 * First, we get the mount tree in a shape where we can change mount 4278 * properties without failure. If we succeeded to do so we commit all 4279 * changes and if we failed we clean up. 4280 */ 4281 err = mount_setattr_prepare(kattr, mnt); 4282 if (!err) 4283 mount_setattr_commit(kattr, mnt); 4284 4285 out: 4286 unlock_mount_hash(); 4287 4288 if (kattr->propagation) { 4289 namespace_unlock(); 4290 if (err) 4291 cleanup_group_ids(mnt, NULL); 4292 } 4293 4294 return err; 4295 } 4296 4297 static int build_mount_idmapped(const struct mount_attr *attr, size_t usize, 4298 struct mount_kattr *kattr, unsigned int flags) 4299 { 4300 int err = 0; 4301 struct ns_common *ns; 4302 struct user_namespace *mnt_userns; 4303 struct file *file; 4304 4305 if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP)) 4306 return 0; 4307 4308 /* 4309 * We currently do not support clearing an idmapped mount. If this ever 4310 * is a use-case we can revisit this but for now let's keep it simple 4311 * and not allow it. 4312 */ 4313 if (attr->attr_clr & MOUNT_ATTR_IDMAP) 4314 return -EINVAL; 4315 4316 if (attr->userns_fd > INT_MAX) 4317 return -EINVAL; 4318 4319 file = fget(attr->userns_fd); 4320 if (!file) 4321 return -EBADF; 4322 4323 if (!proc_ns_file(file)) { 4324 err = -EINVAL; 4325 goto out_fput; 4326 } 4327 4328 ns = get_proc_ns(file_inode(file)); 4329 if (ns->ops->type != CLONE_NEWUSER) { 4330 err = -EINVAL; 4331 goto out_fput; 4332 } 4333 4334 /* 4335 * The initial idmapping cannot be used to create an idmapped 4336 * mount. We use the initial idmapping as an indicator of a mount 4337 * that is not idmapped. It can simply be passed into helpers that 4338 * are aware of idmapped mounts as a convenient shortcut. A user 4339 * can just create a dedicated identity mapping to achieve the same 4340 * result. 4341 */ 4342 mnt_userns = container_of(ns, struct user_namespace, ns); 4343 if (initial_idmapping(mnt_userns)) { 4344 err = -EPERM; 4345 goto out_fput; 4346 } 4347 4348 /* We're not controlling the target namespace. */ 4349 if (!ns_capable(mnt_userns, CAP_SYS_ADMIN)) { 4350 err = -EPERM; 4351 goto out_fput; 4352 } 4353 4354 kattr->mnt_userns = get_user_ns(mnt_userns); 4355 4356 out_fput: 4357 fput(file); 4358 return err; 4359 } 4360 4361 static int build_mount_kattr(const struct mount_attr *attr, size_t usize, 4362 struct mount_kattr *kattr, unsigned int flags) 4363 { 4364 unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW; 4365 4366 if (flags & AT_NO_AUTOMOUNT) 4367 lookup_flags &= ~LOOKUP_AUTOMOUNT; 4368 if (flags & AT_SYMLINK_NOFOLLOW) 4369 lookup_flags &= ~LOOKUP_FOLLOW; 4370 if (flags & AT_EMPTY_PATH) 4371 lookup_flags |= LOOKUP_EMPTY; 4372 4373 *kattr = (struct mount_kattr) { 4374 .lookup_flags = lookup_flags, 4375 .recurse = !!(flags & AT_RECURSIVE), 4376 }; 4377 4378 if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS) 4379 return -EINVAL; 4380 if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1) 4381 return -EINVAL; 4382 kattr->propagation = attr->propagation; 4383 4384 if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS) 4385 return -EINVAL; 4386 4387 kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set); 4388 kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr); 4389 4390 /* 4391 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap, 4392 * users wanting to transition to a different atime setting cannot 4393 * simply specify the atime setting in @attr_set, but must also 4394 * specify MOUNT_ATTR__ATIME in the @attr_clr field. 4395 * So ensure that MOUNT_ATTR__ATIME can't be partially set in 4396 * @attr_clr and that @attr_set can't have any atime bits set if 4397 * MOUNT_ATTR__ATIME isn't set in @attr_clr. 4398 */ 4399 if (attr->attr_clr & MOUNT_ATTR__ATIME) { 4400 if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME) 4401 return -EINVAL; 4402 4403 /* 4404 * Clear all previous time settings as they are mutually 4405 * exclusive. 4406 */ 4407 kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME; 4408 switch (attr->attr_set & MOUNT_ATTR__ATIME) { 4409 case MOUNT_ATTR_RELATIME: 4410 kattr->attr_set |= MNT_RELATIME; 4411 break; 4412 case MOUNT_ATTR_NOATIME: 4413 kattr->attr_set |= MNT_NOATIME; 4414 break; 4415 case MOUNT_ATTR_STRICTATIME: 4416 break; 4417 default: 4418 return -EINVAL; 4419 } 4420 } else { 4421 if (attr->attr_set & MOUNT_ATTR__ATIME) 4422 return -EINVAL; 4423 } 4424 4425 return build_mount_idmapped(attr, usize, kattr, flags); 4426 } 4427 4428 static void finish_mount_kattr(struct mount_kattr *kattr) 4429 { 4430 put_user_ns(kattr->mnt_userns); 4431 kattr->mnt_userns = NULL; 4432 4433 if (kattr->mnt_idmap) 4434 mnt_idmap_put(kattr->mnt_idmap); 4435 } 4436 4437 SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path, 4438 unsigned int, flags, struct mount_attr __user *, uattr, 4439 size_t, usize) 4440 { 4441 int err; 4442 struct path target; 4443 struct mount_attr attr; 4444 struct mount_kattr kattr; 4445 4446 BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0); 4447 4448 if (flags & ~(AT_EMPTY_PATH | 4449 AT_RECURSIVE | 4450 AT_SYMLINK_NOFOLLOW | 4451 AT_NO_AUTOMOUNT)) 4452 return -EINVAL; 4453 4454 if (unlikely(usize > PAGE_SIZE)) 4455 return -E2BIG; 4456 if (unlikely(usize < MOUNT_ATTR_SIZE_VER0)) 4457 return -EINVAL; 4458 4459 if (!may_mount()) 4460 return -EPERM; 4461 4462 err = copy_struct_from_user(&attr, sizeof(attr), uattr, usize); 4463 if (err) 4464 return err; 4465 4466 /* Don't bother walking through the mounts if this is a nop. */ 4467 if (attr.attr_set == 0 && 4468 attr.attr_clr == 0 && 4469 attr.propagation == 0) 4470 return 0; 4471 4472 err = build_mount_kattr(&attr, usize, &kattr, flags); 4473 if (err) 4474 return err; 4475 4476 err = user_path_at(dfd, path, kattr.lookup_flags, &target); 4477 if (!err) { 4478 err = do_mount_setattr(&target, &kattr); 4479 path_put(&target); 4480 } 4481 finish_mount_kattr(&kattr); 4482 return err; 4483 } 4484 4485 static void __init init_mount_tree(void) 4486 { 4487 struct vfsmount *mnt; 4488 struct mount *m; 4489 struct mnt_namespace *ns; 4490 struct path root; 4491 4492 mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL); 4493 if (IS_ERR(mnt)) 4494 panic("Can't create rootfs"); 4495 4496 ns = alloc_mnt_ns(&init_user_ns, false); 4497 if (IS_ERR(ns)) 4498 panic("Can't allocate initial namespace"); 4499 m = real_mount(mnt); 4500 m->mnt_ns = ns; 4501 ns->root = m; 4502 ns->mounts = 1; 4503 list_add(&m->mnt_list, &ns->list); 4504 init_task.nsproxy->mnt_ns = ns; 4505 get_mnt_ns(ns); 4506 4507 root.mnt = mnt; 4508 root.dentry = mnt->mnt_root; 4509 mnt->mnt_flags |= MNT_LOCKED; 4510 4511 set_fs_pwd(current->fs, &root); 4512 set_fs_root(current->fs, &root); 4513 } 4514 4515 void __init mnt_init(void) 4516 { 4517 int err; 4518 4519 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount), 4520 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL); 4521 4522 mount_hashtable = alloc_large_system_hash("Mount-cache", 4523 sizeof(struct hlist_head), 4524 mhash_entries, 19, 4525 HASH_ZERO, 4526 &m_hash_shift, &m_hash_mask, 0, 0); 4527 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache", 4528 sizeof(struct hlist_head), 4529 mphash_entries, 19, 4530 HASH_ZERO, 4531 &mp_hash_shift, &mp_hash_mask, 0, 0); 4532 4533 if (!mount_hashtable || !mountpoint_hashtable) 4534 panic("Failed to allocate mount hash table\n"); 4535 4536 kernfs_init(); 4537 4538 err = sysfs_init(); 4539 if (err) 4540 printk(KERN_WARNING "%s: sysfs_init error: %d\n", 4541 __func__, err); 4542 fs_kobj = kobject_create_and_add("fs", NULL); 4543 if (!fs_kobj) 4544 printk(KERN_WARNING "%s: kobj create error\n", __func__); 4545 shmem_init(); 4546 init_rootfs(); 4547 init_mount_tree(); 4548 } 4549 4550 void put_mnt_ns(struct mnt_namespace *ns) 4551 { 4552 if (!refcount_dec_and_test(&ns->ns.count)) 4553 return; 4554 drop_collected_mounts(&ns->root->mnt); 4555 free_mnt_ns(ns); 4556 } 4557 4558 struct vfsmount *kern_mount(struct file_system_type *type) 4559 { 4560 struct vfsmount *mnt; 4561 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL); 4562 if (!IS_ERR(mnt)) { 4563 /* 4564 * it is a longterm mount, don't release mnt until 4565 * we unmount before file sys is unregistered 4566 */ 4567 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL; 4568 } 4569 return mnt; 4570 } 4571 EXPORT_SYMBOL_GPL(kern_mount); 4572 4573 void kern_unmount(struct vfsmount *mnt) 4574 { 4575 /* release long term mount so mount point can be released */ 4576 if (!IS_ERR_OR_NULL(mnt)) { 4577 real_mount(mnt)->mnt_ns = NULL; 4578 synchronize_rcu(); /* yecchhh... */ 4579 mntput(mnt); 4580 } 4581 } 4582 EXPORT_SYMBOL(kern_unmount); 4583 4584 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num) 4585 { 4586 unsigned int i; 4587 4588 for (i = 0; i < num; i++) 4589 if (mnt[i]) 4590 real_mount(mnt[i])->mnt_ns = NULL; 4591 synchronize_rcu_expedited(); 4592 for (i = 0; i < num; i++) 4593 mntput(mnt[i]); 4594 } 4595 EXPORT_SYMBOL(kern_unmount_array); 4596 4597 bool our_mnt(struct vfsmount *mnt) 4598 { 4599 return check_mnt(real_mount(mnt)); 4600 } 4601 4602 bool current_chrooted(void) 4603 { 4604 /* Does the current process have a non-standard root */ 4605 struct path ns_root; 4606 struct path fs_root; 4607 bool chrooted; 4608 4609 /* Find the namespace root */ 4610 ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt; 4611 ns_root.dentry = ns_root.mnt->mnt_root; 4612 path_get(&ns_root); 4613 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root)) 4614 ; 4615 4616 get_fs_root(current->fs, &fs_root); 4617 4618 chrooted = !path_equal(&fs_root, &ns_root); 4619 4620 path_put(&fs_root); 4621 path_put(&ns_root); 4622 4623 return chrooted; 4624 } 4625 4626 static bool mnt_already_visible(struct mnt_namespace *ns, 4627 const struct super_block *sb, 4628 int *new_mnt_flags) 4629 { 4630 int new_flags = *new_mnt_flags; 4631 struct mount *mnt; 4632 bool visible = false; 4633 4634 down_read(&namespace_sem); 4635 lock_ns_list(ns); 4636 list_for_each_entry(mnt, &ns->list, mnt_list) { 4637 struct mount *child; 4638 int mnt_flags; 4639 4640 if (mnt_is_cursor(mnt)) 4641 continue; 4642 4643 if (mnt->mnt.mnt_sb->s_type != sb->s_type) 4644 continue; 4645 4646 /* This mount is not fully visible if it's root directory 4647 * is not the root directory of the filesystem. 4648 */ 4649 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root) 4650 continue; 4651 4652 /* A local view of the mount flags */ 4653 mnt_flags = mnt->mnt.mnt_flags; 4654 4655 /* Don't miss readonly hidden in the superblock flags */ 4656 if (sb_rdonly(mnt->mnt.mnt_sb)) 4657 mnt_flags |= MNT_LOCK_READONLY; 4658 4659 /* Verify the mount flags are equal to or more permissive 4660 * than the proposed new mount. 4661 */ 4662 if ((mnt_flags & MNT_LOCK_READONLY) && 4663 !(new_flags & MNT_READONLY)) 4664 continue; 4665 if ((mnt_flags & MNT_LOCK_ATIME) && 4666 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK))) 4667 continue; 4668 4669 /* This mount is not fully visible if there are any 4670 * locked child mounts that cover anything except for 4671 * empty directories. 4672 */ 4673 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 4674 struct inode *inode = child->mnt_mountpoint->d_inode; 4675 /* Only worry about locked mounts */ 4676 if (!(child->mnt.mnt_flags & MNT_LOCKED)) 4677 continue; 4678 /* Is the directory permanetly empty? */ 4679 if (!is_empty_dir_inode(inode)) 4680 goto next; 4681 } 4682 /* Preserve the locked attributes */ 4683 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \ 4684 MNT_LOCK_ATIME); 4685 visible = true; 4686 goto found; 4687 next: ; 4688 } 4689 found: 4690 unlock_ns_list(ns); 4691 up_read(&namespace_sem); 4692 return visible; 4693 } 4694 4695 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags) 4696 { 4697 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV; 4698 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 4699 unsigned long s_iflags; 4700 4701 if (ns->user_ns == &init_user_ns) 4702 return false; 4703 4704 /* Can this filesystem be too revealing? */ 4705 s_iflags = sb->s_iflags; 4706 if (!(s_iflags & SB_I_USERNS_VISIBLE)) 4707 return false; 4708 4709 if ((s_iflags & required_iflags) != required_iflags) { 4710 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n", 4711 required_iflags); 4712 return true; 4713 } 4714 4715 return !mnt_already_visible(ns, sb, new_mnt_flags); 4716 } 4717 4718 bool mnt_may_suid(struct vfsmount *mnt) 4719 { 4720 /* 4721 * Foreign mounts (accessed via fchdir or through /proc 4722 * symlinks) are always treated as if they are nosuid. This 4723 * prevents namespaces from trusting potentially unsafe 4724 * suid/sgid bits, file caps, or security labels that originate 4725 * in other namespaces. 4726 */ 4727 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) && 4728 current_in_userns(mnt->mnt_sb->s_user_ns); 4729 } 4730 4731 static struct ns_common *mntns_get(struct task_struct *task) 4732 { 4733 struct ns_common *ns = NULL; 4734 struct nsproxy *nsproxy; 4735 4736 task_lock(task); 4737 nsproxy = task->nsproxy; 4738 if (nsproxy) { 4739 ns = &nsproxy->mnt_ns->ns; 4740 get_mnt_ns(to_mnt_ns(ns)); 4741 } 4742 task_unlock(task); 4743 4744 return ns; 4745 } 4746 4747 static void mntns_put(struct ns_common *ns) 4748 { 4749 put_mnt_ns(to_mnt_ns(ns)); 4750 } 4751 4752 static int mntns_install(struct nsset *nsset, struct ns_common *ns) 4753 { 4754 struct nsproxy *nsproxy = nsset->nsproxy; 4755 struct fs_struct *fs = nsset->fs; 4756 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns; 4757 struct user_namespace *user_ns = nsset->cred->user_ns; 4758 struct path root; 4759 int err; 4760 4761 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) || 4762 !ns_capable(user_ns, CAP_SYS_CHROOT) || 4763 !ns_capable(user_ns, CAP_SYS_ADMIN)) 4764 return -EPERM; 4765 4766 if (is_anon_ns(mnt_ns)) 4767 return -EINVAL; 4768 4769 if (fs->users != 1) 4770 return -EINVAL; 4771 4772 get_mnt_ns(mnt_ns); 4773 old_mnt_ns = nsproxy->mnt_ns; 4774 nsproxy->mnt_ns = mnt_ns; 4775 4776 /* Find the root */ 4777 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt, 4778 "/", LOOKUP_DOWN, &root); 4779 if (err) { 4780 /* revert to old namespace */ 4781 nsproxy->mnt_ns = old_mnt_ns; 4782 put_mnt_ns(mnt_ns); 4783 return err; 4784 } 4785 4786 put_mnt_ns(old_mnt_ns); 4787 4788 /* Update the pwd and root */ 4789 set_fs_pwd(fs, &root); 4790 set_fs_root(fs, &root); 4791 4792 path_put(&root); 4793 return 0; 4794 } 4795 4796 static struct user_namespace *mntns_owner(struct ns_common *ns) 4797 { 4798 return to_mnt_ns(ns)->user_ns; 4799 } 4800 4801 const struct proc_ns_operations mntns_operations = { 4802 .name = "mnt", 4803 .type = CLONE_NEWNS, 4804 .get = mntns_get, 4805 .put = mntns_put, 4806 .install = mntns_install, 4807 .owner = mntns_owner, 4808 }; 4809 4810 #ifdef CONFIG_SYSCTL 4811 static struct ctl_table fs_namespace_sysctls[] = { 4812 { 4813 .procname = "mount-max", 4814 .data = &sysctl_mount_max, 4815 .maxlen = sizeof(unsigned int), 4816 .mode = 0644, 4817 .proc_handler = proc_dointvec_minmax, 4818 .extra1 = SYSCTL_ONE, 4819 }, 4820 { } 4821 }; 4822 4823 static int __init init_fs_namespace_sysctls(void) 4824 { 4825 register_sysctl_init("fs", fs_namespace_sysctls); 4826 return 0; 4827 } 4828 fs_initcall(init_fs_namespace_sysctls); 4829 4830 #endif /* CONFIG_SYSCTL */ 4831