1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/namespace.c 4 * 5 * (C) Copyright Al Viro 2000, 2001 6 * 7 * Based on code from fs/super.c, copyright Linus Torvalds and others. 8 * Heavily rewritten. 9 */ 10 11 #include <linux/syscalls.h> 12 #include <linux/export.h> 13 #include <linux/capability.h> 14 #include <linux/mnt_namespace.h> 15 #include <linux/user_namespace.h> 16 #include <linux/namei.h> 17 #include <linux/security.h> 18 #include <linux/cred.h> 19 #include <linux/idr.h> 20 #include <linux/init.h> /* init_rootfs */ 21 #include <linux/fs_struct.h> /* get_fs_root et.al. */ 22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */ 23 #include <linux/file.h> 24 #include <linux/uaccess.h> 25 #include <linux/proc_ns.h> 26 #include <linux/magic.h> 27 #include <linux/memblock.h> 28 #include <linux/task_work.h> 29 #include <linux/sched/task.h> 30 #include <uapi/linux/mount.h> 31 #include <linux/fs_context.h> 32 #include <linux/shmem_fs.h> 33 34 #include "pnode.h" 35 #include "internal.h" 36 37 /* Maximum number of mounts in a mount namespace */ 38 unsigned int sysctl_mount_max __read_mostly = 100000; 39 40 static unsigned int m_hash_mask __read_mostly; 41 static unsigned int m_hash_shift __read_mostly; 42 static unsigned int mp_hash_mask __read_mostly; 43 static unsigned int mp_hash_shift __read_mostly; 44 45 static __initdata unsigned long mhash_entries; 46 static int __init set_mhash_entries(char *str) 47 { 48 if (!str) 49 return 0; 50 mhash_entries = simple_strtoul(str, &str, 0); 51 return 1; 52 } 53 __setup("mhash_entries=", set_mhash_entries); 54 55 static __initdata unsigned long mphash_entries; 56 static int __init set_mphash_entries(char *str) 57 { 58 if (!str) 59 return 0; 60 mphash_entries = simple_strtoul(str, &str, 0); 61 return 1; 62 } 63 __setup("mphash_entries=", set_mphash_entries); 64 65 static u64 event; 66 static DEFINE_IDA(mnt_id_ida); 67 static DEFINE_IDA(mnt_group_ida); 68 69 static struct hlist_head *mount_hashtable __read_mostly; 70 static struct hlist_head *mountpoint_hashtable __read_mostly; 71 static struct kmem_cache *mnt_cache __read_mostly; 72 static DECLARE_RWSEM(namespace_sem); 73 static HLIST_HEAD(unmounted); /* protected by namespace_sem */ 74 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */ 75 76 /* /sys/fs */ 77 struct kobject *fs_kobj; 78 EXPORT_SYMBOL_GPL(fs_kobj); 79 80 /* 81 * vfsmount lock may be taken for read to prevent changes to the 82 * vfsmount hash, ie. during mountpoint lookups or walking back 83 * up the tree. 84 * 85 * It should be taken for write in all cases where the vfsmount 86 * tree or hash is modified or when a vfsmount structure is modified. 87 */ 88 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock); 89 90 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry) 91 { 92 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); 93 tmp += ((unsigned long)dentry / L1_CACHE_BYTES); 94 tmp = tmp + (tmp >> m_hash_shift); 95 return &mount_hashtable[tmp & m_hash_mask]; 96 } 97 98 static inline struct hlist_head *mp_hash(struct dentry *dentry) 99 { 100 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES); 101 tmp = tmp + (tmp >> mp_hash_shift); 102 return &mountpoint_hashtable[tmp & mp_hash_mask]; 103 } 104 105 static int mnt_alloc_id(struct mount *mnt) 106 { 107 int res = ida_alloc(&mnt_id_ida, GFP_KERNEL); 108 109 if (res < 0) 110 return res; 111 mnt->mnt_id = res; 112 return 0; 113 } 114 115 static void mnt_free_id(struct mount *mnt) 116 { 117 ida_free(&mnt_id_ida, mnt->mnt_id); 118 } 119 120 /* 121 * Allocate a new peer group ID 122 */ 123 static int mnt_alloc_group_id(struct mount *mnt) 124 { 125 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL); 126 127 if (res < 0) 128 return res; 129 mnt->mnt_group_id = res; 130 return 0; 131 } 132 133 /* 134 * Release a peer group ID 135 */ 136 void mnt_release_group_id(struct mount *mnt) 137 { 138 ida_free(&mnt_group_ida, mnt->mnt_group_id); 139 mnt->mnt_group_id = 0; 140 } 141 142 /* 143 * vfsmount lock must be held for read 144 */ 145 static inline void mnt_add_count(struct mount *mnt, int n) 146 { 147 #ifdef CONFIG_SMP 148 this_cpu_add(mnt->mnt_pcp->mnt_count, n); 149 #else 150 preempt_disable(); 151 mnt->mnt_count += n; 152 preempt_enable(); 153 #endif 154 } 155 156 /* 157 * vfsmount lock must be held for write 158 */ 159 unsigned int mnt_get_count(struct mount *mnt) 160 { 161 #ifdef CONFIG_SMP 162 unsigned int count = 0; 163 int cpu; 164 165 for_each_possible_cpu(cpu) { 166 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count; 167 } 168 169 return count; 170 #else 171 return mnt->mnt_count; 172 #endif 173 } 174 175 static struct mount *alloc_vfsmnt(const char *name) 176 { 177 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); 178 if (mnt) { 179 int err; 180 181 err = mnt_alloc_id(mnt); 182 if (err) 183 goto out_free_cache; 184 185 if (name) { 186 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL); 187 if (!mnt->mnt_devname) 188 goto out_free_id; 189 } 190 191 #ifdef CONFIG_SMP 192 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp); 193 if (!mnt->mnt_pcp) 194 goto out_free_devname; 195 196 this_cpu_add(mnt->mnt_pcp->mnt_count, 1); 197 #else 198 mnt->mnt_count = 1; 199 mnt->mnt_writers = 0; 200 #endif 201 202 INIT_HLIST_NODE(&mnt->mnt_hash); 203 INIT_LIST_HEAD(&mnt->mnt_child); 204 INIT_LIST_HEAD(&mnt->mnt_mounts); 205 INIT_LIST_HEAD(&mnt->mnt_list); 206 INIT_LIST_HEAD(&mnt->mnt_expire); 207 INIT_LIST_HEAD(&mnt->mnt_share); 208 INIT_LIST_HEAD(&mnt->mnt_slave_list); 209 INIT_LIST_HEAD(&mnt->mnt_slave); 210 INIT_HLIST_NODE(&mnt->mnt_mp_list); 211 INIT_LIST_HEAD(&mnt->mnt_umounting); 212 INIT_HLIST_HEAD(&mnt->mnt_stuck_children); 213 } 214 return mnt; 215 216 #ifdef CONFIG_SMP 217 out_free_devname: 218 kfree_const(mnt->mnt_devname); 219 #endif 220 out_free_id: 221 mnt_free_id(mnt); 222 out_free_cache: 223 kmem_cache_free(mnt_cache, mnt); 224 return NULL; 225 } 226 227 /* 228 * Most r/o checks on a fs are for operations that take 229 * discrete amounts of time, like a write() or unlink(). 230 * We must keep track of when those operations start 231 * (for permission checks) and when they end, so that 232 * we can determine when writes are able to occur to 233 * a filesystem. 234 */ 235 /* 236 * __mnt_is_readonly: check whether a mount is read-only 237 * @mnt: the mount to check for its write status 238 * 239 * This shouldn't be used directly ouside of the VFS. 240 * It does not guarantee that the filesystem will stay 241 * r/w, just that it is right *now*. This can not and 242 * should not be used in place of IS_RDONLY(inode). 243 * mnt_want/drop_write() will _keep_ the filesystem 244 * r/w. 245 */ 246 bool __mnt_is_readonly(struct vfsmount *mnt) 247 { 248 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb); 249 } 250 EXPORT_SYMBOL_GPL(__mnt_is_readonly); 251 252 static inline void mnt_inc_writers(struct mount *mnt) 253 { 254 #ifdef CONFIG_SMP 255 this_cpu_inc(mnt->mnt_pcp->mnt_writers); 256 #else 257 mnt->mnt_writers++; 258 #endif 259 } 260 261 static inline void mnt_dec_writers(struct mount *mnt) 262 { 263 #ifdef CONFIG_SMP 264 this_cpu_dec(mnt->mnt_pcp->mnt_writers); 265 #else 266 mnt->mnt_writers--; 267 #endif 268 } 269 270 static unsigned int mnt_get_writers(struct mount *mnt) 271 { 272 #ifdef CONFIG_SMP 273 unsigned int count = 0; 274 int cpu; 275 276 for_each_possible_cpu(cpu) { 277 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers; 278 } 279 280 return count; 281 #else 282 return mnt->mnt_writers; 283 #endif 284 } 285 286 static int mnt_is_readonly(struct vfsmount *mnt) 287 { 288 if (mnt->mnt_sb->s_readonly_remount) 289 return 1; 290 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */ 291 smp_rmb(); 292 return __mnt_is_readonly(mnt); 293 } 294 295 /* 296 * Most r/o & frozen checks on a fs are for operations that take discrete 297 * amounts of time, like a write() or unlink(). We must keep track of when 298 * those operations start (for permission checks) and when they end, so that we 299 * can determine when writes are able to occur to a filesystem. 300 */ 301 /** 302 * __mnt_want_write - get write access to a mount without freeze protection 303 * @m: the mount on which to take a write 304 * 305 * This tells the low-level filesystem that a write is about to be performed to 306 * it, and makes sure that writes are allowed (mnt it read-write) before 307 * returning success. This operation does not protect against filesystem being 308 * frozen. When the write operation is finished, __mnt_drop_write() must be 309 * called. This is effectively a refcount. 310 */ 311 int __mnt_want_write(struct vfsmount *m) 312 { 313 struct mount *mnt = real_mount(m); 314 int ret = 0; 315 316 preempt_disable(); 317 mnt_inc_writers(mnt); 318 /* 319 * The store to mnt_inc_writers must be visible before we pass 320 * MNT_WRITE_HOLD loop below, so that the slowpath can see our 321 * incremented count after it has set MNT_WRITE_HOLD. 322 */ 323 smp_mb(); 324 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) 325 cpu_relax(); 326 /* 327 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will 328 * be set to match its requirements. So we must not load that until 329 * MNT_WRITE_HOLD is cleared. 330 */ 331 smp_rmb(); 332 if (mnt_is_readonly(m)) { 333 mnt_dec_writers(mnt); 334 ret = -EROFS; 335 } 336 preempt_enable(); 337 338 return ret; 339 } 340 341 /** 342 * mnt_want_write - get write access to a mount 343 * @m: the mount on which to take a write 344 * 345 * This tells the low-level filesystem that a write is about to be performed to 346 * it, and makes sure that writes are allowed (mount is read-write, filesystem 347 * is not frozen) before returning success. When the write operation is 348 * finished, mnt_drop_write() must be called. This is effectively a refcount. 349 */ 350 int mnt_want_write(struct vfsmount *m) 351 { 352 int ret; 353 354 sb_start_write(m->mnt_sb); 355 ret = __mnt_want_write(m); 356 if (ret) 357 sb_end_write(m->mnt_sb); 358 return ret; 359 } 360 EXPORT_SYMBOL_GPL(mnt_want_write); 361 362 /** 363 * mnt_clone_write - get write access to a mount 364 * @mnt: the mount on which to take a write 365 * 366 * This is effectively like mnt_want_write, except 367 * it must only be used to take an extra write reference 368 * on a mountpoint that we already know has a write reference 369 * on it. This allows some optimisation. 370 * 371 * After finished, mnt_drop_write must be called as usual to 372 * drop the reference. 373 */ 374 int mnt_clone_write(struct vfsmount *mnt) 375 { 376 /* superblock may be r/o */ 377 if (__mnt_is_readonly(mnt)) 378 return -EROFS; 379 preempt_disable(); 380 mnt_inc_writers(real_mount(mnt)); 381 preempt_enable(); 382 return 0; 383 } 384 EXPORT_SYMBOL_GPL(mnt_clone_write); 385 386 /** 387 * __mnt_want_write_file - get write access to a file's mount 388 * @file: the file who's mount on which to take a write 389 * 390 * This is like __mnt_want_write, but it takes a file and can 391 * do some optimisations if the file is open for write already 392 */ 393 int __mnt_want_write_file(struct file *file) 394 { 395 if (!(file->f_mode & FMODE_WRITER)) 396 return __mnt_want_write(file->f_path.mnt); 397 else 398 return mnt_clone_write(file->f_path.mnt); 399 } 400 401 /** 402 * mnt_want_write_file - get write access to a file's mount 403 * @file: the file who's mount on which to take a write 404 * 405 * This is like mnt_want_write, but it takes a file and can 406 * do some optimisations if the file is open for write already 407 */ 408 int mnt_want_write_file(struct file *file) 409 { 410 int ret; 411 412 sb_start_write(file_inode(file)->i_sb); 413 ret = __mnt_want_write_file(file); 414 if (ret) 415 sb_end_write(file_inode(file)->i_sb); 416 return ret; 417 } 418 EXPORT_SYMBOL_GPL(mnt_want_write_file); 419 420 /** 421 * __mnt_drop_write - give up write access to a mount 422 * @mnt: the mount on which to give up write access 423 * 424 * Tells the low-level filesystem that we are done 425 * performing writes to it. Must be matched with 426 * __mnt_want_write() call above. 427 */ 428 void __mnt_drop_write(struct vfsmount *mnt) 429 { 430 preempt_disable(); 431 mnt_dec_writers(real_mount(mnt)); 432 preempt_enable(); 433 } 434 435 /** 436 * mnt_drop_write - give up write access to a mount 437 * @mnt: the mount on which to give up write access 438 * 439 * Tells the low-level filesystem that we are done performing writes to it and 440 * also allows filesystem to be frozen again. Must be matched with 441 * mnt_want_write() call above. 442 */ 443 void mnt_drop_write(struct vfsmount *mnt) 444 { 445 __mnt_drop_write(mnt); 446 sb_end_write(mnt->mnt_sb); 447 } 448 EXPORT_SYMBOL_GPL(mnt_drop_write); 449 450 void __mnt_drop_write_file(struct file *file) 451 { 452 __mnt_drop_write(file->f_path.mnt); 453 } 454 455 void mnt_drop_write_file(struct file *file) 456 { 457 __mnt_drop_write_file(file); 458 sb_end_write(file_inode(file)->i_sb); 459 } 460 EXPORT_SYMBOL(mnt_drop_write_file); 461 462 static int mnt_make_readonly(struct mount *mnt) 463 { 464 int ret = 0; 465 466 lock_mount_hash(); 467 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 468 /* 469 * After storing MNT_WRITE_HOLD, we'll read the counters. This store 470 * should be visible before we do. 471 */ 472 smp_mb(); 473 474 /* 475 * With writers on hold, if this value is zero, then there are 476 * definitely no active writers (although held writers may subsequently 477 * increment the count, they'll have to wait, and decrement it after 478 * seeing MNT_READONLY). 479 * 480 * It is OK to have counter incremented on one CPU and decremented on 481 * another: the sum will add up correctly. The danger would be when we 482 * sum up each counter, if we read a counter before it is incremented, 483 * but then read another CPU's count which it has been subsequently 484 * decremented from -- we would see more decrements than we should. 485 * MNT_WRITE_HOLD protects against this scenario, because 486 * mnt_want_write first increments count, then smp_mb, then spins on 487 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while 488 * we're counting up here. 489 */ 490 if (mnt_get_writers(mnt) > 0) 491 ret = -EBUSY; 492 else 493 mnt->mnt.mnt_flags |= MNT_READONLY; 494 /* 495 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers 496 * that become unheld will see MNT_READONLY. 497 */ 498 smp_wmb(); 499 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 500 unlock_mount_hash(); 501 return ret; 502 } 503 504 static int __mnt_unmake_readonly(struct mount *mnt) 505 { 506 lock_mount_hash(); 507 mnt->mnt.mnt_flags &= ~MNT_READONLY; 508 unlock_mount_hash(); 509 return 0; 510 } 511 512 int sb_prepare_remount_readonly(struct super_block *sb) 513 { 514 struct mount *mnt; 515 int err = 0; 516 517 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */ 518 if (atomic_long_read(&sb->s_remove_count)) 519 return -EBUSY; 520 521 lock_mount_hash(); 522 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 523 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) { 524 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 525 smp_mb(); 526 if (mnt_get_writers(mnt) > 0) { 527 err = -EBUSY; 528 break; 529 } 530 } 531 } 532 if (!err && atomic_long_read(&sb->s_remove_count)) 533 err = -EBUSY; 534 535 if (!err) { 536 sb->s_readonly_remount = 1; 537 smp_wmb(); 538 } 539 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 540 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD) 541 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 542 } 543 unlock_mount_hash(); 544 545 return err; 546 } 547 548 static void free_vfsmnt(struct mount *mnt) 549 { 550 kfree_const(mnt->mnt_devname); 551 #ifdef CONFIG_SMP 552 free_percpu(mnt->mnt_pcp); 553 #endif 554 kmem_cache_free(mnt_cache, mnt); 555 } 556 557 static void delayed_free_vfsmnt(struct rcu_head *head) 558 { 559 free_vfsmnt(container_of(head, struct mount, mnt_rcu)); 560 } 561 562 /* call under rcu_read_lock */ 563 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq) 564 { 565 struct mount *mnt; 566 if (read_seqretry(&mount_lock, seq)) 567 return 1; 568 if (bastard == NULL) 569 return 0; 570 mnt = real_mount(bastard); 571 mnt_add_count(mnt, 1); 572 smp_mb(); // see mntput_no_expire() 573 if (likely(!read_seqretry(&mount_lock, seq))) 574 return 0; 575 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) { 576 mnt_add_count(mnt, -1); 577 return 1; 578 } 579 lock_mount_hash(); 580 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) { 581 mnt_add_count(mnt, -1); 582 unlock_mount_hash(); 583 return 1; 584 } 585 unlock_mount_hash(); 586 /* caller will mntput() */ 587 return -1; 588 } 589 590 /* call under rcu_read_lock */ 591 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq) 592 { 593 int res = __legitimize_mnt(bastard, seq); 594 if (likely(!res)) 595 return true; 596 if (unlikely(res < 0)) { 597 rcu_read_unlock(); 598 mntput(bastard); 599 rcu_read_lock(); 600 } 601 return false; 602 } 603 604 /* 605 * find the first mount at @dentry on vfsmount @mnt. 606 * call under rcu_read_lock() 607 */ 608 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry) 609 { 610 struct hlist_head *head = m_hash(mnt, dentry); 611 struct mount *p; 612 613 hlist_for_each_entry_rcu(p, head, mnt_hash) 614 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) 615 return p; 616 return NULL; 617 } 618 619 /* 620 * lookup_mnt - Return the first child mount mounted at path 621 * 622 * "First" means first mounted chronologically. If you create the 623 * following mounts: 624 * 625 * mount /dev/sda1 /mnt 626 * mount /dev/sda2 /mnt 627 * mount /dev/sda3 /mnt 628 * 629 * Then lookup_mnt() on the base /mnt dentry in the root mount will 630 * return successively the root dentry and vfsmount of /dev/sda1, then 631 * /dev/sda2, then /dev/sda3, then NULL. 632 * 633 * lookup_mnt takes a reference to the found vfsmount. 634 */ 635 struct vfsmount *lookup_mnt(const struct path *path) 636 { 637 struct mount *child_mnt; 638 struct vfsmount *m; 639 unsigned seq; 640 641 rcu_read_lock(); 642 do { 643 seq = read_seqbegin(&mount_lock); 644 child_mnt = __lookup_mnt(path->mnt, path->dentry); 645 m = child_mnt ? &child_mnt->mnt : NULL; 646 } while (!legitimize_mnt(m, seq)); 647 rcu_read_unlock(); 648 return m; 649 } 650 651 static inline void lock_ns_list(struct mnt_namespace *ns) 652 { 653 spin_lock(&ns->ns_lock); 654 } 655 656 static inline void unlock_ns_list(struct mnt_namespace *ns) 657 { 658 spin_unlock(&ns->ns_lock); 659 } 660 661 static inline bool mnt_is_cursor(struct mount *mnt) 662 { 663 return mnt->mnt.mnt_flags & MNT_CURSOR; 664 } 665 666 /* 667 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the 668 * current mount namespace. 669 * 670 * The common case is dentries are not mountpoints at all and that 671 * test is handled inline. For the slow case when we are actually 672 * dealing with a mountpoint of some kind, walk through all of the 673 * mounts in the current mount namespace and test to see if the dentry 674 * is a mountpoint. 675 * 676 * The mount_hashtable is not usable in the context because we 677 * need to identify all mounts that may be in the current mount 678 * namespace not just a mount that happens to have some specified 679 * parent mount. 680 */ 681 bool __is_local_mountpoint(struct dentry *dentry) 682 { 683 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 684 struct mount *mnt; 685 bool is_covered = false; 686 687 if (!d_mountpoint(dentry)) 688 goto out; 689 690 down_read(&namespace_sem); 691 lock_ns_list(ns); 692 list_for_each_entry(mnt, &ns->list, mnt_list) { 693 if (mnt_is_cursor(mnt)) 694 continue; 695 is_covered = (mnt->mnt_mountpoint == dentry); 696 if (is_covered) 697 break; 698 } 699 unlock_ns_list(ns); 700 up_read(&namespace_sem); 701 out: 702 return is_covered; 703 } 704 705 static struct mountpoint *lookup_mountpoint(struct dentry *dentry) 706 { 707 struct hlist_head *chain = mp_hash(dentry); 708 struct mountpoint *mp; 709 710 hlist_for_each_entry(mp, chain, m_hash) { 711 if (mp->m_dentry == dentry) { 712 mp->m_count++; 713 return mp; 714 } 715 } 716 return NULL; 717 } 718 719 static struct mountpoint *get_mountpoint(struct dentry *dentry) 720 { 721 struct mountpoint *mp, *new = NULL; 722 int ret; 723 724 if (d_mountpoint(dentry)) { 725 /* might be worth a WARN_ON() */ 726 if (d_unlinked(dentry)) 727 return ERR_PTR(-ENOENT); 728 mountpoint: 729 read_seqlock_excl(&mount_lock); 730 mp = lookup_mountpoint(dentry); 731 read_sequnlock_excl(&mount_lock); 732 if (mp) 733 goto done; 734 } 735 736 if (!new) 737 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL); 738 if (!new) 739 return ERR_PTR(-ENOMEM); 740 741 742 /* Exactly one processes may set d_mounted */ 743 ret = d_set_mounted(dentry); 744 745 /* Someone else set d_mounted? */ 746 if (ret == -EBUSY) 747 goto mountpoint; 748 749 /* The dentry is not available as a mountpoint? */ 750 mp = ERR_PTR(ret); 751 if (ret) 752 goto done; 753 754 /* Add the new mountpoint to the hash table */ 755 read_seqlock_excl(&mount_lock); 756 new->m_dentry = dget(dentry); 757 new->m_count = 1; 758 hlist_add_head(&new->m_hash, mp_hash(dentry)); 759 INIT_HLIST_HEAD(&new->m_list); 760 read_sequnlock_excl(&mount_lock); 761 762 mp = new; 763 new = NULL; 764 done: 765 kfree(new); 766 return mp; 767 } 768 769 /* 770 * vfsmount lock must be held. Additionally, the caller is responsible 771 * for serializing calls for given disposal list. 772 */ 773 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list) 774 { 775 if (!--mp->m_count) { 776 struct dentry *dentry = mp->m_dentry; 777 BUG_ON(!hlist_empty(&mp->m_list)); 778 spin_lock(&dentry->d_lock); 779 dentry->d_flags &= ~DCACHE_MOUNTED; 780 spin_unlock(&dentry->d_lock); 781 dput_to_list(dentry, list); 782 hlist_del(&mp->m_hash); 783 kfree(mp); 784 } 785 } 786 787 /* called with namespace_lock and vfsmount lock */ 788 static void put_mountpoint(struct mountpoint *mp) 789 { 790 __put_mountpoint(mp, &ex_mountpoints); 791 } 792 793 static inline int check_mnt(struct mount *mnt) 794 { 795 return mnt->mnt_ns == current->nsproxy->mnt_ns; 796 } 797 798 /* 799 * vfsmount lock must be held for write 800 */ 801 static void touch_mnt_namespace(struct mnt_namespace *ns) 802 { 803 if (ns) { 804 ns->event = ++event; 805 wake_up_interruptible(&ns->poll); 806 } 807 } 808 809 /* 810 * vfsmount lock must be held for write 811 */ 812 static void __touch_mnt_namespace(struct mnt_namespace *ns) 813 { 814 if (ns && ns->event != event) { 815 ns->event = event; 816 wake_up_interruptible(&ns->poll); 817 } 818 } 819 820 /* 821 * vfsmount lock must be held for write 822 */ 823 static struct mountpoint *unhash_mnt(struct mount *mnt) 824 { 825 struct mountpoint *mp; 826 mnt->mnt_parent = mnt; 827 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 828 list_del_init(&mnt->mnt_child); 829 hlist_del_init_rcu(&mnt->mnt_hash); 830 hlist_del_init(&mnt->mnt_mp_list); 831 mp = mnt->mnt_mp; 832 mnt->mnt_mp = NULL; 833 return mp; 834 } 835 836 /* 837 * vfsmount lock must be held for write 838 */ 839 static void umount_mnt(struct mount *mnt) 840 { 841 put_mountpoint(unhash_mnt(mnt)); 842 } 843 844 /* 845 * vfsmount lock must be held for write 846 */ 847 void mnt_set_mountpoint(struct mount *mnt, 848 struct mountpoint *mp, 849 struct mount *child_mnt) 850 { 851 mp->m_count++; 852 mnt_add_count(mnt, 1); /* essentially, that's mntget */ 853 child_mnt->mnt_mountpoint = mp->m_dentry; 854 child_mnt->mnt_parent = mnt; 855 child_mnt->mnt_mp = mp; 856 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list); 857 } 858 859 static void __attach_mnt(struct mount *mnt, struct mount *parent) 860 { 861 hlist_add_head_rcu(&mnt->mnt_hash, 862 m_hash(&parent->mnt, mnt->mnt_mountpoint)); 863 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 864 } 865 866 /* 867 * vfsmount lock must be held for write 868 */ 869 static void attach_mnt(struct mount *mnt, 870 struct mount *parent, 871 struct mountpoint *mp) 872 { 873 mnt_set_mountpoint(parent, mp, mnt); 874 __attach_mnt(mnt, parent); 875 } 876 877 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt) 878 { 879 struct mountpoint *old_mp = mnt->mnt_mp; 880 struct mount *old_parent = mnt->mnt_parent; 881 882 list_del_init(&mnt->mnt_child); 883 hlist_del_init(&mnt->mnt_mp_list); 884 hlist_del_init_rcu(&mnt->mnt_hash); 885 886 attach_mnt(mnt, parent, mp); 887 888 put_mountpoint(old_mp); 889 mnt_add_count(old_parent, -1); 890 } 891 892 /* 893 * vfsmount lock must be held for write 894 */ 895 static void commit_tree(struct mount *mnt) 896 { 897 struct mount *parent = mnt->mnt_parent; 898 struct mount *m; 899 LIST_HEAD(head); 900 struct mnt_namespace *n = parent->mnt_ns; 901 902 BUG_ON(parent == mnt); 903 904 list_add_tail(&head, &mnt->mnt_list); 905 list_for_each_entry(m, &head, mnt_list) 906 m->mnt_ns = n; 907 908 list_splice(&head, n->list.prev); 909 910 n->mounts += n->pending_mounts; 911 n->pending_mounts = 0; 912 913 __attach_mnt(mnt, parent); 914 touch_mnt_namespace(n); 915 } 916 917 static struct mount *next_mnt(struct mount *p, struct mount *root) 918 { 919 struct list_head *next = p->mnt_mounts.next; 920 if (next == &p->mnt_mounts) { 921 while (1) { 922 if (p == root) 923 return NULL; 924 next = p->mnt_child.next; 925 if (next != &p->mnt_parent->mnt_mounts) 926 break; 927 p = p->mnt_parent; 928 } 929 } 930 return list_entry(next, struct mount, mnt_child); 931 } 932 933 static struct mount *skip_mnt_tree(struct mount *p) 934 { 935 struct list_head *prev = p->mnt_mounts.prev; 936 while (prev != &p->mnt_mounts) { 937 p = list_entry(prev, struct mount, mnt_child); 938 prev = p->mnt_mounts.prev; 939 } 940 return p; 941 } 942 943 /** 944 * vfs_create_mount - Create a mount for a configured superblock 945 * @fc: The configuration context with the superblock attached 946 * 947 * Create a mount to an already configured superblock. If necessary, the 948 * caller should invoke vfs_get_tree() before calling this. 949 * 950 * Note that this does not attach the mount to anything. 951 */ 952 struct vfsmount *vfs_create_mount(struct fs_context *fc) 953 { 954 struct mount *mnt; 955 956 if (!fc->root) 957 return ERR_PTR(-EINVAL); 958 959 mnt = alloc_vfsmnt(fc->source ?: "none"); 960 if (!mnt) 961 return ERR_PTR(-ENOMEM); 962 963 if (fc->sb_flags & SB_KERNMOUNT) 964 mnt->mnt.mnt_flags = MNT_INTERNAL; 965 966 atomic_inc(&fc->root->d_sb->s_active); 967 mnt->mnt.mnt_sb = fc->root->d_sb; 968 mnt->mnt.mnt_root = dget(fc->root); 969 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 970 mnt->mnt_parent = mnt; 971 972 lock_mount_hash(); 973 list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts); 974 unlock_mount_hash(); 975 return &mnt->mnt; 976 } 977 EXPORT_SYMBOL(vfs_create_mount); 978 979 struct vfsmount *fc_mount(struct fs_context *fc) 980 { 981 int err = vfs_get_tree(fc); 982 if (!err) { 983 up_write(&fc->root->d_sb->s_umount); 984 return vfs_create_mount(fc); 985 } 986 return ERR_PTR(err); 987 } 988 EXPORT_SYMBOL(fc_mount); 989 990 struct vfsmount *vfs_kern_mount(struct file_system_type *type, 991 int flags, const char *name, 992 void *data) 993 { 994 struct fs_context *fc; 995 struct vfsmount *mnt; 996 int ret = 0; 997 998 if (!type) 999 return ERR_PTR(-EINVAL); 1000 1001 fc = fs_context_for_mount(type, flags); 1002 if (IS_ERR(fc)) 1003 return ERR_CAST(fc); 1004 1005 if (name) 1006 ret = vfs_parse_fs_string(fc, "source", 1007 name, strlen(name)); 1008 if (!ret) 1009 ret = parse_monolithic_mount_data(fc, data); 1010 if (!ret) 1011 mnt = fc_mount(fc); 1012 else 1013 mnt = ERR_PTR(ret); 1014 1015 put_fs_context(fc); 1016 return mnt; 1017 } 1018 EXPORT_SYMBOL_GPL(vfs_kern_mount); 1019 1020 struct vfsmount * 1021 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type, 1022 const char *name, void *data) 1023 { 1024 /* Until it is worked out how to pass the user namespace 1025 * through from the parent mount to the submount don't support 1026 * unprivileged mounts with submounts. 1027 */ 1028 if (mountpoint->d_sb->s_user_ns != &init_user_ns) 1029 return ERR_PTR(-EPERM); 1030 1031 return vfs_kern_mount(type, SB_SUBMOUNT, name, data); 1032 } 1033 EXPORT_SYMBOL_GPL(vfs_submount); 1034 1035 static struct mount *clone_mnt(struct mount *old, struct dentry *root, 1036 int flag) 1037 { 1038 struct super_block *sb = old->mnt.mnt_sb; 1039 struct mount *mnt; 1040 int err; 1041 1042 mnt = alloc_vfsmnt(old->mnt_devname); 1043 if (!mnt) 1044 return ERR_PTR(-ENOMEM); 1045 1046 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE)) 1047 mnt->mnt_group_id = 0; /* not a peer of original */ 1048 else 1049 mnt->mnt_group_id = old->mnt_group_id; 1050 1051 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) { 1052 err = mnt_alloc_group_id(mnt); 1053 if (err) 1054 goto out_free; 1055 } 1056 1057 mnt->mnt.mnt_flags = old->mnt.mnt_flags; 1058 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL); 1059 1060 atomic_inc(&sb->s_active); 1061 mnt->mnt.mnt_sb = sb; 1062 mnt->mnt.mnt_root = dget(root); 1063 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 1064 mnt->mnt_parent = mnt; 1065 lock_mount_hash(); 1066 list_add_tail(&mnt->mnt_instance, &sb->s_mounts); 1067 unlock_mount_hash(); 1068 1069 if ((flag & CL_SLAVE) || 1070 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) { 1071 list_add(&mnt->mnt_slave, &old->mnt_slave_list); 1072 mnt->mnt_master = old; 1073 CLEAR_MNT_SHARED(mnt); 1074 } else if (!(flag & CL_PRIVATE)) { 1075 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old)) 1076 list_add(&mnt->mnt_share, &old->mnt_share); 1077 if (IS_MNT_SLAVE(old)) 1078 list_add(&mnt->mnt_slave, &old->mnt_slave); 1079 mnt->mnt_master = old->mnt_master; 1080 } else { 1081 CLEAR_MNT_SHARED(mnt); 1082 } 1083 if (flag & CL_MAKE_SHARED) 1084 set_mnt_shared(mnt); 1085 1086 /* stick the duplicate mount on the same expiry list 1087 * as the original if that was on one */ 1088 if (flag & CL_EXPIRE) { 1089 if (!list_empty(&old->mnt_expire)) 1090 list_add(&mnt->mnt_expire, &old->mnt_expire); 1091 } 1092 1093 return mnt; 1094 1095 out_free: 1096 mnt_free_id(mnt); 1097 free_vfsmnt(mnt); 1098 return ERR_PTR(err); 1099 } 1100 1101 static void cleanup_mnt(struct mount *mnt) 1102 { 1103 struct hlist_node *p; 1104 struct mount *m; 1105 /* 1106 * The warning here probably indicates that somebody messed 1107 * up a mnt_want/drop_write() pair. If this happens, the 1108 * filesystem was probably unable to make r/w->r/o transitions. 1109 * The locking used to deal with mnt_count decrement provides barriers, 1110 * so mnt_get_writers() below is safe. 1111 */ 1112 WARN_ON(mnt_get_writers(mnt)); 1113 if (unlikely(mnt->mnt_pins.first)) 1114 mnt_pin_kill(mnt); 1115 hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) { 1116 hlist_del(&m->mnt_umount); 1117 mntput(&m->mnt); 1118 } 1119 fsnotify_vfsmount_delete(&mnt->mnt); 1120 dput(mnt->mnt.mnt_root); 1121 deactivate_super(mnt->mnt.mnt_sb); 1122 mnt_free_id(mnt); 1123 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt); 1124 } 1125 1126 static void __cleanup_mnt(struct rcu_head *head) 1127 { 1128 cleanup_mnt(container_of(head, struct mount, mnt_rcu)); 1129 } 1130 1131 static LLIST_HEAD(delayed_mntput_list); 1132 static void delayed_mntput(struct work_struct *unused) 1133 { 1134 struct llist_node *node = llist_del_all(&delayed_mntput_list); 1135 struct mount *m, *t; 1136 1137 llist_for_each_entry_safe(m, t, node, mnt_llist) 1138 cleanup_mnt(m); 1139 } 1140 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput); 1141 1142 static void mntput_no_expire(struct mount *mnt) 1143 { 1144 LIST_HEAD(list); 1145 1146 rcu_read_lock(); 1147 if (likely(READ_ONCE(mnt->mnt_ns))) { 1148 /* 1149 * Since we don't do lock_mount_hash() here, 1150 * ->mnt_ns can change under us. However, if it's 1151 * non-NULL, then there's a reference that won't 1152 * be dropped until after an RCU delay done after 1153 * turning ->mnt_ns NULL. So if we observe it 1154 * non-NULL under rcu_read_lock(), the reference 1155 * we are dropping is not the final one. 1156 */ 1157 mnt_add_count(mnt, -1); 1158 rcu_read_unlock(); 1159 return; 1160 } 1161 lock_mount_hash(); 1162 /* 1163 * make sure that if __legitimize_mnt() has not seen us grab 1164 * mount_lock, we'll see their refcount increment here. 1165 */ 1166 smp_mb(); 1167 mnt_add_count(mnt, -1); 1168 if (mnt_get_count(mnt)) { 1169 rcu_read_unlock(); 1170 unlock_mount_hash(); 1171 return; 1172 } 1173 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) { 1174 rcu_read_unlock(); 1175 unlock_mount_hash(); 1176 return; 1177 } 1178 mnt->mnt.mnt_flags |= MNT_DOOMED; 1179 rcu_read_unlock(); 1180 1181 list_del(&mnt->mnt_instance); 1182 1183 if (unlikely(!list_empty(&mnt->mnt_mounts))) { 1184 struct mount *p, *tmp; 1185 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) { 1186 __put_mountpoint(unhash_mnt(p), &list); 1187 hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children); 1188 } 1189 } 1190 unlock_mount_hash(); 1191 shrink_dentry_list(&list); 1192 1193 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) { 1194 struct task_struct *task = current; 1195 if (likely(!(task->flags & PF_KTHREAD))) { 1196 init_task_work(&mnt->mnt_rcu, __cleanup_mnt); 1197 if (!task_work_add(task, &mnt->mnt_rcu, true)) 1198 return; 1199 } 1200 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list)) 1201 schedule_delayed_work(&delayed_mntput_work, 1); 1202 return; 1203 } 1204 cleanup_mnt(mnt); 1205 } 1206 1207 void mntput(struct vfsmount *mnt) 1208 { 1209 if (mnt) { 1210 struct mount *m = real_mount(mnt); 1211 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */ 1212 if (unlikely(m->mnt_expiry_mark)) 1213 m->mnt_expiry_mark = 0; 1214 mntput_no_expire(m); 1215 } 1216 } 1217 EXPORT_SYMBOL(mntput); 1218 1219 struct vfsmount *mntget(struct vfsmount *mnt) 1220 { 1221 if (mnt) 1222 mnt_add_count(real_mount(mnt), 1); 1223 return mnt; 1224 } 1225 EXPORT_SYMBOL(mntget); 1226 1227 /* path_is_mountpoint() - Check if path is a mount in the current 1228 * namespace. 1229 * 1230 * d_mountpoint() can only be used reliably to establish if a dentry is 1231 * not mounted in any namespace and that common case is handled inline. 1232 * d_mountpoint() isn't aware of the possibility there may be multiple 1233 * mounts using a given dentry in a different namespace. This function 1234 * checks if the passed in path is a mountpoint rather than the dentry 1235 * alone. 1236 */ 1237 bool path_is_mountpoint(const struct path *path) 1238 { 1239 unsigned seq; 1240 bool res; 1241 1242 if (!d_mountpoint(path->dentry)) 1243 return false; 1244 1245 rcu_read_lock(); 1246 do { 1247 seq = read_seqbegin(&mount_lock); 1248 res = __path_is_mountpoint(path); 1249 } while (read_seqretry(&mount_lock, seq)); 1250 rcu_read_unlock(); 1251 1252 return res; 1253 } 1254 EXPORT_SYMBOL(path_is_mountpoint); 1255 1256 struct vfsmount *mnt_clone_internal(const struct path *path) 1257 { 1258 struct mount *p; 1259 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE); 1260 if (IS_ERR(p)) 1261 return ERR_CAST(p); 1262 p->mnt.mnt_flags |= MNT_INTERNAL; 1263 return &p->mnt; 1264 } 1265 1266 #ifdef CONFIG_PROC_FS 1267 static struct mount *mnt_list_next(struct mnt_namespace *ns, 1268 struct list_head *p) 1269 { 1270 struct mount *mnt, *ret = NULL; 1271 1272 lock_ns_list(ns); 1273 list_for_each_continue(p, &ns->list) { 1274 mnt = list_entry(p, typeof(*mnt), mnt_list); 1275 if (!mnt_is_cursor(mnt)) { 1276 ret = mnt; 1277 break; 1278 } 1279 } 1280 unlock_ns_list(ns); 1281 1282 return ret; 1283 } 1284 1285 /* iterator; we want it to have access to namespace_sem, thus here... */ 1286 static void *m_start(struct seq_file *m, loff_t *pos) 1287 { 1288 struct proc_mounts *p = m->private; 1289 struct list_head *prev; 1290 1291 down_read(&namespace_sem); 1292 if (!*pos) { 1293 prev = &p->ns->list; 1294 } else { 1295 prev = &p->cursor.mnt_list; 1296 1297 /* Read after we'd reached the end? */ 1298 if (list_empty(prev)) 1299 return NULL; 1300 } 1301 1302 return mnt_list_next(p->ns, prev); 1303 } 1304 1305 static void *m_next(struct seq_file *m, void *v, loff_t *pos) 1306 { 1307 struct proc_mounts *p = m->private; 1308 struct mount *mnt = v; 1309 1310 ++*pos; 1311 return mnt_list_next(p->ns, &mnt->mnt_list); 1312 } 1313 1314 static void m_stop(struct seq_file *m, void *v) 1315 { 1316 struct proc_mounts *p = m->private; 1317 struct mount *mnt = v; 1318 1319 lock_ns_list(p->ns); 1320 if (mnt) 1321 list_move_tail(&p->cursor.mnt_list, &mnt->mnt_list); 1322 else 1323 list_del_init(&p->cursor.mnt_list); 1324 unlock_ns_list(p->ns); 1325 up_read(&namespace_sem); 1326 } 1327 1328 static int m_show(struct seq_file *m, void *v) 1329 { 1330 struct proc_mounts *p = m->private; 1331 struct mount *r = v; 1332 return p->show(m, &r->mnt); 1333 } 1334 1335 const struct seq_operations mounts_op = { 1336 .start = m_start, 1337 .next = m_next, 1338 .stop = m_stop, 1339 .show = m_show, 1340 }; 1341 1342 void mnt_cursor_del(struct mnt_namespace *ns, struct mount *cursor) 1343 { 1344 down_read(&namespace_sem); 1345 lock_ns_list(ns); 1346 list_del(&cursor->mnt_list); 1347 unlock_ns_list(ns); 1348 up_read(&namespace_sem); 1349 } 1350 #endif /* CONFIG_PROC_FS */ 1351 1352 /** 1353 * may_umount_tree - check if a mount tree is busy 1354 * @mnt: root of mount tree 1355 * 1356 * This is called to check if a tree of mounts has any 1357 * open files, pwds, chroots or sub mounts that are 1358 * busy. 1359 */ 1360 int may_umount_tree(struct vfsmount *m) 1361 { 1362 struct mount *mnt = real_mount(m); 1363 int actual_refs = 0; 1364 int minimum_refs = 0; 1365 struct mount *p; 1366 BUG_ON(!m); 1367 1368 /* write lock needed for mnt_get_count */ 1369 lock_mount_hash(); 1370 for (p = mnt; p; p = next_mnt(p, mnt)) { 1371 actual_refs += mnt_get_count(p); 1372 minimum_refs += 2; 1373 } 1374 unlock_mount_hash(); 1375 1376 if (actual_refs > minimum_refs) 1377 return 0; 1378 1379 return 1; 1380 } 1381 1382 EXPORT_SYMBOL(may_umount_tree); 1383 1384 /** 1385 * may_umount - check if a mount point is busy 1386 * @mnt: root of mount 1387 * 1388 * This is called to check if a mount point has any 1389 * open files, pwds, chroots or sub mounts. If the 1390 * mount has sub mounts this will return busy 1391 * regardless of whether the sub mounts are busy. 1392 * 1393 * Doesn't take quota and stuff into account. IOW, in some cases it will 1394 * give false negatives. The main reason why it's here is that we need 1395 * a non-destructive way to look for easily umountable filesystems. 1396 */ 1397 int may_umount(struct vfsmount *mnt) 1398 { 1399 int ret = 1; 1400 down_read(&namespace_sem); 1401 lock_mount_hash(); 1402 if (propagate_mount_busy(real_mount(mnt), 2)) 1403 ret = 0; 1404 unlock_mount_hash(); 1405 up_read(&namespace_sem); 1406 return ret; 1407 } 1408 1409 EXPORT_SYMBOL(may_umount); 1410 1411 static void namespace_unlock(void) 1412 { 1413 struct hlist_head head; 1414 struct hlist_node *p; 1415 struct mount *m; 1416 LIST_HEAD(list); 1417 1418 hlist_move_list(&unmounted, &head); 1419 list_splice_init(&ex_mountpoints, &list); 1420 1421 up_write(&namespace_sem); 1422 1423 shrink_dentry_list(&list); 1424 1425 if (likely(hlist_empty(&head))) 1426 return; 1427 1428 synchronize_rcu_expedited(); 1429 1430 hlist_for_each_entry_safe(m, p, &head, mnt_umount) { 1431 hlist_del(&m->mnt_umount); 1432 mntput(&m->mnt); 1433 } 1434 } 1435 1436 static inline void namespace_lock(void) 1437 { 1438 down_write(&namespace_sem); 1439 } 1440 1441 enum umount_tree_flags { 1442 UMOUNT_SYNC = 1, 1443 UMOUNT_PROPAGATE = 2, 1444 UMOUNT_CONNECTED = 4, 1445 }; 1446 1447 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how) 1448 { 1449 /* Leaving mounts connected is only valid for lazy umounts */ 1450 if (how & UMOUNT_SYNC) 1451 return true; 1452 1453 /* A mount without a parent has nothing to be connected to */ 1454 if (!mnt_has_parent(mnt)) 1455 return true; 1456 1457 /* Because the reference counting rules change when mounts are 1458 * unmounted and connected, umounted mounts may not be 1459 * connected to mounted mounts. 1460 */ 1461 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT)) 1462 return true; 1463 1464 /* Has it been requested that the mount remain connected? */ 1465 if (how & UMOUNT_CONNECTED) 1466 return false; 1467 1468 /* Is the mount locked such that it needs to remain connected? */ 1469 if (IS_MNT_LOCKED(mnt)) 1470 return false; 1471 1472 /* By default disconnect the mount */ 1473 return true; 1474 } 1475 1476 /* 1477 * mount_lock must be held 1478 * namespace_sem must be held for write 1479 */ 1480 static void umount_tree(struct mount *mnt, enum umount_tree_flags how) 1481 { 1482 LIST_HEAD(tmp_list); 1483 struct mount *p; 1484 1485 if (how & UMOUNT_PROPAGATE) 1486 propagate_mount_unlock(mnt); 1487 1488 /* Gather the mounts to umount */ 1489 for (p = mnt; p; p = next_mnt(p, mnt)) { 1490 p->mnt.mnt_flags |= MNT_UMOUNT; 1491 list_move(&p->mnt_list, &tmp_list); 1492 } 1493 1494 /* Hide the mounts from mnt_mounts */ 1495 list_for_each_entry(p, &tmp_list, mnt_list) { 1496 list_del_init(&p->mnt_child); 1497 } 1498 1499 /* Add propogated mounts to the tmp_list */ 1500 if (how & UMOUNT_PROPAGATE) 1501 propagate_umount(&tmp_list); 1502 1503 while (!list_empty(&tmp_list)) { 1504 struct mnt_namespace *ns; 1505 bool disconnect; 1506 p = list_first_entry(&tmp_list, struct mount, mnt_list); 1507 list_del_init(&p->mnt_expire); 1508 list_del_init(&p->mnt_list); 1509 ns = p->mnt_ns; 1510 if (ns) { 1511 ns->mounts--; 1512 __touch_mnt_namespace(ns); 1513 } 1514 p->mnt_ns = NULL; 1515 if (how & UMOUNT_SYNC) 1516 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT; 1517 1518 disconnect = disconnect_mount(p, how); 1519 if (mnt_has_parent(p)) { 1520 mnt_add_count(p->mnt_parent, -1); 1521 if (!disconnect) { 1522 /* Don't forget about p */ 1523 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts); 1524 } else { 1525 umount_mnt(p); 1526 } 1527 } 1528 change_mnt_propagation(p, MS_PRIVATE); 1529 if (disconnect) 1530 hlist_add_head(&p->mnt_umount, &unmounted); 1531 } 1532 } 1533 1534 static void shrink_submounts(struct mount *mnt); 1535 1536 static int do_umount_root(struct super_block *sb) 1537 { 1538 int ret = 0; 1539 1540 down_write(&sb->s_umount); 1541 if (!sb_rdonly(sb)) { 1542 struct fs_context *fc; 1543 1544 fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY, 1545 SB_RDONLY); 1546 if (IS_ERR(fc)) { 1547 ret = PTR_ERR(fc); 1548 } else { 1549 ret = parse_monolithic_mount_data(fc, NULL); 1550 if (!ret) 1551 ret = reconfigure_super(fc); 1552 put_fs_context(fc); 1553 } 1554 } 1555 up_write(&sb->s_umount); 1556 return ret; 1557 } 1558 1559 static int do_umount(struct mount *mnt, int flags) 1560 { 1561 struct super_block *sb = mnt->mnt.mnt_sb; 1562 int retval; 1563 1564 retval = security_sb_umount(&mnt->mnt, flags); 1565 if (retval) 1566 return retval; 1567 1568 /* 1569 * Allow userspace to request a mountpoint be expired rather than 1570 * unmounting unconditionally. Unmount only happens if: 1571 * (1) the mark is already set (the mark is cleared by mntput()) 1572 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] 1573 */ 1574 if (flags & MNT_EXPIRE) { 1575 if (&mnt->mnt == current->fs->root.mnt || 1576 flags & (MNT_FORCE | MNT_DETACH)) 1577 return -EINVAL; 1578 1579 /* 1580 * probably don't strictly need the lock here if we examined 1581 * all race cases, but it's a slowpath. 1582 */ 1583 lock_mount_hash(); 1584 if (mnt_get_count(mnt) != 2) { 1585 unlock_mount_hash(); 1586 return -EBUSY; 1587 } 1588 unlock_mount_hash(); 1589 1590 if (!xchg(&mnt->mnt_expiry_mark, 1)) 1591 return -EAGAIN; 1592 } 1593 1594 /* 1595 * If we may have to abort operations to get out of this 1596 * mount, and they will themselves hold resources we must 1597 * allow the fs to do things. In the Unix tradition of 1598 * 'Gee thats tricky lets do it in userspace' the umount_begin 1599 * might fail to complete on the first run through as other tasks 1600 * must return, and the like. Thats for the mount program to worry 1601 * about for the moment. 1602 */ 1603 1604 if (flags & MNT_FORCE && sb->s_op->umount_begin) { 1605 sb->s_op->umount_begin(sb); 1606 } 1607 1608 /* 1609 * No sense to grab the lock for this test, but test itself looks 1610 * somewhat bogus. Suggestions for better replacement? 1611 * Ho-hum... In principle, we might treat that as umount + switch 1612 * to rootfs. GC would eventually take care of the old vfsmount. 1613 * Actually it makes sense, especially if rootfs would contain a 1614 * /reboot - static binary that would close all descriptors and 1615 * call reboot(9). Then init(8) could umount root and exec /reboot. 1616 */ 1617 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) { 1618 /* 1619 * Special case for "unmounting" root ... 1620 * we just try to remount it readonly. 1621 */ 1622 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) 1623 return -EPERM; 1624 return do_umount_root(sb); 1625 } 1626 1627 namespace_lock(); 1628 lock_mount_hash(); 1629 1630 /* Recheck MNT_LOCKED with the locks held */ 1631 retval = -EINVAL; 1632 if (mnt->mnt.mnt_flags & MNT_LOCKED) 1633 goto out; 1634 1635 event++; 1636 if (flags & MNT_DETACH) { 1637 if (!list_empty(&mnt->mnt_list)) 1638 umount_tree(mnt, UMOUNT_PROPAGATE); 1639 retval = 0; 1640 } else { 1641 shrink_submounts(mnt); 1642 retval = -EBUSY; 1643 if (!propagate_mount_busy(mnt, 2)) { 1644 if (!list_empty(&mnt->mnt_list)) 1645 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 1646 retval = 0; 1647 } 1648 } 1649 out: 1650 unlock_mount_hash(); 1651 namespace_unlock(); 1652 return retval; 1653 } 1654 1655 /* 1656 * __detach_mounts - lazily unmount all mounts on the specified dentry 1657 * 1658 * During unlink, rmdir, and d_drop it is possible to loose the path 1659 * to an existing mountpoint, and wind up leaking the mount. 1660 * detach_mounts allows lazily unmounting those mounts instead of 1661 * leaking them. 1662 * 1663 * The caller may hold dentry->d_inode->i_mutex. 1664 */ 1665 void __detach_mounts(struct dentry *dentry) 1666 { 1667 struct mountpoint *mp; 1668 struct mount *mnt; 1669 1670 namespace_lock(); 1671 lock_mount_hash(); 1672 mp = lookup_mountpoint(dentry); 1673 if (!mp) 1674 goto out_unlock; 1675 1676 event++; 1677 while (!hlist_empty(&mp->m_list)) { 1678 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list); 1679 if (mnt->mnt.mnt_flags & MNT_UMOUNT) { 1680 umount_mnt(mnt); 1681 hlist_add_head(&mnt->mnt_umount, &unmounted); 1682 } 1683 else umount_tree(mnt, UMOUNT_CONNECTED); 1684 } 1685 put_mountpoint(mp); 1686 out_unlock: 1687 unlock_mount_hash(); 1688 namespace_unlock(); 1689 } 1690 1691 /* 1692 * Is the caller allowed to modify his namespace? 1693 */ 1694 static inline bool may_mount(void) 1695 { 1696 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN); 1697 } 1698 1699 #ifdef CONFIG_MANDATORY_FILE_LOCKING 1700 static inline bool may_mandlock(void) 1701 { 1702 return capable(CAP_SYS_ADMIN); 1703 } 1704 #else 1705 static inline bool may_mandlock(void) 1706 { 1707 pr_warn("VFS: \"mand\" mount option not supported"); 1708 return false; 1709 } 1710 #endif 1711 1712 /* 1713 * Now umount can handle mount points as well as block devices. 1714 * This is important for filesystems which use unnamed block devices. 1715 * 1716 * We now support a flag for forced unmount like the other 'big iron' 1717 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD 1718 */ 1719 1720 int ksys_umount(char __user *name, int flags) 1721 { 1722 struct path path; 1723 struct mount *mnt; 1724 int retval; 1725 int lookup_flags = LOOKUP_MOUNTPOINT; 1726 1727 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW)) 1728 return -EINVAL; 1729 1730 if (!may_mount()) 1731 return -EPERM; 1732 1733 if (!(flags & UMOUNT_NOFOLLOW)) 1734 lookup_flags |= LOOKUP_FOLLOW; 1735 1736 retval = user_path_at(AT_FDCWD, name, lookup_flags, &path); 1737 if (retval) 1738 goto out; 1739 mnt = real_mount(path.mnt); 1740 retval = -EINVAL; 1741 if (path.dentry != path.mnt->mnt_root) 1742 goto dput_and_out; 1743 if (!check_mnt(mnt)) 1744 goto dput_and_out; 1745 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */ 1746 goto dput_and_out; 1747 retval = -EPERM; 1748 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN)) 1749 goto dput_and_out; 1750 1751 retval = do_umount(mnt, flags); 1752 dput_and_out: 1753 /* we mustn't call path_put() as that would clear mnt_expiry_mark */ 1754 dput(path.dentry); 1755 mntput_no_expire(mnt); 1756 out: 1757 return retval; 1758 } 1759 1760 SYSCALL_DEFINE2(umount, char __user *, name, int, flags) 1761 { 1762 return ksys_umount(name, flags); 1763 } 1764 1765 #ifdef __ARCH_WANT_SYS_OLDUMOUNT 1766 1767 /* 1768 * The 2.0 compatible umount. No flags. 1769 */ 1770 SYSCALL_DEFINE1(oldumount, char __user *, name) 1771 { 1772 return ksys_umount(name, 0); 1773 } 1774 1775 #endif 1776 1777 static bool is_mnt_ns_file(struct dentry *dentry) 1778 { 1779 /* Is this a proxy for a mount namespace? */ 1780 return dentry->d_op == &ns_dentry_operations && 1781 dentry->d_fsdata == &mntns_operations; 1782 } 1783 1784 static struct mnt_namespace *to_mnt_ns(struct ns_common *ns) 1785 { 1786 return container_of(ns, struct mnt_namespace, ns); 1787 } 1788 1789 static bool mnt_ns_loop(struct dentry *dentry) 1790 { 1791 /* Could bind mounting the mount namespace inode cause a 1792 * mount namespace loop? 1793 */ 1794 struct mnt_namespace *mnt_ns; 1795 if (!is_mnt_ns_file(dentry)) 1796 return false; 1797 1798 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode)); 1799 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq; 1800 } 1801 1802 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry, 1803 int flag) 1804 { 1805 struct mount *res, *p, *q, *r, *parent; 1806 1807 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt)) 1808 return ERR_PTR(-EINVAL); 1809 1810 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry)) 1811 return ERR_PTR(-EINVAL); 1812 1813 res = q = clone_mnt(mnt, dentry, flag); 1814 if (IS_ERR(q)) 1815 return q; 1816 1817 q->mnt_mountpoint = mnt->mnt_mountpoint; 1818 1819 p = mnt; 1820 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) { 1821 struct mount *s; 1822 if (!is_subdir(r->mnt_mountpoint, dentry)) 1823 continue; 1824 1825 for (s = r; s; s = next_mnt(s, r)) { 1826 if (!(flag & CL_COPY_UNBINDABLE) && 1827 IS_MNT_UNBINDABLE(s)) { 1828 if (s->mnt.mnt_flags & MNT_LOCKED) { 1829 /* Both unbindable and locked. */ 1830 q = ERR_PTR(-EPERM); 1831 goto out; 1832 } else { 1833 s = skip_mnt_tree(s); 1834 continue; 1835 } 1836 } 1837 if (!(flag & CL_COPY_MNT_NS_FILE) && 1838 is_mnt_ns_file(s->mnt.mnt_root)) { 1839 s = skip_mnt_tree(s); 1840 continue; 1841 } 1842 while (p != s->mnt_parent) { 1843 p = p->mnt_parent; 1844 q = q->mnt_parent; 1845 } 1846 p = s; 1847 parent = q; 1848 q = clone_mnt(p, p->mnt.mnt_root, flag); 1849 if (IS_ERR(q)) 1850 goto out; 1851 lock_mount_hash(); 1852 list_add_tail(&q->mnt_list, &res->mnt_list); 1853 attach_mnt(q, parent, p->mnt_mp); 1854 unlock_mount_hash(); 1855 } 1856 } 1857 return res; 1858 out: 1859 if (res) { 1860 lock_mount_hash(); 1861 umount_tree(res, UMOUNT_SYNC); 1862 unlock_mount_hash(); 1863 } 1864 return q; 1865 } 1866 1867 /* Caller should check returned pointer for errors */ 1868 1869 struct vfsmount *collect_mounts(const struct path *path) 1870 { 1871 struct mount *tree; 1872 namespace_lock(); 1873 if (!check_mnt(real_mount(path->mnt))) 1874 tree = ERR_PTR(-EINVAL); 1875 else 1876 tree = copy_tree(real_mount(path->mnt), path->dentry, 1877 CL_COPY_ALL | CL_PRIVATE); 1878 namespace_unlock(); 1879 if (IS_ERR(tree)) 1880 return ERR_CAST(tree); 1881 return &tree->mnt; 1882 } 1883 1884 static void free_mnt_ns(struct mnt_namespace *); 1885 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool); 1886 1887 void dissolve_on_fput(struct vfsmount *mnt) 1888 { 1889 struct mnt_namespace *ns; 1890 namespace_lock(); 1891 lock_mount_hash(); 1892 ns = real_mount(mnt)->mnt_ns; 1893 if (ns) { 1894 if (is_anon_ns(ns)) 1895 umount_tree(real_mount(mnt), UMOUNT_CONNECTED); 1896 else 1897 ns = NULL; 1898 } 1899 unlock_mount_hash(); 1900 namespace_unlock(); 1901 if (ns) 1902 free_mnt_ns(ns); 1903 } 1904 1905 void drop_collected_mounts(struct vfsmount *mnt) 1906 { 1907 namespace_lock(); 1908 lock_mount_hash(); 1909 umount_tree(real_mount(mnt), 0); 1910 unlock_mount_hash(); 1911 namespace_unlock(); 1912 } 1913 1914 /** 1915 * clone_private_mount - create a private clone of a path 1916 * 1917 * This creates a new vfsmount, which will be the clone of @path. The new will 1918 * not be attached anywhere in the namespace and will be private (i.e. changes 1919 * to the originating mount won't be propagated into this). 1920 * 1921 * Release with mntput(). 1922 */ 1923 struct vfsmount *clone_private_mount(const struct path *path) 1924 { 1925 struct mount *old_mnt = real_mount(path->mnt); 1926 struct mount *new_mnt; 1927 1928 if (IS_MNT_UNBINDABLE(old_mnt)) 1929 return ERR_PTR(-EINVAL); 1930 1931 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE); 1932 if (IS_ERR(new_mnt)) 1933 return ERR_CAST(new_mnt); 1934 1935 return &new_mnt->mnt; 1936 } 1937 EXPORT_SYMBOL_GPL(clone_private_mount); 1938 1939 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg, 1940 struct vfsmount *root) 1941 { 1942 struct mount *mnt; 1943 int res = f(root, arg); 1944 if (res) 1945 return res; 1946 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) { 1947 res = f(&mnt->mnt, arg); 1948 if (res) 1949 return res; 1950 } 1951 return 0; 1952 } 1953 1954 static void lock_mnt_tree(struct mount *mnt) 1955 { 1956 struct mount *p; 1957 1958 for (p = mnt; p; p = next_mnt(p, mnt)) { 1959 int flags = p->mnt.mnt_flags; 1960 /* Don't allow unprivileged users to change mount flags */ 1961 flags |= MNT_LOCK_ATIME; 1962 1963 if (flags & MNT_READONLY) 1964 flags |= MNT_LOCK_READONLY; 1965 1966 if (flags & MNT_NODEV) 1967 flags |= MNT_LOCK_NODEV; 1968 1969 if (flags & MNT_NOSUID) 1970 flags |= MNT_LOCK_NOSUID; 1971 1972 if (flags & MNT_NOEXEC) 1973 flags |= MNT_LOCK_NOEXEC; 1974 /* Don't allow unprivileged users to reveal what is under a mount */ 1975 if (list_empty(&p->mnt_expire)) 1976 flags |= MNT_LOCKED; 1977 p->mnt.mnt_flags = flags; 1978 } 1979 } 1980 1981 static void cleanup_group_ids(struct mount *mnt, struct mount *end) 1982 { 1983 struct mount *p; 1984 1985 for (p = mnt; p != end; p = next_mnt(p, mnt)) { 1986 if (p->mnt_group_id && !IS_MNT_SHARED(p)) 1987 mnt_release_group_id(p); 1988 } 1989 } 1990 1991 static int invent_group_ids(struct mount *mnt, bool recurse) 1992 { 1993 struct mount *p; 1994 1995 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) { 1996 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) { 1997 int err = mnt_alloc_group_id(p); 1998 if (err) { 1999 cleanup_group_ids(mnt, p); 2000 return err; 2001 } 2002 } 2003 } 2004 2005 return 0; 2006 } 2007 2008 int count_mounts(struct mnt_namespace *ns, struct mount *mnt) 2009 { 2010 unsigned int max = READ_ONCE(sysctl_mount_max); 2011 unsigned int mounts = 0, old, pending, sum; 2012 struct mount *p; 2013 2014 for (p = mnt; p; p = next_mnt(p, mnt)) 2015 mounts++; 2016 2017 old = ns->mounts; 2018 pending = ns->pending_mounts; 2019 sum = old + pending; 2020 if ((old > sum) || 2021 (pending > sum) || 2022 (max < sum) || 2023 (mounts > (max - sum))) 2024 return -ENOSPC; 2025 2026 ns->pending_mounts = pending + mounts; 2027 return 0; 2028 } 2029 2030 /* 2031 * @source_mnt : mount tree to be attached 2032 * @nd : place the mount tree @source_mnt is attached 2033 * @parent_nd : if non-null, detach the source_mnt from its parent and 2034 * store the parent mount and mountpoint dentry. 2035 * (done when source_mnt is moved) 2036 * 2037 * NOTE: in the table below explains the semantics when a source mount 2038 * of a given type is attached to a destination mount of a given type. 2039 * --------------------------------------------------------------------------- 2040 * | BIND MOUNT OPERATION | 2041 * |************************************************************************** 2042 * | source-->| shared | private | slave | unbindable | 2043 * | dest | | | | | 2044 * | | | | | | | 2045 * | v | | | | | 2046 * |************************************************************************** 2047 * | shared | shared (++) | shared (+) | shared(+++)| invalid | 2048 * | | | | | | 2049 * |non-shared| shared (+) | private | slave (*) | invalid | 2050 * *************************************************************************** 2051 * A bind operation clones the source mount and mounts the clone on the 2052 * destination mount. 2053 * 2054 * (++) the cloned mount is propagated to all the mounts in the propagation 2055 * tree of the destination mount and the cloned mount is added to 2056 * the peer group of the source mount. 2057 * (+) the cloned mount is created under the destination mount and is marked 2058 * as shared. The cloned mount is added to the peer group of the source 2059 * mount. 2060 * (+++) the mount is propagated to all the mounts in the propagation tree 2061 * of the destination mount and the cloned mount is made slave 2062 * of the same master as that of the source mount. The cloned mount 2063 * is marked as 'shared and slave'. 2064 * (*) the cloned mount is made a slave of the same master as that of the 2065 * source mount. 2066 * 2067 * --------------------------------------------------------------------------- 2068 * | MOVE MOUNT OPERATION | 2069 * |************************************************************************** 2070 * | source-->| shared | private | slave | unbindable | 2071 * | dest | | | | | 2072 * | | | | | | | 2073 * | v | | | | | 2074 * |************************************************************************** 2075 * | shared | shared (+) | shared (+) | shared(+++) | invalid | 2076 * | | | | | | 2077 * |non-shared| shared (+*) | private | slave (*) | unbindable | 2078 * *************************************************************************** 2079 * 2080 * (+) the mount is moved to the destination. And is then propagated to 2081 * all the mounts in the propagation tree of the destination mount. 2082 * (+*) the mount is moved to the destination. 2083 * (+++) the mount is moved to the destination and is then propagated to 2084 * all the mounts belonging to the destination mount's propagation tree. 2085 * the mount is marked as 'shared and slave'. 2086 * (*) the mount continues to be a slave at the new location. 2087 * 2088 * if the source mount is a tree, the operations explained above is 2089 * applied to each mount in the tree. 2090 * Must be called without spinlocks held, since this function can sleep 2091 * in allocations. 2092 */ 2093 static int attach_recursive_mnt(struct mount *source_mnt, 2094 struct mount *dest_mnt, 2095 struct mountpoint *dest_mp, 2096 bool moving) 2097 { 2098 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; 2099 HLIST_HEAD(tree_list); 2100 struct mnt_namespace *ns = dest_mnt->mnt_ns; 2101 struct mountpoint *smp; 2102 struct mount *child, *p; 2103 struct hlist_node *n; 2104 int err; 2105 2106 /* Preallocate a mountpoint in case the new mounts need 2107 * to be tucked under other mounts. 2108 */ 2109 smp = get_mountpoint(source_mnt->mnt.mnt_root); 2110 if (IS_ERR(smp)) 2111 return PTR_ERR(smp); 2112 2113 /* Is there space to add these mounts to the mount namespace? */ 2114 if (!moving) { 2115 err = count_mounts(ns, source_mnt); 2116 if (err) 2117 goto out; 2118 } 2119 2120 if (IS_MNT_SHARED(dest_mnt)) { 2121 err = invent_group_ids(source_mnt, true); 2122 if (err) 2123 goto out; 2124 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list); 2125 lock_mount_hash(); 2126 if (err) 2127 goto out_cleanup_ids; 2128 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 2129 set_mnt_shared(p); 2130 } else { 2131 lock_mount_hash(); 2132 } 2133 if (moving) { 2134 unhash_mnt(source_mnt); 2135 attach_mnt(source_mnt, dest_mnt, dest_mp); 2136 touch_mnt_namespace(source_mnt->mnt_ns); 2137 } else { 2138 if (source_mnt->mnt_ns) { 2139 /* move from anon - the caller will destroy */ 2140 list_del_init(&source_mnt->mnt_ns->list); 2141 } 2142 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt); 2143 commit_tree(source_mnt); 2144 } 2145 2146 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) { 2147 struct mount *q; 2148 hlist_del_init(&child->mnt_hash); 2149 q = __lookup_mnt(&child->mnt_parent->mnt, 2150 child->mnt_mountpoint); 2151 if (q) 2152 mnt_change_mountpoint(child, smp, q); 2153 /* Notice when we are propagating across user namespaces */ 2154 if (child->mnt_parent->mnt_ns->user_ns != user_ns) 2155 lock_mnt_tree(child); 2156 child->mnt.mnt_flags &= ~MNT_LOCKED; 2157 commit_tree(child); 2158 } 2159 put_mountpoint(smp); 2160 unlock_mount_hash(); 2161 2162 return 0; 2163 2164 out_cleanup_ids: 2165 while (!hlist_empty(&tree_list)) { 2166 child = hlist_entry(tree_list.first, struct mount, mnt_hash); 2167 child->mnt_parent->mnt_ns->pending_mounts = 0; 2168 umount_tree(child, UMOUNT_SYNC); 2169 } 2170 unlock_mount_hash(); 2171 cleanup_group_ids(source_mnt, NULL); 2172 out: 2173 ns->pending_mounts = 0; 2174 2175 read_seqlock_excl(&mount_lock); 2176 put_mountpoint(smp); 2177 read_sequnlock_excl(&mount_lock); 2178 2179 return err; 2180 } 2181 2182 static struct mountpoint *lock_mount(struct path *path) 2183 { 2184 struct vfsmount *mnt; 2185 struct dentry *dentry = path->dentry; 2186 retry: 2187 inode_lock(dentry->d_inode); 2188 if (unlikely(cant_mount(dentry))) { 2189 inode_unlock(dentry->d_inode); 2190 return ERR_PTR(-ENOENT); 2191 } 2192 namespace_lock(); 2193 mnt = lookup_mnt(path); 2194 if (likely(!mnt)) { 2195 struct mountpoint *mp = get_mountpoint(dentry); 2196 if (IS_ERR(mp)) { 2197 namespace_unlock(); 2198 inode_unlock(dentry->d_inode); 2199 return mp; 2200 } 2201 return mp; 2202 } 2203 namespace_unlock(); 2204 inode_unlock(path->dentry->d_inode); 2205 path_put(path); 2206 path->mnt = mnt; 2207 dentry = path->dentry = dget(mnt->mnt_root); 2208 goto retry; 2209 } 2210 2211 static void unlock_mount(struct mountpoint *where) 2212 { 2213 struct dentry *dentry = where->m_dentry; 2214 2215 read_seqlock_excl(&mount_lock); 2216 put_mountpoint(where); 2217 read_sequnlock_excl(&mount_lock); 2218 2219 namespace_unlock(); 2220 inode_unlock(dentry->d_inode); 2221 } 2222 2223 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp) 2224 { 2225 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER) 2226 return -EINVAL; 2227 2228 if (d_is_dir(mp->m_dentry) != 2229 d_is_dir(mnt->mnt.mnt_root)) 2230 return -ENOTDIR; 2231 2232 return attach_recursive_mnt(mnt, p, mp, false); 2233 } 2234 2235 /* 2236 * Sanity check the flags to change_mnt_propagation. 2237 */ 2238 2239 static int flags_to_propagation_type(int ms_flags) 2240 { 2241 int type = ms_flags & ~(MS_REC | MS_SILENT); 2242 2243 /* Fail if any non-propagation flags are set */ 2244 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 2245 return 0; 2246 /* Only one propagation flag should be set */ 2247 if (!is_power_of_2(type)) 2248 return 0; 2249 return type; 2250 } 2251 2252 /* 2253 * recursively change the type of the mountpoint. 2254 */ 2255 static int do_change_type(struct path *path, int ms_flags) 2256 { 2257 struct mount *m; 2258 struct mount *mnt = real_mount(path->mnt); 2259 int recurse = ms_flags & MS_REC; 2260 int type; 2261 int err = 0; 2262 2263 if (path->dentry != path->mnt->mnt_root) 2264 return -EINVAL; 2265 2266 type = flags_to_propagation_type(ms_flags); 2267 if (!type) 2268 return -EINVAL; 2269 2270 namespace_lock(); 2271 if (type == MS_SHARED) { 2272 err = invent_group_ids(mnt, recurse); 2273 if (err) 2274 goto out_unlock; 2275 } 2276 2277 lock_mount_hash(); 2278 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) 2279 change_mnt_propagation(m, type); 2280 unlock_mount_hash(); 2281 2282 out_unlock: 2283 namespace_unlock(); 2284 return err; 2285 } 2286 2287 static bool has_locked_children(struct mount *mnt, struct dentry *dentry) 2288 { 2289 struct mount *child; 2290 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 2291 if (!is_subdir(child->mnt_mountpoint, dentry)) 2292 continue; 2293 2294 if (child->mnt.mnt_flags & MNT_LOCKED) 2295 return true; 2296 } 2297 return false; 2298 } 2299 2300 static struct mount *__do_loopback(struct path *old_path, int recurse) 2301 { 2302 struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt); 2303 2304 if (IS_MNT_UNBINDABLE(old)) 2305 return mnt; 2306 2307 if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations) 2308 return mnt; 2309 2310 if (!recurse && has_locked_children(old, old_path->dentry)) 2311 return mnt; 2312 2313 if (recurse) 2314 mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE); 2315 else 2316 mnt = clone_mnt(old, old_path->dentry, 0); 2317 2318 if (!IS_ERR(mnt)) 2319 mnt->mnt.mnt_flags &= ~MNT_LOCKED; 2320 2321 return mnt; 2322 } 2323 2324 /* 2325 * do loopback mount. 2326 */ 2327 static int do_loopback(struct path *path, const char *old_name, 2328 int recurse) 2329 { 2330 struct path old_path; 2331 struct mount *mnt = NULL, *parent; 2332 struct mountpoint *mp; 2333 int err; 2334 if (!old_name || !*old_name) 2335 return -EINVAL; 2336 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path); 2337 if (err) 2338 return err; 2339 2340 err = -EINVAL; 2341 if (mnt_ns_loop(old_path.dentry)) 2342 goto out; 2343 2344 mp = lock_mount(path); 2345 if (IS_ERR(mp)) { 2346 err = PTR_ERR(mp); 2347 goto out; 2348 } 2349 2350 parent = real_mount(path->mnt); 2351 if (!check_mnt(parent)) 2352 goto out2; 2353 2354 mnt = __do_loopback(&old_path, recurse); 2355 if (IS_ERR(mnt)) { 2356 err = PTR_ERR(mnt); 2357 goto out2; 2358 } 2359 2360 err = graft_tree(mnt, parent, mp); 2361 if (err) { 2362 lock_mount_hash(); 2363 umount_tree(mnt, UMOUNT_SYNC); 2364 unlock_mount_hash(); 2365 } 2366 out2: 2367 unlock_mount(mp); 2368 out: 2369 path_put(&old_path); 2370 return err; 2371 } 2372 2373 static struct file *open_detached_copy(struct path *path, bool recursive) 2374 { 2375 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; 2376 struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true); 2377 struct mount *mnt, *p; 2378 struct file *file; 2379 2380 if (IS_ERR(ns)) 2381 return ERR_CAST(ns); 2382 2383 namespace_lock(); 2384 mnt = __do_loopback(path, recursive); 2385 if (IS_ERR(mnt)) { 2386 namespace_unlock(); 2387 free_mnt_ns(ns); 2388 return ERR_CAST(mnt); 2389 } 2390 2391 lock_mount_hash(); 2392 for (p = mnt; p; p = next_mnt(p, mnt)) { 2393 p->mnt_ns = ns; 2394 ns->mounts++; 2395 } 2396 ns->root = mnt; 2397 list_add_tail(&ns->list, &mnt->mnt_list); 2398 mntget(&mnt->mnt); 2399 unlock_mount_hash(); 2400 namespace_unlock(); 2401 2402 mntput(path->mnt); 2403 path->mnt = &mnt->mnt; 2404 file = dentry_open(path, O_PATH, current_cred()); 2405 if (IS_ERR(file)) 2406 dissolve_on_fput(path->mnt); 2407 else 2408 file->f_mode |= FMODE_NEED_UNMOUNT; 2409 return file; 2410 } 2411 2412 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags) 2413 { 2414 struct file *file; 2415 struct path path; 2416 int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW; 2417 bool detached = flags & OPEN_TREE_CLONE; 2418 int error; 2419 int fd; 2420 2421 BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC); 2422 2423 if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE | 2424 AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE | 2425 OPEN_TREE_CLOEXEC)) 2426 return -EINVAL; 2427 2428 if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE) 2429 return -EINVAL; 2430 2431 if (flags & AT_NO_AUTOMOUNT) 2432 lookup_flags &= ~LOOKUP_AUTOMOUNT; 2433 if (flags & AT_SYMLINK_NOFOLLOW) 2434 lookup_flags &= ~LOOKUP_FOLLOW; 2435 if (flags & AT_EMPTY_PATH) 2436 lookup_flags |= LOOKUP_EMPTY; 2437 2438 if (detached && !may_mount()) 2439 return -EPERM; 2440 2441 fd = get_unused_fd_flags(flags & O_CLOEXEC); 2442 if (fd < 0) 2443 return fd; 2444 2445 error = user_path_at(dfd, filename, lookup_flags, &path); 2446 if (unlikely(error)) { 2447 file = ERR_PTR(error); 2448 } else { 2449 if (detached) 2450 file = open_detached_copy(&path, flags & AT_RECURSIVE); 2451 else 2452 file = dentry_open(&path, O_PATH, current_cred()); 2453 path_put(&path); 2454 } 2455 if (IS_ERR(file)) { 2456 put_unused_fd(fd); 2457 return PTR_ERR(file); 2458 } 2459 fd_install(fd, file); 2460 return fd; 2461 } 2462 2463 /* 2464 * Don't allow locked mount flags to be cleared. 2465 * 2466 * No locks need to be held here while testing the various MNT_LOCK 2467 * flags because those flags can never be cleared once they are set. 2468 */ 2469 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags) 2470 { 2471 unsigned int fl = mnt->mnt.mnt_flags; 2472 2473 if ((fl & MNT_LOCK_READONLY) && 2474 !(mnt_flags & MNT_READONLY)) 2475 return false; 2476 2477 if ((fl & MNT_LOCK_NODEV) && 2478 !(mnt_flags & MNT_NODEV)) 2479 return false; 2480 2481 if ((fl & MNT_LOCK_NOSUID) && 2482 !(mnt_flags & MNT_NOSUID)) 2483 return false; 2484 2485 if ((fl & MNT_LOCK_NOEXEC) && 2486 !(mnt_flags & MNT_NOEXEC)) 2487 return false; 2488 2489 if ((fl & MNT_LOCK_ATIME) && 2490 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) 2491 return false; 2492 2493 return true; 2494 } 2495 2496 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags) 2497 { 2498 bool readonly_request = (mnt_flags & MNT_READONLY); 2499 2500 if (readonly_request == __mnt_is_readonly(&mnt->mnt)) 2501 return 0; 2502 2503 if (readonly_request) 2504 return mnt_make_readonly(mnt); 2505 2506 return __mnt_unmake_readonly(mnt); 2507 } 2508 2509 /* 2510 * Update the user-settable attributes on a mount. The caller must hold 2511 * sb->s_umount for writing. 2512 */ 2513 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags) 2514 { 2515 lock_mount_hash(); 2516 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK; 2517 mnt->mnt.mnt_flags = mnt_flags; 2518 touch_mnt_namespace(mnt->mnt_ns); 2519 unlock_mount_hash(); 2520 } 2521 2522 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt) 2523 { 2524 struct super_block *sb = mnt->mnt_sb; 2525 2526 if (!__mnt_is_readonly(mnt) && 2527 (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) { 2528 char *buf = (char *)__get_free_page(GFP_KERNEL); 2529 char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM); 2530 struct tm tm; 2531 2532 time64_to_tm(sb->s_time_max, 0, &tm); 2533 2534 pr_warn("%s filesystem being %s at %s supports timestamps until %04ld (0x%llx)\n", 2535 sb->s_type->name, 2536 is_mounted(mnt) ? "remounted" : "mounted", 2537 mntpath, 2538 tm.tm_year+1900, (unsigned long long)sb->s_time_max); 2539 2540 free_page((unsigned long)buf); 2541 } 2542 } 2543 2544 /* 2545 * Handle reconfiguration of the mountpoint only without alteration of the 2546 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND 2547 * to mount(2). 2548 */ 2549 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags) 2550 { 2551 struct super_block *sb = path->mnt->mnt_sb; 2552 struct mount *mnt = real_mount(path->mnt); 2553 int ret; 2554 2555 if (!check_mnt(mnt)) 2556 return -EINVAL; 2557 2558 if (path->dentry != mnt->mnt.mnt_root) 2559 return -EINVAL; 2560 2561 if (!can_change_locked_flags(mnt, mnt_flags)) 2562 return -EPERM; 2563 2564 down_write(&sb->s_umount); 2565 ret = change_mount_ro_state(mnt, mnt_flags); 2566 if (ret == 0) 2567 set_mount_attributes(mnt, mnt_flags); 2568 up_write(&sb->s_umount); 2569 2570 mnt_warn_timestamp_expiry(path, &mnt->mnt); 2571 2572 return ret; 2573 } 2574 2575 /* 2576 * change filesystem flags. dir should be a physical root of filesystem. 2577 * If you've mounted a non-root directory somewhere and want to do remount 2578 * on it - tough luck. 2579 */ 2580 static int do_remount(struct path *path, int ms_flags, int sb_flags, 2581 int mnt_flags, void *data) 2582 { 2583 int err; 2584 struct super_block *sb = path->mnt->mnt_sb; 2585 struct mount *mnt = real_mount(path->mnt); 2586 struct fs_context *fc; 2587 2588 if (!check_mnt(mnt)) 2589 return -EINVAL; 2590 2591 if (path->dentry != path->mnt->mnt_root) 2592 return -EINVAL; 2593 2594 if (!can_change_locked_flags(mnt, mnt_flags)) 2595 return -EPERM; 2596 2597 fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK); 2598 if (IS_ERR(fc)) 2599 return PTR_ERR(fc); 2600 2601 err = parse_monolithic_mount_data(fc, data); 2602 if (!err) { 2603 down_write(&sb->s_umount); 2604 err = -EPERM; 2605 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) { 2606 err = reconfigure_super(fc); 2607 if (!err) 2608 set_mount_attributes(mnt, mnt_flags); 2609 } 2610 up_write(&sb->s_umount); 2611 } 2612 2613 mnt_warn_timestamp_expiry(path, &mnt->mnt); 2614 2615 put_fs_context(fc); 2616 return err; 2617 } 2618 2619 static inline int tree_contains_unbindable(struct mount *mnt) 2620 { 2621 struct mount *p; 2622 for (p = mnt; p; p = next_mnt(p, mnt)) { 2623 if (IS_MNT_UNBINDABLE(p)) 2624 return 1; 2625 } 2626 return 0; 2627 } 2628 2629 /* 2630 * Check that there aren't references to earlier/same mount namespaces in the 2631 * specified subtree. Such references can act as pins for mount namespaces 2632 * that aren't checked by the mount-cycle checking code, thereby allowing 2633 * cycles to be made. 2634 */ 2635 static bool check_for_nsfs_mounts(struct mount *subtree) 2636 { 2637 struct mount *p; 2638 bool ret = false; 2639 2640 lock_mount_hash(); 2641 for (p = subtree; p; p = next_mnt(p, subtree)) 2642 if (mnt_ns_loop(p->mnt.mnt_root)) 2643 goto out; 2644 2645 ret = true; 2646 out: 2647 unlock_mount_hash(); 2648 return ret; 2649 } 2650 2651 static int do_move_mount(struct path *old_path, struct path *new_path) 2652 { 2653 struct mnt_namespace *ns; 2654 struct mount *p; 2655 struct mount *old; 2656 struct mount *parent; 2657 struct mountpoint *mp, *old_mp; 2658 int err; 2659 bool attached; 2660 2661 mp = lock_mount(new_path); 2662 if (IS_ERR(mp)) 2663 return PTR_ERR(mp); 2664 2665 old = real_mount(old_path->mnt); 2666 p = real_mount(new_path->mnt); 2667 parent = old->mnt_parent; 2668 attached = mnt_has_parent(old); 2669 old_mp = old->mnt_mp; 2670 ns = old->mnt_ns; 2671 2672 err = -EINVAL; 2673 /* The mountpoint must be in our namespace. */ 2674 if (!check_mnt(p)) 2675 goto out; 2676 2677 /* The thing moved must be mounted... */ 2678 if (!is_mounted(&old->mnt)) 2679 goto out; 2680 2681 /* ... and either ours or the root of anon namespace */ 2682 if (!(attached ? check_mnt(old) : is_anon_ns(ns))) 2683 goto out; 2684 2685 if (old->mnt.mnt_flags & MNT_LOCKED) 2686 goto out; 2687 2688 if (old_path->dentry != old_path->mnt->mnt_root) 2689 goto out; 2690 2691 if (d_is_dir(new_path->dentry) != 2692 d_is_dir(old_path->dentry)) 2693 goto out; 2694 /* 2695 * Don't move a mount residing in a shared parent. 2696 */ 2697 if (attached && IS_MNT_SHARED(parent)) 2698 goto out; 2699 /* 2700 * Don't move a mount tree containing unbindable mounts to a destination 2701 * mount which is shared. 2702 */ 2703 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old)) 2704 goto out; 2705 err = -ELOOP; 2706 if (!check_for_nsfs_mounts(old)) 2707 goto out; 2708 for (; mnt_has_parent(p); p = p->mnt_parent) 2709 if (p == old) 2710 goto out; 2711 2712 err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp, 2713 attached); 2714 if (err) 2715 goto out; 2716 2717 /* if the mount is moved, it should no longer be expire 2718 * automatically */ 2719 list_del_init(&old->mnt_expire); 2720 if (attached) 2721 put_mountpoint(old_mp); 2722 out: 2723 unlock_mount(mp); 2724 if (!err) { 2725 if (attached) 2726 mntput_no_expire(parent); 2727 else 2728 free_mnt_ns(ns); 2729 } 2730 return err; 2731 } 2732 2733 static int do_move_mount_old(struct path *path, const char *old_name) 2734 { 2735 struct path old_path; 2736 int err; 2737 2738 if (!old_name || !*old_name) 2739 return -EINVAL; 2740 2741 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); 2742 if (err) 2743 return err; 2744 2745 err = do_move_mount(&old_path, path); 2746 path_put(&old_path); 2747 return err; 2748 } 2749 2750 /* 2751 * add a mount into a namespace's mount tree 2752 */ 2753 static int do_add_mount(struct mount *newmnt, struct mountpoint *mp, 2754 struct path *path, int mnt_flags) 2755 { 2756 struct mount *parent = real_mount(path->mnt); 2757 2758 mnt_flags &= ~MNT_INTERNAL_FLAGS; 2759 2760 if (unlikely(!check_mnt(parent))) { 2761 /* that's acceptable only for automounts done in private ns */ 2762 if (!(mnt_flags & MNT_SHRINKABLE)) 2763 return -EINVAL; 2764 /* ... and for those we'd better have mountpoint still alive */ 2765 if (!parent->mnt_ns) 2766 return -EINVAL; 2767 } 2768 2769 /* Refuse the same filesystem on the same mount point */ 2770 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && 2771 path->mnt->mnt_root == path->dentry) 2772 return -EBUSY; 2773 2774 if (d_is_symlink(newmnt->mnt.mnt_root)) 2775 return -EINVAL; 2776 2777 newmnt->mnt.mnt_flags = mnt_flags; 2778 return graft_tree(newmnt, parent, mp); 2779 } 2780 2781 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags); 2782 2783 /* 2784 * Create a new mount using a superblock configuration and request it 2785 * be added to the namespace tree. 2786 */ 2787 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint, 2788 unsigned int mnt_flags) 2789 { 2790 struct vfsmount *mnt; 2791 struct mountpoint *mp; 2792 struct super_block *sb = fc->root->d_sb; 2793 int error; 2794 2795 error = security_sb_kern_mount(sb); 2796 if (!error && mount_too_revealing(sb, &mnt_flags)) 2797 error = -EPERM; 2798 2799 if (unlikely(error)) { 2800 fc_drop_locked(fc); 2801 return error; 2802 } 2803 2804 up_write(&sb->s_umount); 2805 2806 mnt = vfs_create_mount(fc); 2807 if (IS_ERR(mnt)) 2808 return PTR_ERR(mnt); 2809 2810 mnt_warn_timestamp_expiry(mountpoint, mnt); 2811 2812 mp = lock_mount(mountpoint); 2813 if (IS_ERR(mp)) { 2814 mntput(mnt); 2815 return PTR_ERR(mp); 2816 } 2817 error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags); 2818 unlock_mount(mp); 2819 if (error < 0) 2820 mntput(mnt); 2821 return error; 2822 } 2823 2824 /* 2825 * create a new mount for userspace and request it to be added into the 2826 * namespace's tree 2827 */ 2828 static int do_new_mount(struct path *path, const char *fstype, int sb_flags, 2829 int mnt_flags, const char *name, void *data) 2830 { 2831 struct file_system_type *type; 2832 struct fs_context *fc; 2833 const char *subtype = NULL; 2834 int err = 0; 2835 2836 if (!fstype) 2837 return -EINVAL; 2838 2839 type = get_fs_type(fstype); 2840 if (!type) 2841 return -ENODEV; 2842 2843 if (type->fs_flags & FS_HAS_SUBTYPE) { 2844 subtype = strchr(fstype, '.'); 2845 if (subtype) { 2846 subtype++; 2847 if (!*subtype) { 2848 put_filesystem(type); 2849 return -EINVAL; 2850 } 2851 } 2852 } 2853 2854 fc = fs_context_for_mount(type, sb_flags); 2855 put_filesystem(type); 2856 if (IS_ERR(fc)) 2857 return PTR_ERR(fc); 2858 2859 if (subtype) 2860 err = vfs_parse_fs_string(fc, "subtype", 2861 subtype, strlen(subtype)); 2862 if (!err && name) 2863 err = vfs_parse_fs_string(fc, "source", name, strlen(name)); 2864 if (!err) 2865 err = parse_monolithic_mount_data(fc, data); 2866 if (!err && !mount_capable(fc)) 2867 err = -EPERM; 2868 if (!err) 2869 err = vfs_get_tree(fc); 2870 if (!err) 2871 err = do_new_mount_fc(fc, path, mnt_flags); 2872 2873 put_fs_context(fc); 2874 return err; 2875 } 2876 2877 int finish_automount(struct vfsmount *m, struct path *path) 2878 { 2879 struct dentry *dentry = path->dentry; 2880 struct mountpoint *mp; 2881 struct mount *mnt; 2882 int err; 2883 2884 if (!m) 2885 return 0; 2886 if (IS_ERR(m)) 2887 return PTR_ERR(m); 2888 2889 mnt = real_mount(m); 2890 /* The new mount record should have at least 2 refs to prevent it being 2891 * expired before we get a chance to add it 2892 */ 2893 BUG_ON(mnt_get_count(mnt) < 2); 2894 2895 if (m->mnt_sb == path->mnt->mnt_sb && 2896 m->mnt_root == dentry) { 2897 err = -ELOOP; 2898 goto discard; 2899 } 2900 2901 /* 2902 * we don't want to use lock_mount() - in this case finding something 2903 * that overmounts our mountpoint to be means "quitely drop what we've 2904 * got", not "try to mount it on top". 2905 */ 2906 inode_lock(dentry->d_inode); 2907 namespace_lock(); 2908 if (unlikely(cant_mount(dentry))) { 2909 err = -ENOENT; 2910 goto discard_locked; 2911 } 2912 rcu_read_lock(); 2913 if (unlikely(__lookup_mnt(path->mnt, dentry))) { 2914 rcu_read_unlock(); 2915 err = 0; 2916 goto discard_locked; 2917 } 2918 rcu_read_unlock(); 2919 mp = get_mountpoint(dentry); 2920 if (IS_ERR(mp)) { 2921 err = PTR_ERR(mp); 2922 goto discard_locked; 2923 } 2924 2925 err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE); 2926 unlock_mount(mp); 2927 if (unlikely(err)) 2928 goto discard; 2929 mntput(m); 2930 return 0; 2931 2932 discard_locked: 2933 namespace_unlock(); 2934 inode_unlock(dentry->d_inode); 2935 discard: 2936 /* remove m from any expiration list it may be on */ 2937 if (!list_empty(&mnt->mnt_expire)) { 2938 namespace_lock(); 2939 list_del_init(&mnt->mnt_expire); 2940 namespace_unlock(); 2941 } 2942 mntput(m); 2943 mntput(m); 2944 return err; 2945 } 2946 2947 /** 2948 * mnt_set_expiry - Put a mount on an expiration list 2949 * @mnt: The mount to list. 2950 * @expiry_list: The list to add the mount to. 2951 */ 2952 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list) 2953 { 2954 namespace_lock(); 2955 2956 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list); 2957 2958 namespace_unlock(); 2959 } 2960 EXPORT_SYMBOL(mnt_set_expiry); 2961 2962 /* 2963 * process a list of expirable mountpoints with the intent of discarding any 2964 * mountpoints that aren't in use and haven't been touched since last we came 2965 * here 2966 */ 2967 void mark_mounts_for_expiry(struct list_head *mounts) 2968 { 2969 struct mount *mnt, *next; 2970 LIST_HEAD(graveyard); 2971 2972 if (list_empty(mounts)) 2973 return; 2974 2975 namespace_lock(); 2976 lock_mount_hash(); 2977 2978 /* extract from the expiration list every vfsmount that matches the 2979 * following criteria: 2980 * - only referenced by its parent vfsmount 2981 * - still marked for expiry (marked on the last call here; marks are 2982 * cleared by mntput()) 2983 */ 2984 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { 2985 if (!xchg(&mnt->mnt_expiry_mark, 1) || 2986 propagate_mount_busy(mnt, 1)) 2987 continue; 2988 list_move(&mnt->mnt_expire, &graveyard); 2989 } 2990 while (!list_empty(&graveyard)) { 2991 mnt = list_first_entry(&graveyard, struct mount, mnt_expire); 2992 touch_mnt_namespace(mnt->mnt_ns); 2993 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 2994 } 2995 unlock_mount_hash(); 2996 namespace_unlock(); 2997 } 2998 2999 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); 3000 3001 /* 3002 * Ripoff of 'select_parent()' 3003 * 3004 * search the list of submounts for a given mountpoint, and move any 3005 * shrinkable submounts to the 'graveyard' list. 3006 */ 3007 static int select_submounts(struct mount *parent, struct list_head *graveyard) 3008 { 3009 struct mount *this_parent = parent; 3010 struct list_head *next; 3011 int found = 0; 3012 3013 repeat: 3014 next = this_parent->mnt_mounts.next; 3015 resume: 3016 while (next != &this_parent->mnt_mounts) { 3017 struct list_head *tmp = next; 3018 struct mount *mnt = list_entry(tmp, struct mount, mnt_child); 3019 3020 next = tmp->next; 3021 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE)) 3022 continue; 3023 /* 3024 * Descend a level if the d_mounts list is non-empty. 3025 */ 3026 if (!list_empty(&mnt->mnt_mounts)) { 3027 this_parent = mnt; 3028 goto repeat; 3029 } 3030 3031 if (!propagate_mount_busy(mnt, 1)) { 3032 list_move_tail(&mnt->mnt_expire, graveyard); 3033 found++; 3034 } 3035 } 3036 /* 3037 * All done at this level ... ascend and resume the search 3038 */ 3039 if (this_parent != parent) { 3040 next = this_parent->mnt_child.next; 3041 this_parent = this_parent->mnt_parent; 3042 goto resume; 3043 } 3044 return found; 3045 } 3046 3047 /* 3048 * process a list of expirable mountpoints with the intent of discarding any 3049 * submounts of a specific parent mountpoint 3050 * 3051 * mount_lock must be held for write 3052 */ 3053 static void shrink_submounts(struct mount *mnt) 3054 { 3055 LIST_HEAD(graveyard); 3056 struct mount *m; 3057 3058 /* extract submounts of 'mountpoint' from the expiration list */ 3059 while (select_submounts(mnt, &graveyard)) { 3060 while (!list_empty(&graveyard)) { 3061 m = list_first_entry(&graveyard, struct mount, 3062 mnt_expire); 3063 touch_mnt_namespace(m->mnt_ns); 3064 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC); 3065 } 3066 } 3067 } 3068 3069 void *copy_mount_options(const void __user * data) 3070 { 3071 char *copy; 3072 unsigned size; 3073 3074 if (!data) 3075 return NULL; 3076 3077 copy = kmalloc(PAGE_SIZE, GFP_KERNEL); 3078 if (!copy) 3079 return ERR_PTR(-ENOMEM); 3080 3081 size = PAGE_SIZE - offset_in_page(data); 3082 3083 if (copy_from_user(copy, data, size)) { 3084 kfree(copy); 3085 return ERR_PTR(-EFAULT); 3086 } 3087 if (size != PAGE_SIZE) { 3088 if (copy_from_user(copy + size, data + size, PAGE_SIZE - size)) 3089 memset(copy + size, 0, PAGE_SIZE - size); 3090 } 3091 return copy; 3092 } 3093 3094 char *copy_mount_string(const void __user *data) 3095 { 3096 return data ? strndup_user(data, PATH_MAX) : NULL; 3097 } 3098 3099 /* 3100 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to 3101 * be given to the mount() call (ie: read-only, no-dev, no-suid etc). 3102 * 3103 * data is a (void *) that can point to any structure up to 3104 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent 3105 * information (or be NULL). 3106 * 3107 * Pre-0.97 versions of mount() didn't have a flags word. 3108 * When the flags word was introduced its top half was required 3109 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. 3110 * Therefore, if this magic number is present, it carries no information 3111 * and must be discarded. 3112 */ 3113 long do_mount(const char *dev_name, const char __user *dir_name, 3114 const char *type_page, unsigned long flags, void *data_page) 3115 { 3116 struct path path; 3117 unsigned int mnt_flags = 0, sb_flags; 3118 int retval = 0; 3119 3120 /* Discard magic */ 3121 if ((flags & MS_MGC_MSK) == MS_MGC_VAL) 3122 flags &= ~MS_MGC_MSK; 3123 3124 /* Basic sanity checks */ 3125 if (data_page) 3126 ((char *)data_page)[PAGE_SIZE - 1] = 0; 3127 3128 if (flags & MS_NOUSER) 3129 return -EINVAL; 3130 3131 /* ... and get the mountpoint */ 3132 retval = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path); 3133 if (retval) 3134 return retval; 3135 3136 retval = security_sb_mount(dev_name, &path, 3137 type_page, flags, data_page); 3138 if (!retval && !may_mount()) 3139 retval = -EPERM; 3140 if (!retval && (flags & SB_MANDLOCK) && !may_mandlock()) 3141 retval = -EPERM; 3142 if (retval) 3143 goto dput_out; 3144 3145 /* Default to relatime unless overriden */ 3146 if (!(flags & MS_NOATIME)) 3147 mnt_flags |= MNT_RELATIME; 3148 3149 /* Separate the per-mountpoint flags */ 3150 if (flags & MS_NOSUID) 3151 mnt_flags |= MNT_NOSUID; 3152 if (flags & MS_NODEV) 3153 mnt_flags |= MNT_NODEV; 3154 if (flags & MS_NOEXEC) 3155 mnt_flags |= MNT_NOEXEC; 3156 if (flags & MS_NOATIME) 3157 mnt_flags |= MNT_NOATIME; 3158 if (flags & MS_NODIRATIME) 3159 mnt_flags |= MNT_NODIRATIME; 3160 if (flags & MS_STRICTATIME) 3161 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME); 3162 if (flags & MS_RDONLY) 3163 mnt_flags |= MNT_READONLY; 3164 3165 /* The default atime for remount is preservation */ 3166 if ((flags & MS_REMOUNT) && 3167 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME | 3168 MS_STRICTATIME)) == 0)) { 3169 mnt_flags &= ~MNT_ATIME_MASK; 3170 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK; 3171 } 3172 3173 sb_flags = flags & (SB_RDONLY | 3174 SB_SYNCHRONOUS | 3175 SB_MANDLOCK | 3176 SB_DIRSYNC | 3177 SB_SILENT | 3178 SB_POSIXACL | 3179 SB_LAZYTIME | 3180 SB_I_VERSION); 3181 3182 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND)) 3183 retval = do_reconfigure_mnt(&path, mnt_flags); 3184 else if (flags & MS_REMOUNT) 3185 retval = do_remount(&path, flags, sb_flags, mnt_flags, 3186 data_page); 3187 else if (flags & MS_BIND) 3188 retval = do_loopback(&path, dev_name, flags & MS_REC); 3189 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 3190 retval = do_change_type(&path, flags); 3191 else if (flags & MS_MOVE) 3192 retval = do_move_mount_old(&path, dev_name); 3193 else 3194 retval = do_new_mount(&path, type_page, sb_flags, mnt_flags, 3195 dev_name, data_page); 3196 dput_out: 3197 path_put(&path); 3198 return retval; 3199 } 3200 3201 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns) 3202 { 3203 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES); 3204 } 3205 3206 static void dec_mnt_namespaces(struct ucounts *ucounts) 3207 { 3208 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES); 3209 } 3210 3211 static void free_mnt_ns(struct mnt_namespace *ns) 3212 { 3213 if (!is_anon_ns(ns)) 3214 ns_free_inum(&ns->ns); 3215 dec_mnt_namespaces(ns->ucounts); 3216 put_user_ns(ns->user_ns); 3217 kfree(ns); 3218 } 3219 3220 /* 3221 * Assign a sequence number so we can detect when we attempt to bind 3222 * mount a reference to an older mount namespace into the current 3223 * mount namespace, preventing reference counting loops. A 64bit 3224 * number incrementing at 10Ghz will take 12,427 years to wrap which 3225 * is effectively never, so we can ignore the possibility. 3226 */ 3227 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1); 3228 3229 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon) 3230 { 3231 struct mnt_namespace *new_ns; 3232 struct ucounts *ucounts; 3233 int ret; 3234 3235 ucounts = inc_mnt_namespaces(user_ns); 3236 if (!ucounts) 3237 return ERR_PTR(-ENOSPC); 3238 3239 new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL); 3240 if (!new_ns) { 3241 dec_mnt_namespaces(ucounts); 3242 return ERR_PTR(-ENOMEM); 3243 } 3244 if (!anon) { 3245 ret = ns_alloc_inum(&new_ns->ns); 3246 if (ret) { 3247 kfree(new_ns); 3248 dec_mnt_namespaces(ucounts); 3249 return ERR_PTR(ret); 3250 } 3251 } 3252 new_ns->ns.ops = &mntns_operations; 3253 if (!anon) 3254 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq); 3255 atomic_set(&new_ns->count, 1); 3256 INIT_LIST_HEAD(&new_ns->list); 3257 init_waitqueue_head(&new_ns->poll); 3258 spin_lock_init(&new_ns->ns_lock); 3259 new_ns->user_ns = get_user_ns(user_ns); 3260 new_ns->ucounts = ucounts; 3261 return new_ns; 3262 } 3263 3264 __latent_entropy 3265 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns, 3266 struct user_namespace *user_ns, struct fs_struct *new_fs) 3267 { 3268 struct mnt_namespace *new_ns; 3269 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL; 3270 struct mount *p, *q; 3271 struct mount *old; 3272 struct mount *new; 3273 int copy_flags; 3274 3275 BUG_ON(!ns); 3276 3277 if (likely(!(flags & CLONE_NEWNS))) { 3278 get_mnt_ns(ns); 3279 return ns; 3280 } 3281 3282 old = ns->root; 3283 3284 new_ns = alloc_mnt_ns(user_ns, false); 3285 if (IS_ERR(new_ns)) 3286 return new_ns; 3287 3288 namespace_lock(); 3289 /* First pass: copy the tree topology */ 3290 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE; 3291 if (user_ns != ns->user_ns) 3292 copy_flags |= CL_SHARED_TO_SLAVE; 3293 new = copy_tree(old, old->mnt.mnt_root, copy_flags); 3294 if (IS_ERR(new)) { 3295 namespace_unlock(); 3296 free_mnt_ns(new_ns); 3297 return ERR_CAST(new); 3298 } 3299 if (user_ns != ns->user_ns) { 3300 lock_mount_hash(); 3301 lock_mnt_tree(new); 3302 unlock_mount_hash(); 3303 } 3304 new_ns->root = new; 3305 list_add_tail(&new_ns->list, &new->mnt_list); 3306 3307 /* 3308 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts 3309 * as belonging to new namespace. We have already acquired a private 3310 * fs_struct, so tsk->fs->lock is not needed. 3311 */ 3312 p = old; 3313 q = new; 3314 while (p) { 3315 q->mnt_ns = new_ns; 3316 new_ns->mounts++; 3317 if (new_fs) { 3318 if (&p->mnt == new_fs->root.mnt) { 3319 new_fs->root.mnt = mntget(&q->mnt); 3320 rootmnt = &p->mnt; 3321 } 3322 if (&p->mnt == new_fs->pwd.mnt) { 3323 new_fs->pwd.mnt = mntget(&q->mnt); 3324 pwdmnt = &p->mnt; 3325 } 3326 } 3327 p = next_mnt(p, old); 3328 q = next_mnt(q, new); 3329 if (!q) 3330 break; 3331 while (p->mnt.mnt_root != q->mnt.mnt_root) 3332 p = next_mnt(p, old); 3333 } 3334 namespace_unlock(); 3335 3336 if (rootmnt) 3337 mntput(rootmnt); 3338 if (pwdmnt) 3339 mntput(pwdmnt); 3340 3341 return new_ns; 3342 } 3343 3344 struct dentry *mount_subtree(struct vfsmount *m, const char *name) 3345 { 3346 struct mount *mnt = real_mount(m); 3347 struct mnt_namespace *ns; 3348 struct super_block *s; 3349 struct path path; 3350 int err; 3351 3352 ns = alloc_mnt_ns(&init_user_ns, true); 3353 if (IS_ERR(ns)) { 3354 mntput(m); 3355 return ERR_CAST(ns); 3356 } 3357 mnt->mnt_ns = ns; 3358 ns->root = mnt; 3359 ns->mounts++; 3360 list_add(&mnt->mnt_list, &ns->list); 3361 3362 err = vfs_path_lookup(m->mnt_root, m, 3363 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path); 3364 3365 put_mnt_ns(ns); 3366 3367 if (err) 3368 return ERR_PTR(err); 3369 3370 /* trade a vfsmount reference for active sb one */ 3371 s = path.mnt->mnt_sb; 3372 atomic_inc(&s->s_active); 3373 mntput(path.mnt); 3374 /* lock the sucker */ 3375 down_write(&s->s_umount); 3376 /* ... and return the root of (sub)tree on it */ 3377 return path.dentry; 3378 } 3379 EXPORT_SYMBOL(mount_subtree); 3380 3381 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name, 3382 char __user *, type, unsigned long, flags, void __user *, data) 3383 { 3384 int ret; 3385 char *kernel_type; 3386 char *kernel_dev; 3387 void *options; 3388 3389 kernel_type = copy_mount_string(type); 3390 ret = PTR_ERR(kernel_type); 3391 if (IS_ERR(kernel_type)) 3392 goto out_type; 3393 3394 kernel_dev = copy_mount_string(dev_name); 3395 ret = PTR_ERR(kernel_dev); 3396 if (IS_ERR(kernel_dev)) 3397 goto out_dev; 3398 3399 options = copy_mount_options(data); 3400 ret = PTR_ERR(options); 3401 if (IS_ERR(options)) 3402 goto out_data; 3403 3404 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options); 3405 3406 kfree(options); 3407 out_data: 3408 kfree(kernel_dev); 3409 out_dev: 3410 kfree(kernel_type); 3411 out_type: 3412 return ret; 3413 } 3414 3415 /* 3416 * Create a kernel mount representation for a new, prepared superblock 3417 * (specified by fs_fd) and attach to an open_tree-like file descriptor. 3418 */ 3419 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags, 3420 unsigned int, attr_flags) 3421 { 3422 struct mnt_namespace *ns; 3423 struct fs_context *fc; 3424 struct file *file; 3425 struct path newmount; 3426 struct mount *mnt; 3427 struct fd f; 3428 unsigned int mnt_flags = 0; 3429 long ret; 3430 3431 if (!may_mount()) 3432 return -EPERM; 3433 3434 if ((flags & ~(FSMOUNT_CLOEXEC)) != 0) 3435 return -EINVAL; 3436 3437 if (attr_flags & ~(MOUNT_ATTR_RDONLY | 3438 MOUNT_ATTR_NOSUID | 3439 MOUNT_ATTR_NODEV | 3440 MOUNT_ATTR_NOEXEC | 3441 MOUNT_ATTR__ATIME | 3442 MOUNT_ATTR_NODIRATIME)) 3443 return -EINVAL; 3444 3445 if (attr_flags & MOUNT_ATTR_RDONLY) 3446 mnt_flags |= MNT_READONLY; 3447 if (attr_flags & MOUNT_ATTR_NOSUID) 3448 mnt_flags |= MNT_NOSUID; 3449 if (attr_flags & MOUNT_ATTR_NODEV) 3450 mnt_flags |= MNT_NODEV; 3451 if (attr_flags & MOUNT_ATTR_NOEXEC) 3452 mnt_flags |= MNT_NOEXEC; 3453 if (attr_flags & MOUNT_ATTR_NODIRATIME) 3454 mnt_flags |= MNT_NODIRATIME; 3455 3456 switch (attr_flags & MOUNT_ATTR__ATIME) { 3457 case MOUNT_ATTR_STRICTATIME: 3458 break; 3459 case MOUNT_ATTR_NOATIME: 3460 mnt_flags |= MNT_NOATIME; 3461 break; 3462 case MOUNT_ATTR_RELATIME: 3463 mnt_flags |= MNT_RELATIME; 3464 break; 3465 default: 3466 return -EINVAL; 3467 } 3468 3469 f = fdget(fs_fd); 3470 if (!f.file) 3471 return -EBADF; 3472 3473 ret = -EINVAL; 3474 if (f.file->f_op != &fscontext_fops) 3475 goto err_fsfd; 3476 3477 fc = f.file->private_data; 3478 3479 ret = mutex_lock_interruptible(&fc->uapi_mutex); 3480 if (ret < 0) 3481 goto err_fsfd; 3482 3483 /* There must be a valid superblock or we can't mount it */ 3484 ret = -EINVAL; 3485 if (!fc->root) 3486 goto err_unlock; 3487 3488 ret = -EPERM; 3489 if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) { 3490 pr_warn("VFS: Mount too revealing\n"); 3491 goto err_unlock; 3492 } 3493 3494 ret = -EBUSY; 3495 if (fc->phase != FS_CONTEXT_AWAITING_MOUNT) 3496 goto err_unlock; 3497 3498 ret = -EPERM; 3499 if ((fc->sb_flags & SB_MANDLOCK) && !may_mandlock()) 3500 goto err_unlock; 3501 3502 newmount.mnt = vfs_create_mount(fc); 3503 if (IS_ERR(newmount.mnt)) { 3504 ret = PTR_ERR(newmount.mnt); 3505 goto err_unlock; 3506 } 3507 newmount.dentry = dget(fc->root); 3508 newmount.mnt->mnt_flags = mnt_flags; 3509 3510 /* We've done the mount bit - now move the file context into more or 3511 * less the same state as if we'd done an fspick(). We don't want to 3512 * do any memory allocation or anything like that at this point as we 3513 * don't want to have to handle any errors incurred. 3514 */ 3515 vfs_clean_context(fc); 3516 3517 ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true); 3518 if (IS_ERR(ns)) { 3519 ret = PTR_ERR(ns); 3520 goto err_path; 3521 } 3522 mnt = real_mount(newmount.mnt); 3523 mnt->mnt_ns = ns; 3524 ns->root = mnt; 3525 ns->mounts = 1; 3526 list_add(&mnt->mnt_list, &ns->list); 3527 mntget(newmount.mnt); 3528 3529 /* Attach to an apparent O_PATH fd with a note that we need to unmount 3530 * it, not just simply put it. 3531 */ 3532 file = dentry_open(&newmount, O_PATH, fc->cred); 3533 if (IS_ERR(file)) { 3534 dissolve_on_fput(newmount.mnt); 3535 ret = PTR_ERR(file); 3536 goto err_path; 3537 } 3538 file->f_mode |= FMODE_NEED_UNMOUNT; 3539 3540 ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0); 3541 if (ret >= 0) 3542 fd_install(ret, file); 3543 else 3544 fput(file); 3545 3546 err_path: 3547 path_put(&newmount); 3548 err_unlock: 3549 mutex_unlock(&fc->uapi_mutex); 3550 err_fsfd: 3551 fdput(f); 3552 return ret; 3553 } 3554 3555 /* 3556 * Move a mount from one place to another. In combination with 3557 * fsopen()/fsmount() this is used to install a new mount and in combination 3558 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy 3559 * a mount subtree. 3560 * 3561 * Note the flags value is a combination of MOVE_MOUNT_* flags. 3562 */ 3563 SYSCALL_DEFINE5(move_mount, 3564 int, from_dfd, const char __user *, from_pathname, 3565 int, to_dfd, const char __user *, to_pathname, 3566 unsigned int, flags) 3567 { 3568 struct path from_path, to_path; 3569 unsigned int lflags; 3570 int ret = 0; 3571 3572 if (!may_mount()) 3573 return -EPERM; 3574 3575 if (flags & ~MOVE_MOUNT__MASK) 3576 return -EINVAL; 3577 3578 /* If someone gives a pathname, they aren't permitted to move 3579 * from an fd that requires unmount as we can't get at the flag 3580 * to clear it afterwards. 3581 */ 3582 lflags = 0; 3583 if (flags & MOVE_MOUNT_F_SYMLINKS) lflags |= LOOKUP_FOLLOW; 3584 if (flags & MOVE_MOUNT_F_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT; 3585 if (flags & MOVE_MOUNT_F_EMPTY_PATH) lflags |= LOOKUP_EMPTY; 3586 3587 ret = user_path_at(from_dfd, from_pathname, lflags, &from_path); 3588 if (ret < 0) 3589 return ret; 3590 3591 lflags = 0; 3592 if (flags & MOVE_MOUNT_T_SYMLINKS) lflags |= LOOKUP_FOLLOW; 3593 if (flags & MOVE_MOUNT_T_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT; 3594 if (flags & MOVE_MOUNT_T_EMPTY_PATH) lflags |= LOOKUP_EMPTY; 3595 3596 ret = user_path_at(to_dfd, to_pathname, lflags, &to_path); 3597 if (ret < 0) 3598 goto out_from; 3599 3600 ret = security_move_mount(&from_path, &to_path); 3601 if (ret < 0) 3602 goto out_to; 3603 3604 ret = do_move_mount(&from_path, &to_path); 3605 3606 out_to: 3607 path_put(&to_path); 3608 out_from: 3609 path_put(&from_path); 3610 return ret; 3611 } 3612 3613 /* 3614 * Return true if path is reachable from root 3615 * 3616 * namespace_sem or mount_lock is held 3617 */ 3618 bool is_path_reachable(struct mount *mnt, struct dentry *dentry, 3619 const struct path *root) 3620 { 3621 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) { 3622 dentry = mnt->mnt_mountpoint; 3623 mnt = mnt->mnt_parent; 3624 } 3625 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry); 3626 } 3627 3628 bool path_is_under(const struct path *path1, const struct path *path2) 3629 { 3630 bool res; 3631 read_seqlock_excl(&mount_lock); 3632 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2); 3633 read_sequnlock_excl(&mount_lock); 3634 return res; 3635 } 3636 EXPORT_SYMBOL(path_is_under); 3637 3638 /* 3639 * pivot_root Semantics: 3640 * Moves the root file system of the current process to the directory put_old, 3641 * makes new_root as the new root file system of the current process, and sets 3642 * root/cwd of all processes which had them on the current root to new_root. 3643 * 3644 * Restrictions: 3645 * The new_root and put_old must be directories, and must not be on the 3646 * same file system as the current process root. The put_old must be 3647 * underneath new_root, i.e. adding a non-zero number of /.. to the string 3648 * pointed to by put_old must yield the same directory as new_root. No other 3649 * file system may be mounted on put_old. After all, new_root is a mountpoint. 3650 * 3651 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. 3652 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives 3653 * in this situation. 3654 * 3655 * Notes: 3656 * - we don't move root/cwd if they are not at the root (reason: if something 3657 * cared enough to change them, it's probably wrong to force them elsewhere) 3658 * - it's okay to pick a root that isn't the root of a file system, e.g. 3659 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, 3660 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root 3661 * first. 3662 */ 3663 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root, 3664 const char __user *, put_old) 3665 { 3666 struct path new, old, root; 3667 struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent; 3668 struct mountpoint *old_mp, *root_mp; 3669 int error; 3670 3671 if (!may_mount()) 3672 return -EPERM; 3673 3674 error = user_path_at(AT_FDCWD, new_root, 3675 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new); 3676 if (error) 3677 goto out0; 3678 3679 error = user_path_at(AT_FDCWD, put_old, 3680 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old); 3681 if (error) 3682 goto out1; 3683 3684 error = security_sb_pivotroot(&old, &new); 3685 if (error) 3686 goto out2; 3687 3688 get_fs_root(current->fs, &root); 3689 old_mp = lock_mount(&old); 3690 error = PTR_ERR(old_mp); 3691 if (IS_ERR(old_mp)) 3692 goto out3; 3693 3694 error = -EINVAL; 3695 new_mnt = real_mount(new.mnt); 3696 root_mnt = real_mount(root.mnt); 3697 old_mnt = real_mount(old.mnt); 3698 ex_parent = new_mnt->mnt_parent; 3699 root_parent = root_mnt->mnt_parent; 3700 if (IS_MNT_SHARED(old_mnt) || 3701 IS_MNT_SHARED(ex_parent) || 3702 IS_MNT_SHARED(root_parent)) 3703 goto out4; 3704 if (!check_mnt(root_mnt) || !check_mnt(new_mnt)) 3705 goto out4; 3706 if (new_mnt->mnt.mnt_flags & MNT_LOCKED) 3707 goto out4; 3708 error = -ENOENT; 3709 if (d_unlinked(new.dentry)) 3710 goto out4; 3711 error = -EBUSY; 3712 if (new_mnt == root_mnt || old_mnt == root_mnt) 3713 goto out4; /* loop, on the same file system */ 3714 error = -EINVAL; 3715 if (root.mnt->mnt_root != root.dentry) 3716 goto out4; /* not a mountpoint */ 3717 if (!mnt_has_parent(root_mnt)) 3718 goto out4; /* not attached */ 3719 if (new.mnt->mnt_root != new.dentry) 3720 goto out4; /* not a mountpoint */ 3721 if (!mnt_has_parent(new_mnt)) 3722 goto out4; /* not attached */ 3723 /* make sure we can reach put_old from new_root */ 3724 if (!is_path_reachable(old_mnt, old.dentry, &new)) 3725 goto out4; 3726 /* make certain new is below the root */ 3727 if (!is_path_reachable(new_mnt, new.dentry, &root)) 3728 goto out4; 3729 lock_mount_hash(); 3730 umount_mnt(new_mnt); 3731 root_mp = unhash_mnt(root_mnt); /* we'll need its mountpoint */ 3732 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) { 3733 new_mnt->mnt.mnt_flags |= MNT_LOCKED; 3734 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED; 3735 } 3736 /* mount old root on put_old */ 3737 attach_mnt(root_mnt, old_mnt, old_mp); 3738 /* mount new_root on / */ 3739 attach_mnt(new_mnt, root_parent, root_mp); 3740 mnt_add_count(root_parent, -1); 3741 touch_mnt_namespace(current->nsproxy->mnt_ns); 3742 /* A moved mount should not expire automatically */ 3743 list_del_init(&new_mnt->mnt_expire); 3744 put_mountpoint(root_mp); 3745 unlock_mount_hash(); 3746 chroot_fs_refs(&root, &new); 3747 error = 0; 3748 out4: 3749 unlock_mount(old_mp); 3750 if (!error) 3751 mntput_no_expire(ex_parent); 3752 out3: 3753 path_put(&root); 3754 out2: 3755 path_put(&old); 3756 out1: 3757 path_put(&new); 3758 out0: 3759 return error; 3760 } 3761 3762 static void __init init_mount_tree(void) 3763 { 3764 struct vfsmount *mnt; 3765 struct mount *m; 3766 struct mnt_namespace *ns; 3767 struct path root; 3768 3769 mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL); 3770 if (IS_ERR(mnt)) 3771 panic("Can't create rootfs"); 3772 3773 ns = alloc_mnt_ns(&init_user_ns, false); 3774 if (IS_ERR(ns)) 3775 panic("Can't allocate initial namespace"); 3776 m = real_mount(mnt); 3777 m->mnt_ns = ns; 3778 ns->root = m; 3779 ns->mounts = 1; 3780 list_add(&m->mnt_list, &ns->list); 3781 init_task.nsproxy->mnt_ns = ns; 3782 get_mnt_ns(ns); 3783 3784 root.mnt = mnt; 3785 root.dentry = mnt->mnt_root; 3786 mnt->mnt_flags |= MNT_LOCKED; 3787 3788 set_fs_pwd(current->fs, &root); 3789 set_fs_root(current->fs, &root); 3790 } 3791 3792 void __init mnt_init(void) 3793 { 3794 int err; 3795 3796 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount), 3797 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 3798 3799 mount_hashtable = alloc_large_system_hash("Mount-cache", 3800 sizeof(struct hlist_head), 3801 mhash_entries, 19, 3802 HASH_ZERO, 3803 &m_hash_shift, &m_hash_mask, 0, 0); 3804 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache", 3805 sizeof(struct hlist_head), 3806 mphash_entries, 19, 3807 HASH_ZERO, 3808 &mp_hash_shift, &mp_hash_mask, 0, 0); 3809 3810 if (!mount_hashtable || !mountpoint_hashtable) 3811 panic("Failed to allocate mount hash table\n"); 3812 3813 kernfs_init(); 3814 3815 err = sysfs_init(); 3816 if (err) 3817 printk(KERN_WARNING "%s: sysfs_init error: %d\n", 3818 __func__, err); 3819 fs_kobj = kobject_create_and_add("fs", NULL); 3820 if (!fs_kobj) 3821 printk(KERN_WARNING "%s: kobj create error\n", __func__); 3822 shmem_init(); 3823 init_rootfs(); 3824 init_mount_tree(); 3825 } 3826 3827 void put_mnt_ns(struct mnt_namespace *ns) 3828 { 3829 if (!atomic_dec_and_test(&ns->count)) 3830 return; 3831 drop_collected_mounts(&ns->root->mnt); 3832 free_mnt_ns(ns); 3833 } 3834 3835 struct vfsmount *kern_mount(struct file_system_type *type) 3836 { 3837 struct vfsmount *mnt; 3838 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL); 3839 if (!IS_ERR(mnt)) { 3840 /* 3841 * it is a longterm mount, don't release mnt until 3842 * we unmount before file sys is unregistered 3843 */ 3844 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL; 3845 } 3846 return mnt; 3847 } 3848 EXPORT_SYMBOL_GPL(kern_mount); 3849 3850 void kern_unmount(struct vfsmount *mnt) 3851 { 3852 /* release long term mount so mount point can be released */ 3853 if (!IS_ERR_OR_NULL(mnt)) { 3854 real_mount(mnt)->mnt_ns = NULL; 3855 synchronize_rcu(); /* yecchhh... */ 3856 mntput(mnt); 3857 } 3858 } 3859 EXPORT_SYMBOL(kern_unmount); 3860 3861 bool our_mnt(struct vfsmount *mnt) 3862 { 3863 return check_mnt(real_mount(mnt)); 3864 } 3865 3866 bool current_chrooted(void) 3867 { 3868 /* Does the current process have a non-standard root */ 3869 struct path ns_root; 3870 struct path fs_root; 3871 bool chrooted; 3872 3873 /* Find the namespace root */ 3874 ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt; 3875 ns_root.dentry = ns_root.mnt->mnt_root; 3876 path_get(&ns_root); 3877 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root)) 3878 ; 3879 3880 get_fs_root(current->fs, &fs_root); 3881 3882 chrooted = !path_equal(&fs_root, &ns_root); 3883 3884 path_put(&fs_root); 3885 path_put(&ns_root); 3886 3887 return chrooted; 3888 } 3889 3890 static bool mnt_already_visible(struct mnt_namespace *ns, 3891 const struct super_block *sb, 3892 int *new_mnt_flags) 3893 { 3894 int new_flags = *new_mnt_flags; 3895 struct mount *mnt; 3896 bool visible = false; 3897 3898 down_read(&namespace_sem); 3899 lock_ns_list(ns); 3900 list_for_each_entry(mnt, &ns->list, mnt_list) { 3901 struct mount *child; 3902 int mnt_flags; 3903 3904 if (mnt_is_cursor(mnt)) 3905 continue; 3906 3907 if (mnt->mnt.mnt_sb->s_type != sb->s_type) 3908 continue; 3909 3910 /* This mount is not fully visible if it's root directory 3911 * is not the root directory of the filesystem. 3912 */ 3913 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root) 3914 continue; 3915 3916 /* A local view of the mount flags */ 3917 mnt_flags = mnt->mnt.mnt_flags; 3918 3919 /* Don't miss readonly hidden in the superblock flags */ 3920 if (sb_rdonly(mnt->mnt.mnt_sb)) 3921 mnt_flags |= MNT_LOCK_READONLY; 3922 3923 /* Verify the mount flags are equal to or more permissive 3924 * than the proposed new mount. 3925 */ 3926 if ((mnt_flags & MNT_LOCK_READONLY) && 3927 !(new_flags & MNT_READONLY)) 3928 continue; 3929 if ((mnt_flags & MNT_LOCK_ATIME) && 3930 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK))) 3931 continue; 3932 3933 /* This mount is not fully visible if there are any 3934 * locked child mounts that cover anything except for 3935 * empty directories. 3936 */ 3937 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 3938 struct inode *inode = child->mnt_mountpoint->d_inode; 3939 /* Only worry about locked mounts */ 3940 if (!(child->mnt.mnt_flags & MNT_LOCKED)) 3941 continue; 3942 /* Is the directory permanetly empty? */ 3943 if (!is_empty_dir_inode(inode)) 3944 goto next; 3945 } 3946 /* Preserve the locked attributes */ 3947 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \ 3948 MNT_LOCK_ATIME); 3949 visible = true; 3950 goto found; 3951 next: ; 3952 } 3953 found: 3954 unlock_ns_list(ns); 3955 up_read(&namespace_sem); 3956 return visible; 3957 } 3958 3959 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags) 3960 { 3961 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV; 3962 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 3963 unsigned long s_iflags; 3964 3965 if (ns->user_ns == &init_user_ns) 3966 return false; 3967 3968 /* Can this filesystem be too revealing? */ 3969 s_iflags = sb->s_iflags; 3970 if (!(s_iflags & SB_I_USERNS_VISIBLE)) 3971 return false; 3972 3973 if ((s_iflags & required_iflags) != required_iflags) { 3974 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n", 3975 required_iflags); 3976 return true; 3977 } 3978 3979 return !mnt_already_visible(ns, sb, new_mnt_flags); 3980 } 3981 3982 bool mnt_may_suid(struct vfsmount *mnt) 3983 { 3984 /* 3985 * Foreign mounts (accessed via fchdir or through /proc 3986 * symlinks) are always treated as if they are nosuid. This 3987 * prevents namespaces from trusting potentially unsafe 3988 * suid/sgid bits, file caps, or security labels that originate 3989 * in other namespaces. 3990 */ 3991 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) && 3992 current_in_userns(mnt->mnt_sb->s_user_ns); 3993 } 3994 3995 static struct ns_common *mntns_get(struct task_struct *task) 3996 { 3997 struct ns_common *ns = NULL; 3998 struct nsproxy *nsproxy; 3999 4000 task_lock(task); 4001 nsproxy = task->nsproxy; 4002 if (nsproxy) { 4003 ns = &nsproxy->mnt_ns->ns; 4004 get_mnt_ns(to_mnt_ns(ns)); 4005 } 4006 task_unlock(task); 4007 4008 return ns; 4009 } 4010 4011 static void mntns_put(struct ns_common *ns) 4012 { 4013 put_mnt_ns(to_mnt_ns(ns)); 4014 } 4015 4016 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns) 4017 { 4018 struct fs_struct *fs = current->fs; 4019 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns; 4020 struct path root; 4021 int err; 4022 4023 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) || 4024 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) || 4025 !ns_capable(current_user_ns(), CAP_SYS_ADMIN)) 4026 return -EPERM; 4027 4028 if (is_anon_ns(mnt_ns)) 4029 return -EINVAL; 4030 4031 if (fs->users != 1) 4032 return -EINVAL; 4033 4034 get_mnt_ns(mnt_ns); 4035 old_mnt_ns = nsproxy->mnt_ns; 4036 nsproxy->mnt_ns = mnt_ns; 4037 4038 /* Find the root */ 4039 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt, 4040 "/", LOOKUP_DOWN, &root); 4041 if (err) { 4042 /* revert to old namespace */ 4043 nsproxy->mnt_ns = old_mnt_ns; 4044 put_mnt_ns(mnt_ns); 4045 return err; 4046 } 4047 4048 put_mnt_ns(old_mnt_ns); 4049 4050 /* Update the pwd and root */ 4051 set_fs_pwd(fs, &root); 4052 set_fs_root(fs, &root); 4053 4054 path_put(&root); 4055 return 0; 4056 } 4057 4058 static struct user_namespace *mntns_owner(struct ns_common *ns) 4059 { 4060 return to_mnt_ns(ns)->user_ns; 4061 } 4062 4063 const struct proc_ns_operations mntns_operations = { 4064 .name = "mnt", 4065 .type = CLONE_NEWNS, 4066 .get = mntns_get, 4067 .put = mntns_put, 4068 .install = mntns_install, 4069 .owner = mntns_owner, 4070 }; 4071