1 /* 2 * linux/fs/namespace.c 3 * 4 * (C) Copyright Al Viro 2000, 2001 5 * Released under GPL v2. 6 * 7 * Based on code from fs/super.c, copyright Linus Torvalds and others. 8 * Heavily rewritten. 9 */ 10 11 #include <linux/syscalls.h> 12 #include <linux/slab.h> 13 #include <linux/sched.h> 14 #include <linux/smp_lock.h> 15 #include <linux/init.h> 16 #include <linux/kernel.h> 17 #include <linux/acct.h> 18 #include <linux/capability.h> 19 #include <linux/cpumask.h> 20 #include <linux/module.h> 21 #include <linux/sysfs.h> 22 #include <linux/seq_file.h> 23 #include <linux/mnt_namespace.h> 24 #include <linux/namei.h> 25 #include <linux/security.h> 26 #include <linux/mount.h> 27 #include <linux/ramfs.h> 28 #include <linux/log2.h> 29 #include <linux/idr.h> 30 #include <asm/uaccess.h> 31 #include <asm/unistd.h> 32 #include "pnode.h" 33 #include "internal.h" 34 35 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head)) 36 #define HASH_SIZE (1UL << HASH_SHIFT) 37 38 /* spinlock for vfsmount related operations, inplace of dcache_lock */ 39 __cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock); 40 41 static int event; 42 static DEFINE_IDA(mnt_id_ida); 43 static DEFINE_IDA(mnt_group_ida); 44 45 static struct list_head *mount_hashtable __read_mostly; 46 static struct kmem_cache *mnt_cache __read_mostly; 47 static struct rw_semaphore namespace_sem; 48 49 /* /sys/fs */ 50 struct kobject *fs_kobj; 51 EXPORT_SYMBOL_GPL(fs_kobj); 52 53 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry) 54 { 55 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); 56 tmp += ((unsigned long)dentry / L1_CACHE_BYTES); 57 tmp = tmp + (tmp >> HASH_SHIFT); 58 return tmp & (HASH_SIZE - 1); 59 } 60 61 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16) 62 63 /* allocation is serialized by namespace_sem */ 64 static int mnt_alloc_id(struct vfsmount *mnt) 65 { 66 int res; 67 68 retry: 69 ida_pre_get(&mnt_id_ida, GFP_KERNEL); 70 spin_lock(&vfsmount_lock); 71 res = ida_get_new(&mnt_id_ida, &mnt->mnt_id); 72 spin_unlock(&vfsmount_lock); 73 if (res == -EAGAIN) 74 goto retry; 75 76 return res; 77 } 78 79 static void mnt_free_id(struct vfsmount *mnt) 80 { 81 spin_lock(&vfsmount_lock); 82 ida_remove(&mnt_id_ida, mnt->mnt_id); 83 spin_unlock(&vfsmount_lock); 84 } 85 86 /* 87 * Allocate a new peer group ID 88 * 89 * mnt_group_ida is protected by namespace_sem 90 */ 91 static int mnt_alloc_group_id(struct vfsmount *mnt) 92 { 93 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL)) 94 return -ENOMEM; 95 96 return ida_get_new_above(&mnt_group_ida, 1, &mnt->mnt_group_id); 97 } 98 99 /* 100 * Release a peer group ID 101 */ 102 void mnt_release_group_id(struct vfsmount *mnt) 103 { 104 ida_remove(&mnt_group_ida, mnt->mnt_group_id); 105 mnt->mnt_group_id = 0; 106 } 107 108 struct vfsmount *alloc_vfsmnt(const char *name) 109 { 110 struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); 111 if (mnt) { 112 int err; 113 114 err = mnt_alloc_id(mnt); 115 if (err) { 116 kmem_cache_free(mnt_cache, mnt); 117 return NULL; 118 } 119 120 atomic_set(&mnt->mnt_count, 1); 121 INIT_LIST_HEAD(&mnt->mnt_hash); 122 INIT_LIST_HEAD(&mnt->mnt_child); 123 INIT_LIST_HEAD(&mnt->mnt_mounts); 124 INIT_LIST_HEAD(&mnt->mnt_list); 125 INIT_LIST_HEAD(&mnt->mnt_expire); 126 INIT_LIST_HEAD(&mnt->mnt_share); 127 INIT_LIST_HEAD(&mnt->mnt_slave_list); 128 INIT_LIST_HEAD(&mnt->mnt_slave); 129 atomic_set(&mnt->__mnt_writers, 0); 130 if (name) { 131 int size = strlen(name) + 1; 132 char *newname = kmalloc(size, GFP_KERNEL); 133 if (newname) { 134 memcpy(newname, name, size); 135 mnt->mnt_devname = newname; 136 } 137 } 138 } 139 return mnt; 140 } 141 142 /* 143 * Most r/o checks on a fs are for operations that take 144 * discrete amounts of time, like a write() or unlink(). 145 * We must keep track of when those operations start 146 * (for permission checks) and when they end, so that 147 * we can determine when writes are able to occur to 148 * a filesystem. 149 */ 150 /* 151 * __mnt_is_readonly: check whether a mount is read-only 152 * @mnt: the mount to check for its write status 153 * 154 * This shouldn't be used directly ouside of the VFS. 155 * It does not guarantee that the filesystem will stay 156 * r/w, just that it is right *now*. This can not and 157 * should not be used in place of IS_RDONLY(inode). 158 * mnt_want/drop_write() will _keep_ the filesystem 159 * r/w. 160 */ 161 int __mnt_is_readonly(struct vfsmount *mnt) 162 { 163 if (mnt->mnt_flags & MNT_READONLY) 164 return 1; 165 if (mnt->mnt_sb->s_flags & MS_RDONLY) 166 return 1; 167 return 0; 168 } 169 EXPORT_SYMBOL_GPL(__mnt_is_readonly); 170 171 struct mnt_writer { 172 /* 173 * If holding multiple instances of this lock, they 174 * must be ordered by cpu number. 175 */ 176 spinlock_t lock; 177 struct lock_class_key lock_class; /* compiles out with !lockdep */ 178 unsigned long count; 179 struct vfsmount *mnt; 180 } ____cacheline_aligned_in_smp; 181 static DEFINE_PER_CPU(struct mnt_writer, mnt_writers); 182 183 static int __init init_mnt_writers(void) 184 { 185 int cpu; 186 for_each_possible_cpu(cpu) { 187 struct mnt_writer *writer = &per_cpu(mnt_writers, cpu); 188 spin_lock_init(&writer->lock); 189 lockdep_set_class(&writer->lock, &writer->lock_class); 190 writer->count = 0; 191 } 192 return 0; 193 } 194 fs_initcall(init_mnt_writers); 195 196 static void unlock_mnt_writers(void) 197 { 198 int cpu; 199 struct mnt_writer *cpu_writer; 200 201 for_each_possible_cpu(cpu) { 202 cpu_writer = &per_cpu(mnt_writers, cpu); 203 spin_unlock(&cpu_writer->lock); 204 } 205 } 206 207 static inline void __clear_mnt_count(struct mnt_writer *cpu_writer) 208 { 209 if (!cpu_writer->mnt) 210 return; 211 /* 212 * This is in case anyone ever leaves an invalid, 213 * old ->mnt and a count of 0. 214 */ 215 if (!cpu_writer->count) 216 return; 217 atomic_add(cpu_writer->count, &cpu_writer->mnt->__mnt_writers); 218 cpu_writer->count = 0; 219 } 220 /* 221 * must hold cpu_writer->lock 222 */ 223 static inline void use_cpu_writer_for_mount(struct mnt_writer *cpu_writer, 224 struct vfsmount *mnt) 225 { 226 if (cpu_writer->mnt == mnt) 227 return; 228 __clear_mnt_count(cpu_writer); 229 cpu_writer->mnt = mnt; 230 } 231 232 /* 233 * Most r/o checks on a fs are for operations that take 234 * discrete amounts of time, like a write() or unlink(). 235 * We must keep track of when those operations start 236 * (for permission checks) and when they end, so that 237 * we can determine when writes are able to occur to 238 * a filesystem. 239 */ 240 /** 241 * mnt_want_write - get write access to a mount 242 * @mnt: the mount on which to take a write 243 * 244 * This tells the low-level filesystem that a write is 245 * about to be performed to it, and makes sure that 246 * writes are allowed before returning success. When 247 * the write operation is finished, mnt_drop_write() 248 * must be called. This is effectively a refcount. 249 */ 250 int mnt_want_write(struct vfsmount *mnt) 251 { 252 int ret = 0; 253 struct mnt_writer *cpu_writer; 254 255 cpu_writer = &get_cpu_var(mnt_writers); 256 spin_lock(&cpu_writer->lock); 257 if (__mnt_is_readonly(mnt)) { 258 ret = -EROFS; 259 goto out; 260 } 261 use_cpu_writer_for_mount(cpu_writer, mnt); 262 cpu_writer->count++; 263 out: 264 spin_unlock(&cpu_writer->lock); 265 put_cpu_var(mnt_writers); 266 return ret; 267 } 268 EXPORT_SYMBOL_GPL(mnt_want_write); 269 270 static void lock_mnt_writers(void) 271 { 272 int cpu; 273 struct mnt_writer *cpu_writer; 274 275 for_each_possible_cpu(cpu) { 276 cpu_writer = &per_cpu(mnt_writers, cpu); 277 spin_lock(&cpu_writer->lock); 278 __clear_mnt_count(cpu_writer); 279 cpu_writer->mnt = NULL; 280 } 281 } 282 283 /* 284 * These per-cpu write counts are not guaranteed to have 285 * matched increments and decrements on any given cpu. 286 * A file open()ed for write on one cpu and close()d on 287 * another cpu will imbalance this count. Make sure it 288 * does not get too far out of whack. 289 */ 290 static void handle_write_count_underflow(struct vfsmount *mnt) 291 { 292 if (atomic_read(&mnt->__mnt_writers) >= 293 MNT_WRITER_UNDERFLOW_LIMIT) 294 return; 295 /* 296 * It isn't necessary to hold all of the locks 297 * at the same time, but doing it this way makes 298 * us share a lot more code. 299 */ 300 lock_mnt_writers(); 301 /* 302 * vfsmount_lock is for mnt_flags. 303 */ 304 spin_lock(&vfsmount_lock); 305 /* 306 * If coalescing the per-cpu writer counts did not 307 * get us back to a positive writer count, we have 308 * a bug. 309 */ 310 if ((atomic_read(&mnt->__mnt_writers) < 0) && 311 !(mnt->mnt_flags & MNT_IMBALANCED_WRITE_COUNT)) { 312 printk(KERN_DEBUG "leak detected on mount(%p) writers " 313 "count: %d\n", 314 mnt, atomic_read(&mnt->__mnt_writers)); 315 WARN_ON(1); 316 /* use the flag to keep the dmesg spam down */ 317 mnt->mnt_flags |= MNT_IMBALANCED_WRITE_COUNT; 318 } 319 spin_unlock(&vfsmount_lock); 320 unlock_mnt_writers(); 321 } 322 323 /** 324 * mnt_drop_write - give up write access to a mount 325 * @mnt: the mount on which to give up write access 326 * 327 * Tells the low-level filesystem that we are done 328 * performing writes to it. Must be matched with 329 * mnt_want_write() call above. 330 */ 331 void mnt_drop_write(struct vfsmount *mnt) 332 { 333 int must_check_underflow = 0; 334 struct mnt_writer *cpu_writer; 335 336 cpu_writer = &get_cpu_var(mnt_writers); 337 spin_lock(&cpu_writer->lock); 338 339 use_cpu_writer_for_mount(cpu_writer, mnt); 340 if (cpu_writer->count > 0) { 341 cpu_writer->count--; 342 } else { 343 must_check_underflow = 1; 344 atomic_dec(&mnt->__mnt_writers); 345 } 346 347 spin_unlock(&cpu_writer->lock); 348 /* 349 * Logically, we could call this each time, 350 * but the __mnt_writers cacheline tends to 351 * be cold, and makes this expensive. 352 */ 353 if (must_check_underflow) 354 handle_write_count_underflow(mnt); 355 /* 356 * This could be done right after the spinlock 357 * is taken because the spinlock keeps us on 358 * the cpu, and disables preemption. However, 359 * putting it here bounds the amount that 360 * __mnt_writers can underflow. Without it, 361 * we could theoretically wrap __mnt_writers. 362 */ 363 put_cpu_var(mnt_writers); 364 } 365 EXPORT_SYMBOL_GPL(mnt_drop_write); 366 367 static int mnt_make_readonly(struct vfsmount *mnt) 368 { 369 int ret = 0; 370 371 lock_mnt_writers(); 372 /* 373 * With all the locks held, this value is stable 374 */ 375 if (atomic_read(&mnt->__mnt_writers) > 0) { 376 ret = -EBUSY; 377 goto out; 378 } 379 /* 380 * nobody can do a successful mnt_want_write() with all 381 * of the counts in MNT_DENIED_WRITE and the locks held. 382 */ 383 spin_lock(&vfsmount_lock); 384 if (!ret) 385 mnt->mnt_flags |= MNT_READONLY; 386 spin_unlock(&vfsmount_lock); 387 out: 388 unlock_mnt_writers(); 389 return ret; 390 } 391 392 static void __mnt_unmake_readonly(struct vfsmount *mnt) 393 { 394 spin_lock(&vfsmount_lock); 395 mnt->mnt_flags &= ~MNT_READONLY; 396 spin_unlock(&vfsmount_lock); 397 } 398 399 int simple_set_mnt(struct vfsmount *mnt, struct super_block *sb) 400 { 401 mnt->mnt_sb = sb; 402 mnt->mnt_root = dget(sb->s_root); 403 return 0; 404 } 405 406 EXPORT_SYMBOL(simple_set_mnt); 407 408 void free_vfsmnt(struct vfsmount *mnt) 409 { 410 kfree(mnt->mnt_devname); 411 mnt_free_id(mnt); 412 kmem_cache_free(mnt_cache, mnt); 413 } 414 415 /* 416 * find the first or last mount at @dentry on vfsmount @mnt depending on 417 * @dir. If @dir is set return the first mount else return the last mount. 418 */ 419 struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry, 420 int dir) 421 { 422 struct list_head *head = mount_hashtable + hash(mnt, dentry); 423 struct list_head *tmp = head; 424 struct vfsmount *p, *found = NULL; 425 426 for (;;) { 427 tmp = dir ? tmp->next : tmp->prev; 428 p = NULL; 429 if (tmp == head) 430 break; 431 p = list_entry(tmp, struct vfsmount, mnt_hash); 432 if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) { 433 found = p; 434 break; 435 } 436 } 437 return found; 438 } 439 440 /* 441 * lookup_mnt increments the ref count before returning 442 * the vfsmount struct. 443 */ 444 struct vfsmount *lookup_mnt(struct vfsmount *mnt, struct dentry *dentry) 445 { 446 struct vfsmount *child_mnt; 447 spin_lock(&vfsmount_lock); 448 if ((child_mnt = __lookup_mnt(mnt, dentry, 1))) 449 mntget(child_mnt); 450 spin_unlock(&vfsmount_lock); 451 return child_mnt; 452 } 453 454 static inline int check_mnt(struct vfsmount *mnt) 455 { 456 return mnt->mnt_ns == current->nsproxy->mnt_ns; 457 } 458 459 static void touch_mnt_namespace(struct mnt_namespace *ns) 460 { 461 if (ns) { 462 ns->event = ++event; 463 wake_up_interruptible(&ns->poll); 464 } 465 } 466 467 static void __touch_mnt_namespace(struct mnt_namespace *ns) 468 { 469 if (ns && ns->event != event) { 470 ns->event = event; 471 wake_up_interruptible(&ns->poll); 472 } 473 } 474 475 static void detach_mnt(struct vfsmount *mnt, struct path *old_path) 476 { 477 old_path->dentry = mnt->mnt_mountpoint; 478 old_path->mnt = mnt->mnt_parent; 479 mnt->mnt_parent = mnt; 480 mnt->mnt_mountpoint = mnt->mnt_root; 481 list_del_init(&mnt->mnt_child); 482 list_del_init(&mnt->mnt_hash); 483 old_path->dentry->d_mounted--; 484 } 485 486 void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry, 487 struct vfsmount *child_mnt) 488 { 489 child_mnt->mnt_parent = mntget(mnt); 490 child_mnt->mnt_mountpoint = dget(dentry); 491 dentry->d_mounted++; 492 } 493 494 static void attach_mnt(struct vfsmount *mnt, struct path *path) 495 { 496 mnt_set_mountpoint(path->mnt, path->dentry, mnt); 497 list_add_tail(&mnt->mnt_hash, mount_hashtable + 498 hash(path->mnt, path->dentry)); 499 list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts); 500 } 501 502 /* 503 * the caller must hold vfsmount_lock 504 */ 505 static void commit_tree(struct vfsmount *mnt) 506 { 507 struct vfsmount *parent = mnt->mnt_parent; 508 struct vfsmount *m; 509 LIST_HEAD(head); 510 struct mnt_namespace *n = parent->mnt_ns; 511 512 BUG_ON(parent == mnt); 513 514 list_add_tail(&head, &mnt->mnt_list); 515 list_for_each_entry(m, &head, mnt_list) 516 m->mnt_ns = n; 517 list_splice(&head, n->list.prev); 518 519 list_add_tail(&mnt->mnt_hash, mount_hashtable + 520 hash(parent, mnt->mnt_mountpoint)); 521 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 522 touch_mnt_namespace(n); 523 } 524 525 static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root) 526 { 527 struct list_head *next = p->mnt_mounts.next; 528 if (next == &p->mnt_mounts) { 529 while (1) { 530 if (p == root) 531 return NULL; 532 next = p->mnt_child.next; 533 if (next != &p->mnt_parent->mnt_mounts) 534 break; 535 p = p->mnt_parent; 536 } 537 } 538 return list_entry(next, struct vfsmount, mnt_child); 539 } 540 541 static struct vfsmount *skip_mnt_tree(struct vfsmount *p) 542 { 543 struct list_head *prev = p->mnt_mounts.prev; 544 while (prev != &p->mnt_mounts) { 545 p = list_entry(prev, struct vfsmount, mnt_child); 546 prev = p->mnt_mounts.prev; 547 } 548 return p; 549 } 550 551 static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root, 552 int flag) 553 { 554 struct super_block *sb = old->mnt_sb; 555 struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname); 556 557 if (mnt) { 558 if (flag & (CL_SLAVE | CL_PRIVATE)) 559 mnt->mnt_group_id = 0; /* not a peer of original */ 560 else 561 mnt->mnt_group_id = old->mnt_group_id; 562 563 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) { 564 int err = mnt_alloc_group_id(mnt); 565 if (err) 566 goto out_free; 567 } 568 569 mnt->mnt_flags = old->mnt_flags; 570 atomic_inc(&sb->s_active); 571 mnt->mnt_sb = sb; 572 mnt->mnt_root = dget(root); 573 mnt->mnt_mountpoint = mnt->mnt_root; 574 mnt->mnt_parent = mnt; 575 576 if (flag & CL_SLAVE) { 577 list_add(&mnt->mnt_slave, &old->mnt_slave_list); 578 mnt->mnt_master = old; 579 CLEAR_MNT_SHARED(mnt); 580 } else if (!(flag & CL_PRIVATE)) { 581 if ((flag & CL_PROPAGATION) || IS_MNT_SHARED(old)) 582 list_add(&mnt->mnt_share, &old->mnt_share); 583 if (IS_MNT_SLAVE(old)) 584 list_add(&mnt->mnt_slave, &old->mnt_slave); 585 mnt->mnt_master = old->mnt_master; 586 } 587 if (flag & CL_MAKE_SHARED) 588 set_mnt_shared(mnt); 589 590 /* stick the duplicate mount on the same expiry list 591 * as the original if that was on one */ 592 if (flag & CL_EXPIRE) { 593 if (!list_empty(&old->mnt_expire)) 594 list_add(&mnt->mnt_expire, &old->mnt_expire); 595 } 596 } 597 return mnt; 598 599 out_free: 600 free_vfsmnt(mnt); 601 return NULL; 602 } 603 604 static inline void __mntput(struct vfsmount *mnt) 605 { 606 int cpu; 607 struct super_block *sb = mnt->mnt_sb; 608 /* 609 * We don't have to hold all of the locks at the 610 * same time here because we know that we're the 611 * last reference to mnt and that no new writers 612 * can come in. 613 */ 614 for_each_possible_cpu(cpu) { 615 struct mnt_writer *cpu_writer = &per_cpu(mnt_writers, cpu); 616 if (cpu_writer->mnt != mnt) 617 continue; 618 spin_lock(&cpu_writer->lock); 619 atomic_add(cpu_writer->count, &mnt->__mnt_writers); 620 cpu_writer->count = 0; 621 /* 622 * Might as well do this so that no one 623 * ever sees the pointer and expects 624 * it to be valid. 625 */ 626 cpu_writer->mnt = NULL; 627 spin_unlock(&cpu_writer->lock); 628 } 629 /* 630 * This probably indicates that somebody messed 631 * up a mnt_want/drop_write() pair. If this 632 * happens, the filesystem was probably unable 633 * to make r/w->r/o transitions. 634 */ 635 WARN_ON(atomic_read(&mnt->__mnt_writers)); 636 dput(mnt->mnt_root); 637 free_vfsmnt(mnt); 638 deactivate_super(sb); 639 } 640 641 void mntput_no_expire(struct vfsmount *mnt) 642 { 643 repeat: 644 if (atomic_dec_and_lock(&mnt->mnt_count, &vfsmount_lock)) { 645 if (likely(!mnt->mnt_pinned)) { 646 spin_unlock(&vfsmount_lock); 647 __mntput(mnt); 648 return; 649 } 650 atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count); 651 mnt->mnt_pinned = 0; 652 spin_unlock(&vfsmount_lock); 653 acct_auto_close_mnt(mnt); 654 security_sb_umount_close(mnt); 655 goto repeat; 656 } 657 } 658 659 EXPORT_SYMBOL(mntput_no_expire); 660 661 void mnt_pin(struct vfsmount *mnt) 662 { 663 spin_lock(&vfsmount_lock); 664 mnt->mnt_pinned++; 665 spin_unlock(&vfsmount_lock); 666 } 667 668 EXPORT_SYMBOL(mnt_pin); 669 670 void mnt_unpin(struct vfsmount *mnt) 671 { 672 spin_lock(&vfsmount_lock); 673 if (mnt->mnt_pinned) { 674 atomic_inc(&mnt->mnt_count); 675 mnt->mnt_pinned--; 676 } 677 spin_unlock(&vfsmount_lock); 678 } 679 680 EXPORT_SYMBOL(mnt_unpin); 681 682 static inline void mangle(struct seq_file *m, const char *s) 683 { 684 seq_escape(m, s, " \t\n\\"); 685 } 686 687 /* 688 * Simple .show_options callback for filesystems which don't want to 689 * implement more complex mount option showing. 690 * 691 * See also save_mount_options(). 692 */ 693 int generic_show_options(struct seq_file *m, struct vfsmount *mnt) 694 { 695 const char *options = mnt->mnt_sb->s_options; 696 697 if (options != NULL && options[0]) { 698 seq_putc(m, ','); 699 mangle(m, options); 700 } 701 702 return 0; 703 } 704 EXPORT_SYMBOL(generic_show_options); 705 706 /* 707 * If filesystem uses generic_show_options(), this function should be 708 * called from the fill_super() callback. 709 * 710 * The .remount_fs callback usually needs to be handled in a special 711 * way, to make sure, that previous options are not overwritten if the 712 * remount fails. 713 * 714 * Also note, that if the filesystem's .remount_fs function doesn't 715 * reset all options to their default value, but changes only newly 716 * given options, then the displayed options will not reflect reality 717 * any more. 718 */ 719 void save_mount_options(struct super_block *sb, char *options) 720 { 721 kfree(sb->s_options); 722 sb->s_options = kstrdup(options, GFP_KERNEL); 723 } 724 EXPORT_SYMBOL(save_mount_options); 725 726 #ifdef CONFIG_PROC_FS 727 /* iterator */ 728 static void *m_start(struct seq_file *m, loff_t *pos) 729 { 730 struct proc_mounts *p = m->private; 731 732 down_read(&namespace_sem); 733 return seq_list_start(&p->ns->list, *pos); 734 } 735 736 static void *m_next(struct seq_file *m, void *v, loff_t *pos) 737 { 738 struct proc_mounts *p = m->private; 739 740 return seq_list_next(v, &p->ns->list, pos); 741 } 742 743 static void m_stop(struct seq_file *m, void *v) 744 { 745 up_read(&namespace_sem); 746 } 747 748 struct proc_fs_info { 749 int flag; 750 const char *str; 751 }; 752 753 static int show_sb_opts(struct seq_file *m, struct super_block *sb) 754 { 755 static const struct proc_fs_info fs_info[] = { 756 { MS_SYNCHRONOUS, ",sync" }, 757 { MS_DIRSYNC, ",dirsync" }, 758 { MS_MANDLOCK, ",mand" }, 759 { 0, NULL } 760 }; 761 const struct proc_fs_info *fs_infop; 762 763 for (fs_infop = fs_info; fs_infop->flag; fs_infop++) { 764 if (sb->s_flags & fs_infop->flag) 765 seq_puts(m, fs_infop->str); 766 } 767 768 return security_sb_show_options(m, sb); 769 } 770 771 static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt) 772 { 773 static const struct proc_fs_info mnt_info[] = { 774 { MNT_NOSUID, ",nosuid" }, 775 { MNT_NODEV, ",nodev" }, 776 { MNT_NOEXEC, ",noexec" }, 777 { MNT_NOATIME, ",noatime" }, 778 { MNT_NODIRATIME, ",nodiratime" }, 779 { MNT_RELATIME, ",relatime" }, 780 { 0, NULL } 781 }; 782 const struct proc_fs_info *fs_infop; 783 784 for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) { 785 if (mnt->mnt_flags & fs_infop->flag) 786 seq_puts(m, fs_infop->str); 787 } 788 } 789 790 static void show_type(struct seq_file *m, struct super_block *sb) 791 { 792 mangle(m, sb->s_type->name); 793 if (sb->s_subtype && sb->s_subtype[0]) { 794 seq_putc(m, '.'); 795 mangle(m, sb->s_subtype); 796 } 797 } 798 799 static int show_vfsmnt(struct seq_file *m, void *v) 800 { 801 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list); 802 int err = 0; 803 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt }; 804 805 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none"); 806 seq_putc(m, ' '); 807 seq_path(m, &mnt_path, " \t\n\\"); 808 seq_putc(m, ' '); 809 show_type(m, mnt->mnt_sb); 810 seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw"); 811 err = show_sb_opts(m, mnt->mnt_sb); 812 if (err) 813 goto out; 814 show_mnt_opts(m, mnt); 815 if (mnt->mnt_sb->s_op->show_options) 816 err = mnt->mnt_sb->s_op->show_options(m, mnt); 817 seq_puts(m, " 0 0\n"); 818 out: 819 return err; 820 } 821 822 const struct seq_operations mounts_op = { 823 .start = m_start, 824 .next = m_next, 825 .stop = m_stop, 826 .show = show_vfsmnt 827 }; 828 829 static int show_mountinfo(struct seq_file *m, void *v) 830 { 831 struct proc_mounts *p = m->private; 832 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list); 833 struct super_block *sb = mnt->mnt_sb; 834 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt }; 835 struct path root = p->root; 836 int err = 0; 837 838 seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, mnt->mnt_parent->mnt_id, 839 MAJOR(sb->s_dev), MINOR(sb->s_dev)); 840 seq_dentry(m, mnt->mnt_root, " \t\n\\"); 841 seq_putc(m, ' '); 842 seq_path_root(m, &mnt_path, &root, " \t\n\\"); 843 if (root.mnt != p->root.mnt || root.dentry != p->root.dentry) { 844 /* 845 * Mountpoint is outside root, discard that one. Ugly, 846 * but less so than trying to do that in iterator in a 847 * race-free way (due to renames). 848 */ 849 return SEQ_SKIP; 850 } 851 seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw"); 852 show_mnt_opts(m, mnt); 853 854 /* Tagged fields ("foo:X" or "bar") */ 855 if (IS_MNT_SHARED(mnt)) 856 seq_printf(m, " shared:%i", mnt->mnt_group_id); 857 if (IS_MNT_SLAVE(mnt)) { 858 int master = mnt->mnt_master->mnt_group_id; 859 int dom = get_dominating_id(mnt, &p->root); 860 seq_printf(m, " master:%i", master); 861 if (dom && dom != master) 862 seq_printf(m, " propagate_from:%i", dom); 863 } 864 if (IS_MNT_UNBINDABLE(mnt)) 865 seq_puts(m, " unbindable"); 866 867 /* Filesystem specific data */ 868 seq_puts(m, " - "); 869 show_type(m, sb); 870 seq_putc(m, ' '); 871 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none"); 872 seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw"); 873 err = show_sb_opts(m, sb); 874 if (err) 875 goto out; 876 if (sb->s_op->show_options) 877 err = sb->s_op->show_options(m, mnt); 878 seq_putc(m, '\n'); 879 out: 880 return err; 881 } 882 883 const struct seq_operations mountinfo_op = { 884 .start = m_start, 885 .next = m_next, 886 .stop = m_stop, 887 .show = show_mountinfo, 888 }; 889 890 static int show_vfsstat(struct seq_file *m, void *v) 891 { 892 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list); 893 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt }; 894 int err = 0; 895 896 /* device */ 897 if (mnt->mnt_devname) { 898 seq_puts(m, "device "); 899 mangle(m, mnt->mnt_devname); 900 } else 901 seq_puts(m, "no device"); 902 903 /* mount point */ 904 seq_puts(m, " mounted on "); 905 seq_path(m, &mnt_path, " \t\n\\"); 906 seq_putc(m, ' '); 907 908 /* file system type */ 909 seq_puts(m, "with fstype "); 910 show_type(m, mnt->mnt_sb); 911 912 /* optional statistics */ 913 if (mnt->mnt_sb->s_op->show_stats) { 914 seq_putc(m, ' '); 915 err = mnt->mnt_sb->s_op->show_stats(m, mnt); 916 } 917 918 seq_putc(m, '\n'); 919 return err; 920 } 921 922 const struct seq_operations mountstats_op = { 923 .start = m_start, 924 .next = m_next, 925 .stop = m_stop, 926 .show = show_vfsstat, 927 }; 928 #endif /* CONFIG_PROC_FS */ 929 930 /** 931 * may_umount_tree - check if a mount tree is busy 932 * @mnt: root of mount tree 933 * 934 * This is called to check if a tree of mounts has any 935 * open files, pwds, chroots or sub mounts that are 936 * busy. 937 */ 938 int may_umount_tree(struct vfsmount *mnt) 939 { 940 int actual_refs = 0; 941 int minimum_refs = 0; 942 struct vfsmount *p; 943 944 spin_lock(&vfsmount_lock); 945 for (p = mnt; p; p = next_mnt(p, mnt)) { 946 actual_refs += atomic_read(&p->mnt_count); 947 minimum_refs += 2; 948 } 949 spin_unlock(&vfsmount_lock); 950 951 if (actual_refs > minimum_refs) 952 return 0; 953 954 return 1; 955 } 956 957 EXPORT_SYMBOL(may_umount_tree); 958 959 /** 960 * may_umount - check if a mount point is busy 961 * @mnt: root of mount 962 * 963 * This is called to check if a mount point has any 964 * open files, pwds, chroots or sub mounts. If the 965 * mount has sub mounts this will return busy 966 * regardless of whether the sub mounts are busy. 967 * 968 * Doesn't take quota and stuff into account. IOW, in some cases it will 969 * give false negatives. The main reason why it's here is that we need 970 * a non-destructive way to look for easily umountable filesystems. 971 */ 972 int may_umount(struct vfsmount *mnt) 973 { 974 int ret = 1; 975 spin_lock(&vfsmount_lock); 976 if (propagate_mount_busy(mnt, 2)) 977 ret = 0; 978 spin_unlock(&vfsmount_lock); 979 return ret; 980 } 981 982 EXPORT_SYMBOL(may_umount); 983 984 void release_mounts(struct list_head *head) 985 { 986 struct vfsmount *mnt; 987 while (!list_empty(head)) { 988 mnt = list_first_entry(head, struct vfsmount, mnt_hash); 989 list_del_init(&mnt->mnt_hash); 990 if (mnt->mnt_parent != mnt) { 991 struct dentry *dentry; 992 struct vfsmount *m; 993 spin_lock(&vfsmount_lock); 994 dentry = mnt->mnt_mountpoint; 995 m = mnt->mnt_parent; 996 mnt->mnt_mountpoint = mnt->mnt_root; 997 mnt->mnt_parent = mnt; 998 m->mnt_ghosts--; 999 spin_unlock(&vfsmount_lock); 1000 dput(dentry); 1001 mntput(m); 1002 } 1003 mntput(mnt); 1004 } 1005 } 1006 1007 void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill) 1008 { 1009 struct vfsmount *p; 1010 1011 for (p = mnt; p; p = next_mnt(p, mnt)) 1012 list_move(&p->mnt_hash, kill); 1013 1014 if (propagate) 1015 propagate_umount(kill); 1016 1017 list_for_each_entry(p, kill, mnt_hash) { 1018 list_del_init(&p->mnt_expire); 1019 list_del_init(&p->mnt_list); 1020 __touch_mnt_namespace(p->mnt_ns); 1021 p->mnt_ns = NULL; 1022 list_del_init(&p->mnt_child); 1023 if (p->mnt_parent != p) { 1024 p->mnt_parent->mnt_ghosts++; 1025 p->mnt_mountpoint->d_mounted--; 1026 } 1027 change_mnt_propagation(p, MS_PRIVATE); 1028 } 1029 } 1030 1031 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts); 1032 1033 static int do_umount(struct vfsmount *mnt, int flags) 1034 { 1035 struct super_block *sb = mnt->mnt_sb; 1036 int retval; 1037 LIST_HEAD(umount_list); 1038 1039 retval = security_sb_umount(mnt, flags); 1040 if (retval) 1041 return retval; 1042 1043 /* 1044 * Allow userspace to request a mountpoint be expired rather than 1045 * unmounting unconditionally. Unmount only happens if: 1046 * (1) the mark is already set (the mark is cleared by mntput()) 1047 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] 1048 */ 1049 if (flags & MNT_EXPIRE) { 1050 if (mnt == current->fs->root.mnt || 1051 flags & (MNT_FORCE | MNT_DETACH)) 1052 return -EINVAL; 1053 1054 if (atomic_read(&mnt->mnt_count) != 2) 1055 return -EBUSY; 1056 1057 if (!xchg(&mnt->mnt_expiry_mark, 1)) 1058 return -EAGAIN; 1059 } 1060 1061 /* 1062 * If we may have to abort operations to get out of this 1063 * mount, and they will themselves hold resources we must 1064 * allow the fs to do things. In the Unix tradition of 1065 * 'Gee thats tricky lets do it in userspace' the umount_begin 1066 * might fail to complete on the first run through as other tasks 1067 * must return, and the like. Thats for the mount program to worry 1068 * about for the moment. 1069 */ 1070 1071 if (flags & MNT_FORCE && sb->s_op->umount_begin) { 1072 lock_kernel(); 1073 sb->s_op->umount_begin(sb); 1074 unlock_kernel(); 1075 } 1076 1077 /* 1078 * No sense to grab the lock for this test, but test itself looks 1079 * somewhat bogus. Suggestions for better replacement? 1080 * Ho-hum... In principle, we might treat that as umount + switch 1081 * to rootfs. GC would eventually take care of the old vfsmount. 1082 * Actually it makes sense, especially if rootfs would contain a 1083 * /reboot - static binary that would close all descriptors and 1084 * call reboot(9). Then init(8) could umount root and exec /reboot. 1085 */ 1086 if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) { 1087 /* 1088 * Special case for "unmounting" root ... 1089 * we just try to remount it readonly. 1090 */ 1091 down_write(&sb->s_umount); 1092 if (!(sb->s_flags & MS_RDONLY)) { 1093 lock_kernel(); 1094 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0); 1095 unlock_kernel(); 1096 } 1097 up_write(&sb->s_umount); 1098 return retval; 1099 } 1100 1101 down_write(&namespace_sem); 1102 spin_lock(&vfsmount_lock); 1103 event++; 1104 1105 if (!(flags & MNT_DETACH)) 1106 shrink_submounts(mnt, &umount_list); 1107 1108 retval = -EBUSY; 1109 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) { 1110 if (!list_empty(&mnt->mnt_list)) 1111 umount_tree(mnt, 1, &umount_list); 1112 retval = 0; 1113 } 1114 spin_unlock(&vfsmount_lock); 1115 if (retval) 1116 security_sb_umount_busy(mnt); 1117 up_write(&namespace_sem); 1118 release_mounts(&umount_list); 1119 return retval; 1120 } 1121 1122 /* 1123 * Now umount can handle mount points as well as block devices. 1124 * This is important for filesystems which use unnamed block devices. 1125 * 1126 * We now support a flag for forced unmount like the other 'big iron' 1127 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD 1128 */ 1129 1130 asmlinkage long sys_umount(char __user * name, int flags) 1131 { 1132 struct nameidata nd; 1133 int retval; 1134 1135 retval = __user_walk(name, LOOKUP_FOLLOW, &nd); 1136 if (retval) 1137 goto out; 1138 retval = -EINVAL; 1139 if (nd.path.dentry != nd.path.mnt->mnt_root) 1140 goto dput_and_out; 1141 if (!check_mnt(nd.path.mnt)) 1142 goto dput_and_out; 1143 1144 retval = -EPERM; 1145 if (!capable(CAP_SYS_ADMIN)) 1146 goto dput_and_out; 1147 1148 retval = do_umount(nd.path.mnt, flags); 1149 dput_and_out: 1150 /* we mustn't call path_put() as that would clear mnt_expiry_mark */ 1151 dput(nd.path.dentry); 1152 mntput_no_expire(nd.path.mnt); 1153 out: 1154 return retval; 1155 } 1156 1157 #ifdef __ARCH_WANT_SYS_OLDUMOUNT 1158 1159 /* 1160 * The 2.0 compatible umount. No flags. 1161 */ 1162 asmlinkage long sys_oldumount(char __user * name) 1163 { 1164 return sys_umount(name, 0); 1165 } 1166 1167 #endif 1168 1169 static int mount_is_safe(struct nameidata *nd) 1170 { 1171 if (capable(CAP_SYS_ADMIN)) 1172 return 0; 1173 return -EPERM; 1174 #ifdef notyet 1175 if (S_ISLNK(nd->path.dentry->d_inode->i_mode)) 1176 return -EPERM; 1177 if (nd->path.dentry->d_inode->i_mode & S_ISVTX) { 1178 if (current->uid != nd->path.dentry->d_inode->i_uid) 1179 return -EPERM; 1180 } 1181 if (vfs_permission(nd, MAY_WRITE)) 1182 return -EPERM; 1183 return 0; 1184 #endif 1185 } 1186 1187 struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry, 1188 int flag) 1189 { 1190 struct vfsmount *res, *p, *q, *r, *s; 1191 struct path path; 1192 1193 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt)) 1194 return NULL; 1195 1196 res = q = clone_mnt(mnt, dentry, flag); 1197 if (!q) 1198 goto Enomem; 1199 q->mnt_mountpoint = mnt->mnt_mountpoint; 1200 1201 p = mnt; 1202 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) { 1203 if (!is_subdir(r->mnt_mountpoint, dentry)) 1204 continue; 1205 1206 for (s = r; s; s = next_mnt(s, r)) { 1207 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) { 1208 s = skip_mnt_tree(s); 1209 continue; 1210 } 1211 while (p != s->mnt_parent) { 1212 p = p->mnt_parent; 1213 q = q->mnt_parent; 1214 } 1215 p = s; 1216 path.mnt = q; 1217 path.dentry = p->mnt_mountpoint; 1218 q = clone_mnt(p, p->mnt_root, flag); 1219 if (!q) 1220 goto Enomem; 1221 spin_lock(&vfsmount_lock); 1222 list_add_tail(&q->mnt_list, &res->mnt_list); 1223 attach_mnt(q, &path); 1224 spin_unlock(&vfsmount_lock); 1225 } 1226 } 1227 return res; 1228 Enomem: 1229 if (res) { 1230 LIST_HEAD(umount_list); 1231 spin_lock(&vfsmount_lock); 1232 umount_tree(res, 0, &umount_list); 1233 spin_unlock(&vfsmount_lock); 1234 release_mounts(&umount_list); 1235 } 1236 return NULL; 1237 } 1238 1239 struct vfsmount *collect_mounts(struct vfsmount *mnt, struct dentry *dentry) 1240 { 1241 struct vfsmount *tree; 1242 down_write(&namespace_sem); 1243 tree = copy_tree(mnt, dentry, CL_COPY_ALL | CL_PRIVATE); 1244 up_write(&namespace_sem); 1245 return tree; 1246 } 1247 1248 void drop_collected_mounts(struct vfsmount *mnt) 1249 { 1250 LIST_HEAD(umount_list); 1251 down_write(&namespace_sem); 1252 spin_lock(&vfsmount_lock); 1253 umount_tree(mnt, 0, &umount_list); 1254 spin_unlock(&vfsmount_lock); 1255 up_write(&namespace_sem); 1256 release_mounts(&umount_list); 1257 } 1258 1259 static void cleanup_group_ids(struct vfsmount *mnt, struct vfsmount *end) 1260 { 1261 struct vfsmount *p; 1262 1263 for (p = mnt; p != end; p = next_mnt(p, mnt)) { 1264 if (p->mnt_group_id && !IS_MNT_SHARED(p)) 1265 mnt_release_group_id(p); 1266 } 1267 } 1268 1269 static int invent_group_ids(struct vfsmount *mnt, bool recurse) 1270 { 1271 struct vfsmount *p; 1272 1273 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) { 1274 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) { 1275 int err = mnt_alloc_group_id(p); 1276 if (err) { 1277 cleanup_group_ids(mnt, p); 1278 return err; 1279 } 1280 } 1281 } 1282 1283 return 0; 1284 } 1285 1286 /* 1287 * @source_mnt : mount tree to be attached 1288 * @nd : place the mount tree @source_mnt is attached 1289 * @parent_nd : if non-null, detach the source_mnt from its parent and 1290 * store the parent mount and mountpoint dentry. 1291 * (done when source_mnt is moved) 1292 * 1293 * NOTE: in the table below explains the semantics when a source mount 1294 * of a given type is attached to a destination mount of a given type. 1295 * --------------------------------------------------------------------------- 1296 * | BIND MOUNT OPERATION | 1297 * |************************************************************************** 1298 * | source-->| shared | private | slave | unbindable | 1299 * | dest | | | | | 1300 * | | | | | | | 1301 * | v | | | | | 1302 * |************************************************************************** 1303 * | shared | shared (++) | shared (+) | shared(+++)| invalid | 1304 * | | | | | | 1305 * |non-shared| shared (+) | private | slave (*) | invalid | 1306 * *************************************************************************** 1307 * A bind operation clones the source mount and mounts the clone on the 1308 * destination mount. 1309 * 1310 * (++) the cloned mount is propagated to all the mounts in the propagation 1311 * tree of the destination mount and the cloned mount is added to 1312 * the peer group of the source mount. 1313 * (+) the cloned mount is created under the destination mount and is marked 1314 * as shared. The cloned mount is added to the peer group of the source 1315 * mount. 1316 * (+++) the mount is propagated to all the mounts in the propagation tree 1317 * of the destination mount and the cloned mount is made slave 1318 * of the same master as that of the source mount. The cloned mount 1319 * is marked as 'shared and slave'. 1320 * (*) the cloned mount is made a slave of the same master as that of the 1321 * source mount. 1322 * 1323 * --------------------------------------------------------------------------- 1324 * | MOVE MOUNT OPERATION | 1325 * |************************************************************************** 1326 * | source-->| shared | private | slave | unbindable | 1327 * | dest | | | | | 1328 * | | | | | | | 1329 * | v | | | | | 1330 * |************************************************************************** 1331 * | shared | shared (+) | shared (+) | shared(+++) | invalid | 1332 * | | | | | | 1333 * |non-shared| shared (+*) | private | slave (*) | unbindable | 1334 * *************************************************************************** 1335 * 1336 * (+) the mount is moved to the destination. And is then propagated to 1337 * all the mounts in the propagation tree of the destination mount. 1338 * (+*) the mount is moved to the destination. 1339 * (+++) the mount is moved to the destination and is then propagated to 1340 * all the mounts belonging to the destination mount's propagation tree. 1341 * the mount is marked as 'shared and slave'. 1342 * (*) the mount continues to be a slave at the new location. 1343 * 1344 * if the source mount is a tree, the operations explained above is 1345 * applied to each mount in the tree. 1346 * Must be called without spinlocks held, since this function can sleep 1347 * in allocations. 1348 */ 1349 static int attach_recursive_mnt(struct vfsmount *source_mnt, 1350 struct path *path, struct path *parent_path) 1351 { 1352 LIST_HEAD(tree_list); 1353 struct vfsmount *dest_mnt = path->mnt; 1354 struct dentry *dest_dentry = path->dentry; 1355 struct vfsmount *child, *p; 1356 int err; 1357 1358 if (IS_MNT_SHARED(dest_mnt)) { 1359 err = invent_group_ids(source_mnt, true); 1360 if (err) 1361 goto out; 1362 } 1363 err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list); 1364 if (err) 1365 goto out_cleanup_ids; 1366 1367 if (IS_MNT_SHARED(dest_mnt)) { 1368 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 1369 set_mnt_shared(p); 1370 } 1371 1372 spin_lock(&vfsmount_lock); 1373 if (parent_path) { 1374 detach_mnt(source_mnt, parent_path); 1375 attach_mnt(source_mnt, path); 1376 touch_mnt_namespace(current->nsproxy->mnt_ns); 1377 } else { 1378 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt); 1379 commit_tree(source_mnt); 1380 } 1381 1382 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) { 1383 list_del_init(&child->mnt_hash); 1384 commit_tree(child); 1385 } 1386 spin_unlock(&vfsmount_lock); 1387 return 0; 1388 1389 out_cleanup_ids: 1390 if (IS_MNT_SHARED(dest_mnt)) 1391 cleanup_group_ids(source_mnt, NULL); 1392 out: 1393 return err; 1394 } 1395 1396 static int graft_tree(struct vfsmount *mnt, struct path *path) 1397 { 1398 int err; 1399 if (mnt->mnt_sb->s_flags & MS_NOUSER) 1400 return -EINVAL; 1401 1402 if (S_ISDIR(path->dentry->d_inode->i_mode) != 1403 S_ISDIR(mnt->mnt_root->d_inode->i_mode)) 1404 return -ENOTDIR; 1405 1406 err = -ENOENT; 1407 mutex_lock(&path->dentry->d_inode->i_mutex); 1408 if (IS_DEADDIR(path->dentry->d_inode)) 1409 goto out_unlock; 1410 1411 err = security_sb_check_sb(mnt, path); 1412 if (err) 1413 goto out_unlock; 1414 1415 err = -ENOENT; 1416 if (IS_ROOT(path->dentry) || !d_unhashed(path->dentry)) 1417 err = attach_recursive_mnt(mnt, path, NULL); 1418 out_unlock: 1419 mutex_unlock(&path->dentry->d_inode->i_mutex); 1420 if (!err) 1421 security_sb_post_addmount(mnt, path); 1422 return err; 1423 } 1424 1425 /* 1426 * recursively change the type of the mountpoint. 1427 * noinline this do_mount helper to save do_mount stack space. 1428 */ 1429 static noinline int do_change_type(struct nameidata *nd, int flag) 1430 { 1431 struct vfsmount *m, *mnt = nd->path.mnt; 1432 int recurse = flag & MS_REC; 1433 int type = flag & ~MS_REC; 1434 int err = 0; 1435 1436 if (!capable(CAP_SYS_ADMIN)) 1437 return -EPERM; 1438 1439 if (nd->path.dentry != nd->path.mnt->mnt_root) 1440 return -EINVAL; 1441 1442 down_write(&namespace_sem); 1443 if (type == MS_SHARED) { 1444 err = invent_group_ids(mnt, recurse); 1445 if (err) 1446 goto out_unlock; 1447 } 1448 1449 spin_lock(&vfsmount_lock); 1450 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) 1451 change_mnt_propagation(m, type); 1452 spin_unlock(&vfsmount_lock); 1453 1454 out_unlock: 1455 up_write(&namespace_sem); 1456 return err; 1457 } 1458 1459 /* 1460 * do loopback mount. 1461 * noinline this do_mount helper to save do_mount stack space. 1462 */ 1463 static noinline int do_loopback(struct nameidata *nd, char *old_name, 1464 int recurse) 1465 { 1466 struct nameidata old_nd; 1467 struct vfsmount *mnt = NULL; 1468 int err = mount_is_safe(nd); 1469 if (err) 1470 return err; 1471 if (!old_name || !*old_name) 1472 return -EINVAL; 1473 err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd); 1474 if (err) 1475 return err; 1476 1477 down_write(&namespace_sem); 1478 err = -EINVAL; 1479 if (IS_MNT_UNBINDABLE(old_nd.path.mnt)) 1480 goto out; 1481 1482 if (!check_mnt(nd->path.mnt) || !check_mnt(old_nd.path.mnt)) 1483 goto out; 1484 1485 err = -ENOMEM; 1486 if (recurse) 1487 mnt = copy_tree(old_nd.path.mnt, old_nd.path.dentry, 0); 1488 else 1489 mnt = clone_mnt(old_nd.path.mnt, old_nd.path.dentry, 0); 1490 1491 if (!mnt) 1492 goto out; 1493 1494 err = graft_tree(mnt, &nd->path); 1495 if (err) { 1496 LIST_HEAD(umount_list); 1497 spin_lock(&vfsmount_lock); 1498 umount_tree(mnt, 0, &umount_list); 1499 spin_unlock(&vfsmount_lock); 1500 release_mounts(&umount_list); 1501 } 1502 1503 out: 1504 up_write(&namespace_sem); 1505 path_put(&old_nd.path); 1506 return err; 1507 } 1508 1509 static int change_mount_flags(struct vfsmount *mnt, int ms_flags) 1510 { 1511 int error = 0; 1512 int readonly_request = 0; 1513 1514 if (ms_flags & MS_RDONLY) 1515 readonly_request = 1; 1516 if (readonly_request == __mnt_is_readonly(mnt)) 1517 return 0; 1518 1519 if (readonly_request) 1520 error = mnt_make_readonly(mnt); 1521 else 1522 __mnt_unmake_readonly(mnt); 1523 return error; 1524 } 1525 1526 /* 1527 * change filesystem flags. dir should be a physical root of filesystem. 1528 * If you've mounted a non-root directory somewhere and want to do remount 1529 * on it - tough luck. 1530 * noinline this do_mount helper to save do_mount stack space. 1531 */ 1532 static noinline int do_remount(struct nameidata *nd, int flags, int mnt_flags, 1533 void *data) 1534 { 1535 int err; 1536 struct super_block *sb = nd->path.mnt->mnt_sb; 1537 1538 if (!capable(CAP_SYS_ADMIN)) 1539 return -EPERM; 1540 1541 if (!check_mnt(nd->path.mnt)) 1542 return -EINVAL; 1543 1544 if (nd->path.dentry != nd->path.mnt->mnt_root) 1545 return -EINVAL; 1546 1547 down_write(&sb->s_umount); 1548 if (flags & MS_BIND) 1549 err = change_mount_flags(nd->path.mnt, flags); 1550 else 1551 err = do_remount_sb(sb, flags, data, 0); 1552 if (!err) 1553 nd->path.mnt->mnt_flags = mnt_flags; 1554 up_write(&sb->s_umount); 1555 if (!err) 1556 security_sb_post_remount(nd->path.mnt, flags, data); 1557 return err; 1558 } 1559 1560 static inline int tree_contains_unbindable(struct vfsmount *mnt) 1561 { 1562 struct vfsmount *p; 1563 for (p = mnt; p; p = next_mnt(p, mnt)) { 1564 if (IS_MNT_UNBINDABLE(p)) 1565 return 1; 1566 } 1567 return 0; 1568 } 1569 1570 /* 1571 * noinline this do_mount helper to save do_mount stack space. 1572 */ 1573 static noinline int do_move_mount(struct nameidata *nd, char *old_name) 1574 { 1575 struct nameidata old_nd; 1576 struct path parent_path; 1577 struct vfsmount *p; 1578 int err = 0; 1579 if (!capable(CAP_SYS_ADMIN)) 1580 return -EPERM; 1581 if (!old_name || !*old_name) 1582 return -EINVAL; 1583 err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd); 1584 if (err) 1585 return err; 1586 1587 down_write(&namespace_sem); 1588 while (d_mountpoint(nd->path.dentry) && 1589 follow_down(&nd->path.mnt, &nd->path.dentry)) 1590 ; 1591 err = -EINVAL; 1592 if (!check_mnt(nd->path.mnt) || !check_mnt(old_nd.path.mnt)) 1593 goto out; 1594 1595 err = -ENOENT; 1596 mutex_lock(&nd->path.dentry->d_inode->i_mutex); 1597 if (IS_DEADDIR(nd->path.dentry->d_inode)) 1598 goto out1; 1599 1600 if (!IS_ROOT(nd->path.dentry) && d_unhashed(nd->path.dentry)) 1601 goto out1; 1602 1603 err = -EINVAL; 1604 if (old_nd.path.dentry != old_nd.path.mnt->mnt_root) 1605 goto out1; 1606 1607 if (old_nd.path.mnt == old_nd.path.mnt->mnt_parent) 1608 goto out1; 1609 1610 if (S_ISDIR(nd->path.dentry->d_inode->i_mode) != 1611 S_ISDIR(old_nd.path.dentry->d_inode->i_mode)) 1612 goto out1; 1613 /* 1614 * Don't move a mount residing in a shared parent. 1615 */ 1616 if (old_nd.path.mnt->mnt_parent && 1617 IS_MNT_SHARED(old_nd.path.mnt->mnt_parent)) 1618 goto out1; 1619 /* 1620 * Don't move a mount tree containing unbindable mounts to a destination 1621 * mount which is shared. 1622 */ 1623 if (IS_MNT_SHARED(nd->path.mnt) && 1624 tree_contains_unbindable(old_nd.path.mnt)) 1625 goto out1; 1626 err = -ELOOP; 1627 for (p = nd->path.mnt; p->mnt_parent != p; p = p->mnt_parent) 1628 if (p == old_nd.path.mnt) 1629 goto out1; 1630 1631 err = attach_recursive_mnt(old_nd.path.mnt, &nd->path, &parent_path); 1632 if (err) 1633 goto out1; 1634 1635 /* if the mount is moved, it should no longer be expire 1636 * automatically */ 1637 list_del_init(&old_nd.path.mnt->mnt_expire); 1638 out1: 1639 mutex_unlock(&nd->path.dentry->d_inode->i_mutex); 1640 out: 1641 up_write(&namespace_sem); 1642 if (!err) 1643 path_put(&parent_path); 1644 path_put(&old_nd.path); 1645 return err; 1646 } 1647 1648 /* 1649 * create a new mount for userspace and request it to be added into the 1650 * namespace's tree 1651 * noinline this do_mount helper to save do_mount stack space. 1652 */ 1653 static noinline int do_new_mount(struct nameidata *nd, char *type, int flags, 1654 int mnt_flags, char *name, void *data) 1655 { 1656 struct vfsmount *mnt; 1657 1658 if (!type || !memchr(type, 0, PAGE_SIZE)) 1659 return -EINVAL; 1660 1661 /* we need capabilities... */ 1662 if (!capable(CAP_SYS_ADMIN)) 1663 return -EPERM; 1664 1665 mnt = do_kern_mount(type, flags, name, data); 1666 if (IS_ERR(mnt)) 1667 return PTR_ERR(mnt); 1668 1669 return do_add_mount(mnt, nd, mnt_flags, NULL); 1670 } 1671 1672 /* 1673 * add a mount into a namespace's mount tree 1674 * - provide the option of adding the new mount to an expiration list 1675 */ 1676 int do_add_mount(struct vfsmount *newmnt, struct nameidata *nd, 1677 int mnt_flags, struct list_head *fslist) 1678 { 1679 int err; 1680 1681 down_write(&namespace_sem); 1682 /* Something was mounted here while we slept */ 1683 while (d_mountpoint(nd->path.dentry) && 1684 follow_down(&nd->path.mnt, &nd->path.dentry)) 1685 ; 1686 err = -EINVAL; 1687 if (!check_mnt(nd->path.mnt)) 1688 goto unlock; 1689 1690 /* Refuse the same filesystem on the same mount point */ 1691 err = -EBUSY; 1692 if (nd->path.mnt->mnt_sb == newmnt->mnt_sb && 1693 nd->path.mnt->mnt_root == nd->path.dentry) 1694 goto unlock; 1695 1696 err = -EINVAL; 1697 if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode)) 1698 goto unlock; 1699 1700 newmnt->mnt_flags = mnt_flags; 1701 if ((err = graft_tree(newmnt, &nd->path))) 1702 goto unlock; 1703 1704 if (fslist) /* add to the specified expiration list */ 1705 list_add_tail(&newmnt->mnt_expire, fslist); 1706 1707 up_write(&namespace_sem); 1708 return 0; 1709 1710 unlock: 1711 up_write(&namespace_sem); 1712 mntput(newmnt); 1713 return err; 1714 } 1715 1716 EXPORT_SYMBOL_GPL(do_add_mount); 1717 1718 /* 1719 * process a list of expirable mountpoints with the intent of discarding any 1720 * mountpoints that aren't in use and haven't been touched since last we came 1721 * here 1722 */ 1723 void mark_mounts_for_expiry(struct list_head *mounts) 1724 { 1725 struct vfsmount *mnt, *next; 1726 LIST_HEAD(graveyard); 1727 LIST_HEAD(umounts); 1728 1729 if (list_empty(mounts)) 1730 return; 1731 1732 down_write(&namespace_sem); 1733 spin_lock(&vfsmount_lock); 1734 1735 /* extract from the expiration list every vfsmount that matches the 1736 * following criteria: 1737 * - only referenced by its parent vfsmount 1738 * - still marked for expiry (marked on the last call here; marks are 1739 * cleared by mntput()) 1740 */ 1741 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { 1742 if (!xchg(&mnt->mnt_expiry_mark, 1) || 1743 propagate_mount_busy(mnt, 1)) 1744 continue; 1745 list_move(&mnt->mnt_expire, &graveyard); 1746 } 1747 while (!list_empty(&graveyard)) { 1748 mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire); 1749 touch_mnt_namespace(mnt->mnt_ns); 1750 umount_tree(mnt, 1, &umounts); 1751 } 1752 spin_unlock(&vfsmount_lock); 1753 up_write(&namespace_sem); 1754 1755 release_mounts(&umounts); 1756 } 1757 1758 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); 1759 1760 /* 1761 * Ripoff of 'select_parent()' 1762 * 1763 * search the list of submounts for a given mountpoint, and move any 1764 * shrinkable submounts to the 'graveyard' list. 1765 */ 1766 static int select_submounts(struct vfsmount *parent, struct list_head *graveyard) 1767 { 1768 struct vfsmount *this_parent = parent; 1769 struct list_head *next; 1770 int found = 0; 1771 1772 repeat: 1773 next = this_parent->mnt_mounts.next; 1774 resume: 1775 while (next != &this_parent->mnt_mounts) { 1776 struct list_head *tmp = next; 1777 struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child); 1778 1779 next = tmp->next; 1780 if (!(mnt->mnt_flags & MNT_SHRINKABLE)) 1781 continue; 1782 /* 1783 * Descend a level if the d_mounts list is non-empty. 1784 */ 1785 if (!list_empty(&mnt->mnt_mounts)) { 1786 this_parent = mnt; 1787 goto repeat; 1788 } 1789 1790 if (!propagate_mount_busy(mnt, 1)) { 1791 list_move_tail(&mnt->mnt_expire, graveyard); 1792 found++; 1793 } 1794 } 1795 /* 1796 * All done at this level ... ascend and resume the search 1797 */ 1798 if (this_parent != parent) { 1799 next = this_parent->mnt_child.next; 1800 this_parent = this_parent->mnt_parent; 1801 goto resume; 1802 } 1803 return found; 1804 } 1805 1806 /* 1807 * process a list of expirable mountpoints with the intent of discarding any 1808 * submounts of a specific parent mountpoint 1809 */ 1810 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts) 1811 { 1812 LIST_HEAD(graveyard); 1813 struct vfsmount *m; 1814 1815 /* extract submounts of 'mountpoint' from the expiration list */ 1816 while (select_submounts(mnt, &graveyard)) { 1817 while (!list_empty(&graveyard)) { 1818 m = list_first_entry(&graveyard, struct vfsmount, 1819 mnt_expire); 1820 touch_mnt_namespace(mnt->mnt_ns); 1821 umount_tree(mnt, 1, umounts); 1822 } 1823 } 1824 } 1825 1826 /* 1827 * Some copy_from_user() implementations do not return the exact number of 1828 * bytes remaining to copy on a fault. But copy_mount_options() requires that. 1829 * Note that this function differs from copy_from_user() in that it will oops 1830 * on bad values of `to', rather than returning a short copy. 1831 */ 1832 static long exact_copy_from_user(void *to, const void __user * from, 1833 unsigned long n) 1834 { 1835 char *t = to; 1836 const char __user *f = from; 1837 char c; 1838 1839 if (!access_ok(VERIFY_READ, from, n)) 1840 return n; 1841 1842 while (n) { 1843 if (__get_user(c, f)) { 1844 memset(t, 0, n); 1845 break; 1846 } 1847 *t++ = c; 1848 f++; 1849 n--; 1850 } 1851 return n; 1852 } 1853 1854 int copy_mount_options(const void __user * data, unsigned long *where) 1855 { 1856 int i; 1857 unsigned long page; 1858 unsigned long size; 1859 1860 *where = 0; 1861 if (!data) 1862 return 0; 1863 1864 if (!(page = __get_free_page(GFP_KERNEL))) 1865 return -ENOMEM; 1866 1867 /* We only care that *some* data at the address the user 1868 * gave us is valid. Just in case, we'll zero 1869 * the remainder of the page. 1870 */ 1871 /* copy_from_user cannot cross TASK_SIZE ! */ 1872 size = TASK_SIZE - (unsigned long)data; 1873 if (size > PAGE_SIZE) 1874 size = PAGE_SIZE; 1875 1876 i = size - exact_copy_from_user((void *)page, data, size); 1877 if (!i) { 1878 free_page(page); 1879 return -EFAULT; 1880 } 1881 if (i != PAGE_SIZE) 1882 memset((char *)page + i, 0, PAGE_SIZE - i); 1883 *where = page; 1884 return 0; 1885 } 1886 1887 /* 1888 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to 1889 * be given to the mount() call (ie: read-only, no-dev, no-suid etc). 1890 * 1891 * data is a (void *) that can point to any structure up to 1892 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent 1893 * information (or be NULL). 1894 * 1895 * Pre-0.97 versions of mount() didn't have a flags word. 1896 * When the flags word was introduced its top half was required 1897 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. 1898 * Therefore, if this magic number is present, it carries no information 1899 * and must be discarded. 1900 */ 1901 long do_mount(char *dev_name, char *dir_name, char *type_page, 1902 unsigned long flags, void *data_page) 1903 { 1904 struct nameidata nd; 1905 int retval = 0; 1906 int mnt_flags = 0; 1907 1908 /* Discard magic */ 1909 if ((flags & MS_MGC_MSK) == MS_MGC_VAL) 1910 flags &= ~MS_MGC_MSK; 1911 1912 /* Basic sanity checks */ 1913 1914 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE)) 1915 return -EINVAL; 1916 if (dev_name && !memchr(dev_name, 0, PAGE_SIZE)) 1917 return -EINVAL; 1918 1919 if (data_page) 1920 ((char *)data_page)[PAGE_SIZE - 1] = 0; 1921 1922 /* Separate the per-mountpoint flags */ 1923 if (flags & MS_NOSUID) 1924 mnt_flags |= MNT_NOSUID; 1925 if (flags & MS_NODEV) 1926 mnt_flags |= MNT_NODEV; 1927 if (flags & MS_NOEXEC) 1928 mnt_flags |= MNT_NOEXEC; 1929 if (flags & MS_NOATIME) 1930 mnt_flags |= MNT_NOATIME; 1931 if (flags & MS_NODIRATIME) 1932 mnt_flags |= MNT_NODIRATIME; 1933 if (flags & MS_RELATIME) 1934 mnt_flags |= MNT_RELATIME; 1935 if (flags & MS_RDONLY) 1936 mnt_flags |= MNT_READONLY; 1937 1938 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | 1939 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT); 1940 1941 /* ... and get the mountpoint */ 1942 retval = path_lookup(dir_name, LOOKUP_FOLLOW, &nd); 1943 if (retval) 1944 return retval; 1945 1946 retval = security_sb_mount(dev_name, &nd.path, 1947 type_page, flags, data_page); 1948 if (retval) 1949 goto dput_out; 1950 1951 if (flags & MS_REMOUNT) 1952 retval = do_remount(&nd, flags & ~MS_REMOUNT, mnt_flags, 1953 data_page); 1954 else if (flags & MS_BIND) 1955 retval = do_loopback(&nd, dev_name, flags & MS_REC); 1956 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 1957 retval = do_change_type(&nd, flags); 1958 else if (flags & MS_MOVE) 1959 retval = do_move_mount(&nd, dev_name); 1960 else 1961 retval = do_new_mount(&nd, type_page, flags, mnt_flags, 1962 dev_name, data_page); 1963 dput_out: 1964 path_put(&nd.path); 1965 return retval; 1966 } 1967 1968 /* 1969 * Allocate a new namespace structure and populate it with contents 1970 * copied from the namespace of the passed in task structure. 1971 */ 1972 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns, 1973 struct fs_struct *fs) 1974 { 1975 struct mnt_namespace *new_ns; 1976 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL, *altrootmnt = NULL; 1977 struct vfsmount *p, *q; 1978 1979 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL); 1980 if (!new_ns) 1981 return ERR_PTR(-ENOMEM); 1982 1983 atomic_set(&new_ns->count, 1); 1984 INIT_LIST_HEAD(&new_ns->list); 1985 init_waitqueue_head(&new_ns->poll); 1986 new_ns->event = 0; 1987 1988 down_write(&namespace_sem); 1989 /* First pass: copy the tree topology */ 1990 new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root, 1991 CL_COPY_ALL | CL_EXPIRE); 1992 if (!new_ns->root) { 1993 up_write(&namespace_sem); 1994 kfree(new_ns); 1995 return ERR_PTR(-ENOMEM);; 1996 } 1997 spin_lock(&vfsmount_lock); 1998 list_add_tail(&new_ns->list, &new_ns->root->mnt_list); 1999 spin_unlock(&vfsmount_lock); 2000 2001 /* 2002 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts 2003 * as belonging to new namespace. We have already acquired a private 2004 * fs_struct, so tsk->fs->lock is not needed. 2005 */ 2006 p = mnt_ns->root; 2007 q = new_ns->root; 2008 while (p) { 2009 q->mnt_ns = new_ns; 2010 if (fs) { 2011 if (p == fs->root.mnt) { 2012 rootmnt = p; 2013 fs->root.mnt = mntget(q); 2014 } 2015 if (p == fs->pwd.mnt) { 2016 pwdmnt = p; 2017 fs->pwd.mnt = mntget(q); 2018 } 2019 if (p == fs->altroot.mnt) { 2020 altrootmnt = p; 2021 fs->altroot.mnt = mntget(q); 2022 } 2023 } 2024 p = next_mnt(p, mnt_ns->root); 2025 q = next_mnt(q, new_ns->root); 2026 } 2027 up_write(&namespace_sem); 2028 2029 if (rootmnt) 2030 mntput(rootmnt); 2031 if (pwdmnt) 2032 mntput(pwdmnt); 2033 if (altrootmnt) 2034 mntput(altrootmnt); 2035 2036 return new_ns; 2037 } 2038 2039 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns, 2040 struct fs_struct *new_fs) 2041 { 2042 struct mnt_namespace *new_ns; 2043 2044 BUG_ON(!ns); 2045 get_mnt_ns(ns); 2046 2047 if (!(flags & CLONE_NEWNS)) 2048 return ns; 2049 2050 new_ns = dup_mnt_ns(ns, new_fs); 2051 2052 put_mnt_ns(ns); 2053 return new_ns; 2054 } 2055 2056 asmlinkage long sys_mount(char __user * dev_name, char __user * dir_name, 2057 char __user * type, unsigned long flags, 2058 void __user * data) 2059 { 2060 int retval; 2061 unsigned long data_page; 2062 unsigned long type_page; 2063 unsigned long dev_page; 2064 char *dir_page; 2065 2066 retval = copy_mount_options(type, &type_page); 2067 if (retval < 0) 2068 return retval; 2069 2070 dir_page = getname(dir_name); 2071 retval = PTR_ERR(dir_page); 2072 if (IS_ERR(dir_page)) 2073 goto out1; 2074 2075 retval = copy_mount_options(dev_name, &dev_page); 2076 if (retval < 0) 2077 goto out2; 2078 2079 retval = copy_mount_options(data, &data_page); 2080 if (retval < 0) 2081 goto out3; 2082 2083 lock_kernel(); 2084 retval = do_mount((char *)dev_page, dir_page, (char *)type_page, 2085 flags, (void *)data_page); 2086 unlock_kernel(); 2087 free_page(data_page); 2088 2089 out3: 2090 free_page(dev_page); 2091 out2: 2092 putname(dir_page); 2093 out1: 2094 free_page(type_page); 2095 return retval; 2096 } 2097 2098 /* 2099 * Replace the fs->{rootmnt,root} with {mnt,dentry}. Put the old values. 2100 * It can block. Requires the big lock held. 2101 */ 2102 void set_fs_root(struct fs_struct *fs, struct path *path) 2103 { 2104 struct path old_root; 2105 2106 write_lock(&fs->lock); 2107 old_root = fs->root; 2108 fs->root = *path; 2109 path_get(path); 2110 write_unlock(&fs->lock); 2111 if (old_root.dentry) 2112 path_put(&old_root); 2113 } 2114 2115 /* 2116 * Replace the fs->{pwdmnt,pwd} with {mnt,dentry}. Put the old values. 2117 * It can block. Requires the big lock held. 2118 */ 2119 void set_fs_pwd(struct fs_struct *fs, struct path *path) 2120 { 2121 struct path old_pwd; 2122 2123 write_lock(&fs->lock); 2124 old_pwd = fs->pwd; 2125 fs->pwd = *path; 2126 path_get(path); 2127 write_unlock(&fs->lock); 2128 2129 if (old_pwd.dentry) 2130 path_put(&old_pwd); 2131 } 2132 2133 static void chroot_fs_refs(struct path *old_root, struct path *new_root) 2134 { 2135 struct task_struct *g, *p; 2136 struct fs_struct *fs; 2137 2138 read_lock(&tasklist_lock); 2139 do_each_thread(g, p) { 2140 task_lock(p); 2141 fs = p->fs; 2142 if (fs) { 2143 atomic_inc(&fs->count); 2144 task_unlock(p); 2145 if (fs->root.dentry == old_root->dentry 2146 && fs->root.mnt == old_root->mnt) 2147 set_fs_root(fs, new_root); 2148 if (fs->pwd.dentry == old_root->dentry 2149 && fs->pwd.mnt == old_root->mnt) 2150 set_fs_pwd(fs, new_root); 2151 put_fs_struct(fs); 2152 } else 2153 task_unlock(p); 2154 } while_each_thread(g, p); 2155 read_unlock(&tasklist_lock); 2156 } 2157 2158 /* 2159 * pivot_root Semantics: 2160 * Moves the root file system of the current process to the directory put_old, 2161 * makes new_root as the new root file system of the current process, and sets 2162 * root/cwd of all processes which had them on the current root to new_root. 2163 * 2164 * Restrictions: 2165 * The new_root and put_old must be directories, and must not be on the 2166 * same file system as the current process root. The put_old must be 2167 * underneath new_root, i.e. adding a non-zero number of /.. to the string 2168 * pointed to by put_old must yield the same directory as new_root. No other 2169 * file system may be mounted on put_old. After all, new_root is a mountpoint. 2170 * 2171 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. 2172 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives 2173 * in this situation. 2174 * 2175 * Notes: 2176 * - we don't move root/cwd if they are not at the root (reason: if something 2177 * cared enough to change them, it's probably wrong to force them elsewhere) 2178 * - it's okay to pick a root that isn't the root of a file system, e.g. 2179 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, 2180 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root 2181 * first. 2182 */ 2183 asmlinkage long sys_pivot_root(const char __user * new_root, 2184 const char __user * put_old) 2185 { 2186 struct vfsmount *tmp; 2187 struct nameidata new_nd, old_nd; 2188 struct path parent_path, root_parent, root; 2189 int error; 2190 2191 if (!capable(CAP_SYS_ADMIN)) 2192 return -EPERM; 2193 2194 error = __user_walk(new_root, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, 2195 &new_nd); 2196 if (error) 2197 goto out0; 2198 error = -EINVAL; 2199 if (!check_mnt(new_nd.path.mnt)) 2200 goto out1; 2201 2202 error = __user_walk(put_old, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old_nd); 2203 if (error) 2204 goto out1; 2205 2206 error = security_sb_pivotroot(&old_nd.path, &new_nd.path); 2207 if (error) { 2208 path_put(&old_nd.path); 2209 goto out1; 2210 } 2211 2212 read_lock(¤t->fs->lock); 2213 root = current->fs->root; 2214 path_get(¤t->fs->root); 2215 read_unlock(¤t->fs->lock); 2216 down_write(&namespace_sem); 2217 mutex_lock(&old_nd.path.dentry->d_inode->i_mutex); 2218 error = -EINVAL; 2219 if (IS_MNT_SHARED(old_nd.path.mnt) || 2220 IS_MNT_SHARED(new_nd.path.mnt->mnt_parent) || 2221 IS_MNT_SHARED(root.mnt->mnt_parent)) 2222 goto out2; 2223 if (!check_mnt(root.mnt)) 2224 goto out2; 2225 error = -ENOENT; 2226 if (IS_DEADDIR(new_nd.path.dentry->d_inode)) 2227 goto out2; 2228 if (d_unhashed(new_nd.path.dentry) && !IS_ROOT(new_nd.path.dentry)) 2229 goto out2; 2230 if (d_unhashed(old_nd.path.dentry) && !IS_ROOT(old_nd.path.dentry)) 2231 goto out2; 2232 error = -EBUSY; 2233 if (new_nd.path.mnt == root.mnt || 2234 old_nd.path.mnt == root.mnt) 2235 goto out2; /* loop, on the same file system */ 2236 error = -EINVAL; 2237 if (root.mnt->mnt_root != root.dentry) 2238 goto out2; /* not a mountpoint */ 2239 if (root.mnt->mnt_parent == root.mnt) 2240 goto out2; /* not attached */ 2241 if (new_nd.path.mnt->mnt_root != new_nd.path.dentry) 2242 goto out2; /* not a mountpoint */ 2243 if (new_nd.path.mnt->mnt_parent == new_nd.path.mnt) 2244 goto out2; /* not attached */ 2245 /* make sure we can reach put_old from new_root */ 2246 tmp = old_nd.path.mnt; 2247 spin_lock(&vfsmount_lock); 2248 if (tmp != new_nd.path.mnt) { 2249 for (;;) { 2250 if (tmp->mnt_parent == tmp) 2251 goto out3; /* already mounted on put_old */ 2252 if (tmp->mnt_parent == new_nd.path.mnt) 2253 break; 2254 tmp = tmp->mnt_parent; 2255 } 2256 if (!is_subdir(tmp->mnt_mountpoint, new_nd.path.dentry)) 2257 goto out3; 2258 } else if (!is_subdir(old_nd.path.dentry, new_nd.path.dentry)) 2259 goto out3; 2260 detach_mnt(new_nd.path.mnt, &parent_path); 2261 detach_mnt(root.mnt, &root_parent); 2262 /* mount old root on put_old */ 2263 attach_mnt(root.mnt, &old_nd.path); 2264 /* mount new_root on / */ 2265 attach_mnt(new_nd.path.mnt, &root_parent); 2266 touch_mnt_namespace(current->nsproxy->mnt_ns); 2267 spin_unlock(&vfsmount_lock); 2268 chroot_fs_refs(&root, &new_nd.path); 2269 security_sb_post_pivotroot(&root, &new_nd.path); 2270 error = 0; 2271 path_put(&root_parent); 2272 path_put(&parent_path); 2273 out2: 2274 mutex_unlock(&old_nd.path.dentry->d_inode->i_mutex); 2275 up_write(&namespace_sem); 2276 path_put(&root); 2277 path_put(&old_nd.path); 2278 out1: 2279 path_put(&new_nd.path); 2280 out0: 2281 return error; 2282 out3: 2283 spin_unlock(&vfsmount_lock); 2284 goto out2; 2285 } 2286 2287 static void __init init_mount_tree(void) 2288 { 2289 struct vfsmount *mnt; 2290 struct mnt_namespace *ns; 2291 struct path root; 2292 2293 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL); 2294 if (IS_ERR(mnt)) 2295 panic("Can't create rootfs"); 2296 ns = kmalloc(sizeof(*ns), GFP_KERNEL); 2297 if (!ns) 2298 panic("Can't allocate initial namespace"); 2299 atomic_set(&ns->count, 1); 2300 INIT_LIST_HEAD(&ns->list); 2301 init_waitqueue_head(&ns->poll); 2302 ns->event = 0; 2303 list_add(&mnt->mnt_list, &ns->list); 2304 ns->root = mnt; 2305 mnt->mnt_ns = ns; 2306 2307 init_task.nsproxy->mnt_ns = ns; 2308 get_mnt_ns(ns); 2309 2310 root.mnt = ns->root; 2311 root.dentry = ns->root->mnt_root; 2312 2313 set_fs_pwd(current->fs, &root); 2314 set_fs_root(current->fs, &root); 2315 } 2316 2317 void __init mnt_init(void) 2318 { 2319 unsigned u; 2320 int err; 2321 2322 init_rwsem(&namespace_sem); 2323 2324 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount), 2325 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 2326 2327 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC); 2328 2329 if (!mount_hashtable) 2330 panic("Failed to allocate mount hash table\n"); 2331 2332 printk("Mount-cache hash table entries: %lu\n", HASH_SIZE); 2333 2334 for (u = 0; u < HASH_SIZE; u++) 2335 INIT_LIST_HEAD(&mount_hashtable[u]); 2336 2337 err = sysfs_init(); 2338 if (err) 2339 printk(KERN_WARNING "%s: sysfs_init error: %d\n", 2340 __func__, err); 2341 fs_kobj = kobject_create_and_add("fs", NULL); 2342 if (!fs_kobj) 2343 printk(KERN_WARNING "%s: kobj create error\n", __func__); 2344 init_rootfs(); 2345 init_mount_tree(); 2346 } 2347 2348 void __put_mnt_ns(struct mnt_namespace *ns) 2349 { 2350 struct vfsmount *root = ns->root; 2351 LIST_HEAD(umount_list); 2352 ns->root = NULL; 2353 spin_unlock(&vfsmount_lock); 2354 down_write(&namespace_sem); 2355 spin_lock(&vfsmount_lock); 2356 umount_tree(root, 0, &umount_list); 2357 spin_unlock(&vfsmount_lock); 2358 up_write(&namespace_sem); 2359 release_mounts(&umount_list); 2360 kfree(ns); 2361 } 2362