xref: /openbmc/linux/fs/namespace.c (revision 545e4006)
1 /*
2  *  linux/fs/namespace.c
3  *
4  * (C) Copyright Al Viro 2000, 2001
5  *	Released under GPL v2.
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/slab.h>
13 #include <linux/sched.h>
14 #include <linux/smp_lock.h>
15 #include <linux/init.h>
16 #include <linux/kernel.h>
17 #include <linux/acct.h>
18 #include <linux/capability.h>
19 #include <linux/cpumask.h>
20 #include <linux/module.h>
21 #include <linux/sysfs.h>
22 #include <linux/seq_file.h>
23 #include <linux/mnt_namespace.h>
24 #include <linux/namei.h>
25 #include <linux/security.h>
26 #include <linux/mount.h>
27 #include <linux/ramfs.h>
28 #include <linux/log2.h>
29 #include <linux/idr.h>
30 #include <asm/uaccess.h>
31 #include <asm/unistd.h>
32 #include "pnode.h"
33 #include "internal.h"
34 
35 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
36 #define HASH_SIZE (1UL << HASH_SHIFT)
37 
38 /* spinlock for vfsmount related operations, inplace of dcache_lock */
39 __cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock);
40 
41 static int event;
42 static DEFINE_IDA(mnt_id_ida);
43 static DEFINE_IDA(mnt_group_ida);
44 
45 static struct list_head *mount_hashtable __read_mostly;
46 static struct kmem_cache *mnt_cache __read_mostly;
47 static struct rw_semaphore namespace_sem;
48 
49 /* /sys/fs */
50 struct kobject *fs_kobj;
51 EXPORT_SYMBOL_GPL(fs_kobj);
52 
53 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
54 {
55 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
56 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
57 	tmp = tmp + (tmp >> HASH_SHIFT);
58 	return tmp & (HASH_SIZE - 1);
59 }
60 
61 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
62 
63 /* allocation is serialized by namespace_sem */
64 static int mnt_alloc_id(struct vfsmount *mnt)
65 {
66 	int res;
67 
68 retry:
69 	ida_pre_get(&mnt_id_ida, GFP_KERNEL);
70 	spin_lock(&vfsmount_lock);
71 	res = ida_get_new(&mnt_id_ida, &mnt->mnt_id);
72 	spin_unlock(&vfsmount_lock);
73 	if (res == -EAGAIN)
74 		goto retry;
75 
76 	return res;
77 }
78 
79 static void mnt_free_id(struct vfsmount *mnt)
80 {
81 	spin_lock(&vfsmount_lock);
82 	ida_remove(&mnt_id_ida, mnt->mnt_id);
83 	spin_unlock(&vfsmount_lock);
84 }
85 
86 /*
87  * Allocate a new peer group ID
88  *
89  * mnt_group_ida is protected by namespace_sem
90  */
91 static int mnt_alloc_group_id(struct vfsmount *mnt)
92 {
93 	if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
94 		return -ENOMEM;
95 
96 	return ida_get_new_above(&mnt_group_ida, 1, &mnt->mnt_group_id);
97 }
98 
99 /*
100  * Release a peer group ID
101  */
102 void mnt_release_group_id(struct vfsmount *mnt)
103 {
104 	ida_remove(&mnt_group_ida, mnt->mnt_group_id);
105 	mnt->mnt_group_id = 0;
106 }
107 
108 struct vfsmount *alloc_vfsmnt(const char *name)
109 {
110 	struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
111 	if (mnt) {
112 		int err;
113 
114 		err = mnt_alloc_id(mnt);
115 		if (err) {
116 			kmem_cache_free(mnt_cache, mnt);
117 			return NULL;
118 		}
119 
120 		atomic_set(&mnt->mnt_count, 1);
121 		INIT_LIST_HEAD(&mnt->mnt_hash);
122 		INIT_LIST_HEAD(&mnt->mnt_child);
123 		INIT_LIST_HEAD(&mnt->mnt_mounts);
124 		INIT_LIST_HEAD(&mnt->mnt_list);
125 		INIT_LIST_HEAD(&mnt->mnt_expire);
126 		INIT_LIST_HEAD(&mnt->mnt_share);
127 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
128 		INIT_LIST_HEAD(&mnt->mnt_slave);
129 		atomic_set(&mnt->__mnt_writers, 0);
130 		if (name) {
131 			int size = strlen(name) + 1;
132 			char *newname = kmalloc(size, GFP_KERNEL);
133 			if (newname) {
134 				memcpy(newname, name, size);
135 				mnt->mnt_devname = newname;
136 			}
137 		}
138 	}
139 	return mnt;
140 }
141 
142 /*
143  * Most r/o checks on a fs are for operations that take
144  * discrete amounts of time, like a write() or unlink().
145  * We must keep track of when those operations start
146  * (for permission checks) and when they end, so that
147  * we can determine when writes are able to occur to
148  * a filesystem.
149  */
150 /*
151  * __mnt_is_readonly: check whether a mount is read-only
152  * @mnt: the mount to check for its write status
153  *
154  * This shouldn't be used directly ouside of the VFS.
155  * It does not guarantee that the filesystem will stay
156  * r/w, just that it is right *now*.  This can not and
157  * should not be used in place of IS_RDONLY(inode).
158  * mnt_want/drop_write() will _keep_ the filesystem
159  * r/w.
160  */
161 int __mnt_is_readonly(struct vfsmount *mnt)
162 {
163 	if (mnt->mnt_flags & MNT_READONLY)
164 		return 1;
165 	if (mnt->mnt_sb->s_flags & MS_RDONLY)
166 		return 1;
167 	return 0;
168 }
169 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
170 
171 struct mnt_writer {
172 	/*
173 	 * If holding multiple instances of this lock, they
174 	 * must be ordered by cpu number.
175 	 */
176 	spinlock_t lock;
177 	struct lock_class_key lock_class; /* compiles out with !lockdep */
178 	unsigned long count;
179 	struct vfsmount *mnt;
180 } ____cacheline_aligned_in_smp;
181 static DEFINE_PER_CPU(struct mnt_writer, mnt_writers);
182 
183 static int __init init_mnt_writers(void)
184 {
185 	int cpu;
186 	for_each_possible_cpu(cpu) {
187 		struct mnt_writer *writer = &per_cpu(mnt_writers, cpu);
188 		spin_lock_init(&writer->lock);
189 		lockdep_set_class(&writer->lock, &writer->lock_class);
190 		writer->count = 0;
191 	}
192 	return 0;
193 }
194 fs_initcall(init_mnt_writers);
195 
196 static void unlock_mnt_writers(void)
197 {
198 	int cpu;
199 	struct mnt_writer *cpu_writer;
200 
201 	for_each_possible_cpu(cpu) {
202 		cpu_writer = &per_cpu(mnt_writers, cpu);
203 		spin_unlock(&cpu_writer->lock);
204 	}
205 }
206 
207 static inline void __clear_mnt_count(struct mnt_writer *cpu_writer)
208 {
209 	if (!cpu_writer->mnt)
210 		return;
211 	/*
212 	 * This is in case anyone ever leaves an invalid,
213 	 * old ->mnt and a count of 0.
214 	 */
215 	if (!cpu_writer->count)
216 		return;
217 	atomic_add(cpu_writer->count, &cpu_writer->mnt->__mnt_writers);
218 	cpu_writer->count = 0;
219 }
220  /*
221  * must hold cpu_writer->lock
222  */
223 static inline void use_cpu_writer_for_mount(struct mnt_writer *cpu_writer,
224 					  struct vfsmount *mnt)
225 {
226 	if (cpu_writer->mnt == mnt)
227 		return;
228 	__clear_mnt_count(cpu_writer);
229 	cpu_writer->mnt = mnt;
230 }
231 
232 /*
233  * Most r/o checks on a fs are for operations that take
234  * discrete amounts of time, like a write() or unlink().
235  * We must keep track of when those operations start
236  * (for permission checks) and when they end, so that
237  * we can determine when writes are able to occur to
238  * a filesystem.
239  */
240 /**
241  * mnt_want_write - get write access to a mount
242  * @mnt: the mount on which to take a write
243  *
244  * This tells the low-level filesystem that a write is
245  * about to be performed to it, and makes sure that
246  * writes are allowed before returning success.  When
247  * the write operation is finished, mnt_drop_write()
248  * must be called.  This is effectively a refcount.
249  */
250 int mnt_want_write(struct vfsmount *mnt)
251 {
252 	int ret = 0;
253 	struct mnt_writer *cpu_writer;
254 
255 	cpu_writer = &get_cpu_var(mnt_writers);
256 	spin_lock(&cpu_writer->lock);
257 	if (__mnt_is_readonly(mnt)) {
258 		ret = -EROFS;
259 		goto out;
260 	}
261 	use_cpu_writer_for_mount(cpu_writer, mnt);
262 	cpu_writer->count++;
263 out:
264 	spin_unlock(&cpu_writer->lock);
265 	put_cpu_var(mnt_writers);
266 	return ret;
267 }
268 EXPORT_SYMBOL_GPL(mnt_want_write);
269 
270 static void lock_mnt_writers(void)
271 {
272 	int cpu;
273 	struct mnt_writer *cpu_writer;
274 
275 	for_each_possible_cpu(cpu) {
276 		cpu_writer = &per_cpu(mnt_writers, cpu);
277 		spin_lock(&cpu_writer->lock);
278 		__clear_mnt_count(cpu_writer);
279 		cpu_writer->mnt = NULL;
280 	}
281 }
282 
283 /*
284  * These per-cpu write counts are not guaranteed to have
285  * matched increments and decrements on any given cpu.
286  * A file open()ed for write on one cpu and close()d on
287  * another cpu will imbalance this count.  Make sure it
288  * does not get too far out of whack.
289  */
290 static void handle_write_count_underflow(struct vfsmount *mnt)
291 {
292 	if (atomic_read(&mnt->__mnt_writers) >=
293 	    MNT_WRITER_UNDERFLOW_LIMIT)
294 		return;
295 	/*
296 	 * It isn't necessary to hold all of the locks
297 	 * at the same time, but doing it this way makes
298 	 * us share a lot more code.
299 	 */
300 	lock_mnt_writers();
301 	/*
302 	 * vfsmount_lock is for mnt_flags.
303 	 */
304 	spin_lock(&vfsmount_lock);
305 	/*
306 	 * If coalescing the per-cpu writer counts did not
307 	 * get us back to a positive writer count, we have
308 	 * a bug.
309 	 */
310 	if ((atomic_read(&mnt->__mnt_writers) < 0) &&
311 	    !(mnt->mnt_flags & MNT_IMBALANCED_WRITE_COUNT)) {
312 		printk(KERN_DEBUG "leak detected on mount(%p) writers "
313 				"count: %d\n",
314 			mnt, atomic_read(&mnt->__mnt_writers));
315 		WARN_ON(1);
316 		/* use the flag to keep the dmesg spam down */
317 		mnt->mnt_flags |= MNT_IMBALANCED_WRITE_COUNT;
318 	}
319 	spin_unlock(&vfsmount_lock);
320 	unlock_mnt_writers();
321 }
322 
323 /**
324  * mnt_drop_write - give up write access to a mount
325  * @mnt: the mount on which to give up write access
326  *
327  * Tells the low-level filesystem that we are done
328  * performing writes to it.  Must be matched with
329  * mnt_want_write() call above.
330  */
331 void mnt_drop_write(struct vfsmount *mnt)
332 {
333 	int must_check_underflow = 0;
334 	struct mnt_writer *cpu_writer;
335 
336 	cpu_writer = &get_cpu_var(mnt_writers);
337 	spin_lock(&cpu_writer->lock);
338 
339 	use_cpu_writer_for_mount(cpu_writer, mnt);
340 	if (cpu_writer->count > 0) {
341 		cpu_writer->count--;
342 	} else {
343 		must_check_underflow = 1;
344 		atomic_dec(&mnt->__mnt_writers);
345 	}
346 
347 	spin_unlock(&cpu_writer->lock);
348 	/*
349 	 * Logically, we could call this each time,
350 	 * but the __mnt_writers cacheline tends to
351 	 * be cold, and makes this expensive.
352 	 */
353 	if (must_check_underflow)
354 		handle_write_count_underflow(mnt);
355 	/*
356 	 * This could be done right after the spinlock
357 	 * is taken because the spinlock keeps us on
358 	 * the cpu, and disables preemption.  However,
359 	 * putting it here bounds the amount that
360 	 * __mnt_writers can underflow.  Without it,
361 	 * we could theoretically wrap __mnt_writers.
362 	 */
363 	put_cpu_var(mnt_writers);
364 }
365 EXPORT_SYMBOL_GPL(mnt_drop_write);
366 
367 static int mnt_make_readonly(struct vfsmount *mnt)
368 {
369 	int ret = 0;
370 
371 	lock_mnt_writers();
372 	/*
373 	 * With all the locks held, this value is stable
374 	 */
375 	if (atomic_read(&mnt->__mnt_writers) > 0) {
376 		ret = -EBUSY;
377 		goto out;
378 	}
379 	/*
380 	 * nobody can do a successful mnt_want_write() with all
381 	 * of the counts in MNT_DENIED_WRITE and the locks held.
382 	 */
383 	spin_lock(&vfsmount_lock);
384 	if (!ret)
385 		mnt->mnt_flags |= MNT_READONLY;
386 	spin_unlock(&vfsmount_lock);
387 out:
388 	unlock_mnt_writers();
389 	return ret;
390 }
391 
392 static void __mnt_unmake_readonly(struct vfsmount *mnt)
393 {
394 	spin_lock(&vfsmount_lock);
395 	mnt->mnt_flags &= ~MNT_READONLY;
396 	spin_unlock(&vfsmount_lock);
397 }
398 
399 int simple_set_mnt(struct vfsmount *mnt, struct super_block *sb)
400 {
401 	mnt->mnt_sb = sb;
402 	mnt->mnt_root = dget(sb->s_root);
403 	return 0;
404 }
405 
406 EXPORT_SYMBOL(simple_set_mnt);
407 
408 void free_vfsmnt(struct vfsmount *mnt)
409 {
410 	kfree(mnt->mnt_devname);
411 	mnt_free_id(mnt);
412 	kmem_cache_free(mnt_cache, mnt);
413 }
414 
415 /*
416  * find the first or last mount at @dentry on vfsmount @mnt depending on
417  * @dir. If @dir is set return the first mount else return the last mount.
418  */
419 struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
420 			      int dir)
421 {
422 	struct list_head *head = mount_hashtable + hash(mnt, dentry);
423 	struct list_head *tmp = head;
424 	struct vfsmount *p, *found = NULL;
425 
426 	for (;;) {
427 		tmp = dir ? tmp->next : tmp->prev;
428 		p = NULL;
429 		if (tmp == head)
430 			break;
431 		p = list_entry(tmp, struct vfsmount, mnt_hash);
432 		if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
433 			found = p;
434 			break;
435 		}
436 	}
437 	return found;
438 }
439 
440 /*
441  * lookup_mnt increments the ref count before returning
442  * the vfsmount struct.
443  */
444 struct vfsmount *lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
445 {
446 	struct vfsmount *child_mnt;
447 	spin_lock(&vfsmount_lock);
448 	if ((child_mnt = __lookup_mnt(mnt, dentry, 1)))
449 		mntget(child_mnt);
450 	spin_unlock(&vfsmount_lock);
451 	return child_mnt;
452 }
453 
454 static inline int check_mnt(struct vfsmount *mnt)
455 {
456 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
457 }
458 
459 static void touch_mnt_namespace(struct mnt_namespace *ns)
460 {
461 	if (ns) {
462 		ns->event = ++event;
463 		wake_up_interruptible(&ns->poll);
464 	}
465 }
466 
467 static void __touch_mnt_namespace(struct mnt_namespace *ns)
468 {
469 	if (ns && ns->event != event) {
470 		ns->event = event;
471 		wake_up_interruptible(&ns->poll);
472 	}
473 }
474 
475 static void detach_mnt(struct vfsmount *mnt, struct path *old_path)
476 {
477 	old_path->dentry = mnt->mnt_mountpoint;
478 	old_path->mnt = mnt->mnt_parent;
479 	mnt->mnt_parent = mnt;
480 	mnt->mnt_mountpoint = mnt->mnt_root;
481 	list_del_init(&mnt->mnt_child);
482 	list_del_init(&mnt->mnt_hash);
483 	old_path->dentry->d_mounted--;
484 }
485 
486 void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
487 			struct vfsmount *child_mnt)
488 {
489 	child_mnt->mnt_parent = mntget(mnt);
490 	child_mnt->mnt_mountpoint = dget(dentry);
491 	dentry->d_mounted++;
492 }
493 
494 static void attach_mnt(struct vfsmount *mnt, struct path *path)
495 {
496 	mnt_set_mountpoint(path->mnt, path->dentry, mnt);
497 	list_add_tail(&mnt->mnt_hash, mount_hashtable +
498 			hash(path->mnt, path->dentry));
499 	list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts);
500 }
501 
502 /*
503  * the caller must hold vfsmount_lock
504  */
505 static void commit_tree(struct vfsmount *mnt)
506 {
507 	struct vfsmount *parent = mnt->mnt_parent;
508 	struct vfsmount *m;
509 	LIST_HEAD(head);
510 	struct mnt_namespace *n = parent->mnt_ns;
511 
512 	BUG_ON(parent == mnt);
513 
514 	list_add_tail(&head, &mnt->mnt_list);
515 	list_for_each_entry(m, &head, mnt_list)
516 		m->mnt_ns = n;
517 	list_splice(&head, n->list.prev);
518 
519 	list_add_tail(&mnt->mnt_hash, mount_hashtable +
520 				hash(parent, mnt->mnt_mountpoint));
521 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
522 	touch_mnt_namespace(n);
523 }
524 
525 static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
526 {
527 	struct list_head *next = p->mnt_mounts.next;
528 	if (next == &p->mnt_mounts) {
529 		while (1) {
530 			if (p == root)
531 				return NULL;
532 			next = p->mnt_child.next;
533 			if (next != &p->mnt_parent->mnt_mounts)
534 				break;
535 			p = p->mnt_parent;
536 		}
537 	}
538 	return list_entry(next, struct vfsmount, mnt_child);
539 }
540 
541 static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
542 {
543 	struct list_head *prev = p->mnt_mounts.prev;
544 	while (prev != &p->mnt_mounts) {
545 		p = list_entry(prev, struct vfsmount, mnt_child);
546 		prev = p->mnt_mounts.prev;
547 	}
548 	return p;
549 }
550 
551 static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
552 					int flag)
553 {
554 	struct super_block *sb = old->mnt_sb;
555 	struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
556 
557 	if (mnt) {
558 		if (flag & (CL_SLAVE | CL_PRIVATE))
559 			mnt->mnt_group_id = 0; /* not a peer of original */
560 		else
561 			mnt->mnt_group_id = old->mnt_group_id;
562 
563 		if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
564 			int err = mnt_alloc_group_id(mnt);
565 			if (err)
566 				goto out_free;
567 		}
568 
569 		mnt->mnt_flags = old->mnt_flags;
570 		atomic_inc(&sb->s_active);
571 		mnt->mnt_sb = sb;
572 		mnt->mnt_root = dget(root);
573 		mnt->mnt_mountpoint = mnt->mnt_root;
574 		mnt->mnt_parent = mnt;
575 
576 		if (flag & CL_SLAVE) {
577 			list_add(&mnt->mnt_slave, &old->mnt_slave_list);
578 			mnt->mnt_master = old;
579 			CLEAR_MNT_SHARED(mnt);
580 		} else if (!(flag & CL_PRIVATE)) {
581 			if ((flag & CL_PROPAGATION) || IS_MNT_SHARED(old))
582 				list_add(&mnt->mnt_share, &old->mnt_share);
583 			if (IS_MNT_SLAVE(old))
584 				list_add(&mnt->mnt_slave, &old->mnt_slave);
585 			mnt->mnt_master = old->mnt_master;
586 		}
587 		if (flag & CL_MAKE_SHARED)
588 			set_mnt_shared(mnt);
589 
590 		/* stick the duplicate mount on the same expiry list
591 		 * as the original if that was on one */
592 		if (flag & CL_EXPIRE) {
593 			if (!list_empty(&old->mnt_expire))
594 				list_add(&mnt->mnt_expire, &old->mnt_expire);
595 		}
596 	}
597 	return mnt;
598 
599  out_free:
600 	free_vfsmnt(mnt);
601 	return NULL;
602 }
603 
604 static inline void __mntput(struct vfsmount *mnt)
605 {
606 	int cpu;
607 	struct super_block *sb = mnt->mnt_sb;
608 	/*
609 	 * We don't have to hold all of the locks at the
610 	 * same time here because we know that we're the
611 	 * last reference to mnt and that no new writers
612 	 * can come in.
613 	 */
614 	for_each_possible_cpu(cpu) {
615 		struct mnt_writer *cpu_writer = &per_cpu(mnt_writers, cpu);
616 		if (cpu_writer->mnt != mnt)
617 			continue;
618 		spin_lock(&cpu_writer->lock);
619 		atomic_add(cpu_writer->count, &mnt->__mnt_writers);
620 		cpu_writer->count = 0;
621 		/*
622 		 * Might as well do this so that no one
623 		 * ever sees the pointer and expects
624 		 * it to be valid.
625 		 */
626 		cpu_writer->mnt = NULL;
627 		spin_unlock(&cpu_writer->lock);
628 	}
629 	/*
630 	 * This probably indicates that somebody messed
631 	 * up a mnt_want/drop_write() pair.  If this
632 	 * happens, the filesystem was probably unable
633 	 * to make r/w->r/o transitions.
634 	 */
635 	WARN_ON(atomic_read(&mnt->__mnt_writers));
636 	dput(mnt->mnt_root);
637 	free_vfsmnt(mnt);
638 	deactivate_super(sb);
639 }
640 
641 void mntput_no_expire(struct vfsmount *mnt)
642 {
643 repeat:
644 	if (atomic_dec_and_lock(&mnt->mnt_count, &vfsmount_lock)) {
645 		if (likely(!mnt->mnt_pinned)) {
646 			spin_unlock(&vfsmount_lock);
647 			__mntput(mnt);
648 			return;
649 		}
650 		atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count);
651 		mnt->mnt_pinned = 0;
652 		spin_unlock(&vfsmount_lock);
653 		acct_auto_close_mnt(mnt);
654 		security_sb_umount_close(mnt);
655 		goto repeat;
656 	}
657 }
658 
659 EXPORT_SYMBOL(mntput_no_expire);
660 
661 void mnt_pin(struct vfsmount *mnt)
662 {
663 	spin_lock(&vfsmount_lock);
664 	mnt->mnt_pinned++;
665 	spin_unlock(&vfsmount_lock);
666 }
667 
668 EXPORT_SYMBOL(mnt_pin);
669 
670 void mnt_unpin(struct vfsmount *mnt)
671 {
672 	spin_lock(&vfsmount_lock);
673 	if (mnt->mnt_pinned) {
674 		atomic_inc(&mnt->mnt_count);
675 		mnt->mnt_pinned--;
676 	}
677 	spin_unlock(&vfsmount_lock);
678 }
679 
680 EXPORT_SYMBOL(mnt_unpin);
681 
682 static inline void mangle(struct seq_file *m, const char *s)
683 {
684 	seq_escape(m, s, " \t\n\\");
685 }
686 
687 /*
688  * Simple .show_options callback for filesystems which don't want to
689  * implement more complex mount option showing.
690  *
691  * See also save_mount_options().
692  */
693 int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
694 {
695 	const char *options = mnt->mnt_sb->s_options;
696 
697 	if (options != NULL && options[0]) {
698 		seq_putc(m, ',');
699 		mangle(m, options);
700 	}
701 
702 	return 0;
703 }
704 EXPORT_SYMBOL(generic_show_options);
705 
706 /*
707  * If filesystem uses generic_show_options(), this function should be
708  * called from the fill_super() callback.
709  *
710  * The .remount_fs callback usually needs to be handled in a special
711  * way, to make sure, that previous options are not overwritten if the
712  * remount fails.
713  *
714  * Also note, that if the filesystem's .remount_fs function doesn't
715  * reset all options to their default value, but changes only newly
716  * given options, then the displayed options will not reflect reality
717  * any more.
718  */
719 void save_mount_options(struct super_block *sb, char *options)
720 {
721 	kfree(sb->s_options);
722 	sb->s_options = kstrdup(options, GFP_KERNEL);
723 }
724 EXPORT_SYMBOL(save_mount_options);
725 
726 #ifdef CONFIG_PROC_FS
727 /* iterator */
728 static void *m_start(struct seq_file *m, loff_t *pos)
729 {
730 	struct proc_mounts *p = m->private;
731 
732 	down_read(&namespace_sem);
733 	return seq_list_start(&p->ns->list, *pos);
734 }
735 
736 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
737 {
738 	struct proc_mounts *p = m->private;
739 
740 	return seq_list_next(v, &p->ns->list, pos);
741 }
742 
743 static void m_stop(struct seq_file *m, void *v)
744 {
745 	up_read(&namespace_sem);
746 }
747 
748 struct proc_fs_info {
749 	int flag;
750 	const char *str;
751 };
752 
753 static int show_sb_opts(struct seq_file *m, struct super_block *sb)
754 {
755 	static const struct proc_fs_info fs_info[] = {
756 		{ MS_SYNCHRONOUS, ",sync" },
757 		{ MS_DIRSYNC, ",dirsync" },
758 		{ MS_MANDLOCK, ",mand" },
759 		{ 0, NULL }
760 	};
761 	const struct proc_fs_info *fs_infop;
762 
763 	for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
764 		if (sb->s_flags & fs_infop->flag)
765 			seq_puts(m, fs_infop->str);
766 	}
767 
768 	return security_sb_show_options(m, sb);
769 }
770 
771 static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt)
772 {
773 	static const struct proc_fs_info mnt_info[] = {
774 		{ MNT_NOSUID, ",nosuid" },
775 		{ MNT_NODEV, ",nodev" },
776 		{ MNT_NOEXEC, ",noexec" },
777 		{ MNT_NOATIME, ",noatime" },
778 		{ MNT_NODIRATIME, ",nodiratime" },
779 		{ MNT_RELATIME, ",relatime" },
780 		{ 0, NULL }
781 	};
782 	const struct proc_fs_info *fs_infop;
783 
784 	for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
785 		if (mnt->mnt_flags & fs_infop->flag)
786 			seq_puts(m, fs_infop->str);
787 	}
788 }
789 
790 static void show_type(struct seq_file *m, struct super_block *sb)
791 {
792 	mangle(m, sb->s_type->name);
793 	if (sb->s_subtype && sb->s_subtype[0]) {
794 		seq_putc(m, '.');
795 		mangle(m, sb->s_subtype);
796 	}
797 }
798 
799 static int show_vfsmnt(struct seq_file *m, void *v)
800 {
801 	struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
802 	int err = 0;
803 	struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
804 
805 	mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
806 	seq_putc(m, ' ');
807 	seq_path(m, &mnt_path, " \t\n\\");
808 	seq_putc(m, ' ');
809 	show_type(m, mnt->mnt_sb);
810 	seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw");
811 	err = show_sb_opts(m, mnt->mnt_sb);
812 	if (err)
813 		goto out;
814 	show_mnt_opts(m, mnt);
815 	if (mnt->mnt_sb->s_op->show_options)
816 		err = mnt->mnt_sb->s_op->show_options(m, mnt);
817 	seq_puts(m, " 0 0\n");
818 out:
819 	return err;
820 }
821 
822 const struct seq_operations mounts_op = {
823 	.start	= m_start,
824 	.next	= m_next,
825 	.stop	= m_stop,
826 	.show	= show_vfsmnt
827 };
828 
829 static int show_mountinfo(struct seq_file *m, void *v)
830 {
831 	struct proc_mounts *p = m->private;
832 	struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
833 	struct super_block *sb = mnt->mnt_sb;
834 	struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
835 	struct path root = p->root;
836 	int err = 0;
837 
838 	seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, mnt->mnt_parent->mnt_id,
839 		   MAJOR(sb->s_dev), MINOR(sb->s_dev));
840 	seq_dentry(m, mnt->mnt_root, " \t\n\\");
841 	seq_putc(m, ' ');
842 	seq_path_root(m, &mnt_path, &root, " \t\n\\");
843 	if (root.mnt != p->root.mnt || root.dentry != p->root.dentry) {
844 		/*
845 		 * Mountpoint is outside root, discard that one.  Ugly,
846 		 * but less so than trying to do that in iterator in a
847 		 * race-free way (due to renames).
848 		 */
849 		return SEQ_SKIP;
850 	}
851 	seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw");
852 	show_mnt_opts(m, mnt);
853 
854 	/* Tagged fields ("foo:X" or "bar") */
855 	if (IS_MNT_SHARED(mnt))
856 		seq_printf(m, " shared:%i", mnt->mnt_group_id);
857 	if (IS_MNT_SLAVE(mnt)) {
858 		int master = mnt->mnt_master->mnt_group_id;
859 		int dom = get_dominating_id(mnt, &p->root);
860 		seq_printf(m, " master:%i", master);
861 		if (dom && dom != master)
862 			seq_printf(m, " propagate_from:%i", dom);
863 	}
864 	if (IS_MNT_UNBINDABLE(mnt))
865 		seq_puts(m, " unbindable");
866 
867 	/* Filesystem specific data */
868 	seq_puts(m, " - ");
869 	show_type(m, sb);
870 	seq_putc(m, ' ');
871 	mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
872 	seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw");
873 	err = show_sb_opts(m, sb);
874 	if (err)
875 		goto out;
876 	if (sb->s_op->show_options)
877 		err = sb->s_op->show_options(m, mnt);
878 	seq_putc(m, '\n');
879 out:
880 	return err;
881 }
882 
883 const struct seq_operations mountinfo_op = {
884 	.start	= m_start,
885 	.next	= m_next,
886 	.stop	= m_stop,
887 	.show	= show_mountinfo,
888 };
889 
890 static int show_vfsstat(struct seq_file *m, void *v)
891 {
892 	struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
893 	struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
894 	int err = 0;
895 
896 	/* device */
897 	if (mnt->mnt_devname) {
898 		seq_puts(m, "device ");
899 		mangle(m, mnt->mnt_devname);
900 	} else
901 		seq_puts(m, "no device");
902 
903 	/* mount point */
904 	seq_puts(m, " mounted on ");
905 	seq_path(m, &mnt_path, " \t\n\\");
906 	seq_putc(m, ' ');
907 
908 	/* file system type */
909 	seq_puts(m, "with fstype ");
910 	show_type(m, mnt->mnt_sb);
911 
912 	/* optional statistics */
913 	if (mnt->mnt_sb->s_op->show_stats) {
914 		seq_putc(m, ' ');
915 		err = mnt->mnt_sb->s_op->show_stats(m, mnt);
916 	}
917 
918 	seq_putc(m, '\n');
919 	return err;
920 }
921 
922 const struct seq_operations mountstats_op = {
923 	.start	= m_start,
924 	.next	= m_next,
925 	.stop	= m_stop,
926 	.show	= show_vfsstat,
927 };
928 #endif  /* CONFIG_PROC_FS */
929 
930 /**
931  * may_umount_tree - check if a mount tree is busy
932  * @mnt: root of mount tree
933  *
934  * This is called to check if a tree of mounts has any
935  * open files, pwds, chroots or sub mounts that are
936  * busy.
937  */
938 int may_umount_tree(struct vfsmount *mnt)
939 {
940 	int actual_refs = 0;
941 	int minimum_refs = 0;
942 	struct vfsmount *p;
943 
944 	spin_lock(&vfsmount_lock);
945 	for (p = mnt; p; p = next_mnt(p, mnt)) {
946 		actual_refs += atomic_read(&p->mnt_count);
947 		minimum_refs += 2;
948 	}
949 	spin_unlock(&vfsmount_lock);
950 
951 	if (actual_refs > minimum_refs)
952 		return 0;
953 
954 	return 1;
955 }
956 
957 EXPORT_SYMBOL(may_umount_tree);
958 
959 /**
960  * may_umount - check if a mount point is busy
961  * @mnt: root of mount
962  *
963  * This is called to check if a mount point has any
964  * open files, pwds, chroots or sub mounts. If the
965  * mount has sub mounts this will return busy
966  * regardless of whether the sub mounts are busy.
967  *
968  * Doesn't take quota and stuff into account. IOW, in some cases it will
969  * give false negatives. The main reason why it's here is that we need
970  * a non-destructive way to look for easily umountable filesystems.
971  */
972 int may_umount(struct vfsmount *mnt)
973 {
974 	int ret = 1;
975 	spin_lock(&vfsmount_lock);
976 	if (propagate_mount_busy(mnt, 2))
977 		ret = 0;
978 	spin_unlock(&vfsmount_lock);
979 	return ret;
980 }
981 
982 EXPORT_SYMBOL(may_umount);
983 
984 void release_mounts(struct list_head *head)
985 {
986 	struct vfsmount *mnt;
987 	while (!list_empty(head)) {
988 		mnt = list_first_entry(head, struct vfsmount, mnt_hash);
989 		list_del_init(&mnt->mnt_hash);
990 		if (mnt->mnt_parent != mnt) {
991 			struct dentry *dentry;
992 			struct vfsmount *m;
993 			spin_lock(&vfsmount_lock);
994 			dentry = mnt->mnt_mountpoint;
995 			m = mnt->mnt_parent;
996 			mnt->mnt_mountpoint = mnt->mnt_root;
997 			mnt->mnt_parent = mnt;
998 			m->mnt_ghosts--;
999 			spin_unlock(&vfsmount_lock);
1000 			dput(dentry);
1001 			mntput(m);
1002 		}
1003 		mntput(mnt);
1004 	}
1005 }
1006 
1007 void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
1008 {
1009 	struct vfsmount *p;
1010 
1011 	for (p = mnt; p; p = next_mnt(p, mnt))
1012 		list_move(&p->mnt_hash, kill);
1013 
1014 	if (propagate)
1015 		propagate_umount(kill);
1016 
1017 	list_for_each_entry(p, kill, mnt_hash) {
1018 		list_del_init(&p->mnt_expire);
1019 		list_del_init(&p->mnt_list);
1020 		__touch_mnt_namespace(p->mnt_ns);
1021 		p->mnt_ns = NULL;
1022 		list_del_init(&p->mnt_child);
1023 		if (p->mnt_parent != p) {
1024 			p->mnt_parent->mnt_ghosts++;
1025 			p->mnt_mountpoint->d_mounted--;
1026 		}
1027 		change_mnt_propagation(p, MS_PRIVATE);
1028 	}
1029 }
1030 
1031 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts);
1032 
1033 static int do_umount(struct vfsmount *mnt, int flags)
1034 {
1035 	struct super_block *sb = mnt->mnt_sb;
1036 	int retval;
1037 	LIST_HEAD(umount_list);
1038 
1039 	retval = security_sb_umount(mnt, flags);
1040 	if (retval)
1041 		return retval;
1042 
1043 	/*
1044 	 * Allow userspace to request a mountpoint be expired rather than
1045 	 * unmounting unconditionally. Unmount only happens if:
1046 	 *  (1) the mark is already set (the mark is cleared by mntput())
1047 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1048 	 */
1049 	if (flags & MNT_EXPIRE) {
1050 		if (mnt == current->fs->root.mnt ||
1051 		    flags & (MNT_FORCE | MNT_DETACH))
1052 			return -EINVAL;
1053 
1054 		if (atomic_read(&mnt->mnt_count) != 2)
1055 			return -EBUSY;
1056 
1057 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1058 			return -EAGAIN;
1059 	}
1060 
1061 	/*
1062 	 * If we may have to abort operations to get out of this
1063 	 * mount, and they will themselves hold resources we must
1064 	 * allow the fs to do things. In the Unix tradition of
1065 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1066 	 * might fail to complete on the first run through as other tasks
1067 	 * must return, and the like. Thats for the mount program to worry
1068 	 * about for the moment.
1069 	 */
1070 
1071 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1072 		lock_kernel();
1073 		sb->s_op->umount_begin(sb);
1074 		unlock_kernel();
1075 	}
1076 
1077 	/*
1078 	 * No sense to grab the lock for this test, but test itself looks
1079 	 * somewhat bogus. Suggestions for better replacement?
1080 	 * Ho-hum... In principle, we might treat that as umount + switch
1081 	 * to rootfs. GC would eventually take care of the old vfsmount.
1082 	 * Actually it makes sense, especially if rootfs would contain a
1083 	 * /reboot - static binary that would close all descriptors and
1084 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1085 	 */
1086 	if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1087 		/*
1088 		 * Special case for "unmounting" root ...
1089 		 * we just try to remount it readonly.
1090 		 */
1091 		down_write(&sb->s_umount);
1092 		if (!(sb->s_flags & MS_RDONLY)) {
1093 			lock_kernel();
1094 			retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1095 			unlock_kernel();
1096 		}
1097 		up_write(&sb->s_umount);
1098 		return retval;
1099 	}
1100 
1101 	down_write(&namespace_sem);
1102 	spin_lock(&vfsmount_lock);
1103 	event++;
1104 
1105 	if (!(flags & MNT_DETACH))
1106 		shrink_submounts(mnt, &umount_list);
1107 
1108 	retval = -EBUSY;
1109 	if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1110 		if (!list_empty(&mnt->mnt_list))
1111 			umount_tree(mnt, 1, &umount_list);
1112 		retval = 0;
1113 	}
1114 	spin_unlock(&vfsmount_lock);
1115 	if (retval)
1116 		security_sb_umount_busy(mnt);
1117 	up_write(&namespace_sem);
1118 	release_mounts(&umount_list);
1119 	return retval;
1120 }
1121 
1122 /*
1123  * Now umount can handle mount points as well as block devices.
1124  * This is important for filesystems which use unnamed block devices.
1125  *
1126  * We now support a flag for forced unmount like the other 'big iron'
1127  * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1128  */
1129 
1130 asmlinkage long sys_umount(char __user * name, int flags)
1131 {
1132 	struct nameidata nd;
1133 	int retval;
1134 
1135 	retval = __user_walk(name, LOOKUP_FOLLOW, &nd);
1136 	if (retval)
1137 		goto out;
1138 	retval = -EINVAL;
1139 	if (nd.path.dentry != nd.path.mnt->mnt_root)
1140 		goto dput_and_out;
1141 	if (!check_mnt(nd.path.mnt))
1142 		goto dput_and_out;
1143 
1144 	retval = -EPERM;
1145 	if (!capable(CAP_SYS_ADMIN))
1146 		goto dput_and_out;
1147 
1148 	retval = do_umount(nd.path.mnt, flags);
1149 dput_and_out:
1150 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
1151 	dput(nd.path.dentry);
1152 	mntput_no_expire(nd.path.mnt);
1153 out:
1154 	return retval;
1155 }
1156 
1157 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1158 
1159 /*
1160  *	The 2.0 compatible umount. No flags.
1161  */
1162 asmlinkage long sys_oldumount(char __user * name)
1163 {
1164 	return sys_umount(name, 0);
1165 }
1166 
1167 #endif
1168 
1169 static int mount_is_safe(struct nameidata *nd)
1170 {
1171 	if (capable(CAP_SYS_ADMIN))
1172 		return 0;
1173 	return -EPERM;
1174 #ifdef notyet
1175 	if (S_ISLNK(nd->path.dentry->d_inode->i_mode))
1176 		return -EPERM;
1177 	if (nd->path.dentry->d_inode->i_mode & S_ISVTX) {
1178 		if (current->uid != nd->path.dentry->d_inode->i_uid)
1179 			return -EPERM;
1180 	}
1181 	if (vfs_permission(nd, MAY_WRITE))
1182 		return -EPERM;
1183 	return 0;
1184 #endif
1185 }
1186 
1187 struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
1188 					int flag)
1189 {
1190 	struct vfsmount *res, *p, *q, *r, *s;
1191 	struct path path;
1192 
1193 	if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1194 		return NULL;
1195 
1196 	res = q = clone_mnt(mnt, dentry, flag);
1197 	if (!q)
1198 		goto Enomem;
1199 	q->mnt_mountpoint = mnt->mnt_mountpoint;
1200 
1201 	p = mnt;
1202 	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1203 		if (!is_subdir(r->mnt_mountpoint, dentry))
1204 			continue;
1205 
1206 		for (s = r; s; s = next_mnt(s, r)) {
1207 			if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
1208 				s = skip_mnt_tree(s);
1209 				continue;
1210 			}
1211 			while (p != s->mnt_parent) {
1212 				p = p->mnt_parent;
1213 				q = q->mnt_parent;
1214 			}
1215 			p = s;
1216 			path.mnt = q;
1217 			path.dentry = p->mnt_mountpoint;
1218 			q = clone_mnt(p, p->mnt_root, flag);
1219 			if (!q)
1220 				goto Enomem;
1221 			spin_lock(&vfsmount_lock);
1222 			list_add_tail(&q->mnt_list, &res->mnt_list);
1223 			attach_mnt(q, &path);
1224 			spin_unlock(&vfsmount_lock);
1225 		}
1226 	}
1227 	return res;
1228 Enomem:
1229 	if (res) {
1230 		LIST_HEAD(umount_list);
1231 		spin_lock(&vfsmount_lock);
1232 		umount_tree(res, 0, &umount_list);
1233 		spin_unlock(&vfsmount_lock);
1234 		release_mounts(&umount_list);
1235 	}
1236 	return NULL;
1237 }
1238 
1239 struct vfsmount *collect_mounts(struct vfsmount *mnt, struct dentry *dentry)
1240 {
1241 	struct vfsmount *tree;
1242 	down_write(&namespace_sem);
1243 	tree = copy_tree(mnt, dentry, CL_COPY_ALL | CL_PRIVATE);
1244 	up_write(&namespace_sem);
1245 	return tree;
1246 }
1247 
1248 void drop_collected_mounts(struct vfsmount *mnt)
1249 {
1250 	LIST_HEAD(umount_list);
1251 	down_write(&namespace_sem);
1252 	spin_lock(&vfsmount_lock);
1253 	umount_tree(mnt, 0, &umount_list);
1254 	spin_unlock(&vfsmount_lock);
1255 	up_write(&namespace_sem);
1256 	release_mounts(&umount_list);
1257 }
1258 
1259 static void cleanup_group_ids(struct vfsmount *mnt, struct vfsmount *end)
1260 {
1261 	struct vfsmount *p;
1262 
1263 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1264 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
1265 			mnt_release_group_id(p);
1266 	}
1267 }
1268 
1269 static int invent_group_ids(struct vfsmount *mnt, bool recurse)
1270 {
1271 	struct vfsmount *p;
1272 
1273 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1274 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1275 			int err = mnt_alloc_group_id(p);
1276 			if (err) {
1277 				cleanup_group_ids(mnt, p);
1278 				return err;
1279 			}
1280 		}
1281 	}
1282 
1283 	return 0;
1284 }
1285 
1286 /*
1287  *  @source_mnt : mount tree to be attached
1288  *  @nd         : place the mount tree @source_mnt is attached
1289  *  @parent_nd  : if non-null, detach the source_mnt from its parent and
1290  *  		   store the parent mount and mountpoint dentry.
1291  *  		   (done when source_mnt is moved)
1292  *
1293  *  NOTE: in the table below explains the semantics when a source mount
1294  *  of a given type is attached to a destination mount of a given type.
1295  * ---------------------------------------------------------------------------
1296  * |         BIND MOUNT OPERATION                                            |
1297  * |**************************************************************************
1298  * | source-->| shared        |       private  |       slave    | unbindable |
1299  * | dest     |               |                |                |            |
1300  * |   |      |               |                |                |            |
1301  * |   v      |               |                |                |            |
1302  * |**************************************************************************
1303  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
1304  * |          |               |                |                |            |
1305  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
1306  * ***************************************************************************
1307  * A bind operation clones the source mount and mounts the clone on the
1308  * destination mount.
1309  *
1310  * (++)  the cloned mount is propagated to all the mounts in the propagation
1311  * 	 tree of the destination mount and the cloned mount is added to
1312  * 	 the peer group of the source mount.
1313  * (+)   the cloned mount is created under the destination mount and is marked
1314  *       as shared. The cloned mount is added to the peer group of the source
1315  *       mount.
1316  * (+++) the mount is propagated to all the mounts in the propagation tree
1317  *       of the destination mount and the cloned mount is made slave
1318  *       of the same master as that of the source mount. The cloned mount
1319  *       is marked as 'shared and slave'.
1320  * (*)   the cloned mount is made a slave of the same master as that of the
1321  * 	 source mount.
1322  *
1323  * ---------------------------------------------------------------------------
1324  * |         		MOVE MOUNT OPERATION                                 |
1325  * |**************************************************************************
1326  * | source-->| shared        |       private  |       slave    | unbindable |
1327  * | dest     |               |                |                |            |
1328  * |   |      |               |                |                |            |
1329  * |   v      |               |                |                |            |
1330  * |**************************************************************************
1331  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
1332  * |          |               |                |                |            |
1333  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
1334  * ***************************************************************************
1335  *
1336  * (+)  the mount is moved to the destination. And is then propagated to
1337  * 	all the mounts in the propagation tree of the destination mount.
1338  * (+*)  the mount is moved to the destination.
1339  * (+++)  the mount is moved to the destination and is then propagated to
1340  * 	all the mounts belonging to the destination mount's propagation tree.
1341  * 	the mount is marked as 'shared and slave'.
1342  * (*)	the mount continues to be a slave at the new location.
1343  *
1344  * if the source mount is a tree, the operations explained above is
1345  * applied to each mount in the tree.
1346  * Must be called without spinlocks held, since this function can sleep
1347  * in allocations.
1348  */
1349 static int attach_recursive_mnt(struct vfsmount *source_mnt,
1350 			struct path *path, struct path *parent_path)
1351 {
1352 	LIST_HEAD(tree_list);
1353 	struct vfsmount *dest_mnt = path->mnt;
1354 	struct dentry *dest_dentry = path->dentry;
1355 	struct vfsmount *child, *p;
1356 	int err;
1357 
1358 	if (IS_MNT_SHARED(dest_mnt)) {
1359 		err = invent_group_ids(source_mnt, true);
1360 		if (err)
1361 			goto out;
1362 	}
1363 	err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
1364 	if (err)
1365 		goto out_cleanup_ids;
1366 
1367 	if (IS_MNT_SHARED(dest_mnt)) {
1368 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1369 			set_mnt_shared(p);
1370 	}
1371 
1372 	spin_lock(&vfsmount_lock);
1373 	if (parent_path) {
1374 		detach_mnt(source_mnt, parent_path);
1375 		attach_mnt(source_mnt, path);
1376 		touch_mnt_namespace(current->nsproxy->mnt_ns);
1377 	} else {
1378 		mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
1379 		commit_tree(source_mnt);
1380 	}
1381 
1382 	list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1383 		list_del_init(&child->mnt_hash);
1384 		commit_tree(child);
1385 	}
1386 	spin_unlock(&vfsmount_lock);
1387 	return 0;
1388 
1389  out_cleanup_ids:
1390 	if (IS_MNT_SHARED(dest_mnt))
1391 		cleanup_group_ids(source_mnt, NULL);
1392  out:
1393 	return err;
1394 }
1395 
1396 static int graft_tree(struct vfsmount *mnt, struct path *path)
1397 {
1398 	int err;
1399 	if (mnt->mnt_sb->s_flags & MS_NOUSER)
1400 		return -EINVAL;
1401 
1402 	if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1403 	      S_ISDIR(mnt->mnt_root->d_inode->i_mode))
1404 		return -ENOTDIR;
1405 
1406 	err = -ENOENT;
1407 	mutex_lock(&path->dentry->d_inode->i_mutex);
1408 	if (IS_DEADDIR(path->dentry->d_inode))
1409 		goto out_unlock;
1410 
1411 	err = security_sb_check_sb(mnt, path);
1412 	if (err)
1413 		goto out_unlock;
1414 
1415 	err = -ENOENT;
1416 	if (IS_ROOT(path->dentry) || !d_unhashed(path->dentry))
1417 		err = attach_recursive_mnt(mnt, path, NULL);
1418 out_unlock:
1419 	mutex_unlock(&path->dentry->d_inode->i_mutex);
1420 	if (!err)
1421 		security_sb_post_addmount(mnt, path);
1422 	return err;
1423 }
1424 
1425 /*
1426  * recursively change the type of the mountpoint.
1427  * noinline this do_mount helper to save do_mount stack space.
1428  */
1429 static noinline int do_change_type(struct nameidata *nd, int flag)
1430 {
1431 	struct vfsmount *m, *mnt = nd->path.mnt;
1432 	int recurse = flag & MS_REC;
1433 	int type = flag & ~MS_REC;
1434 	int err = 0;
1435 
1436 	if (!capable(CAP_SYS_ADMIN))
1437 		return -EPERM;
1438 
1439 	if (nd->path.dentry != nd->path.mnt->mnt_root)
1440 		return -EINVAL;
1441 
1442 	down_write(&namespace_sem);
1443 	if (type == MS_SHARED) {
1444 		err = invent_group_ids(mnt, recurse);
1445 		if (err)
1446 			goto out_unlock;
1447 	}
1448 
1449 	spin_lock(&vfsmount_lock);
1450 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1451 		change_mnt_propagation(m, type);
1452 	spin_unlock(&vfsmount_lock);
1453 
1454  out_unlock:
1455 	up_write(&namespace_sem);
1456 	return err;
1457 }
1458 
1459 /*
1460  * do loopback mount.
1461  * noinline this do_mount helper to save do_mount stack space.
1462  */
1463 static noinline int do_loopback(struct nameidata *nd, char *old_name,
1464 				int recurse)
1465 {
1466 	struct nameidata old_nd;
1467 	struct vfsmount *mnt = NULL;
1468 	int err = mount_is_safe(nd);
1469 	if (err)
1470 		return err;
1471 	if (!old_name || !*old_name)
1472 		return -EINVAL;
1473 	err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
1474 	if (err)
1475 		return err;
1476 
1477 	down_write(&namespace_sem);
1478 	err = -EINVAL;
1479 	if (IS_MNT_UNBINDABLE(old_nd.path.mnt))
1480 		goto out;
1481 
1482 	if (!check_mnt(nd->path.mnt) || !check_mnt(old_nd.path.mnt))
1483 		goto out;
1484 
1485 	err = -ENOMEM;
1486 	if (recurse)
1487 		mnt = copy_tree(old_nd.path.mnt, old_nd.path.dentry, 0);
1488 	else
1489 		mnt = clone_mnt(old_nd.path.mnt, old_nd.path.dentry, 0);
1490 
1491 	if (!mnt)
1492 		goto out;
1493 
1494 	err = graft_tree(mnt, &nd->path);
1495 	if (err) {
1496 		LIST_HEAD(umount_list);
1497 		spin_lock(&vfsmount_lock);
1498 		umount_tree(mnt, 0, &umount_list);
1499 		spin_unlock(&vfsmount_lock);
1500 		release_mounts(&umount_list);
1501 	}
1502 
1503 out:
1504 	up_write(&namespace_sem);
1505 	path_put(&old_nd.path);
1506 	return err;
1507 }
1508 
1509 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1510 {
1511 	int error = 0;
1512 	int readonly_request = 0;
1513 
1514 	if (ms_flags & MS_RDONLY)
1515 		readonly_request = 1;
1516 	if (readonly_request == __mnt_is_readonly(mnt))
1517 		return 0;
1518 
1519 	if (readonly_request)
1520 		error = mnt_make_readonly(mnt);
1521 	else
1522 		__mnt_unmake_readonly(mnt);
1523 	return error;
1524 }
1525 
1526 /*
1527  * change filesystem flags. dir should be a physical root of filesystem.
1528  * If you've mounted a non-root directory somewhere and want to do remount
1529  * on it - tough luck.
1530  * noinline this do_mount helper to save do_mount stack space.
1531  */
1532 static noinline int do_remount(struct nameidata *nd, int flags, int mnt_flags,
1533 		      void *data)
1534 {
1535 	int err;
1536 	struct super_block *sb = nd->path.mnt->mnt_sb;
1537 
1538 	if (!capable(CAP_SYS_ADMIN))
1539 		return -EPERM;
1540 
1541 	if (!check_mnt(nd->path.mnt))
1542 		return -EINVAL;
1543 
1544 	if (nd->path.dentry != nd->path.mnt->mnt_root)
1545 		return -EINVAL;
1546 
1547 	down_write(&sb->s_umount);
1548 	if (flags & MS_BIND)
1549 		err = change_mount_flags(nd->path.mnt, flags);
1550 	else
1551 		err = do_remount_sb(sb, flags, data, 0);
1552 	if (!err)
1553 		nd->path.mnt->mnt_flags = mnt_flags;
1554 	up_write(&sb->s_umount);
1555 	if (!err)
1556 		security_sb_post_remount(nd->path.mnt, flags, data);
1557 	return err;
1558 }
1559 
1560 static inline int tree_contains_unbindable(struct vfsmount *mnt)
1561 {
1562 	struct vfsmount *p;
1563 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1564 		if (IS_MNT_UNBINDABLE(p))
1565 			return 1;
1566 	}
1567 	return 0;
1568 }
1569 
1570 /*
1571  * noinline this do_mount helper to save do_mount stack space.
1572  */
1573 static noinline int do_move_mount(struct nameidata *nd, char *old_name)
1574 {
1575 	struct nameidata old_nd;
1576 	struct path parent_path;
1577 	struct vfsmount *p;
1578 	int err = 0;
1579 	if (!capable(CAP_SYS_ADMIN))
1580 		return -EPERM;
1581 	if (!old_name || !*old_name)
1582 		return -EINVAL;
1583 	err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
1584 	if (err)
1585 		return err;
1586 
1587 	down_write(&namespace_sem);
1588 	while (d_mountpoint(nd->path.dentry) &&
1589 	       follow_down(&nd->path.mnt, &nd->path.dentry))
1590 		;
1591 	err = -EINVAL;
1592 	if (!check_mnt(nd->path.mnt) || !check_mnt(old_nd.path.mnt))
1593 		goto out;
1594 
1595 	err = -ENOENT;
1596 	mutex_lock(&nd->path.dentry->d_inode->i_mutex);
1597 	if (IS_DEADDIR(nd->path.dentry->d_inode))
1598 		goto out1;
1599 
1600 	if (!IS_ROOT(nd->path.dentry) && d_unhashed(nd->path.dentry))
1601 		goto out1;
1602 
1603 	err = -EINVAL;
1604 	if (old_nd.path.dentry != old_nd.path.mnt->mnt_root)
1605 		goto out1;
1606 
1607 	if (old_nd.path.mnt == old_nd.path.mnt->mnt_parent)
1608 		goto out1;
1609 
1610 	if (S_ISDIR(nd->path.dentry->d_inode->i_mode) !=
1611 	      S_ISDIR(old_nd.path.dentry->d_inode->i_mode))
1612 		goto out1;
1613 	/*
1614 	 * Don't move a mount residing in a shared parent.
1615 	 */
1616 	if (old_nd.path.mnt->mnt_parent &&
1617 	    IS_MNT_SHARED(old_nd.path.mnt->mnt_parent))
1618 		goto out1;
1619 	/*
1620 	 * Don't move a mount tree containing unbindable mounts to a destination
1621 	 * mount which is shared.
1622 	 */
1623 	if (IS_MNT_SHARED(nd->path.mnt) &&
1624 	    tree_contains_unbindable(old_nd.path.mnt))
1625 		goto out1;
1626 	err = -ELOOP;
1627 	for (p = nd->path.mnt; p->mnt_parent != p; p = p->mnt_parent)
1628 		if (p == old_nd.path.mnt)
1629 			goto out1;
1630 
1631 	err = attach_recursive_mnt(old_nd.path.mnt, &nd->path, &parent_path);
1632 	if (err)
1633 		goto out1;
1634 
1635 	/* if the mount is moved, it should no longer be expire
1636 	 * automatically */
1637 	list_del_init(&old_nd.path.mnt->mnt_expire);
1638 out1:
1639 	mutex_unlock(&nd->path.dentry->d_inode->i_mutex);
1640 out:
1641 	up_write(&namespace_sem);
1642 	if (!err)
1643 		path_put(&parent_path);
1644 	path_put(&old_nd.path);
1645 	return err;
1646 }
1647 
1648 /*
1649  * create a new mount for userspace and request it to be added into the
1650  * namespace's tree
1651  * noinline this do_mount helper to save do_mount stack space.
1652  */
1653 static noinline int do_new_mount(struct nameidata *nd, char *type, int flags,
1654 			int mnt_flags, char *name, void *data)
1655 {
1656 	struct vfsmount *mnt;
1657 
1658 	if (!type || !memchr(type, 0, PAGE_SIZE))
1659 		return -EINVAL;
1660 
1661 	/* we need capabilities... */
1662 	if (!capable(CAP_SYS_ADMIN))
1663 		return -EPERM;
1664 
1665 	mnt = do_kern_mount(type, flags, name, data);
1666 	if (IS_ERR(mnt))
1667 		return PTR_ERR(mnt);
1668 
1669 	return do_add_mount(mnt, nd, mnt_flags, NULL);
1670 }
1671 
1672 /*
1673  * add a mount into a namespace's mount tree
1674  * - provide the option of adding the new mount to an expiration list
1675  */
1676 int do_add_mount(struct vfsmount *newmnt, struct nameidata *nd,
1677 		 int mnt_flags, struct list_head *fslist)
1678 {
1679 	int err;
1680 
1681 	down_write(&namespace_sem);
1682 	/* Something was mounted here while we slept */
1683 	while (d_mountpoint(nd->path.dentry) &&
1684 	       follow_down(&nd->path.mnt, &nd->path.dentry))
1685 		;
1686 	err = -EINVAL;
1687 	if (!check_mnt(nd->path.mnt))
1688 		goto unlock;
1689 
1690 	/* Refuse the same filesystem on the same mount point */
1691 	err = -EBUSY;
1692 	if (nd->path.mnt->mnt_sb == newmnt->mnt_sb &&
1693 	    nd->path.mnt->mnt_root == nd->path.dentry)
1694 		goto unlock;
1695 
1696 	err = -EINVAL;
1697 	if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
1698 		goto unlock;
1699 
1700 	newmnt->mnt_flags = mnt_flags;
1701 	if ((err = graft_tree(newmnt, &nd->path)))
1702 		goto unlock;
1703 
1704 	if (fslist) /* add to the specified expiration list */
1705 		list_add_tail(&newmnt->mnt_expire, fslist);
1706 
1707 	up_write(&namespace_sem);
1708 	return 0;
1709 
1710 unlock:
1711 	up_write(&namespace_sem);
1712 	mntput(newmnt);
1713 	return err;
1714 }
1715 
1716 EXPORT_SYMBOL_GPL(do_add_mount);
1717 
1718 /*
1719  * process a list of expirable mountpoints with the intent of discarding any
1720  * mountpoints that aren't in use and haven't been touched since last we came
1721  * here
1722  */
1723 void mark_mounts_for_expiry(struct list_head *mounts)
1724 {
1725 	struct vfsmount *mnt, *next;
1726 	LIST_HEAD(graveyard);
1727 	LIST_HEAD(umounts);
1728 
1729 	if (list_empty(mounts))
1730 		return;
1731 
1732 	down_write(&namespace_sem);
1733 	spin_lock(&vfsmount_lock);
1734 
1735 	/* extract from the expiration list every vfsmount that matches the
1736 	 * following criteria:
1737 	 * - only referenced by its parent vfsmount
1738 	 * - still marked for expiry (marked on the last call here; marks are
1739 	 *   cleared by mntput())
1740 	 */
1741 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
1742 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1743 			propagate_mount_busy(mnt, 1))
1744 			continue;
1745 		list_move(&mnt->mnt_expire, &graveyard);
1746 	}
1747 	while (!list_empty(&graveyard)) {
1748 		mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire);
1749 		touch_mnt_namespace(mnt->mnt_ns);
1750 		umount_tree(mnt, 1, &umounts);
1751 	}
1752 	spin_unlock(&vfsmount_lock);
1753 	up_write(&namespace_sem);
1754 
1755 	release_mounts(&umounts);
1756 }
1757 
1758 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
1759 
1760 /*
1761  * Ripoff of 'select_parent()'
1762  *
1763  * search the list of submounts for a given mountpoint, and move any
1764  * shrinkable submounts to the 'graveyard' list.
1765  */
1766 static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
1767 {
1768 	struct vfsmount *this_parent = parent;
1769 	struct list_head *next;
1770 	int found = 0;
1771 
1772 repeat:
1773 	next = this_parent->mnt_mounts.next;
1774 resume:
1775 	while (next != &this_parent->mnt_mounts) {
1776 		struct list_head *tmp = next;
1777 		struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
1778 
1779 		next = tmp->next;
1780 		if (!(mnt->mnt_flags & MNT_SHRINKABLE))
1781 			continue;
1782 		/*
1783 		 * Descend a level if the d_mounts list is non-empty.
1784 		 */
1785 		if (!list_empty(&mnt->mnt_mounts)) {
1786 			this_parent = mnt;
1787 			goto repeat;
1788 		}
1789 
1790 		if (!propagate_mount_busy(mnt, 1)) {
1791 			list_move_tail(&mnt->mnt_expire, graveyard);
1792 			found++;
1793 		}
1794 	}
1795 	/*
1796 	 * All done at this level ... ascend and resume the search
1797 	 */
1798 	if (this_parent != parent) {
1799 		next = this_parent->mnt_child.next;
1800 		this_parent = this_parent->mnt_parent;
1801 		goto resume;
1802 	}
1803 	return found;
1804 }
1805 
1806 /*
1807  * process a list of expirable mountpoints with the intent of discarding any
1808  * submounts of a specific parent mountpoint
1809  */
1810 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts)
1811 {
1812 	LIST_HEAD(graveyard);
1813 	struct vfsmount *m;
1814 
1815 	/* extract submounts of 'mountpoint' from the expiration list */
1816 	while (select_submounts(mnt, &graveyard)) {
1817 		while (!list_empty(&graveyard)) {
1818 			m = list_first_entry(&graveyard, struct vfsmount,
1819 						mnt_expire);
1820 			touch_mnt_namespace(mnt->mnt_ns);
1821 			umount_tree(mnt, 1, umounts);
1822 		}
1823 	}
1824 }
1825 
1826 /*
1827  * Some copy_from_user() implementations do not return the exact number of
1828  * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
1829  * Note that this function differs from copy_from_user() in that it will oops
1830  * on bad values of `to', rather than returning a short copy.
1831  */
1832 static long exact_copy_from_user(void *to, const void __user * from,
1833 				 unsigned long n)
1834 {
1835 	char *t = to;
1836 	const char __user *f = from;
1837 	char c;
1838 
1839 	if (!access_ok(VERIFY_READ, from, n))
1840 		return n;
1841 
1842 	while (n) {
1843 		if (__get_user(c, f)) {
1844 			memset(t, 0, n);
1845 			break;
1846 		}
1847 		*t++ = c;
1848 		f++;
1849 		n--;
1850 	}
1851 	return n;
1852 }
1853 
1854 int copy_mount_options(const void __user * data, unsigned long *where)
1855 {
1856 	int i;
1857 	unsigned long page;
1858 	unsigned long size;
1859 
1860 	*where = 0;
1861 	if (!data)
1862 		return 0;
1863 
1864 	if (!(page = __get_free_page(GFP_KERNEL)))
1865 		return -ENOMEM;
1866 
1867 	/* We only care that *some* data at the address the user
1868 	 * gave us is valid.  Just in case, we'll zero
1869 	 * the remainder of the page.
1870 	 */
1871 	/* copy_from_user cannot cross TASK_SIZE ! */
1872 	size = TASK_SIZE - (unsigned long)data;
1873 	if (size > PAGE_SIZE)
1874 		size = PAGE_SIZE;
1875 
1876 	i = size - exact_copy_from_user((void *)page, data, size);
1877 	if (!i) {
1878 		free_page(page);
1879 		return -EFAULT;
1880 	}
1881 	if (i != PAGE_SIZE)
1882 		memset((char *)page + i, 0, PAGE_SIZE - i);
1883 	*where = page;
1884 	return 0;
1885 }
1886 
1887 /*
1888  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
1889  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
1890  *
1891  * data is a (void *) that can point to any structure up to
1892  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
1893  * information (or be NULL).
1894  *
1895  * Pre-0.97 versions of mount() didn't have a flags word.
1896  * When the flags word was introduced its top half was required
1897  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
1898  * Therefore, if this magic number is present, it carries no information
1899  * and must be discarded.
1900  */
1901 long do_mount(char *dev_name, char *dir_name, char *type_page,
1902 		  unsigned long flags, void *data_page)
1903 {
1904 	struct nameidata nd;
1905 	int retval = 0;
1906 	int mnt_flags = 0;
1907 
1908 	/* Discard magic */
1909 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
1910 		flags &= ~MS_MGC_MSK;
1911 
1912 	/* Basic sanity checks */
1913 
1914 	if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
1915 		return -EINVAL;
1916 	if (dev_name && !memchr(dev_name, 0, PAGE_SIZE))
1917 		return -EINVAL;
1918 
1919 	if (data_page)
1920 		((char *)data_page)[PAGE_SIZE - 1] = 0;
1921 
1922 	/* Separate the per-mountpoint flags */
1923 	if (flags & MS_NOSUID)
1924 		mnt_flags |= MNT_NOSUID;
1925 	if (flags & MS_NODEV)
1926 		mnt_flags |= MNT_NODEV;
1927 	if (flags & MS_NOEXEC)
1928 		mnt_flags |= MNT_NOEXEC;
1929 	if (flags & MS_NOATIME)
1930 		mnt_flags |= MNT_NOATIME;
1931 	if (flags & MS_NODIRATIME)
1932 		mnt_flags |= MNT_NODIRATIME;
1933 	if (flags & MS_RELATIME)
1934 		mnt_flags |= MNT_RELATIME;
1935 	if (flags & MS_RDONLY)
1936 		mnt_flags |= MNT_READONLY;
1937 
1938 	flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE |
1939 		   MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT);
1940 
1941 	/* ... and get the mountpoint */
1942 	retval = path_lookup(dir_name, LOOKUP_FOLLOW, &nd);
1943 	if (retval)
1944 		return retval;
1945 
1946 	retval = security_sb_mount(dev_name, &nd.path,
1947 				   type_page, flags, data_page);
1948 	if (retval)
1949 		goto dput_out;
1950 
1951 	if (flags & MS_REMOUNT)
1952 		retval = do_remount(&nd, flags & ~MS_REMOUNT, mnt_flags,
1953 				    data_page);
1954 	else if (flags & MS_BIND)
1955 		retval = do_loopback(&nd, dev_name, flags & MS_REC);
1956 	else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1957 		retval = do_change_type(&nd, flags);
1958 	else if (flags & MS_MOVE)
1959 		retval = do_move_mount(&nd, dev_name);
1960 	else
1961 		retval = do_new_mount(&nd, type_page, flags, mnt_flags,
1962 				      dev_name, data_page);
1963 dput_out:
1964 	path_put(&nd.path);
1965 	return retval;
1966 }
1967 
1968 /*
1969  * Allocate a new namespace structure and populate it with contents
1970  * copied from the namespace of the passed in task structure.
1971  */
1972 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
1973 		struct fs_struct *fs)
1974 {
1975 	struct mnt_namespace *new_ns;
1976 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL, *altrootmnt = NULL;
1977 	struct vfsmount *p, *q;
1978 
1979 	new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
1980 	if (!new_ns)
1981 		return ERR_PTR(-ENOMEM);
1982 
1983 	atomic_set(&new_ns->count, 1);
1984 	INIT_LIST_HEAD(&new_ns->list);
1985 	init_waitqueue_head(&new_ns->poll);
1986 	new_ns->event = 0;
1987 
1988 	down_write(&namespace_sem);
1989 	/* First pass: copy the tree topology */
1990 	new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
1991 					CL_COPY_ALL | CL_EXPIRE);
1992 	if (!new_ns->root) {
1993 		up_write(&namespace_sem);
1994 		kfree(new_ns);
1995 		return ERR_PTR(-ENOMEM);;
1996 	}
1997 	spin_lock(&vfsmount_lock);
1998 	list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
1999 	spin_unlock(&vfsmount_lock);
2000 
2001 	/*
2002 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2003 	 * as belonging to new namespace.  We have already acquired a private
2004 	 * fs_struct, so tsk->fs->lock is not needed.
2005 	 */
2006 	p = mnt_ns->root;
2007 	q = new_ns->root;
2008 	while (p) {
2009 		q->mnt_ns = new_ns;
2010 		if (fs) {
2011 			if (p == fs->root.mnt) {
2012 				rootmnt = p;
2013 				fs->root.mnt = mntget(q);
2014 			}
2015 			if (p == fs->pwd.mnt) {
2016 				pwdmnt = p;
2017 				fs->pwd.mnt = mntget(q);
2018 			}
2019 			if (p == fs->altroot.mnt) {
2020 				altrootmnt = p;
2021 				fs->altroot.mnt = mntget(q);
2022 			}
2023 		}
2024 		p = next_mnt(p, mnt_ns->root);
2025 		q = next_mnt(q, new_ns->root);
2026 	}
2027 	up_write(&namespace_sem);
2028 
2029 	if (rootmnt)
2030 		mntput(rootmnt);
2031 	if (pwdmnt)
2032 		mntput(pwdmnt);
2033 	if (altrootmnt)
2034 		mntput(altrootmnt);
2035 
2036 	return new_ns;
2037 }
2038 
2039 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2040 		struct fs_struct *new_fs)
2041 {
2042 	struct mnt_namespace *new_ns;
2043 
2044 	BUG_ON(!ns);
2045 	get_mnt_ns(ns);
2046 
2047 	if (!(flags & CLONE_NEWNS))
2048 		return ns;
2049 
2050 	new_ns = dup_mnt_ns(ns, new_fs);
2051 
2052 	put_mnt_ns(ns);
2053 	return new_ns;
2054 }
2055 
2056 asmlinkage long sys_mount(char __user * dev_name, char __user * dir_name,
2057 			  char __user * type, unsigned long flags,
2058 			  void __user * data)
2059 {
2060 	int retval;
2061 	unsigned long data_page;
2062 	unsigned long type_page;
2063 	unsigned long dev_page;
2064 	char *dir_page;
2065 
2066 	retval = copy_mount_options(type, &type_page);
2067 	if (retval < 0)
2068 		return retval;
2069 
2070 	dir_page = getname(dir_name);
2071 	retval = PTR_ERR(dir_page);
2072 	if (IS_ERR(dir_page))
2073 		goto out1;
2074 
2075 	retval = copy_mount_options(dev_name, &dev_page);
2076 	if (retval < 0)
2077 		goto out2;
2078 
2079 	retval = copy_mount_options(data, &data_page);
2080 	if (retval < 0)
2081 		goto out3;
2082 
2083 	lock_kernel();
2084 	retval = do_mount((char *)dev_page, dir_page, (char *)type_page,
2085 			  flags, (void *)data_page);
2086 	unlock_kernel();
2087 	free_page(data_page);
2088 
2089 out3:
2090 	free_page(dev_page);
2091 out2:
2092 	putname(dir_page);
2093 out1:
2094 	free_page(type_page);
2095 	return retval;
2096 }
2097 
2098 /*
2099  * Replace the fs->{rootmnt,root} with {mnt,dentry}. Put the old values.
2100  * It can block. Requires the big lock held.
2101  */
2102 void set_fs_root(struct fs_struct *fs, struct path *path)
2103 {
2104 	struct path old_root;
2105 
2106 	write_lock(&fs->lock);
2107 	old_root = fs->root;
2108 	fs->root = *path;
2109 	path_get(path);
2110 	write_unlock(&fs->lock);
2111 	if (old_root.dentry)
2112 		path_put(&old_root);
2113 }
2114 
2115 /*
2116  * Replace the fs->{pwdmnt,pwd} with {mnt,dentry}. Put the old values.
2117  * It can block. Requires the big lock held.
2118  */
2119 void set_fs_pwd(struct fs_struct *fs, struct path *path)
2120 {
2121 	struct path old_pwd;
2122 
2123 	write_lock(&fs->lock);
2124 	old_pwd = fs->pwd;
2125 	fs->pwd = *path;
2126 	path_get(path);
2127 	write_unlock(&fs->lock);
2128 
2129 	if (old_pwd.dentry)
2130 		path_put(&old_pwd);
2131 }
2132 
2133 static void chroot_fs_refs(struct path *old_root, struct path *new_root)
2134 {
2135 	struct task_struct *g, *p;
2136 	struct fs_struct *fs;
2137 
2138 	read_lock(&tasklist_lock);
2139 	do_each_thread(g, p) {
2140 		task_lock(p);
2141 		fs = p->fs;
2142 		if (fs) {
2143 			atomic_inc(&fs->count);
2144 			task_unlock(p);
2145 			if (fs->root.dentry == old_root->dentry
2146 			    && fs->root.mnt == old_root->mnt)
2147 				set_fs_root(fs, new_root);
2148 			if (fs->pwd.dentry == old_root->dentry
2149 			    && fs->pwd.mnt == old_root->mnt)
2150 				set_fs_pwd(fs, new_root);
2151 			put_fs_struct(fs);
2152 		} else
2153 			task_unlock(p);
2154 	} while_each_thread(g, p);
2155 	read_unlock(&tasklist_lock);
2156 }
2157 
2158 /*
2159  * pivot_root Semantics:
2160  * Moves the root file system of the current process to the directory put_old,
2161  * makes new_root as the new root file system of the current process, and sets
2162  * root/cwd of all processes which had them on the current root to new_root.
2163  *
2164  * Restrictions:
2165  * The new_root and put_old must be directories, and  must not be on the
2166  * same file  system as the current process root. The put_old  must  be
2167  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
2168  * pointed to by put_old must yield the same directory as new_root. No other
2169  * file system may be mounted on put_old. After all, new_root is a mountpoint.
2170  *
2171  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2172  * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2173  * in this situation.
2174  *
2175  * Notes:
2176  *  - we don't move root/cwd if they are not at the root (reason: if something
2177  *    cared enough to change them, it's probably wrong to force them elsewhere)
2178  *  - it's okay to pick a root that isn't the root of a file system, e.g.
2179  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2180  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2181  *    first.
2182  */
2183 asmlinkage long sys_pivot_root(const char __user * new_root,
2184 			       const char __user * put_old)
2185 {
2186 	struct vfsmount *tmp;
2187 	struct nameidata new_nd, old_nd;
2188 	struct path parent_path, root_parent, root;
2189 	int error;
2190 
2191 	if (!capable(CAP_SYS_ADMIN))
2192 		return -EPERM;
2193 
2194 	error = __user_walk(new_root, LOOKUP_FOLLOW | LOOKUP_DIRECTORY,
2195 			    &new_nd);
2196 	if (error)
2197 		goto out0;
2198 	error = -EINVAL;
2199 	if (!check_mnt(new_nd.path.mnt))
2200 		goto out1;
2201 
2202 	error = __user_walk(put_old, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old_nd);
2203 	if (error)
2204 		goto out1;
2205 
2206 	error = security_sb_pivotroot(&old_nd.path, &new_nd.path);
2207 	if (error) {
2208 		path_put(&old_nd.path);
2209 		goto out1;
2210 	}
2211 
2212 	read_lock(&current->fs->lock);
2213 	root = current->fs->root;
2214 	path_get(&current->fs->root);
2215 	read_unlock(&current->fs->lock);
2216 	down_write(&namespace_sem);
2217 	mutex_lock(&old_nd.path.dentry->d_inode->i_mutex);
2218 	error = -EINVAL;
2219 	if (IS_MNT_SHARED(old_nd.path.mnt) ||
2220 		IS_MNT_SHARED(new_nd.path.mnt->mnt_parent) ||
2221 		IS_MNT_SHARED(root.mnt->mnt_parent))
2222 		goto out2;
2223 	if (!check_mnt(root.mnt))
2224 		goto out2;
2225 	error = -ENOENT;
2226 	if (IS_DEADDIR(new_nd.path.dentry->d_inode))
2227 		goto out2;
2228 	if (d_unhashed(new_nd.path.dentry) && !IS_ROOT(new_nd.path.dentry))
2229 		goto out2;
2230 	if (d_unhashed(old_nd.path.dentry) && !IS_ROOT(old_nd.path.dentry))
2231 		goto out2;
2232 	error = -EBUSY;
2233 	if (new_nd.path.mnt == root.mnt ||
2234 	    old_nd.path.mnt == root.mnt)
2235 		goto out2; /* loop, on the same file system  */
2236 	error = -EINVAL;
2237 	if (root.mnt->mnt_root != root.dentry)
2238 		goto out2; /* not a mountpoint */
2239 	if (root.mnt->mnt_parent == root.mnt)
2240 		goto out2; /* not attached */
2241 	if (new_nd.path.mnt->mnt_root != new_nd.path.dentry)
2242 		goto out2; /* not a mountpoint */
2243 	if (new_nd.path.mnt->mnt_parent == new_nd.path.mnt)
2244 		goto out2; /* not attached */
2245 	/* make sure we can reach put_old from new_root */
2246 	tmp = old_nd.path.mnt;
2247 	spin_lock(&vfsmount_lock);
2248 	if (tmp != new_nd.path.mnt) {
2249 		for (;;) {
2250 			if (tmp->mnt_parent == tmp)
2251 				goto out3; /* already mounted on put_old */
2252 			if (tmp->mnt_parent == new_nd.path.mnt)
2253 				break;
2254 			tmp = tmp->mnt_parent;
2255 		}
2256 		if (!is_subdir(tmp->mnt_mountpoint, new_nd.path.dentry))
2257 			goto out3;
2258 	} else if (!is_subdir(old_nd.path.dentry, new_nd.path.dentry))
2259 		goto out3;
2260 	detach_mnt(new_nd.path.mnt, &parent_path);
2261 	detach_mnt(root.mnt, &root_parent);
2262 	/* mount old root on put_old */
2263 	attach_mnt(root.mnt, &old_nd.path);
2264 	/* mount new_root on / */
2265 	attach_mnt(new_nd.path.mnt, &root_parent);
2266 	touch_mnt_namespace(current->nsproxy->mnt_ns);
2267 	spin_unlock(&vfsmount_lock);
2268 	chroot_fs_refs(&root, &new_nd.path);
2269 	security_sb_post_pivotroot(&root, &new_nd.path);
2270 	error = 0;
2271 	path_put(&root_parent);
2272 	path_put(&parent_path);
2273 out2:
2274 	mutex_unlock(&old_nd.path.dentry->d_inode->i_mutex);
2275 	up_write(&namespace_sem);
2276 	path_put(&root);
2277 	path_put(&old_nd.path);
2278 out1:
2279 	path_put(&new_nd.path);
2280 out0:
2281 	return error;
2282 out3:
2283 	spin_unlock(&vfsmount_lock);
2284 	goto out2;
2285 }
2286 
2287 static void __init init_mount_tree(void)
2288 {
2289 	struct vfsmount *mnt;
2290 	struct mnt_namespace *ns;
2291 	struct path root;
2292 
2293 	mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2294 	if (IS_ERR(mnt))
2295 		panic("Can't create rootfs");
2296 	ns = kmalloc(sizeof(*ns), GFP_KERNEL);
2297 	if (!ns)
2298 		panic("Can't allocate initial namespace");
2299 	atomic_set(&ns->count, 1);
2300 	INIT_LIST_HEAD(&ns->list);
2301 	init_waitqueue_head(&ns->poll);
2302 	ns->event = 0;
2303 	list_add(&mnt->mnt_list, &ns->list);
2304 	ns->root = mnt;
2305 	mnt->mnt_ns = ns;
2306 
2307 	init_task.nsproxy->mnt_ns = ns;
2308 	get_mnt_ns(ns);
2309 
2310 	root.mnt = ns->root;
2311 	root.dentry = ns->root->mnt_root;
2312 
2313 	set_fs_pwd(current->fs, &root);
2314 	set_fs_root(current->fs, &root);
2315 }
2316 
2317 void __init mnt_init(void)
2318 {
2319 	unsigned u;
2320 	int err;
2321 
2322 	init_rwsem(&namespace_sem);
2323 
2324 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
2325 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2326 
2327 	mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2328 
2329 	if (!mount_hashtable)
2330 		panic("Failed to allocate mount hash table\n");
2331 
2332 	printk("Mount-cache hash table entries: %lu\n", HASH_SIZE);
2333 
2334 	for (u = 0; u < HASH_SIZE; u++)
2335 		INIT_LIST_HEAD(&mount_hashtable[u]);
2336 
2337 	err = sysfs_init();
2338 	if (err)
2339 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2340 			__func__, err);
2341 	fs_kobj = kobject_create_and_add("fs", NULL);
2342 	if (!fs_kobj)
2343 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
2344 	init_rootfs();
2345 	init_mount_tree();
2346 }
2347 
2348 void __put_mnt_ns(struct mnt_namespace *ns)
2349 {
2350 	struct vfsmount *root = ns->root;
2351 	LIST_HEAD(umount_list);
2352 	ns->root = NULL;
2353 	spin_unlock(&vfsmount_lock);
2354 	down_write(&namespace_sem);
2355 	spin_lock(&vfsmount_lock);
2356 	umount_tree(root, 0, &umount_list);
2357 	spin_unlock(&vfsmount_lock);
2358 	up_write(&namespace_sem);
2359 	release_mounts(&umount_list);
2360 	kfree(ns);
2361 }
2362