xref: /openbmc/linux/fs/namespace.c (revision 4a075bd4)
1 /*
2  *  linux/fs/namespace.c
3  *
4  * (C) Copyright Al Viro 2000, 2001
5  *	Released under GPL v2.
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h>		/* init_rootfs */
21 #include <linux/fs_struct.h>	/* get_fs_root et.al. */
22 #include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
23 #include <linux/file.h>
24 #include <linux/uaccess.h>
25 #include <linux/proc_ns.h>
26 #include <linux/magic.h>
27 #include <linux/memblock.h>
28 #include <linux/task_work.h>
29 #include <linux/sched/task.h>
30 #include <uapi/linux/mount.h>
31 #include <linux/fs_context.h>
32 
33 #include "pnode.h"
34 #include "internal.h"
35 
36 /* Maximum number of mounts in a mount namespace */
37 unsigned int sysctl_mount_max __read_mostly = 100000;
38 
39 static unsigned int m_hash_mask __read_mostly;
40 static unsigned int m_hash_shift __read_mostly;
41 static unsigned int mp_hash_mask __read_mostly;
42 static unsigned int mp_hash_shift __read_mostly;
43 
44 static __initdata unsigned long mhash_entries;
45 static int __init set_mhash_entries(char *str)
46 {
47 	if (!str)
48 		return 0;
49 	mhash_entries = simple_strtoul(str, &str, 0);
50 	return 1;
51 }
52 __setup("mhash_entries=", set_mhash_entries);
53 
54 static __initdata unsigned long mphash_entries;
55 static int __init set_mphash_entries(char *str)
56 {
57 	if (!str)
58 		return 0;
59 	mphash_entries = simple_strtoul(str, &str, 0);
60 	return 1;
61 }
62 __setup("mphash_entries=", set_mphash_entries);
63 
64 static u64 event;
65 static DEFINE_IDA(mnt_id_ida);
66 static DEFINE_IDA(mnt_group_ida);
67 
68 static struct hlist_head *mount_hashtable __read_mostly;
69 static struct hlist_head *mountpoint_hashtable __read_mostly;
70 static struct kmem_cache *mnt_cache __read_mostly;
71 static DECLARE_RWSEM(namespace_sem);
72 
73 /* /sys/fs */
74 struct kobject *fs_kobj;
75 EXPORT_SYMBOL_GPL(fs_kobj);
76 
77 /*
78  * vfsmount lock may be taken for read to prevent changes to the
79  * vfsmount hash, ie. during mountpoint lookups or walking back
80  * up the tree.
81  *
82  * It should be taken for write in all cases where the vfsmount
83  * tree or hash is modified or when a vfsmount structure is modified.
84  */
85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
86 
87 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
88 {
89 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
90 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
91 	tmp = tmp + (tmp >> m_hash_shift);
92 	return &mount_hashtable[tmp & m_hash_mask];
93 }
94 
95 static inline struct hlist_head *mp_hash(struct dentry *dentry)
96 {
97 	unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
98 	tmp = tmp + (tmp >> mp_hash_shift);
99 	return &mountpoint_hashtable[tmp & mp_hash_mask];
100 }
101 
102 static int mnt_alloc_id(struct mount *mnt)
103 {
104 	int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
105 
106 	if (res < 0)
107 		return res;
108 	mnt->mnt_id = res;
109 	return 0;
110 }
111 
112 static void mnt_free_id(struct mount *mnt)
113 {
114 	ida_free(&mnt_id_ida, mnt->mnt_id);
115 }
116 
117 /*
118  * Allocate a new peer group ID
119  */
120 static int mnt_alloc_group_id(struct mount *mnt)
121 {
122 	int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
123 
124 	if (res < 0)
125 		return res;
126 	mnt->mnt_group_id = res;
127 	return 0;
128 }
129 
130 /*
131  * Release a peer group ID
132  */
133 void mnt_release_group_id(struct mount *mnt)
134 {
135 	ida_free(&mnt_group_ida, mnt->mnt_group_id);
136 	mnt->mnt_group_id = 0;
137 }
138 
139 /*
140  * vfsmount lock must be held for read
141  */
142 static inline void mnt_add_count(struct mount *mnt, int n)
143 {
144 #ifdef CONFIG_SMP
145 	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
146 #else
147 	preempt_disable();
148 	mnt->mnt_count += n;
149 	preempt_enable();
150 #endif
151 }
152 
153 /*
154  * vfsmount lock must be held for write
155  */
156 unsigned int mnt_get_count(struct mount *mnt)
157 {
158 #ifdef CONFIG_SMP
159 	unsigned int count = 0;
160 	int cpu;
161 
162 	for_each_possible_cpu(cpu) {
163 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
164 	}
165 
166 	return count;
167 #else
168 	return mnt->mnt_count;
169 #endif
170 }
171 
172 static void drop_mountpoint(struct fs_pin *p)
173 {
174 	struct mount *m = container_of(p, struct mount, mnt_umount);
175 	dput(m->mnt_ex_mountpoint);
176 	pin_remove(p);
177 	mntput(&m->mnt);
178 }
179 
180 static struct mount *alloc_vfsmnt(const char *name)
181 {
182 	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
183 	if (mnt) {
184 		int err;
185 
186 		err = mnt_alloc_id(mnt);
187 		if (err)
188 			goto out_free_cache;
189 
190 		if (name) {
191 			mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
192 			if (!mnt->mnt_devname)
193 				goto out_free_id;
194 		}
195 
196 #ifdef CONFIG_SMP
197 		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
198 		if (!mnt->mnt_pcp)
199 			goto out_free_devname;
200 
201 		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
202 #else
203 		mnt->mnt_count = 1;
204 		mnt->mnt_writers = 0;
205 #endif
206 
207 		INIT_HLIST_NODE(&mnt->mnt_hash);
208 		INIT_LIST_HEAD(&mnt->mnt_child);
209 		INIT_LIST_HEAD(&mnt->mnt_mounts);
210 		INIT_LIST_HEAD(&mnt->mnt_list);
211 		INIT_LIST_HEAD(&mnt->mnt_expire);
212 		INIT_LIST_HEAD(&mnt->mnt_share);
213 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
214 		INIT_LIST_HEAD(&mnt->mnt_slave);
215 		INIT_HLIST_NODE(&mnt->mnt_mp_list);
216 		INIT_LIST_HEAD(&mnt->mnt_umounting);
217 		init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
218 	}
219 	return mnt;
220 
221 #ifdef CONFIG_SMP
222 out_free_devname:
223 	kfree_const(mnt->mnt_devname);
224 #endif
225 out_free_id:
226 	mnt_free_id(mnt);
227 out_free_cache:
228 	kmem_cache_free(mnt_cache, mnt);
229 	return NULL;
230 }
231 
232 /*
233  * Most r/o checks on a fs are for operations that take
234  * discrete amounts of time, like a write() or unlink().
235  * We must keep track of when those operations start
236  * (for permission checks) and when they end, so that
237  * we can determine when writes are able to occur to
238  * a filesystem.
239  */
240 /*
241  * __mnt_is_readonly: check whether a mount is read-only
242  * @mnt: the mount to check for its write status
243  *
244  * This shouldn't be used directly ouside of the VFS.
245  * It does not guarantee that the filesystem will stay
246  * r/w, just that it is right *now*.  This can not and
247  * should not be used in place of IS_RDONLY(inode).
248  * mnt_want/drop_write() will _keep_ the filesystem
249  * r/w.
250  */
251 bool __mnt_is_readonly(struct vfsmount *mnt)
252 {
253 	return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
254 }
255 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
256 
257 static inline void mnt_inc_writers(struct mount *mnt)
258 {
259 #ifdef CONFIG_SMP
260 	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
261 #else
262 	mnt->mnt_writers++;
263 #endif
264 }
265 
266 static inline void mnt_dec_writers(struct mount *mnt)
267 {
268 #ifdef CONFIG_SMP
269 	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
270 #else
271 	mnt->mnt_writers--;
272 #endif
273 }
274 
275 static unsigned int mnt_get_writers(struct mount *mnt)
276 {
277 #ifdef CONFIG_SMP
278 	unsigned int count = 0;
279 	int cpu;
280 
281 	for_each_possible_cpu(cpu) {
282 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
283 	}
284 
285 	return count;
286 #else
287 	return mnt->mnt_writers;
288 #endif
289 }
290 
291 static int mnt_is_readonly(struct vfsmount *mnt)
292 {
293 	if (mnt->mnt_sb->s_readonly_remount)
294 		return 1;
295 	/* Order wrt setting s_flags/s_readonly_remount in do_remount() */
296 	smp_rmb();
297 	return __mnt_is_readonly(mnt);
298 }
299 
300 /*
301  * Most r/o & frozen checks on a fs are for operations that take discrete
302  * amounts of time, like a write() or unlink().  We must keep track of when
303  * those operations start (for permission checks) and when they end, so that we
304  * can determine when writes are able to occur to a filesystem.
305  */
306 /**
307  * __mnt_want_write - get write access to a mount without freeze protection
308  * @m: the mount on which to take a write
309  *
310  * This tells the low-level filesystem that a write is about to be performed to
311  * it, and makes sure that writes are allowed (mnt it read-write) before
312  * returning success. This operation does not protect against filesystem being
313  * frozen. When the write operation is finished, __mnt_drop_write() must be
314  * called. This is effectively a refcount.
315  */
316 int __mnt_want_write(struct vfsmount *m)
317 {
318 	struct mount *mnt = real_mount(m);
319 	int ret = 0;
320 
321 	preempt_disable();
322 	mnt_inc_writers(mnt);
323 	/*
324 	 * The store to mnt_inc_writers must be visible before we pass
325 	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
326 	 * incremented count after it has set MNT_WRITE_HOLD.
327 	 */
328 	smp_mb();
329 	while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
330 		cpu_relax();
331 	/*
332 	 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
333 	 * be set to match its requirements. So we must not load that until
334 	 * MNT_WRITE_HOLD is cleared.
335 	 */
336 	smp_rmb();
337 	if (mnt_is_readonly(m)) {
338 		mnt_dec_writers(mnt);
339 		ret = -EROFS;
340 	}
341 	preempt_enable();
342 
343 	return ret;
344 }
345 
346 /**
347  * mnt_want_write - get write access to a mount
348  * @m: the mount on which to take a write
349  *
350  * This tells the low-level filesystem that a write is about to be performed to
351  * it, and makes sure that writes are allowed (mount is read-write, filesystem
352  * is not frozen) before returning success.  When the write operation is
353  * finished, mnt_drop_write() must be called.  This is effectively a refcount.
354  */
355 int mnt_want_write(struct vfsmount *m)
356 {
357 	int ret;
358 
359 	sb_start_write(m->mnt_sb);
360 	ret = __mnt_want_write(m);
361 	if (ret)
362 		sb_end_write(m->mnt_sb);
363 	return ret;
364 }
365 EXPORT_SYMBOL_GPL(mnt_want_write);
366 
367 /**
368  * mnt_clone_write - get write access to a mount
369  * @mnt: the mount on which to take a write
370  *
371  * This is effectively like mnt_want_write, except
372  * it must only be used to take an extra write reference
373  * on a mountpoint that we already know has a write reference
374  * on it. This allows some optimisation.
375  *
376  * After finished, mnt_drop_write must be called as usual to
377  * drop the reference.
378  */
379 int mnt_clone_write(struct vfsmount *mnt)
380 {
381 	/* superblock may be r/o */
382 	if (__mnt_is_readonly(mnt))
383 		return -EROFS;
384 	preempt_disable();
385 	mnt_inc_writers(real_mount(mnt));
386 	preempt_enable();
387 	return 0;
388 }
389 EXPORT_SYMBOL_GPL(mnt_clone_write);
390 
391 /**
392  * __mnt_want_write_file - get write access to a file's mount
393  * @file: the file who's mount on which to take a write
394  *
395  * This is like __mnt_want_write, but it takes a file and can
396  * do some optimisations if the file is open for write already
397  */
398 int __mnt_want_write_file(struct file *file)
399 {
400 	if (!(file->f_mode & FMODE_WRITER))
401 		return __mnt_want_write(file->f_path.mnt);
402 	else
403 		return mnt_clone_write(file->f_path.mnt);
404 }
405 
406 /**
407  * mnt_want_write_file - get write access to a file's mount
408  * @file: the file who's mount on which to take a write
409  *
410  * This is like mnt_want_write, but it takes a file and can
411  * do some optimisations if the file is open for write already
412  */
413 int mnt_want_write_file(struct file *file)
414 {
415 	int ret;
416 
417 	sb_start_write(file_inode(file)->i_sb);
418 	ret = __mnt_want_write_file(file);
419 	if (ret)
420 		sb_end_write(file_inode(file)->i_sb);
421 	return ret;
422 }
423 EXPORT_SYMBOL_GPL(mnt_want_write_file);
424 
425 /**
426  * __mnt_drop_write - give up write access to a mount
427  * @mnt: the mount on which to give up write access
428  *
429  * Tells the low-level filesystem that we are done
430  * performing writes to it.  Must be matched with
431  * __mnt_want_write() call above.
432  */
433 void __mnt_drop_write(struct vfsmount *mnt)
434 {
435 	preempt_disable();
436 	mnt_dec_writers(real_mount(mnt));
437 	preempt_enable();
438 }
439 
440 /**
441  * mnt_drop_write - give up write access to a mount
442  * @mnt: the mount on which to give up write access
443  *
444  * Tells the low-level filesystem that we are done performing writes to it and
445  * also allows filesystem to be frozen again.  Must be matched with
446  * mnt_want_write() call above.
447  */
448 void mnt_drop_write(struct vfsmount *mnt)
449 {
450 	__mnt_drop_write(mnt);
451 	sb_end_write(mnt->mnt_sb);
452 }
453 EXPORT_SYMBOL_GPL(mnt_drop_write);
454 
455 void __mnt_drop_write_file(struct file *file)
456 {
457 	__mnt_drop_write(file->f_path.mnt);
458 }
459 
460 void mnt_drop_write_file(struct file *file)
461 {
462 	__mnt_drop_write_file(file);
463 	sb_end_write(file_inode(file)->i_sb);
464 }
465 EXPORT_SYMBOL(mnt_drop_write_file);
466 
467 static int mnt_make_readonly(struct mount *mnt)
468 {
469 	int ret = 0;
470 
471 	lock_mount_hash();
472 	mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
473 	/*
474 	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
475 	 * should be visible before we do.
476 	 */
477 	smp_mb();
478 
479 	/*
480 	 * With writers on hold, if this value is zero, then there are
481 	 * definitely no active writers (although held writers may subsequently
482 	 * increment the count, they'll have to wait, and decrement it after
483 	 * seeing MNT_READONLY).
484 	 *
485 	 * It is OK to have counter incremented on one CPU and decremented on
486 	 * another: the sum will add up correctly. The danger would be when we
487 	 * sum up each counter, if we read a counter before it is incremented,
488 	 * but then read another CPU's count which it has been subsequently
489 	 * decremented from -- we would see more decrements than we should.
490 	 * MNT_WRITE_HOLD protects against this scenario, because
491 	 * mnt_want_write first increments count, then smp_mb, then spins on
492 	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
493 	 * we're counting up here.
494 	 */
495 	if (mnt_get_writers(mnt) > 0)
496 		ret = -EBUSY;
497 	else
498 		mnt->mnt.mnt_flags |= MNT_READONLY;
499 	/*
500 	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
501 	 * that become unheld will see MNT_READONLY.
502 	 */
503 	smp_wmb();
504 	mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
505 	unlock_mount_hash();
506 	return ret;
507 }
508 
509 static int __mnt_unmake_readonly(struct mount *mnt)
510 {
511 	lock_mount_hash();
512 	mnt->mnt.mnt_flags &= ~MNT_READONLY;
513 	unlock_mount_hash();
514 	return 0;
515 }
516 
517 int sb_prepare_remount_readonly(struct super_block *sb)
518 {
519 	struct mount *mnt;
520 	int err = 0;
521 
522 	/* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
523 	if (atomic_long_read(&sb->s_remove_count))
524 		return -EBUSY;
525 
526 	lock_mount_hash();
527 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
528 		if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
529 			mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
530 			smp_mb();
531 			if (mnt_get_writers(mnt) > 0) {
532 				err = -EBUSY;
533 				break;
534 			}
535 		}
536 	}
537 	if (!err && atomic_long_read(&sb->s_remove_count))
538 		err = -EBUSY;
539 
540 	if (!err) {
541 		sb->s_readonly_remount = 1;
542 		smp_wmb();
543 	}
544 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
545 		if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
546 			mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
547 	}
548 	unlock_mount_hash();
549 
550 	return err;
551 }
552 
553 static void free_vfsmnt(struct mount *mnt)
554 {
555 	kfree_const(mnt->mnt_devname);
556 #ifdef CONFIG_SMP
557 	free_percpu(mnt->mnt_pcp);
558 #endif
559 	kmem_cache_free(mnt_cache, mnt);
560 }
561 
562 static void delayed_free_vfsmnt(struct rcu_head *head)
563 {
564 	free_vfsmnt(container_of(head, struct mount, mnt_rcu));
565 }
566 
567 /* call under rcu_read_lock */
568 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
569 {
570 	struct mount *mnt;
571 	if (read_seqretry(&mount_lock, seq))
572 		return 1;
573 	if (bastard == NULL)
574 		return 0;
575 	mnt = real_mount(bastard);
576 	mnt_add_count(mnt, 1);
577 	smp_mb();			// see mntput_no_expire()
578 	if (likely(!read_seqretry(&mount_lock, seq)))
579 		return 0;
580 	if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
581 		mnt_add_count(mnt, -1);
582 		return 1;
583 	}
584 	lock_mount_hash();
585 	if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
586 		mnt_add_count(mnt, -1);
587 		unlock_mount_hash();
588 		return 1;
589 	}
590 	unlock_mount_hash();
591 	/* caller will mntput() */
592 	return -1;
593 }
594 
595 /* call under rcu_read_lock */
596 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
597 {
598 	int res = __legitimize_mnt(bastard, seq);
599 	if (likely(!res))
600 		return true;
601 	if (unlikely(res < 0)) {
602 		rcu_read_unlock();
603 		mntput(bastard);
604 		rcu_read_lock();
605 	}
606 	return false;
607 }
608 
609 /*
610  * find the first mount at @dentry on vfsmount @mnt.
611  * call under rcu_read_lock()
612  */
613 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
614 {
615 	struct hlist_head *head = m_hash(mnt, dentry);
616 	struct mount *p;
617 
618 	hlist_for_each_entry_rcu(p, head, mnt_hash)
619 		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
620 			return p;
621 	return NULL;
622 }
623 
624 /*
625  * lookup_mnt - Return the first child mount mounted at path
626  *
627  * "First" means first mounted chronologically.  If you create the
628  * following mounts:
629  *
630  * mount /dev/sda1 /mnt
631  * mount /dev/sda2 /mnt
632  * mount /dev/sda3 /mnt
633  *
634  * Then lookup_mnt() on the base /mnt dentry in the root mount will
635  * return successively the root dentry and vfsmount of /dev/sda1, then
636  * /dev/sda2, then /dev/sda3, then NULL.
637  *
638  * lookup_mnt takes a reference to the found vfsmount.
639  */
640 struct vfsmount *lookup_mnt(const struct path *path)
641 {
642 	struct mount *child_mnt;
643 	struct vfsmount *m;
644 	unsigned seq;
645 
646 	rcu_read_lock();
647 	do {
648 		seq = read_seqbegin(&mount_lock);
649 		child_mnt = __lookup_mnt(path->mnt, path->dentry);
650 		m = child_mnt ? &child_mnt->mnt : NULL;
651 	} while (!legitimize_mnt(m, seq));
652 	rcu_read_unlock();
653 	return m;
654 }
655 
656 /*
657  * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
658  *                         current mount namespace.
659  *
660  * The common case is dentries are not mountpoints at all and that
661  * test is handled inline.  For the slow case when we are actually
662  * dealing with a mountpoint of some kind, walk through all of the
663  * mounts in the current mount namespace and test to see if the dentry
664  * is a mountpoint.
665  *
666  * The mount_hashtable is not usable in the context because we
667  * need to identify all mounts that may be in the current mount
668  * namespace not just a mount that happens to have some specified
669  * parent mount.
670  */
671 bool __is_local_mountpoint(struct dentry *dentry)
672 {
673 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
674 	struct mount *mnt;
675 	bool is_covered = false;
676 
677 	if (!d_mountpoint(dentry))
678 		goto out;
679 
680 	down_read(&namespace_sem);
681 	list_for_each_entry(mnt, &ns->list, mnt_list) {
682 		is_covered = (mnt->mnt_mountpoint == dentry);
683 		if (is_covered)
684 			break;
685 	}
686 	up_read(&namespace_sem);
687 out:
688 	return is_covered;
689 }
690 
691 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
692 {
693 	struct hlist_head *chain = mp_hash(dentry);
694 	struct mountpoint *mp;
695 
696 	hlist_for_each_entry(mp, chain, m_hash) {
697 		if (mp->m_dentry == dentry) {
698 			mp->m_count++;
699 			return mp;
700 		}
701 	}
702 	return NULL;
703 }
704 
705 static struct mountpoint *get_mountpoint(struct dentry *dentry)
706 {
707 	struct mountpoint *mp, *new = NULL;
708 	int ret;
709 
710 	if (d_mountpoint(dentry)) {
711 		/* might be worth a WARN_ON() */
712 		if (d_unlinked(dentry))
713 			return ERR_PTR(-ENOENT);
714 mountpoint:
715 		read_seqlock_excl(&mount_lock);
716 		mp = lookup_mountpoint(dentry);
717 		read_sequnlock_excl(&mount_lock);
718 		if (mp)
719 			goto done;
720 	}
721 
722 	if (!new)
723 		new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
724 	if (!new)
725 		return ERR_PTR(-ENOMEM);
726 
727 
728 	/* Exactly one processes may set d_mounted */
729 	ret = d_set_mounted(dentry);
730 
731 	/* Someone else set d_mounted? */
732 	if (ret == -EBUSY)
733 		goto mountpoint;
734 
735 	/* The dentry is not available as a mountpoint? */
736 	mp = ERR_PTR(ret);
737 	if (ret)
738 		goto done;
739 
740 	/* Add the new mountpoint to the hash table */
741 	read_seqlock_excl(&mount_lock);
742 	new->m_dentry = dentry;
743 	new->m_count = 1;
744 	hlist_add_head(&new->m_hash, mp_hash(dentry));
745 	INIT_HLIST_HEAD(&new->m_list);
746 	read_sequnlock_excl(&mount_lock);
747 
748 	mp = new;
749 	new = NULL;
750 done:
751 	kfree(new);
752 	return mp;
753 }
754 
755 static void put_mountpoint(struct mountpoint *mp)
756 {
757 	if (!--mp->m_count) {
758 		struct dentry *dentry = mp->m_dentry;
759 		BUG_ON(!hlist_empty(&mp->m_list));
760 		spin_lock(&dentry->d_lock);
761 		dentry->d_flags &= ~DCACHE_MOUNTED;
762 		spin_unlock(&dentry->d_lock);
763 		hlist_del(&mp->m_hash);
764 		kfree(mp);
765 	}
766 }
767 
768 static inline int check_mnt(struct mount *mnt)
769 {
770 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
771 }
772 
773 /*
774  * vfsmount lock must be held for write
775  */
776 static void touch_mnt_namespace(struct mnt_namespace *ns)
777 {
778 	if (ns) {
779 		ns->event = ++event;
780 		wake_up_interruptible(&ns->poll);
781 	}
782 }
783 
784 /*
785  * vfsmount lock must be held for write
786  */
787 static void __touch_mnt_namespace(struct mnt_namespace *ns)
788 {
789 	if (ns && ns->event != event) {
790 		ns->event = event;
791 		wake_up_interruptible(&ns->poll);
792 	}
793 }
794 
795 /*
796  * vfsmount lock must be held for write
797  */
798 static void unhash_mnt(struct mount *mnt)
799 {
800 	mnt->mnt_parent = mnt;
801 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
802 	list_del_init(&mnt->mnt_child);
803 	hlist_del_init_rcu(&mnt->mnt_hash);
804 	hlist_del_init(&mnt->mnt_mp_list);
805 	put_mountpoint(mnt->mnt_mp);
806 	mnt->mnt_mp = NULL;
807 }
808 
809 /*
810  * vfsmount lock must be held for write
811  */
812 static void detach_mnt(struct mount *mnt, struct path *old_path)
813 {
814 	old_path->dentry = mnt->mnt_mountpoint;
815 	old_path->mnt = &mnt->mnt_parent->mnt;
816 	unhash_mnt(mnt);
817 }
818 
819 /*
820  * vfsmount lock must be held for write
821  */
822 static void umount_mnt(struct mount *mnt)
823 {
824 	/* old mountpoint will be dropped when we can do that */
825 	mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
826 	unhash_mnt(mnt);
827 }
828 
829 /*
830  * vfsmount lock must be held for write
831  */
832 void mnt_set_mountpoint(struct mount *mnt,
833 			struct mountpoint *mp,
834 			struct mount *child_mnt)
835 {
836 	mp->m_count++;
837 	mnt_add_count(mnt, 1);	/* essentially, that's mntget */
838 	child_mnt->mnt_mountpoint = dget(mp->m_dentry);
839 	child_mnt->mnt_parent = mnt;
840 	child_mnt->mnt_mp = mp;
841 	hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
842 }
843 
844 static void __attach_mnt(struct mount *mnt, struct mount *parent)
845 {
846 	hlist_add_head_rcu(&mnt->mnt_hash,
847 			   m_hash(&parent->mnt, mnt->mnt_mountpoint));
848 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
849 }
850 
851 /*
852  * vfsmount lock must be held for write
853  */
854 static void attach_mnt(struct mount *mnt,
855 			struct mount *parent,
856 			struct mountpoint *mp)
857 {
858 	mnt_set_mountpoint(parent, mp, mnt);
859 	__attach_mnt(mnt, parent);
860 }
861 
862 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
863 {
864 	struct mountpoint *old_mp = mnt->mnt_mp;
865 	struct dentry *old_mountpoint = mnt->mnt_mountpoint;
866 	struct mount *old_parent = mnt->mnt_parent;
867 
868 	list_del_init(&mnt->mnt_child);
869 	hlist_del_init(&mnt->mnt_mp_list);
870 	hlist_del_init_rcu(&mnt->mnt_hash);
871 
872 	attach_mnt(mnt, parent, mp);
873 
874 	put_mountpoint(old_mp);
875 
876 	/*
877 	 * Safely avoid even the suggestion this code might sleep or
878 	 * lock the mount hash by taking advantage of the knowledge that
879 	 * mnt_change_mountpoint will not release the final reference
880 	 * to a mountpoint.
881 	 *
882 	 * During mounting, the mount passed in as the parent mount will
883 	 * continue to use the old mountpoint and during unmounting, the
884 	 * old mountpoint will continue to exist until namespace_unlock,
885 	 * which happens well after mnt_change_mountpoint.
886 	 */
887 	spin_lock(&old_mountpoint->d_lock);
888 	old_mountpoint->d_lockref.count--;
889 	spin_unlock(&old_mountpoint->d_lock);
890 
891 	mnt_add_count(old_parent, -1);
892 }
893 
894 /*
895  * vfsmount lock must be held for write
896  */
897 static void commit_tree(struct mount *mnt)
898 {
899 	struct mount *parent = mnt->mnt_parent;
900 	struct mount *m;
901 	LIST_HEAD(head);
902 	struct mnt_namespace *n = parent->mnt_ns;
903 
904 	BUG_ON(parent == mnt);
905 
906 	list_add_tail(&head, &mnt->mnt_list);
907 	list_for_each_entry(m, &head, mnt_list)
908 		m->mnt_ns = n;
909 
910 	list_splice(&head, n->list.prev);
911 
912 	n->mounts += n->pending_mounts;
913 	n->pending_mounts = 0;
914 
915 	__attach_mnt(mnt, parent);
916 	touch_mnt_namespace(n);
917 }
918 
919 static struct mount *next_mnt(struct mount *p, struct mount *root)
920 {
921 	struct list_head *next = p->mnt_mounts.next;
922 	if (next == &p->mnt_mounts) {
923 		while (1) {
924 			if (p == root)
925 				return NULL;
926 			next = p->mnt_child.next;
927 			if (next != &p->mnt_parent->mnt_mounts)
928 				break;
929 			p = p->mnt_parent;
930 		}
931 	}
932 	return list_entry(next, struct mount, mnt_child);
933 }
934 
935 static struct mount *skip_mnt_tree(struct mount *p)
936 {
937 	struct list_head *prev = p->mnt_mounts.prev;
938 	while (prev != &p->mnt_mounts) {
939 		p = list_entry(prev, struct mount, mnt_child);
940 		prev = p->mnt_mounts.prev;
941 	}
942 	return p;
943 }
944 
945 /**
946  * vfs_create_mount - Create a mount for a configured superblock
947  * @fc: The configuration context with the superblock attached
948  *
949  * Create a mount to an already configured superblock.  If necessary, the
950  * caller should invoke vfs_get_tree() before calling this.
951  *
952  * Note that this does not attach the mount to anything.
953  */
954 struct vfsmount *vfs_create_mount(struct fs_context *fc)
955 {
956 	struct mount *mnt;
957 
958 	if (!fc->root)
959 		return ERR_PTR(-EINVAL);
960 
961 	mnt = alloc_vfsmnt(fc->source ?: "none");
962 	if (!mnt)
963 		return ERR_PTR(-ENOMEM);
964 
965 	if (fc->sb_flags & SB_KERNMOUNT)
966 		mnt->mnt.mnt_flags = MNT_INTERNAL;
967 
968 	atomic_inc(&fc->root->d_sb->s_active);
969 	mnt->mnt.mnt_sb		= fc->root->d_sb;
970 	mnt->mnt.mnt_root	= dget(fc->root);
971 	mnt->mnt_mountpoint	= mnt->mnt.mnt_root;
972 	mnt->mnt_parent		= mnt;
973 
974 	lock_mount_hash();
975 	list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
976 	unlock_mount_hash();
977 	return &mnt->mnt;
978 }
979 EXPORT_SYMBOL(vfs_create_mount);
980 
981 struct vfsmount *fc_mount(struct fs_context *fc)
982 {
983 	int err = vfs_get_tree(fc);
984 	if (!err) {
985 		up_write(&fc->root->d_sb->s_umount);
986 		return vfs_create_mount(fc);
987 	}
988 	return ERR_PTR(err);
989 }
990 EXPORT_SYMBOL(fc_mount);
991 
992 struct vfsmount *vfs_kern_mount(struct file_system_type *type,
993 				int flags, const char *name,
994 				void *data)
995 {
996 	struct fs_context *fc;
997 	struct vfsmount *mnt;
998 	int ret = 0;
999 
1000 	if (!type)
1001 		return ERR_PTR(-EINVAL);
1002 
1003 	fc = fs_context_for_mount(type, flags);
1004 	if (IS_ERR(fc))
1005 		return ERR_CAST(fc);
1006 
1007 	if (name)
1008 		ret = vfs_parse_fs_string(fc, "source",
1009 					  name, strlen(name));
1010 	if (!ret)
1011 		ret = parse_monolithic_mount_data(fc, data);
1012 	if (!ret)
1013 		mnt = fc_mount(fc);
1014 	else
1015 		mnt = ERR_PTR(ret);
1016 
1017 	put_fs_context(fc);
1018 	return mnt;
1019 }
1020 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1021 
1022 struct vfsmount *
1023 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1024 	     const char *name, void *data)
1025 {
1026 	/* Until it is worked out how to pass the user namespace
1027 	 * through from the parent mount to the submount don't support
1028 	 * unprivileged mounts with submounts.
1029 	 */
1030 	if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1031 		return ERR_PTR(-EPERM);
1032 
1033 	return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1034 }
1035 EXPORT_SYMBOL_GPL(vfs_submount);
1036 
1037 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1038 					int flag)
1039 {
1040 	struct super_block *sb = old->mnt.mnt_sb;
1041 	struct mount *mnt;
1042 	int err;
1043 
1044 	mnt = alloc_vfsmnt(old->mnt_devname);
1045 	if (!mnt)
1046 		return ERR_PTR(-ENOMEM);
1047 
1048 	if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1049 		mnt->mnt_group_id = 0; /* not a peer of original */
1050 	else
1051 		mnt->mnt_group_id = old->mnt_group_id;
1052 
1053 	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1054 		err = mnt_alloc_group_id(mnt);
1055 		if (err)
1056 			goto out_free;
1057 	}
1058 
1059 	mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1060 	mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1061 
1062 	atomic_inc(&sb->s_active);
1063 	mnt->mnt.mnt_sb = sb;
1064 	mnt->mnt.mnt_root = dget(root);
1065 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1066 	mnt->mnt_parent = mnt;
1067 	lock_mount_hash();
1068 	list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1069 	unlock_mount_hash();
1070 
1071 	if ((flag & CL_SLAVE) ||
1072 	    ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1073 		list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1074 		mnt->mnt_master = old;
1075 		CLEAR_MNT_SHARED(mnt);
1076 	} else if (!(flag & CL_PRIVATE)) {
1077 		if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1078 			list_add(&mnt->mnt_share, &old->mnt_share);
1079 		if (IS_MNT_SLAVE(old))
1080 			list_add(&mnt->mnt_slave, &old->mnt_slave);
1081 		mnt->mnt_master = old->mnt_master;
1082 	} else {
1083 		CLEAR_MNT_SHARED(mnt);
1084 	}
1085 	if (flag & CL_MAKE_SHARED)
1086 		set_mnt_shared(mnt);
1087 
1088 	/* stick the duplicate mount on the same expiry list
1089 	 * as the original if that was on one */
1090 	if (flag & CL_EXPIRE) {
1091 		if (!list_empty(&old->mnt_expire))
1092 			list_add(&mnt->mnt_expire, &old->mnt_expire);
1093 	}
1094 
1095 	return mnt;
1096 
1097  out_free:
1098 	mnt_free_id(mnt);
1099 	free_vfsmnt(mnt);
1100 	return ERR_PTR(err);
1101 }
1102 
1103 static void cleanup_mnt(struct mount *mnt)
1104 {
1105 	/*
1106 	 * This probably indicates that somebody messed
1107 	 * up a mnt_want/drop_write() pair.  If this
1108 	 * happens, the filesystem was probably unable
1109 	 * to make r/w->r/o transitions.
1110 	 */
1111 	/*
1112 	 * The locking used to deal with mnt_count decrement provides barriers,
1113 	 * so mnt_get_writers() below is safe.
1114 	 */
1115 	WARN_ON(mnt_get_writers(mnt));
1116 	if (unlikely(mnt->mnt_pins.first))
1117 		mnt_pin_kill(mnt);
1118 	fsnotify_vfsmount_delete(&mnt->mnt);
1119 	dput(mnt->mnt.mnt_root);
1120 	deactivate_super(mnt->mnt.mnt_sb);
1121 	mnt_free_id(mnt);
1122 	call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1123 }
1124 
1125 static void __cleanup_mnt(struct rcu_head *head)
1126 {
1127 	cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1128 }
1129 
1130 static LLIST_HEAD(delayed_mntput_list);
1131 static void delayed_mntput(struct work_struct *unused)
1132 {
1133 	struct llist_node *node = llist_del_all(&delayed_mntput_list);
1134 	struct mount *m, *t;
1135 
1136 	llist_for_each_entry_safe(m, t, node, mnt_llist)
1137 		cleanup_mnt(m);
1138 }
1139 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1140 
1141 static void mntput_no_expire(struct mount *mnt)
1142 {
1143 	rcu_read_lock();
1144 	if (likely(READ_ONCE(mnt->mnt_ns))) {
1145 		/*
1146 		 * Since we don't do lock_mount_hash() here,
1147 		 * ->mnt_ns can change under us.  However, if it's
1148 		 * non-NULL, then there's a reference that won't
1149 		 * be dropped until after an RCU delay done after
1150 		 * turning ->mnt_ns NULL.  So if we observe it
1151 		 * non-NULL under rcu_read_lock(), the reference
1152 		 * we are dropping is not the final one.
1153 		 */
1154 		mnt_add_count(mnt, -1);
1155 		rcu_read_unlock();
1156 		return;
1157 	}
1158 	lock_mount_hash();
1159 	/*
1160 	 * make sure that if __legitimize_mnt() has not seen us grab
1161 	 * mount_lock, we'll see their refcount increment here.
1162 	 */
1163 	smp_mb();
1164 	mnt_add_count(mnt, -1);
1165 	if (mnt_get_count(mnt)) {
1166 		rcu_read_unlock();
1167 		unlock_mount_hash();
1168 		return;
1169 	}
1170 	if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1171 		rcu_read_unlock();
1172 		unlock_mount_hash();
1173 		return;
1174 	}
1175 	mnt->mnt.mnt_flags |= MNT_DOOMED;
1176 	rcu_read_unlock();
1177 
1178 	list_del(&mnt->mnt_instance);
1179 
1180 	if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1181 		struct mount *p, *tmp;
1182 		list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts,  mnt_child) {
1183 			umount_mnt(p);
1184 		}
1185 	}
1186 	unlock_mount_hash();
1187 
1188 	if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1189 		struct task_struct *task = current;
1190 		if (likely(!(task->flags & PF_KTHREAD))) {
1191 			init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1192 			if (!task_work_add(task, &mnt->mnt_rcu, true))
1193 				return;
1194 		}
1195 		if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1196 			schedule_delayed_work(&delayed_mntput_work, 1);
1197 		return;
1198 	}
1199 	cleanup_mnt(mnt);
1200 }
1201 
1202 void mntput(struct vfsmount *mnt)
1203 {
1204 	if (mnt) {
1205 		struct mount *m = real_mount(mnt);
1206 		/* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1207 		if (unlikely(m->mnt_expiry_mark))
1208 			m->mnt_expiry_mark = 0;
1209 		mntput_no_expire(m);
1210 	}
1211 }
1212 EXPORT_SYMBOL(mntput);
1213 
1214 struct vfsmount *mntget(struct vfsmount *mnt)
1215 {
1216 	if (mnt)
1217 		mnt_add_count(real_mount(mnt), 1);
1218 	return mnt;
1219 }
1220 EXPORT_SYMBOL(mntget);
1221 
1222 /* path_is_mountpoint() - Check if path is a mount in the current
1223  *                          namespace.
1224  *
1225  *  d_mountpoint() can only be used reliably to establish if a dentry is
1226  *  not mounted in any namespace and that common case is handled inline.
1227  *  d_mountpoint() isn't aware of the possibility there may be multiple
1228  *  mounts using a given dentry in a different namespace. This function
1229  *  checks if the passed in path is a mountpoint rather than the dentry
1230  *  alone.
1231  */
1232 bool path_is_mountpoint(const struct path *path)
1233 {
1234 	unsigned seq;
1235 	bool res;
1236 
1237 	if (!d_mountpoint(path->dentry))
1238 		return false;
1239 
1240 	rcu_read_lock();
1241 	do {
1242 		seq = read_seqbegin(&mount_lock);
1243 		res = __path_is_mountpoint(path);
1244 	} while (read_seqretry(&mount_lock, seq));
1245 	rcu_read_unlock();
1246 
1247 	return res;
1248 }
1249 EXPORT_SYMBOL(path_is_mountpoint);
1250 
1251 struct vfsmount *mnt_clone_internal(const struct path *path)
1252 {
1253 	struct mount *p;
1254 	p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1255 	if (IS_ERR(p))
1256 		return ERR_CAST(p);
1257 	p->mnt.mnt_flags |= MNT_INTERNAL;
1258 	return &p->mnt;
1259 }
1260 
1261 #ifdef CONFIG_PROC_FS
1262 /* iterator; we want it to have access to namespace_sem, thus here... */
1263 static void *m_start(struct seq_file *m, loff_t *pos)
1264 {
1265 	struct proc_mounts *p = m->private;
1266 
1267 	down_read(&namespace_sem);
1268 	if (p->cached_event == p->ns->event) {
1269 		void *v = p->cached_mount;
1270 		if (*pos == p->cached_index)
1271 			return v;
1272 		if (*pos == p->cached_index + 1) {
1273 			v = seq_list_next(v, &p->ns->list, &p->cached_index);
1274 			return p->cached_mount = v;
1275 		}
1276 	}
1277 
1278 	p->cached_event = p->ns->event;
1279 	p->cached_mount = seq_list_start(&p->ns->list, *pos);
1280 	p->cached_index = *pos;
1281 	return p->cached_mount;
1282 }
1283 
1284 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1285 {
1286 	struct proc_mounts *p = m->private;
1287 
1288 	p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1289 	p->cached_index = *pos;
1290 	return p->cached_mount;
1291 }
1292 
1293 static void m_stop(struct seq_file *m, void *v)
1294 {
1295 	up_read(&namespace_sem);
1296 }
1297 
1298 static int m_show(struct seq_file *m, void *v)
1299 {
1300 	struct proc_mounts *p = m->private;
1301 	struct mount *r = list_entry(v, struct mount, mnt_list);
1302 	return p->show(m, &r->mnt);
1303 }
1304 
1305 const struct seq_operations mounts_op = {
1306 	.start	= m_start,
1307 	.next	= m_next,
1308 	.stop	= m_stop,
1309 	.show	= m_show,
1310 };
1311 #endif  /* CONFIG_PROC_FS */
1312 
1313 /**
1314  * may_umount_tree - check if a mount tree is busy
1315  * @mnt: root of mount tree
1316  *
1317  * This is called to check if a tree of mounts has any
1318  * open files, pwds, chroots or sub mounts that are
1319  * busy.
1320  */
1321 int may_umount_tree(struct vfsmount *m)
1322 {
1323 	struct mount *mnt = real_mount(m);
1324 	int actual_refs = 0;
1325 	int minimum_refs = 0;
1326 	struct mount *p;
1327 	BUG_ON(!m);
1328 
1329 	/* write lock needed for mnt_get_count */
1330 	lock_mount_hash();
1331 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1332 		actual_refs += mnt_get_count(p);
1333 		minimum_refs += 2;
1334 	}
1335 	unlock_mount_hash();
1336 
1337 	if (actual_refs > minimum_refs)
1338 		return 0;
1339 
1340 	return 1;
1341 }
1342 
1343 EXPORT_SYMBOL(may_umount_tree);
1344 
1345 /**
1346  * may_umount - check if a mount point is busy
1347  * @mnt: root of mount
1348  *
1349  * This is called to check if a mount point has any
1350  * open files, pwds, chroots or sub mounts. If the
1351  * mount has sub mounts this will return busy
1352  * regardless of whether the sub mounts are busy.
1353  *
1354  * Doesn't take quota and stuff into account. IOW, in some cases it will
1355  * give false negatives. The main reason why it's here is that we need
1356  * a non-destructive way to look for easily umountable filesystems.
1357  */
1358 int may_umount(struct vfsmount *mnt)
1359 {
1360 	int ret = 1;
1361 	down_read(&namespace_sem);
1362 	lock_mount_hash();
1363 	if (propagate_mount_busy(real_mount(mnt), 2))
1364 		ret = 0;
1365 	unlock_mount_hash();
1366 	up_read(&namespace_sem);
1367 	return ret;
1368 }
1369 
1370 EXPORT_SYMBOL(may_umount);
1371 
1372 static HLIST_HEAD(unmounted);	/* protected by namespace_sem */
1373 
1374 static void namespace_unlock(void)
1375 {
1376 	struct hlist_head head;
1377 
1378 	hlist_move_list(&unmounted, &head);
1379 
1380 	up_write(&namespace_sem);
1381 
1382 	if (likely(hlist_empty(&head)))
1383 		return;
1384 
1385 	synchronize_rcu_expedited();
1386 
1387 	group_pin_kill(&head);
1388 }
1389 
1390 static inline void namespace_lock(void)
1391 {
1392 	down_write(&namespace_sem);
1393 }
1394 
1395 enum umount_tree_flags {
1396 	UMOUNT_SYNC = 1,
1397 	UMOUNT_PROPAGATE = 2,
1398 	UMOUNT_CONNECTED = 4,
1399 };
1400 
1401 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1402 {
1403 	/* Leaving mounts connected is only valid for lazy umounts */
1404 	if (how & UMOUNT_SYNC)
1405 		return true;
1406 
1407 	/* A mount without a parent has nothing to be connected to */
1408 	if (!mnt_has_parent(mnt))
1409 		return true;
1410 
1411 	/* Because the reference counting rules change when mounts are
1412 	 * unmounted and connected, umounted mounts may not be
1413 	 * connected to mounted mounts.
1414 	 */
1415 	if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1416 		return true;
1417 
1418 	/* Has it been requested that the mount remain connected? */
1419 	if (how & UMOUNT_CONNECTED)
1420 		return false;
1421 
1422 	/* Is the mount locked such that it needs to remain connected? */
1423 	if (IS_MNT_LOCKED(mnt))
1424 		return false;
1425 
1426 	/* By default disconnect the mount */
1427 	return true;
1428 }
1429 
1430 /*
1431  * mount_lock must be held
1432  * namespace_sem must be held for write
1433  */
1434 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1435 {
1436 	LIST_HEAD(tmp_list);
1437 	struct mount *p;
1438 
1439 	if (how & UMOUNT_PROPAGATE)
1440 		propagate_mount_unlock(mnt);
1441 
1442 	/* Gather the mounts to umount */
1443 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1444 		p->mnt.mnt_flags |= MNT_UMOUNT;
1445 		list_move(&p->mnt_list, &tmp_list);
1446 	}
1447 
1448 	/* Hide the mounts from mnt_mounts */
1449 	list_for_each_entry(p, &tmp_list, mnt_list) {
1450 		list_del_init(&p->mnt_child);
1451 	}
1452 
1453 	/* Add propogated mounts to the tmp_list */
1454 	if (how & UMOUNT_PROPAGATE)
1455 		propagate_umount(&tmp_list);
1456 
1457 	while (!list_empty(&tmp_list)) {
1458 		struct mnt_namespace *ns;
1459 		bool disconnect;
1460 		p = list_first_entry(&tmp_list, struct mount, mnt_list);
1461 		list_del_init(&p->mnt_expire);
1462 		list_del_init(&p->mnt_list);
1463 		ns = p->mnt_ns;
1464 		if (ns) {
1465 			ns->mounts--;
1466 			__touch_mnt_namespace(ns);
1467 		}
1468 		p->mnt_ns = NULL;
1469 		if (how & UMOUNT_SYNC)
1470 			p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1471 
1472 		disconnect = disconnect_mount(p, how);
1473 
1474 		pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1475 				 disconnect ? &unmounted : NULL);
1476 		if (mnt_has_parent(p)) {
1477 			mnt_add_count(p->mnt_parent, -1);
1478 			if (!disconnect) {
1479 				/* Don't forget about p */
1480 				list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1481 			} else {
1482 				umount_mnt(p);
1483 			}
1484 		}
1485 		change_mnt_propagation(p, MS_PRIVATE);
1486 	}
1487 }
1488 
1489 static void shrink_submounts(struct mount *mnt);
1490 
1491 static int do_umount_root(struct super_block *sb)
1492 {
1493 	int ret = 0;
1494 
1495 	down_write(&sb->s_umount);
1496 	if (!sb_rdonly(sb)) {
1497 		struct fs_context *fc;
1498 
1499 		fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1500 						SB_RDONLY);
1501 		if (IS_ERR(fc)) {
1502 			ret = PTR_ERR(fc);
1503 		} else {
1504 			ret = parse_monolithic_mount_data(fc, NULL);
1505 			if (!ret)
1506 				ret = reconfigure_super(fc);
1507 			put_fs_context(fc);
1508 		}
1509 	}
1510 	up_write(&sb->s_umount);
1511 	return ret;
1512 }
1513 
1514 static int do_umount(struct mount *mnt, int flags)
1515 {
1516 	struct super_block *sb = mnt->mnt.mnt_sb;
1517 	int retval;
1518 
1519 	retval = security_sb_umount(&mnt->mnt, flags);
1520 	if (retval)
1521 		return retval;
1522 
1523 	/*
1524 	 * Allow userspace to request a mountpoint be expired rather than
1525 	 * unmounting unconditionally. Unmount only happens if:
1526 	 *  (1) the mark is already set (the mark is cleared by mntput())
1527 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1528 	 */
1529 	if (flags & MNT_EXPIRE) {
1530 		if (&mnt->mnt == current->fs->root.mnt ||
1531 		    flags & (MNT_FORCE | MNT_DETACH))
1532 			return -EINVAL;
1533 
1534 		/*
1535 		 * probably don't strictly need the lock here if we examined
1536 		 * all race cases, but it's a slowpath.
1537 		 */
1538 		lock_mount_hash();
1539 		if (mnt_get_count(mnt) != 2) {
1540 			unlock_mount_hash();
1541 			return -EBUSY;
1542 		}
1543 		unlock_mount_hash();
1544 
1545 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1546 			return -EAGAIN;
1547 	}
1548 
1549 	/*
1550 	 * If we may have to abort operations to get out of this
1551 	 * mount, and they will themselves hold resources we must
1552 	 * allow the fs to do things. In the Unix tradition of
1553 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1554 	 * might fail to complete on the first run through as other tasks
1555 	 * must return, and the like. Thats for the mount program to worry
1556 	 * about for the moment.
1557 	 */
1558 
1559 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1560 		sb->s_op->umount_begin(sb);
1561 	}
1562 
1563 	/*
1564 	 * No sense to grab the lock for this test, but test itself looks
1565 	 * somewhat bogus. Suggestions for better replacement?
1566 	 * Ho-hum... In principle, we might treat that as umount + switch
1567 	 * to rootfs. GC would eventually take care of the old vfsmount.
1568 	 * Actually it makes sense, especially if rootfs would contain a
1569 	 * /reboot - static binary that would close all descriptors and
1570 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1571 	 */
1572 	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1573 		/*
1574 		 * Special case for "unmounting" root ...
1575 		 * we just try to remount it readonly.
1576 		 */
1577 		if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1578 			return -EPERM;
1579 		return do_umount_root(sb);
1580 	}
1581 
1582 	namespace_lock();
1583 	lock_mount_hash();
1584 
1585 	/* Recheck MNT_LOCKED with the locks held */
1586 	retval = -EINVAL;
1587 	if (mnt->mnt.mnt_flags & MNT_LOCKED)
1588 		goto out;
1589 
1590 	event++;
1591 	if (flags & MNT_DETACH) {
1592 		if (!list_empty(&mnt->mnt_list))
1593 			umount_tree(mnt, UMOUNT_PROPAGATE);
1594 		retval = 0;
1595 	} else {
1596 		shrink_submounts(mnt);
1597 		retval = -EBUSY;
1598 		if (!propagate_mount_busy(mnt, 2)) {
1599 			if (!list_empty(&mnt->mnt_list))
1600 				umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1601 			retval = 0;
1602 		}
1603 	}
1604 out:
1605 	unlock_mount_hash();
1606 	namespace_unlock();
1607 	return retval;
1608 }
1609 
1610 /*
1611  * __detach_mounts - lazily unmount all mounts on the specified dentry
1612  *
1613  * During unlink, rmdir, and d_drop it is possible to loose the path
1614  * to an existing mountpoint, and wind up leaking the mount.
1615  * detach_mounts allows lazily unmounting those mounts instead of
1616  * leaking them.
1617  *
1618  * The caller may hold dentry->d_inode->i_mutex.
1619  */
1620 void __detach_mounts(struct dentry *dentry)
1621 {
1622 	struct mountpoint *mp;
1623 	struct mount *mnt;
1624 
1625 	namespace_lock();
1626 	lock_mount_hash();
1627 	mp = lookup_mountpoint(dentry);
1628 	if (IS_ERR_OR_NULL(mp))
1629 		goto out_unlock;
1630 
1631 	event++;
1632 	while (!hlist_empty(&mp->m_list)) {
1633 		mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1634 		if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1635 			hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1636 			umount_mnt(mnt);
1637 		}
1638 		else umount_tree(mnt, UMOUNT_CONNECTED);
1639 	}
1640 	put_mountpoint(mp);
1641 out_unlock:
1642 	unlock_mount_hash();
1643 	namespace_unlock();
1644 }
1645 
1646 /*
1647  * Is the caller allowed to modify his namespace?
1648  */
1649 static inline bool may_mount(void)
1650 {
1651 	return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1652 }
1653 
1654 static inline bool may_mandlock(void)
1655 {
1656 #ifndef	CONFIG_MANDATORY_FILE_LOCKING
1657 	return false;
1658 #endif
1659 	return capable(CAP_SYS_ADMIN);
1660 }
1661 
1662 /*
1663  * Now umount can handle mount points as well as block devices.
1664  * This is important for filesystems which use unnamed block devices.
1665  *
1666  * We now support a flag for forced unmount like the other 'big iron'
1667  * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1668  */
1669 
1670 int ksys_umount(char __user *name, int flags)
1671 {
1672 	struct path path;
1673 	struct mount *mnt;
1674 	int retval;
1675 	int lookup_flags = 0;
1676 
1677 	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1678 		return -EINVAL;
1679 
1680 	if (!may_mount())
1681 		return -EPERM;
1682 
1683 	if (!(flags & UMOUNT_NOFOLLOW))
1684 		lookup_flags |= LOOKUP_FOLLOW;
1685 
1686 	lookup_flags |= LOOKUP_NO_EVAL;
1687 
1688 	retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1689 	if (retval)
1690 		goto out;
1691 	mnt = real_mount(path.mnt);
1692 	retval = -EINVAL;
1693 	if (path.dentry != path.mnt->mnt_root)
1694 		goto dput_and_out;
1695 	if (!check_mnt(mnt))
1696 		goto dput_and_out;
1697 	if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
1698 		goto dput_and_out;
1699 	retval = -EPERM;
1700 	if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1701 		goto dput_and_out;
1702 
1703 	retval = do_umount(mnt, flags);
1704 dput_and_out:
1705 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
1706 	dput(path.dentry);
1707 	mntput_no_expire(mnt);
1708 out:
1709 	return retval;
1710 }
1711 
1712 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1713 {
1714 	return ksys_umount(name, flags);
1715 }
1716 
1717 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1718 
1719 /*
1720  *	The 2.0 compatible umount. No flags.
1721  */
1722 SYSCALL_DEFINE1(oldumount, char __user *, name)
1723 {
1724 	return ksys_umount(name, 0);
1725 }
1726 
1727 #endif
1728 
1729 static bool is_mnt_ns_file(struct dentry *dentry)
1730 {
1731 	/* Is this a proxy for a mount namespace? */
1732 	return dentry->d_op == &ns_dentry_operations &&
1733 	       dentry->d_fsdata == &mntns_operations;
1734 }
1735 
1736 struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1737 {
1738 	return container_of(ns, struct mnt_namespace, ns);
1739 }
1740 
1741 static bool mnt_ns_loop(struct dentry *dentry)
1742 {
1743 	/* Could bind mounting the mount namespace inode cause a
1744 	 * mount namespace loop?
1745 	 */
1746 	struct mnt_namespace *mnt_ns;
1747 	if (!is_mnt_ns_file(dentry))
1748 		return false;
1749 
1750 	mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1751 	return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1752 }
1753 
1754 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1755 					int flag)
1756 {
1757 	struct mount *res, *p, *q, *r, *parent;
1758 
1759 	if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1760 		return ERR_PTR(-EINVAL);
1761 
1762 	if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1763 		return ERR_PTR(-EINVAL);
1764 
1765 	res = q = clone_mnt(mnt, dentry, flag);
1766 	if (IS_ERR(q))
1767 		return q;
1768 
1769 	q->mnt_mountpoint = mnt->mnt_mountpoint;
1770 
1771 	p = mnt;
1772 	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1773 		struct mount *s;
1774 		if (!is_subdir(r->mnt_mountpoint, dentry))
1775 			continue;
1776 
1777 		for (s = r; s; s = next_mnt(s, r)) {
1778 			if (!(flag & CL_COPY_UNBINDABLE) &&
1779 			    IS_MNT_UNBINDABLE(s)) {
1780 				if (s->mnt.mnt_flags & MNT_LOCKED) {
1781 					/* Both unbindable and locked. */
1782 					q = ERR_PTR(-EPERM);
1783 					goto out;
1784 				} else {
1785 					s = skip_mnt_tree(s);
1786 					continue;
1787 				}
1788 			}
1789 			if (!(flag & CL_COPY_MNT_NS_FILE) &&
1790 			    is_mnt_ns_file(s->mnt.mnt_root)) {
1791 				s = skip_mnt_tree(s);
1792 				continue;
1793 			}
1794 			while (p != s->mnt_parent) {
1795 				p = p->mnt_parent;
1796 				q = q->mnt_parent;
1797 			}
1798 			p = s;
1799 			parent = q;
1800 			q = clone_mnt(p, p->mnt.mnt_root, flag);
1801 			if (IS_ERR(q))
1802 				goto out;
1803 			lock_mount_hash();
1804 			list_add_tail(&q->mnt_list, &res->mnt_list);
1805 			attach_mnt(q, parent, p->mnt_mp);
1806 			unlock_mount_hash();
1807 		}
1808 	}
1809 	return res;
1810 out:
1811 	if (res) {
1812 		lock_mount_hash();
1813 		umount_tree(res, UMOUNT_SYNC);
1814 		unlock_mount_hash();
1815 	}
1816 	return q;
1817 }
1818 
1819 /* Caller should check returned pointer for errors */
1820 
1821 struct vfsmount *collect_mounts(const struct path *path)
1822 {
1823 	struct mount *tree;
1824 	namespace_lock();
1825 	if (!check_mnt(real_mount(path->mnt)))
1826 		tree = ERR_PTR(-EINVAL);
1827 	else
1828 		tree = copy_tree(real_mount(path->mnt), path->dentry,
1829 				 CL_COPY_ALL | CL_PRIVATE);
1830 	namespace_unlock();
1831 	if (IS_ERR(tree))
1832 		return ERR_CAST(tree);
1833 	return &tree->mnt;
1834 }
1835 
1836 static void free_mnt_ns(struct mnt_namespace *);
1837 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
1838 
1839 void dissolve_on_fput(struct vfsmount *mnt)
1840 {
1841 	struct mnt_namespace *ns;
1842 	namespace_lock();
1843 	lock_mount_hash();
1844 	ns = real_mount(mnt)->mnt_ns;
1845 	if (ns) {
1846 		if (is_anon_ns(ns))
1847 			umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
1848 		else
1849 			ns = NULL;
1850 	}
1851 	unlock_mount_hash();
1852 	namespace_unlock();
1853 	if (ns)
1854 		free_mnt_ns(ns);
1855 }
1856 
1857 void drop_collected_mounts(struct vfsmount *mnt)
1858 {
1859 	namespace_lock();
1860 	lock_mount_hash();
1861 	umount_tree(real_mount(mnt), 0);
1862 	unlock_mount_hash();
1863 	namespace_unlock();
1864 }
1865 
1866 /**
1867  * clone_private_mount - create a private clone of a path
1868  *
1869  * This creates a new vfsmount, which will be the clone of @path.  The new will
1870  * not be attached anywhere in the namespace and will be private (i.e. changes
1871  * to the originating mount won't be propagated into this).
1872  *
1873  * Release with mntput().
1874  */
1875 struct vfsmount *clone_private_mount(const struct path *path)
1876 {
1877 	struct mount *old_mnt = real_mount(path->mnt);
1878 	struct mount *new_mnt;
1879 
1880 	if (IS_MNT_UNBINDABLE(old_mnt))
1881 		return ERR_PTR(-EINVAL);
1882 
1883 	new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1884 	if (IS_ERR(new_mnt))
1885 		return ERR_CAST(new_mnt);
1886 
1887 	return &new_mnt->mnt;
1888 }
1889 EXPORT_SYMBOL_GPL(clone_private_mount);
1890 
1891 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1892 		   struct vfsmount *root)
1893 {
1894 	struct mount *mnt;
1895 	int res = f(root, arg);
1896 	if (res)
1897 		return res;
1898 	list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1899 		res = f(&mnt->mnt, arg);
1900 		if (res)
1901 			return res;
1902 	}
1903 	return 0;
1904 }
1905 
1906 static void lock_mnt_tree(struct mount *mnt)
1907 {
1908 	struct mount *p;
1909 
1910 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1911 		int flags = p->mnt.mnt_flags;
1912 		/* Don't allow unprivileged users to change mount flags */
1913 		flags |= MNT_LOCK_ATIME;
1914 
1915 		if (flags & MNT_READONLY)
1916 			flags |= MNT_LOCK_READONLY;
1917 
1918 		if (flags & MNT_NODEV)
1919 			flags |= MNT_LOCK_NODEV;
1920 
1921 		if (flags & MNT_NOSUID)
1922 			flags |= MNT_LOCK_NOSUID;
1923 
1924 		if (flags & MNT_NOEXEC)
1925 			flags |= MNT_LOCK_NOEXEC;
1926 		/* Don't allow unprivileged users to reveal what is under a mount */
1927 		if (list_empty(&p->mnt_expire))
1928 			flags |= MNT_LOCKED;
1929 		p->mnt.mnt_flags = flags;
1930 	}
1931 }
1932 
1933 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1934 {
1935 	struct mount *p;
1936 
1937 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1938 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
1939 			mnt_release_group_id(p);
1940 	}
1941 }
1942 
1943 static int invent_group_ids(struct mount *mnt, bool recurse)
1944 {
1945 	struct mount *p;
1946 
1947 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1948 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1949 			int err = mnt_alloc_group_id(p);
1950 			if (err) {
1951 				cleanup_group_ids(mnt, p);
1952 				return err;
1953 			}
1954 		}
1955 	}
1956 
1957 	return 0;
1958 }
1959 
1960 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1961 {
1962 	unsigned int max = READ_ONCE(sysctl_mount_max);
1963 	unsigned int mounts = 0, old, pending, sum;
1964 	struct mount *p;
1965 
1966 	for (p = mnt; p; p = next_mnt(p, mnt))
1967 		mounts++;
1968 
1969 	old = ns->mounts;
1970 	pending = ns->pending_mounts;
1971 	sum = old + pending;
1972 	if ((old > sum) ||
1973 	    (pending > sum) ||
1974 	    (max < sum) ||
1975 	    (mounts > (max - sum)))
1976 		return -ENOSPC;
1977 
1978 	ns->pending_mounts = pending + mounts;
1979 	return 0;
1980 }
1981 
1982 /*
1983  *  @source_mnt : mount tree to be attached
1984  *  @nd         : place the mount tree @source_mnt is attached
1985  *  @parent_nd  : if non-null, detach the source_mnt from its parent and
1986  *  		   store the parent mount and mountpoint dentry.
1987  *  		   (done when source_mnt is moved)
1988  *
1989  *  NOTE: in the table below explains the semantics when a source mount
1990  *  of a given type is attached to a destination mount of a given type.
1991  * ---------------------------------------------------------------------------
1992  * |         BIND MOUNT OPERATION                                            |
1993  * |**************************************************************************
1994  * | source-->| shared        |       private  |       slave    | unbindable |
1995  * | dest     |               |                |                |            |
1996  * |   |      |               |                |                |            |
1997  * |   v      |               |                |                |            |
1998  * |**************************************************************************
1999  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
2000  * |          |               |                |                |            |
2001  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
2002  * ***************************************************************************
2003  * A bind operation clones the source mount and mounts the clone on the
2004  * destination mount.
2005  *
2006  * (++)  the cloned mount is propagated to all the mounts in the propagation
2007  * 	 tree of the destination mount and the cloned mount is added to
2008  * 	 the peer group of the source mount.
2009  * (+)   the cloned mount is created under the destination mount and is marked
2010  *       as shared. The cloned mount is added to the peer group of the source
2011  *       mount.
2012  * (+++) the mount is propagated to all the mounts in the propagation tree
2013  *       of the destination mount and the cloned mount is made slave
2014  *       of the same master as that of the source mount. The cloned mount
2015  *       is marked as 'shared and slave'.
2016  * (*)   the cloned mount is made a slave of the same master as that of the
2017  * 	 source mount.
2018  *
2019  * ---------------------------------------------------------------------------
2020  * |         		MOVE MOUNT OPERATION                                 |
2021  * |**************************************************************************
2022  * | source-->| shared        |       private  |       slave    | unbindable |
2023  * | dest     |               |                |                |            |
2024  * |   |      |               |                |                |            |
2025  * |   v      |               |                |                |            |
2026  * |**************************************************************************
2027  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
2028  * |          |               |                |                |            |
2029  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
2030  * ***************************************************************************
2031  *
2032  * (+)  the mount is moved to the destination. And is then propagated to
2033  * 	all the mounts in the propagation tree of the destination mount.
2034  * (+*)  the mount is moved to the destination.
2035  * (+++)  the mount is moved to the destination and is then propagated to
2036  * 	all the mounts belonging to the destination mount's propagation tree.
2037  * 	the mount is marked as 'shared and slave'.
2038  * (*)	the mount continues to be a slave at the new location.
2039  *
2040  * if the source mount is a tree, the operations explained above is
2041  * applied to each mount in the tree.
2042  * Must be called without spinlocks held, since this function can sleep
2043  * in allocations.
2044  */
2045 static int attach_recursive_mnt(struct mount *source_mnt,
2046 			struct mount *dest_mnt,
2047 			struct mountpoint *dest_mp,
2048 			struct path *parent_path)
2049 {
2050 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2051 	HLIST_HEAD(tree_list);
2052 	struct mnt_namespace *ns = dest_mnt->mnt_ns;
2053 	struct mountpoint *smp;
2054 	struct mount *child, *p;
2055 	struct hlist_node *n;
2056 	int err;
2057 
2058 	/* Preallocate a mountpoint in case the new mounts need
2059 	 * to be tucked under other mounts.
2060 	 */
2061 	smp = get_mountpoint(source_mnt->mnt.mnt_root);
2062 	if (IS_ERR(smp))
2063 		return PTR_ERR(smp);
2064 
2065 	/* Is there space to add these mounts to the mount namespace? */
2066 	if (!parent_path) {
2067 		err = count_mounts(ns, source_mnt);
2068 		if (err)
2069 			goto out;
2070 	}
2071 
2072 	if (IS_MNT_SHARED(dest_mnt)) {
2073 		err = invent_group_ids(source_mnt, true);
2074 		if (err)
2075 			goto out;
2076 		err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2077 		lock_mount_hash();
2078 		if (err)
2079 			goto out_cleanup_ids;
2080 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2081 			set_mnt_shared(p);
2082 	} else {
2083 		lock_mount_hash();
2084 	}
2085 	if (parent_path) {
2086 		detach_mnt(source_mnt, parent_path);
2087 		attach_mnt(source_mnt, dest_mnt, dest_mp);
2088 		touch_mnt_namespace(source_mnt->mnt_ns);
2089 	} else {
2090 		if (source_mnt->mnt_ns) {
2091 			/* move from anon - the caller will destroy */
2092 			list_del_init(&source_mnt->mnt_ns->list);
2093 		}
2094 		mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2095 		commit_tree(source_mnt);
2096 	}
2097 
2098 	hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2099 		struct mount *q;
2100 		hlist_del_init(&child->mnt_hash);
2101 		q = __lookup_mnt(&child->mnt_parent->mnt,
2102 				 child->mnt_mountpoint);
2103 		if (q)
2104 			mnt_change_mountpoint(child, smp, q);
2105 		/* Notice when we are propagating across user namespaces */
2106 		if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2107 			lock_mnt_tree(child);
2108 		commit_tree(child);
2109 	}
2110 	put_mountpoint(smp);
2111 	unlock_mount_hash();
2112 
2113 	return 0;
2114 
2115  out_cleanup_ids:
2116 	while (!hlist_empty(&tree_list)) {
2117 		child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2118 		child->mnt_parent->mnt_ns->pending_mounts = 0;
2119 		umount_tree(child, UMOUNT_SYNC);
2120 	}
2121 	unlock_mount_hash();
2122 	cleanup_group_ids(source_mnt, NULL);
2123  out:
2124 	ns->pending_mounts = 0;
2125 
2126 	read_seqlock_excl(&mount_lock);
2127 	put_mountpoint(smp);
2128 	read_sequnlock_excl(&mount_lock);
2129 
2130 	return err;
2131 }
2132 
2133 static struct mountpoint *lock_mount(struct path *path)
2134 {
2135 	struct vfsmount *mnt;
2136 	struct dentry *dentry = path->dentry;
2137 retry:
2138 	inode_lock(dentry->d_inode);
2139 	if (unlikely(cant_mount(dentry))) {
2140 		inode_unlock(dentry->d_inode);
2141 		return ERR_PTR(-ENOENT);
2142 	}
2143 	namespace_lock();
2144 	mnt = lookup_mnt(path);
2145 	if (likely(!mnt)) {
2146 		struct mountpoint *mp = get_mountpoint(dentry);
2147 		if (IS_ERR(mp)) {
2148 			namespace_unlock();
2149 			inode_unlock(dentry->d_inode);
2150 			return mp;
2151 		}
2152 		return mp;
2153 	}
2154 	namespace_unlock();
2155 	inode_unlock(path->dentry->d_inode);
2156 	path_put(path);
2157 	path->mnt = mnt;
2158 	dentry = path->dentry = dget(mnt->mnt_root);
2159 	goto retry;
2160 }
2161 
2162 static void unlock_mount(struct mountpoint *where)
2163 {
2164 	struct dentry *dentry = where->m_dentry;
2165 
2166 	read_seqlock_excl(&mount_lock);
2167 	put_mountpoint(where);
2168 	read_sequnlock_excl(&mount_lock);
2169 
2170 	namespace_unlock();
2171 	inode_unlock(dentry->d_inode);
2172 }
2173 
2174 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2175 {
2176 	if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2177 		return -EINVAL;
2178 
2179 	if (d_is_dir(mp->m_dentry) !=
2180 	      d_is_dir(mnt->mnt.mnt_root))
2181 		return -ENOTDIR;
2182 
2183 	return attach_recursive_mnt(mnt, p, mp, NULL);
2184 }
2185 
2186 /*
2187  * Sanity check the flags to change_mnt_propagation.
2188  */
2189 
2190 static int flags_to_propagation_type(int ms_flags)
2191 {
2192 	int type = ms_flags & ~(MS_REC | MS_SILENT);
2193 
2194 	/* Fail if any non-propagation flags are set */
2195 	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2196 		return 0;
2197 	/* Only one propagation flag should be set */
2198 	if (!is_power_of_2(type))
2199 		return 0;
2200 	return type;
2201 }
2202 
2203 /*
2204  * recursively change the type of the mountpoint.
2205  */
2206 static int do_change_type(struct path *path, int ms_flags)
2207 {
2208 	struct mount *m;
2209 	struct mount *mnt = real_mount(path->mnt);
2210 	int recurse = ms_flags & MS_REC;
2211 	int type;
2212 	int err = 0;
2213 
2214 	if (path->dentry != path->mnt->mnt_root)
2215 		return -EINVAL;
2216 
2217 	type = flags_to_propagation_type(ms_flags);
2218 	if (!type)
2219 		return -EINVAL;
2220 
2221 	namespace_lock();
2222 	if (type == MS_SHARED) {
2223 		err = invent_group_ids(mnt, recurse);
2224 		if (err)
2225 			goto out_unlock;
2226 	}
2227 
2228 	lock_mount_hash();
2229 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2230 		change_mnt_propagation(m, type);
2231 	unlock_mount_hash();
2232 
2233  out_unlock:
2234 	namespace_unlock();
2235 	return err;
2236 }
2237 
2238 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2239 {
2240 	struct mount *child;
2241 	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2242 		if (!is_subdir(child->mnt_mountpoint, dentry))
2243 			continue;
2244 
2245 		if (child->mnt.mnt_flags & MNT_LOCKED)
2246 			return true;
2247 	}
2248 	return false;
2249 }
2250 
2251 static struct mount *__do_loopback(struct path *old_path, int recurse)
2252 {
2253 	struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2254 
2255 	if (IS_MNT_UNBINDABLE(old))
2256 		return mnt;
2257 
2258 	if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
2259 		return mnt;
2260 
2261 	if (!recurse && has_locked_children(old, old_path->dentry))
2262 		return mnt;
2263 
2264 	if (recurse)
2265 		mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2266 	else
2267 		mnt = clone_mnt(old, old_path->dentry, 0);
2268 
2269 	if (!IS_ERR(mnt))
2270 		mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2271 
2272 	return mnt;
2273 }
2274 
2275 /*
2276  * do loopback mount.
2277  */
2278 static int do_loopback(struct path *path, const char *old_name,
2279 				int recurse)
2280 {
2281 	struct path old_path;
2282 	struct mount *mnt = NULL, *parent;
2283 	struct mountpoint *mp;
2284 	int err;
2285 	if (!old_name || !*old_name)
2286 		return -EINVAL;
2287 	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2288 	if (err)
2289 		return err;
2290 
2291 	err = -EINVAL;
2292 	if (mnt_ns_loop(old_path.dentry))
2293 		goto out;
2294 
2295 	mp = lock_mount(path);
2296 	if (IS_ERR(mp)) {
2297 		err = PTR_ERR(mp);
2298 		goto out;
2299 	}
2300 
2301 	parent = real_mount(path->mnt);
2302 	if (!check_mnt(parent))
2303 		goto out2;
2304 
2305 	mnt = __do_loopback(&old_path, recurse);
2306 	if (IS_ERR(mnt)) {
2307 		err = PTR_ERR(mnt);
2308 		goto out2;
2309 	}
2310 
2311 	err = graft_tree(mnt, parent, mp);
2312 	if (err) {
2313 		lock_mount_hash();
2314 		umount_tree(mnt, UMOUNT_SYNC);
2315 		unlock_mount_hash();
2316 	}
2317 out2:
2318 	unlock_mount(mp);
2319 out:
2320 	path_put(&old_path);
2321 	return err;
2322 }
2323 
2324 static struct file *open_detached_copy(struct path *path, bool recursive)
2325 {
2326 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2327 	struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2328 	struct mount *mnt, *p;
2329 	struct file *file;
2330 
2331 	if (IS_ERR(ns))
2332 		return ERR_CAST(ns);
2333 
2334 	namespace_lock();
2335 	mnt = __do_loopback(path, recursive);
2336 	if (IS_ERR(mnt)) {
2337 		namespace_unlock();
2338 		free_mnt_ns(ns);
2339 		return ERR_CAST(mnt);
2340 	}
2341 
2342 	lock_mount_hash();
2343 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2344 		p->mnt_ns = ns;
2345 		ns->mounts++;
2346 	}
2347 	ns->root = mnt;
2348 	list_add_tail(&ns->list, &mnt->mnt_list);
2349 	mntget(&mnt->mnt);
2350 	unlock_mount_hash();
2351 	namespace_unlock();
2352 
2353 	mntput(path->mnt);
2354 	path->mnt = &mnt->mnt;
2355 	file = dentry_open(path, O_PATH, current_cred());
2356 	if (IS_ERR(file))
2357 		dissolve_on_fput(path->mnt);
2358 	else
2359 		file->f_mode |= FMODE_NEED_UNMOUNT;
2360 	return file;
2361 }
2362 
2363 SYSCALL_DEFINE3(open_tree, int, dfd, const char *, filename, unsigned, flags)
2364 {
2365 	struct file *file;
2366 	struct path path;
2367 	int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2368 	bool detached = flags & OPEN_TREE_CLONE;
2369 	int error;
2370 	int fd;
2371 
2372 	BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2373 
2374 	if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2375 		      AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2376 		      OPEN_TREE_CLOEXEC))
2377 		return -EINVAL;
2378 
2379 	if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2380 		return -EINVAL;
2381 
2382 	if (flags & AT_NO_AUTOMOUNT)
2383 		lookup_flags &= ~LOOKUP_AUTOMOUNT;
2384 	if (flags & AT_SYMLINK_NOFOLLOW)
2385 		lookup_flags &= ~LOOKUP_FOLLOW;
2386 	if (flags & AT_EMPTY_PATH)
2387 		lookup_flags |= LOOKUP_EMPTY;
2388 
2389 	if (detached && !may_mount())
2390 		return -EPERM;
2391 
2392 	fd = get_unused_fd_flags(flags & O_CLOEXEC);
2393 	if (fd < 0)
2394 		return fd;
2395 
2396 	error = user_path_at(dfd, filename, lookup_flags, &path);
2397 	if (unlikely(error)) {
2398 		file = ERR_PTR(error);
2399 	} else {
2400 		if (detached)
2401 			file = open_detached_copy(&path, flags & AT_RECURSIVE);
2402 		else
2403 			file = dentry_open(&path, O_PATH, current_cred());
2404 		path_put(&path);
2405 	}
2406 	if (IS_ERR(file)) {
2407 		put_unused_fd(fd);
2408 		return PTR_ERR(file);
2409 	}
2410 	fd_install(fd, file);
2411 	return fd;
2412 }
2413 
2414 /*
2415  * Don't allow locked mount flags to be cleared.
2416  *
2417  * No locks need to be held here while testing the various MNT_LOCK
2418  * flags because those flags can never be cleared once they are set.
2419  */
2420 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2421 {
2422 	unsigned int fl = mnt->mnt.mnt_flags;
2423 
2424 	if ((fl & MNT_LOCK_READONLY) &&
2425 	    !(mnt_flags & MNT_READONLY))
2426 		return false;
2427 
2428 	if ((fl & MNT_LOCK_NODEV) &&
2429 	    !(mnt_flags & MNT_NODEV))
2430 		return false;
2431 
2432 	if ((fl & MNT_LOCK_NOSUID) &&
2433 	    !(mnt_flags & MNT_NOSUID))
2434 		return false;
2435 
2436 	if ((fl & MNT_LOCK_NOEXEC) &&
2437 	    !(mnt_flags & MNT_NOEXEC))
2438 		return false;
2439 
2440 	if ((fl & MNT_LOCK_ATIME) &&
2441 	    ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2442 		return false;
2443 
2444 	return true;
2445 }
2446 
2447 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2448 {
2449 	bool readonly_request = (mnt_flags & MNT_READONLY);
2450 
2451 	if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2452 		return 0;
2453 
2454 	if (readonly_request)
2455 		return mnt_make_readonly(mnt);
2456 
2457 	return __mnt_unmake_readonly(mnt);
2458 }
2459 
2460 /*
2461  * Update the user-settable attributes on a mount.  The caller must hold
2462  * sb->s_umount for writing.
2463  */
2464 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2465 {
2466 	lock_mount_hash();
2467 	mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2468 	mnt->mnt.mnt_flags = mnt_flags;
2469 	touch_mnt_namespace(mnt->mnt_ns);
2470 	unlock_mount_hash();
2471 }
2472 
2473 /*
2474  * Handle reconfiguration of the mountpoint only without alteration of the
2475  * superblock it refers to.  This is triggered by specifying MS_REMOUNT|MS_BIND
2476  * to mount(2).
2477  */
2478 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2479 {
2480 	struct super_block *sb = path->mnt->mnt_sb;
2481 	struct mount *mnt = real_mount(path->mnt);
2482 	int ret;
2483 
2484 	if (!check_mnt(mnt))
2485 		return -EINVAL;
2486 
2487 	if (path->dentry != mnt->mnt.mnt_root)
2488 		return -EINVAL;
2489 
2490 	if (!can_change_locked_flags(mnt, mnt_flags))
2491 		return -EPERM;
2492 
2493 	down_write(&sb->s_umount);
2494 	ret = change_mount_ro_state(mnt, mnt_flags);
2495 	if (ret == 0)
2496 		set_mount_attributes(mnt, mnt_flags);
2497 	up_write(&sb->s_umount);
2498 	return ret;
2499 }
2500 
2501 /*
2502  * change filesystem flags. dir should be a physical root of filesystem.
2503  * If you've mounted a non-root directory somewhere and want to do remount
2504  * on it - tough luck.
2505  */
2506 static int do_remount(struct path *path, int ms_flags, int sb_flags,
2507 		      int mnt_flags, void *data)
2508 {
2509 	int err;
2510 	struct super_block *sb = path->mnt->mnt_sb;
2511 	struct mount *mnt = real_mount(path->mnt);
2512 	struct fs_context *fc;
2513 
2514 	if (!check_mnt(mnt))
2515 		return -EINVAL;
2516 
2517 	if (path->dentry != path->mnt->mnt_root)
2518 		return -EINVAL;
2519 
2520 	if (!can_change_locked_flags(mnt, mnt_flags))
2521 		return -EPERM;
2522 
2523 	fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
2524 	if (IS_ERR(fc))
2525 		return PTR_ERR(fc);
2526 
2527 	err = parse_monolithic_mount_data(fc, data);
2528 	if (!err) {
2529 		down_write(&sb->s_umount);
2530 		err = -EPERM;
2531 		if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
2532 			err = reconfigure_super(fc);
2533 			if (!err)
2534 				set_mount_attributes(mnt, mnt_flags);
2535 		}
2536 		up_write(&sb->s_umount);
2537 	}
2538 	put_fs_context(fc);
2539 	return err;
2540 }
2541 
2542 static inline int tree_contains_unbindable(struct mount *mnt)
2543 {
2544 	struct mount *p;
2545 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2546 		if (IS_MNT_UNBINDABLE(p))
2547 			return 1;
2548 	}
2549 	return 0;
2550 }
2551 
2552 /*
2553  * Check that there aren't references to earlier/same mount namespaces in the
2554  * specified subtree.  Such references can act as pins for mount namespaces
2555  * that aren't checked by the mount-cycle checking code, thereby allowing
2556  * cycles to be made.
2557  */
2558 static bool check_for_nsfs_mounts(struct mount *subtree)
2559 {
2560 	struct mount *p;
2561 	bool ret = false;
2562 
2563 	lock_mount_hash();
2564 	for (p = subtree; p; p = next_mnt(p, subtree))
2565 		if (mnt_ns_loop(p->mnt.mnt_root))
2566 			goto out;
2567 
2568 	ret = true;
2569 out:
2570 	unlock_mount_hash();
2571 	return ret;
2572 }
2573 
2574 static int do_move_mount(struct path *old_path, struct path *new_path)
2575 {
2576 	struct path parent_path = {.mnt = NULL, .dentry = NULL};
2577 	struct mnt_namespace *ns;
2578 	struct mount *p;
2579 	struct mount *old;
2580 	struct mountpoint *mp;
2581 	int err;
2582 	bool attached;
2583 
2584 	mp = lock_mount(new_path);
2585 	if (IS_ERR(mp))
2586 		return PTR_ERR(mp);
2587 
2588 	old = real_mount(old_path->mnt);
2589 	p = real_mount(new_path->mnt);
2590 	attached = mnt_has_parent(old);
2591 	ns = old->mnt_ns;
2592 
2593 	err = -EINVAL;
2594 	/* The mountpoint must be in our namespace. */
2595 	if (!check_mnt(p))
2596 		goto out;
2597 
2598 	/* The thing moved should be either ours or completely unattached. */
2599 	if (attached && !check_mnt(old))
2600 		goto out;
2601 
2602 	if (!attached && !(ns && is_anon_ns(ns)))
2603 		goto out;
2604 
2605 	if (old->mnt.mnt_flags & MNT_LOCKED)
2606 		goto out;
2607 
2608 	if (old_path->dentry != old_path->mnt->mnt_root)
2609 		goto out;
2610 
2611 	if (d_is_dir(new_path->dentry) !=
2612 	    d_is_dir(old_path->dentry))
2613 		goto out;
2614 	/*
2615 	 * Don't move a mount residing in a shared parent.
2616 	 */
2617 	if (attached && IS_MNT_SHARED(old->mnt_parent))
2618 		goto out;
2619 	/*
2620 	 * Don't move a mount tree containing unbindable mounts to a destination
2621 	 * mount which is shared.
2622 	 */
2623 	if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2624 		goto out;
2625 	err = -ELOOP;
2626 	if (!check_for_nsfs_mounts(old))
2627 		goto out;
2628 	for (; mnt_has_parent(p); p = p->mnt_parent)
2629 		if (p == old)
2630 			goto out;
2631 
2632 	err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp,
2633 				   attached ? &parent_path : NULL);
2634 	if (err)
2635 		goto out;
2636 
2637 	/* if the mount is moved, it should no longer be expire
2638 	 * automatically */
2639 	list_del_init(&old->mnt_expire);
2640 out:
2641 	unlock_mount(mp);
2642 	if (!err) {
2643 		path_put(&parent_path);
2644 		if (!attached)
2645 			free_mnt_ns(ns);
2646 	}
2647 	return err;
2648 }
2649 
2650 static int do_move_mount_old(struct path *path, const char *old_name)
2651 {
2652 	struct path old_path;
2653 	int err;
2654 
2655 	if (!old_name || !*old_name)
2656 		return -EINVAL;
2657 
2658 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2659 	if (err)
2660 		return err;
2661 
2662 	err = do_move_mount(&old_path, path);
2663 	path_put(&old_path);
2664 	return err;
2665 }
2666 
2667 /*
2668  * add a mount into a namespace's mount tree
2669  */
2670 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2671 {
2672 	struct mountpoint *mp;
2673 	struct mount *parent;
2674 	int err;
2675 
2676 	mnt_flags &= ~MNT_INTERNAL_FLAGS;
2677 
2678 	mp = lock_mount(path);
2679 	if (IS_ERR(mp))
2680 		return PTR_ERR(mp);
2681 
2682 	parent = real_mount(path->mnt);
2683 	err = -EINVAL;
2684 	if (unlikely(!check_mnt(parent))) {
2685 		/* that's acceptable only for automounts done in private ns */
2686 		if (!(mnt_flags & MNT_SHRINKABLE))
2687 			goto unlock;
2688 		/* ... and for those we'd better have mountpoint still alive */
2689 		if (!parent->mnt_ns)
2690 			goto unlock;
2691 	}
2692 
2693 	/* Refuse the same filesystem on the same mount point */
2694 	err = -EBUSY;
2695 	if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2696 	    path->mnt->mnt_root == path->dentry)
2697 		goto unlock;
2698 
2699 	err = -EINVAL;
2700 	if (d_is_symlink(newmnt->mnt.mnt_root))
2701 		goto unlock;
2702 
2703 	newmnt->mnt.mnt_flags = mnt_flags;
2704 	err = graft_tree(newmnt, parent, mp);
2705 
2706 unlock:
2707 	unlock_mount(mp);
2708 	return err;
2709 }
2710 
2711 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
2712 
2713 /*
2714  * Create a new mount using a superblock configuration and request it
2715  * be added to the namespace tree.
2716  */
2717 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
2718 			   unsigned int mnt_flags)
2719 {
2720 	struct vfsmount *mnt;
2721 	struct super_block *sb = fc->root->d_sb;
2722 	int error;
2723 
2724 	error = security_sb_kern_mount(sb);
2725 	if (!error && mount_too_revealing(sb, &mnt_flags))
2726 		error = -EPERM;
2727 
2728 	if (unlikely(error)) {
2729 		fc_drop_locked(fc);
2730 		return error;
2731 	}
2732 
2733 	up_write(&sb->s_umount);
2734 
2735 	mnt = vfs_create_mount(fc);
2736 	if (IS_ERR(mnt))
2737 		return PTR_ERR(mnt);
2738 
2739 	error = do_add_mount(real_mount(mnt), mountpoint, mnt_flags);
2740 	if (error < 0)
2741 		mntput(mnt);
2742 	return error;
2743 }
2744 
2745 /*
2746  * create a new mount for userspace and request it to be added into the
2747  * namespace's tree
2748  */
2749 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
2750 			int mnt_flags, const char *name, void *data)
2751 {
2752 	struct file_system_type *type;
2753 	struct fs_context *fc;
2754 	const char *subtype = NULL;
2755 	int err = 0;
2756 
2757 	if (!fstype)
2758 		return -EINVAL;
2759 
2760 	type = get_fs_type(fstype);
2761 	if (!type)
2762 		return -ENODEV;
2763 
2764 	if (type->fs_flags & FS_HAS_SUBTYPE) {
2765 		subtype = strchr(fstype, '.');
2766 		if (subtype) {
2767 			subtype++;
2768 			if (!*subtype) {
2769 				put_filesystem(type);
2770 				return -EINVAL;
2771 			}
2772 		} else {
2773 			subtype = "";
2774 		}
2775 	}
2776 
2777 	fc = fs_context_for_mount(type, sb_flags);
2778 	put_filesystem(type);
2779 	if (IS_ERR(fc))
2780 		return PTR_ERR(fc);
2781 
2782 	if (subtype)
2783 		err = vfs_parse_fs_string(fc, "subtype",
2784 					  subtype, strlen(subtype));
2785 	if (!err && name)
2786 		err = vfs_parse_fs_string(fc, "source", name, strlen(name));
2787 	if (!err)
2788 		err = parse_monolithic_mount_data(fc, data);
2789 	if (!err)
2790 		err = vfs_get_tree(fc);
2791 	if (!err)
2792 		err = do_new_mount_fc(fc, path, mnt_flags);
2793 
2794 	put_fs_context(fc);
2795 	return err;
2796 }
2797 
2798 int finish_automount(struct vfsmount *m, struct path *path)
2799 {
2800 	struct mount *mnt = real_mount(m);
2801 	int err;
2802 	/* The new mount record should have at least 2 refs to prevent it being
2803 	 * expired before we get a chance to add it
2804 	 */
2805 	BUG_ON(mnt_get_count(mnt) < 2);
2806 
2807 	if (m->mnt_sb == path->mnt->mnt_sb &&
2808 	    m->mnt_root == path->dentry) {
2809 		err = -ELOOP;
2810 		goto fail;
2811 	}
2812 
2813 	err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2814 	if (!err)
2815 		return 0;
2816 fail:
2817 	/* remove m from any expiration list it may be on */
2818 	if (!list_empty(&mnt->mnt_expire)) {
2819 		namespace_lock();
2820 		list_del_init(&mnt->mnt_expire);
2821 		namespace_unlock();
2822 	}
2823 	mntput(m);
2824 	mntput(m);
2825 	return err;
2826 }
2827 
2828 /**
2829  * mnt_set_expiry - Put a mount on an expiration list
2830  * @mnt: The mount to list.
2831  * @expiry_list: The list to add the mount to.
2832  */
2833 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2834 {
2835 	namespace_lock();
2836 
2837 	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2838 
2839 	namespace_unlock();
2840 }
2841 EXPORT_SYMBOL(mnt_set_expiry);
2842 
2843 /*
2844  * process a list of expirable mountpoints with the intent of discarding any
2845  * mountpoints that aren't in use and haven't been touched since last we came
2846  * here
2847  */
2848 void mark_mounts_for_expiry(struct list_head *mounts)
2849 {
2850 	struct mount *mnt, *next;
2851 	LIST_HEAD(graveyard);
2852 
2853 	if (list_empty(mounts))
2854 		return;
2855 
2856 	namespace_lock();
2857 	lock_mount_hash();
2858 
2859 	/* extract from the expiration list every vfsmount that matches the
2860 	 * following criteria:
2861 	 * - only referenced by its parent vfsmount
2862 	 * - still marked for expiry (marked on the last call here; marks are
2863 	 *   cleared by mntput())
2864 	 */
2865 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2866 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2867 			propagate_mount_busy(mnt, 1))
2868 			continue;
2869 		list_move(&mnt->mnt_expire, &graveyard);
2870 	}
2871 	while (!list_empty(&graveyard)) {
2872 		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2873 		touch_mnt_namespace(mnt->mnt_ns);
2874 		umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2875 	}
2876 	unlock_mount_hash();
2877 	namespace_unlock();
2878 }
2879 
2880 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2881 
2882 /*
2883  * Ripoff of 'select_parent()'
2884  *
2885  * search the list of submounts for a given mountpoint, and move any
2886  * shrinkable submounts to the 'graveyard' list.
2887  */
2888 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2889 {
2890 	struct mount *this_parent = parent;
2891 	struct list_head *next;
2892 	int found = 0;
2893 
2894 repeat:
2895 	next = this_parent->mnt_mounts.next;
2896 resume:
2897 	while (next != &this_parent->mnt_mounts) {
2898 		struct list_head *tmp = next;
2899 		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2900 
2901 		next = tmp->next;
2902 		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2903 			continue;
2904 		/*
2905 		 * Descend a level if the d_mounts list is non-empty.
2906 		 */
2907 		if (!list_empty(&mnt->mnt_mounts)) {
2908 			this_parent = mnt;
2909 			goto repeat;
2910 		}
2911 
2912 		if (!propagate_mount_busy(mnt, 1)) {
2913 			list_move_tail(&mnt->mnt_expire, graveyard);
2914 			found++;
2915 		}
2916 	}
2917 	/*
2918 	 * All done at this level ... ascend and resume the search
2919 	 */
2920 	if (this_parent != parent) {
2921 		next = this_parent->mnt_child.next;
2922 		this_parent = this_parent->mnt_parent;
2923 		goto resume;
2924 	}
2925 	return found;
2926 }
2927 
2928 /*
2929  * process a list of expirable mountpoints with the intent of discarding any
2930  * submounts of a specific parent mountpoint
2931  *
2932  * mount_lock must be held for write
2933  */
2934 static void shrink_submounts(struct mount *mnt)
2935 {
2936 	LIST_HEAD(graveyard);
2937 	struct mount *m;
2938 
2939 	/* extract submounts of 'mountpoint' from the expiration list */
2940 	while (select_submounts(mnt, &graveyard)) {
2941 		while (!list_empty(&graveyard)) {
2942 			m = list_first_entry(&graveyard, struct mount,
2943 						mnt_expire);
2944 			touch_mnt_namespace(m->mnt_ns);
2945 			umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2946 		}
2947 	}
2948 }
2949 
2950 /*
2951  * Some copy_from_user() implementations do not return the exact number of
2952  * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
2953  * Note that this function differs from copy_from_user() in that it will oops
2954  * on bad values of `to', rather than returning a short copy.
2955  */
2956 static long exact_copy_from_user(void *to, const void __user * from,
2957 				 unsigned long n)
2958 {
2959 	char *t = to;
2960 	const char __user *f = from;
2961 	char c;
2962 
2963 	if (!access_ok(from, n))
2964 		return n;
2965 
2966 	while (n) {
2967 		if (__get_user(c, f)) {
2968 			memset(t, 0, n);
2969 			break;
2970 		}
2971 		*t++ = c;
2972 		f++;
2973 		n--;
2974 	}
2975 	return n;
2976 }
2977 
2978 void *copy_mount_options(const void __user * data)
2979 {
2980 	int i;
2981 	unsigned long size;
2982 	char *copy;
2983 
2984 	if (!data)
2985 		return NULL;
2986 
2987 	copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
2988 	if (!copy)
2989 		return ERR_PTR(-ENOMEM);
2990 
2991 	/* We only care that *some* data at the address the user
2992 	 * gave us is valid.  Just in case, we'll zero
2993 	 * the remainder of the page.
2994 	 */
2995 	/* copy_from_user cannot cross TASK_SIZE ! */
2996 	size = TASK_SIZE - (unsigned long)data;
2997 	if (size > PAGE_SIZE)
2998 		size = PAGE_SIZE;
2999 
3000 	i = size - exact_copy_from_user(copy, data, size);
3001 	if (!i) {
3002 		kfree(copy);
3003 		return ERR_PTR(-EFAULT);
3004 	}
3005 	if (i != PAGE_SIZE)
3006 		memset(copy + i, 0, PAGE_SIZE - i);
3007 	return copy;
3008 }
3009 
3010 char *copy_mount_string(const void __user *data)
3011 {
3012 	return data ? strndup_user(data, PATH_MAX) : NULL;
3013 }
3014 
3015 /*
3016  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3017  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3018  *
3019  * data is a (void *) that can point to any structure up to
3020  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3021  * information (or be NULL).
3022  *
3023  * Pre-0.97 versions of mount() didn't have a flags word.
3024  * When the flags word was introduced its top half was required
3025  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3026  * Therefore, if this magic number is present, it carries no information
3027  * and must be discarded.
3028  */
3029 long do_mount(const char *dev_name, const char __user *dir_name,
3030 		const char *type_page, unsigned long flags, void *data_page)
3031 {
3032 	struct path path;
3033 	unsigned int mnt_flags = 0, sb_flags;
3034 	int retval = 0;
3035 
3036 	/* Discard magic */
3037 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3038 		flags &= ~MS_MGC_MSK;
3039 
3040 	/* Basic sanity checks */
3041 	if (data_page)
3042 		((char *)data_page)[PAGE_SIZE - 1] = 0;
3043 
3044 	if (flags & MS_NOUSER)
3045 		return -EINVAL;
3046 
3047 	/* ... and get the mountpoint */
3048 	retval = user_path(dir_name, &path);
3049 	if (retval)
3050 		return retval;
3051 
3052 	retval = security_sb_mount(dev_name, &path,
3053 				   type_page, flags, data_page);
3054 	if (!retval && !may_mount())
3055 		retval = -EPERM;
3056 	if (!retval && (flags & SB_MANDLOCK) && !may_mandlock())
3057 		retval = -EPERM;
3058 	if (retval)
3059 		goto dput_out;
3060 
3061 	/* Default to relatime unless overriden */
3062 	if (!(flags & MS_NOATIME))
3063 		mnt_flags |= MNT_RELATIME;
3064 
3065 	/* Separate the per-mountpoint flags */
3066 	if (flags & MS_NOSUID)
3067 		mnt_flags |= MNT_NOSUID;
3068 	if (flags & MS_NODEV)
3069 		mnt_flags |= MNT_NODEV;
3070 	if (flags & MS_NOEXEC)
3071 		mnt_flags |= MNT_NOEXEC;
3072 	if (flags & MS_NOATIME)
3073 		mnt_flags |= MNT_NOATIME;
3074 	if (flags & MS_NODIRATIME)
3075 		mnt_flags |= MNT_NODIRATIME;
3076 	if (flags & MS_STRICTATIME)
3077 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
3078 	if (flags & MS_RDONLY)
3079 		mnt_flags |= MNT_READONLY;
3080 
3081 	/* The default atime for remount is preservation */
3082 	if ((flags & MS_REMOUNT) &&
3083 	    ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3084 		       MS_STRICTATIME)) == 0)) {
3085 		mnt_flags &= ~MNT_ATIME_MASK;
3086 		mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
3087 	}
3088 
3089 	sb_flags = flags & (SB_RDONLY |
3090 			    SB_SYNCHRONOUS |
3091 			    SB_MANDLOCK |
3092 			    SB_DIRSYNC |
3093 			    SB_SILENT |
3094 			    SB_POSIXACL |
3095 			    SB_LAZYTIME |
3096 			    SB_I_VERSION);
3097 
3098 	if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
3099 		retval = do_reconfigure_mnt(&path, mnt_flags);
3100 	else if (flags & MS_REMOUNT)
3101 		retval = do_remount(&path, flags, sb_flags, mnt_flags,
3102 				    data_page);
3103 	else if (flags & MS_BIND)
3104 		retval = do_loopback(&path, dev_name, flags & MS_REC);
3105 	else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
3106 		retval = do_change_type(&path, flags);
3107 	else if (flags & MS_MOVE)
3108 		retval = do_move_mount_old(&path, dev_name);
3109 	else
3110 		retval = do_new_mount(&path, type_page, sb_flags, mnt_flags,
3111 				      dev_name, data_page);
3112 dput_out:
3113 	path_put(&path);
3114 	return retval;
3115 }
3116 
3117 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3118 {
3119 	return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3120 }
3121 
3122 static void dec_mnt_namespaces(struct ucounts *ucounts)
3123 {
3124 	dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3125 }
3126 
3127 static void free_mnt_ns(struct mnt_namespace *ns)
3128 {
3129 	if (!is_anon_ns(ns))
3130 		ns_free_inum(&ns->ns);
3131 	dec_mnt_namespaces(ns->ucounts);
3132 	put_user_ns(ns->user_ns);
3133 	kfree(ns);
3134 }
3135 
3136 /*
3137  * Assign a sequence number so we can detect when we attempt to bind
3138  * mount a reference to an older mount namespace into the current
3139  * mount namespace, preventing reference counting loops.  A 64bit
3140  * number incrementing at 10Ghz will take 12,427 years to wrap which
3141  * is effectively never, so we can ignore the possibility.
3142  */
3143 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3144 
3145 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
3146 {
3147 	struct mnt_namespace *new_ns;
3148 	struct ucounts *ucounts;
3149 	int ret;
3150 
3151 	ucounts = inc_mnt_namespaces(user_ns);
3152 	if (!ucounts)
3153 		return ERR_PTR(-ENOSPC);
3154 
3155 	new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
3156 	if (!new_ns) {
3157 		dec_mnt_namespaces(ucounts);
3158 		return ERR_PTR(-ENOMEM);
3159 	}
3160 	if (!anon) {
3161 		ret = ns_alloc_inum(&new_ns->ns);
3162 		if (ret) {
3163 			kfree(new_ns);
3164 			dec_mnt_namespaces(ucounts);
3165 			return ERR_PTR(ret);
3166 		}
3167 	}
3168 	new_ns->ns.ops = &mntns_operations;
3169 	if (!anon)
3170 		new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
3171 	atomic_set(&new_ns->count, 1);
3172 	INIT_LIST_HEAD(&new_ns->list);
3173 	init_waitqueue_head(&new_ns->poll);
3174 	new_ns->user_ns = get_user_ns(user_ns);
3175 	new_ns->ucounts = ucounts;
3176 	return new_ns;
3177 }
3178 
3179 __latent_entropy
3180 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3181 		struct user_namespace *user_ns, struct fs_struct *new_fs)
3182 {
3183 	struct mnt_namespace *new_ns;
3184 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
3185 	struct mount *p, *q;
3186 	struct mount *old;
3187 	struct mount *new;
3188 	int copy_flags;
3189 
3190 	BUG_ON(!ns);
3191 
3192 	if (likely(!(flags & CLONE_NEWNS))) {
3193 		get_mnt_ns(ns);
3194 		return ns;
3195 	}
3196 
3197 	old = ns->root;
3198 
3199 	new_ns = alloc_mnt_ns(user_ns, false);
3200 	if (IS_ERR(new_ns))
3201 		return new_ns;
3202 
3203 	namespace_lock();
3204 	/* First pass: copy the tree topology */
3205 	copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
3206 	if (user_ns != ns->user_ns)
3207 		copy_flags |= CL_SHARED_TO_SLAVE;
3208 	new = copy_tree(old, old->mnt.mnt_root, copy_flags);
3209 	if (IS_ERR(new)) {
3210 		namespace_unlock();
3211 		free_mnt_ns(new_ns);
3212 		return ERR_CAST(new);
3213 	}
3214 	if (user_ns != ns->user_ns) {
3215 		lock_mount_hash();
3216 		lock_mnt_tree(new);
3217 		unlock_mount_hash();
3218 	}
3219 	new_ns->root = new;
3220 	list_add_tail(&new_ns->list, &new->mnt_list);
3221 
3222 	/*
3223 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3224 	 * as belonging to new namespace.  We have already acquired a private
3225 	 * fs_struct, so tsk->fs->lock is not needed.
3226 	 */
3227 	p = old;
3228 	q = new;
3229 	while (p) {
3230 		q->mnt_ns = new_ns;
3231 		new_ns->mounts++;
3232 		if (new_fs) {
3233 			if (&p->mnt == new_fs->root.mnt) {
3234 				new_fs->root.mnt = mntget(&q->mnt);
3235 				rootmnt = &p->mnt;
3236 			}
3237 			if (&p->mnt == new_fs->pwd.mnt) {
3238 				new_fs->pwd.mnt = mntget(&q->mnt);
3239 				pwdmnt = &p->mnt;
3240 			}
3241 		}
3242 		p = next_mnt(p, old);
3243 		q = next_mnt(q, new);
3244 		if (!q)
3245 			break;
3246 		while (p->mnt.mnt_root != q->mnt.mnt_root)
3247 			p = next_mnt(p, old);
3248 	}
3249 	namespace_unlock();
3250 
3251 	if (rootmnt)
3252 		mntput(rootmnt);
3253 	if (pwdmnt)
3254 		mntput(pwdmnt);
3255 
3256 	return new_ns;
3257 }
3258 
3259 struct dentry *mount_subtree(struct vfsmount *m, const char *name)
3260 {
3261 	struct mount *mnt = real_mount(m);
3262 	struct mnt_namespace *ns;
3263 	struct super_block *s;
3264 	struct path path;
3265 	int err;
3266 
3267 	ns = alloc_mnt_ns(&init_user_ns, true);
3268 	if (IS_ERR(ns)) {
3269 		mntput(m);
3270 		return ERR_CAST(ns);
3271 	}
3272 	mnt->mnt_ns = ns;
3273 	ns->root = mnt;
3274 	ns->mounts++;
3275 	list_add(&mnt->mnt_list, &ns->list);
3276 
3277 	err = vfs_path_lookup(m->mnt_root, m,
3278 			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3279 
3280 	put_mnt_ns(ns);
3281 
3282 	if (err)
3283 		return ERR_PTR(err);
3284 
3285 	/* trade a vfsmount reference for active sb one */
3286 	s = path.mnt->mnt_sb;
3287 	atomic_inc(&s->s_active);
3288 	mntput(path.mnt);
3289 	/* lock the sucker */
3290 	down_write(&s->s_umount);
3291 	/* ... and return the root of (sub)tree on it */
3292 	return path.dentry;
3293 }
3294 EXPORT_SYMBOL(mount_subtree);
3295 
3296 int ksys_mount(char __user *dev_name, char __user *dir_name, char __user *type,
3297 	       unsigned long flags, void __user *data)
3298 {
3299 	int ret;
3300 	char *kernel_type;
3301 	char *kernel_dev;
3302 	void *options;
3303 
3304 	kernel_type = copy_mount_string(type);
3305 	ret = PTR_ERR(kernel_type);
3306 	if (IS_ERR(kernel_type))
3307 		goto out_type;
3308 
3309 	kernel_dev = copy_mount_string(dev_name);
3310 	ret = PTR_ERR(kernel_dev);
3311 	if (IS_ERR(kernel_dev))
3312 		goto out_dev;
3313 
3314 	options = copy_mount_options(data);
3315 	ret = PTR_ERR(options);
3316 	if (IS_ERR(options))
3317 		goto out_data;
3318 
3319 	ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3320 
3321 	kfree(options);
3322 out_data:
3323 	kfree(kernel_dev);
3324 out_dev:
3325 	kfree(kernel_type);
3326 out_type:
3327 	return ret;
3328 }
3329 
3330 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3331 		char __user *, type, unsigned long, flags, void __user *, data)
3332 {
3333 	return ksys_mount(dev_name, dir_name, type, flags, data);
3334 }
3335 
3336 /*
3337  * Create a kernel mount representation for a new, prepared superblock
3338  * (specified by fs_fd) and attach to an open_tree-like file descriptor.
3339  */
3340 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
3341 		unsigned int, attr_flags)
3342 {
3343 	struct mnt_namespace *ns;
3344 	struct fs_context *fc;
3345 	struct file *file;
3346 	struct path newmount;
3347 	struct mount *mnt;
3348 	struct fd f;
3349 	unsigned int mnt_flags = 0;
3350 	long ret;
3351 
3352 	if (!may_mount())
3353 		return -EPERM;
3354 
3355 	if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
3356 		return -EINVAL;
3357 
3358 	if (attr_flags & ~(MOUNT_ATTR_RDONLY |
3359 			   MOUNT_ATTR_NOSUID |
3360 			   MOUNT_ATTR_NODEV |
3361 			   MOUNT_ATTR_NOEXEC |
3362 			   MOUNT_ATTR__ATIME |
3363 			   MOUNT_ATTR_NODIRATIME))
3364 		return -EINVAL;
3365 
3366 	if (attr_flags & MOUNT_ATTR_RDONLY)
3367 		mnt_flags |= MNT_READONLY;
3368 	if (attr_flags & MOUNT_ATTR_NOSUID)
3369 		mnt_flags |= MNT_NOSUID;
3370 	if (attr_flags & MOUNT_ATTR_NODEV)
3371 		mnt_flags |= MNT_NODEV;
3372 	if (attr_flags & MOUNT_ATTR_NOEXEC)
3373 		mnt_flags |= MNT_NOEXEC;
3374 	if (attr_flags & MOUNT_ATTR_NODIRATIME)
3375 		mnt_flags |= MNT_NODIRATIME;
3376 
3377 	switch (attr_flags & MOUNT_ATTR__ATIME) {
3378 	case MOUNT_ATTR_STRICTATIME:
3379 		break;
3380 	case MOUNT_ATTR_NOATIME:
3381 		mnt_flags |= MNT_NOATIME;
3382 		break;
3383 	case MOUNT_ATTR_RELATIME:
3384 		mnt_flags |= MNT_RELATIME;
3385 		break;
3386 	default:
3387 		return -EINVAL;
3388 	}
3389 
3390 	f = fdget(fs_fd);
3391 	if (!f.file)
3392 		return -EBADF;
3393 
3394 	ret = -EINVAL;
3395 	if (f.file->f_op != &fscontext_fops)
3396 		goto err_fsfd;
3397 
3398 	fc = f.file->private_data;
3399 
3400 	ret = mutex_lock_interruptible(&fc->uapi_mutex);
3401 	if (ret < 0)
3402 		goto err_fsfd;
3403 
3404 	/* There must be a valid superblock or we can't mount it */
3405 	ret = -EINVAL;
3406 	if (!fc->root)
3407 		goto err_unlock;
3408 
3409 	ret = -EPERM;
3410 	if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
3411 		pr_warn("VFS: Mount too revealing\n");
3412 		goto err_unlock;
3413 	}
3414 
3415 	ret = -EBUSY;
3416 	if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
3417 		goto err_unlock;
3418 
3419 	ret = -EPERM;
3420 	if ((fc->sb_flags & SB_MANDLOCK) && !may_mandlock())
3421 		goto err_unlock;
3422 
3423 	newmount.mnt = vfs_create_mount(fc);
3424 	if (IS_ERR(newmount.mnt)) {
3425 		ret = PTR_ERR(newmount.mnt);
3426 		goto err_unlock;
3427 	}
3428 	newmount.dentry = dget(fc->root);
3429 	newmount.mnt->mnt_flags = mnt_flags;
3430 
3431 	/* We've done the mount bit - now move the file context into more or
3432 	 * less the same state as if we'd done an fspick().  We don't want to
3433 	 * do any memory allocation or anything like that at this point as we
3434 	 * don't want to have to handle any errors incurred.
3435 	 */
3436 	vfs_clean_context(fc);
3437 
3438 	ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
3439 	if (IS_ERR(ns)) {
3440 		ret = PTR_ERR(ns);
3441 		goto err_path;
3442 	}
3443 	mnt = real_mount(newmount.mnt);
3444 	mnt->mnt_ns = ns;
3445 	ns->root = mnt;
3446 	ns->mounts = 1;
3447 	list_add(&mnt->mnt_list, &ns->list);
3448 
3449 	/* Attach to an apparent O_PATH fd with a note that we need to unmount
3450 	 * it, not just simply put it.
3451 	 */
3452 	file = dentry_open(&newmount, O_PATH, fc->cred);
3453 	if (IS_ERR(file)) {
3454 		dissolve_on_fput(newmount.mnt);
3455 		ret = PTR_ERR(file);
3456 		goto err_path;
3457 	}
3458 	file->f_mode |= FMODE_NEED_UNMOUNT;
3459 
3460 	ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
3461 	if (ret >= 0)
3462 		fd_install(ret, file);
3463 	else
3464 		fput(file);
3465 
3466 err_path:
3467 	path_put(&newmount);
3468 err_unlock:
3469 	mutex_unlock(&fc->uapi_mutex);
3470 err_fsfd:
3471 	fdput(f);
3472 	return ret;
3473 }
3474 
3475 /*
3476  * Move a mount from one place to another.  In combination with
3477  * fsopen()/fsmount() this is used to install a new mount and in combination
3478  * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
3479  * a mount subtree.
3480  *
3481  * Note the flags value is a combination of MOVE_MOUNT_* flags.
3482  */
3483 SYSCALL_DEFINE5(move_mount,
3484 		int, from_dfd, const char *, from_pathname,
3485 		int, to_dfd, const char *, to_pathname,
3486 		unsigned int, flags)
3487 {
3488 	struct path from_path, to_path;
3489 	unsigned int lflags;
3490 	int ret = 0;
3491 
3492 	if (!may_mount())
3493 		return -EPERM;
3494 
3495 	if (flags & ~MOVE_MOUNT__MASK)
3496 		return -EINVAL;
3497 
3498 	/* If someone gives a pathname, they aren't permitted to move
3499 	 * from an fd that requires unmount as we can't get at the flag
3500 	 * to clear it afterwards.
3501 	 */
3502 	lflags = 0;
3503 	if (flags & MOVE_MOUNT_F_SYMLINKS)	lflags |= LOOKUP_FOLLOW;
3504 	if (flags & MOVE_MOUNT_F_AUTOMOUNTS)	lflags |= LOOKUP_AUTOMOUNT;
3505 	if (flags & MOVE_MOUNT_F_EMPTY_PATH)	lflags |= LOOKUP_EMPTY;
3506 
3507 	ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
3508 	if (ret < 0)
3509 		return ret;
3510 
3511 	lflags = 0;
3512 	if (flags & MOVE_MOUNT_T_SYMLINKS)	lflags |= LOOKUP_FOLLOW;
3513 	if (flags & MOVE_MOUNT_T_AUTOMOUNTS)	lflags |= LOOKUP_AUTOMOUNT;
3514 	if (flags & MOVE_MOUNT_T_EMPTY_PATH)	lflags |= LOOKUP_EMPTY;
3515 
3516 	ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
3517 	if (ret < 0)
3518 		goto out_from;
3519 
3520 	ret = security_move_mount(&from_path, &to_path);
3521 	if (ret < 0)
3522 		goto out_to;
3523 
3524 	ret = do_move_mount(&from_path, &to_path);
3525 
3526 out_to:
3527 	path_put(&to_path);
3528 out_from:
3529 	path_put(&from_path);
3530 	return ret;
3531 }
3532 
3533 /*
3534  * Return true if path is reachable from root
3535  *
3536  * namespace_sem or mount_lock is held
3537  */
3538 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3539 			 const struct path *root)
3540 {
3541 	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3542 		dentry = mnt->mnt_mountpoint;
3543 		mnt = mnt->mnt_parent;
3544 	}
3545 	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3546 }
3547 
3548 bool path_is_under(const struct path *path1, const struct path *path2)
3549 {
3550 	bool res;
3551 	read_seqlock_excl(&mount_lock);
3552 	res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3553 	read_sequnlock_excl(&mount_lock);
3554 	return res;
3555 }
3556 EXPORT_SYMBOL(path_is_under);
3557 
3558 /*
3559  * pivot_root Semantics:
3560  * Moves the root file system of the current process to the directory put_old,
3561  * makes new_root as the new root file system of the current process, and sets
3562  * root/cwd of all processes which had them on the current root to new_root.
3563  *
3564  * Restrictions:
3565  * The new_root and put_old must be directories, and  must not be on the
3566  * same file  system as the current process root. The put_old  must  be
3567  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
3568  * pointed to by put_old must yield the same directory as new_root. No other
3569  * file system may be mounted on put_old. After all, new_root is a mountpoint.
3570  *
3571  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3572  * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3573  * in this situation.
3574  *
3575  * Notes:
3576  *  - we don't move root/cwd if they are not at the root (reason: if something
3577  *    cared enough to change them, it's probably wrong to force them elsewhere)
3578  *  - it's okay to pick a root that isn't the root of a file system, e.g.
3579  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3580  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3581  *    first.
3582  */
3583 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3584 		const char __user *, put_old)
3585 {
3586 	struct path new, old, parent_path, root_parent, root;
3587 	struct mount *new_mnt, *root_mnt, *old_mnt;
3588 	struct mountpoint *old_mp, *root_mp;
3589 	int error;
3590 
3591 	if (!may_mount())
3592 		return -EPERM;
3593 
3594 	error = user_path_dir(new_root, &new);
3595 	if (error)
3596 		goto out0;
3597 
3598 	error = user_path_dir(put_old, &old);
3599 	if (error)
3600 		goto out1;
3601 
3602 	error = security_sb_pivotroot(&old, &new);
3603 	if (error)
3604 		goto out2;
3605 
3606 	get_fs_root(current->fs, &root);
3607 	old_mp = lock_mount(&old);
3608 	error = PTR_ERR(old_mp);
3609 	if (IS_ERR(old_mp))
3610 		goto out3;
3611 
3612 	error = -EINVAL;
3613 	new_mnt = real_mount(new.mnt);
3614 	root_mnt = real_mount(root.mnt);
3615 	old_mnt = real_mount(old.mnt);
3616 	if (IS_MNT_SHARED(old_mnt) ||
3617 		IS_MNT_SHARED(new_mnt->mnt_parent) ||
3618 		IS_MNT_SHARED(root_mnt->mnt_parent))
3619 		goto out4;
3620 	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3621 		goto out4;
3622 	if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3623 		goto out4;
3624 	error = -ENOENT;
3625 	if (d_unlinked(new.dentry))
3626 		goto out4;
3627 	error = -EBUSY;
3628 	if (new_mnt == root_mnt || old_mnt == root_mnt)
3629 		goto out4; /* loop, on the same file system  */
3630 	error = -EINVAL;
3631 	if (root.mnt->mnt_root != root.dentry)
3632 		goto out4; /* not a mountpoint */
3633 	if (!mnt_has_parent(root_mnt))
3634 		goto out4; /* not attached */
3635 	root_mp = root_mnt->mnt_mp;
3636 	if (new.mnt->mnt_root != new.dentry)
3637 		goto out4; /* not a mountpoint */
3638 	if (!mnt_has_parent(new_mnt))
3639 		goto out4; /* not attached */
3640 	/* make sure we can reach put_old from new_root */
3641 	if (!is_path_reachable(old_mnt, old.dentry, &new))
3642 		goto out4;
3643 	/* make certain new is below the root */
3644 	if (!is_path_reachable(new_mnt, new.dentry, &root))
3645 		goto out4;
3646 	root_mp->m_count++; /* pin it so it won't go away */
3647 	lock_mount_hash();
3648 	detach_mnt(new_mnt, &parent_path);
3649 	detach_mnt(root_mnt, &root_parent);
3650 	if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3651 		new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3652 		root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3653 	}
3654 	/* mount old root on put_old */
3655 	attach_mnt(root_mnt, old_mnt, old_mp);
3656 	/* mount new_root on / */
3657 	attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
3658 	touch_mnt_namespace(current->nsproxy->mnt_ns);
3659 	/* A moved mount should not expire automatically */
3660 	list_del_init(&new_mnt->mnt_expire);
3661 	put_mountpoint(root_mp);
3662 	unlock_mount_hash();
3663 	chroot_fs_refs(&root, &new);
3664 	error = 0;
3665 out4:
3666 	unlock_mount(old_mp);
3667 	if (!error) {
3668 		path_put(&root_parent);
3669 		path_put(&parent_path);
3670 	}
3671 out3:
3672 	path_put(&root);
3673 out2:
3674 	path_put(&old);
3675 out1:
3676 	path_put(&new);
3677 out0:
3678 	return error;
3679 }
3680 
3681 static void __init init_mount_tree(void)
3682 {
3683 	struct vfsmount *mnt;
3684 	struct mount *m;
3685 	struct mnt_namespace *ns;
3686 	struct path root;
3687 	struct file_system_type *type;
3688 
3689 	type = get_fs_type("rootfs");
3690 	if (!type)
3691 		panic("Can't find rootfs type");
3692 	mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3693 	put_filesystem(type);
3694 	if (IS_ERR(mnt))
3695 		panic("Can't create rootfs");
3696 
3697 	ns = alloc_mnt_ns(&init_user_ns, false);
3698 	if (IS_ERR(ns))
3699 		panic("Can't allocate initial namespace");
3700 	m = real_mount(mnt);
3701 	m->mnt_ns = ns;
3702 	ns->root = m;
3703 	ns->mounts = 1;
3704 	list_add(&m->mnt_list, &ns->list);
3705 	init_task.nsproxy->mnt_ns = ns;
3706 	get_mnt_ns(ns);
3707 
3708 	root.mnt = mnt;
3709 	root.dentry = mnt->mnt_root;
3710 	mnt->mnt_flags |= MNT_LOCKED;
3711 
3712 	set_fs_pwd(current->fs, &root);
3713 	set_fs_root(current->fs, &root);
3714 }
3715 
3716 void __init mnt_init(void)
3717 {
3718 	int err;
3719 
3720 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3721 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3722 
3723 	mount_hashtable = alloc_large_system_hash("Mount-cache",
3724 				sizeof(struct hlist_head),
3725 				mhash_entries, 19,
3726 				HASH_ZERO,
3727 				&m_hash_shift, &m_hash_mask, 0, 0);
3728 	mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3729 				sizeof(struct hlist_head),
3730 				mphash_entries, 19,
3731 				HASH_ZERO,
3732 				&mp_hash_shift, &mp_hash_mask, 0, 0);
3733 
3734 	if (!mount_hashtable || !mountpoint_hashtable)
3735 		panic("Failed to allocate mount hash table\n");
3736 
3737 	kernfs_init();
3738 
3739 	err = sysfs_init();
3740 	if (err)
3741 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3742 			__func__, err);
3743 	fs_kobj = kobject_create_and_add("fs", NULL);
3744 	if (!fs_kobj)
3745 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
3746 	init_rootfs();
3747 	init_mount_tree();
3748 }
3749 
3750 void put_mnt_ns(struct mnt_namespace *ns)
3751 {
3752 	if (!atomic_dec_and_test(&ns->count))
3753 		return;
3754 	drop_collected_mounts(&ns->root->mnt);
3755 	free_mnt_ns(ns);
3756 }
3757 
3758 struct vfsmount *kern_mount(struct file_system_type *type)
3759 {
3760 	struct vfsmount *mnt;
3761 	mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
3762 	if (!IS_ERR(mnt)) {
3763 		/*
3764 		 * it is a longterm mount, don't release mnt until
3765 		 * we unmount before file sys is unregistered
3766 		*/
3767 		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3768 	}
3769 	return mnt;
3770 }
3771 EXPORT_SYMBOL_GPL(kern_mount);
3772 
3773 void kern_unmount(struct vfsmount *mnt)
3774 {
3775 	/* release long term mount so mount point can be released */
3776 	if (!IS_ERR_OR_NULL(mnt)) {
3777 		real_mount(mnt)->mnt_ns = NULL;
3778 		synchronize_rcu();	/* yecchhh... */
3779 		mntput(mnt);
3780 	}
3781 }
3782 EXPORT_SYMBOL(kern_unmount);
3783 
3784 bool our_mnt(struct vfsmount *mnt)
3785 {
3786 	return check_mnt(real_mount(mnt));
3787 }
3788 
3789 bool current_chrooted(void)
3790 {
3791 	/* Does the current process have a non-standard root */
3792 	struct path ns_root;
3793 	struct path fs_root;
3794 	bool chrooted;
3795 
3796 	/* Find the namespace root */
3797 	ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3798 	ns_root.dentry = ns_root.mnt->mnt_root;
3799 	path_get(&ns_root);
3800 	while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3801 		;
3802 
3803 	get_fs_root(current->fs, &fs_root);
3804 
3805 	chrooted = !path_equal(&fs_root, &ns_root);
3806 
3807 	path_put(&fs_root);
3808 	path_put(&ns_root);
3809 
3810 	return chrooted;
3811 }
3812 
3813 static bool mnt_already_visible(struct mnt_namespace *ns,
3814 				const struct super_block *sb,
3815 				int *new_mnt_flags)
3816 {
3817 	int new_flags = *new_mnt_flags;
3818 	struct mount *mnt;
3819 	bool visible = false;
3820 
3821 	down_read(&namespace_sem);
3822 	list_for_each_entry(mnt, &ns->list, mnt_list) {
3823 		struct mount *child;
3824 		int mnt_flags;
3825 
3826 		if (mnt->mnt.mnt_sb->s_type != sb->s_type)
3827 			continue;
3828 
3829 		/* This mount is not fully visible if it's root directory
3830 		 * is not the root directory of the filesystem.
3831 		 */
3832 		if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3833 			continue;
3834 
3835 		/* A local view of the mount flags */
3836 		mnt_flags = mnt->mnt.mnt_flags;
3837 
3838 		/* Don't miss readonly hidden in the superblock flags */
3839 		if (sb_rdonly(mnt->mnt.mnt_sb))
3840 			mnt_flags |= MNT_LOCK_READONLY;
3841 
3842 		/* Verify the mount flags are equal to or more permissive
3843 		 * than the proposed new mount.
3844 		 */
3845 		if ((mnt_flags & MNT_LOCK_READONLY) &&
3846 		    !(new_flags & MNT_READONLY))
3847 			continue;
3848 		if ((mnt_flags & MNT_LOCK_ATIME) &&
3849 		    ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3850 			continue;
3851 
3852 		/* This mount is not fully visible if there are any
3853 		 * locked child mounts that cover anything except for
3854 		 * empty directories.
3855 		 */
3856 		list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3857 			struct inode *inode = child->mnt_mountpoint->d_inode;
3858 			/* Only worry about locked mounts */
3859 			if (!(child->mnt.mnt_flags & MNT_LOCKED))
3860 				continue;
3861 			/* Is the directory permanetly empty? */
3862 			if (!is_empty_dir_inode(inode))
3863 				goto next;
3864 		}
3865 		/* Preserve the locked attributes */
3866 		*new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
3867 					       MNT_LOCK_ATIME);
3868 		visible = true;
3869 		goto found;
3870 	next:	;
3871 	}
3872 found:
3873 	up_read(&namespace_sem);
3874 	return visible;
3875 }
3876 
3877 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
3878 {
3879 	const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
3880 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3881 	unsigned long s_iflags;
3882 
3883 	if (ns->user_ns == &init_user_ns)
3884 		return false;
3885 
3886 	/* Can this filesystem be too revealing? */
3887 	s_iflags = sb->s_iflags;
3888 	if (!(s_iflags & SB_I_USERNS_VISIBLE))
3889 		return false;
3890 
3891 	if ((s_iflags & required_iflags) != required_iflags) {
3892 		WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3893 			  required_iflags);
3894 		return true;
3895 	}
3896 
3897 	return !mnt_already_visible(ns, sb, new_mnt_flags);
3898 }
3899 
3900 bool mnt_may_suid(struct vfsmount *mnt)
3901 {
3902 	/*
3903 	 * Foreign mounts (accessed via fchdir or through /proc
3904 	 * symlinks) are always treated as if they are nosuid.  This
3905 	 * prevents namespaces from trusting potentially unsafe
3906 	 * suid/sgid bits, file caps, or security labels that originate
3907 	 * in other namespaces.
3908 	 */
3909 	return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3910 	       current_in_userns(mnt->mnt_sb->s_user_ns);
3911 }
3912 
3913 static struct ns_common *mntns_get(struct task_struct *task)
3914 {
3915 	struct ns_common *ns = NULL;
3916 	struct nsproxy *nsproxy;
3917 
3918 	task_lock(task);
3919 	nsproxy = task->nsproxy;
3920 	if (nsproxy) {
3921 		ns = &nsproxy->mnt_ns->ns;
3922 		get_mnt_ns(to_mnt_ns(ns));
3923 	}
3924 	task_unlock(task);
3925 
3926 	return ns;
3927 }
3928 
3929 static void mntns_put(struct ns_common *ns)
3930 {
3931 	put_mnt_ns(to_mnt_ns(ns));
3932 }
3933 
3934 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
3935 {
3936 	struct fs_struct *fs = current->fs;
3937 	struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
3938 	struct path root;
3939 	int err;
3940 
3941 	if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3942 	    !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3943 	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3944 		return -EPERM;
3945 
3946 	if (is_anon_ns(mnt_ns))
3947 		return -EINVAL;
3948 
3949 	if (fs->users != 1)
3950 		return -EINVAL;
3951 
3952 	get_mnt_ns(mnt_ns);
3953 	old_mnt_ns = nsproxy->mnt_ns;
3954 	nsproxy->mnt_ns = mnt_ns;
3955 
3956 	/* Find the root */
3957 	err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
3958 				"/", LOOKUP_DOWN, &root);
3959 	if (err) {
3960 		/* revert to old namespace */
3961 		nsproxy->mnt_ns = old_mnt_ns;
3962 		put_mnt_ns(mnt_ns);
3963 		return err;
3964 	}
3965 
3966 	put_mnt_ns(old_mnt_ns);
3967 
3968 	/* Update the pwd and root */
3969 	set_fs_pwd(fs, &root);
3970 	set_fs_root(fs, &root);
3971 
3972 	path_put(&root);
3973 	return 0;
3974 }
3975 
3976 static struct user_namespace *mntns_owner(struct ns_common *ns)
3977 {
3978 	return to_mnt_ns(ns)->user_ns;
3979 }
3980 
3981 const struct proc_ns_operations mntns_operations = {
3982 	.name		= "mnt",
3983 	.type		= CLONE_NEWNS,
3984 	.get		= mntns_get,
3985 	.put		= mntns_put,
3986 	.install	= mntns_install,
3987 	.owner		= mntns_owner,
3988 };
3989