xref: /openbmc/linux/fs/namespace.c (revision 48cc39c3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/namespace.c
4  *
5  * (C) Copyright Al Viro 2000, 2001
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h>		/* init_rootfs */
21 #include <linux/fs_struct.h>	/* get_fs_root et.al. */
22 #include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
23 #include <linux/file.h>
24 #include <linux/uaccess.h>
25 #include <linux/proc_ns.h>
26 #include <linux/magic.h>
27 #include <linux/memblock.h>
28 #include <linux/proc_fs.h>
29 #include <linux/task_work.h>
30 #include <linux/sched/task.h>
31 #include <uapi/linux/mount.h>
32 #include <linux/fs_context.h>
33 #include <linux/shmem_fs.h>
34 
35 #include "pnode.h"
36 #include "internal.h"
37 
38 /* Maximum number of mounts in a mount namespace */
39 unsigned int sysctl_mount_max __read_mostly = 100000;
40 
41 static unsigned int m_hash_mask __read_mostly;
42 static unsigned int m_hash_shift __read_mostly;
43 static unsigned int mp_hash_mask __read_mostly;
44 static unsigned int mp_hash_shift __read_mostly;
45 
46 static __initdata unsigned long mhash_entries;
47 static int __init set_mhash_entries(char *str)
48 {
49 	if (!str)
50 		return 0;
51 	mhash_entries = simple_strtoul(str, &str, 0);
52 	return 1;
53 }
54 __setup("mhash_entries=", set_mhash_entries);
55 
56 static __initdata unsigned long mphash_entries;
57 static int __init set_mphash_entries(char *str)
58 {
59 	if (!str)
60 		return 0;
61 	mphash_entries = simple_strtoul(str, &str, 0);
62 	return 1;
63 }
64 __setup("mphash_entries=", set_mphash_entries);
65 
66 static u64 event;
67 static DEFINE_IDA(mnt_id_ida);
68 static DEFINE_IDA(mnt_group_ida);
69 
70 static struct hlist_head *mount_hashtable __read_mostly;
71 static struct hlist_head *mountpoint_hashtable __read_mostly;
72 static struct kmem_cache *mnt_cache __read_mostly;
73 static DECLARE_RWSEM(namespace_sem);
74 static HLIST_HEAD(unmounted);	/* protected by namespace_sem */
75 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
76 
77 struct mount_kattr {
78 	unsigned int attr_set;
79 	unsigned int attr_clr;
80 	unsigned int propagation;
81 	unsigned int lookup_flags;
82 	bool recurse;
83 	struct user_namespace *mnt_userns;
84 };
85 
86 /* /sys/fs */
87 struct kobject *fs_kobj;
88 EXPORT_SYMBOL_GPL(fs_kobj);
89 
90 /*
91  * vfsmount lock may be taken for read to prevent changes to the
92  * vfsmount hash, ie. during mountpoint lookups or walking back
93  * up the tree.
94  *
95  * It should be taken for write in all cases where the vfsmount
96  * tree or hash is modified or when a vfsmount structure is modified.
97  */
98 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
99 
100 static inline void lock_mount_hash(void)
101 {
102 	write_seqlock(&mount_lock);
103 }
104 
105 static inline void unlock_mount_hash(void)
106 {
107 	write_sequnlock(&mount_lock);
108 }
109 
110 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
111 {
112 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
113 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
114 	tmp = tmp + (tmp >> m_hash_shift);
115 	return &mount_hashtable[tmp & m_hash_mask];
116 }
117 
118 static inline struct hlist_head *mp_hash(struct dentry *dentry)
119 {
120 	unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
121 	tmp = tmp + (tmp >> mp_hash_shift);
122 	return &mountpoint_hashtable[tmp & mp_hash_mask];
123 }
124 
125 static int mnt_alloc_id(struct mount *mnt)
126 {
127 	int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
128 
129 	if (res < 0)
130 		return res;
131 	mnt->mnt_id = res;
132 	return 0;
133 }
134 
135 static void mnt_free_id(struct mount *mnt)
136 {
137 	ida_free(&mnt_id_ida, mnt->mnt_id);
138 }
139 
140 /*
141  * Allocate a new peer group ID
142  */
143 static int mnt_alloc_group_id(struct mount *mnt)
144 {
145 	int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
146 
147 	if (res < 0)
148 		return res;
149 	mnt->mnt_group_id = res;
150 	return 0;
151 }
152 
153 /*
154  * Release a peer group ID
155  */
156 void mnt_release_group_id(struct mount *mnt)
157 {
158 	ida_free(&mnt_group_ida, mnt->mnt_group_id);
159 	mnt->mnt_group_id = 0;
160 }
161 
162 /*
163  * vfsmount lock must be held for read
164  */
165 static inline void mnt_add_count(struct mount *mnt, int n)
166 {
167 #ifdef CONFIG_SMP
168 	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
169 #else
170 	preempt_disable();
171 	mnt->mnt_count += n;
172 	preempt_enable();
173 #endif
174 }
175 
176 /*
177  * vfsmount lock must be held for write
178  */
179 int mnt_get_count(struct mount *mnt)
180 {
181 #ifdef CONFIG_SMP
182 	int count = 0;
183 	int cpu;
184 
185 	for_each_possible_cpu(cpu) {
186 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
187 	}
188 
189 	return count;
190 #else
191 	return mnt->mnt_count;
192 #endif
193 }
194 
195 static struct mount *alloc_vfsmnt(const char *name)
196 {
197 	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
198 	if (mnt) {
199 		int err;
200 
201 		err = mnt_alloc_id(mnt);
202 		if (err)
203 			goto out_free_cache;
204 
205 		if (name) {
206 			mnt->mnt_devname = kstrdup_const(name,
207 							 GFP_KERNEL_ACCOUNT);
208 			if (!mnt->mnt_devname)
209 				goto out_free_id;
210 		}
211 
212 #ifdef CONFIG_SMP
213 		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
214 		if (!mnt->mnt_pcp)
215 			goto out_free_devname;
216 
217 		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
218 #else
219 		mnt->mnt_count = 1;
220 		mnt->mnt_writers = 0;
221 #endif
222 
223 		INIT_HLIST_NODE(&mnt->mnt_hash);
224 		INIT_LIST_HEAD(&mnt->mnt_child);
225 		INIT_LIST_HEAD(&mnt->mnt_mounts);
226 		INIT_LIST_HEAD(&mnt->mnt_list);
227 		INIT_LIST_HEAD(&mnt->mnt_expire);
228 		INIT_LIST_HEAD(&mnt->mnt_share);
229 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
230 		INIT_LIST_HEAD(&mnt->mnt_slave);
231 		INIT_HLIST_NODE(&mnt->mnt_mp_list);
232 		INIT_LIST_HEAD(&mnt->mnt_umounting);
233 		INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
234 		mnt->mnt.mnt_userns = &init_user_ns;
235 	}
236 	return mnt;
237 
238 #ifdef CONFIG_SMP
239 out_free_devname:
240 	kfree_const(mnt->mnt_devname);
241 #endif
242 out_free_id:
243 	mnt_free_id(mnt);
244 out_free_cache:
245 	kmem_cache_free(mnt_cache, mnt);
246 	return NULL;
247 }
248 
249 /*
250  * Most r/o checks on a fs are for operations that take
251  * discrete amounts of time, like a write() or unlink().
252  * We must keep track of when those operations start
253  * (for permission checks) and when they end, so that
254  * we can determine when writes are able to occur to
255  * a filesystem.
256  */
257 /*
258  * __mnt_is_readonly: check whether a mount is read-only
259  * @mnt: the mount to check for its write status
260  *
261  * This shouldn't be used directly ouside of the VFS.
262  * It does not guarantee that the filesystem will stay
263  * r/w, just that it is right *now*.  This can not and
264  * should not be used in place of IS_RDONLY(inode).
265  * mnt_want/drop_write() will _keep_ the filesystem
266  * r/w.
267  */
268 bool __mnt_is_readonly(struct vfsmount *mnt)
269 {
270 	return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
271 }
272 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
273 
274 static inline void mnt_inc_writers(struct mount *mnt)
275 {
276 #ifdef CONFIG_SMP
277 	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
278 #else
279 	mnt->mnt_writers++;
280 #endif
281 }
282 
283 static inline void mnt_dec_writers(struct mount *mnt)
284 {
285 #ifdef CONFIG_SMP
286 	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
287 #else
288 	mnt->mnt_writers--;
289 #endif
290 }
291 
292 static unsigned int mnt_get_writers(struct mount *mnt)
293 {
294 #ifdef CONFIG_SMP
295 	unsigned int count = 0;
296 	int cpu;
297 
298 	for_each_possible_cpu(cpu) {
299 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
300 	}
301 
302 	return count;
303 #else
304 	return mnt->mnt_writers;
305 #endif
306 }
307 
308 static int mnt_is_readonly(struct vfsmount *mnt)
309 {
310 	if (mnt->mnt_sb->s_readonly_remount)
311 		return 1;
312 	/* Order wrt setting s_flags/s_readonly_remount in do_remount() */
313 	smp_rmb();
314 	return __mnt_is_readonly(mnt);
315 }
316 
317 /*
318  * Most r/o & frozen checks on a fs are for operations that take discrete
319  * amounts of time, like a write() or unlink().  We must keep track of when
320  * those operations start (for permission checks) and when they end, so that we
321  * can determine when writes are able to occur to a filesystem.
322  */
323 /**
324  * __mnt_want_write - get write access to a mount without freeze protection
325  * @m: the mount on which to take a write
326  *
327  * This tells the low-level filesystem that a write is about to be performed to
328  * it, and makes sure that writes are allowed (mnt it read-write) before
329  * returning success. This operation does not protect against filesystem being
330  * frozen. When the write operation is finished, __mnt_drop_write() must be
331  * called. This is effectively a refcount.
332  */
333 int __mnt_want_write(struct vfsmount *m)
334 {
335 	struct mount *mnt = real_mount(m);
336 	int ret = 0;
337 
338 	preempt_disable();
339 	mnt_inc_writers(mnt);
340 	/*
341 	 * The store to mnt_inc_writers must be visible before we pass
342 	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
343 	 * incremented count after it has set MNT_WRITE_HOLD.
344 	 */
345 	smp_mb();
346 	while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
347 		cpu_relax();
348 	/*
349 	 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
350 	 * be set to match its requirements. So we must not load that until
351 	 * MNT_WRITE_HOLD is cleared.
352 	 */
353 	smp_rmb();
354 	if (mnt_is_readonly(m)) {
355 		mnt_dec_writers(mnt);
356 		ret = -EROFS;
357 	}
358 	preempt_enable();
359 
360 	return ret;
361 }
362 
363 /**
364  * mnt_want_write - get write access to a mount
365  * @m: the mount on which to take a write
366  *
367  * This tells the low-level filesystem that a write is about to be performed to
368  * it, and makes sure that writes are allowed (mount is read-write, filesystem
369  * is not frozen) before returning success.  When the write operation is
370  * finished, mnt_drop_write() must be called.  This is effectively a refcount.
371  */
372 int mnt_want_write(struct vfsmount *m)
373 {
374 	int ret;
375 
376 	sb_start_write(m->mnt_sb);
377 	ret = __mnt_want_write(m);
378 	if (ret)
379 		sb_end_write(m->mnt_sb);
380 	return ret;
381 }
382 EXPORT_SYMBOL_GPL(mnt_want_write);
383 
384 /**
385  * __mnt_want_write_file - get write access to a file's mount
386  * @file: the file who's mount on which to take a write
387  *
388  * This is like __mnt_want_write, but if the file is already open for writing it
389  * skips incrementing mnt_writers (since the open file already has a reference)
390  * and instead only does the check for emergency r/o remounts.  This must be
391  * paired with __mnt_drop_write_file.
392  */
393 int __mnt_want_write_file(struct file *file)
394 {
395 	if (file->f_mode & FMODE_WRITER) {
396 		/*
397 		 * Superblock may have become readonly while there are still
398 		 * writable fd's, e.g. due to a fs error with errors=remount-ro
399 		 */
400 		if (__mnt_is_readonly(file->f_path.mnt))
401 			return -EROFS;
402 		return 0;
403 	}
404 	return __mnt_want_write(file->f_path.mnt);
405 }
406 
407 /**
408  * mnt_want_write_file - get write access to a file's mount
409  * @file: the file who's mount on which to take a write
410  *
411  * This is like mnt_want_write, but if the file is already open for writing it
412  * skips incrementing mnt_writers (since the open file already has a reference)
413  * and instead only does the freeze protection and the check for emergency r/o
414  * remounts.  This must be paired with mnt_drop_write_file.
415  */
416 int mnt_want_write_file(struct file *file)
417 {
418 	int ret;
419 
420 	sb_start_write(file_inode(file)->i_sb);
421 	ret = __mnt_want_write_file(file);
422 	if (ret)
423 		sb_end_write(file_inode(file)->i_sb);
424 	return ret;
425 }
426 EXPORT_SYMBOL_GPL(mnt_want_write_file);
427 
428 /**
429  * __mnt_drop_write - give up write access to a mount
430  * @mnt: the mount on which to give up write access
431  *
432  * Tells the low-level filesystem that we are done
433  * performing writes to it.  Must be matched with
434  * __mnt_want_write() call above.
435  */
436 void __mnt_drop_write(struct vfsmount *mnt)
437 {
438 	preempt_disable();
439 	mnt_dec_writers(real_mount(mnt));
440 	preempt_enable();
441 }
442 
443 /**
444  * mnt_drop_write - give up write access to a mount
445  * @mnt: the mount on which to give up write access
446  *
447  * Tells the low-level filesystem that we are done performing writes to it and
448  * also allows filesystem to be frozen again.  Must be matched with
449  * mnt_want_write() call above.
450  */
451 void mnt_drop_write(struct vfsmount *mnt)
452 {
453 	__mnt_drop_write(mnt);
454 	sb_end_write(mnt->mnt_sb);
455 }
456 EXPORT_SYMBOL_GPL(mnt_drop_write);
457 
458 void __mnt_drop_write_file(struct file *file)
459 {
460 	if (!(file->f_mode & FMODE_WRITER))
461 		__mnt_drop_write(file->f_path.mnt);
462 }
463 
464 void mnt_drop_write_file(struct file *file)
465 {
466 	__mnt_drop_write_file(file);
467 	sb_end_write(file_inode(file)->i_sb);
468 }
469 EXPORT_SYMBOL(mnt_drop_write_file);
470 
471 static inline int mnt_hold_writers(struct mount *mnt)
472 {
473 	mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
474 	/*
475 	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
476 	 * should be visible before we do.
477 	 */
478 	smp_mb();
479 
480 	/*
481 	 * With writers on hold, if this value is zero, then there are
482 	 * definitely no active writers (although held writers may subsequently
483 	 * increment the count, they'll have to wait, and decrement it after
484 	 * seeing MNT_READONLY).
485 	 *
486 	 * It is OK to have counter incremented on one CPU and decremented on
487 	 * another: the sum will add up correctly. The danger would be when we
488 	 * sum up each counter, if we read a counter before it is incremented,
489 	 * but then read another CPU's count which it has been subsequently
490 	 * decremented from -- we would see more decrements than we should.
491 	 * MNT_WRITE_HOLD protects against this scenario, because
492 	 * mnt_want_write first increments count, then smp_mb, then spins on
493 	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
494 	 * we're counting up here.
495 	 */
496 	if (mnt_get_writers(mnt) > 0)
497 		return -EBUSY;
498 
499 	return 0;
500 }
501 
502 static inline void mnt_unhold_writers(struct mount *mnt)
503 {
504 	/*
505 	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
506 	 * that become unheld will see MNT_READONLY.
507 	 */
508 	smp_wmb();
509 	mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
510 }
511 
512 static int mnt_make_readonly(struct mount *mnt)
513 {
514 	int ret;
515 
516 	ret = mnt_hold_writers(mnt);
517 	if (!ret)
518 		mnt->mnt.mnt_flags |= MNT_READONLY;
519 	mnt_unhold_writers(mnt);
520 	return ret;
521 }
522 
523 int sb_prepare_remount_readonly(struct super_block *sb)
524 {
525 	struct mount *mnt;
526 	int err = 0;
527 
528 	/* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
529 	if (atomic_long_read(&sb->s_remove_count))
530 		return -EBUSY;
531 
532 	lock_mount_hash();
533 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
534 		if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
535 			mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
536 			smp_mb();
537 			if (mnt_get_writers(mnt) > 0) {
538 				err = -EBUSY;
539 				break;
540 			}
541 		}
542 	}
543 	if (!err && atomic_long_read(&sb->s_remove_count))
544 		err = -EBUSY;
545 
546 	if (!err) {
547 		sb->s_readonly_remount = 1;
548 		smp_wmb();
549 	}
550 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
551 		if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
552 			mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
553 	}
554 	unlock_mount_hash();
555 
556 	return err;
557 }
558 
559 static void free_vfsmnt(struct mount *mnt)
560 {
561 	struct user_namespace *mnt_userns;
562 
563 	mnt_userns = mnt_user_ns(&mnt->mnt);
564 	if (mnt_userns != &init_user_ns)
565 		put_user_ns(mnt_userns);
566 	kfree_const(mnt->mnt_devname);
567 #ifdef CONFIG_SMP
568 	free_percpu(mnt->mnt_pcp);
569 #endif
570 	kmem_cache_free(mnt_cache, mnt);
571 }
572 
573 static void delayed_free_vfsmnt(struct rcu_head *head)
574 {
575 	free_vfsmnt(container_of(head, struct mount, mnt_rcu));
576 }
577 
578 /* call under rcu_read_lock */
579 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
580 {
581 	struct mount *mnt;
582 	if (read_seqretry(&mount_lock, seq))
583 		return 1;
584 	if (bastard == NULL)
585 		return 0;
586 	mnt = real_mount(bastard);
587 	mnt_add_count(mnt, 1);
588 	smp_mb();			// see mntput_no_expire()
589 	if (likely(!read_seqretry(&mount_lock, seq)))
590 		return 0;
591 	if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
592 		mnt_add_count(mnt, -1);
593 		return 1;
594 	}
595 	lock_mount_hash();
596 	if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
597 		mnt_add_count(mnt, -1);
598 		unlock_mount_hash();
599 		return 1;
600 	}
601 	unlock_mount_hash();
602 	/* caller will mntput() */
603 	return -1;
604 }
605 
606 /* call under rcu_read_lock */
607 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
608 {
609 	int res = __legitimize_mnt(bastard, seq);
610 	if (likely(!res))
611 		return true;
612 	if (unlikely(res < 0)) {
613 		rcu_read_unlock();
614 		mntput(bastard);
615 		rcu_read_lock();
616 	}
617 	return false;
618 }
619 
620 /*
621  * find the first mount at @dentry on vfsmount @mnt.
622  * call under rcu_read_lock()
623  */
624 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
625 {
626 	struct hlist_head *head = m_hash(mnt, dentry);
627 	struct mount *p;
628 
629 	hlist_for_each_entry_rcu(p, head, mnt_hash)
630 		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
631 			return p;
632 	return NULL;
633 }
634 
635 /*
636  * lookup_mnt - Return the first child mount mounted at path
637  *
638  * "First" means first mounted chronologically.  If you create the
639  * following mounts:
640  *
641  * mount /dev/sda1 /mnt
642  * mount /dev/sda2 /mnt
643  * mount /dev/sda3 /mnt
644  *
645  * Then lookup_mnt() on the base /mnt dentry in the root mount will
646  * return successively the root dentry and vfsmount of /dev/sda1, then
647  * /dev/sda2, then /dev/sda3, then NULL.
648  *
649  * lookup_mnt takes a reference to the found vfsmount.
650  */
651 struct vfsmount *lookup_mnt(const struct path *path)
652 {
653 	struct mount *child_mnt;
654 	struct vfsmount *m;
655 	unsigned seq;
656 
657 	rcu_read_lock();
658 	do {
659 		seq = read_seqbegin(&mount_lock);
660 		child_mnt = __lookup_mnt(path->mnt, path->dentry);
661 		m = child_mnt ? &child_mnt->mnt : NULL;
662 	} while (!legitimize_mnt(m, seq));
663 	rcu_read_unlock();
664 	return m;
665 }
666 
667 static inline void lock_ns_list(struct mnt_namespace *ns)
668 {
669 	spin_lock(&ns->ns_lock);
670 }
671 
672 static inline void unlock_ns_list(struct mnt_namespace *ns)
673 {
674 	spin_unlock(&ns->ns_lock);
675 }
676 
677 static inline bool mnt_is_cursor(struct mount *mnt)
678 {
679 	return mnt->mnt.mnt_flags & MNT_CURSOR;
680 }
681 
682 /*
683  * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
684  *                         current mount namespace.
685  *
686  * The common case is dentries are not mountpoints at all and that
687  * test is handled inline.  For the slow case when we are actually
688  * dealing with a mountpoint of some kind, walk through all of the
689  * mounts in the current mount namespace and test to see if the dentry
690  * is a mountpoint.
691  *
692  * The mount_hashtable is not usable in the context because we
693  * need to identify all mounts that may be in the current mount
694  * namespace not just a mount that happens to have some specified
695  * parent mount.
696  */
697 bool __is_local_mountpoint(struct dentry *dentry)
698 {
699 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
700 	struct mount *mnt;
701 	bool is_covered = false;
702 
703 	down_read(&namespace_sem);
704 	lock_ns_list(ns);
705 	list_for_each_entry(mnt, &ns->list, mnt_list) {
706 		if (mnt_is_cursor(mnt))
707 			continue;
708 		is_covered = (mnt->mnt_mountpoint == dentry);
709 		if (is_covered)
710 			break;
711 	}
712 	unlock_ns_list(ns);
713 	up_read(&namespace_sem);
714 
715 	return is_covered;
716 }
717 
718 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
719 {
720 	struct hlist_head *chain = mp_hash(dentry);
721 	struct mountpoint *mp;
722 
723 	hlist_for_each_entry(mp, chain, m_hash) {
724 		if (mp->m_dentry == dentry) {
725 			mp->m_count++;
726 			return mp;
727 		}
728 	}
729 	return NULL;
730 }
731 
732 static struct mountpoint *get_mountpoint(struct dentry *dentry)
733 {
734 	struct mountpoint *mp, *new = NULL;
735 	int ret;
736 
737 	if (d_mountpoint(dentry)) {
738 		/* might be worth a WARN_ON() */
739 		if (d_unlinked(dentry))
740 			return ERR_PTR(-ENOENT);
741 mountpoint:
742 		read_seqlock_excl(&mount_lock);
743 		mp = lookup_mountpoint(dentry);
744 		read_sequnlock_excl(&mount_lock);
745 		if (mp)
746 			goto done;
747 	}
748 
749 	if (!new)
750 		new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
751 	if (!new)
752 		return ERR_PTR(-ENOMEM);
753 
754 
755 	/* Exactly one processes may set d_mounted */
756 	ret = d_set_mounted(dentry);
757 
758 	/* Someone else set d_mounted? */
759 	if (ret == -EBUSY)
760 		goto mountpoint;
761 
762 	/* The dentry is not available as a mountpoint? */
763 	mp = ERR_PTR(ret);
764 	if (ret)
765 		goto done;
766 
767 	/* Add the new mountpoint to the hash table */
768 	read_seqlock_excl(&mount_lock);
769 	new->m_dentry = dget(dentry);
770 	new->m_count = 1;
771 	hlist_add_head(&new->m_hash, mp_hash(dentry));
772 	INIT_HLIST_HEAD(&new->m_list);
773 	read_sequnlock_excl(&mount_lock);
774 
775 	mp = new;
776 	new = NULL;
777 done:
778 	kfree(new);
779 	return mp;
780 }
781 
782 /*
783  * vfsmount lock must be held.  Additionally, the caller is responsible
784  * for serializing calls for given disposal list.
785  */
786 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
787 {
788 	if (!--mp->m_count) {
789 		struct dentry *dentry = mp->m_dentry;
790 		BUG_ON(!hlist_empty(&mp->m_list));
791 		spin_lock(&dentry->d_lock);
792 		dentry->d_flags &= ~DCACHE_MOUNTED;
793 		spin_unlock(&dentry->d_lock);
794 		dput_to_list(dentry, list);
795 		hlist_del(&mp->m_hash);
796 		kfree(mp);
797 	}
798 }
799 
800 /* called with namespace_lock and vfsmount lock */
801 static void put_mountpoint(struct mountpoint *mp)
802 {
803 	__put_mountpoint(mp, &ex_mountpoints);
804 }
805 
806 static inline int check_mnt(struct mount *mnt)
807 {
808 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
809 }
810 
811 /*
812  * vfsmount lock must be held for write
813  */
814 static void touch_mnt_namespace(struct mnt_namespace *ns)
815 {
816 	if (ns) {
817 		ns->event = ++event;
818 		wake_up_interruptible(&ns->poll);
819 	}
820 }
821 
822 /*
823  * vfsmount lock must be held for write
824  */
825 static void __touch_mnt_namespace(struct mnt_namespace *ns)
826 {
827 	if (ns && ns->event != event) {
828 		ns->event = event;
829 		wake_up_interruptible(&ns->poll);
830 	}
831 }
832 
833 /*
834  * vfsmount lock must be held for write
835  */
836 static struct mountpoint *unhash_mnt(struct mount *mnt)
837 {
838 	struct mountpoint *mp;
839 	mnt->mnt_parent = mnt;
840 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
841 	list_del_init(&mnt->mnt_child);
842 	hlist_del_init_rcu(&mnt->mnt_hash);
843 	hlist_del_init(&mnt->mnt_mp_list);
844 	mp = mnt->mnt_mp;
845 	mnt->mnt_mp = NULL;
846 	return mp;
847 }
848 
849 /*
850  * vfsmount lock must be held for write
851  */
852 static void umount_mnt(struct mount *mnt)
853 {
854 	put_mountpoint(unhash_mnt(mnt));
855 }
856 
857 /*
858  * vfsmount lock must be held for write
859  */
860 void mnt_set_mountpoint(struct mount *mnt,
861 			struct mountpoint *mp,
862 			struct mount *child_mnt)
863 {
864 	mp->m_count++;
865 	mnt_add_count(mnt, 1);	/* essentially, that's mntget */
866 	child_mnt->mnt_mountpoint = mp->m_dentry;
867 	child_mnt->mnt_parent = mnt;
868 	child_mnt->mnt_mp = mp;
869 	hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
870 }
871 
872 static void __attach_mnt(struct mount *mnt, struct mount *parent)
873 {
874 	hlist_add_head_rcu(&mnt->mnt_hash,
875 			   m_hash(&parent->mnt, mnt->mnt_mountpoint));
876 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
877 }
878 
879 /*
880  * vfsmount lock must be held for write
881  */
882 static void attach_mnt(struct mount *mnt,
883 			struct mount *parent,
884 			struct mountpoint *mp)
885 {
886 	mnt_set_mountpoint(parent, mp, mnt);
887 	__attach_mnt(mnt, parent);
888 }
889 
890 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
891 {
892 	struct mountpoint *old_mp = mnt->mnt_mp;
893 	struct mount *old_parent = mnt->mnt_parent;
894 
895 	list_del_init(&mnt->mnt_child);
896 	hlist_del_init(&mnt->mnt_mp_list);
897 	hlist_del_init_rcu(&mnt->mnt_hash);
898 
899 	attach_mnt(mnt, parent, mp);
900 
901 	put_mountpoint(old_mp);
902 	mnt_add_count(old_parent, -1);
903 }
904 
905 /*
906  * vfsmount lock must be held for write
907  */
908 static void commit_tree(struct mount *mnt)
909 {
910 	struct mount *parent = mnt->mnt_parent;
911 	struct mount *m;
912 	LIST_HEAD(head);
913 	struct mnt_namespace *n = parent->mnt_ns;
914 
915 	BUG_ON(parent == mnt);
916 
917 	list_add_tail(&head, &mnt->mnt_list);
918 	list_for_each_entry(m, &head, mnt_list)
919 		m->mnt_ns = n;
920 
921 	list_splice(&head, n->list.prev);
922 
923 	n->mounts += n->pending_mounts;
924 	n->pending_mounts = 0;
925 
926 	__attach_mnt(mnt, parent);
927 	touch_mnt_namespace(n);
928 }
929 
930 static struct mount *next_mnt(struct mount *p, struct mount *root)
931 {
932 	struct list_head *next = p->mnt_mounts.next;
933 	if (next == &p->mnt_mounts) {
934 		while (1) {
935 			if (p == root)
936 				return NULL;
937 			next = p->mnt_child.next;
938 			if (next != &p->mnt_parent->mnt_mounts)
939 				break;
940 			p = p->mnt_parent;
941 		}
942 	}
943 	return list_entry(next, struct mount, mnt_child);
944 }
945 
946 static struct mount *skip_mnt_tree(struct mount *p)
947 {
948 	struct list_head *prev = p->mnt_mounts.prev;
949 	while (prev != &p->mnt_mounts) {
950 		p = list_entry(prev, struct mount, mnt_child);
951 		prev = p->mnt_mounts.prev;
952 	}
953 	return p;
954 }
955 
956 /**
957  * vfs_create_mount - Create a mount for a configured superblock
958  * @fc: The configuration context with the superblock attached
959  *
960  * Create a mount to an already configured superblock.  If necessary, the
961  * caller should invoke vfs_get_tree() before calling this.
962  *
963  * Note that this does not attach the mount to anything.
964  */
965 struct vfsmount *vfs_create_mount(struct fs_context *fc)
966 {
967 	struct mount *mnt;
968 
969 	if (!fc->root)
970 		return ERR_PTR(-EINVAL);
971 
972 	mnt = alloc_vfsmnt(fc->source ?: "none");
973 	if (!mnt)
974 		return ERR_PTR(-ENOMEM);
975 
976 	if (fc->sb_flags & SB_KERNMOUNT)
977 		mnt->mnt.mnt_flags = MNT_INTERNAL;
978 
979 	atomic_inc(&fc->root->d_sb->s_active);
980 	mnt->mnt.mnt_sb		= fc->root->d_sb;
981 	mnt->mnt.mnt_root	= dget(fc->root);
982 	mnt->mnt_mountpoint	= mnt->mnt.mnt_root;
983 	mnt->mnt_parent		= mnt;
984 
985 	lock_mount_hash();
986 	list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
987 	unlock_mount_hash();
988 	return &mnt->mnt;
989 }
990 EXPORT_SYMBOL(vfs_create_mount);
991 
992 struct vfsmount *fc_mount(struct fs_context *fc)
993 {
994 	int err = vfs_get_tree(fc);
995 	if (!err) {
996 		up_write(&fc->root->d_sb->s_umount);
997 		return vfs_create_mount(fc);
998 	}
999 	return ERR_PTR(err);
1000 }
1001 EXPORT_SYMBOL(fc_mount);
1002 
1003 struct vfsmount *vfs_kern_mount(struct file_system_type *type,
1004 				int flags, const char *name,
1005 				void *data)
1006 {
1007 	struct fs_context *fc;
1008 	struct vfsmount *mnt;
1009 	int ret = 0;
1010 
1011 	if (!type)
1012 		return ERR_PTR(-EINVAL);
1013 
1014 	fc = fs_context_for_mount(type, flags);
1015 	if (IS_ERR(fc))
1016 		return ERR_CAST(fc);
1017 
1018 	if (name)
1019 		ret = vfs_parse_fs_string(fc, "source",
1020 					  name, strlen(name));
1021 	if (!ret)
1022 		ret = parse_monolithic_mount_data(fc, data);
1023 	if (!ret)
1024 		mnt = fc_mount(fc);
1025 	else
1026 		mnt = ERR_PTR(ret);
1027 
1028 	put_fs_context(fc);
1029 	return mnt;
1030 }
1031 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1032 
1033 struct vfsmount *
1034 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1035 	     const char *name, void *data)
1036 {
1037 	/* Until it is worked out how to pass the user namespace
1038 	 * through from the parent mount to the submount don't support
1039 	 * unprivileged mounts with submounts.
1040 	 */
1041 	if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1042 		return ERR_PTR(-EPERM);
1043 
1044 	return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1045 }
1046 EXPORT_SYMBOL_GPL(vfs_submount);
1047 
1048 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1049 					int flag)
1050 {
1051 	struct super_block *sb = old->mnt.mnt_sb;
1052 	struct mount *mnt;
1053 	int err;
1054 
1055 	mnt = alloc_vfsmnt(old->mnt_devname);
1056 	if (!mnt)
1057 		return ERR_PTR(-ENOMEM);
1058 
1059 	if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1060 		mnt->mnt_group_id = 0; /* not a peer of original */
1061 	else
1062 		mnt->mnt_group_id = old->mnt_group_id;
1063 
1064 	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1065 		err = mnt_alloc_group_id(mnt);
1066 		if (err)
1067 			goto out_free;
1068 	}
1069 
1070 	mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1071 	mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1072 
1073 	atomic_inc(&sb->s_active);
1074 	mnt->mnt.mnt_userns = mnt_user_ns(&old->mnt);
1075 	if (mnt->mnt.mnt_userns != &init_user_ns)
1076 		mnt->mnt.mnt_userns = get_user_ns(mnt->mnt.mnt_userns);
1077 	mnt->mnt.mnt_sb = sb;
1078 	mnt->mnt.mnt_root = dget(root);
1079 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1080 	mnt->mnt_parent = mnt;
1081 	lock_mount_hash();
1082 	list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1083 	unlock_mount_hash();
1084 
1085 	if ((flag & CL_SLAVE) ||
1086 	    ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1087 		list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1088 		mnt->mnt_master = old;
1089 		CLEAR_MNT_SHARED(mnt);
1090 	} else if (!(flag & CL_PRIVATE)) {
1091 		if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1092 			list_add(&mnt->mnt_share, &old->mnt_share);
1093 		if (IS_MNT_SLAVE(old))
1094 			list_add(&mnt->mnt_slave, &old->mnt_slave);
1095 		mnt->mnt_master = old->mnt_master;
1096 	} else {
1097 		CLEAR_MNT_SHARED(mnt);
1098 	}
1099 	if (flag & CL_MAKE_SHARED)
1100 		set_mnt_shared(mnt);
1101 
1102 	/* stick the duplicate mount on the same expiry list
1103 	 * as the original if that was on one */
1104 	if (flag & CL_EXPIRE) {
1105 		if (!list_empty(&old->mnt_expire))
1106 			list_add(&mnt->mnt_expire, &old->mnt_expire);
1107 	}
1108 
1109 	return mnt;
1110 
1111  out_free:
1112 	mnt_free_id(mnt);
1113 	free_vfsmnt(mnt);
1114 	return ERR_PTR(err);
1115 }
1116 
1117 static void cleanup_mnt(struct mount *mnt)
1118 {
1119 	struct hlist_node *p;
1120 	struct mount *m;
1121 	/*
1122 	 * The warning here probably indicates that somebody messed
1123 	 * up a mnt_want/drop_write() pair.  If this happens, the
1124 	 * filesystem was probably unable to make r/w->r/o transitions.
1125 	 * The locking used to deal with mnt_count decrement provides barriers,
1126 	 * so mnt_get_writers() below is safe.
1127 	 */
1128 	WARN_ON(mnt_get_writers(mnt));
1129 	if (unlikely(mnt->mnt_pins.first))
1130 		mnt_pin_kill(mnt);
1131 	hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1132 		hlist_del(&m->mnt_umount);
1133 		mntput(&m->mnt);
1134 	}
1135 	fsnotify_vfsmount_delete(&mnt->mnt);
1136 	dput(mnt->mnt.mnt_root);
1137 	deactivate_super(mnt->mnt.mnt_sb);
1138 	mnt_free_id(mnt);
1139 	call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1140 }
1141 
1142 static void __cleanup_mnt(struct rcu_head *head)
1143 {
1144 	cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1145 }
1146 
1147 static LLIST_HEAD(delayed_mntput_list);
1148 static void delayed_mntput(struct work_struct *unused)
1149 {
1150 	struct llist_node *node = llist_del_all(&delayed_mntput_list);
1151 	struct mount *m, *t;
1152 
1153 	llist_for_each_entry_safe(m, t, node, mnt_llist)
1154 		cleanup_mnt(m);
1155 }
1156 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1157 
1158 static void mntput_no_expire(struct mount *mnt)
1159 {
1160 	LIST_HEAD(list);
1161 	int count;
1162 
1163 	rcu_read_lock();
1164 	if (likely(READ_ONCE(mnt->mnt_ns))) {
1165 		/*
1166 		 * Since we don't do lock_mount_hash() here,
1167 		 * ->mnt_ns can change under us.  However, if it's
1168 		 * non-NULL, then there's a reference that won't
1169 		 * be dropped until after an RCU delay done after
1170 		 * turning ->mnt_ns NULL.  So if we observe it
1171 		 * non-NULL under rcu_read_lock(), the reference
1172 		 * we are dropping is not the final one.
1173 		 */
1174 		mnt_add_count(mnt, -1);
1175 		rcu_read_unlock();
1176 		return;
1177 	}
1178 	lock_mount_hash();
1179 	/*
1180 	 * make sure that if __legitimize_mnt() has not seen us grab
1181 	 * mount_lock, we'll see their refcount increment here.
1182 	 */
1183 	smp_mb();
1184 	mnt_add_count(mnt, -1);
1185 	count = mnt_get_count(mnt);
1186 	if (count != 0) {
1187 		WARN_ON(count < 0);
1188 		rcu_read_unlock();
1189 		unlock_mount_hash();
1190 		return;
1191 	}
1192 	if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1193 		rcu_read_unlock();
1194 		unlock_mount_hash();
1195 		return;
1196 	}
1197 	mnt->mnt.mnt_flags |= MNT_DOOMED;
1198 	rcu_read_unlock();
1199 
1200 	list_del(&mnt->mnt_instance);
1201 
1202 	if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1203 		struct mount *p, *tmp;
1204 		list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts,  mnt_child) {
1205 			__put_mountpoint(unhash_mnt(p), &list);
1206 			hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
1207 		}
1208 	}
1209 	unlock_mount_hash();
1210 	shrink_dentry_list(&list);
1211 
1212 	if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1213 		struct task_struct *task = current;
1214 		if (likely(!(task->flags & PF_KTHREAD))) {
1215 			init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1216 			if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME))
1217 				return;
1218 		}
1219 		if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1220 			schedule_delayed_work(&delayed_mntput_work, 1);
1221 		return;
1222 	}
1223 	cleanup_mnt(mnt);
1224 }
1225 
1226 void mntput(struct vfsmount *mnt)
1227 {
1228 	if (mnt) {
1229 		struct mount *m = real_mount(mnt);
1230 		/* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1231 		if (unlikely(m->mnt_expiry_mark))
1232 			m->mnt_expiry_mark = 0;
1233 		mntput_no_expire(m);
1234 	}
1235 }
1236 EXPORT_SYMBOL(mntput);
1237 
1238 struct vfsmount *mntget(struct vfsmount *mnt)
1239 {
1240 	if (mnt)
1241 		mnt_add_count(real_mount(mnt), 1);
1242 	return mnt;
1243 }
1244 EXPORT_SYMBOL(mntget);
1245 
1246 /**
1247  * path_is_mountpoint() - Check if path is a mount in the current namespace.
1248  * @path: path to check
1249  *
1250  *  d_mountpoint() can only be used reliably to establish if a dentry is
1251  *  not mounted in any namespace and that common case is handled inline.
1252  *  d_mountpoint() isn't aware of the possibility there may be multiple
1253  *  mounts using a given dentry in a different namespace. This function
1254  *  checks if the passed in path is a mountpoint rather than the dentry
1255  *  alone.
1256  */
1257 bool path_is_mountpoint(const struct path *path)
1258 {
1259 	unsigned seq;
1260 	bool res;
1261 
1262 	if (!d_mountpoint(path->dentry))
1263 		return false;
1264 
1265 	rcu_read_lock();
1266 	do {
1267 		seq = read_seqbegin(&mount_lock);
1268 		res = __path_is_mountpoint(path);
1269 	} while (read_seqretry(&mount_lock, seq));
1270 	rcu_read_unlock();
1271 
1272 	return res;
1273 }
1274 EXPORT_SYMBOL(path_is_mountpoint);
1275 
1276 struct vfsmount *mnt_clone_internal(const struct path *path)
1277 {
1278 	struct mount *p;
1279 	p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1280 	if (IS_ERR(p))
1281 		return ERR_CAST(p);
1282 	p->mnt.mnt_flags |= MNT_INTERNAL;
1283 	return &p->mnt;
1284 }
1285 
1286 #ifdef CONFIG_PROC_FS
1287 static struct mount *mnt_list_next(struct mnt_namespace *ns,
1288 				   struct list_head *p)
1289 {
1290 	struct mount *mnt, *ret = NULL;
1291 
1292 	lock_ns_list(ns);
1293 	list_for_each_continue(p, &ns->list) {
1294 		mnt = list_entry(p, typeof(*mnt), mnt_list);
1295 		if (!mnt_is_cursor(mnt)) {
1296 			ret = mnt;
1297 			break;
1298 		}
1299 	}
1300 	unlock_ns_list(ns);
1301 
1302 	return ret;
1303 }
1304 
1305 /* iterator; we want it to have access to namespace_sem, thus here... */
1306 static void *m_start(struct seq_file *m, loff_t *pos)
1307 {
1308 	struct proc_mounts *p = m->private;
1309 	struct list_head *prev;
1310 
1311 	down_read(&namespace_sem);
1312 	if (!*pos) {
1313 		prev = &p->ns->list;
1314 	} else {
1315 		prev = &p->cursor.mnt_list;
1316 
1317 		/* Read after we'd reached the end? */
1318 		if (list_empty(prev))
1319 			return NULL;
1320 	}
1321 
1322 	return mnt_list_next(p->ns, prev);
1323 }
1324 
1325 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1326 {
1327 	struct proc_mounts *p = m->private;
1328 	struct mount *mnt = v;
1329 
1330 	++*pos;
1331 	return mnt_list_next(p->ns, &mnt->mnt_list);
1332 }
1333 
1334 static void m_stop(struct seq_file *m, void *v)
1335 {
1336 	struct proc_mounts *p = m->private;
1337 	struct mount *mnt = v;
1338 
1339 	lock_ns_list(p->ns);
1340 	if (mnt)
1341 		list_move_tail(&p->cursor.mnt_list, &mnt->mnt_list);
1342 	else
1343 		list_del_init(&p->cursor.mnt_list);
1344 	unlock_ns_list(p->ns);
1345 	up_read(&namespace_sem);
1346 }
1347 
1348 static int m_show(struct seq_file *m, void *v)
1349 {
1350 	struct proc_mounts *p = m->private;
1351 	struct mount *r = v;
1352 	return p->show(m, &r->mnt);
1353 }
1354 
1355 const struct seq_operations mounts_op = {
1356 	.start	= m_start,
1357 	.next	= m_next,
1358 	.stop	= m_stop,
1359 	.show	= m_show,
1360 };
1361 
1362 void mnt_cursor_del(struct mnt_namespace *ns, struct mount *cursor)
1363 {
1364 	down_read(&namespace_sem);
1365 	lock_ns_list(ns);
1366 	list_del(&cursor->mnt_list);
1367 	unlock_ns_list(ns);
1368 	up_read(&namespace_sem);
1369 }
1370 #endif  /* CONFIG_PROC_FS */
1371 
1372 /**
1373  * may_umount_tree - check if a mount tree is busy
1374  * @m: root of mount tree
1375  *
1376  * This is called to check if a tree of mounts has any
1377  * open files, pwds, chroots or sub mounts that are
1378  * busy.
1379  */
1380 int may_umount_tree(struct vfsmount *m)
1381 {
1382 	struct mount *mnt = real_mount(m);
1383 	int actual_refs = 0;
1384 	int minimum_refs = 0;
1385 	struct mount *p;
1386 	BUG_ON(!m);
1387 
1388 	/* write lock needed for mnt_get_count */
1389 	lock_mount_hash();
1390 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1391 		actual_refs += mnt_get_count(p);
1392 		minimum_refs += 2;
1393 	}
1394 	unlock_mount_hash();
1395 
1396 	if (actual_refs > minimum_refs)
1397 		return 0;
1398 
1399 	return 1;
1400 }
1401 
1402 EXPORT_SYMBOL(may_umount_tree);
1403 
1404 /**
1405  * may_umount - check if a mount point is busy
1406  * @mnt: root of mount
1407  *
1408  * This is called to check if a mount point has any
1409  * open files, pwds, chroots or sub mounts. If the
1410  * mount has sub mounts this will return busy
1411  * regardless of whether the sub mounts are busy.
1412  *
1413  * Doesn't take quota and stuff into account. IOW, in some cases it will
1414  * give false negatives. The main reason why it's here is that we need
1415  * a non-destructive way to look for easily umountable filesystems.
1416  */
1417 int may_umount(struct vfsmount *mnt)
1418 {
1419 	int ret = 1;
1420 	down_read(&namespace_sem);
1421 	lock_mount_hash();
1422 	if (propagate_mount_busy(real_mount(mnt), 2))
1423 		ret = 0;
1424 	unlock_mount_hash();
1425 	up_read(&namespace_sem);
1426 	return ret;
1427 }
1428 
1429 EXPORT_SYMBOL(may_umount);
1430 
1431 static void namespace_unlock(void)
1432 {
1433 	struct hlist_head head;
1434 	struct hlist_node *p;
1435 	struct mount *m;
1436 	LIST_HEAD(list);
1437 
1438 	hlist_move_list(&unmounted, &head);
1439 	list_splice_init(&ex_mountpoints, &list);
1440 
1441 	up_write(&namespace_sem);
1442 
1443 	shrink_dentry_list(&list);
1444 
1445 	if (likely(hlist_empty(&head)))
1446 		return;
1447 
1448 	synchronize_rcu_expedited();
1449 
1450 	hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1451 		hlist_del(&m->mnt_umount);
1452 		mntput(&m->mnt);
1453 	}
1454 }
1455 
1456 static inline void namespace_lock(void)
1457 {
1458 	down_write(&namespace_sem);
1459 }
1460 
1461 enum umount_tree_flags {
1462 	UMOUNT_SYNC = 1,
1463 	UMOUNT_PROPAGATE = 2,
1464 	UMOUNT_CONNECTED = 4,
1465 };
1466 
1467 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1468 {
1469 	/* Leaving mounts connected is only valid for lazy umounts */
1470 	if (how & UMOUNT_SYNC)
1471 		return true;
1472 
1473 	/* A mount without a parent has nothing to be connected to */
1474 	if (!mnt_has_parent(mnt))
1475 		return true;
1476 
1477 	/* Because the reference counting rules change when mounts are
1478 	 * unmounted and connected, umounted mounts may not be
1479 	 * connected to mounted mounts.
1480 	 */
1481 	if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1482 		return true;
1483 
1484 	/* Has it been requested that the mount remain connected? */
1485 	if (how & UMOUNT_CONNECTED)
1486 		return false;
1487 
1488 	/* Is the mount locked such that it needs to remain connected? */
1489 	if (IS_MNT_LOCKED(mnt))
1490 		return false;
1491 
1492 	/* By default disconnect the mount */
1493 	return true;
1494 }
1495 
1496 /*
1497  * mount_lock must be held
1498  * namespace_sem must be held for write
1499  */
1500 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1501 {
1502 	LIST_HEAD(tmp_list);
1503 	struct mount *p;
1504 
1505 	if (how & UMOUNT_PROPAGATE)
1506 		propagate_mount_unlock(mnt);
1507 
1508 	/* Gather the mounts to umount */
1509 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1510 		p->mnt.mnt_flags |= MNT_UMOUNT;
1511 		list_move(&p->mnt_list, &tmp_list);
1512 	}
1513 
1514 	/* Hide the mounts from mnt_mounts */
1515 	list_for_each_entry(p, &tmp_list, mnt_list) {
1516 		list_del_init(&p->mnt_child);
1517 	}
1518 
1519 	/* Add propogated mounts to the tmp_list */
1520 	if (how & UMOUNT_PROPAGATE)
1521 		propagate_umount(&tmp_list);
1522 
1523 	while (!list_empty(&tmp_list)) {
1524 		struct mnt_namespace *ns;
1525 		bool disconnect;
1526 		p = list_first_entry(&tmp_list, struct mount, mnt_list);
1527 		list_del_init(&p->mnt_expire);
1528 		list_del_init(&p->mnt_list);
1529 		ns = p->mnt_ns;
1530 		if (ns) {
1531 			ns->mounts--;
1532 			__touch_mnt_namespace(ns);
1533 		}
1534 		p->mnt_ns = NULL;
1535 		if (how & UMOUNT_SYNC)
1536 			p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1537 
1538 		disconnect = disconnect_mount(p, how);
1539 		if (mnt_has_parent(p)) {
1540 			mnt_add_count(p->mnt_parent, -1);
1541 			if (!disconnect) {
1542 				/* Don't forget about p */
1543 				list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1544 			} else {
1545 				umount_mnt(p);
1546 			}
1547 		}
1548 		change_mnt_propagation(p, MS_PRIVATE);
1549 		if (disconnect)
1550 			hlist_add_head(&p->mnt_umount, &unmounted);
1551 	}
1552 }
1553 
1554 static void shrink_submounts(struct mount *mnt);
1555 
1556 static int do_umount_root(struct super_block *sb)
1557 {
1558 	int ret = 0;
1559 
1560 	down_write(&sb->s_umount);
1561 	if (!sb_rdonly(sb)) {
1562 		struct fs_context *fc;
1563 
1564 		fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1565 						SB_RDONLY);
1566 		if (IS_ERR(fc)) {
1567 			ret = PTR_ERR(fc);
1568 		} else {
1569 			ret = parse_monolithic_mount_data(fc, NULL);
1570 			if (!ret)
1571 				ret = reconfigure_super(fc);
1572 			put_fs_context(fc);
1573 		}
1574 	}
1575 	up_write(&sb->s_umount);
1576 	return ret;
1577 }
1578 
1579 static int do_umount(struct mount *mnt, int flags)
1580 {
1581 	struct super_block *sb = mnt->mnt.mnt_sb;
1582 	int retval;
1583 
1584 	retval = security_sb_umount(&mnt->mnt, flags);
1585 	if (retval)
1586 		return retval;
1587 
1588 	/*
1589 	 * Allow userspace to request a mountpoint be expired rather than
1590 	 * unmounting unconditionally. Unmount only happens if:
1591 	 *  (1) the mark is already set (the mark is cleared by mntput())
1592 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1593 	 */
1594 	if (flags & MNT_EXPIRE) {
1595 		if (&mnt->mnt == current->fs->root.mnt ||
1596 		    flags & (MNT_FORCE | MNT_DETACH))
1597 			return -EINVAL;
1598 
1599 		/*
1600 		 * probably don't strictly need the lock here if we examined
1601 		 * all race cases, but it's a slowpath.
1602 		 */
1603 		lock_mount_hash();
1604 		if (mnt_get_count(mnt) != 2) {
1605 			unlock_mount_hash();
1606 			return -EBUSY;
1607 		}
1608 		unlock_mount_hash();
1609 
1610 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1611 			return -EAGAIN;
1612 	}
1613 
1614 	/*
1615 	 * If we may have to abort operations to get out of this
1616 	 * mount, and they will themselves hold resources we must
1617 	 * allow the fs to do things. In the Unix tradition of
1618 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1619 	 * might fail to complete on the first run through as other tasks
1620 	 * must return, and the like. Thats for the mount program to worry
1621 	 * about for the moment.
1622 	 */
1623 
1624 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1625 		sb->s_op->umount_begin(sb);
1626 	}
1627 
1628 	/*
1629 	 * No sense to grab the lock for this test, but test itself looks
1630 	 * somewhat bogus. Suggestions for better replacement?
1631 	 * Ho-hum... In principle, we might treat that as umount + switch
1632 	 * to rootfs. GC would eventually take care of the old vfsmount.
1633 	 * Actually it makes sense, especially if rootfs would contain a
1634 	 * /reboot - static binary that would close all descriptors and
1635 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1636 	 */
1637 	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1638 		/*
1639 		 * Special case for "unmounting" root ...
1640 		 * we just try to remount it readonly.
1641 		 */
1642 		if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1643 			return -EPERM;
1644 		return do_umount_root(sb);
1645 	}
1646 
1647 	namespace_lock();
1648 	lock_mount_hash();
1649 
1650 	/* Recheck MNT_LOCKED with the locks held */
1651 	retval = -EINVAL;
1652 	if (mnt->mnt.mnt_flags & MNT_LOCKED)
1653 		goto out;
1654 
1655 	event++;
1656 	if (flags & MNT_DETACH) {
1657 		if (!list_empty(&mnt->mnt_list))
1658 			umount_tree(mnt, UMOUNT_PROPAGATE);
1659 		retval = 0;
1660 	} else {
1661 		shrink_submounts(mnt);
1662 		retval = -EBUSY;
1663 		if (!propagate_mount_busy(mnt, 2)) {
1664 			if (!list_empty(&mnt->mnt_list))
1665 				umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1666 			retval = 0;
1667 		}
1668 	}
1669 out:
1670 	unlock_mount_hash();
1671 	namespace_unlock();
1672 	return retval;
1673 }
1674 
1675 /*
1676  * __detach_mounts - lazily unmount all mounts on the specified dentry
1677  *
1678  * During unlink, rmdir, and d_drop it is possible to loose the path
1679  * to an existing mountpoint, and wind up leaking the mount.
1680  * detach_mounts allows lazily unmounting those mounts instead of
1681  * leaking them.
1682  *
1683  * The caller may hold dentry->d_inode->i_mutex.
1684  */
1685 void __detach_mounts(struct dentry *dentry)
1686 {
1687 	struct mountpoint *mp;
1688 	struct mount *mnt;
1689 
1690 	namespace_lock();
1691 	lock_mount_hash();
1692 	mp = lookup_mountpoint(dentry);
1693 	if (!mp)
1694 		goto out_unlock;
1695 
1696 	event++;
1697 	while (!hlist_empty(&mp->m_list)) {
1698 		mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1699 		if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1700 			umount_mnt(mnt);
1701 			hlist_add_head(&mnt->mnt_umount, &unmounted);
1702 		}
1703 		else umount_tree(mnt, UMOUNT_CONNECTED);
1704 	}
1705 	put_mountpoint(mp);
1706 out_unlock:
1707 	unlock_mount_hash();
1708 	namespace_unlock();
1709 }
1710 
1711 /*
1712  * Is the caller allowed to modify his namespace?
1713  */
1714 static inline bool may_mount(void)
1715 {
1716 	return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1717 }
1718 
1719 static void warn_mandlock(void)
1720 {
1721 	pr_warn_once("=======================================================\n"
1722 		     "WARNING: The mand mount option has been deprecated and\n"
1723 		     "         and is ignored by this kernel. Remove the mand\n"
1724 		     "         option from the mount to silence this warning.\n"
1725 		     "=======================================================\n");
1726 }
1727 
1728 static int can_umount(const struct path *path, int flags)
1729 {
1730 	struct mount *mnt = real_mount(path->mnt);
1731 
1732 	if (!may_mount())
1733 		return -EPERM;
1734 	if (path->dentry != path->mnt->mnt_root)
1735 		return -EINVAL;
1736 	if (!check_mnt(mnt))
1737 		return -EINVAL;
1738 	if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
1739 		return -EINVAL;
1740 	if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1741 		return -EPERM;
1742 	return 0;
1743 }
1744 
1745 // caller is responsible for flags being sane
1746 int path_umount(struct path *path, int flags)
1747 {
1748 	struct mount *mnt = real_mount(path->mnt);
1749 	int ret;
1750 
1751 	ret = can_umount(path, flags);
1752 	if (!ret)
1753 		ret = do_umount(mnt, flags);
1754 
1755 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
1756 	dput(path->dentry);
1757 	mntput_no_expire(mnt);
1758 	return ret;
1759 }
1760 
1761 static int ksys_umount(char __user *name, int flags)
1762 {
1763 	int lookup_flags = LOOKUP_MOUNTPOINT;
1764 	struct path path;
1765 	int ret;
1766 
1767 	// basic validity checks done first
1768 	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1769 		return -EINVAL;
1770 
1771 	if (!(flags & UMOUNT_NOFOLLOW))
1772 		lookup_flags |= LOOKUP_FOLLOW;
1773 	ret = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1774 	if (ret)
1775 		return ret;
1776 	return path_umount(&path, flags);
1777 }
1778 
1779 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1780 {
1781 	return ksys_umount(name, flags);
1782 }
1783 
1784 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1785 
1786 /*
1787  *	The 2.0 compatible umount. No flags.
1788  */
1789 SYSCALL_DEFINE1(oldumount, char __user *, name)
1790 {
1791 	return ksys_umount(name, 0);
1792 }
1793 
1794 #endif
1795 
1796 static bool is_mnt_ns_file(struct dentry *dentry)
1797 {
1798 	/* Is this a proxy for a mount namespace? */
1799 	return dentry->d_op == &ns_dentry_operations &&
1800 	       dentry->d_fsdata == &mntns_operations;
1801 }
1802 
1803 static struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1804 {
1805 	return container_of(ns, struct mnt_namespace, ns);
1806 }
1807 
1808 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt)
1809 {
1810 	return &mnt->ns;
1811 }
1812 
1813 static bool mnt_ns_loop(struct dentry *dentry)
1814 {
1815 	/* Could bind mounting the mount namespace inode cause a
1816 	 * mount namespace loop?
1817 	 */
1818 	struct mnt_namespace *mnt_ns;
1819 	if (!is_mnt_ns_file(dentry))
1820 		return false;
1821 
1822 	mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1823 	return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1824 }
1825 
1826 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1827 					int flag)
1828 {
1829 	struct mount *res, *p, *q, *r, *parent;
1830 
1831 	if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1832 		return ERR_PTR(-EINVAL);
1833 
1834 	if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1835 		return ERR_PTR(-EINVAL);
1836 
1837 	res = q = clone_mnt(mnt, dentry, flag);
1838 	if (IS_ERR(q))
1839 		return q;
1840 
1841 	q->mnt_mountpoint = mnt->mnt_mountpoint;
1842 
1843 	p = mnt;
1844 	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1845 		struct mount *s;
1846 		if (!is_subdir(r->mnt_mountpoint, dentry))
1847 			continue;
1848 
1849 		for (s = r; s; s = next_mnt(s, r)) {
1850 			if (!(flag & CL_COPY_UNBINDABLE) &&
1851 			    IS_MNT_UNBINDABLE(s)) {
1852 				if (s->mnt.mnt_flags & MNT_LOCKED) {
1853 					/* Both unbindable and locked. */
1854 					q = ERR_PTR(-EPERM);
1855 					goto out;
1856 				} else {
1857 					s = skip_mnt_tree(s);
1858 					continue;
1859 				}
1860 			}
1861 			if (!(flag & CL_COPY_MNT_NS_FILE) &&
1862 			    is_mnt_ns_file(s->mnt.mnt_root)) {
1863 				s = skip_mnt_tree(s);
1864 				continue;
1865 			}
1866 			while (p != s->mnt_parent) {
1867 				p = p->mnt_parent;
1868 				q = q->mnt_parent;
1869 			}
1870 			p = s;
1871 			parent = q;
1872 			q = clone_mnt(p, p->mnt.mnt_root, flag);
1873 			if (IS_ERR(q))
1874 				goto out;
1875 			lock_mount_hash();
1876 			list_add_tail(&q->mnt_list, &res->mnt_list);
1877 			attach_mnt(q, parent, p->mnt_mp);
1878 			unlock_mount_hash();
1879 		}
1880 	}
1881 	return res;
1882 out:
1883 	if (res) {
1884 		lock_mount_hash();
1885 		umount_tree(res, UMOUNT_SYNC);
1886 		unlock_mount_hash();
1887 	}
1888 	return q;
1889 }
1890 
1891 /* Caller should check returned pointer for errors */
1892 
1893 struct vfsmount *collect_mounts(const struct path *path)
1894 {
1895 	struct mount *tree;
1896 	namespace_lock();
1897 	if (!check_mnt(real_mount(path->mnt)))
1898 		tree = ERR_PTR(-EINVAL);
1899 	else
1900 		tree = copy_tree(real_mount(path->mnt), path->dentry,
1901 				 CL_COPY_ALL | CL_PRIVATE);
1902 	namespace_unlock();
1903 	if (IS_ERR(tree))
1904 		return ERR_CAST(tree);
1905 	return &tree->mnt;
1906 }
1907 
1908 static void free_mnt_ns(struct mnt_namespace *);
1909 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
1910 
1911 void dissolve_on_fput(struct vfsmount *mnt)
1912 {
1913 	struct mnt_namespace *ns;
1914 	namespace_lock();
1915 	lock_mount_hash();
1916 	ns = real_mount(mnt)->mnt_ns;
1917 	if (ns) {
1918 		if (is_anon_ns(ns))
1919 			umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
1920 		else
1921 			ns = NULL;
1922 	}
1923 	unlock_mount_hash();
1924 	namespace_unlock();
1925 	if (ns)
1926 		free_mnt_ns(ns);
1927 }
1928 
1929 void drop_collected_mounts(struct vfsmount *mnt)
1930 {
1931 	namespace_lock();
1932 	lock_mount_hash();
1933 	umount_tree(real_mount(mnt), 0);
1934 	unlock_mount_hash();
1935 	namespace_unlock();
1936 }
1937 
1938 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
1939 {
1940 	struct mount *child;
1941 
1942 	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
1943 		if (!is_subdir(child->mnt_mountpoint, dentry))
1944 			continue;
1945 
1946 		if (child->mnt.mnt_flags & MNT_LOCKED)
1947 			return true;
1948 	}
1949 	return false;
1950 }
1951 
1952 /**
1953  * clone_private_mount - create a private clone of a path
1954  * @path: path to clone
1955  *
1956  * This creates a new vfsmount, which will be the clone of @path.  The new mount
1957  * will not be attached anywhere in the namespace and will be private (i.e.
1958  * changes to the originating mount won't be propagated into this).
1959  *
1960  * Release with mntput().
1961  */
1962 struct vfsmount *clone_private_mount(const struct path *path)
1963 {
1964 	struct mount *old_mnt = real_mount(path->mnt);
1965 	struct mount *new_mnt;
1966 
1967 	down_read(&namespace_sem);
1968 	if (IS_MNT_UNBINDABLE(old_mnt))
1969 		goto invalid;
1970 
1971 	if (!check_mnt(old_mnt))
1972 		goto invalid;
1973 
1974 	if (has_locked_children(old_mnt, path->dentry))
1975 		goto invalid;
1976 
1977 	new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1978 	up_read(&namespace_sem);
1979 
1980 	if (IS_ERR(new_mnt))
1981 		return ERR_CAST(new_mnt);
1982 
1983 	/* Longterm mount to be removed by kern_unmount*() */
1984 	new_mnt->mnt_ns = MNT_NS_INTERNAL;
1985 
1986 	return &new_mnt->mnt;
1987 
1988 invalid:
1989 	up_read(&namespace_sem);
1990 	return ERR_PTR(-EINVAL);
1991 }
1992 EXPORT_SYMBOL_GPL(clone_private_mount);
1993 
1994 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1995 		   struct vfsmount *root)
1996 {
1997 	struct mount *mnt;
1998 	int res = f(root, arg);
1999 	if (res)
2000 		return res;
2001 	list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
2002 		res = f(&mnt->mnt, arg);
2003 		if (res)
2004 			return res;
2005 	}
2006 	return 0;
2007 }
2008 
2009 static void lock_mnt_tree(struct mount *mnt)
2010 {
2011 	struct mount *p;
2012 
2013 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2014 		int flags = p->mnt.mnt_flags;
2015 		/* Don't allow unprivileged users to change mount flags */
2016 		flags |= MNT_LOCK_ATIME;
2017 
2018 		if (flags & MNT_READONLY)
2019 			flags |= MNT_LOCK_READONLY;
2020 
2021 		if (flags & MNT_NODEV)
2022 			flags |= MNT_LOCK_NODEV;
2023 
2024 		if (flags & MNT_NOSUID)
2025 			flags |= MNT_LOCK_NOSUID;
2026 
2027 		if (flags & MNT_NOEXEC)
2028 			flags |= MNT_LOCK_NOEXEC;
2029 		/* Don't allow unprivileged users to reveal what is under a mount */
2030 		if (list_empty(&p->mnt_expire))
2031 			flags |= MNT_LOCKED;
2032 		p->mnt.mnt_flags = flags;
2033 	}
2034 }
2035 
2036 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
2037 {
2038 	struct mount *p;
2039 
2040 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
2041 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
2042 			mnt_release_group_id(p);
2043 	}
2044 }
2045 
2046 static int invent_group_ids(struct mount *mnt, bool recurse)
2047 {
2048 	struct mount *p;
2049 
2050 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
2051 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
2052 			int err = mnt_alloc_group_id(p);
2053 			if (err) {
2054 				cleanup_group_ids(mnt, p);
2055 				return err;
2056 			}
2057 		}
2058 	}
2059 
2060 	return 0;
2061 }
2062 
2063 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
2064 {
2065 	unsigned int max = READ_ONCE(sysctl_mount_max);
2066 	unsigned int mounts = 0, old, pending, sum;
2067 	struct mount *p;
2068 
2069 	for (p = mnt; p; p = next_mnt(p, mnt))
2070 		mounts++;
2071 
2072 	old = ns->mounts;
2073 	pending = ns->pending_mounts;
2074 	sum = old + pending;
2075 	if ((old > sum) ||
2076 	    (pending > sum) ||
2077 	    (max < sum) ||
2078 	    (mounts > (max - sum)))
2079 		return -ENOSPC;
2080 
2081 	ns->pending_mounts = pending + mounts;
2082 	return 0;
2083 }
2084 
2085 /*
2086  *  @source_mnt : mount tree to be attached
2087  *  @nd         : place the mount tree @source_mnt is attached
2088  *  @parent_nd  : if non-null, detach the source_mnt from its parent and
2089  *  		   store the parent mount and mountpoint dentry.
2090  *  		   (done when source_mnt is moved)
2091  *
2092  *  NOTE: in the table below explains the semantics when a source mount
2093  *  of a given type is attached to a destination mount of a given type.
2094  * ---------------------------------------------------------------------------
2095  * |         BIND MOUNT OPERATION                                            |
2096  * |**************************************************************************
2097  * | source-->| shared        |       private  |       slave    | unbindable |
2098  * | dest     |               |                |                |            |
2099  * |   |      |               |                |                |            |
2100  * |   v      |               |                |                |            |
2101  * |**************************************************************************
2102  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
2103  * |          |               |                |                |            |
2104  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
2105  * ***************************************************************************
2106  * A bind operation clones the source mount and mounts the clone on the
2107  * destination mount.
2108  *
2109  * (++)  the cloned mount is propagated to all the mounts in the propagation
2110  * 	 tree of the destination mount and the cloned mount is added to
2111  * 	 the peer group of the source mount.
2112  * (+)   the cloned mount is created under the destination mount and is marked
2113  *       as shared. The cloned mount is added to the peer group of the source
2114  *       mount.
2115  * (+++) the mount is propagated to all the mounts in the propagation tree
2116  *       of the destination mount and the cloned mount is made slave
2117  *       of the same master as that of the source mount. The cloned mount
2118  *       is marked as 'shared and slave'.
2119  * (*)   the cloned mount is made a slave of the same master as that of the
2120  * 	 source mount.
2121  *
2122  * ---------------------------------------------------------------------------
2123  * |         		MOVE MOUNT OPERATION                                 |
2124  * |**************************************************************************
2125  * | source-->| shared        |       private  |       slave    | unbindable |
2126  * | dest     |               |                |                |            |
2127  * |   |      |               |                |                |            |
2128  * |   v      |               |                |                |            |
2129  * |**************************************************************************
2130  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
2131  * |          |               |                |                |            |
2132  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
2133  * ***************************************************************************
2134  *
2135  * (+)  the mount is moved to the destination. And is then propagated to
2136  * 	all the mounts in the propagation tree of the destination mount.
2137  * (+*)  the mount is moved to the destination.
2138  * (+++)  the mount is moved to the destination and is then propagated to
2139  * 	all the mounts belonging to the destination mount's propagation tree.
2140  * 	the mount is marked as 'shared and slave'.
2141  * (*)	the mount continues to be a slave at the new location.
2142  *
2143  * if the source mount is a tree, the operations explained above is
2144  * applied to each mount in the tree.
2145  * Must be called without spinlocks held, since this function can sleep
2146  * in allocations.
2147  */
2148 static int attach_recursive_mnt(struct mount *source_mnt,
2149 			struct mount *dest_mnt,
2150 			struct mountpoint *dest_mp,
2151 			bool moving)
2152 {
2153 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2154 	HLIST_HEAD(tree_list);
2155 	struct mnt_namespace *ns = dest_mnt->mnt_ns;
2156 	struct mountpoint *smp;
2157 	struct mount *child, *p;
2158 	struct hlist_node *n;
2159 	int err;
2160 
2161 	/* Preallocate a mountpoint in case the new mounts need
2162 	 * to be tucked under other mounts.
2163 	 */
2164 	smp = get_mountpoint(source_mnt->mnt.mnt_root);
2165 	if (IS_ERR(smp))
2166 		return PTR_ERR(smp);
2167 
2168 	/* Is there space to add these mounts to the mount namespace? */
2169 	if (!moving) {
2170 		err = count_mounts(ns, source_mnt);
2171 		if (err)
2172 			goto out;
2173 	}
2174 
2175 	if (IS_MNT_SHARED(dest_mnt)) {
2176 		err = invent_group_ids(source_mnt, true);
2177 		if (err)
2178 			goto out;
2179 		err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2180 		lock_mount_hash();
2181 		if (err)
2182 			goto out_cleanup_ids;
2183 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2184 			set_mnt_shared(p);
2185 	} else {
2186 		lock_mount_hash();
2187 	}
2188 	if (moving) {
2189 		unhash_mnt(source_mnt);
2190 		attach_mnt(source_mnt, dest_mnt, dest_mp);
2191 		touch_mnt_namespace(source_mnt->mnt_ns);
2192 	} else {
2193 		if (source_mnt->mnt_ns) {
2194 			/* move from anon - the caller will destroy */
2195 			list_del_init(&source_mnt->mnt_ns->list);
2196 		}
2197 		mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2198 		commit_tree(source_mnt);
2199 	}
2200 
2201 	hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2202 		struct mount *q;
2203 		hlist_del_init(&child->mnt_hash);
2204 		q = __lookup_mnt(&child->mnt_parent->mnt,
2205 				 child->mnt_mountpoint);
2206 		if (q)
2207 			mnt_change_mountpoint(child, smp, q);
2208 		/* Notice when we are propagating across user namespaces */
2209 		if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2210 			lock_mnt_tree(child);
2211 		child->mnt.mnt_flags &= ~MNT_LOCKED;
2212 		commit_tree(child);
2213 	}
2214 	put_mountpoint(smp);
2215 	unlock_mount_hash();
2216 
2217 	return 0;
2218 
2219  out_cleanup_ids:
2220 	while (!hlist_empty(&tree_list)) {
2221 		child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2222 		child->mnt_parent->mnt_ns->pending_mounts = 0;
2223 		umount_tree(child, UMOUNT_SYNC);
2224 	}
2225 	unlock_mount_hash();
2226 	cleanup_group_ids(source_mnt, NULL);
2227  out:
2228 	ns->pending_mounts = 0;
2229 
2230 	read_seqlock_excl(&mount_lock);
2231 	put_mountpoint(smp);
2232 	read_sequnlock_excl(&mount_lock);
2233 
2234 	return err;
2235 }
2236 
2237 static struct mountpoint *lock_mount(struct path *path)
2238 {
2239 	struct vfsmount *mnt;
2240 	struct dentry *dentry = path->dentry;
2241 retry:
2242 	inode_lock(dentry->d_inode);
2243 	if (unlikely(cant_mount(dentry))) {
2244 		inode_unlock(dentry->d_inode);
2245 		return ERR_PTR(-ENOENT);
2246 	}
2247 	namespace_lock();
2248 	mnt = lookup_mnt(path);
2249 	if (likely(!mnt)) {
2250 		struct mountpoint *mp = get_mountpoint(dentry);
2251 		if (IS_ERR(mp)) {
2252 			namespace_unlock();
2253 			inode_unlock(dentry->d_inode);
2254 			return mp;
2255 		}
2256 		return mp;
2257 	}
2258 	namespace_unlock();
2259 	inode_unlock(path->dentry->d_inode);
2260 	path_put(path);
2261 	path->mnt = mnt;
2262 	dentry = path->dentry = dget(mnt->mnt_root);
2263 	goto retry;
2264 }
2265 
2266 static void unlock_mount(struct mountpoint *where)
2267 {
2268 	struct dentry *dentry = where->m_dentry;
2269 
2270 	read_seqlock_excl(&mount_lock);
2271 	put_mountpoint(where);
2272 	read_sequnlock_excl(&mount_lock);
2273 
2274 	namespace_unlock();
2275 	inode_unlock(dentry->d_inode);
2276 }
2277 
2278 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2279 {
2280 	if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2281 		return -EINVAL;
2282 
2283 	if (d_is_dir(mp->m_dentry) !=
2284 	      d_is_dir(mnt->mnt.mnt_root))
2285 		return -ENOTDIR;
2286 
2287 	return attach_recursive_mnt(mnt, p, mp, false);
2288 }
2289 
2290 /*
2291  * Sanity check the flags to change_mnt_propagation.
2292  */
2293 
2294 static int flags_to_propagation_type(int ms_flags)
2295 {
2296 	int type = ms_flags & ~(MS_REC | MS_SILENT);
2297 
2298 	/* Fail if any non-propagation flags are set */
2299 	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2300 		return 0;
2301 	/* Only one propagation flag should be set */
2302 	if (!is_power_of_2(type))
2303 		return 0;
2304 	return type;
2305 }
2306 
2307 /*
2308  * recursively change the type of the mountpoint.
2309  */
2310 static int do_change_type(struct path *path, int ms_flags)
2311 {
2312 	struct mount *m;
2313 	struct mount *mnt = real_mount(path->mnt);
2314 	int recurse = ms_flags & MS_REC;
2315 	int type;
2316 	int err = 0;
2317 
2318 	if (path->dentry != path->mnt->mnt_root)
2319 		return -EINVAL;
2320 
2321 	type = flags_to_propagation_type(ms_flags);
2322 	if (!type)
2323 		return -EINVAL;
2324 
2325 	namespace_lock();
2326 	if (type == MS_SHARED) {
2327 		err = invent_group_ids(mnt, recurse);
2328 		if (err)
2329 			goto out_unlock;
2330 	}
2331 
2332 	lock_mount_hash();
2333 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2334 		change_mnt_propagation(m, type);
2335 	unlock_mount_hash();
2336 
2337  out_unlock:
2338 	namespace_unlock();
2339 	return err;
2340 }
2341 
2342 static struct mount *__do_loopback(struct path *old_path, int recurse)
2343 {
2344 	struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2345 
2346 	if (IS_MNT_UNBINDABLE(old))
2347 		return mnt;
2348 
2349 	if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
2350 		return mnt;
2351 
2352 	if (!recurse && has_locked_children(old, old_path->dentry))
2353 		return mnt;
2354 
2355 	if (recurse)
2356 		mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2357 	else
2358 		mnt = clone_mnt(old, old_path->dentry, 0);
2359 
2360 	if (!IS_ERR(mnt))
2361 		mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2362 
2363 	return mnt;
2364 }
2365 
2366 /*
2367  * do loopback mount.
2368  */
2369 static int do_loopback(struct path *path, const char *old_name,
2370 				int recurse)
2371 {
2372 	struct path old_path;
2373 	struct mount *mnt = NULL, *parent;
2374 	struct mountpoint *mp;
2375 	int err;
2376 	if (!old_name || !*old_name)
2377 		return -EINVAL;
2378 	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2379 	if (err)
2380 		return err;
2381 
2382 	err = -EINVAL;
2383 	if (mnt_ns_loop(old_path.dentry))
2384 		goto out;
2385 
2386 	mp = lock_mount(path);
2387 	if (IS_ERR(mp)) {
2388 		err = PTR_ERR(mp);
2389 		goto out;
2390 	}
2391 
2392 	parent = real_mount(path->mnt);
2393 	if (!check_mnt(parent))
2394 		goto out2;
2395 
2396 	mnt = __do_loopback(&old_path, recurse);
2397 	if (IS_ERR(mnt)) {
2398 		err = PTR_ERR(mnt);
2399 		goto out2;
2400 	}
2401 
2402 	err = graft_tree(mnt, parent, mp);
2403 	if (err) {
2404 		lock_mount_hash();
2405 		umount_tree(mnt, UMOUNT_SYNC);
2406 		unlock_mount_hash();
2407 	}
2408 out2:
2409 	unlock_mount(mp);
2410 out:
2411 	path_put(&old_path);
2412 	return err;
2413 }
2414 
2415 static struct file *open_detached_copy(struct path *path, bool recursive)
2416 {
2417 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2418 	struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2419 	struct mount *mnt, *p;
2420 	struct file *file;
2421 
2422 	if (IS_ERR(ns))
2423 		return ERR_CAST(ns);
2424 
2425 	namespace_lock();
2426 	mnt = __do_loopback(path, recursive);
2427 	if (IS_ERR(mnt)) {
2428 		namespace_unlock();
2429 		free_mnt_ns(ns);
2430 		return ERR_CAST(mnt);
2431 	}
2432 
2433 	lock_mount_hash();
2434 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2435 		p->mnt_ns = ns;
2436 		ns->mounts++;
2437 	}
2438 	ns->root = mnt;
2439 	list_add_tail(&ns->list, &mnt->mnt_list);
2440 	mntget(&mnt->mnt);
2441 	unlock_mount_hash();
2442 	namespace_unlock();
2443 
2444 	mntput(path->mnt);
2445 	path->mnt = &mnt->mnt;
2446 	file = dentry_open(path, O_PATH, current_cred());
2447 	if (IS_ERR(file))
2448 		dissolve_on_fput(path->mnt);
2449 	else
2450 		file->f_mode |= FMODE_NEED_UNMOUNT;
2451 	return file;
2452 }
2453 
2454 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
2455 {
2456 	struct file *file;
2457 	struct path path;
2458 	int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2459 	bool detached = flags & OPEN_TREE_CLONE;
2460 	int error;
2461 	int fd;
2462 
2463 	BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2464 
2465 	if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2466 		      AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2467 		      OPEN_TREE_CLOEXEC))
2468 		return -EINVAL;
2469 
2470 	if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2471 		return -EINVAL;
2472 
2473 	if (flags & AT_NO_AUTOMOUNT)
2474 		lookup_flags &= ~LOOKUP_AUTOMOUNT;
2475 	if (flags & AT_SYMLINK_NOFOLLOW)
2476 		lookup_flags &= ~LOOKUP_FOLLOW;
2477 	if (flags & AT_EMPTY_PATH)
2478 		lookup_flags |= LOOKUP_EMPTY;
2479 
2480 	if (detached && !may_mount())
2481 		return -EPERM;
2482 
2483 	fd = get_unused_fd_flags(flags & O_CLOEXEC);
2484 	if (fd < 0)
2485 		return fd;
2486 
2487 	error = user_path_at(dfd, filename, lookup_flags, &path);
2488 	if (unlikely(error)) {
2489 		file = ERR_PTR(error);
2490 	} else {
2491 		if (detached)
2492 			file = open_detached_copy(&path, flags & AT_RECURSIVE);
2493 		else
2494 			file = dentry_open(&path, O_PATH, current_cred());
2495 		path_put(&path);
2496 	}
2497 	if (IS_ERR(file)) {
2498 		put_unused_fd(fd);
2499 		return PTR_ERR(file);
2500 	}
2501 	fd_install(fd, file);
2502 	return fd;
2503 }
2504 
2505 /*
2506  * Don't allow locked mount flags to be cleared.
2507  *
2508  * No locks need to be held here while testing the various MNT_LOCK
2509  * flags because those flags can never be cleared once they are set.
2510  */
2511 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2512 {
2513 	unsigned int fl = mnt->mnt.mnt_flags;
2514 
2515 	if ((fl & MNT_LOCK_READONLY) &&
2516 	    !(mnt_flags & MNT_READONLY))
2517 		return false;
2518 
2519 	if ((fl & MNT_LOCK_NODEV) &&
2520 	    !(mnt_flags & MNT_NODEV))
2521 		return false;
2522 
2523 	if ((fl & MNT_LOCK_NOSUID) &&
2524 	    !(mnt_flags & MNT_NOSUID))
2525 		return false;
2526 
2527 	if ((fl & MNT_LOCK_NOEXEC) &&
2528 	    !(mnt_flags & MNT_NOEXEC))
2529 		return false;
2530 
2531 	if ((fl & MNT_LOCK_ATIME) &&
2532 	    ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2533 		return false;
2534 
2535 	return true;
2536 }
2537 
2538 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2539 {
2540 	bool readonly_request = (mnt_flags & MNT_READONLY);
2541 
2542 	if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2543 		return 0;
2544 
2545 	if (readonly_request)
2546 		return mnt_make_readonly(mnt);
2547 
2548 	mnt->mnt.mnt_flags &= ~MNT_READONLY;
2549 	return 0;
2550 }
2551 
2552 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2553 {
2554 	mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2555 	mnt->mnt.mnt_flags = mnt_flags;
2556 	touch_mnt_namespace(mnt->mnt_ns);
2557 }
2558 
2559 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
2560 {
2561 	struct super_block *sb = mnt->mnt_sb;
2562 
2563 	if (!__mnt_is_readonly(mnt) &&
2564 	   (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
2565 		char *buf = (char *)__get_free_page(GFP_KERNEL);
2566 		char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM);
2567 		struct tm tm;
2568 
2569 		time64_to_tm(sb->s_time_max, 0, &tm);
2570 
2571 		pr_warn("%s filesystem being %s at %s supports timestamps until %04ld (0x%llx)\n",
2572 			sb->s_type->name,
2573 			is_mounted(mnt) ? "remounted" : "mounted",
2574 			mntpath,
2575 			tm.tm_year+1900, (unsigned long long)sb->s_time_max);
2576 
2577 		free_page((unsigned long)buf);
2578 	}
2579 }
2580 
2581 /*
2582  * Handle reconfiguration of the mountpoint only without alteration of the
2583  * superblock it refers to.  This is triggered by specifying MS_REMOUNT|MS_BIND
2584  * to mount(2).
2585  */
2586 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2587 {
2588 	struct super_block *sb = path->mnt->mnt_sb;
2589 	struct mount *mnt = real_mount(path->mnt);
2590 	int ret;
2591 
2592 	if (!check_mnt(mnt))
2593 		return -EINVAL;
2594 
2595 	if (path->dentry != mnt->mnt.mnt_root)
2596 		return -EINVAL;
2597 
2598 	if (!can_change_locked_flags(mnt, mnt_flags))
2599 		return -EPERM;
2600 
2601 	/*
2602 	 * We're only checking whether the superblock is read-only not
2603 	 * changing it, so only take down_read(&sb->s_umount).
2604 	 */
2605 	down_read(&sb->s_umount);
2606 	lock_mount_hash();
2607 	ret = change_mount_ro_state(mnt, mnt_flags);
2608 	if (ret == 0)
2609 		set_mount_attributes(mnt, mnt_flags);
2610 	unlock_mount_hash();
2611 	up_read(&sb->s_umount);
2612 
2613 	mnt_warn_timestamp_expiry(path, &mnt->mnt);
2614 
2615 	return ret;
2616 }
2617 
2618 /*
2619  * change filesystem flags. dir should be a physical root of filesystem.
2620  * If you've mounted a non-root directory somewhere and want to do remount
2621  * on it - tough luck.
2622  */
2623 static int do_remount(struct path *path, int ms_flags, int sb_flags,
2624 		      int mnt_flags, void *data)
2625 {
2626 	int err;
2627 	struct super_block *sb = path->mnt->mnt_sb;
2628 	struct mount *mnt = real_mount(path->mnt);
2629 	struct fs_context *fc;
2630 
2631 	if (!check_mnt(mnt))
2632 		return -EINVAL;
2633 
2634 	if (path->dentry != path->mnt->mnt_root)
2635 		return -EINVAL;
2636 
2637 	if (!can_change_locked_flags(mnt, mnt_flags))
2638 		return -EPERM;
2639 
2640 	fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
2641 	if (IS_ERR(fc))
2642 		return PTR_ERR(fc);
2643 
2644 	fc->oldapi = true;
2645 	err = parse_monolithic_mount_data(fc, data);
2646 	if (!err) {
2647 		down_write(&sb->s_umount);
2648 		err = -EPERM;
2649 		if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
2650 			err = reconfigure_super(fc);
2651 			if (!err) {
2652 				lock_mount_hash();
2653 				set_mount_attributes(mnt, mnt_flags);
2654 				unlock_mount_hash();
2655 			}
2656 		}
2657 		up_write(&sb->s_umount);
2658 	}
2659 
2660 	mnt_warn_timestamp_expiry(path, &mnt->mnt);
2661 
2662 	put_fs_context(fc);
2663 	return err;
2664 }
2665 
2666 static inline int tree_contains_unbindable(struct mount *mnt)
2667 {
2668 	struct mount *p;
2669 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2670 		if (IS_MNT_UNBINDABLE(p))
2671 			return 1;
2672 	}
2673 	return 0;
2674 }
2675 
2676 /*
2677  * Check that there aren't references to earlier/same mount namespaces in the
2678  * specified subtree.  Such references can act as pins for mount namespaces
2679  * that aren't checked by the mount-cycle checking code, thereby allowing
2680  * cycles to be made.
2681  */
2682 static bool check_for_nsfs_mounts(struct mount *subtree)
2683 {
2684 	struct mount *p;
2685 	bool ret = false;
2686 
2687 	lock_mount_hash();
2688 	for (p = subtree; p; p = next_mnt(p, subtree))
2689 		if (mnt_ns_loop(p->mnt.mnt_root))
2690 			goto out;
2691 
2692 	ret = true;
2693 out:
2694 	unlock_mount_hash();
2695 	return ret;
2696 }
2697 
2698 static int do_set_group(struct path *from_path, struct path *to_path)
2699 {
2700 	struct mount *from, *to;
2701 	int err;
2702 
2703 	from = real_mount(from_path->mnt);
2704 	to = real_mount(to_path->mnt);
2705 
2706 	namespace_lock();
2707 
2708 	err = -EINVAL;
2709 	/* To and From must be mounted */
2710 	if (!is_mounted(&from->mnt))
2711 		goto out;
2712 	if (!is_mounted(&to->mnt))
2713 		goto out;
2714 
2715 	err = -EPERM;
2716 	/* We should be allowed to modify mount namespaces of both mounts */
2717 	if (!ns_capable(from->mnt_ns->user_ns, CAP_SYS_ADMIN))
2718 		goto out;
2719 	if (!ns_capable(to->mnt_ns->user_ns, CAP_SYS_ADMIN))
2720 		goto out;
2721 
2722 	err = -EINVAL;
2723 	/* To and From paths should be mount roots */
2724 	if (from_path->dentry != from_path->mnt->mnt_root)
2725 		goto out;
2726 	if (to_path->dentry != to_path->mnt->mnt_root)
2727 		goto out;
2728 
2729 	/* Setting sharing groups is only allowed across same superblock */
2730 	if (from->mnt.mnt_sb != to->mnt.mnt_sb)
2731 		goto out;
2732 
2733 	/* From mount root should be wider than To mount root */
2734 	if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root))
2735 		goto out;
2736 
2737 	/* From mount should not have locked children in place of To's root */
2738 	if (has_locked_children(from, to->mnt.mnt_root))
2739 		goto out;
2740 
2741 	/* Setting sharing groups is only allowed on private mounts */
2742 	if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to))
2743 		goto out;
2744 
2745 	/* From should not be private */
2746 	if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from))
2747 		goto out;
2748 
2749 	if (IS_MNT_SLAVE(from)) {
2750 		struct mount *m = from->mnt_master;
2751 
2752 		list_add(&to->mnt_slave, &m->mnt_slave_list);
2753 		to->mnt_master = m;
2754 	}
2755 
2756 	if (IS_MNT_SHARED(from)) {
2757 		to->mnt_group_id = from->mnt_group_id;
2758 		list_add(&to->mnt_share, &from->mnt_share);
2759 		lock_mount_hash();
2760 		set_mnt_shared(to);
2761 		unlock_mount_hash();
2762 	}
2763 
2764 	err = 0;
2765 out:
2766 	namespace_unlock();
2767 	return err;
2768 }
2769 
2770 static int do_move_mount(struct path *old_path, struct path *new_path)
2771 {
2772 	struct mnt_namespace *ns;
2773 	struct mount *p;
2774 	struct mount *old;
2775 	struct mount *parent;
2776 	struct mountpoint *mp, *old_mp;
2777 	int err;
2778 	bool attached;
2779 
2780 	mp = lock_mount(new_path);
2781 	if (IS_ERR(mp))
2782 		return PTR_ERR(mp);
2783 
2784 	old = real_mount(old_path->mnt);
2785 	p = real_mount(new_path->mnt);
2786 	parent = old->mnt_parent;
2787 	attached = mnt_has_parent(old);
2788 	old_mp = old->mnt_mp;
2789 	ns = old->mnt_ns;
2790 
2791 	err = -EINVAL;
2792 	/* The mountpoint must be in our namespace. */
2793 	if (!check_mnt(p))
2794 		goto out;
2795 
2796 	/* The thing moved must be mounted... */
2797 	if (!is_mounted(&old->mnt))
2798 		goto out;
2799 
2800 	/* ... and either ours or the root of anon namespace */
2801 	if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
2802 		goto out;
2803 
2804 	if (old->mnt.mnt_flags & MNT_LOCKED)
2805 		goto out;
2806 
2807 	if (old_path->dentry != old_path->mnt->mnt_root)
2808 		goto out;
2809 
2810 	if (d_is_dir(new_path->dentry) !=
2811 	    d_is_dir(old_path->dentry))
2812 		goto out;
2813 	/*
2814 	 * Don't move a mount residing in a shared parent.
2815 	 */
2816 	if (attached && IS_MNT_SHARED(parent))
2817 		goto out;
2818 	/*
2819 	 * Don't move a mount tree containing unbindable mounts to a destination
2820 	 * mount which is shared.
2821 	 */
2822 	if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2823 		goto out;
2824 	err = -ELOOP;
2825 	if (!check_for_nsfs_mounts(old))
2826 		goto out;
2827 	for (; mnt_has_parent(p); p = p->mnt_parent)
2828 		if (p == old)
2829 			goto out;
2830 
2831 	err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp,
2832 				   attached);
2833 	if (err)
2834 		goto out;
2835 
2836 	/* if the mount is moved, it should no longer be expire
2837 	 * automatically */
2838 	list_del_init(&old->mnt_expire);
2839 	if (attached)
2840 		put_mountpoint(old_mp);
2841 out:
2842 	unlock_mount(mp);
2843 	if (!err) {
2844 		if (attached)
2845 			mntput_no_expire(parent);
2846 		else
2847 			free_mnt_ns(ns);
2848 	}
2849 	return err;
2850 }
2851 
2852 static int do_move_mount_old(struct path *path, const char *old_name)
2853 {
2854 	struct path old_path;
2855 	int err;
2856 
2857 	if (!old_name || !*old_name)
2858 		return -EINVAL;
2859 
2860 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2861 	if (err)
2862 		return err;
2863 
2864 	err = do_move_mount(&old_path, path);
2865 	path_put(&old_path);
2866 	return err;
2867 }
2868 
2869 /*
2870  * add a mount into a namespace's mount tree
2871  */
2872 static int do_add_mount(struct mount *newmnt, struct mountpoint *mp,
2873 			struct path *path, int mnt_flags)
2874 {
2875 	struct mount *parent = real_mount(path->mnt);
2876 
2877 	mnt_flags &= ~MNT_INTERNAL_FLAGS;
2878 
2879 	if (unlikely(!check_mnt(parent))) {
2880 		/* that's acceptable only for automounts done in private ns */
2881 		if (!(mnt_flags & MNT_SHRINKABLE))
2882 			return -EINVAL;
2883 		/* ... and for those we'd better have mountpoint still alive */
2884 		if (!parent->mnt_ns)
2885 			return -EINVAL;
2886 	}
2887 
2888 	/* Refuse the same filesystem on the same mount point */
2889 	if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2890 	    path->mnt->mnt_root == path->dentry)
2891 		return -EBUSY;
2892 
2893 	if (d_is_symlink(newmnt->mnt.mnt_root))
2894 		return -EINVAL;
2895 
2896 	newmnt->mnt.mnt_flags = mnt_flags;
2897 	return graft_tree(newmnt, parent, mp);
2898 }
2899 
2900 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
2901 
2902 /*
2903  * Create a new mount using a superblock configuration and request it
2904  * be added to the namespace tree.
2905  */
2906 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
2907 			   unsigned int mnt_flags)
2908 {
2909 	struct vfsmount *mnt;
2910 	struct mountpoint *mp;
2911 	struct super_block *sb = fc->root->d_sb;
2912 	int error;
2913 
2914 	error = security_sb_kern_mount(sb);
2915 	if (!error && mount_too_revealing(sb, &mnt_flags))
2916 		error = -EPERM;
2917 
2918 	if (unlikely(error)) {
2919 		fc_drop_locked(fc);
2920 		return error;
2921 	}
2922 
2923 	up_write(&sb->s_umount);
2924 
2925 	mnt = vfs_create_mount(fc);
2926 	if (IS_ERR(mnt))
2927 		return PTR_ERR(mnt);
2928 
2929 	mnt_warn_timestamp_expiry(mountpoint, mnt);
2930 
2931 	mp = lock_mount(mountpoint);
2932 	if (IS_ERR(mp)) {
2933 		mntput(mnt);
2934 		return PTR_ERR(mp);
2935 	}
2936 	error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags);
2937 	unlock_mount(mp);
2938 	if (error < 0)
2939 		mntput(mnt);
2940 	return error;
2941 }
2942 
2943 /*
2944  * create a new mount for userspace and request it to be added into the
2945  * namespace's tree
2946  */
2947 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
2948 			int mnt_flags, const char *name, void *data)
2949 {
2950 	struct file_system_type *type;
2951 	struct fs_context *fc;
2952 	const char *subtype = NULL;
2953 	int err = 0;
2954 
2955 	if (!fstype)
2956 		return -EINVAL;
2957 
2958 	type = get_fs_type(fstype);
2959 	if (!type)
2960 		return -ENODEV;
2961 
2962 	if (type->fs_flags & FS_HAS_SUBTYPE) {
2963 		subtype = strchr(fstype, '.');
2964 		if (subtype) {
2965 			subtype++;
2966 			if (!*subtype) {
2967 				put_filesystem(type);
2968 				return -EINVAL;
2969 			}
2970 		}
2971 	}
2972 
2973 	fc = fs_context_for_mount(type, sb_flags);
2974 	put_filesystem(type);
2975 	if (IS_ERR(fc))
2976 		return PTR_ERR(fc);
2977 
2978 	if (subtype)
2979 		err = vfs_parse_fs_string(fc, "subtype",
2980 					  subtype, strlen(subtype));
2981 	if (!err && name)
2982 		err = vfs_parse_fs_string(fc, "source", name, strlen(name));
2983 	if (!err)
2984 		err = parse_monolithic_mount_data(fc, data);
2985 	if (!err && !mount_capable(fc))
2986 		err = -EPERM;
2987 	if (!err)
2988 		err = vfs_get_tree(fc);
2989 	if (!err)
2990 		err = do_new_mount_fc(fc, path, mnt_flags);
2991 
2992 	put_fs_context(fc);
2993 	return err;
2994 }
2995 
2996 int finish_automount(struct vfsmount *m, struct path *path)
2997 {
2998 	struct dentry *dentry = path->dentry;
2999 	struct mountpoint *mp;
3000 	struct mount *mnt;
3001 	int err;
3002 
3003 	if (!m)
3004 		return 0;
3005 	if (IS_ERR(m))
3006 		return PTR_ERR(m);
3007 
3008 	mnt = real_mount(m);
3009 	/* The new mount record should have at least 2 refs to prevent it being
3010 	 * expired before we get a chance to add it
3011 	 */
3012 	BUG_ON(mnt_get_count(mnt) < 2);
3013 
3014 	if (m->mnt_sb == path->mnt->mnt_sb &&
3015 	    m->mnt_root == dentry) {
3016 		err = -ELOOP;
3017 		goto discard;
3018 	}
3019 
3020 	/*
3021 	 * we don't want to use lock_mount() - in this case finding something
3022 	 * that overmounts our mountpoint to be means "quitely drop what we've
3023 	 * got", not "try to mount it on top".
3024 	 */
3025 	inode_lock(dentry->d_inode);
3026 	namespace_lock();
3027 	if (unlikely(cant_mount(dentry))) {
3028 		err = -ENOENT;
3029 		goto discard_locked;
3030 	}
3031 	rcu_read_lock();
3032 	if (unlikely(__lookup_mnt(path->mnt, dentry))) {
3033 		rcu_read_unlock();
3034 		err = 0;
3035 		goto discard_locked;
3036 	}
3037 	rcu_read_unlock();
3038 	mp = get_mountpoint(dentry);
3039 	if (IS_ERR(mp)) {
3040 		err = PTR_ERR(mp);
3041 		goto discard_locked;
3042 	}
3043 
3044 	err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
3045 	unlock_mount(mp);
3046 	if (unlikely(err))
3047 		goto discard;
3048 	mntput(m);
3049 	return 0;
3050 
3051 discard_locked:
3052 	namespace_unlock();
3053 	inode_unlock(dentry->d_inode);
3054 discard:
3055 	/* remove m from any expiration list it may be on */
3056 	if (!list_empty(&mnt->mnt_expire)) {
3057 		namespace_lock();
3058 		list_del_init(&mnt->mnt_expire);
3059 		namespace_unlock();
3060 	}
3061 	mntput(m);
3062 	mntput(m);
3063 	return err;
3064 }
3065 
3066 /**
3067  * mnt_set_expiry - Put a mount on an expiration list
3068  * @mnt: The mount to list.
3069  * @expiry_list: The list to add the mount to.
3070  */
3071 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
3072 {
3073 	namespace_lock();
3074 
3075 	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
3076 
3077 	namespace_unlock();
3078 }
3079 EXPORT_SYMBOL(mnt_set_expiry);
3080 
3081 /*
3082  * process a list of expirable mountpoints with the intent of discarding any
3083  * mountpoints that aren't in use and haven't been touched since last we came
3084  * here
3085  */
3086 void mark_mounts_for_expiry(struct list_head *mounts)
3087 {
3088 	struct mount *mnt, *next;
3089 	LIST_HEAD(graveyard);
3090 
3091 	if (list_empty(mounts))
3092 		return;
3093 
3094 	namespace_lock();
3095 	lock_mount_hash();
3096 
3097 	/* extract from the expiration list every vfsmount that matches the
3098 	 * following criteria:
3099 	 * - only referenced by its parent vfsmount
3100 	 * - still marked for expiry (marked on the last call here; marks are
3101 	 *   cleared by mntput())
3102 	 */
3103 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
3104 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
3105 			propagate_mount_busy(mnt, 1))
3106 			continue;
3107 		list_move(&mnt->mnt_expire, &graveyard);
3108 	}
3109 	while (!list_empty(&graveyard)) {
3110 		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
3111 		touch_mnt_namespace(mnt->mnt_ns);
3112 		umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3113 	}
3114 	unlock_mount_hash();
3115 	namespace_unlock();
3116 }
3117 
3118 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
3119 
3120 /*
3121  * Ripoff of 'select_parent()'
3122  *
3123  * search the list of submounts for a given mountpoint, and move any
3124  * shrinkable submounts to the 'graveyard' list.
3125  */
3126 static int select_submounts(struct mount *parent, struct list_head *graveyard)
3127 {
3128 	struct mount *this_parent = parent;
3129 	struct list_head *next;
3130 	int found = 0;
3131 
3132 repeat:
3133 	next = this_parent->mnt_mounts.next;
3134 resume:
3135 	while (next != &this_parent->mnt_mounts) {
3136 		struct list_head *tmp = next;
3137 		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
3138 
3139 		next = tmp->next;
3140 		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
3141 			continue;
3142 		/*
3143 		 * Descend a level if the d_mounts list is non-empty.
3144 		 */
3145 		if (!list_empty(&mnt->mnt_mounts)) {
3146 			this_parent = mnt;
3147 			goto repeat;
3148 		}
3149 
3150 		if (!propagate_mount_busy(mnt, 1)) {
3151 			list_move_tail(&mnt->mnt_expire, graveyard);
3152 			found++;
3153 		}
3154 	}
3155 	/*
3156 	 * All done at this level ... ascend and resume the search
3157 	 */
3158 	if (this_parent != parent) {
3159 		next = this_parent->mnt_child.next;
3160 		this_parent = this_parent->mnt_parent;
3161 		goto resume;
3162 	}
3163 	return found;
3164 }
3165 
3166 /*
3167  * process a list of expirable mountpoints with the intent of discarding any
3168  * submounts of a specific parent mountpoint
3169  *
3170  * mount_lock must be held for write
3171  */
3172 static void shrink_submounts(struct mount *mnt)
3173 {
3174 	LIST_HEAD(graveyard);
3175 	struct mount *m;
3176 
3177 	/* extract submounts of 'mountpoint' from the expiration list */
3178 	while (select_submounts(mnt, &graveyard)) {
3179 		while (!list_empty(&graveyard)) {
3180 			m = list_first_entry(&graveyard, struct mount,
3181 						mnt_expire);
3182 			touch_mnt_namespace(m->mnt_ns);
3183 			umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3184 		}
3185 	}
3186 }
3187 
3188 static void *copy_mount_options(const void __user * data)
3189 {
3190 	char *copy;
3191 	unsigned left, offset;
3192 
3193 	if (!data)
3194 		return NULL;
3195 
3196 	copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
3197 	if (!copy)
3198 		return ERR_PTR(-ENOMEM);
3199 
3200 	left = copy_from_user(copy, data, PAGE_SIZE);
3201 
3202 	/*
3203 	 * Not all architectures have an exact copy_from_user(). Resort to
3204 	 * byte at a time.
3205 	 */
3206 	offset = PAGE_SIZE - left;
3207 	while (left) {
3208 		char c;
3209 		if (get_user(c, (const char __user *)data + offset))
3210 			break;
3211 		copy[offset] = c;
3212 		left--;
3213 		offset++;
3214 	}
3215 
3216 	if (left == PAGE_SIZE) {
3217 		kfree(copy);
3218 		return ERR_PTR(-EFAULT);
3219 	}
3220 
3221 	return copy;
3222 }
3223 
3224 static char *copy_mount_string(const void __user *data)
3225 {
3226 	return data ? strndup_user(data, PATH_MAX) : NULL;
3227 }
3228 
3229 /*
3230  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3231  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3232  *
3233  * data is a (void *) that can point to any structure up to
3234  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3235  * information (or be NULL).
3236  *
3237  * Pre-0.97 versions of mount() didn't have a flags word.
3238  * When the flags word was introduced its top half was required
3239  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3240  * Therefore, if this magic number is present, it carries no information
3241  * and must be discarded.
3242  */
3243 int path_mount(const char *dev_name, struct path *path,
3244 		const char *type_page, unsigned long flags, void *data_page)
3245 {
3246 	unsigned int mnt_flags = 0, sb_flags;
3247 	int ret;
3248 
3249 	/* Discard magic */
3250 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3251 		flags &= ~MS_MGC_MSK;
3252 
3253 	/* Basic sanity checks */
3254 	if (data_page)
3255 		((char *)data_page)[PAGE_SIZE - 1] = 0;
3256 
3257 	if (flags & MS_NOUSER)
3258 		return -EINVAL;
3259 
3260 	ret = security_sb_mount(dev_name, path, type_page, flags, data_page);
3261 	if (ret)
3262 		return ret;
3263 	if (!may_mount())
3264 		return -EPERM;
3265 	if (flags & SB_MANDLOCK)
3266 		warn_mandlock();
3267 
3268 	/* Default to relatime unless overriden */
3269 	if (!(flags & MS_NOATIME))
3270 		mnt_flags |= MNT_RELATIME;
3271 
3272 	/* Separate the per-mountpoint flags */
3273 	if (flags & MS_NOSUID)
3274 		mnt_flags |= MNT_NOSUID;
3275 	if (flags & MS_NODEV)
3276 		mnt_flags |= MNT_NODEV;
3277 	if (flags & MS_NOEXEC)
3278 		mnt_flags |= MNT_NOEXEC;
3279 	if (flags & MS_NOATIME)
3280 		mnt_flags |= MNT_NOATIME;
3281 	if (flags & MS_NODIRATIME)
3282 		mnt_flags |= MNT_NODIRATIME;
3283 	if (flags & MS_STRICTATIME)
3284 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
3285 	if (flags & MS_RDONLY)
3286 		mnt_flags |= MNT_READONLY;
3287 	if (flags & MS_NOSYMFOLLOW)
3288 		mnt_flags |= MNT_NOSYMFOLLOW;
3289 
3290 	/* The default atime for remount is preservation */
3291 	if ((flags & MS_REMOUNT) &&
3292 	    ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3293 		       MS_STRICTATIME)) == 0)) {
3294 		mnt_flags &= ~MNT_ATIME_MASK;
3295 		mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK;
3296 	}
3297 
3298 	sb_flags = flags & (SB_RDONLY |
3299 			    SB_SYNCHRONOUS |
3300 			    SB_MANDLOCK |
3301 			    SB_DIRSYNC |
3302 			    SB_SILENT |
3303 			    SB_POSIXACL |
3304 			    SB_LAZYTIME |
3305 			    SB_I_VERSION);
3306 
3307 	if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
3308 		return do_reconfigure_mnt(path, mnt_flags);
3309 	if (flags & MS_REMOUNT)
3310 		return do_remount(path, flags, sb_flags, mnt_flags, data_page);
3311 	if (flags & MS_BIND)
3312 		return do_loopback(path, dev_name, flags & MS_REC);
3313 	if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
3314 		return do_change_type(path, flags);
3315 	if (flags & MS_MOVE)
3316 		return do_move_mount_old(path, dev_name);
3317 
3318 	return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name,
3319 			    data_page);
3320 }
3321 
3322 long do_mount(const char *dev_name, const char __user *dir_name,
3323 		const char *type_page, unsigned long flags, void *data_page)
3324 {
3325 	struct path path;
3326 	int ret;
3327 
3328 	ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
3329 	if (ret)
3330 		return ret;
3331 	ret = path_mount(dev_name, &path, type_page, flags, data_page);
3332 	path_put(&path);
3333 	return ret;
3334 }
3335 
3336 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3337 {
3338 	return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3339 }
3340 
3341 static void dec_mnt_namespaces(struct ucounts *ucounts)
3342 {
3343 	dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3344 }
3345 
3346 static void free_mnt_ns(struct mnt_namespace *ns)
3347 {
3348 	if (!is_anon_ns(ns))
3349 		ns_free_inum(&ns->ns);
3350 	dec_mnt_namespaces(ns->ucounts);
3351 	put_user_ns(ns->user_ns);
3352 	kfree(ns);
3353 }
3354 
3355 /*
3356  * Assign a sequence number so we can detect when we attempt to bind
3357  * mount a reference to an older mount namespace into the current
3358  * mount namespace, preventing reference counting loops.  A 64bit
3359  * number incrementing at 10Ghz will take 12,427 years to wrap which
3360  * is effectively never, so we can ignore the possibility.
3361  */
3362 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3363 
3364 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
3365 {
3366 	struct mnt_namespace *new_ns;
3367 	struct ucounts *ucounts;
3368 	int ret;
3369 
3370 	ucounts = inc_mnt_namespaces(user_ns);
3371 	if (!ucounts)
3372 		return ERR_PTR(-ENOSPC);
3373 
3374 	new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT);
3375 	if (!new_ns) {
3376 		dec_mnt_namespaces(ucounts);
3377 		return ERR_PTR(-ENOMEM);
3378 	}
3379 	if (!anon) {
3380 		ret = ns_alloc_inum(&new_ns->ns);
3381 		if (ret) {
3382 			kfree(new_ns);
3383 			dec_mnt_namespaces(ucounts);
3384 			return ERR_PTR(ret);
3385 		}
3386 	}
3387 	new_ns->ns.ops = &mntns_operations;
3388 	if (!anon)
3389 		new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
3390 	refcount_set(&new_ns->ns.count, 1);
3391 	INIT_LIST_HEAD(&new_ns->list);
3392 	init_waitqueue_head(&new_ns->poll);
3393 	spin_lock_init(&new_ns->ns_lock);
3394 	new_ns->user_ns = get_user_ns(user_ns);
3395 	new_ns->ucounts = ucounts;
3396 	return new_ns;
3397 }
3398 
3399 __latent_entropy
3400 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3401 		struct user_namespace *user_ns, struct fs_struct *new_fs)
3402 {
3403 	struct mnt_namespace *new_ns;
3404 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
3405 	struct mount *p, *q;
3406 	struct mount *old;
3407 	struct mount *new;
3408 	int copy_flags;
3409 
3410 	BUG_ON(!ns);
3411 
3412 	if (likely(!(flags & CLONE_NEWNS))) {
3413 		get_mnt_ns(ns);
3414 		return ns;
3415 	}
3416 
3417 	old = ns->root;
3418 
3419 	new_ns = alloc_mnt_ns(user_ns, false);
3420 	if (IS_ERR(new_ns))
3421 		return new_ns;
3422 
3423 	namespace_lock();
3424 	/* First pass: copy the tree topology */
3425 	copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
3426 	if (user_ns != ns->user_ns)
3427 		copy_flags |= CL_SHARED_TO_SLAVE;
3428 	new = copy_tree(old, old->mnt.mnt_root, copy_flags);
3429 	if (IS_ERR(new)) {
3430 		namespace_unlock();
3431 		free_mnt_ns(new_ns);
3432 		return ERR_CAST(new);
3433 	}
3434 	if (user_ns != ns->user_ns) {
3435 		lock_mount_hash();
3436 		lock_mnt_tree(new);
3437 		unlock_mount_hash();
3438 	}
3439 	new_ns->root = new;
3440 	list_add_tail(&new_ns->list, &new->mnt_list);
3441 
3442 	/*
3443 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3444 	 * as belonging to new namespace.  We have already acquired a private
3445 	 * fs_struct, so tsk->fs->lock is not needed.
3446 	 */
3447 	p = old;
3448 	q = new;
3449 	while (p) {
3450 		q->mnt_ns = new_ns;
3451 		new_ns->mounts++;
3452 		if (new_fs) {
3453 			if (&p->mnt == new_fs->root.mnt) {
3454 				new_fs->root.mnt = mntget(&q->mnt);
3455 				rootmnt = &p->mnt;
3456 			}
3457 			if (&p->mnt == new_fs->pwd.mnt) {
3458 				new_fs->pwd.mnt = mntget(&q->mnt);
3459 				pwdmnt = &p->mnt;
3460 			}
3461 		}
3462 		p = next_mnt(p, old);
3463 		q = next_mnt(q, new);
3464 		if (!q)
3465 			break;
3466 		while (p->mnt.mnt_root != q->mnt.mnt_root)
3467 			p = next_mnt(p, old);
3468 	}
3469 	namespace_unlock();
3470 
3471 	if (rootmnt)
3472 		mntput(rootmnt);
3473 	if (pwdmnt)
3474 		mntput(pwdmnt);
3475 
3476 	return new_ns;
3477 }
3478 
3479 struct dentry *mount_subtree(struct vfsmount *m, const char *name)
3480 {
3481 	struct mount *mnt = real_mount(m);
3482 	struct mnt_namespace *ns;
3483 	struct super_block *s;
3484 	struct path path;
3485 	int err;
3486 
3487 	ns = alloc_mnt_ns(&init_user_ns, true);
3488 	if (IS_ERR(ns)) {
3489 		mntput(m);
3490 		return ERR_CAST(ns);
3491 	}
3492 	mnt->mnt_ns = ns;
3493 	ns->root = mnt;
3494 	ns->mounts++;
3495 	list_add(&mnt->mnt_list, &ns->list);
3496 
3497 	err = vfs_path_lookup(m->mnt_root, m,
3498 			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3499 
3500 	put_mnt_ns(ns);
3501 
3502 	if (err)
3503 		return ERR_PTR(err);
3504 
3505 	/* trade a vfsmount reference for active sb one */
3506 	s = path.mnt->mnt_sb;
3507 	atomic_inc(&s->s_active);
3508 	mntput(path.mnt);
3509 	/* lock the sucker */
3510 	down_write(&s->s_umount);
3511 	/* ... and return the root of (sub)tree on it */
3512 	return path.dentry;
3513 }
3514 EXPORT_SYMBOL(mount_subtree);
3515 
3516 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3517 		char __user *, type, unsigned long, flags, void __user *, data)
3518 {
3519 	int ret;
3520 	char *kernel_type;
3521 	char *kernel_dev;
3522 	void *options;
3523 
3524 	kernel_type = copy_mount_string(type);
3525 	ret = PTR_ERR(kernel_type);
3526 	if (IS_ERR(kernel_type))
3527 		goto out_type;
3528 
3529 	kernel_dev = copy_mount_string(dev_name);
3530 	ret = PTR_ERR(kernel_dev);
3531 	if (IS_ERR(kernel_dev))
3532 		goto out_dev;
3533 
3534 	options = copy_mount_options(data);
3535 	ret = PTR_ERR(options);
3536 	if (IS_ERR(options))
3537 		goto out_data;
3538 
3539 	ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3540 
3541 	kfree(options);
3542 out_data:
3543 	kfree(kernel_dev);
3544 out_dev:
3545 	kfree(kernel_type);
3546 out_type:
3547 	return ret;
3548 }
3549 
3550 #define FSMOUNT_VALID_FLAGS                                                    \
3551 	(MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV |            \
3552 	 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME |       \
3553 	 MOUNT_ATTR_NOSYMFOLLOW)
3554 
3555 #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP)
3556 
3557 #define MOUNT_SETATTR_PROPAGATION_FLAGS \
3558 	(MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED)
3559 
3560 static unsigned int attr_flags_to_mnt_flags(u64 attr_flags)
3561 {
3562 	unsigned int mnt_flags = 0;
3563 
3564 	if (attr_flags & MOUNT_ATTR_RDONLY)
3565 		mnt_flags |= MNT_READONLY;
3566 	if (attr_flags & MOUNT_ATTR_NOSUID)
3567 		mnt_flags |= MNT_NOSUID;
3568 	if (attr_flags & MOUNT_ATTR_NODEV)
3569 		mnt_flags |= MNT_NODEV;
3570 	if (attr_flags & MOUNT_ATTR_NOEXEC)
3571 		mnt_flags |= MNT_NOEXEC;
3572 	if (attr_flags & MOUNT_ATTR_NODIRATIME)
3573 		mnt_flags |= MNT_NODIRATIME;
3574 	if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW)
3575 		mnt_flags |= MNT_NOSYMFOLLOW;
3576 
3577 	return mnt_flags;
3578 }
3579 
3580 /*
3581  * Create a kernel mount representation for a new, prepared superblock
3582  * (specified by fs_fd) and attach to an open_tree-like file descriptor.
3583  */
3584 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
3585 		unsigned int, attr_flags)
3586 {
3587 	struct mnt_namespace *ns;
3588 	struct fs_context *fc;
3589 	struct file *file;
3590 	struct path newmount;
3591 	struct mount *mnt;
3592 	struct fd f;
3593 	unsigned int mnt_flags = 0;
3594 	long ret;
3595 
3596 	if (!may_mount())
3597 		return -EPERM;
3598 
3599 	if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
3600 		return -EINVAL;
3601 
3602 	if (attr_flags & ~FSMOUNT_VALID_FLAGS)
3603 		return -EINVAL;
3604 
3605 	mnt_flags = attr_flags_to_mnt_flags(attr_flags);
3606 
3607 	switch (attr_flags & MOUNT_ATTR__ATIME) {
3608 	case MOUNT_ATTR_STRICTATIME:
3609 		break;
3610 	case MOUNT_ATTR_NOATIME:
3611 		mnt_flags |= MNT_NOATIME;
3612 		break;
3613 	case MOUNT_ATTR_RELATIME:
3614 		mnt_flags |= MNT_RELATIME;
3615 		break;
3616 	default:
3617 		return -EINVAL;
3618 	}
3619 
3620 	f = fdget(fs_fd);
3621 	if (!f.file)
3622 		return -EBADF;
3623 
3624 	ret = -EINVAL;
3625 	if (f.file->f_op != &fscontext_fops)
3626 		goto err_fsfd;
3627 
3628 	fc = f.file->private_data;
3629 
3630 	ret = mutex_lock_interruptible(&fc->uapi_mutex);
3631 	if (ret < 0)
3632 		goto err_fsfd;
3633 
3634 	/* There must be a valid superblock or we can't mount it */
3635 	ret = -EINVAL;
3636 	if (!fc->root)
3637 		goto err_unlock;
3638 
3639 	ret = -EPERM;
3640 	if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
3641 		pr_warn("VFS: Mount too revealing\n");
3642 		goto err_unlock;
3643 	}
3644 
3645 	ret = -EBUSY;
3646 	if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
3647 		goto err_unlock;
3648 
3649 	if (fc->sb_flags & SB_MANDLOCK)
3650 		warn_mandlock();
3651 
3652 	newmount.mnt = vfs_create_mount(fc);
3653 	if (IS_ERR(newmount.mnt)) {
3654 		ret = PTR_ERR(newmount.mnt);
3655 		goto err_unlock;
3656 	}
3657 	newmount.dentry = dget(fc->root);
3658 	newmount.mnt->mnt_flags = mnt_flags;
3659 
3660 	/* We've done the mount bit - now move the file context into more or
3661 	 * less the same state as if we'd done an fspick().  We don't want to
3662 	 * do any memory allocation or anything like that at this point as we
3663 	 * don't want to have to handle any errors incurred.
3664 	 */
3665 	vfs_clean_context(fc);
3666 
3667 	ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
3668 	if (IS_ERR(ns)) {
3669 		ret = PTR_ERR(ns);
3670 		goto err_path;
3671 	}
3672 	mnt = real_mount(newmount.mnt);
3673 	mnt->mnt_ns = ns;
3674 	ns->root = mnt;
3675 	ns->mounts = 1;
3676 	list_add(&mnt->mnt_list, &ns->list);
3677 	mntget(newmount.mnt);
3678 
3679 	/* Attach to an apparent O_PATH fd with a note that we need to unmount
3680 	 * it, not just simply put it.
3681 	 */
3682 	file = dentry_open(&newmount, O_PATH, fc->cred);
3683 	if (IS_ERR(file)) {
3684 		dissolve_on_fput(newmount.mnt);
3685 		ret = PTR_ERR(file);
3686 		goto err_path;
3687 	}
3688 	file->f_mode |= FMODE_NEED_UNMOUNT;
3689 
3690 	ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
3691 	if (ret >= 0)
3692 		fd_install(ret, file);
3693 	else
3694 		fput(file);
3695 
3696 err_path:
3697 	path_put(&newmount);
3698 err_unlock:
3699 	mutex_unlock(&fc->uapi_mutex);
3700 err_fsfd:
3701 	fdput(f);
3702 	return ret;
3703 }
3704 
3705 /*
3706  * Move a mount from one place to another.  In combination with
3707  * fsopen()/fsmount() this is used to install a new mount and in combination
3708  * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
3709  * a mount subtree.
3710  *
3711  * Note the flags value is a combination of MOVE_MOUNT_* flags.
3712  */
3713 SYSCALL_DEFINE5(move_mount,
3714 		int, from_dfd, const char __user *, from_pathname,
3715 		int, to_dfd, const char __user *, to_pathname,
3716 		unsigned int, flags)
3717 {
3718 	struct path from_path, to_path;
3719 	unsigned int lflags;
3720 	int ret = 0;
3721 
3722 	if (!may_mount())
3723 		return -EPERM;
3724 
3725 	if (flags & ~MOVE_MOUNT__MASK)
3726 		return -EINVAL;
3727 
3728 	/* If someone gives a pathname, they aren't permitted to move
3729 	 * from an fd that requires unmount as we can't get at the flag
3730 	 * to clear it afterwards.
3731 	 */
3732 	lflags = 0;
3733 	if (flags & MOVE_MOUNT_F_SYMLINKS)	lflags |= LOOKUP_FOLLOW;
3734 	if (flags & MOVE_MOUNT_F_AUTOMOUNTS)	lflags |= LOOKUP_AUTOMOUNT;
3735 	if (flags & MOVE_MOUNT_F_EMPTY_PATH)	lflags |= LOOKUP_EMPTY;
3736 
3737 	ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
3738 	if (ret < 0)
3739 		return ret;
3740 
3741 	lflags = 0;
3742 	if (flags & MOVE_MOUNT_T_SYMLINKS)	lflags |= LOOKUP_FOLLOW;
3743 	if (flags & MOVE_MOUNT_T_AUTOMOUNTS)	lflags |= LOOKUP_AUTOMOUNT;
3744 	if (flags & MOVE_MOUNT_T_EMPTY_PATH)	lflags |= LOOKUP_EMPTY;
3745 
3746 	ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
3747 	if (ret < 0)
3748 		goto out_from;
3749 
3750 	ret = security_move_mount(&from_path, &to_path);
3751 	if (ret < 0)
3752 		goto out_to;
3753 
3754 	if (flags & MOVE_MOUNT_SET_GROUP)
3755 		ret = do_set_group(&from_path, &to_path);
3756 	else
3757 		ret = do_move_mount(&from_path, &to_path);
3758 
3759 out_to:
3760 	path_put(&to_path);
3761 out_from:
3762 	path_put(&from_path);
3763 	return ret;
3764 }
3765 
3766 /*
3767  * Return true if path is reachable from root
3768  *
3769  * namespace_sem or mount_lock is held
3770  */
3771 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3772 			 const struct path *root)
3773 {
3774 	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3775 		dentry = mnt->mnt_mountpoint;
3776 		mnt = mnt->mnt_parent;
3777 	}
3778 	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3779 }
3780 
3781 bool path_is_under(const struct path *path1, const struct path *path2)
3782 {
3783 	bool res;
3784 	read_seqlock_excl(&mount_lock);
3785 	res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3786 	read_sequnlock_excl(&mount_lock);
3787 	return res;
3788 }
3789 EXPORT_SYMBOL(path_is_under);
3790 
3791 /*
3792  * pivot_root Semantics:
3793  * Moves the root file system of the current process to the directory put_old,
3794  * makes new_root as the new root file system of the current process, and sets
3795  * root/cwd of all processes which had them on the current root to new_root.
3796  *
3797  * Restrictions:
3798  * The new_root and put_old must be directories, and  must not be on the
3799  * same file  system as the current process root. The put_old  must  be
3800  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
3801  * pointed to by put_old must yield the same directory as new_root. No other
3802  * file system may be mounted on put_old. After all, new_root is a mountpoint.
3803  *
3804  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3805  * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives
3806  * in this situation.
3807  *
3808  * Notes:
3809  *  - we don't move root/cwd if they are not at the root (reason: if something
3810  *    cared enough to change them, it's probably wrong to force them elsewhere)
3811  *  - it's okay to pick a root that isn't the root of a file system, e.g.
3812  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3813  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3814  *    first.
3815  */
3816 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3817 		const char __user *, put_old)
3818 {
3819 	struct path new, old, root;
3820 	struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
3821 	struct mountpoint *old_mp, *root_mp;
3822 	int error;
3823 
3824 	if (!may_mount())
3825 		return -EPERM;
3826 
3827 	error = user_path_at(AT_FDCWD, new_root,
3828 			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
3829 	if (error)
3830 		goto out0;
3831 
3832 	error = user_path_at(AT_FDCWD, put_old,
3833 			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
3834 	if (error)
3835 		goto out1;
3836 
3837 	error = security_sb_pivotroot(&old, &new);
3838 	if (error)
3839 		goto out2;
3840 
3841 	get_fs_root(current->fs, &root);
3842 	old_mp = lock_mount(&old);
3843 	error = PTR_ERR(old_mp);
3844 	if (IS_ERR(old_mp))
3845 		goto out3;
3846 
3847 	error = -EINVAL;
3848 	new_mnt = real_mount(new.mnt);
3849 	root_mnt = real_mount(root.mnt);
3850 	old_mnt = real_mount(old.mnt);
3851 	ex_parent = new_mnt->mnt_parent;
3852 	root_parent = root_mnt->mnt_parent;
3853 	if (IS_MNT_SHARED(old_mnt) ||
3854 		IS_MNT_SHARED(ex_parent) ||
3855 		IS_MNT_SHARED(root_parent))
3856 		goto out4;
3857 	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3858 		goto out4;
3859 	if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3860 		goto out4;
3861 	error = -ENOENT;
3862 	if (d_unlinked(new.dentry))
3863 		goto out4;
3864 	error = -EBUSY;
3865 	if (new_mnt == root_mnt || old_mnt == root_mnt)
3866 		goto out4; /* loop, on the same file system  */
3867 	error = -EINVAL;
3868 	if (root.mnt->mnt_root != root.dentry)
3869 		goto out4; /* not a mountpoint */
3870 	if (!mnt_has_parent(root_mnt))
3871 		goto out4; /* not attached */
3872 	if (new.mnt->mnt_root != new.dentry)
3873 		goto out4; /* not a mountpoint */
3874 	if (!mnt_has_parent(new_mnt))
3875 		goto out4; /* not attached */
3876 	/* make sure we can reach put_old from new_root */
3877 	if (!is_path_reachable(old_mnt, old.dentry, &new))
3878 		goto out4;
3879 	/* make certain new is below the root */
3880 	if (!is_path_reachable(new_mnt, new.dentry, &root))
3881 		goto out4;
3882 	lock_mount_hash();
3883 	umount_mnt(new_mnt);
3884 	root_mp = unhash_mnt(root_mnt);  /* we'll need its mountpoint */
3885 	if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3886 		new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3887 		root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3888 	}
3889 	/* mount old root on put_old */
3890 	attach_mnt(root_mnt, old_mnt, old_mp);
3891 	/* mount new_root on / */
3892 	attach_mnt(new_mnt, root_parent, root_mp);
3893 	mnt_add_count(root_parent, -1);
3894 	touch_mnt_namespace(current->nsproxy->mnt_ns);
3895 	/* A moved mount should not expire automatically */
3896 	list_del_init(&new_mnt->mnt_expire);
3897 	put_mountpoint(root_mp);
3898 	unlock_mount_hash();
3899 	chroot_fs_refs(&root, &new);
3900 	error = 0;
3901 out4:
3902 	unlock_mount(old_mp);
3903 	if (!error)
3904 		mntput_no_expire(ex_parent);
3905 out3:
3906 	path_put(&root);
3907 out2:
3908 	path_put(&old);
3909 out1:
3910 	path_put(&new);
3911 out0:
3912 	return error;
3913 }
3914 
3915 static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt)
3916 {
3917 	unsigned int flags = mnt->mnt.mnt_flags;
3918 
3919 	/*  flags to clear */
3920 	flags &= ~kattr->attr_clr;
3921 	/* flags to raise */
3922 	flags |= kattr->attr_set;
3923 
3924 	return flags;
3925 }
3926 
3927 static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
3928 {
3929 	struct vfsmount *m = &mnt->mnt;
3930 
3931 	if (!kattr->mnt_userns)
3932 		return 0;
3933 
3934 	/*
3935 	 * Once a mount has been idmapped we don't allow it to change its
3936 	 * mapping. It makes things simpler and callers can just create
3937 	 * another bind-mount they can idmap if they want to.
3938 	 */
3939 	if (mnt_user_ns(m) != &init_user_ns)
3940 		return -EPERM;
3941 
3942 	/* The underlying filesystem doesn't support idmapped mounts yet. */
3943 	if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP))
3944 		return -EINVAL;
3945 
3946 	/* Don't yet support filesystem mountable in user namespaces. */
3947 	if (m->mnt_sb->s_user_ns != &init_user_ns)
3948 		return -EINVAL;
3949 
3950 	/* We're not controlling the superblock. */
3951 	if (!capable(CAP_SYS_ADMIN))
3952 		return -EPERM;
3953 
3954 	/* Mount has already been visible in the filesystem hierarchy. */
3955 	if (!is_anon_ns(mnt->mnt_ns))
3956 		return -EINVAL;
3957 
3958 	return 0;
3959 }
3960 
3961 static struct mount *mount_setattr_prepare(struct mount_kattr *kattr,
3962 					   struct mount *mnt, int *err)
3963 {
3964 	struct mount *m = mnt, *last = NULL;
3965 
3966 	if (!is_mounted(&m->mnt)) {
3967 		*err = -EINVAL;
3968 		goto out;
3969 	}
3970 
3971 	if (!(mnt_has_parent(m) ? check_mnt(m) : is_anon_ns(m->mnt_ns))) {
3972 		*err = -EINVAL;
3973 		goto out;
3974 	}
3975 
3976 	do {
3977 		unsigned int flags;
3978 
3979 		flags = recalc_flags(kattr, m);
3980 		if (!can_change_locked_flags(m, flags)) {
3981 			*err = -EPERM;
3982 			goto out;
3983 		}
3984 
3985 		*err = can_idmap_mount(kattr, m);
3986 		if (*err)
3987 			goto out;
3988 
3989 		last = m;
3990 
3991 		if ((kattr->attr_set & MNT_READONLY) &&
3992 		    !(m->mnt.mnt_flags & MNT_READONLY)) {
3993 			*err = mnt_hold_writers(m);
3994 			if (*err)
3995 				goto out;
3996 		}
3997 	} while (kattr->recurse && (m = next_mnt(m, mnt)));
3998 
3999 out:
4000 	return last;
4001 }
4002 
4003 static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4004 {
4005 	struct user_namespace *mnt_userns;
4006 
4007 	if (!kattr->mnt_userns)
4008 		return;
4009 
4010 	mnt_userns = get_user_ns(kattr->mnt_userns);
4011 	/* Pairs with smp_load_acquire() in mnt_user_ns(). */
4012 	smp_store_release(&mnt->mnt.mnt_userns, mnt_userns);
4013 }
4014 
4015 static void mount_setattr_commit(struct mount_kattr *kattr,
4016 				 struct mount *mnt, struct mount *last,
4017 				 int err)
4018 {
4019 	struct mount *m = mnt;
4020 
4021 	do {
4022 		if (!err) {
4023 			unsigned int flags;
4024 
4025 			do_idmap_mount(kattr, m);
4026 			flags = recalc_flags(kattr, m);
4027 			WRITE_ONCE(m->mnt.mnt_flags, flags);
4028 		}
4029 
4030 		/*
4031 		 * We either set MNT_READONLY above so make it visible
4032 		 * before ~MNT_WRITE_HOLD or we failed to recursively
4033 		 * apply mount options.
4034 		 */
4035 		if ((kattr->attr_set & MNT_READONLY) &&
4036 		    (m->mnt.mnt_flags & MNT_WRITE_HOLD))
4037 			mnt_unhold_writers(m);
4038 
4039 		if (!err && kattr->propagation)
4040 			change_mnt_propagation(m, kattr->propagation);
4041 
4042 		/*
4043 		 * On failure, only cleanup until we found the first mount
4044 		 * we failed to handle.
4045 		 */
4046 		if (err && m == last)
4047 			break;
4048 	} while (kattr->recurse && (m = next_mnt(m, mnt)));
4049 
4050 	if (!err)
4051 		touch_mnt_namespace(mnt->mnt_ns);
4052 }
4053 
4054 static int do_mount_setattr(struct path *path, struct mount_kattr *kattr)
4055 {
4056 	struct mount *mnt = real_mount(path->mnt), *last = NULL;
4057 	int err = 0;
4058 
4059 	if (path->dentry != mnt->mnt.mnt_root)
4060 		return -EINVAL;
4061 
4062 	if (kattr->propagation) {
4063 		/*
4064 		 * Only take namespace_lock() if we're actually changing
4065 		 * propagation.
4066 		 */
4067 		namespace_lock();
4068 		if (kattr->propagation == MS_SHARED) {
4069 			err = invent_group_ids(mnt, kattr->recurse);
4070 			if (err) {
4071 				namespace_unlock();
4072 				return err;
4073 			}
4074 		}
4075 	}
4076 
4077 	lock_mount_hash();
4078 
4079 	/*
4080 	 * Get the mount tree in a shape where we can change mount
4081 	 * properties without failure.
4082 	 */
4083 	last = mount_setattr_prepare(kattr, mnt, &err);
4084 	if (last) /* Commit all changes or revert to the old state. */
4085 		mount_setattr_commit(kattr, mnt, last, err);
4086 
4087 	unlock_mount_hash();
4088 
4089 	if (kattr->propagation) {
4090 		namespace_unlock();
4091 		if (err)
4092 			cleanup_group_ids(mnt, NULL);
4093 	}
4094 
4095 	return err;
4096 }
4097 
4098 static int build_mount_idmapped(const struct mount_attr *attr, size_t usize,
4099 				struct mount_kattr *kattr, unsigned int flags)
4100 {
4101 	int err = 0;
4102 	struct ns_common *ns;
4103 	struct user_namespace *mnt_userns;
4104 	struct file *file;
4105 
4106 	if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP))
4107 		return 0;
4108 
4109 	/*
4110 	 * We currently do not support clearing an idmapped mount. If this ever
4111 	 * is a use-case we can revisit this but for now let's keep it simple
4112 	 * and not allow it.
4113 	 */
4114 	if (attr->attr_clr & MOUNT_ATTR_IDMAP)
4115 		return -EINVAL;
4116 
4117 	if (attr->userns_fd > INT_MAX)
4118 		return -EINVAL;
4119 
4120 	file = fget(attr->userns_fd);
4121 	if (!file)
4122 		return -EBADF;
4123 
4124 	if (!proc_ns_file(file)) {
4125 		err = -EINVAL;
4126 		goto out_fput;
4127 	}
4128 
4129 	ns = get_proc_ns(file_inode(file));
4130 	if (ns->ops->type != CLONE_NEWUSER) {
4131 		err = -EINVAL;
4132 		goto out_fput;
4133 	}
4134 
4135 	/*
4136 	 * The init_user_ns is used to indicate that a vfsmount is not idmapped.
4137 	 * This is simpler than just having to treat NULL as unmapped. Users
4138 	 * wanting to idmap a mount to init_user_ns can just use a namespace
4139 	 * with an identity mapping.
4140 	 */
4141 	mnt_userns = container_of(ns, struct user_namespace, ns);
4142 	if (mnt_userns == &init_user_ns) {
4143 		err = -EPERM;
4144 		goto out_fput;
4145 	}
4146 	kattr->mnt_userns = get_user_ns(mnt_userns);
4147 
4148 out_fput:
4149 	fput(file);
4150 	return err;
4151 }
4152 
4153 static int build_mount_kattr(const struct mount_attr *attr, size_t usize,
4154 			     struct mount_kattr *kattr, unsigned int flags)
4155 {
4156 	unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
4157 
4158 	if (flags & AT_NO_AUTOMOUNT)
4159 		lookup_flags &= ~LOOKUP_AUTOMOUNT;
4160 	if (flags & AT_SYMLINK_NOFOLLOW)
4161 		lookup_flags &= ~LOOKUP_FOLLOW;
4162 	if (flags & AT_EMPTY_PATH)
4163 		lookup_flags |= LOOKUP_EMPTY;
4164 
4165 	*kattr = (struct mount_kattr) {
4166 		.lookup_flags	= lookup_flags,
4167 		.recurse	= !!(flags & AT_RECURSIVE),
4168 	};
4169 
4170 	if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS)
4171 		return -EINVAL;
4172 	if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1)
4173 		return -EINVAL;
4174 	kattr->propagation = attr->propagation;
4175 
4176 	if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS)
4177 		return -EINVAL;
4178 
4179 	kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set);
4180 	kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr);
4181 
4182 	/*
4183 	 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap,
4184 	 * users wanting to transition to a different atime setting cannot
4185 	 * simply specify the atime setting in @attr_set, but must also
4186 	 * specify MOUNT_ATTR__ATIME in the @attr_clr field.
4187 	 * So ensure that MOUNT_ATTR__ATIME can't be partially set in
4188 	 * @attr_clr and that @attr_set can't have any atime bits set if
4189 	 * MOUNT_ATTR__ATIME isn't set in @attr_clr.
4190 	 */
4191 	if (attr->attr_clr & MOUNT_ATTR__ATIME) {
4192 		if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME)
4193 			return -EINVAL;
4194 
4195 		/*
4196 		 * Clear all previous time settings as they are mutually
4197 		 * exclusive.
4198 		 */
4199 		kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME;
4200 		switch (attr->attr_set & MOUNT_ATTR__ATIME) {
4201 		case MOUNT_ATTR_RELATIME:
4202 			kattr->attr_set |= MNT_RELATIME;
4203 			break;
4204 		case MOUNT_ATTR_NOATIME:
4205 			kattr->attr_set |= MNT_NOATIME;
4206 			break;
4207 		case MOUNT_ATTR_STRICTATIME:
4208 			break;
4209 		default:
4210 			return -EINVAL;
4211 		}
4212 	} else {
4213 		if (attr->attr_set & MOUNT_ATTR__ATIME)
4214 			return -EINVAL;
4215 	}
4216 
4217 	return build_mount_idmapped(attr, usize, kattr, flags);
4218 }
4219 
4220 static void finish_mount_kattr(struct mount_kattr *kattr)
4221 {
4222 	put_user_ns(kattr->mnt_userns);
4223 	kattr->mnt_userns = NULL;
4224 }
4225 
4226 SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path,
4227 		unsigned int, flags, struct mount_attr __user *, uattr,
4228 		size_t, usize)
4229 {
4230 	int err;
4231 	struct path target;
4232 	struct mount_attr attr;
4233 	struct mount_kattr kattr;
4234 
4235 	BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0);
4236 
4237 	if (flags & ~(AT_EMPTY_PATH |
4238 		      AT_RECURSIVE |
4239 		      AT_SYMLINK_NOFOLLOW |
4240 		      AT_NO_AUTOMOUNT))
4241 		return -EINVAL;
4242 
4243 	if (unlikely(usize > PAGE_SIZE))
4244 		return -E2BIG;
4245 	if (unlikely(usize < MOUNT_ATTR_SIZE_VER0))
4246 		return -EINVAL;
4247 
4248 	if (!may_mount())
4249 		return -EPERM;
4250 
4251 	err = copy_struct_from_user(&attr, sizeof(attr), uattr, usize);
4252 	if (err)
4253 		return err;
4254 
4255 	/* Don't bother walking through the mounts if this is a nop. */
4256 	if (attr.attr_set == 0 &&
4257 	    attr.attr_clr == 0 &&
4258 	    attr.propagation == 0)
4259 		return 0;
4260 
4261 	err = build_mount_kattr(&attr, usize, &kattr, flags);
4262 	if (err)
4263 		return err;
4264 
4265 	err = user_path_at(dfd, path, kattr.lookup_flags, &target);
4266 	if (err)
4267 		return err;
4268 
4269 	err = do_mount_setattr(&target, &kattr);
4270 	finish_mount_kattr(&kattr);
4271 	path_put(&target);
4272 	return err;
4273 }
4274 
4275 static void __init init_mount_tree(void)
4276 {
4277 	struct vfsmount *mnt;
4278 	struct mount *m;
4279 	struct mnt_namespace *ns;
4280 	struct path root;
4281 
4282 	mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
4283 	if (IS_ERR(mnt))
4284 		panic("Can't create rootfs");
4285 
4286 	ns = alloc_mnt_ns(&init_user_ns, false);
4287 	if (IS_ERR(ns))
4288 		panic("Can't allocate initial namespace");
4289 	m = real_mount(mnt);
4290 	m->mnt_ns = ns;
4291 	ns->root = m;
4292 	ns->mounts = 1;
4293 	list_add(&m->mnt_list, &ns->list);
4294 	init_task.nsproxy->mnt_ns = ns;
4295 	get_mnt_ns(ns);
4296 
4297 	root.mnt = mnt;
4298 	root.dentry = mnt->mnt_root;
4299 	mnt->mnt_flags |= MNT_LOCKED;
4300 
4301 	set_fs_pwd(current->fs, &root);
4302 	set_fs_root(current->fs, &root);
4303 }
4304 
4305 void __init mnt_init(void)
4306 {
4307 	int err;
4308 
4309 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
4310 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
4311 
4312 	mount_hashtable = alloc_large_system_hash("Mount-cache",
4313 				sizeof(struct hlist_head),
4314 				mhash_entries, 19,
4315 				HASH_ZERO,
4316 				&m_hash_shift, &m_hash_mask, 0, 0);
4317 	mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
4318 				sizeof(struct hlist_head),
4319 				mphash_entries, 19,
4320 				HASH_ZERO,
4321 				&mp_hash_shift, &mp_hash_mask, 0, 0);
4322 
4323 	if (!mount_hashtable || !mountpoint_hashtable)
4324 		panic("Failed to allocate mount hash table\n");
4325 
4326 	kernfs_init();
4327 
4328 	err = sysfs_init();
4329 	if (err)
4330 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
4331 			__func__, err);
4332 	fs_kobj = kobject_create_and_add("fs", NULL);
4333 	if (!fs_kobj)
4334 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
4335 	shmem_init();
4336 	init_rootfs();
4337 	init_mount_tree();
4338 }
4339 
4340 void put_mnt_ns(struct mnt_namespace *ns)
4341 {
4342 	if (!refcount_dec_and_test(&ns->ns.count))
4343 		return;
4344 	drop_collected_mounts(&ns->root->mnt);
4345 	free_mnt_ns(ns);
4346 }
4347 
4348 struct vfsmount *kern_mount(struct file_system_type *type)
4349 {
4350 	struct vfsmount *mnt;
4351 	mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
4352 	if (!IS_ERR(mnt)) {
4353 		/*
4354 		 * it is a longterm mount, don't release mnt until
4355 		 * we unmount before file sys is unregistered
4356 		*/
4357 		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
4358 	}
4359 	return mnt;
4360 }
4361 EXPORT_SYMBOL_GPL(kern_mount);
4362 
4363 void kern_unmount(struct vfsmount *mnt)
4364 {
4365 	/* release long term mount so mount point can be released */
4366 	if (!IS_ERR_OR_NULL(mnt)) {
4367 		real_mount(mnt)->mnt_ns = NULL;
4368 		synchronize_rcu();	/* yecchhh... */
4369 		mntput(mnt);
4370 	}
4371 }
4372 EXPORT_SYMBOL(kern_unmount);
4373 
4374 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num)
4375 {
4376 	unsigned int i;
4377 
4378 	for (i = 0; i < num; i++)
4379 		if (mnt[i])
4380 			real_mount(mnt[i])->mnt_ns = NULL;
4381 	synchronize_rcu_expedited();
4382 	for (i = 0; i < num; i++)
4383 		mntput(mnt[i]);
4384 }
4385 EXPORT_SYMBOL(kern_unmount_array);
4386 
4387 bool our_mnt(struct vfsmount *mnt)
4388 {
4389 	return check_mnt(real_mount(mnt));
4390 }
4391 
4392 bool current_chrooted(void)
4393 {
4394 	/* Does the current process have a non-standard root */
4395 	struct path ns_root;
4396 	struct path fs_root;
4397 	bool chrooted;
4398 
4399 	/* Find the namespace root */
4400 	ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
4401 	ns_root.dentry = ns_root.mnt->mnt_root;
4402 	path_get(&ns_root);
4403 	while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
4404 		;
4405 
4406 	get_fs_root(current->fs, &fs_root);
4407 
4408 	chrooted = !path_equal(&fs_root, &ns_root);
4409 
4410 	path_put(&fs_root);
4411 	path_put(&ns_root);
4412 
4413 	return chrooted;
4414 }
4415 
4416 static bool mnt_already_visible(struct mnt_namespace *ns,
4417 				const struct super_block *sb,
4418 				int *new_mnt_flags)
4419 {
4420 	int new_flags = *new_mnt_flags;
4421 	struct mount *mnt;
4422 	bool visible = false;
4423 
4424 	down_read(&namespace_sem);
4425 	lock_ns_list(ns);
4426 	list_for_each_entry(mnt, &ns->list, mnt_list) {
4427 		struct mount *child;
4428 		int mnt_flags;
4429 
4430 		if (mnt_is_cursor(mnt))
4431 			continue;
4432 
4433 		if (mnt->mnt.mnt_sb->s_type != sb->s_type)
4434 			continue;
4435 
4436 		/* This mount is not fully visible if it's root directory
4437 		 * is not the root directory of the filesystem.
4438 		 */
4439 		if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
4440 			continue;
4441 
4442 		/* A local view of the mount flags */
4443 		mnt_flags = mnt->mnt.mnt_flags;
4444 
4445 		/* Don't miss readonly hidden in the superblock flags */
4446 		if (sb_rdonly(mnt->mnt.mnt_sb))
4447 			mnt_flags |= MNT_LOCK_READONLY;
4448 
4449 		/* Verify the mount flags are equal to or more permissive
4450 		 * than the proposed new mount.
4451 		 */
4452 		if ((mnt_flags & MNT_LOCK_READONLY) &&
4453 		    !(new_flags & MNT_READONLY))
4454 			continue;
4455 		if ((mnt_flags & MNT_LOCK_ATIME) &&
4456 		    ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
4457 			continue;
4458 
4459 		/* This mount is not fully visible if there are any
4460 		 * locked child mounts that cover anything except for
4461 		 * empty directories.
4462 		 */
4463 		list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
4464 			struct inode *inode = child->mnt_mountpoint->d_inode;
4465 			/* Only worry about locked mounts */
4466 			if (!(child->mnt.mnt_flags & MNT_LOCKED))
4467 				continue;
4468 			/* Is the directory permanetly empty? */
4469 			if (!is_empty_dir_inode(inode))
4470 				goto next;
4471 		}
4472 		/* Preserve the locked attributes */
4473 		*new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
4474 					       MNT_LOCK_ATIME);
4475 		visible = true;
4476 		goto found;
4477 	next:	;
4478 	}
4479 found:
4480 	unlock_ns_list(ns);
4481 	up_read(&namespace_sem);
4482 	return visible;
4483 }
4484 
4485 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
4486 {
4487 	const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
4488 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
4489 	unsigned long s_iflags;
4490 
4491 	if (ns->user_ns == &init_user_ns)
4492 		return false;
4493 
4494 	/* Can this filesystem be too revealing? */
4495 	s_iflags = sb->s_iflags;
4496 	if (!(s_iflags & SB_I_USERNS_VISIBLE))
4497 		return false;
4498 
4499 	if ((s_iflags & required_iflags) != required_iflags) {
4500 		WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
4501 			  required_iflags);
4502 		return true;
4503 	}
4504 
4505 	return !mnt_already_visible(ns, sb, new_mnt_flags);
4506 }
4507 
4508 bool mnt_may_suid(struct vfsmount *mnt)
4509 {
4510 	/*
4511 	 * Foreign mounts (accessed via fchdir or through /proc
4512 	 * symlinks) are always treated as if they are nosuid.  This
4513 	 * prevents namespaces from trusting potentially unsafe
4514 	 * suid/sgid bits, file caps, or security labels that originate
4515 	 * in other namespaces.
4516 	 */
4517 	return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
4518 	       current_in_userns(mnt->mnt_sb->s_user_ns);
4519 }
4520 
4521 static struct ns_common *mntns_get(struct task_struct *task)
4522 {
4523 	struct ns_common *ns = NULL;
4524 	struct nsproxy *nsproxy;
4525 
4526 	task_lock(task);
4527 	nsproxy = task->nsproxy;
4528 	if (nsproxy) {
4529 		ns = &nsproxy->mnt_ns->ns;
4530 		get_mnt_ns(to_mnt_ns(ns));
4531 	}
4532 	task_unlock(task);
4533 
4534 	return ns;
4535 }
4536 
4537 static void mntns_put(struct ns_common *ns)
4538 {
4539 	put_mnt_ns(to_mnt_ns(ns));
4540 }
4541 
4542 static int mntns_install(struct nsset *nsset, struct ns_common *ns)
4543 {
4544 	struct nsproxy *nsproxy = nsset->nsproxy;
4545 	struct fs_struct *fs = nsset->fs;
4546 	struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
4547 	struct user_namespace *user_ns = nsset->cred->user_ns;
4548 	struct path root;
4549 	int err;
4550 
4551 	if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
4552 	    !ns_capable(user_ns, CAP_SYS_CHROOT) ||
4553 	    !ns_capable(user_ns, CAP_SYS_ADMIN))
4554 		return -EPERM;
4555 
4556 	if (is_anon_ns(mnt_ns))
4557 		return -EINVAL;
4558 
4559 	if (fs->users != 1)
4560 		return -EINVAL;
4561 
4562 	get_mnt_ns(mnt_ns);
4563 	old_mnt_ns = nsproxy->mnt_ns;
4564 	nsproxy->mnt_ns = mnt_ns;
4565 
4566 	/* Find the root */
4567 	err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
4568 				"/", LOOKUP_DOWN, &root);
4569 	if (err) {
4570 		/* revert to old namespace */
4571 		nsproxy->mnt_ns = old_mnt_ns;
4572 		put_mnt_ns(mnt_ns);
4573 		return err;
4574 	}
4575 
4576 	put_mnt_ns(old_mnt_ns);
4577 
4578 	/* Update the pwd and root */
4579 	set_fs_pwd(fs, &root);
4580 	set_fs_root(fs, &root);
4581 
4582 	path_put(&root);
4583 	return 0;
4584 }
4585 
4586 static struct user_namespace *mntns_owner(struct ns_common *ns)
4587 {
4588 	return to_mnt_ns(ns)->user_ns;
4589 }
4590 
4591 const struct proc_ns_operations mntns_operations = {
4592 	.name		= "mnt",
4593 	.type		= CLONE_NEWNS,
4594 	.get		= mntns_get,
4595 	.put		= mntns_put,
4596 	.install	= mntns_install,
4597 	.owner		= mntns_owner,
4598 };
4599