xref: /openbmc/linux/fs/namespace.c (revision 3b64b188)
1 /*
2  *  linux/fs/namespace.c
3  *
4  * (C) Copyright Al Viro 2000, 2001
5  *	Released under GPL v2.
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/namei.h>
16 #include <linux/security.h>
17 #include <linux/idr.h>
18 #include <linux/acct.h>		/* acct_auto_close_mnt */
19 #include <linux/ramfs.h>	/* init_rootfs */
20 #include <linux/fs_struct.h>	/* get_fs_root et.al. */
21 #include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
22 #include <linux/uaccess.h>
23 #include "pnode.h"
24 #include "internal.h"
25 
26 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
27 #define HASH_SIZE (1UL << HASH_SHIFT)
28 
29 static int event;
30 static DEFINE_IDA(mnt_id_ida);
31 static DEFINE_IDA(mnt_group_ida);
32 static DEFINE_SPINLOCK(mnt_id_lock);
33 static int mnt_id_start = 0;
34 static int mnt_group_start = 1;
35 
36 static struct list_head *mount_hashtable __read_mostly;
37 static struct kmem_cache *mnt_cache __read_mostly;
38 static struct rw_semaphore namespace_sem;
39 
40 /* /sys/fs */
41 struct kobject *fs_kobj;
42 EXPORT_SYMBOL_GPL(fs_kobj);
43 
44 /*
45  * vfsmount lock may be taken for read to prevent changes to the
46  * vfsmount hash, ie. during mountpoint lookups or walking back
47  * up the tree.
48  *
49  * It should be taken for write in all cases where the vfsmount
50  * tree or hash is modified or when a vfsmount structure is modified.
51  */
52 DEFINE_BRLOCK(vfsmount_lock);
53 
54 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
55 {
56 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
57 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
58 	tmp = tmp + (tmp >> HASH_SHIFT);
59 	return tmp & (HASH_SIZE - 1);
60 }
61 
62 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
63 
64 /*
65  * allocation is serialized by namespace_sem, but we need the spinlock to
66  * serialize with freeing.
67  */
68 static int mnt_alloc_id(struct mount *mnt)
69 {
70 	int res;
71 
72 retry:
73 	ida_pre_get(&mnt_id_ida, GFP_KERNEL);
74 	spin_lock(&mnt_id_lock);
75 	res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
76 	if (!res)
77 		mnt_id_start = mnt->mnt_id + 1;
78 	spin_unlock(&mnt_id_lock);
79 	if (res == -EAGAIN)
80 		goto retry;
81 
82 	return res;
83 }
84 
85 static void mnt_free_id(struct mount *mnt)
86 {
87 	int id = mnt->mnt_id;
88 	spin_lock(&mnt_id_lock);
89 	ida_remove(&mnt_id_ida, id);
90 	if (mnt_id_start > id)
91 		mnt_id_start = id;
92 	spin_unlock(&mnt_id_lock);
93 }
94 
95 /*
96  * Allocate a new peer group ID
97  *
98  * mnt_group_ida is protected by namespace_sem
99  */
100 static int mnt_alloc_group_id(struct mount *mnt)
101 {
102 	int res;
103 
104 	if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
105 		return -ENOMEM;
106 
107 	res = ida_get_new_above(&mnt_group_ida,
108 				mnt_group_start,
109 				&mnt->mnt_group_id);
110 	if (!res)
111 		mnt_group_start = mnt->mnt_group_id + 1;
112 
113 	return res;
114 }
115 
116 /*
117  * Release a peer group ID
118  */
119 void mnt_release_group_id(struct mount *mnt)
120 {
121 	int id = mnt->mnt_group_id;
122 	ida_remove(&mnt_group_ida, id);
123 	if (mnt_group_start > id)
124 		mnt_group_start = id;
125 	mnt->mnt_group_id = 0;
126 }
127 
128 /*
129  * vfsmount lock must be held for read
130  */
131 static inline void mnt_add_count(struct mount *mnt, int n)
132 {
133 #ifdef CONFIG_SMP
134 	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
135 #else
136 	preempt_disable();
137 	mnt->mnt_count += n;
138 	preempt_enable();
139 #endif
140 }
141 
142 /*
143  * vfsmount lock must be held for write
144  */
145 unsigned int mnt_get_count(struct mount *mnt)
146 {
147 #ifdef CONFIG_SMP
148 	unsigned int count = 0;
149 	int cpu;
150 
151 	for_each_possible_cpu(cpu) {
152 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
153 	}
154 
155 	return count;
156 #else
157 	return mnt->mnt_count;
158 #endif
159 }
160 
161 static struct mount *alloc_vfsmnt(const char *name)
162 {
163 	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
164 	if (mnt) {
165 		int err;
166 
167 		err = mnt_alloc_id(mnt);
168 		if (err)
169 			goto out_free_cache;
170 
171 		if (name) {
172 			mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
173 			if (!mnt->mnt_devname)
174 				goto out_free_id;
175 		}
176 
177 #ifdef CONFIG_SMP
178 		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
179 		if (!mnt->mnt_pcp)
180 			goto out_free_devname;
181 
182 		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
183 #else
184 		mnt->mnt_count = 1;
185 		mnt->mnt_writers = 0;
186 #endif
187 
188 		INIT_LIST_HEAD(&mnt->mnt_hash);
189 		INIT_LIST_HEAD(&mnt->mnt_child);
190 		INIT_LIST_HEAD(&mnt->mnt_mounts);
191 		INIT_LIST_HEAD(&mnt->mnt_list);
192 		INIT_LIST_HEAD(&mnt->mnt_expire);
193 		INIT_LIST_HEAD(&mnt->mnt_share);
194 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
195 		INIT_LIST_HEAD(&mnt->mnt_slave);
196 #ifdef CONFIG_FSNOTIFY
197 		INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
198 #endif
199 	}
200 	return mnt;
201 
202 #ifdef CONFIG_SMP
203 out_free_devname:
204 	kfree(mnt->mnt_devname);
205 #endif
206 out_free_id:
207 	mnt_free_id(mnt);
208 out_free_cache:
209 	kmem_cache_free(mnt_cache, mnt);
210 	return NULL;
211 }
212 
213 /*
214  * Most r/o checks on a fs are for operations that take
215  * discrete amounts of time, like a write() or unlink().
216  * We must keep track of when those operations start
217  * (for permission checks) and when they end, so that
218  * we can determine when writes are able to occur to
219  * a filesystem.
220  */
221 /*
222  * __mnt_is_readonly: check whether a mount is read-only
223  * @mnt: the mount to check for its write status
224  *
225  * This shouldn't be used directly ouside of the VFS.
226  * It does not guarantee that the filesystem will stay
227  * r/w, just that it is right *now*.  This can not and
228  * should not be used in place of IS_RDONLY(inode).
229  * mnt_want/drop_write() will _keep_ the filesystem
230  * r/w.
231  */
232 int __mnt_is_readonly(struct vfsmount *mnt)
233 {
234 	if (mnt->mnt_flags & MNT_READONLY)
235 		return 1;
236 	if (mnt->mnt_sb->s_flags & MS_RDONLY)
237 		return 1;
238 	return 0;
239 }
240 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
241 
242 static inline void mnt_inc_writers(struct mount *mnt)
243 {
244 #ifdef CONFIG_SMP
245 	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
246 #else
247 	mnt->mnt_writers++;
248 #endif
249 }
250 
251 static inline void mnt_dec_writers(struct mount *mnt)
252 {
253 #ifdef CONFIG_SMP
254 	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
255 #else
256 	mnt->mnt_writers--;
257 #endif
258 }
259 
260 static unsigned int mnt_get_writers(struct mount *mnt)
261 {
262 #ifdef CONFIG_SMP
263 	unsigned int count = 0;
264 	int cpu;
265 
266 	for_each_possible_cpu(cpu) {
267 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
268 	}
269 
270 	return count;
271 #else
272 	return mnt->mnt_writers;
273 #endif
274 }
275 
276 static int mnt_is_readonly(struct vfsmount *mnt)
277 {
278 	if (mnt->mnt_sb->s_readonly_remount)
279 		return 1;
280 	/* Order wrt setting s_flags/s_readonly_remount in do_remount() */
281 	smp_rmb();
282 	return __mnt_is_readonly(mnt);
283 }
284 
285 /*
286  * Most r/o & frozen checks on a fs are for operations that take discrete
287  * amounts of time, like a write() or unlink().  We must keep track of when
288  * those operations start (for permission checks) and when they end, so that we
289  * can determine when writes are able to occur to a filesystem.
290  */
291 /**
292  * __mnt_want_write - get write access to a mount without freeze protection
293  * @m: the mount on which to take a write
294  *
295  * This tells the low-level filesystem that a write is about to be performed to
296  * it, and makes sure that writes are allowed (mnt it read-write) before
297  * returning success. This operation does not protect against filesystem being
298  * frozen. When the write operation is finished, __mnt_drop_write() must be
299  * called. This is effectively a refcount.
300  */
301 int __mnt_want_write(struct vfsmount *m)
302 {
303 	struct mount *mnt = real_mount(m);
304 	int ret = 0;
305 
306 	preempt_disable();
307 	mnt_inc_writers(mnt);
308 	/*
309 	 * The store to mnt_inc_writers must be visible before we pass
310 	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
311 	 * incremented count after it has set MNT_WRITE_HOLD.
312 	 */
313 	smp_mb();
314 	while (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
315 		cpu_relax();
316 	/*
317 	 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
318 	 * be set to match its requirements. So we must not load that until
319 	 * MNT_WRITE_HOLD is cleared.
320 	 */
321 	smp_rmb();
322 	if (mnt_is_readonly(m)) {
323 		mnt_dec_writers(mnt);
324 		ret = -EROFS;
325 	}
326 	preempt_enable();
327 
328 	return ret;
329 }
330 
331 /**
332  * mnt_want_write - get write access to a mount
333  * @m: the mount on which to take a write
334  *
335  * This tells the low-level filesystem that a write is about to be performed to
336  * it, and makes sure that writes are allowed (mount is read-write, filesystem
337  * is not frozen) before returning success.  When the write operation is
338  * finished, mnt_drop_write() must be called.  This is effectively a refcount.
339  */
340 int mnt_want_write(struct vfsmount *m)
341 {
342 	int ret;
343 
344 	sb_start_write(m->mnt_sb);
345 	ret = __mnt_want_write(m);
346 	if (ret)
347 		sb_end_write(m->mnt_sb);
348 	return ret;
349 }
350 EXPORT_SYMBOL_GPL(mnt_want_write);
351 
352 /**
353  * mnt_clone_write - get write access to a mount
354  * @mnt: the mount on which to take a write
355  *
356  * This is effectively like mnt_want_write, except
357  * it must only be used to take an extra write reference
358  * on a mountpoint that we already know has a write reference
359  * on it. This allows some optimisation.
360  *
361  * After finished, mnt_drop_write must be called as usual to
362  * drop the reference.
363  */
364 int mnt_clone_write(struct vfsmount *mnt)
365 {
366 	/* superblock may be r/o */
367 	if (__mnt_is_readonly(mnt))
368 		return -EROFS;
369 	preempt_disable();
370 	mnt_inc_writers(real_mount(mnt));
371 	preempt_enable();
372 	return 0;
373 }
374 EXPORT_SYMBOL_GPL(mnt_clone_write);
375 
376 /**
377  * __mnt_want_write_file - get write access to a file's mount
378  * @file: the file who's mount on which to take a write
379  *
380  * This is like __mnt_want_write, but it takes a file and can
381  * do some optimisations if the file is open for write already
382  */
383 int __mnt_want_write_file(struct file *file)
384 {
385 	struct inode *inode = file->f_dentry->d_inode;
386 
387 	if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
388 		return __mnt_want_write(file->f_path.mnt);
389 	else
390 		return mnt_clone_write(file->f_path.mnt);
391 }
392 
393 /**
394  * mnt_want_write_file - get write access to a file's mount
395  * @file: the file who's mount on which to take a write
396  *
397  * This is like mnt_want_write, but it takes a file and can
398  * do some optimisations if the file is open for write already
399  */
400 int mnt_want_write_file(struct file *file)
401 {
402 	int ret;
403 
404 	sb_start_write(file->f_path.mnt->mnt_sb);
405 	ret = __mnt_want_write_file(file);
406 	if (ret)
407 		sb_end_write(file->f_path.mnt->mnt_sb);
408 	return ret;
409 }
410 EXPORT_SYMBOL_GPL(mnt_want_write_file);
411 
412 /**
413  * __mnt_drop_write - give up write access to a mount
414  * @mnt: the mount on which to give up write access
415  *
416  * Tells the low-level filesystem that we are done
417  * performing writes to it.  Must be matched with
418  * __mnt_want_write() call above.
419  */
420 void __mnt_drop_write(struct vfsmount *mnt)
421 {
422 	preempt_disable();
423 	mnt_dec_writers(real_mount(mnt));
424 	preempt_enable();
425 }
426 
427 /**
428  * mnt_drop_write - give up write access to a mount
429  * @mnt: the mount on which to give up write access
430  *
431  * Tells the low-level filesystem that we are done performing writes to it and
432  * also allows filesystem to be frozen again.  Must be matched with
433  * mnt_want_write() call above.
434  */
435 void mnt_drop_write(struct vfsmount *mnt)
436 {
437 	__mnt_drop_write(mnt);
438 	sb_end_write(mnt->mnt_sb);
439 }
440 EXPORT_SYMBOL_GPL(mnt_drop_write);
441 
442 void __mnt_drop_write_file(struct file *file)
443 {
444 	__mnt_drop_write(file->f_path.mnt);
445 }
446 
447 void mnt_drop_write_file(struct file *file)
448 {
449 	mnt_drop_write(file->f_path.mnt);
450 }
451 EXPORT_SYMBOL(mnt_drop_write_file);
452 
453 static int mnt_make_readonly(struct mount *mnt)
454 {
455 	int ret = 0;
456 
457 	br_write_lock(&vfsmount_lock);
458 	mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
459 	/*
460 	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
461 	 * should be visible before we do.
462 	 */
463 	smp_mb();
464 
465 	/*
466 	 * With writers on hold, if this value is zero, then there are
467 	 * definitely no active writers (although held writers may subsequently
468 	 * increment the count, they'll have to wait, and decrement it after
469 	 * seeing MNT_READONLY).
470 	 *
471 	 * It is OK to have counter incremented on one CPU and decremented on
472 	 * another: the sum will add up correctly. The danger would be when we
473 	 * sum up each counter, if we read a counter before it is incremented,
474 	 * but then read another CPU's count which it has been subsequently
475 	 * decremented from -- we would see more decrements than we should.
476 	 * MNT_WRITE_HOLD protects against this scenario, because
477 	 * mnt_want_write first increments count, then smp_mb, then spins on
478 	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
479 	 * we're counting up here.
480 	 */
481 	if (mnt_get_writers(mnt) > 0)
482 		ret = -EBUSY;
483 	else
484 		mnt->mnt.mnt_flags |= MNT_READONLY;
485 	/*
486 	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
487 	 * that become unheld will see MNT_READONLY.
488 	 */
489 	smp_wmb();
490 	mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
491 	br_write_unlock(&vfsmount_lock);
492 	return ret;
493 }
494 
495 static void __mnt_unmake_readonly(struct mount *mnt)
496 {
497 	br_write_lock(&vfsmount_lock);
498 	mnt->mnt.mnt_flags &= ~MNT_READONLY;
499 	br_write_unlock(&vfsmount_lock);
500 }
501 
502 int sb_prepare_remount_readonly(struct super_block *sb)
503 {
504 	struct mount *mnt;
505 	int err = 0;
506 
507 	/* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
508 	if (atomic_long_read(&sb->s_remove_count))
509 		return -EBUSY;
510 
511 	br_write_lock(&vfsmount_lock);
512 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
513 		if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
514 			mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
515 			smp_mb();
516 			if (mnt_get_writers(mnt) > 0) {
517 				err = -EBUSY;
518 				break;
519 			}
520 		}
521 	}
522 	if (!err && atomic_long_read(&sb->s_remove_count))
523 		err = -EBUSY;
524 
525 	if (!err) {
526 		sb->s_readonly_remount = 1;
527 		smp_wmb();
528 	}
529 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
530 		if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
531 			mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
532 	}
533 	br_write_unlock(&vfsmount_lock);
534 
535 	return err;
536 }
537 
538 static void free_vfsmnt(struct mount *mnt)
539 {
540 	kfree(mnt->mnt_devname);
541 	mnt_free_id(mnt);
542 #ifdef CONFIG_SMP
543 	free_percpu(mnt->mnt_pcp);
544 #endif
545 	kmem_cache_free(mnt_cache, mnt);
546 }
547 
548 /*
549  * find the first or last mount at @dentry on vfsmount @mnt depending on
550  * @dir. If @dir is set return the first mount else return the last mount.
551  * vfsmount_lock must be held for read or write.
552  */
553 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
554 			      int dir)
555 {
556 	struct list_head *head = mount_hashtable + hash(mnt, dentry);
557 	struct list_head *tmp = head;
558 	struct mount *p, *found = NULL;
559 
560 	for (;;) {
561 		tmp = dir ? tmp->next : tmp->prev;
562 		p = NULL;
563 		if (tmp == head)
564 			break;
565 		p = list_entry(tmp, struct mount, mnt_hash);
566 		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) {
567 			found = p;
568 			break;
569 		}
570 	}
571 	return found;
572 }
573 
574 /*
575  * lookup_mnt - Return the first child mount mounted at path
576  *
577  * "First" means first mounted chronologically.  If you create the
578  * following mounts:
579  *
580  * mount /dev/sda1 /mnt
581  * mount /dev/sda2 /mnt
582  * mount /dev/sda3 /mnt
583  *
584  * Then lookup_mnt() on the base /mnt dentry in the root mount will
585  * return successively the root dentry and vfsmount of /dev/sda1, then
586  * /dev/sda2, then /dev/sda3, then NULL.
587  *
588  * lookup_mnt takes a reference to the found vfsmount.
589  */
590 struct vfsmount *lookup_mnt(struct path *path)
591 {
592 	struct mount *child_mnt;
593 
594 	br_read_lock(&vfsmount_lock);
595 	child_mnt = __lookup_mnt(path->mnt, path->dentry, 1);
596 	if (child_mnt) {
597 		mnt_add_count(child_mnt, 1);
598 		br_read_unlock(&vfsmount_lock);
599 		return &child_mnt->mnt;
600 	} else {
601 		br_read_unlock(&vfsmount_lock);
602 		return NULL;
603 	}
604 }
605 
606 static inline int check_mnt(struct mount *mnt)
607 {
608 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
609 }
610 
611 /*
612  * vfsmount lock must be held for write
613  */
614 static void touch_mnt_namespace(struct mnt_namespace *ns)
615 {
616 	if (ns) {
617 		ns->event = ++event;
618 		wake_up_interruptible(&ns->poll);
619 	}
620 }
621 
622 /*
623  * vfsmount lock must be held for write
624  */
625 static void __touch_mnt_namespace(struct mnt_namespace *ns)
626 {
627 	if (ns && ns->event != event) {
628 		ns->event = event;
629 		wake_up_interruptible(&ns->poll);
630 	}
631 }
632 
633 /*
634  * Clear dentry's mounted state if it has no remaining mounts.
635  * vfsmount_lock must be held for write.
636  */
637 static void dentry_reset_mounted(struct dentry *dentry)
638 {
639 	unsigned u;
640 
641 	for (u = 0; u < HASH_SIZE; u++) {
642 		struct mount *p;
643 
644 		list_for_each_entry(p, &mount_hashtable[u], mnt_hash) {
645 			if (p->mnt_mountpoint == dentry)
646 				return;
647 		}
648 	}
649 	spin_lock(&dentry->d_lock);
650 	dentry->d_flags &= ~DCACHE_MOUNTED;
651 	spin_unlock(&dentry->d_lock);
652 }
653 
654 /*
655  * vfsmount lock must be held for write
656  */
657 static void detach_mnt(struct mount *mnt, struct path *old_path)
658 {
659 	old_path->dentry = mnt->mnt_mountpoint;
660 	old_path->mnt = &mnt->mnt_parent->mnt;
661 	mnt->mnt_parent = mnt;
662 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
663 	list_del_init(&mnt->mnt_child);
664 	list_del_init(&mnt->mnt_hash);
665 	dentry_reset_mounted(old_path->dentry);
666 }
667 
668 /*
669  * vfsmount lock must be held for write
670  */
671 void mnt_set_mountpoint(struct mount *mnt, struct dentry *dentry,
672 			struct mount *child_mnt)
673 {
674 	mnt_add_count(mnt, 1);	/* essentially, that's mntget */
675 	child_mnt->mnt_mountpoint = dget(dentry);
676 	child_mnt->mnt_parent = mnt;
677 	spin_lock(&dentry->d_lock);
678 	dentry->d_flags |= DCACHE_MOUNTED;
679 	spin_unlock(&dentry->d_lock);
680 }
681 
682 /*
683  * vfsmount lock must be held for write
684  */
685 static void attach_mnt(struct mount *mnt, struct path *path)
686 {
687 	mnt_set_mountpoint(real_mount(path->mnt), path->dentry, mnt);
688 	list_add_tail(&mnt->mnt_hash, mount_hashtable +
689 			hash(path->mnt, path->dentry));
690 	list_add_tail(&mnt->mnt_child, &real_mount(path->mnt)->mnt_mounts);
691 }
692 
693 /*
694  * vfsmount lock must be held for write
695  */
696 static void commit_tree(struct mount *mnt)
697 {
698 	struct mount *parent = mnt->mnt_parent;
699 	struct mount *m;
700 	LIST_HEAD(head);
701 	struct mnt_namespace *n = parent->mnt_ns;
702 
703 	BUG_ON(parent == mnt);
704 
705 	list_add_tail(&head, &mnt->mnt_list);
706 	list_for_each_entry(m, &head, mnt_list)
707 		m->mnt_ns = n;
708 
709 	list_splice(&head, n->list.prev);
710 
711 	list_add_tail(&mnt->mnt_hash, mount_hashtable +
712 				hash(&parent->mnt, mnt->mnt_mountpoint));
713 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
714 	touch_mnt_namespace(n);
715 }
716 
717 static struct mount *next_mnt(struct mount *p, struct mount *root)
718 {
719 	struct list_head *next = p->mnt_mounts.next;
720 	if (next == &p->mnt_mounts) {
721 		while (1) {
722 			if (p == root)
723 				return NULL;
724 			next = p->mnt_child.next;
725 			if (next != &p->mnt_parent->mnt_mounts)
726 				break;
727 			p = p->mnt_parent;
728 		}
729 	}
730 	return list_entry(next, struct mount, mnt_child);
731 }
732 
733 static struct mount *skip_mnt_tree(struct mount *p)
734 {
735 	struct list_head *prev = p->mnt_mounts.prev;
736 	while (prev != &p->mnt_mounts) {
737 		p = list_entry(prev, struct mount, mnt_child);
738 		prev = p->mnt_mounts.prev;
739 	}
740 	return p;
741 }
742 
743 struct vfsmount *
744 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
745 {
746 	struct mount *mnt;
747 	struct dentry *root;
748 
749 	if (!type)
750 		return ERR_PTR(-ENODEV);
751 
752 	mnt = alloc_vfsmnt(name);
753 	if (!mnt)
754 		return ERR_PTR(-ENOMEM);
755 
756 	if (flags & MS_KERNMOUNT)
757 		mnt->mnt.mnt_flags = MNT_INTERNAL;
758 
759 	root = mount_fs(type, flags, name, data);
760 	if (IS_ERR(root)) {
761 		free_vfsmnt(mnt);
762 		return ERR_CAST(root);
763 	}
764 
765 	mnt->mnt.mnt_root = root;
766 	mnt->mnt.mnt_sb = root->d_sb;
767 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
768 	mnt->mnt_parent = mnt;
769 	br_write_lock(&vfsmount_lock);
770 	list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
771 	br_write_unlock(&vfsmount_lock);
772 	return &mnt->mnt;
773 }
774 EXPORT_SYMBOL_GPL(vfs_kern_mount);
775 
776 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
777 					int flag)
778 {
779 	struct super_block *sb = old->mnt.mnt_sb;
780 	struct mount *mnt;
781 	int err;
782 
783 	mnt = alloc_vfsmnt(old->mnt_devname);
784 	if (!mnt)
785 		return ERR_PTR(-ENOMEM);
786 
787 	if (flag & (CL_SLAVE | CL_PRIVATE))
788 		mnt->mnt_group_id = 0; /* not a peer of original */
789 	else
790 		mnt->mnt_group_id = old->mnt_group_id;
791 
792 	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
793 		err = mnt_alloc_group_id(mnt);
794 		if (err)
795 			goto out_free;
796 	}
797 
798 	mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD;
799 	atomic_inc(&sb->s_active);
800 	mnt->mnt.mnt_sb = sb;
801 	mnt->mnt.mnt_root = dget(root);
802 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
803 	mnt->mnt_parent = mnt;
804 	br_write_lock(&vfsmount_lock);
805 	list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
806 	br_write_unlock(&vfsmount_lock);
807 
808 	if (flag & CL_SLAVE) {
809 		list_add(&mnt->mnt_slave, &old->mnt_slave_list);
810 		mnt->mnt_master = old;
811 		CLEAR_MNT_SHARED(mnt);
812 	} else if (!(flag & CL_PRIVATE)) {
813 		if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
814 			list_add(&mnt->mnt_share, &old->mnt_share);
815 		if (IS_MNT_SLAVE(old))
816 			list_add(&mnt->mnt_slave, &old->mnt_slave);
817 		mnt->mnt_master = old->mnt_master;
818 	}
819 	if (flag & CL_MAKE_SHARED)
820 		set_mnt_shared(mnt);
821 
822 	/* stick the duplicate mount on the same expiry list
823 	 * as the original if that was on one */
824 	if (flag & CL_EXPIRE) {
825 		if (!list_empty(&old->mnt_expire))
826 			list_add(&mnt->mnt_expire, &old->mnt_expire);
827 	}
828 
829 	return mnt;
830 
831  out_free:
832 	free_vfsmnt(mnt);
833 	return ERR_PTR(err);
834 }
835 
836 static inline void mntfree(struct mount *mnt)
837 {
838 	struct vfsmount *m = &mnt->mnt;
839 	struct super_block *sb = m->mnt_sb;
840 
841 	/*
842 	 * This probably indicates that somebody messed
843 	 * up a mnt_want/drop_write() pair.  If this
844 	 * happens, the filesystem was probably unable
845 	 * to make r/w->r/o transitions.
846 	 */
847 	/*
848 	 * The locking used to deal with mnt_count decrement provides barriers,
849 	 * so mnt_get_writers() below is safe.
850 	 */
851 	WARN_ON(mnt_get_writers(mnt));
852 	fsnotify_vfsmount_delete(m);
853 	dput(m->mnt_root);
854 	free_vfsmnt(mnt);
855 	deactivate_super(sb);
856 }
857 
858 static void mntput_no_expire(struct mount *mnt)
859 {
860 put_again:
861 #ifdef CONFIG_SMP
862 	br_read_lock(&vfsmount_lock);
863 	if (likely(mnt->mnt_ns)) {
864 		/* shouldn't be the last one */
865 		mnt_add_count(mnt, -1);
866 		br_read_unlock(&vfsmount_lock);
867 		return;
868 	}
869 	br_read_unlock(&vfsmount_lock);
870 
871 	br_write_lock(&vfsmount_lock);
872 	mnt_add_count(mnt, -1);
873 	if (mnt_get_count(mnt)) {
874 		br_write_unlock(&vfsmount_lock);
875 		return;
876 	}
877 #else
878 	mnt_add_count(mnt, -1);
879 	if (likely(mnt_get_count(mnt)))
880 		return;
881 	br_write_lock(&vfsmount_lock);
882 #endif
883 	if (unlikely(mnt->mnt_pinned)) {
884 		mnt_add_count(mnt, mnt->mnt_pinned + 1);
885 		mnt->mnt_pinned = 0;
886 		br_write_unlock(&vfsmount_lock);
887 		acct_auto_close_mnt(&mnt->mnt);
888 		goto put_again;
889 	}
890 
891 	list_del(&mnt->mnt_instance);
892 	br_write_unlock(&vfsmount_lock);
893 	mntfree(mnt);
894 }
895 
896 void mntput(struct vfsmount *mnt)
897 {
898 	if (mnt) {
899 		struct mount *m = real_mount(mnt);
900 		/* avoid cacheline pingpong, hope gcc doesn't get "smart" */
901 		if (unlikely(m->mnt_expiry_mark))
902 			m->mnt_expiry_mark = 0;
903 		mntput_no_expire(m);
904 	}
905 }
906 EXPORT_SYMBOL(mntput);
907 
908 struct vfsmount *mntget(struct vfsmount *mnt)
909 {
910 	if (mnt)
911 		mnt_add_count(real_mount(mnt), 1);
912 	return mnt;
913 }
914 EXPORT_SYMBOL(mntget);
915 
916 void mnt_pin(struct vfsmount *mnt)
917 {
918 	br_write_lock(&vfsmount_lock);
919 	real_mount(mnt)->mnt_pinned++;
920 	br_write_unlock(&vfsmount_lock);
921 }
922 EXPORT_SYMBOL(mnt_pin);
923 
924 void mnt_unpin(struct vfsmount *m)
925 {
926 	struct mount *mnt = real_mount(m);
927 	br_write_lock(&vfsmount_lock);
928 	if (mnt->mnt_pinned) {
929 		mnt_add_count(mnt, 1);
930 		mnt->mnt_pinned--;
931 	}
932 	br_write_unlock(&vfsmount_lock);
933 }
934 EXPORT_SYMBOL(mnt_unpin);
935 
936 static inline void mangle(struct seq_file *m, const char *s)
937 {
938 	seq_escape(m, s, " \t\n\\");
939 }
940 
941 /*
942  * Simple .show_options callback for filesystems which don't want to
943  * implement more complex mount option showing.
944  *
945  * See also save_mount_options().
946  */
947 int generic_show_options(struct seq_file *m, struct dentry *root)
948 {
949 	const char *options;
950 
951 	rcu_read_lock();
952 	options = rcu_dereference(root->d_sb->s_options);
953 
954 	if (options != NULL && options[0]) {
955 		seq_putc(m, ',');
956 		mangle(m, options);
957 	}
958 	rcu_read_unlock();
959 
960 	return 0;
961 }
962 EXPORT_SYMBOL(generic_show_options);
963 
964 /*
965  * If filesystem uses generic_show_options(), this function should be
966  * called from the fill_super() callback.
967  *
968  * The .remount_fs callback usually needs to be handled in a special
969  * way, to make sure, that previous options are not overwritten if the
970  * remount fails.
971  *
972  * Also note, that if the filesystem's .remount_fs function doesn't
973  * reset all options to their default value, but changes only newly
974  * given options, then the displayed options will not reflect reality
975  * any more.
976  */
977 void save_mount_options(struct super_block *sb, char *options)
978 {
979 	BUG_ON(sb->s_options);
980 	rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
981 }
982 EXPORT_SYMBOL(save_mount_options);
983 
984 void replace_mount_options(struct super_block *sb, char *options)
985 {
986 	char *old = sb->s_options;
987 	rcu_assign_pointer(sb->s_options, options);
988 	if (old) {
989 		synchronize_rcu();
990 		kfree(old);
991 	}
992 }
993 EXPORT_SYMBOL(replace_mount_options);
994 
995 #ifdef CONFIG_PROC_FS
996 /* iterator; we want it to have access to namespace_sem, thus here... */
997 static void *m_start(struct seq_file *m, loff_t *pos)
998 {
999 	struct proc_mounts *p = proc_mounts(m);
1000 
1001 	down_read(&namespace_sem);
1002 	return seq_list_start(&p->ns->list, *pos);
1003 }
1004 
1005 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1006 {
1007 	struct proc_mounts *p = proc_mounts(m);
1008 
1009 	return seq_list_next(v, &p->ns->list, pos);
1010 }
1011 
1012 static void m_stop(struct seq_file *m, void *v)
1013 {
1014 	up_read(&namespace_sem);
1015 }
1016 
1017 static int m_show(struct seq_file *m, void *v)
1018 {
1019 	struct proc_mounts *p = proc_mounts(m);
1020 	struct mount *r = list_entry(v, struct mount, mnt_list);
1021 	return p->show(m, &r->mnt);
1022 }
1023 
1024 const struct seq_operations mounts_op = {
1025 	.start	= m_start,
1026 	.next	= m_next,
1027 	.stop	= m_stop,
1028 	.show	= m_show,
1029 };
1030 #endif  /* CONFIG_PROC_FS */
1031 
1032 /**
1033  * may_umount_tree - check if a mount tree is busy
1034  * @mnt: root of mount tree
1035  *
1036  * This is called to check if a tree of mounts has any
1037  * open files, pwds, chroots or sub mounts that are
1038  * busy.
1039  */
1040 int may_umount_tree(struct vfsmount *m)
1041 {
1042 	struct mount *mnt = real_mount(m);
1043 	int actual_refs = 0;
1044 	int minimum_refs = 0;
1045 	struct mount *p;
1046 	BUG_ON(!m);
1047 
1048 	/* write lock needed for mnt_get_count */
1049 	br_write_lock(&vfsmount_lock);
1050 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1051 		actual_refs += mnt_get_count(p);
1052 		minimum_refs += 2;
1053 	}
1054 	br_write_unlock(&vfsmount_lock);
1055 
1056 	if (actual_refs > minimum_refs)
1057 		return 0;
1058 
1059 	return 1;
1060 }
1061 
1062 EXPORT_SYMBOL(may_umount_tree);
1063 
1064 /**
1065  * may_umount - check if a mount point is busy
1066  * @mnt: root of mount
1067  *
1068  * This is called to check if a mount point has any
1069  * open files, pwds, chroots or sub mounts. If the
1070  * mount has sub mounts this will return busy
1071  * regardless of whether the sub mounts are busy.
1072  *
1073  * Doesn't take quota and stuff into account. IOW, in some cases it will
1074  * give false negatives. The main reason why it's here is that we need
1075  * a non-destructive way to look for easily umountable filesystems.
1076  */
1077 int may_umount(struct vfsmount *mnt)
1078 {
1079 	int ret = 1;
1080 	down_read(&namespace_sem);
1081 	br_write_lock(&vfsmount_lock);
1082 	if (propagate_mount_busy(real_mount(mnt), 2))
1083 		ret = 0;
1084 	br_write_unlock(&vfsmount_lock);
1085 	up_read(&namespace_sem);
1086 	return ret;
1087 }
1088 
1089 EXPORT_SYMBOL(may_umount);
1090 
1091 void release_mounts(struct list_head *head)
1092 {
1093 	struct mount *mnt;
1094 	while (!list_empty(head)) {
1095 		mnt = list_first_entry(head, struct mount, mnt_hash);
1096 		list_del_init(&mnt->mnt_hash);
1097 		if (mnt_has_parent(mnt)) {
1098 			struct dentry *dentry;
1099 			struct mount *m;
1100 
1101 			br_write_lock(&vfsmount_lock);
1102 			dentry = mnt->mnt_mountpoint;
1103 			m = mnt->mnt_parent;
1104 			mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1105 			mnt->mnt_parent = mnt;
1106 			m->mnt_ghosts--;
1107 			br_write_unlock(&vfsmount_lock);
1108 			dput(dentry);
1109 			mntput(&m->mnt);
1110 		}
1111 		mntput(&mnt->mnt);
1112 	}
1113 }
1114 
1115 /*
1116  * vfsmount lock must be held for write
1117  * namespace_sem must be held for write
1118  */
1119 void umount_tree(struct mount *mnt, int propagate, struct list_head *kill)
1120 {
1121 	LIST_HEAD(tmp_list);
1122 	struct mount *p;
1123 
1124 	for (p = mnt; p; p = next_mnt(p, mnt))
1125 		list_move(&p->mnt_hash, &tmp_list);
1126 
1127 	if (propagate)
1128 		propagate_umount(&tmp_list);
1129 
1130 	list_for_each_entry(p, &tmp_list, mnt_hash) {
1131 		list_del_init(&p->mnt_expire);
1132 		list_del_init(&p->mnt_list);
1133 		__touch_mnt_namespace(p->mnt_ns);
1134 		p->mnt_ns = NULL;
1135 		list_del_init(&p->mnt_child);
1136 		if (mnt_has_parent(p)) {
1137 			p->mnt_parent->mnt_ghosts++;
1138 			dentry_reset_mounted(p->mnt_mountpoint);
1139 		}
1140 		change_mnt_propagation(p, MS_PRIVATE);
1141 	}
1142 	list_splice(&tmp_list, kill);
1143 }
1144 
1145 static void shrink_submounts(struct mount *mnt, struct list_head *umounts);
1146 
1147 static int do_umount(struct mount *mnt, int flags)
1148 {
1149 	struct super_block *sb = mnt->mnt.mnt_sb;
1150 	int retval;
1151 	LIST_HEAD(umount_list);
1152 
1153 	retval = security_sb_umount(&mnt->mnt, flags);
1154 	if (retval)
1155 		return retval;
1156 
1157 	/*
1158 	 * Allow userspace to request a mountpoint be expired rather than
1159 	 * unmounting unconditionally. Unmount only happens if:
1160 	 *  (1) the mark is already set (the mark is cleared by mntput())
1161 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1162 	 */
1163 	if (flags & MNT_EXPIRE) {
1164 		if (&mnt->mnt == current->fs->root.mnt ||
1165 		    flags & (MNT_FORCE | MNT_DETACH))
1166 			return -EINVAL;
1167 
1168 		/*
1169 		 * probably don't strictly need the lock here if we examined
1170 		 * all race cases, but it's a slowpath.
1171 		 */
1172 		br_write_lock(&vfsmount_lock);
1173 		if (mnt_get_count(mnt) != 2) {
1174 			br_write_unlock(&vfsmount_lock);
1175 			return -EBUSY;
1176 		}
1177 		br_write_unlock(&vfsmount_lock);
1178 
1179 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1180 			return -EAGAIN;
1181 	}
1182 
1183 	/*
1184 	 * If we may have to abort operations to get out of this
1185 	 * mount, and they will themselves hold resources we must
1186 	 * allow the fs to do things. In the Unix tradition of
1187 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1188 	 * might fail to complete on the first run through as other tasks
1189 	 * must return, and the like. Thats for the mount program to worry
1190 	 * about for the moment.
1191 	 */
1192 
1193 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1194 		sb->s_op->umount_begin(sb);
1195 	}
1196 
1197 	/*
1198 	 * No sense to grab the lock for this test, but test itself looks
1199 	 * somewhat bogus. Suggestions for better replacement?
1200 	 * Ho-hum... In principle, we might treat that as umount + switch
1201 	 * to rootfs. GC would eventually take care of the old vfsmount.
1202 	 * Actually it makes sense, especially if rootfs would contain a
1203 	 * /reboot - static binary that would close all descriptors and
1204 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1205 	 */
1206 	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1207 		/*
1208 		 * Special case for "unmounting" root ...
1209 		 * we just try to remount it readonly.
1210 		 */
1211 		down_write(&sb->s_umount);
1212 		if (!(sb->s_flags & MS_RDONLY))
1213 			retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1214 		up_write(&sb->s_umount);
1215 		return retval;
1216 	}
1217 
1218 	down_write(&namespace_sem);
1219 	br_write_lock(&vfsmount_lock);
1220 	event++;
1221 
1222 	if (!(flags & MNT_DETACH))
1223 		shrink_submounts(mnt, &umount_list);
1224 
1225 	retval = -EBUSY;
1226 	if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1227 		if (!list_empty(&mnt->mnt_list))
1228 			umount_tree(mnt, 1, &umount_list);
1229 		retval = 0;
1230 	}
1231 	br_write_unlock(&vfsmount_lock);
1232 	up_write(&namespace_sem);
1233 	release_mounts(&umount_list);
1234 	return retval;
1235 }
1236 
1237 /*
1238  * Now umount can handle mount points as well as block devices.
1239  * This is important for filesystems which use unnamed block devices.
1240  *
1241  * We now support a flag for forced unmount like the other 'big iron'
1242  * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1243  */
1244 
1245 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1246 {
1247 	struct path path;
1248 	struct mount *mnt;
1249 	int retval;
1250 	int lookup_flags = 0;
1251 
1252 	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1253 		return -EINVAL;
1254 
1255 	if (!(flags & UMOUNT_NOFOLLOW))
1256 		lookup_flags |= LOOKUP_FOLLOW;
1257 
1258 	retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1259 	if (retval)
1260 		goto out;
1261 	mnt = real_mount(path.mnt);
1262 	retval = -EINVAL;
1263 	if (path.dentry != path.mnt->mnt_root)
1264 		goto dput_and_out;
1265 	if (!check_mnt(mnt))
1266 		goto dput_and_out;
1267 
1268 	retval = -EPERM;
1269 	if (!capable(CAP_SYS_ADMIN))
1270 		goto dput_and_out;
1271 
1272 	retval = do_umount(mnt, flags);
1273 dput_and_out:
1274 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
1275 	dput(path.dentry);
1276 	mntput_no_expire(mnt);
1277 out:
1278 	return retval;
1279 }
1280 
1281 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1282 
1283 /*
1284  *	The 2.0 compatible umount. No flags.
1285  */
1286 SYSCALL_DEFINE1(oldumount, char __user *, name)
1287 {
1288 	return sys_umount(name, 0);
1289 }
1290 
1291 #endif
1292 
1293 static int mount_is_safe(struct path *path)
1294 {
1295 	if (capable(CAP_SYS_ADMIN))
1296 		return 0;
1297 	return -EPERM;
1298 #ifdef notyet
1299 	if (S_ISLNK(path->dentry->d_inode->i_mode))
1300 		return -EPERM;
1301 	if (path->dentry->d_inode->i_mode & S_ISVTX) {
1302 		if (current_uid() != path->dentry->d_inode->i_uid)
1303 			return -EPERM;
1304 	}
1305 	if (inode_permission(path->dentry->d_inode, MAY_WRITE))
1306 		return -EPERM;
1307 	return 0;
1308 #endif
1309 }
1310 
1311 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1312 					int flag)
1313 {
1314 	struct mount *res, *p, *q, *r;
1315 	struct path path;
1316 
1317 	if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1318 		return ERR_PTR(-EINVAL);
1319 
1320 	res = q = clone_mnt(mnt, dentry, flag);
1321 	if (IS_ERR(q))
1322 		return q;
1323 
1324 	q->mnt_mountpoint = mnt->mnt_mountpoint;
1325 
1326 	p = mnt;
1327 	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1328 		struct mount *s;
1329 		if (!is_subdir(r->mnt_mountpoint, dentry))
1330 			continue;
1331 
1332 		for (s = r; s; s = next_mnt(s, r)) {
1333 			if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
1334 				s = skip_mnt_tree(s);
1335 				continue;
1336 			}
1337 			while (p != s->mnt_parent) {
1338 				p = p->mnt_parent;
1339 				q = q->mnt_parent;
1340 			}
1341 			p = s;
1342 			path.mnt = &q->mnt;
1343 			path.dentry = p->mnt_mountpoint;
1344 			q = clone_mnt(p, p->mnt.mnt_root, flag);
1345 			if (IS_ERR(q))
1346 				goto out;
1347 			br_write_lock(&vfsmount_lock);
1348 			list_add_tail(&q->mnt_list, &res->mnt_list);
1349 			attach_mnt(q, &path);
1350 			br_write_unlock(&vfsmount_lock);
1351 		}
1352 	}
1353 	return res;
1354 out:
1355 	if (res) {
1356 		LIST_HEAD(umount_list);
1357 		br_write_lock(&vfsmount_lock);
1358 		umount_tree(res, 0, &umount_list);
1359 		br_write_unlock(&vfsmount_lock);
1360 		release_mounts(&umount_list);
1361 	}
1362 	return q;
1363 }
1364 
1365 /* Caller should check returned pointer for errors */
1366 
1367 struct vfsmount *collect_mounts(struct path *path)
1368 {
1369 	struct mount *tree;
1370 	down_write(&namespace_sem);
1371 	tree = copy_tree(real_mount(path->mnt), path->dentry,
1372 			 CL_COPY_ALL | CL_PRIVATE);
1373 	up_write(&namespace_sem);
1374 	if (IS_ERR(tree))
1375 		return NULL;
1376 	return &tree->mnt;
1377 }
1378 
1379 void drop_collected_mounts(struct vfsmount *mnt)
1380 {
1381 	LIST_HEAD(umount_list);
1382 	down_write(&namespace_sem);
1383 	br_write_lock(&vfsmount_lock);
1384 	umount_tree(real_mount(mnt), 0, &umount_list);
1385 	br_write_unlock(&vfsmount_lock);
1386 	up_write(&namespace_sem);
1387 	release_mounts(&umount_list);
1388 }
1389 
1390 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1391 		   struct vfsmount *root)
1392 {
1393 	struct mount *mnt;
1394 	int res = f(root, arg);
1395 	if (res)
1396 		return res;
1397 	list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1398 		res = f(&mnt->mnt, arg);
1399 		if (res)
1400 			return res;
1401 	}
1402 	return 0;
1403 }
1404 
1405 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1406 {
1407 	struct mount *p;
1408 
1409 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1410 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
1411 			mnt_release_group_id(p);
1412 	}
1413 }
1414 
1415 static int invent_group_ids(struct mount *mnt, bool recurse)
1416 {
1417 	struct mount *p;
1418 
1419 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1420 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1421 			int err = mnt_alloc_group_id(p);
1422 			if (err) {
1423 				cleanup_group_ids(mnt, p);
1424 				return err;
1425 			}
1426 		}
1427 	}
1428 
1429 	return 0;
1430 }
1431 
1432 /*
1433  *  @source_mnt : mount tree to be attached
1434  *  @nd         : place the mount tree @source_mnt is attached
1435  *  @parent_nd  : if non-null, detach the source_mnt from its parent and
1436  *  		   store the parent mount and mountpoint dentry.
1437  *  		   (done when source_mnt is moved)
1438  *
1439  *  NOTE: in the table below explains the semantics when a source mount
1440  *  of a given type is attached to a destination mount of a given type.
1441  * ---------------------------------------------------------------------------
1442  * |         BIND MOUNT OPERATION                                            |
1443  * |**************************************************************************
1444  * | source-->| shared        |       private  |       slave    | unbindable |
1445  * | dest     |               |                |                |            |
1446  * |   |      |               |                |                |            |
1447  * |   v      |               |                |                |            |
1448  * |**************************************************************************
1449  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
1450  * |          |               |                |                |            |
1451  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
1452  * ***************************************************************************
1453  * A bind operation clones the source mount and mounts the clone on the
1454  * destination mount.
1455  *
1456  * (++)  the cloned mount is propagated to all the mounts in the propagation
1457  * 	 tree of the destination mount and the cloned mount is added to
1458  * 	 the peer group of the source mount.
1459  * (+)   the cloned mount is created under the destination mount and is marked
1460  *       as shared. The cloned mount is added to the peer group of the source
1461  *       mount.
1462  * (+++) the mount is propagated to all the mounts in the propagation tree
1463  *       of the destination mount and the cloned mount is made slave
1464  *       of the same master as that of the source mount. The cloned mount
1465  *       is marked as 'shared and slave'.
1466  * (*)   the cloned mount is made a slave of the same master as that of the
1467  * 	 source mount.
1468  *
1469  * ---------------------------------------------------------------------------
1470  * |         		MOVE MOUNT OPERATION                                 |
1471  * |**************************************************************************
1472  * | source-->| shared        |       private  |       slave    | unbindable |
1473  * | dest     |               |                |                |            |
1474  * |   |      |               |                |                |            |
1475  * |   v      |               |                |                |            |
1476  * |**************************************************************************
1477  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
1478  * |          |               |                |                |            |
1479  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
1480  * ***************************************************************************
1481  *
1482  * (+)  the mount is moved to the destination. And is then propagated to
1483  * 	all the mounts in the propagation tree of the destination mount.
1484  * (+*)  the mount is moved to the destination.
1485  * (+++)  the mount is moved to the destination and is then propagated to
1486  * 	all the mounts belonging to the destination mount's propagation tree.
1487  * 	the mount is marked as 'shared and slave'.
1488  * (*)	the mount continues to be a slave at the new location.
1489  *
1490  * if the source mount is a tree, the operations explained above is
1491  * applied to each mount in the tree.
1492  * Must be called without spinlocks held, since this function can sleep
1493  * in allocations.
1494  */
1495 static int attach_recursive_mnt(struct mount *source_mnt,
1496 			struct path *path, struct path *parent_path)
1497 {
1498 	LIST_HEAD(tree_list);
1499 	struct mount *dest_mnt = real_mount(path->mnt);
1500 	struct dentry *dest_dentry = path->dentry;
1501 	struct mount *child, *p;
1502 	int err;
1503 
1504 	if (IS_MNT_SHARED(dest_mnt)) {
1505 		err = invent_group_ids(source_mnt, true);
1506 		if (err)
1507 			goto out;
1508 	}
1509 	err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
1510 	if (err)
1511 		goto out_cleanup_ids;
1512 
1513 	br_write_lock(&vfsmount_lock);
1514 
1515 	if (IS_MNT_SHARED(dest_mnt)) {
1516 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1517 			set_mnt_shared(p);
1518 	}
1519 	if (parent_path) {
1520 		detach_mnt(source_mnt, parent_path);
1521 		attach_mnt(source_mnt, path);
1522 		touch_mnt_namespace(source_mnt->mnt_ns);
1523 	} else {
1524 		mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
1525 		commit_tree(source_mnt);
1526 	}
1527 
1528 	list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1529 		list_del_init(&child->mnt_hash);
1530 		commit_tree(child);
1531 	}
1532 	br_write_unlock(&vfsmount_lock);
1533 
1534 	return 0;
1535 
1536  out_cleanup_ids:
1537 	if (IS_MNT_SHARED(dest_mnt))
1538 		cleanup_group_ids(source_mnt, NULL);
1539  out:
1540 	return err;
1541 }
1542 
1543 static int lock_mount(struct path *path)
1544 {
1545 	struct vfsmount *mnt;
1546 retry:
1547 	mutex_lock(&path->dentry->d_inode->i_mutex);
1548 	if (unlikely(cant_mount(path->dentry))) {
1549 		mutex_unlock(&path->dentry->d_inode->i_mutex);
1550 		return -ENOENT;
1551 	}
1552 	down_write(&namespace_sem);
1553 	mnt = lookup_mnt(path);
1554 	if (likely(!mnt))
1555 		return 0;
1556 	up_write(&namespace_sem);
1557 	mutex_unlock(&path->dentry->d_inode->i_mutex);
1558 	path_put(path);
1559 	path->mnt = mnt;
1560 	path->dentry = dget(mnt->mnt_root);
1561 	goto retry;
1562 }
1563 
1564 static void unlock_mount(struct path *path)
1565 {
1566 	up_write(&namespace_sem);
1567 	mutex_unlock(&path->dentry->d_inode->i_mutex);
1568 }
1569 
1570 static int graft_tree(struct mount *mnt, struct path *path)
1571 {
1572 	if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1573 		return -EINVAL;
1574 
1575 	if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1576 	      S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1577 		return -ENOTDIR;
1578 
1579 	if (d_unlinked(path->dentry))
1580 		return -ENOENT;
1581 
1582 	return attach_recursive_mnt(mnt, path, NULL);
1583 }
1584 
1585 /*
1586  * Sanity check the flags to change_mnt_propagation.
1587  */
1588 
1589 static int flags_to_propagation_type(int flags)
1590 {
1591 	int type = flags & ~(MS_REC | MS_SILENT);
1592 
1593 	/* Fail if any non-propagation flags are set */
1594 	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1595 		return 0;
1596 	/* Only one propagation flag should be set */
1597 	if (!is_power_of_2(type))
1598 		return 0;
1599 	return type;
1600 }
1601 
1602 /*
1603  * recursively change the type of the mountpoint.
1604  */
1605 static int do_change_type(struct path *path, int flag)
1606 {
1607 	struct mount *m;
1608 	struct mount *mnt = real_mount(path->mnt);
1609 	int recurse = flag & MS_REC;
1610 	int type;
1611 	int err = 0;
1612 
1613 	if (!capable(CAP_SYS_ADMIN))
1614 		return -EPERM;
1615 
1616 	if (path->dentry != path->mnt->mnt_root)
1617 		return -EINVAL;
1618 
1619 	type = flags_to_propagation_type(flag);
1620 	if (!type)
1621 		return -EINVAL;
1622 
1623 	down_write(&namespace_sem);
1624 	if (type == MS_SHARED) {
1625 		err = invent_group_ids(mnt, recurse);
1626 		if (err)
1627 			goto out_unlock;
1628 	}
1629 
1630 	br_write_lock(&vfsmount_lock);
1631 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1632 		change_mnt_propagation(m, type);
1633 	br_write_unlock(&vfsmount_lock);
1634 
1635  out_unlock:
1636 	up_write(&namespace_sem);
1637 	return err;
1638 }
1639 
1640 /*
1641  * do loopback mount.
1642  */
1643 static int do_loopback(struct path *path, char *old_name,
1644 				int recurse)
1645 {
1646 	LIST_HEAD(umount_list);
1647 	struct path old_path;
1648 	struct mount *mnt = NULL, *old;
1649 	int err = mount_is_safe(path);
1650 	if (err)
1651 		return err;
1652 	if (!old_name || !*old_name)
1653 		return -EINVAL;
1654 	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1655 	if (err)
1656 		return err;
1657 
1658 	err = lock_mount(path);
1659 	if (err)
1660 		goto out;
1661 
1662 	old = real_mount(old_path.mnt);
1663 
1664 	err = -EINVAL;
1665 	if (IS_MNT_UNBINDABLE(old))
1666 		goto out2;
1667 
1668 	if (!check_mnt(real_mount(path->mnt)) || !check_mnt(old))
1669 		goto out2;
1670 
1671 	if (recurse)
1672 		mnt = copy_tree(old, old_path.dentry, 0);
1673 	else
1674 		mnt = clone_mnt(old, old_path.dentry, 0);
1675 
1676 	if (IS_ERR(mnt)) {
1677 		err = PTR_ERR(mnt);
1678 		goto out;
1679 	}
1680 
1681 	err = graft_tree(mnt, path);
1682 	if (err) {
1683 		br_write_lock(&vfsmount_lock);
1684 		umount_tree(mnt, 0, &umount_list);
1685 		br_write_unlock(&vfsmount_lock);
1686 	}
1687 out2:
1688 	unlock_mount(path);
1689 	release_mounts(&umount_list);
1690 out:
1691 	path_put(&old_path);
1692 	return err;
1693 }
1694 
1695 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1696 {
1697 	int error = 0;
1698 	int readonly_request = 0;
1699 
1700 	if (ms_flags & MS_RDONLY)
1701 		readonly_request = 1;
1702 	if (readonly_request == __mnt_is_readonly(mnt))
1703 		return 0;
1704 
1705 	if (readonly_request)
1706 		error = mnt_make_readonly(real_mount(mnt));
1707 	else
1708 		__mnt_unmake_readonly(real_mount(mnt));
1709 	return error;
1710 }
1711 
1712 /*
1713  * change filesystem flags. dir should be a physical root of filesystem.
1714  * If you've mounted a non-root directory somewhere and want to do remount
1715  * on it - tough luck.
1716  */
1717 static int do_remount(struct path *path, int flags, int mnt_flags,
1718 		      void *data)
1719 {
1720 	int err;
1721 	struct super_block *sb = path->mnt->mnt_sb;
1722 	struct mount *mnt = real_mount(path->mnt);
1723 
1724 	if (!capable(CAP_SYS_ADMIN))
1725 		return -EPERM;
1726 
1727 	if (!check_mnt(mnt))
1728 		return -EINVAL;
1729 
1730 	if (path->dentry != path->mnt->mnt_root)
1731 		return -EINVAL;
1732 
1733 	err = security_sb_remount(sb, data);
1734 	if (err)
1735 		return err;
1736 
1737 	down_write(&sb->s_umount);
1738 	if (flags & MS_BIND)
1739 		err = change_mount_flags(path->mnt, flags);
1740 	else
1741 		err = do_remount_sb(sb, flags, data, 0);
1742 	if (!err) {
1743 		br_write_lock(&vfsmount_lock);
1744 		mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK;
1745 		mnt->mnt.mnt_flags = mnt_flags;
1746 		br_write_unlock(&vfsmount_lock);
1747 	}
1748 	up_write(&sb->s_umount);
1749 	if (!err) {
1750 		br_write_lock(&vfsmount_lock);
1751 		touch_mnt_namespace(mnt->mnt_ns);
1752 		br_write_unlock(&vfsmount_lock);
1753 	}
1754 	return err;
1755 }
1756 
1757 static inline int tree_contains_unbindable(struct mount *mnt)
1758 {
1759 	struct mount *p;
1760 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1761 		if (IS_MNT_UNBINDABLE(p))
1762 			return 1;
1763 	}
1764 	return 0;
1765 }
1766 
1767 static int do_move_mount(struct path *path, char *old_name)
1768 {
1769 	struct path old_path, parent_path;
1770 	struct mount *p;
1771 	struct mount *old;
1772 	int err = 0;
1773 	if (!capable(CAP_SYS_ADMIN))
1774 		return -EPERM;
1775 	if (!old_name || !*old_name)
1776 		return -EINVAL;
1777 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1778 	if (err)
1779 		return err;
1780 
1781 	err = lock_mount(path);
1782 	if (err < 0)
1783 		goto out;
1784 
1785 	old = real_mount(old_path.mnt);
1786 	p = real_mount(path->mnt);
1787 
1788 	err = -EINVAL;
1789 	if (!check_mnt(p) || !check_mnt(old))
1790 		goto out1;
1791 
1792 	if (d_unlinked(path->dentry))
1793 		goto out1;
1794 
1795 	err = -EINVAL;
1796 	if (old_path.dentry != old_path.mnt->mnt_root)
1797 		goto out1;
1798 
1799 	if (!mnt_has_parent(old))
1800 		goto out1;
1801 
1802 	if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1803 	      S_ISDIR(old_path.dentry->d_inode->i_mode))
1804 		goto out1;
1805 	/*
1806 	 * Don't move a mount residing in a shared parent.
1807 	 */
1808 	if (IS_MNT_SHARED(old->mnt_parent))
1809 		goto out1;
1810 	/*
1811 	 * Don't move a mount tree containing unbindable mounts to a destination
1812 	 * mount which is shared.
1813 	 */
1814 	if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
1815 		goto out1;
1816 	err = -ELOOP;
1817 	for (; mnt_has_parent(p); p = p->mnt_parent)
1818 		if (p == old)
1819 			goto out1;
1820 
1821 	err = attach_recursive_mnt(old, path, &parent_path);
1822 	if (err)
1823 		goto out1;
1824 
1825 	/* if the mount is moved, it should no longer be expire
1826 	 * automatically */
1827 	list_del_init(&old->mnt_expire);
1828 out1:
1829 	unlock_mount(path);
1830 out:
1831 	if (!err)
1832 		path_put(&parent_path);
1833 	path_put(&old_path);
1834 	return err;
1835 }
1836 
1837 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1838 {
1839 	int err;
1840 	const char *subtype = strchr(fstype, '.');
1841 	if (subtype) {
1842 		subtype++;
1843 		err = -EINVAL;
1844 		if (!subtype[0])
1845 			goto err;
1846 	} else
1847 		subtype = "";
1848 
1849 	mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1850 	err = -ENOMEM;
1851 	if (!mnt->mnt_sb->s_subtype)
1852 		goto err;
1853 	return mnt;
1854 
1855  err:
1856 	mntput(mnt);
1857 	return ERR_PTR(err);
1858 }
1859 
1860 static struct vfsmount *
1861 do_kern_mount(const char *fstype, int flags, const char *name, void *data)
1862 {
1863 	struct file_system_type *type = get_fs_type(fstype);
1864 	struct vfsmount *mnt;
1865 	if (!type)
1866 		return ERR_PTR(-ENODEV);
1867 	mnt = vfs_kern_mount(type, flags, name, data);
1868 	if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
1869 	    !mnt->mnt_sb->s_subtype)
1870 		mnt = fs_set_subtype(mnt, fstype);
1871 	put_filesystem(type);
1872 	return mnt;
1873 }
1874 
1875 /*
1876  * add a mount into a namespace's mount tree
1877  */
1878 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
1879 {
1880 	int err;
1881 
1882 	mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
1883 
1884 	err = lock_mount(path);
1885 	if (err)
1886 		return err;
1887 
1888 	err = -EINVAL;
1889 	if (unlikely(!check_mnt(real_mount(path->mnt)))) {
1890 		/* that's acceptable only for automounts done in private ns */
1891 		if (!(mnt_flags & MNT_SHRINKABLE))
1892 			goto unlock;
1893 		/* ... and for those we'd better have mountpoint still alive */
1894 		if (!real_mount(path->mnt)->mnt_ns)
1895 			goto unlock;
1896 	}
1897 
1898 	/* Refuse the same filesystem on the same mount point */
1899 	err = -EBUSY;
1900 	if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
1901 	    path->mnt->mnt_root == path->dentry)
1902 		goto unlock;
1903 
1904 	err = -EINVAL;
1905 	if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
1906 		goto unlock;
1907 
1908 	newmnt->mnt.mnt_flags = mnt_flags;
1909 	err = graft_tree(newmnt, path);
1910 
1911 unlock:
1912 	unlock_mount(path);
1913 	return err;
1914 }
1915 
1916 /*
1917  * create a new mount for userspace and request it to be added into the
1918  * namespace's tree
1919  */
1920 static int do_new_mount(struct path *path, char *type, int flags,
1921 			int mnt_flags, char *name, void *data)
1922 {
1923 	struct vfsmount *mnt;
1924 	int err;
1925 
1926 	if (!type)
1927 		return -EINVAL;
1928 
1929 	/* we need capabilities... */
1930 	if (!capable(CAP_SYS_ADMIN))
1931 		return -EPERM;
1932 
1933 	mnt = do_kern_mount(type, flags, name, data);
1934 	if (IS_ERR(mnt))
1935 		return PTR_ERR(mnt);
1936 
1937 	err = do_add_mount(real_mount(mnt), path, mnt_flags);
1938 	if (err)
1939 		mntput(mnt);
1940 	return err;
1941 }
1942 
1943 int finish_automount(struct vfsmount *m, struct path *path)
1944 {
1945 	struct mount *mnt = real_mount(m);
1946 	int err;
1947 	/* The new mount record should have at least 2 refs to prevent it being
1948 	 * expired before we get a chance to add it
1949 	 */
1950 	BUG_ON(mnt_get_count(mnt) < 2);
1951 
1952 	if (m->mnt_sb == path->mnt->mnt_sb &&
1953 	    m->mnt_root == path->dentry) {
1954 		err = -ELOOP;
1955 		goto fail;
1956 	}
1957 
1958 	err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
1959 	if (!err)
1960 		return 0;
1961 fail:
1962 	/* remove m from any expiration list it may be on */
1963 	if (!list_empty(&mnt->mnt_expire)) {
1964 		down_write(&namespace_sem);
1965 		br_write_lock(&vfsmount_lock);
1966 		list_del_init(&mnt->mnt_expire);
1967 		br_write_unlock(&vfsmount_lock);
1968 		up_write(&namespace_sem);
1969 	}
1970 	mntput(m);
1971 	mntput(m);
1972 	return err;
1973 }
1974 
1975 /**
1976  * mnt_set_expiry - Put a mount on an expiration list
1977  * @mnt: The mount to list.
1978  * @expiry_list: The list to add the mount to.
1979  */
1980 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
1981 {
1982 	down_write(&namespace_sem);
1983 	br_write_lock(&vfsmount_lock);
1984 
1985 	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
1986 
1987 	br_write_unlock(&vfsmount_lock);
1988 	up_write(&namespace_sem);
1989 }
1990 EXPORT_SYMBOL(mnt_set_expiry);
1991 
1992 /*
1993  * process a list of expirable mountpoints with the intent of discarding any
1994  * mountpoints that aren't in use and haven't been touched since last we came
1995  * here
1996  */
1997 void mark_mounts_for_expiry(struct list_head *mounts)
1998 {
1999 	struct mount *mnt, *next;
2000 	LIST_HEAD(graveyard);
2001 	LIST_HEAD(umounts);
2002 
2003 	if (list_empty(mounts))
2004 		return;
2005 
2006 	down_write(&namespace_sem);
2007 	br_write_lock(&vfsmount_lock);
2008 
2009 	/* extract from the expiration list every vfsmount that matches the
2010 	 * following criteria:
2011 	 * - only referenced by its parent vfsmount
2012 	 * - still marked for expiry (marked on the last call here; marks are
2013 	 *   cleared by mntput())
2014 	 */
2015 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2016 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2017 			propagate_mount_busy(mnt, 1))
2018 			continue;
2019 		list_move(&mnt->mnt_expire, &graveyard);
2020 	}
2021 	while (!list_empty(&graveyard)) {
2022 		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2023 		touch_mnt_namespace(mnt->mnt_ns);
2024 		umount_tree(mnt, 1, &umounts);
2025 	}
2026 	br_write_unlock(&vfsmount_lock);
2027 	up_write(&namespace_sem);
2028 
2029 	release_mounts(&umounts);
2030 }
2031 
2032 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2033 
2034 /*
2035  * Ripoff of 'select_parent()'
2036  *
2037  * search the list of submounts for a given mountpoint, and move any
2038  * shrinkable submounts to the 'graveyard' list.
2039  */
2040 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2041 {
2042 	struct mount *this_parent = parent;
2043 	struct list_head *next;
2044 	int found = 0;
2045 
2046 repeat:
2047 	next = this_parent->mnt_mounts.next;
2048 resume:
2049 	while (next != &this_parent->mnt_mounts) {
2050 		struct list_head *tmp = next;
2051 		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2052 
2053 		next = tmp->next;
2054 		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2055 			continue;
2056 		/*
2057 		 * Descend a level if the d_mounts list is non-empty.
2058 		 */
2059 		if (!list_empty(&mnt->mnt_mounts)) {
2060 			this_parent = mnt;
2061 			goto repeat;
2062 		}
2063 
2064 		if (!propagate_mount_busy(mnt, 1)) {
2065 			list_move_tail(&mnt->mnt_expire, graveyard);
2066 			found++;
2067 		}
2068 	}
2069 	/*
2070 	 * All done at this level ... ascend and resume the search
2071 	 */
2072 	if (this_parent != parent) {
2073 		next = this_parent->mnt_child.next;
2074 		this_parent = this_parent->mnt_parent;
2075 		goto resume;
2076 	}
2077 	return found;
2078 }
2079 
2080 /*
2081  * process a list of expirable mountpoints with the intent of discarding any
2082  * submounts of a specific parent mountpoint
2083  *
2084  * vfsmount_lock must be held for write
2085  */
2086 static void shrink_submounts(struct mount *mnt, struct list_head *umounts)
2087 {
2088 	LIST_HEAD(graveyard);
2089 	struct mount *m;
2090 
2091 	/* extract submounts of 'mountpoint' from the expiration list */
2092 	while (select_submounts(mnt, &graveyard)) {
2093 		while (!list_empty(&graveyard)) {
2094 			m = list_first_entry(&graveyard, struct mount,
2095 						mnt_expire);
2096 			touch_mnt_namespace(m->mnt_ns);
2097 			umount_tree(m, 1, umounts);
2098 		}
2099 	}
2100 }
2101 
2102 /*
2103  * Some copy_from_user() implementations do not return the exact number of
2104  * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
2105  * Note that this function differs from copy_from_user() in that it will oops
2106  * on bad values of `to', rather than returning a short copy.
2107  */
2108 static long exact_copy_from_user(void *to, const void __user * from,
2109 				 unsigned long n)
2110 {
2111 	char *t = to;
2112 	const char __user *f = from;
2113 	char c;
2114 
2115 	if (!access_ok(VERIFY_READ, from, n))
2116 		return n;
2117 
2118 	while (n) {
2119 		if (__get_user(c, f)) {
2120 			memset(t, 0, n);
2121 			break;
2122 		}
2123 		*t++ = c;
2124 		f++;
2125 		n--;
2126 	}
2127 	return n;
2128 }
2129 
2130 int copy_mount_options(const void __user * data, unsigned long *where)
2131 {
2132 	int i;
2133 	unsigned long page;
2134 	unsigned long size;
2135 
2136 	*where = 0;
2137 	if (!data)
2138 		return 0;
2139 
2140 	if (!(page = __get_free_page(GFP_KERNEL)))
2141 		return -ENOMEM;
2142 
2143 	/* We only care that *some* data at the address the user
2144 	 * gave us is valid.  Just in case, we'll zero
2145 	 * the remainder of the page.
2146 	 */
2147 	/* copy_from_user cannot cross TASK_SIZE ! */
2148 	size = TASK_SIZE - (unsigned long)data;
2149 	if (size > PAGE_SIZE)
2150 		size = PAGE_SIZE;
2151 
2152 	i = size - exact_copy_from_user((void *)page, data, size);
2153 	if (!i) {
2154 		free_page(page);
2155 		return -EFAULT;
2156 	}
2157 	if (i != PAGE_SIZE)
2158 		memset((char *)page + i, 0, PAGE_SIZE - i);
2159 	*where = page;
2160 	return 0;
2161 }
2162 
2163 int copy_mount_string(const void __user *data, char **where)
2164 {
2165 	char *tmp;
2166 
2167 	if (!data) {
2168 		*where = NULL;
2169 		return 0;
2170 	}
2171 
2172 	tmp = strndup_user(data, PAGE_SIZE);
2173 	if (IS_ERR(tmp))
2174 		return PTR_ERR(tmp);
2175 
2176 	*where = tmp;
2177 	return 0;
2178 }
2179 
2180 /*
2181  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2182  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2183  *
2184  * data is a (void *) that can point to any structure up to
2185  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2186  * information (or be NULL).
2187  *
2188  * Pre-0.97 versions of mount() didn't have a flags word.
2189  * When the flags word was introduced its top half was required
2190  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2191  * Therefore, if this magic number is present, it carries no information
2192  * and must be discarded.
2193  */
2194 long do_mount(char *dev_name, char *dir_name, char *type_page,
2195 		  unsigned long flags, void *data_page)
2196 {
2197 	struct path path;
2198 	int retval = 0;
2199 	int mnt_flags = 0;
2200 
2201 	/* Discard magic */
2202 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2203 		flags &= ~MS_MGC_MSK;
2204 
2205 	/* Basic sanity checks */
2206 
2207 	if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2208 		return -EINVAL;
2209 
2210 	if (data_page)
2211 		((char *)data_page)[PAGE_SIZE - 1] = 0;
2212 
2213 	/* ... and get the mountpoint */
2214 	retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2215 	if (retval)
2216 		return retval;
2217 
2218 	retval = security_sb_mount(dev_name, &path,
2219 				   type_page, flags, data_page);
2220 	if (retval)
2221 		goto dput_out;
2222 
2223 	/* Default to relatime unless overriden */
2224 	if (!(flags & MS_NOATIME))
2225 		mnt_flags |= MNT_RELATIME;
2226 
2227 	/* Separate the per-mountpoint flags */
2228 	if (flags & MS_NOSUID)
2229 		mnt_flags |= MNT_NOSUID;
2230 	if (flags & MS_NODEV)
2231 		mnt_flags |= MNT_NODEV;
2232 	if (flags & MS_NOEXEC)
2233 		mnt_flags |= MNT_NOEXEC;
2234 	if (flags & MS_NOATIME)
2235 		mnt_flags |= MNT_NOATIME;
2236 	if (flags & MS_NODIRATIME)
2237 		mnt_flags |= MNT_NODIRATIME;
2238 	if (flags & MS_STRICTATIME)
2239 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2240 	if (flags & MS_RDONLY)
2241 		mnt_flags |= MNT_READONLY;
2242 
2243 	flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2244 		   MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2245 		   MS_STRICTATIME);
2246 
2247 	if (flags & MS_REMOUNT)
2248 		retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2249 				    data_page);
2250 	else if (flags & MS_BIND)
2251 		retval = do_loopback(&path, dev_name, flags & MS_REC);
2252 	else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2253 		retval = do_change_type(&path, flags);
2254 	else if (flags & MS_MOVE)
2255 		retval = do_move_mount(&path, dev_name);
2256 	else
2257 		retval = do_new_mount(&path, type_page, flags, mnt_flags,
2258 				      dev_name, data_page);
2259 dput_out:
2260 	path_put(&path);
2261 	return retval;
2262 }
2263 
2264 static struct mnt_namespace *alloc_mnt_ns(void)
2265 {
2266 	struct mnt_namespace *new_ns;
2267 
2268 	new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2269 	if (!new_ns)
2270 		return ERR_PTR(-ENOMEM);
2271 	atomic_set(&new_ns->count, 1);
2272 	new_ns->root = NULL;
2273 	INIT_LIST_HEAD(&new_ns->list);
2274 	init_waitqueue_head(&new_ns->poll);
2275 	new_ns->event = 0;
2276 	return new_ns;
2277 }
2278 
2279 /*
2280  * Allocate a new namespace structure and populate it with contents
2281  * copied from the namespace of the passed in task structure.
2282  */
2283 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
2284 		struct fs_struct *fs)
2285 {
2286 	struct mnt_namespace *new_ns;
2287 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2288 	struct mount *p, *q;
2289 	struct mount *old = mnt_ns->root;
2290 	struct mount *new;
2291 
2292 	new_ns = alloc_mnt_ns();
2293 	if (IS_ERR(new_ns))
2294 		return new_ns;
2295 
2296 	down_write(&namespace_sem);
2297 	/* First pass: copy the tree topology */
2298 	new = copy_tree(old, old->mnt.mnt_root, CL_COPY_ALL | CL_EXPIRE);
2299 	if (IS_ERR(new)) {
2300 		up_write(&namespace_sem);
2301 		kfree(new_ns);
2302 		return ERR_CAST(new);
2303 	}
2304 	new_ns->root = new;
2305 	br_write_lock(&vfsmount_lock);
2306 	list_add_tail(&new_ns->list, &new->mnt_list);
2307 	br_write_unlock(&vfsmount_lock);
2308 
2309 	/*
2310 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2311 	 * as belonging to new namespace.  We have already acquired a private
2312 	 * fs_struct, so tsk->fs->lock is not needed.
2313 	 */
2314 	p = old;
2315 	q = new;
2316 	while (p) {
2317 		q->mnt_ns = new_ns;
2318 		if (fs) {
2319 			if (&p->mnt == fs->root.mnt) {
2320 				fs->root.mnt = mntget(&q->mnt);
2321 				rootmnt = &p->mnt;
2322 			}
2323 			if (&p->mnt == fs->pwd.mnt) {
2324 				fs->pwd.mnt = mntget(&q->mnt);
2325 				pwdmnt = &p->mnt;
2326 			}
2327 		}
2328 		p = next_mnt(p, old);
2329 		q = next_mnt(q, new);
2330 	}
2331 	up_write(&namespace_sem);
2332 
2333 	if (rootmnt)
2334 		mntput(rootmnt);
2335 	if (pwdmnt)
2336 		mntput(pwdmnt);
2337 
2338 	return new_ns;
2339 }
2340 
2341 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2342 		struct fs_struct *new_fs)
2343 {
2344 	struct mnt_namespace *new_ns;
2345 
2346 	BUG_ON(!ns);
2347 	get_mnt_ns(ns);
2348 
2349 	if (!(flags & CLONE_NEWNS))
2350 		return ns;
2351 
2352 	new_ns = dup_mnt_ns(ns, new_fs);
2353 
2354 	put_mnt_ns(ns);
2355 	return new_ns;
2356 }
2357 
2358 /**
2359  * create_mnt_ns - creates a private namespace and adds a root filesystem
2360  * @mnt: pointer to the new root filesystem mountpoint
2361  */
2362 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2363 {
2364 	struct mnt_namespace *new_ns = alloc_mnt_ns();
2365 	if (!IS_ERR(new_ns)) {
2366 		struct mount *mnt = real_mount(m);
2367 		mnt->mnt_ns = new_ns;
2368 		new_ns->root = mnt;
2369 		list_add(&new_ns->list, &mnt->mnt_list);
2370 	} else {
2371 		mntput(m);
2372 	}
2373 	return new_ns;
2374 }
2375 
2376 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2377 {
2378 	struct mnt_namespace *ns;
2379 	struct super_block *s;
2380 	struct path path;
2381 	int err;
2382 
2383 	ns = create_mnt_ns(mnt);
2384 	if (IS_ERR(ns))
2385 		return ERR_CAST(ns);
2386 
2387 	err = vfs_path_lookup(mnt->mnt_root, mnt,
2388 			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2389 
2390 	put_mnt_ns(ns);
2391 
2392 	if (err)
2393 		return ERR_PTR(err);
2394 
2395 	/* trade a vfsmount reference for active sb one */
2396 	s = path.mnt->mnt_sb;
2397 	atomic_inc(&s->s_active);
2398 	mntput(path.mnt);
2399 	/* lock the sucker */
2400 	down_write(&s->s_umount);
2401 	/* ... and return the root of (sub)tree on it */
2402 	return path.dentry;
2403 }
2404 EXPORT_SYMBOL(mount_subtree);
2405 
2406 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2407 		char __user *, type, unsigned long, flags, void __user *, data)
2408 {
2409 	int ret;
2410 	char *kernel_type;
2411 	char *kernel_dir;
2412 	char *kernel_dev;
2413 	unsigned long data_page;
2414 
2415 	ret = copy_mount_string(type, &kernel_type);
2416 	if (ret < 0)
2417 		goto out_type;
2418 
2419 	kernel_dir = getname(dir_name);
2420 	if (IS_ERR(kernel_dir)) {
2421 		ret = PTR_ERR(kernel_dir);
2422 		goto out_dir;
2423 	}
2424 
2425 	ret = copy_mount_string(dev_name, &kernel_dev);
2426 	if (ret < 0)
2427 		goto out_dev;
2428 
2429 	ret = copy_mount_options(data, &data_page);
2430 	if (ret < 0)
2431 		goto out_data;
2432 
2433 	ret = do_mount(kernel_dev, kernel_dir, kernel_type, flags,
2434 		(void *) data_page);
2435 
2436 	free_page(data_page);
2437 out_data:
2438 	kfree(kernel_dev);
2439 out_dev:
2440 	putname(kernel_dir);
2441 out_dir:
2442 	kfree(kernel_type);
2443 out_type:
2444 	return ret;
2445 }
2446 
2447 /*
2448  * Return true if path is reachable from root
2449  *
2450  * namespace_sem or vfsmount_lock is held
2451  */
2452 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
2453 			 const struct path *root)
2454 {
2455 	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
2456 		dentry = mnt->mnt_mountpoint;
2457 		mnt = mnt->mnt_parent;
2458 	}
2459 	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
2460 }
2461 
2462 int path_is_under(struct path *path1, struct path *path2)
2463 {
2464 	int res;
2465 	br_read_lock(&vfsmount_lock);
2466 	res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
2467 	br_read_unlock(&vfsmount_lock);
2468 	return res;
2469 }
2470 EXPORT_SYMBOL(path_is_under);
2471 
2472 /*
2473  * pivot_root Semantics:
2474  * Moves the root file system of the current process to the directory put_old,
2475  * makes new_root as the new root file system of the current process, and sets
2476  * root/cwd of all processes which had them on the current root to new_root.
2477  *
2478  * Restrictions:
2479  * The new_root and put_old must be directories, and  must not be on the
2480  * same file  system as the current process root. The put_old  must  be
2481  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
2482  * pointed to by put_old must yield the same directory as new_root. No other
2483  * file system may be mounted on put_old. After all, new_root is a mountpoint.
2484  *
2485  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2486  * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2487  * in this situation.
2488  *
2489  * Notes:
2490  *  - we don't move root/cwd if they are not at the root (reason: if something
2491  *    cared enough to change them, it's probably wrong to force them elsewhere)
2492  *  - it's okay to pick a root that isn't the root of a file system, e.g.
2493  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2494  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2495  *    first.
2496  */
2497 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2498 		const char __user *, put_old)
2499 {
2500 	struct path new, old, parent_path, root_parent, root;
2501 	struct mount *new_mnt, *root_mnt;
2502 	int error;
2503 
2504 	if (!capable(CAP_SYS_ADMIN))
2505 		return -EPERM;
2506 
2507 	error = user_path_dir(new_root, &new);
2508 	if (error)
2509 		goto out0;
2510 
2511 	error = user_path_dir(put_old, &old);
2512 	if (error)
2513 		goto out1;
2514 
2515 	error = security_sb_pivotroot(&old, &new);
2516 	if (error)
2517 		goto out2;
2518 
2519 	get_fs_root(current->fs, &root);
2520 	error = lock_mount(&old);
2521 	if (error)
2522 		goto out3;
2523 
2524 	error = -EINVAL;
2525 	new_mnt = real_mount(new.mnt);
2526 	root_mnt = real_mount(root.mnt);
2527 	if (IS_MNT_SHARED(real_mount(old.mnt)) ||
2528 		IS_MNT_SHARED(new_mnt->mnt_parent) ||
2529 		IS_MNT_SHARED(root_mnt->mnt_parent))
2530 		goto out4;
2531 	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
2532 		goto out4;
2533 	error = -ENOENT;
2534 	if (d_unlinked(new.dentry))
2535 		goto out4;
2536 	if (d_unlinked(old.dentry))
2537 		goto out4;
2538 	error = -EBUSY;
2539 	if (new.mnt == root.mnt ||
2540 	    old.mnt == root.mnt)
2541 		goto out4; /* loop, on the same file system  */
2542 	error = -EINVAL;
2543 	if (root.mnt->mnt_root != root.dentry)
2544 		goto out4; /* not a mountpoint */
2545 	if (!mnt_has_parent(root_mnt))
2546 		goto out4; /* not attached */
2547 	if (new.mnt->mnt_root != new.dentry)
2548 		goto out4; /* not a mountpoint */
2549 	if (!mnt_has_parent(new_mnt))
2550 		goto out4; /* not attached */
2551 	/* make sure we can reach put_old from new_root */
2552 	if (!is_path_reachable(real_mount(old.mnt), old.dentry, &new))
2553 		goto out4;
2554 	br_write_lock(&vfsmount_lock);
2555 	detach_mnt(new_mnt, &parent_path);
2556 	detach_mnt(root_mnt, &root_parent);
2557 	/* mount old root on put_old */
2558 	attach_mnt(root_mnt, &old);
2559 	/* mount new_root on / */
2560 	attach_mnt(new_mnt, &root_parent);
2561 	touch_mnt_namespace(current->nsproxy->mnt_ns);
2562 	br_write_unlock(&vfsmount_lock);
2563 	chroot_fs_refs(&root, &new);
2564 	error = 0;
2565 out4:
2566 	unlock_mount(&old);
2567 	if (!error) {
2568 		path_put(&root_parent);
2569 		path_put(&parent_path);
2570 	}
2571 out3:
2572 	path_put(&root);
2573 out2:
2574 	path_put(&old);
2575 out1:
2576 	path_put(&new);
2577 out0:
2578 	return error;
2579 }
2580 
2581 static void __init init_mount_tree(void)
2582 {
2583 	struct vfsmount *mnt;
2584 	struct mnt_namespace *ns;
2585 	struct path root;
2586 
2587 	mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2588 	if (IS_ERR(mnt))
2589 		panic("Can't create rootfs");
2590 
2591 	ns = create_mnt_ns(mnt);
2592 	if (IS_ERR(ns))
2593 		panic("Can't allocate initial namespace");
2594 
2595 	init_task.nsproxy->mnt_ns = ns;
2596 	get_mnt_ns(ns);
2597 
2598 	root.mnt = mnt;
2599 	root.dentry = mnt->mnt_root;
2600 
2601 	set_fs_pwd(current->fs, &root);
2602 	set_fs_root(current->fs, &root);
2603 }
2604 
2605 void __init mnt_init(void)
2606 {
2607 	unsigned u;
2608 	int err;
2609 
2610 	init_rwsem(&namespace_sem);
2611 
2612 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
2613 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2614 
2615 	mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2616 
2617 	if (!mount_hashtable)
2618 		panic("Failed to allocate mount hash table\n");
2619 
2620 	printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
2621 
2622 	for (u = 0; u < HASH_SIZE; u++)
2623 		INIT_LIST_HEAD(&mount_hashtable[u]);
2624 
2625 	br_lock_init(&vfsmount_lock);
2626 
2627 	err = sysfs_init();
2628 	if (err)
2629 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2630 			__func__, err);
2631 	fs_kobj = kobject_create_and_add("fs", NULL);
2632 	if (!fs_kobj)
2633 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
2634 	init_rootfs();
2635 	init_mount_tree();
2636 }
2637 
2638 void put_mnt_ns(struct mnt_namespace *ns)
2639 {
2640 	LIST_HEAD(umount_list);
2641 
2642 	if (!atomic_dec_and_test(&ns->count))
2643 		return;
2644 	down_write(&namespace_sem);
2645 	br_write_lock(&vfsmount_lock);
2646 	umount_tree(ns->root, 0, &umount_list);
2647 	br_write_unlock(&vfsmount_lock);
2648 	up_write(&namespace_sem);
2649 	release_mounts(&umount_list);
2650 	kfree(ns);
2651 }
2652 
2653 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2654 {
2655 	struct vfsmount *mnt;
2656 	mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2657 	if (!IS_ERR(mnt)) {
2658 		/*
2659 		 * it is a longterm mount, don't release mnt until
2660 		 * we unmount before file sys is unregistered
2661 		*/
2662 		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
2663 	}
2664 	return mnt;
2665 }
2666 EXPORT_SYMBOL_GPL(kern_mount_data);
2667 
2668 void kern_unmount(struct vfsmount *mnt)
2669 {
2670 	/* release long term mount so mount point can be released */
2671 	if (!IS_ERR_OR_NULL(mnt)) {
2672 		br_write_lock(&vfsmount_lock);
2673 		real_mount(mnt)->mnt_ns = NULL;
2674 		br_write_unlock(&vfsmount_lock);
2675 		mntput(mnt);
2676 	}
2677 }
2678 EXPORT_SYMBOL(kern_unmount);
2679 
2680 bool our_mnt(struct vfsmount *mnt)
2681 {
2682 	return check_mnt(real_mount(mnt));
2683 }
2684