1 /* 2 * linux/fs/namespace.c 3 * 4 * (C) Copyright Al Viro 2000, 2001 5 * Released under GPL v2. 6 * 7 * Based on code from fs/super.c, copyright Linus Torvalds and others. 8 * Heavily rewritten. 9 */ 10 11 #include <linux/syscalls.h> 12 #include <linux/slab.h> 13 #include <linux/sched.h> 14 #include <linux/smp_lock.h> 15 #include <linux/init.h> 16 #include <linux/kernel.h> 17 #include <linux/acct.h> 18 #include <linux/capability.h> 19 #include <linux/cpumask.h> 20 #include <linux/module.h> 21 #include <linux/sysfs.h> 22 #include <linux/seq_file.h> 23 #include <linux/mnt_namespace.h> 24 #include <linux/namei.h> 25 #include <linux/security.h> 26 #include <linux/mount.h> 27 #include <linux/ramfs.h> 28 #include <linux/log2.h> 29 #include <linux/idr.h> 30 #include <asm/uaccess.h> 31 #include <asm/unistd.h> 32 #include "pnode.h" 33 #include "internal.h" 34 35 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head)) 36 #define HASH_SIZE (1UL << HASH_SHIFT) 37 38 /* spinlock for vfsmount related operations, inplace of dcache_lock */ 39 __cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock); 40 41 static int event; 42 static DEFINE_IDA(mnt_id_ida); 43 static DEFINE_IDA(mnt_group_ida); 44 45 static struct list_head *mount_hashtable __read_mostly; 46 static struct kmem_cache *mnt_cache __read_mostly; 47 static struct rw_semaphore namespace_sem; 48 49 /* /sys/fs */ 50 struct kobject *fs_kobj; 51 EXPORT_SYMBOL_GPL(fs_kobj); 52 53 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry) 54 { 55 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); 56 tmp += ((unsigned long)dentry / L1_CACHE_BYTES); 57 tmp = tmp + (tmp >> HASH_SHIFT); 58 return tmp & (HASH_SIZE - 1); 59 } 60 61 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16) 62 63 /* allocation is serialized by namespace_sem */ 64 static int mnt_alloc_id(struct vfsmount *mnt) 65 { 66 int res; 67 68 retry: 69 ida_pre_get(&mnt_id_ida, GFP_KERNEL); 70 spin_lock(&vfsmount_lock); 71 res = ida_get_new(&mnt_id_ida, &mnt->mnt_id); 72 spin_unlock(&vfsmount_lock); 73 if (res == -EAGAIN) 74 goto retry; 75 76 return res; 77 } 78 79 static void mnt_free_id(struct vfsmount *mnt) 80 { 81 spin_lock(&vfsmount_lock); 82 ida_remove(&mnt_id_ida, mnt->mnt_id); 83 spin_unlock(&vfsmount_lock); 84 } 85 86 /* 87 * Allocate a new peer group ID 88 * 89 * mnt_group_ida is protected by namespace_sem 90 */ 91 static int mnt_alloc_group_id(struct vfsmount *mnt) 92 { 93 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL)) 94 return -ENOMEM; 95 96 return ida_get_new_above(&mnt_group_ida, 1, &mnt->mnt_group_id); 97 } 98 99 /* 100 * Release a peer group ID 101 */ 102 void mnt_release_group_id(struct vfsmount *mnt) 103 { 104 ida_remove(&mnt_group_ida, mnt->mnt_group_id); 105 mnt->mnt_group_id = 0; 106 } 107 108 struct vfsmount *alloc_vfsmnt(const char *name) 109 { 110 struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); 111 if (mnt) { 112 int err; 113 114 err = mnt_alloc_id(mnt); 115 if (err) 116 goto out_free_cache; 117 118 if (name) { 119 mnt->mnt_devname = kstrdup(name, GFP_KERNEL); 120 if (!mnt->mnt_devname) 121 goto out_free_id; 122 } 123 124 atomic_set(&mnt->mnt_count, 1); 125 INIT_LIST_HEAD(&mnt->mnt_hash); 126 INIT_LIST_HEAD(&mnt->mnt_child); 127 INIT_LIST_HEAD(&mnt->mnt_mounts); 128 INIT_LIST_HEAD(&mnt->mnt_list); 129 INIT_LIST_HEAD(&mnt->mnt_expire); 130 INIT_LIST_HEAD(&mnt->mnt_share); 131 INIT_LIST_HEAD(&mnt->mnt_slave_list); 132 INIT_LIST_HEAD(&mnt->mnt_slave); 133 atomic_set(&mnt->__mnt_writers, 0); 134 } 135 return mnt; 136 137 out_free_id: 138 mnt_free_id(mnt); 139 out_free_cache: 140 kmem_cache_free(mnt_cache, mnt); 141 return NULL; 142 } 143 144 /* 145 * Most r/o checks on a fs are for operations that take 146 * discrete amounts of time, like a write() or unlink(). 147 * We must keep track of when those operations start 148 * (for permission checks) and when they end, so that 149 * we can determine when writes are able to occur to 150 * a filesystem. 151 */ 152 /* 153 * __mnt_is_readonly: check whether a mount is read-only 154 * @mnt: the mount to check for its write status 155 * 156 * This shouldn't be used directly ouside of the VFS. 157 * It does not guarantee that the filesystem will stay 158 * r/w, just that it is right *now*. This can not and 159 * should not be used in place of IS_RDONLY(inode). 160 * mnt_want/drop_write() will _keep_ the filesystem 161 * r/w. 162 */ 163 int __mnt_is_readonly(struct vfsmount *mnt) 164 { 165 if (mnt->mnt_flags & MNT_READONLY) 166 return 1; 167 if (mnt->mnt_sb->s_flags & MS_RDONLY) 168 return 1; 169 return 0; 170 } 171 EXPORT_SYMBOL_GPL(__mnt_is_readonly); 172 173 struct mnt_writer { 174 /* 175 * If holding multiple instances of this lock, they 176 * must be ordered by cpu number. 177 */ 178 spinlock_t lock; 179 struct lock_class_key lock_class; /* compiles out with !lockdep */ 180 unsigned long count; 181 struct vfsmount *mnt; 182 } ____cacheline_aligned_in_smp; 183 static DEFINE_PER_CPU(struct mnt_writer, mnt_writers); 184 185 static int __init init_mnt_writers(void) 186 { 187 int cpu; 188 for_each_possible_cpu(cpu) { 189 struct mnt_writer *writer = &per_cpu(mnt_writers, cpu); 190 spin_lock_init(&writer->lock); 191 lockdep_set_class(&writer->lock, &writer->lock_class); 192 writer->count = 0; 193 } 194 return 0; 195 } 196 fs_initcall(init_mnt_writers); 197 198 static void unlock_mnt_writers(void) 199 { 200 int cpu; 201 struct mnt_writer *cpu_writer; 202 203 for_each_possible_cpu(cpu) { 204 cpu_writer = &per_cpu(mnt_writers, cpu); 205 spin_unlock(&cpu_writer->lock); 206 } 207 } 208 209 static inline void __clear_mnt_count(struct mnt_writer *cpu_writer) 210 { 211 if (!cpu_writer->mnt) 212 return; 213 /* 214 * This is in case anyone ever leaves an invalid, 215 * old ->mnt and a count of 0. 216 */ 217 if (!cpu_writer->count) 218 return; 219 atomic_add(cpu_writer->count, &cpu_writer->mnt->__mnt_writers); 220 cpu_writer->count = 0; 221 } 222 /* 223 * must hold cpu_writer->lock 224 */ 225 static inline void use_cpu_writer_for_mount(struct mnt_writer *cpu_writer, 226 struct vfsmount *mnt) 227 { 228 if (cpu_writer->mnt == mnt) 229 return; 230 __clear_mnt_count(cpu_writer); 231 cpu_writer->mnt = mnt; 232 } 233 234 /* 235 * Most r/o checks on a fs are for operations that take 236 * discrete amounts of time, like a write() or unlink(). 237 * We must keep track of when those operations start 238 * (for permission checks) and when they end, so that 239 * we can determine when writes are able to occur to 240 * a filesystem. 241 */ 242 /** 243 * mnt_want_write - get write access to a mount 244 * @mnt: the mount on which to take a write 245 * 246 * This tells the low-level filesystem that a write is 247 * about to be performed to it, and makes sure that 248 * writes are allowed before returning success. When 249 * the write operation is finished, mnt_drop_write() 250 * must be called. This is effectively a refcount. 251 */ 252 int mnt_want_write(struct vfsmount *mnt) 253 { 254 int ret = 0; 255 struct mnt_writer *cpu_writer; 256 257 cpu_writer = &get_cpu_var(mnt_writers); 258 spin_lock(&cpu_writer->lock); 259 if (__mnt_is_readonly(mnt)) { 260 ret = -EROFS; 261 goto out; 262 } 263 use_cpu_writer_for_mount(cpu_writer, mnt); 264 cpu_writer->count++; 265 out: 266 spin_unlock(&cpu_writer->lock); 267 put_cpu_var(mnt_writers); 268 return ret; 269 } 270 EXPORT_SYMBOL_GPL(mnt_want_write); 271 272 static void lock_mnt_writers(void) 273 { 274 int cpu; 275 struct mnt_writer *cpu_writer; 276 277 for_each_possible_cpu(cpu) { 278 cpu_writer = &per_cpu(mnt_writers, cpu); 279 spin_lock(&cpu_writer->lock); 280 __clear_mnt_count(cpu_writer); 281 cpu_writer->mnt = NULL; 282 } 283 } 284 285 /* 286 * These per-cpu write counts are not guaranteed to have 287 * matched increments and decrements on any given cpu. 288 * A file open()ed for write on one cpu and close()d on 289 * another cpu will imbalance this count. Make sure it 290 * does not get too far out of whack. 291 */ 292 static void handle_write_count_underflow(struct vfsmount *mnt) 293 { 294 if (atomic_read(&mnt->__mnt_writers) >= 295 MNT_WRITER_UNDERFLOW_LIMIT) 296 return; 297 /* 298 * It isn't necessary to hold all of the locks 299 * at the same time, but doing it this way makes 300 * us share a lot more code. 301 */ 302 lock_mnt_writers(); 303 /* 304 * vfsmount_lock is for mnt_flags. 305 */ 306 spin_lock(&vfsmount_lock); 307 /* 308 * If coalescing the per-cpu writer counts did not 309 * get us back to a positive writer count, we have 310 * a bug. 311 */ 312 if ((atomic_read(&mnt->__mnt_writers) < 0) && 313 !(mnt->mnt_flags & MNT_IMBALANCED_WRITE_COUNT)) { 314 WARN(1, KERN_DEBUG "leak detected on mount(%p) writers " 315 "count: %d\n", 316 mnt, atomic_read(&mnt->__mnt_writers)); 317 /* use the flag to keep the dmesg spam down */ 318 mnt->mnt_flags |= MNT_IMBALANCED_WRITE_COUNT; 319 } 320 spin_unlock(&vfsmount_lock); 321 unlock_mnt_writers(); 322 } 323 324 /** 325 * mnt_drop_write - give up write access to a mount 326 * @mnt: the mount on which to give up write access 327 * 328 * Tells the low-level filesystem that we are done 329 * performing writes to it. Must be matched with 330 * mnt_want_write() call above. 331 */ 332 void mnt_drop_write(struct vfsmount *mnt) 333 { 334 int must_check_underflow = 0; 335 struct mnt_writer *cpu_writer; 336 337 cpu_writer = &get_cpu_var(mnt_writers); 338 spin_lock(&cpu_writer->lock); 339 340 use_cpu_writer_for_mount(cpu_writer, mnt); 341 if (cpu_writer->count > 0) { 342 cpu_writer->count--; 343 } else { 344 must_check_underflow = 1; 345 atomic_dec(&mnt->__mnt_writers); 346 } 347 348 spin_unlock(&cpu_writer->lock); 349 /* 350 * Logically, we could call this each time, 351 * but the __mnt_writers cacheline tends to 352 * be cold, and makes this expensive. 353 */ 354 if (must_check_underflow) 355 handle_write_count_underflow(mnt); 356 /* 357 * This could be done right after the spinlock 358 * is taken because the spinlock keeps us on 359 * the cpu, and disables preemption. However, 360 * putting it here bounds the amount that 361 * __mnt_writers can underflow. Without it, 362 * we could theoretically wrap __mnt_writers. 363 */ 364 put_cpu_var(mnt_writers); 365 } 366 EXPORT_SYMBOL_GPL(mnt_drop_write); 367 368 static int mnt_make_readonly(struct vfsmount *mnt) 369 { 370 int ret = 0; 371 372 lock_mnt_writers(); 373 /* 374 * With all the locks held, this value is stable 375 */ 376 if (atomic_read(&mnt->__mnt_writers) > 0) { 377 ret = -EBUSY; 378 goto out; 379 } 380 /* 381 * nobody can do a successful mnt_want_write() with all 382 * of the counts in MNT_DENIED_WRITE and the locks held. 383 */ 384 spin_lock(&vfsmount_lock); 385 if (!ret) 386 mnt->mnt_flags |= MNT_READONLY; 387 spin_unlock(&vfsmount_lock); 388 out: 389 unlock_mnt_writers(); 390 return ret; 391 } 392 393 static void __mnt_unmake_readonly(struct vfsmount *mnt) 394 { 395 spin_lock(&vfsmount_lock); 396 mnt->mnt_flags &= ~MNT_READONLY; 397 spin_unlock(&vfsmount_lock); 398 } 399 400 int simple_set_mnt(struct vfsmount *mnt, struct super_block *sb) 401 { 402 mnt->mnt_sb = sb; 403 mnt->mnt_root = dget(sb->s_root); 404 return 0; 405 } 406 407 EXPORT_SYMBOL(simple_set_mnt); 408 409 void free_vfsmnt(struct vfsmount *mnt) 410 { 411 kfree(mnt->mnt_devname); 412 mnt_free_id(mnt); 413 kmem_cache_free(mnt_cache, mnt); 414 } 415 416 /* 417 * find the first or last mount at @dentry on vfsmount @mnt depending on 418 * @dir. If @dir is set return the first mount else return the last mount. 419 */ 420 struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry, 421 int dir) 422 { 423 struct list_head *head = mount_hashtable + hash(mnt, dentry); 424 struct list_head *tmp = head; 425 struct vfsmount *p, *found = NULL; 426 427 for (;;) { 428 tmp = dir ? tmp->next : tmp->prev; 429 p = NULL; 430 if (tmp == head) 431 break; 432 p = list_entry(tmp, struct vfsmount, mnt_hash); 433 if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) { 434 found = p; 435 break; 436 } 437 } 438 return found; 439 } 440 441 /* 442 * lookup_mnt increments the ref count before returning 443 * the vfsmount struct. 444 */ 445 struct vfsmount *lookup_mnt(struct vfsmount *mnt, struct dentry *dentry) 446 { 447 struct vfsmount *child_mnt; 448 spin_lock(&vfsmount_lock); 449 if ((child_mnt = __lookup_mnt(mnt, dentry, 1))) 450 mntget(child_mnt); 451 spin_unlock(&vfsmount_lock); 452 return child_mnt; 453 } 454 455 static inline int check_mnt(struct vfsmount *mnt) 456 { 457 return mnt->mnt_ns == current->nsproxy->mnt_ns; 458 } 459 460 static void touch_mnt_namespace(struct mnt_namespace *ns) 461 { 462 if (ns) { 463 ns->event = ++event; 464 wake_up_interruptible(&ns->poll); 465 } 466 } 467 468 static void __touch_mnt_namespace(struct mnt_namespace *ns) 469 { 470 if (ns && ns->event != event) { 471 ns->event = event; 472 wake_up_interruptible(&ns->poll); 473 } 474 } 475 476 static void detach_mnt(struct vfsmount *mnt, struct path *old_path) 477 { 478 old_path->dentry = mnt->mnt_mountpoint; 479 old_path->mnt = mnt->mnt_parent; 480 mnt->mnt_parent = mnt; 481 mnt->mnt_mountpoint = mnt->mnt_root; 482 list_del_init(&mnt->mnt_child); 483 list_del_init(&mnt->mnt_hash); 484 old_path->dentry->d_mounted--; 485 } 486 487 void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry, 488 struct vfsmount *child_mnt) 489 { 490 child_mnt->mnt_parent = mntget(mnt); 491 child_mnt->mnt_mountpoint = dget(dentry); 492 dentry->d_mounted++; 493 } 494 495 static void attach_mnt(struct vfsmount *mnt, struct path *path) 496 { 497 mnt_set_mountpoint(path->mnt, path->dentry, mnt); 498 list_add_tail(&mnt->mnt_hash, mount_hashtable + 499 hash(path->mnt, path->dentry)); 500 list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts); 501 } 502 503 /* 504 * the caller must hold vfsmount_lock 505 */ 506 static void commit_tree(struct vfsmount *mnt) 507 { 508 struct vfsmount *parent = mnt->mnt_parent; 509 struct vfsmount *m; 510 LIST_HEAD(head); 511 struct mnt_namespace *n = parent->mnt_ns; 512 513 BUG_ON(parent == mnt); 514 515 list_add_tail(&head, &mnt->mnt_list); 516 list_for_each_entry(m, &head, mnt_list) 517 m->mnt_ns = n; 518 list_splice(&head, n->list.prev); 519 520 list_add_tail(&mnt->mnt_hash, mount_hashtable + 521 hash(parent, mnt->mnt_mountpoint)); 522 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 523 touch_mnt_namespace(n); 524 } 525 526 static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root) 527 { 528 struct list_head *next = p->mnt_mounts.next; 529 if (next == &p->mnt_mounts) { 530 while (1) { 531 if (p == root) 532 return NULL; 533 next = p->mnt_child.next; 534 if (next != &p->mnt_parent->mnt_mounts) 535 break; 536 p = p->mnt_parent; 537 } 538 } 539 return list_entry(next, struct vfsmount, mnt_child); 540 } 541 542 static struct vfsmount *skip_mnt_tree(struct vfsmount *p) 543 { 544 struct list_head *prev = p->mnt_mounts.prev; 545 while (prev != &p->mnt_mounts) { 546 p = list_entry(prev, struct vfsmount, mnt_child); 547 prev = p->mnt_mounts.prev; 548 } 549 return p; 550 } 551 552 static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root, 553 int flag) 554 { 555 struct super_block *sb = old->mnt_sb; 556 struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname); 557 558 if (mnt) { 559 if (flag & (CL_SLAVE | CL_PRIVATE)) 560 mnt->mnt_group_id = 0; /* not a peer of original */ 561 else 562 mnt->mnt_group_id = old->mnt_group_id; 563 564 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) { 565 int err = mnt_alloc_group_id(mnt); 566 if (err) 567 goto out_free; 568 } 569 570 mnt->mnt_flags = old->mnt_flags; 571 atomic_inc(&sb->s_active); 572 mnt->mnt_sb = sb; 573 mnt->mnt_root = dget(root); 574 mnt->mnt_mountpoint = mnt->mnt_root; 575 mnt->mnt_parent = mnt; 576 577 if (flag & CL_SLAVE) { 578 list_add(&mnt->mnt_slave, &old->mnt_slave_list); 579 mnt->mnt_master = old; 580 CLEAR_MNT_SHARED(mnt); 581 } else if (!(flag & CL_PRIVATE)) { 582 if ((flag & CL_PROPAGATION) || IS_MNT_SHARED(old)) 583 list_add(&mnt->mnt_share, &old->mnt_share); 584 if (IS_MNT_SLAVE(old)) 585 list_add(&mnt->mnt_slave, &old->mnt_slave); 586 mnt->mnt_master = old->mnt_master; 587 } 588 if (flag & CL_MAKE_SHARED) 589 set_mnt_shared(mnt); 590 591 /* stick the duplicate mount on the same expiry list 592 * as the original if that was on one */ 593 if (flag & CL_EXPIRE) { 594 if (!list_empty(&old->mnt_expire)) 595 list_add(&mnt->mnt_expire, &old->mnt_expire); 596 } 597 } 598 return mnt; 599 600 out_free: 601 free_vfsmnt(mnt); 602 return NULL; 603 } 604 605 static inline void __mntput(struct vfsmount *mnt) 606 { 607 int cpu; 608 struct super_block *sb = mnt->mnt_sb; 609 /* 610 * We don't have to hold all of the locks at the 611 * same time here because we know that we're the 612 * last reference to mnt and that no new writers 613 * can come in. 614 */ 615 for_each_possible_cpu(cpu) { 616 struct mnt_writer *cpu_writer = &per_cpu(mnt_writers, cpu); 617 if (cpu_writer->mnt != mnt) 618 continue; 619 spin_lock(&cpu_writer->lock); 620 atomic_add(cpu_writer->count, &mnt->__mnt_writers); 621 cpu_writer->count = 0; 622 /* 623 * Might as well do this so that no one 624 * ever sees the pointer and expects 625 * it to be valid. 626 */ 627 cpu_writer->mnt = NULL; 628 spin_unlock(&cpu_writer->lock); 629 } 630 /* 631 * This probably indicates that somebody messed 632 * up a mnt_want/drop_write() pair. If this 633 * happens, the filesystem was probably unable 634 * to make r/w->r/o transitions. 635 */ 636 WARN_ON(atomic_read(&mnt->__mnt_writers)); 637 dput(mnt->mnt_root); 638 free_vfsmnt(mnt); 639 deactivate_super(sb); 640 } 641 642 void mntput_no_expire(struct vfsmount *mnt) 643 { 644 repeat: 645 if (atomic_dec_and_lock(&mnt->mnt_count, &vfsmount_lock)) { 646 if (likely(!mnt->mnt_pinned)) { 647 spin_unlock(&vfsmount_lock); 648 __mntput(mnt); 649 return; 650 } 651 atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count); 652 mnt->mnt_pinned = 0; 653 spin_unlock(&vfsmount_lock); 654 acct_auto_close_mnt(mnt); 655 security_sb_umount_close(mnt); 656 goto repeat; 657 } 658 } 659 660 EXPORT_SYMBOL(mntput_no_expire); 661 662 void mnt_pin(struct vfsmount *mnt) 663 { 664 spin_lock(&vfsmount_lock); 665 mnt->mnt_pinned++; 666 spin_unlock(&vfsmount_lock); 667 } 668 669 EXPORT_SYMBOL(mnt_pin); 670 671 void mnt_unpin(struct vfsmount *mnt) 672 { 673 spin_lock(&vfsmount_lock); 674 if (mnt->mnt_pinned) { 675 atomic_inc(&mnt->mnt_count); 676 mnt->mnt_pinned--; 677 } 678 spin_unlock(&vfsmount_lock); 679 } 680 681 EXPORT_SYMBOL(mnt_unpin); 682 683 static inline void mangle(struct seq_file *m, const char *s) 684 { 685 seq_escape(m, s, " \t\n\\"); 686 } 687 688 /* 689 * Simple .show_options callback for filesystems which don't want to 690 * implement more complex mount option showing. 691 * 692 * See also save_mount_options(). 693 */ 694 int generic_show_options(struct seq_file *m, struct vfsmount *mnt) 695 { 696 const char *options = mnt->mnt_sb->s_options; 697 698 if (options != NULL && options[0]) { 699 seq_putc(m, ','); 700 mangle(m, options); 701 } 702 703 return 0; 704 } 705 EXPORT_SYMBOL(generic_show_options); 706 707 /* 708 * If filesystem uses generic_show_options(), this function should be 709 * called from the fill_super() callback. 710 * 711 * The .remount_fs callback usually needs to be handled in a special 712 * way, to make sure, that previous options are not overwritten if the 713 * remount fails. 714 * 715 * Also note, that if the filesystem's .remount_fs function doesn't 716 * reset all options to their default value, but changes only newly 717 * given options, then the displayed options will not reflect reality 718 * any more. 719 */ 720 void save_mount_options(struct super_block *sb, char *options) 721 { 722 kfree(sb->s_options); 723 sb->s_options = kstrdup(options, GFP_KERNEL); 724 } 725 EXPORT_SYMBOL(save_mount_options); 726 727 #ifdef CONFIG_PROC_FS 728 /* iterator */ 729 static void *m_start(struct seq_file *m, loff_t *pos) 730 { 731 struct proc_mounts *p = m->private; 732 733 down_read(&namespace_sem); 734 return seq_list_start(&p->ns->list, *pos); 735 } 736 737 static void *m_next(struct seq_file *m, void *v, loff_t *pos) 738 { 739 struct proc_mounts *p = m->private; 740 741 return seq_list_next(v, &p->ns->list, pos); 742 } 743 744 static void m_stop(struct seq_file *m, void *v) 745 { 746 up_read(&namespace_sem); 747 } 748 749 struct proc_fs_info { 750 int flag; 751 const char *str; 752 }; 753 754 static int show_sb_opts(struct seq_file *m, struct super_block *sb) 755 { 756 static const struct proc_fs_info fs_info[] = { 757 { MS_SYNCHRONOUS, ",sync" }, 758 { MS_DIRSYNC, ",dirsync" }, 759 { MS_MANDLOCK, ",mand" }, 760 { 0, NULL } 761 }; 762 const struct proc_fs_info *fs_infop; 763 764 for (fs_infop = fs_info; fs_infop->flag; fs_infop++) { 765 if (sb->s_flags & fs_infop->flag) 766 seq_puts(m, fs_infop->str); 767 } 768 769 return security_sb_show_options(m, sb); 770 } 771 772 static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt) 773 { 774 static const struct proc_fs_info mnt_info[] = { 775 { MNT_NOSUID, ",nosuid" }, 776 { MNT_NODEV, ",nodev" }, 777 { MNT_NOEXEC, ",noexec" }, 778 { MNT_NOATIME, ",noatime" }, 779 { MNT_NODIRATIME, ",nodiratime" }, 780 { MNT_RELATIME, ",relatime" }, 781 { 0, NULL } 782 }; 783 const struct proc_fs_info *fs_infop; 784 785 for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) { 786 if (mnt->mnt_flags & fs_infop->flag) 787 seq_puts(m, fs_infop->str); 788 } 789 } 790 791 static void show_type(struct seq_file *m, struct super_block *sb) 792 { 793 mangle(m, sb->s_type->name); 794 if (sb->s_subtype && sb->s_subtype[0]) { 795 seq_putc(m, '.'); 796 mangle(m, sb->s_subtype); 797 } 798 } 799 800 static int show_vfsmnt(struct seq_file *m, void *v) 801 { 802 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list); 803 int err = 0; 804 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt }; 805 806 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none"); 807 seq_putc(m, ' '); 808 seq_path(m, &mnt_path, " \t\n\\"); 809 seq_putc(m, ' '); 810 show_type(m, mnt->mnt_sb); 811 seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw"); 812 err = show_sb_opts(m, mnt->mnt_sb); 813 if (err) 814 goto out; 815 show_mnt_opts(m, mnt); 816 if (mnt->mnt_sb->s_op->show_options) 817 err = mnt->mnt_sb->s_op->show_options(m, mnt); 818 seq_puts(m, " 0 0\n"); 819 out: 820 return err; 821 } 822 823 const struct seq_operations mounts_op = { 824 .start = m_start, 825 .next = m_next, 826 .stop = m_stop, 827 .show = show_vfsmnt 828 }; 829 830 static int show_mountinfo(struct seq_file *m, void *v) 831 { 832 struct proc_mounts *p = m->private; 833 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list); 834 struct super_block *sb = mnt->mnt_sb; 835 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt }; 836 struct path root = p->root; 837 int err = 0; 838 839 seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, mnt->mnt_parent->mnt_id, 840 MAJOR(sb->s_dev), MINOR(sb->s_dev)); 841 seq_dentry(m, mnt->mnt_root, " \t\n\\"); 842 seq_putc(m, ' '); 843 seq_path_root(m, &mnt_path, &root, " \t\n\\"); 844 if (root.mnt != p->root.mnt || root.dentry != p->root.dentry) { 845 /* 846 * Mountpoint is outside root, discard that one. Ugly, 847 * but less so than trying to do that in iterator in a 848 * race-free way (due to renames). 849 */ 850 return SEQ_SKIP; 851 } 852 seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw"); 853 show_mnt_opts(m, mnt); 854 855 /* Tagged fields ("foo:X" or "bar") */ 856 if (IS_MNT_SHARED(mnt)) 857 seq_printf(m, " shared:%i", mnt->mnt_group_id); 858 if (IS_MNT_SLAVE(mnt)) { 859 int master = mnt->mnt_master->mnt_group_id; 860 int dom = get_dominating_id(mnt, &p->root); 861 seq_printf(m, " master:%i", master); 862 if (dom && dom != master) 863 seq_printf(m, " propagate_from:%i", dom); 864 } 865 if (IS_MNT_UNBINDABLE(mnt)) 866 seq_puts(m, " unbindable"); 867 868 /* Filesystem specific data */ 869 seq_puts(m, " - "); 870 show_type(m, sb); 871 seq_putc(m, ' '); 872 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none"); 873 seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw"); 874 err = show_sb_opts(m, sb); 875 if (err) 876 goto out; 877 if (sb->s_op->show_options) 878 err = sb->s_op->show_options(m, mnt); 879 seq_putc(m, '\n'); 880 out: 881 return err; 882 } 883 884 const struct seq_operations mountinfo_op = { 885 .start = m_start, 886 .next = m_next, 887 .stop = m_stop, 888 .show = show_mountinfo, 889 }; 890 891 static int show_vfsstat(struct seq_file *m, void *v) 892 { 893 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list); 894 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt }; 895 int err = 0; 896 897 /* device */ 898 if (mnt->mnt_devname) { 899 seq_puts(m, "device "); 900 mangle(m, mnt->mnt_devname); 901 } else 902 seq_puts(m, "no device"); 903 904 /* mount point */ 905 seq_puts(m, " mounted on "); 906 seq_path(m, &mnt_path, " \t\n\\"); 907 seq_putc(m, ' '); 908 909 /* file system type */ 910 seq_puts(m, "with fstype "); 911 show_type(m, mnt->mnt_sb); 912 913 /* optional statistics */ 914 if (mnt->mnt_sb->s_op->show_stats) { 915 seq_putc(m, ' '); 916 err = mnt->mnt_sb->s_op->show_stats(m, mnt); 917 } 918 919 seq_putc(m, '\n'); 920 return err; 921 } 922 923 const struct seq_operations mountstats_op = { 924 .start = m_start, 925 .next = m_next, 926 .stop = m_stop, 927 .show = show_vfsstat, 928 }; 929 #endif /* CONFIG_PROC_FS */ 930 931 /** 932 * may_umount_tree - check if a mount tree is busy 933 * @mnt: root of mount tree 934 * 935 * This is called to check if a tree of mounts has any 936 * open files, pwds, chroots or sub mounts that are 937 * busy. 938 */ 939 int may_umount_tree(struct vfsmount *mnt) 940 { 941 int actual_refs = 0; 942 int minimum_refs = 0; 943 struct vfsmount *p; 944 945 spin_lock(&vfsmount_lock); 946 for (p = mnt; p; p = next_mnt(p, mnt)) { 947 actual_refs += atomic_read(&p->mnt_count); 948 minimum_refs += 2; 949 } 950 spin_unlock(&vfsmount_lock); 951 952 if (actual_refs > minimum_refs) 953 return 0; 954 955 return 1; 956 } 957 958 EXPORT_SYMBOL(may_umount_tree); 959 960 /** 961 * may_umount - check if a mount point is busy 962 * @mnt: root of mount 963 * 964 * This is called to check if a mount point has any 965 * open files, pwds, chroots or sub mounts. If the 966 * mount has sub mounts this will return busy 967 * regardless of whether the sub mounts are busy. 968 * 969 * Doesn't take quota and stuff into account. IOW, in some cases it will 970 * give false negatives. The main reason why it's here is that we need 971 * a non-destructive way to look for easily umountable filesystems. 972 */ 973 int may_umount(struct vfsmount *mnt) 974 { 975 int ret = 1; 976 spin_lock(&vfsmount_lock); 977 if (propagate_mount_busy(mnt, 2)) 978 ret = 0; 979 spin_unlock(&vfsmount_lock); 980 return ret; 981 } 982 983 EXPORT_SYMBOL(may_umount); 984 985 void release_mounts(struct list_head *head) 986 { 987 struct vfsmount *mnt; 988 while (!list_empty(head)) { 989 mnt = list_first_entry(head, struct vfsmount, mnt_hash); 990 list_del_init(&mnt->mnt_hash); 991 if (mnt->mnt_parent != mnt) { 992 struct dentry *dentry; 993 struct vfsmount *m; 994 spin_lock(&vfsmount_lock); 995 dentry = mnt->mnt_mountpoint; 996 m = mnt->mnt_parent; 997 mnt->mnt_mountpoint = mnt->mnt_root; 998 mnt->mnt_parent = mnt; 999 m->mnt_ghosts--; 1000 spin_unlock(&vfsmount_lock); 1001 dput(dentry); 1002 mntput(m); 1003 } 1004 mntput(mnt); 1005 } 1006 } 1007 1008 void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill) 1009 { 1010 struct vfsmount *p; 1011 1012 for (p = mnt; p; p = next_mnt(p, mnt)) 1013 list_move(&p->mnt_hash, kill); 1014 1015 if (propagate) 1016 propagate_umount(kill); 1017 1018 list_for_each_entry(p, kill, mnt_hash) { 1019 list_del_init(&p->mnt_expire); 1020 list_del_init(&p->mnt_list); 1021 __touch_mnt_namespace(p->mnt_ns); 1022 p->mnt_ns = NULL; 1023 list_del_init(&p->mnt_child); 1024 if (p->mnt_parent != p) { 1025 p->mnt_parent->mnt_ghosts++; 1026 p->mnt_mountpoint->d_mounted--; 1027 } 1028 change_mnt_propagation(p, MS_PRIVATE); 1029 } 1030 } 1031 1032 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts); 1033 1034 static int do_umount(struct vfsmount *mnt, int flags) 1035 { 1036 struct super_block *sb = mnt->mnt_sb; 1037 int retval; 1038 LIST_HEAD(umount_list); 1039 1040 retval = security_sb_umount(mnt, flags); 1041 if (retval) 1042 return retval; 1043 1044 /* 1045 * Allow userspace to request a mountpoint be expired rather than 1046 * unmounting unconditionally. Unmount only happens if: 1047 * (1) the mark is already set (the mark is cleared by mntput()) 1048 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] 1049 */ 1050 if (flags & MNT_EXPIRE) { 1051 if (mnt == current->fs->root.mnt || 1052 flags & (MNT_FORCE | MNT_DETACH)) 1053 return -EINVAL; 1054 1055 if (atomic_read(&mnt->mnt_count) != 2) 1056 return -EBUSY; 1057 1058 if (!xchg(&mnt->mnt_expiry_mark, 1)) 1059 return -EAGAIN; 1060 } 1061 1062 /* 1063 * If we may have to abort operations to get out of this 1064 * mount, and they will themselves hold resources we must 1065 * allow the fs to do things. In the Unix tradition of 1066 * 'Gee thats tricky lets do it in userspace' the umount_begin 1067 * might fail to complete on the first run through as other tasks 1068 * must return, and the like. Thats for the mount program to worry 1069 * about for the moment. 1070 */ 1071 1072 if (flags & MNT_FORCE && sb->s_op->umount_begin) { 1073 lock_kernel(); 1074 sb->s_op->umount_begin(sb); 1075 unlock_kernel(); 1076 } 1077 1078 /* 1079 * No sense to grab the lock for this test, but test itself looks 1080 * somewhat bogus. Suggestions for better replacement? 1081 * Ho-hum... In principle, we might treat that as umount + switch 1082 * to rootfs. GC would eventually take care of the old vfsmount. 1083 * Actually it makes sense, especially if rootfs would contain a 1084 * /reboot - static binary that would close all descriptors and 1085 * call reboot(9). Then init(8) could umount root and exec /reboot. 1086 */ 1087 if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) { 1088 /* 1089 * Special case for "unmounting" root ... 1090 * we just try to remount it readonly. 1091 */ 1092 down_write(&sb->s_umount); 1093 if (!(sb->s_flags & MS_RDONLY)) { 1094 lock_kernel(); 1095 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0); 1096 unlock_kernel(); 1097 } 1098 up_write(&sb->s_umount); 1099 return retval; 1100 } 1101 1102 down_write(&namespace_sem); 1103 spin_lock(&vfsmount_lock); 1104 event++; 1105 1106 if (!(flags & MNT_DETACH)) 1107 shrink_submounts(mnt, &umount_list); 1108 1109 retval = -EBUSY; 1110 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) { 1111 if (!list_empty(&mnt->mnt_list)) 1112 umount_tree(mnt, 1, &umount_list); 1113 retval = 0; 1114 } 1115 spin_unlock(&vfsmount_lock); 1116 if (retval) 1117 security_sb_umount_busy(mnt); 1118 up_write(&namespace_sem); 1119 release_mounts(&umount_list); 1120 return retval; 1121 } 1122 1123 /* 1124 * Now umount can handle mount points as well as block devices. 1125 * This is important for filesystems which use unnamed block devices. 1126 * 1127 * We now support a flag for forced unmount like the other 'big iron' 1128 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD 1129 */ 1130 1131 asmlinkage long sys_umount(char __user * name, int flags) 1132 { 1133 struct path path; 1134 int retval; 1135 1136 retval = user_path(name, &path); 1137 if (retval) 1138 goto out; 1139 retval = -EINVAL; 1140 if (path.dentry != path.mnt->mnt_root) 1141 goto dput_and_out; 1142 if (!check_mnt(path.mnt)) 1143 goto dput_and_out; 1144 1145 retval = -EPERM; 1146 if (!capable(CAP_SYS_ADMIN)) 1147 goto dput_and_out; 1148 1149 retval = do_umount(path.mnt, flags); 1150 dput_and_out: 1151 /* we mustn't call path_put() as that would clear mnt_expiry_mark */ 1152 dput(path.dentry); 1153 mntput_no_expire(path.mnt); 1154 out: 1155 return retval; 1156 } 1157 1158 #ifdef __ARCH_WANT_SYS_OLDUMOUNT 1159 1160 /* 1161 * The 2.0 compatible umount. No flags. 1162 */ 1163 asmlinkage long sys_oldumount(char __user * name) 1164 { 1165 return sys_umount(name, 0); 1166 } 1167 1168 #endif 1169 1170 static int mount_is_safe(struct nameidata *nd) 1171 { 1172 if (capable(CAP_SYS_ADMIN)) 1173 return 0; 1174 return -EPERM; 1175 #ifdef notyet 1176 if (S_ISLNK(nd->path.dentry->d_inode->i_mode)) 1177 return -EPERM; 1178 if (nd->path.dentry->d_inode->i_mode & S_ISVTX) { 1179 if (current->uid != nd->path.dentry->d_inode->i_uid) 1180 return -EPERM; 1181 } 1182 if (vfs_permission(nd, MAY_WRITE)) 1183 return -EPERM; 1184 return 0; 1185 #endif 1186 } 1187 1188 struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry, 1189 int flag) 1190 { 1191 struct vfsmount *res, *p, *q, *r, *s; 1192 struct path path; 1193 1194 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt)) 1195 return NULL; 1196 1197 res = q = clone_mnt(mnt, dentry, flag); 1198 if (!q) 1199 goto Enomem; 1200 q->mnt_mountpoint = mnt->mnt_mountpoint; 1201 1202 p = mnt; 1203 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) { 1204 if (!is_subdir(r->mnt_mountpoint, dentry)) 1205 continue; 1206 1207 for (s = r; s; s = next_mnt(s, r)) { 1208 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) { 1209 s = skip_mnt_tree(s); 1210 continue; 1211 } 1212 while (p != s->mnt_parent) { 1213 p = p->mnt_parent; 1214 q = q->mnt_parent; 1215 } 1216 p = s; 1217 path.mnt = q; 1218 path.dentry = p->mnt_mountpoint; 1219 q = clone_mnt(p, p->mnt_root, flag); 1220 if (!q) 1221 goto Enomem; 1222 spin_lock(&vfsmount_lock); 1223 list_add_tail(&q->mnt_list, &res->mnt_list); 1224 attach_mnt(q, &path); 1225 spin_unlock(&vfsmount_lock); 1226 } 1227 } 1228 return res; 1229 Enomem: 1230 if (res) { 1231 LIST_HEAD(umount_list); 1232 spin_lock(&vfsmount_lock); 1233 umount_tree(res, 0, &umount_list); 1234 spin_unlock(&vfsmount_lock); 1235 release_mounts(&umount_list); 1236 } 1237 return NULL; 1238 } 1239 1240 struct vfsmount *collect_mounts(struct vfsmount *mnt, struct dentry *dentry) 1241 { 1242 struct vfsmount *tree; 1243 down_write(&namespace_sem); 1244 tree = copy_tree(mnt, dentry, CL_COPY_ALL | CL_PRIVATE); 1245 up_write(&namespace_sem); 1246 return tree; 1247 } 1248 1249 void drop_collected_mounts(struct vfsmount *mnt) 1250 { 1251 LIST_HEAD(umount_list); 1252 down_write(&namespace_sem); 1253 spin_lock(&vfsmount_lock); 1254 umount_tree(mnt, 0, &umount_list); 1255 spin_unlock(&vfsmount_lock); 1256 up_write(&namespace_sem); 1257 release_mounts(&umount_list); 1258 } 1259 1260 static void cleanup_group_ids(struct vfsmount *mnt, struct vfsmount *end) 1261 { 1262 struct vfsmount *p; 1263 1264 for (p = mnt; p != end; p = next_mnt(p, mnt)) { 1265 if (p->mnt_group_id && !IS_MNT_SHARED(p)) 1266 mnt_release_group_id(p); 1267 } 1268 } 1269 1270 static int invent_group_ids(struct vfsmount *mnt, bool recurse) 1271 { 1272 struct vfsmount *p; 1273 1274 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) { 1275 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) { 1276 int err = mnt_alloc_group_id(p); 1277 if (err) { 1278 cleanup_group_ids(mnt, p); 1279 return err; 1280 } 1281 } 1282 } 1283 1284 return 0; 1285 } 1286 1287 /* 1288 * @source_mnt : mount tree to be attached 1289 * @nd : place the mount tree @source_mnt is attached 1290 * @parent_nd : if non-null, detach the source_mnt from its parent and 1291 * store the parent mount and mountpoint dentry. 1292 * (done when source_mnt is moved) 1293 * 1294 * NOTE: in the table below explains the semantics when a source mount 1295 * of a given type is attached to a destination mount of a given type. 1296 * --------------------------------------------------------------------------- 1297 * | BIND MOUNT OPERATION | 1298 * |************************************************************************** 1299 * | source-->| shared | private | slave | unbindable | 1300 * | dest | | | | | 1301 * | | | | | | | 1302 * | v | | | | | 1303 * |************************************************************************** 1304 * | shared | shared (++) | shared (+) | shared(+++)| invalid | 1305 * | | | | | | 1306 * |non-shared| shared (+) | private | slave (*) | invalid | 1307 * *************************************************************************** 1308 * A bind operation clones the source mount and mounts the clone on the 1309 * destination mount. 1310 * 1311 * (++) the cloned mount is propagated to all the mounts in the propagation 1312 * tree of the destination mount and the cloned mount is added to 1313 * the peer group of the source mount. 1314 * (+) the cloned mount is created under the destination mount and is marked 1315 * as shared. The cloned mount is added to the peer group of the source 1316 * mount. 1317 * (+++) the mount is propagated to all the mounts in the propagation tree 1318 * of the destination mount and the cloned mount is made slave 1319 * of the same master as that of the source mount. The cloned mount 1320 * is marked as 'shared and slave'. 1321 * (*) the cloned mount is made a slave of the same master as that of the 1322 * source mount. 1323 * 1324 * --------------------------------------------------------------------------- 1325 * | MOVE MOUNT OPERATION | 1326 * |************************************************************************** 1327 * | source-->| shared | private | slave | unbindable | 1328 * | dest | | | | | 1329 * | | | | | | | 1330 * | v | | | | | 1331 * |************************************************************************** 1332 * | shared | shared (+) | shared (+) | shared(+++) | invalid | 1333 * | | | | | | 1334 * |non-shared| shared (+*) | private | slave (*) | unbindable | 1335 * *************************************************************************** 1336 * 1337 * (+) the mount is moved to the destination. And is then propagated to 1338 * all the mounts in the propagation tree of the destination mount. 1339 * (+*) the mount is moved to the destination. 1340 * (+++) the mount is moved to the destination and is then propagated to 1341 * all the mounts belonging to the destination mount's propagation tree. 1342 * the mount is marked as 'shared and slave'. 1343 * (*) the mount continues to be a slave at the new location. 1344 * 1345 * if the source mount is a tree, the operations explained above is 1346 * applied to each mount in the tree. 1347 * Must be called without spinlocks held, since this function can sleep 1348 * in allocations. 1349 */ 1350 static int attach_recursive_mnt(struct vfsmount *source_mnt, 1351 struct path *path, struct path *parent_path) 1352 { 1353 LIST_HEAD(tree_list); 1354 struct vfsmount *dest_mnt = path->mnt; 1355 struct dentry *dest_dentry = path->dentry; 1356 struct vfsmount *child, *p; 1357 int err; 1358 1359 if (IS_MNT_SHARED(dest_mnt)) { 1360 err = invent_group_ids(source_mnt, true); 1361 if (err) 1362 goto out; 1363 } 1364 err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list); 1365 if (err) 1366 goto out_cleanup_ids; 1367 1368 if (IS_MNT_SHARED(dest_mnt)) { 1369 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 1370 set_mnt_shared(p); 1371 } 1372 1373 spin_lock(&vfsmount_lock); 1374 if (parent_path) { 1375 detach_mnt(source_mnt, parent_path); 1376 attach_mnt(source_mnt, path); 1377 touch_mnt_namespace(current->nsproxy->mnt_ns); 1378 } else { 1379 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt); 1380 commit_tree(source_mnt); 1381 } 1382 1383 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) { 1384 list_del_init(&child->mnt_hash); 1385 commit_tree(child); 1386 } 1387 spin_unlock(&vfsmount_lock); 1388 return 0; 1389 1390 out_cleanup_ids: 1391 if (IS_MNT_SHARED(dest_mnt)) 1392 cleanup_group_ids(source_mnt, NULL); 1393 out: 1394 return err; 1395 } 1396 1397 static int graft_tree(struct vfsmount *mnt, struct path *path) 1398 { 1399 int err; 1400 if (mnt->mnt_sb->s_flags & MS_NOUSER) 1401 return -EINVAL; 1402 1403 if (S_ISDIR(path->dentry->d_inode->i_mode) != 1404 S_ISDIR(mnt->mnt_root->d_inode->i_mode)) 1405 return -ENOTDIR; 1406 1407 err = -ENOENT; 1408 mutex_lock(&path->dentry->d_inode->i_mutex); 1409 if (IS_DEADDIR(path->dentry->d_inode)) 1410 goto out_unlock; 1411 1412 err = security_sb_check_sb(mnt, path); 1413 if (err) 1414 goto out_unlock; 1415 1416 err = -ENOENT; 1417 if (IS_ROOT(path->dentry) || !d_unhashed(path->dentry)) 1418 err = attach_recursive_mnt(mnt, path, NULL); 1419 out_unlock: 1420 mutex_unlock(&path->dentry->d_inode->i_mutex); 1421 if (!err) 1422 security_sb_post_addmount(mnt, path); 1423 return err; 1424 } 1425 1426 /* 1427 * recursively change the type of the mountpoint. 1428 * noinline this do_mount helper to save do_mount stack space. 1429 */ 1430 static noinline int do_change_type(struct nameidata *nd, int flag) 1431 { 1432 struct vfsmount *m, *mnt = nd->path.mnt; 1433 int recurse = flag & MS_REC; 1434 int type = flag & ~MS_REC; 1435 int err = 0; 1436 1437 if (!capable(CAP_SYS_ADMIN)) 1438 return -EPERM; 1439 1440 if (nd->path.dentry != nd->path.mnt->mnt_root) 1441 return -EINVAL; 1442 1443 down_write(&namespace_sem); 1444 if (type == MS_SHARED) { 1445 err = invent_group_ids(mnt, recurse); 1446 if (err) 1447 goto out_unlock; 1448 } 1449 1450 spin_lock(&vfsmount_lock); 1451 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) 1452 change_mnt_propagation(m, type); 1453 spin_unlock(&vfsmount_lock); 1454 1455 out_unlock: 1456 up_write(&namespace_sem); 1457 return err; 1458 } 1459 1460 /* 1461 * do loopback mount. 1462 * noinline this do_mount helper to save do_mount stack space. 1463 */ 1464 static noinline int do_loopback(struct nameidata *nd, char *old_name, 1465 int recurse) 1466 { 1467 struct nameidata old_nd; 1468 struct vfsmount *mnt = NULL; 1469 int err = mount_is_safe(nd); 1470 if (err) 1471 return err; 1472 if (!old_name || !*old_name) 1473 return -EINVAL; 1474 err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd); 1475 if (err) 1476 return err; 1477 1478 down_write(&namespace_sem); 1479 err = -EINVAL; 1480 if (IS_MNT_UNBINDABLE(old_nd.path.mnt)) 1481 goto out; 1482 1483 if (!check_mnt(nd->path.mnt) || !check_mnt(old_nd.path.mnt)) 1484 goto out; 1485 1486 err = -ENOMEM; 1487 if (recurse) 1488 mnt = copy_tree(old_nd.path.mnt, old_nd.path.dentry, 0); 1489 else 1490 mnt = clone_mnt(old_nd.path.mnt, old_nd.path.dentry, 0); 1491 1492 if (!mnt) 1493 goto out; 1494 1495 err = graft_tree(mnt, &nd->path); 1496 if (err) { 1497 LIST_HEAD(umount_list); 1498 spin_lock(&vfsmount_lock); 1499 umount_tree(mnt, 0, &umount_list); 1500 spin_unlock(&vfsmount_lock); 1501 release_mounts(&umount_list); 1502 } 1503 1504 out: 1505 up_write(&namespace_sem); 1506 path_put(&old_nd.path); 1507 return err; 1508 } 1509 1510 static int change_mount_flags(struct vfsmount *mnt, int ms_flags) 1511 { 1512 int error = 0; 1513 int readonly_request = 0; 1514 1515 if (ms_flags & MS_RDONLY) 1516 readonly_request = 1; 1517 if (readonly_request == __mnt_is_readonly(mnt)) 1518 return 0; 1519 1520 if (readonly_request) 1521 error = mnt_make_readonly(mnt); 1522 else 1523 __mnt_unmake_readonly(mnt); 1524 return error; 1525 } 1526 1527 /* 1528 * change filesystem flags. dir should be a physical root of filesystem. 1529 * If you've mounted a non-root directory somewhere and want to do remount 1530 * on it - tough luck. 1531 * noinline this do_mount helper to save do_mount stack space. 1532 */ 1533 static noinline int do_remount(struct nameidata *nd, int flags, int mnt_flags, 1534 void *data) 1535 { 1536 int err; 1537 struct super_block *sb = nd->path.mnt->mnt_sb; 1538 1539 if (!capable(CAP_SYS_ADMIN)) 1540 return -EPERM; 1541 1542 if (!check_mnt(nd->path.mnt)) 1543 return -EINVAL; 1544 1545 if (nd->path.dentry != nd->path.mnt->mnt_root) 1546 return -EINVAL; 1547 1548 down_write(&sb->s_umount); 1549 if (flags & MS_BIND) 1550 err = change_mount_flags(nd->path.mnt, flags); 1551 else 1552 err = do_remount_sb(sb, flags, data, 0); 1553 if (!err) 1554 nd->path.mnt->mnt_flags = mnt_flags; 1555 up_write(&sb->s_umount); 1556 if (!err) 1557 security_sb_post_remount(nd->path.mnt, flags, data); 1558 return err; 1559 } 1560 1561 static inline int tree_contains_unbindable(struct vfsmount *mnt) 1562 { 1563 struct vfsmount *p; 1564 for (p = mnt; p; p = next_mnt(p, mnt)) { 1565 if (IS_MNT_UNBINDABLE(p)) 1566 return 1; 1567 } 1568 return 0; 1569 } 1570 1571 /* 1572 * noinline this do_mount helper to save do_mount stack space. 1573 */ 1574 static noinline int do_move_mount(struct nameidata *nd, char *old_name) 1575 { 1576 struct nameidata old_nd; 1577 struct path parent_path; 1578 struct vfsmount *p; 1579 int err = 0; 1580 if (!capable(CAP_SYS_ADMIN)) 1581 return -EPERM; 1582 if (!old_name || !*old_name) 1583 return -EINVAL; 1584 err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd); 1585 if (err) 1586 return err; 1587 1588 down_write(&namespace_sem); 1589 while (d_mountpoint(nd->path.dentry) && 1590 follow_down(&nd->path.mnt, &nd->path.dentry)) 1591 ; 1592 err = -EINVAL; 1593 if (!check_mnt(nd->path.mnt) || !check_mnt(old_nd.path.mnt)) 1594 goto out; 1595 1596 err = -ENOENT; 1597 mutex_lock(&nd->path.dentry->d_inode->i_mutex); 1598 if (IS_DEADDIR(nd->path.dentry->d_inode)) 1599 goto out1; 1600 1601 if (!IS_ROOT(nd->path.dentry) && d_unhashed(nd->path.dentry)) 1602 goto out1; 1603 1604 err = -EINVAL; 1605 if (old_nd.path.dentry != old_nd.path.mnt->mnt_root) 1606 goto out1; 1607 1608 if (old_nd.path.mnt == old_nd.path.mnt->mnt_parent) 1609 goto out1; 1610 1611 if (S_ISDIR(nd->path.dentry->d_inode->i_mode) != 1612 S_ISDIR(old_nd.path.dentry->d_inode->i_mode)) 1613 goto out1; 1614 /* 1615 * Don't move a mount residing in a shared parent. 1616 */ 1617 if (old_nd.path.mnt->mnt_parent && 1618 IS_MNT_SHARED(old_nd.path.mnt->mnt_parent)) 1619 goto out1; 1620 /* 1621 * Don't move a mount tree containing unbindable mounts to a destination 1622 * mount which is shared. 1623 */ 1624 if (IS_MNT_SHARED(nd->path.mnt) && 1625 tree_contains_unbindable(old_nd.path.mnt)) 1626 goto out1; 1627 err = -ELOOP; 1628 for (p = nd->path.mnt; p->mnt_parent != p; p = p->mnt_parent) 1629 if (p == old_nd.path.mnt) 1630 goto out1; 1631 1632 err = attach_recursive_mnt(old_nd.path.mnt, &nd->path, &parent_path); 1633 if (err) 1634 goto out1; 1635 1636 /* if the mount is moved, it should no longer be expire 1637 * automatically */ 1638 list_del_init(&old_nd.path.mnt->mnt_expire); 1639 out1: 1640 mutex_unlock(&nd->path.dentry->d_inode->i_mutex); 1641 out: 1642 up_write(&namespace_sem); 1643 if (!err) 1644 path_put(&parent_path); 1645 path_put(&old_nd.path); 1646 return err; 1647 } 1648 1649 /* 1650 * create a new mount for userspace and request it to be added into the 1651 * namespace's tree 1652 * noinline this do_mount helper to save do_mount stack space. 1653 */ 1654 static noinline int do_new_mount(struct nameidata *nd, char *type, int flags, 1655 int mnt_flags, char *name, void *data) 1656 { 1657 struct vfsmount *mnt; 1658 1659 if (!type || !memchr(type, 0, PAGE_SIZE)) 1660 return -EINVAL; 1661 1662 /* we need capabilities... */ 1663 if (!capable(CAP_SYS_ADMIN)) 1664 return -EPERM; 1665 1666 mnt = do_kern_mount(type, flags, name, data); 1667 if (IS_ERR(mnt)) 1668 return PTR_ERR(mnt); 1669 1670 return do_add_mount(mnt, &nd->path, mnt_flags, NULL); 1671 } 1672 1673 /* 1674 * add a mount into a namespace's mount tree 1675 * - provide the option of adding the new mount to an expiration list 1676 */ 1677 int do_add_mount(struct vfsmount *newmnt, struct path *path, 1678 int mnt_flags, struct list_head *fslist) 1679 { 1680 int err; 1681 1682 down_write(&namespace_sem); 1683 /* Something was mounted here while we slept */ 1684 while (d_mountpoint(path->dentry) && 1685 follow_down(&path->mnt, &path->dentry)) 1686 ; 1687 err = -EINVAL; 1688 if (!check_mnt(path->mnt)) 1689 goto unlock; 1690 1691 /* Refuse the same filesystem on the same mount point */ 1692 err = -EBUSY; 1693 if (path->mnt->mnt_sb == newmnt->mnt_sb && 1694 path->mnt->mnt_root == path->dentry) 1695 goto unlock; 1696 1697 err = -EINVAL; 1698 if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode)) 1699 goto unlock; 1700 1701 newmnt->mnt_flags = mnt_flags; 1702 if ((err = graft_tree(newmnt, path))) 1703 goto unlock; 1704 1705 if (fslist) /* add to the specified expiration list */ 1706 list_add_tail(&newmnt->mnt_expire, fslist); 1707 1708 up_write(&namespace_sem); 1709 return 0; 1710 1711 unlock: 1712 up_write(&namespace_sem); 1713 mntput(newmnt); 1714 return err; 1715 } 1716 1717 EXPORT_SYMBOL_GPL(do_add_mount); 1718 1719 /* 1720 * process a list of expirable mountpoints with the intent of discarding any 1721 * mountpoints that aren't in use and haven't been touched since last we came 1722 * here 1723 */ 1724 void mark_mounts_for_expiry(struct list_head *mounts) 1725 { 1726 struct vfsmount *mnt, *next; 1727 LIST_HEAD(graveyard); 1728 LIST_HEAD(umounts); 1729 1730 if (list_empty(mounts)) 1731 return; 1732 1733 down_write(&namespace_sem); 1734 spin_lock(&vfsmount_lock); 1735 1736 /* extract from the expiration list every vfsmount that matches the 1737 * following criteria: 1738 * - only referenced by its parent vfsmount 1739 * - still marked for expiry (marked on the last call here; marks are 1740 * cleared by mntput()) 1741 */ 1742 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { 1743 if (!xchg(&mnt->mnt_expiry_mark, 1) || 1744 propagate_mount_busy(mnt, 1)) 1745 continue; 1746 list_move(&mnt->mnt_expire, &graveyard); 1747 } 1748 while (!list_empty(&graveyard)) { 1749 mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire); 1750 touch_mnt_namespace(mnt->mnt_ns); 1751 umount_tree(mnt, 1, &umounts); 1752 } 1753 spin_unlock(&vfsmount_lock); 1754 up_write(&namespace_sem); 1755 1756 release_mounts(&umounts); 1757 } 1758 1759 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); 1760 1761 /* 1762 * Ripoff of 'select_parent()' 1763 * 1764 * search the list of submounts for a given mountpoint, and move any 1765 * shrinkable submounts to the 'graveyard' list. 1766 */ 1767 static int select_submounts(struct vfsmount *parent, struct list_head *graveyard) 1768 { 1769 struct vfsmount *this_parent = parent; 1770 struct list_head *next; 1771 int found = 0; 1772 1773 repeat: 1774 next = this_parent->mnt_mounts.next; 1775 resume: 1776 while (next != &this_parent->mnt_mounts) { 1777 struct list_head *tmp = next; 1778 struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child); 1779 1780 next = tmp->next; 1781 if (!(mnt->mnt_flags & MNT_SHRINKABLE)) 1782 continue; 1783 /* 1784 * Descend a level if the d_mounts list is non-empty. 1785 */ 1786 if (!list_empty(&mnt->mnt_mounts)) { 1787 this_parent = mnt; 1788 goto repeat; 1789 } 1790 1791 if (!propagate_mount_busy(mnt, 1)) { 1792 list_move_tail(&mnt->mnt_expire, graveyard); 1793 found++; 1794 } 1795 } 1796 /* 1797 * All done at this level ... ascend and resume the search 1798 */ 1799 if (this_parent != parent) { 1800 next = this_parent->mnt_child.next; 1801 this_parent = this_parent->mnt_parent; 1802 goto resume; 1803 } 1804 return found; 1805 } 1806 1807 /* 1808 * process a list of expirable mountpoints with the intent of discarding any 1809 * submounts of a specific parent mountpoint 1810 */ 1811 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts) 1812 { 1813 LIST_HEAD(graveyard); 1814 struct vfsmount *m; 1815 1816 /* extract submounts of 'mountpoint' from the expiration list */ 1817 while (select_submounts(mnt, &graveyard)) { 1818 while (!list_empty(&graveyard)) { 1819 m = list_first_entry(&graveyard, struct vfsmount, 1820 mnt_expire); 1821 touch_mnt_namespace(mnt->mnt_ns); 1822 umount_tree(mnt, 1, umounts); 1823 } 1824 } 1825 } 1826 1827 /* 1828 * Some copy_from_user() implementations do not return the exact number of 1829 * bytes remaining to copy on a fault. But copy_mount_options() requires that. 1830 * Note that this function differs from copy_from_user() in that it will oops 1831 * on bad values of `to', rather than returning a short copy. 1832 */ 1833 static long exact_copy_from_user(void *to, const void __user * from, 1834 unsigned long n) 1835 { 1836 char *t = to; 1837 const char __user *f = from; 1838 char c; 1839 1840 if (!access_ok(VERIFY_READ, from, n)) 1841 return n; 1842 1843 while (n) { 1844 if (__get_user(c, f)) { 1845 memset(t, 0, n); 1846 break; 1847 } 1848 *t++ = c; 1849 f++; 1850 n--; 1851 } 1852 return n; 1853 } 1854 1855 int copy_mount_options(const void __user * data, unsigned long *where) 1856 { 1857 int i; 1858 unsigned long page; 1859 unsigned long size; 1860 1861 *where = 0; 1862 if (!data) 1863 return 0; 1864 1865 if (!(page = __get_free_page(GFP_KERNEL))) 1866 return -ENOMEM; 1867 1868 /* We only care that *some* data at the address the user 1869 * gave us is valid. Just in case, we'll zero 1870 * the remainder of the page. 1871 */ 1872 /* copy_from_user cannot cross TASK_SIZE ! */ 1873 size = TASK_SIZE - (unsigned long)data; 1874 if (size > PAGE_SIZE) 1875 size = PAGE_SIZE; 1876 1877 i = size - exact_copy_from_user((void *)page, data, size); 1878 if (!i) { 1879 free_page(page); 1880 return -EFAULT; 1881 } 1882 if (i != PAGE_SIZE) 1883 memset((char *)page + i, 0, PAGE_SIZE - i); 1884 *where = page; 1885 return 0; 1886 } 1887 1888 /* 1889 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to 1890 * be given to the mount() call (ie: read-only, no-dev, no-suid etc). 1891 * 1892 * data is a (void *) that can point to any structure up to 1893 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent 1894 * information (or be NULL). 1895 * 1896 * Pre-0.97 versions of mount() didn't have a flags word. 1897 * When the flags word was introduced its top half was required 1898 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. 1899 * Therefore, if this magic number is present, it carries no information 1900 * and must be discarded. 1901 */ 1902 long do_mount(char *dev_name, char *dir_name, char *type_page, 1903 unsigned long flags, void *data_page) 1904 { 1905 struct nameidata nd; 1906 int retval = 0; 1907 int mnt_flags = 0; 1908 1909 /* Discard magic */ 1910 if ((flags & MS_MGC_MSK) == MS_MGC_VAL) 1911 flags &= ~MS_MGC_MSK; 1912 1913 /* Basic sanity checks */ 1914 1915 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE)) 1916 return -EINVAL; 1917 if (dev_name && !memchr(dev_name, 0, PAGE_SIZE)) 1918 return -EINVAL; 1919 1920 if (data_page) 1921 ((char *)data_page)[PAGE_SIZE - 1] = 0; 1922 1923 /* Separate the per-mountpoint flags */ 1924 if (flags & MS_NOSUID) 1925 mnt_flags |= MNT_NOSUID; 1926 if (flags & MS_NODEV) 1927 mnt_flags |= MNT_NODEV; 1928 if (flags & MS_NOEXEC) 1929 mnt_flags |= MNT_NOEXEC; 1930 if (flags & MS_NOATIME) 1931 mnt_flags |= MNT_NOATIME; 1932 if (flags & MS_NODIRATIME) 1933 mnt_flags |= MNT_NODIRATIME; 1934 if (flags & MS_RELATIME) 1935 mnt_flags |= MNT_RELATIME; 1936 if (flags & MS_RDONLY) 1937 mnt_flags |= MNT_READONLY; 1938 1939 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | 1940 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT); 1941 1942 /* ... and get the mountpoint */ 1943 retval = path_lookup(dir_name, LOOKUP_FOLLOW, &nd); 1944 if (retval) 1945 return retval; 1946 1947 retval = security_sb_mount(dev_name, &nd.path, 1948 type_page, flags, data_page); 1949 if (retval) 1950 goto dput_out; 1951 1952 if (flags & MS_REMOUNT) 1953 retval = do_remount(&nd, flags & ~MS_REMOUNT, mnt_flags, 1954 data_page); 1955 else if (flags & MS_BIND) 1956 retval = do_loopback(&nd, dev_name, flags & MS_REC); 1957 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 1958 retval = do_change_type(&nd, flags); 1959 else if (flags & MS_MOVE) 1960 retval = do_move_mount(&nd, dev_name); 1961 else 1962 retval = do_new_mount(&nd, type_page, flags, mnt_flags, 1963 dev_name, data_page); 1964 dput_out: 1965 path_put(&nd.path); 1966 return retval; 1967 } 1968 1969 /* 1970 * Allocate a new namespace structure and populate it with contents 1971 * copied from the namespace of the passed in task structure. 1972 */ 1973 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns, 1974 struct fs_struct *fs) 1975 { 1976 struct mnt_namespace *new_ns; 1977 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL; 1978 struct vfsmount *p, *q; 1979 1980 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL); 1981 if (!new_ns) 1982 return ERR_PTR(-ENOMEM); 1983 1984 atomic_set(&new_ns->count, 1); 1985 INIT_LIST_HEAD(&new_ns->list); 1986 init_waitqueue_head(&new_ns->poll); 1987 new_ns->event = 0; 1988 1989 down_write(&namespace_sem); 1990 /* First pass: copy the tree topology */ 1991 new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root, 1992 CL_COPY_ALL | CL_EXPIRE); 1993 if (!new_ns->root) { 1994 up_write(&namespace_sem); 1995 kfree(new_ns); 1996 return ERR_PTR(-ENOMEM);; 1997 } 1998 spin_lock(&vfsmount_lock); 1999 list_add_tail(&new_ns->list, &new_ns->root->mnt_list); 2000 spin_unlock(&vfsmount_lock); 2001 2002 /* 2003 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts 2004 * as belonging to new namespace. We have already acquired a private 2005 * fs_struct, so tsk->fs->lock is not needed. 2006 */ 2007 p = mnt_ns->root; 2008 q = new_ns->root; 2009 while (p) { 2010 q->mnt_ns = new_ns; 2011 if (fs) { 2012 if (p == fs->root.mnt) { 2013 rootmnt = p; 2014 fs->root.mnt = mntget(q); 2015 } 2016 if (p == fs->pwd.mnt) { 2017 pwdmnt = p; 2018 fs->pwd.mnt = mntget(q); 2019 } 2020 } 2021 p = next_mnt(p, mnt_ns->root); 2022 q = next_mnt(q, new_ns->root); 2023 } 2024 up_write(&namespace_sem); 2025 2026 if (rootmnt) 2027 mntput(rootmnt); 2028 if (pwdmnt) 2029 mntput(pwdmnt); 2030 2031 return new_ns; 2032 } 2033 2034 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns, 2035 struct fs_struct *new_fs) 2036 { 2037 struct mnt_namespace *new_ns; 2038 2039 BUG_ON(!ns); 2040 get_mnt_ns(ns); 2041 2042 if (!(flags & CLONE_NEWNS)) 2043 return ns; 2044 2045 new_ns = dup_mnt_ns(ns, new_fs); 2046 2047 put_mnt_ns(ns); 2048 return new_ns; 2049 } 2050 2051 asmlinkage long sys_mount(char __user * dev_name, char __user * dir_name, 2052 char __user * type, unsigned long flags, 2053 void __user * data) 2054 { 2055 int retval; 2056 unsigned long data_page; 2057 unsigned long type_page; 2058 unsigned long dev_page; 2059 char *dir_page; 2060 2061 retval = copy_mount_options(type, &type_page); 2062 if (retval < 0) 2063 return retval; 2064 2065 dir_page = getname(dir_name); 2066 retval = PTR_ERR(dir_page); 2067 if (IS_ERR(dir_page)) 2068 goto out1; 2069 2070 retval = copy_mount_options(dev_name, &dev_page); 2071 if (retval < 0) 2072 goto out2; 2073 2074 retval = copy_mount_options(data, &data_page); 2075 if (retval < 0) 2076 goto out3; 2077 2078 lock_kernel(); 2079 retval = do_mount((char *)dev_page, dir_page, (char *)type_page, 2080 flags, (void *)data_page); 2081 unlock_kernel(); 2082 free_page(data_page); 2083 2084 out3: 2085 free_page(dev_page); 2086 out2: 2087 putname(dir_page); 2088 out1: 2089 free_page(type_page); 2090 return retval; 2091 } 2092 2093 /* 2094 * Replace the fs->{rootmnt,root} with {mnt,dentry}. Put the old values. 2095 * It can block. Requires the big lock held. 2096 */ 2097 void set_fs_root(struct fs_struct *fs, struct path *path) 2098 { 2099 struct path old_root; 2100 2101 write_lock(&fs->lock); 2102 old_root = fs->root; 2103 fs->root = *path; 2104 path_get(path); 2105 write_unlock(&fs->lock); 2106 if (old_root.dentry) 2107 path_put(&old_root); 2108 } 2109 2110 /* 2111 * Replace the fs->{pwdmnt,pwd} with {mnt,dentry}. Put the old values. 2112 * It can block. Requires the big lock held. 2113 */ 2114 void set_fs_pwd(struct fs_struct *fs, struct path *path) 2115 { 2116 struct path old_pwd; 2117 2118 write_lock(&fs->lock); 2119 old_pwd = fs->pwd; 2120 fs->pwd = *path; 2121 path_get(path); 2122 write_unlock(&fs->lock); 2123 2124 if (old_pwd.dentry) 2125 path_put(&old_pwd); 2126 } 2127 2128 static void chroot_fs_refs(struct path *old_root, struct path *new_root) 2129 { 2130 struct task_struct *g, *p; 2131 struct fs_struct *fs; 2132 2133 read_lock(&tasklist_lock); 2134 do_each_thread(g, p) { 2135 task_lock(p); 2136 fs = p->fs; 2137 if (fs) { 2138 atomic_inc(&fs->count); 2139 task_unlock(p); 2140 if (fs->root.dentry == old_root->dentry 2141 && fs->root.mnt == old_root->mnt) 2142 set_fs_root(fs, new_root); 2143 if (fs->pwd.dentry == old_root->dentry 2144 && fs->pwd.mnt == old_root->mnt) 2145 set_fs_pwd(fs, new_root); 2146 put_fs_struct(fs); 2147 } else 2148 task_unlock(p); 2149 } while_each_thread(g, p); 2150 read_unlock(&tasklist_lock); 2151 } 2152 2153 /* 2154 * pivot_root Semantics: 2155 * Moves the root file system of the current process to the directory put_old, 2156 * makes new_root as the new root file system of the current process, and sets 2157 * root/cwd of all processes which had them on the current root to new_root. 2158 * 2159 * Restrictions: 2160 * The new_root and put_old must be directories, and must not be on the 2161 * same file system as the current process root. The put_old must be 2162 * underneath new_root, i.e. adding a non-zero number of /.. to the string 2163 * pointed to by put_old must yield the same directory as new_root. No other 2164 * file system may be mounted on put_old. After all, new_root is a mountpoint. 2165 * 2166 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. 2167 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives 2168 * in this situation. 2169 * 2170 * Notes: 2171 * - we don't move root/cwd if they are not at the root (reason: if something 2172 * cared enough to change them, it's probably wrong to force them elsewhere) 2173 * - it's okay to pick a root that isn't the root of a file system, e.g. 2174 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, 2175 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root 2176 * first. 2177 */ 2178 asmlinkage long sys_pivot_root(const char __user * new_root, 2179 const char __user * put_old) 2180 { 2181 struct vfsmount *tmp; 2182 struct path new, old, parent_path, root_parent, root; 2183 int error; 2184 2185 if (!capable(CAP_SYS_ADMIN)) 2186 return -EPERM; 2187 2188 error = user_path_dir(new_root, &new); 2189 if (error) 2190 goto out0; 2191 error = -EINVAL; 2192 if (!check_mnt(new.mnt)) 2193 goto out1; 2194 2195 error = user_path_dir(put_old, &old); 2196 if (error) 2197 goto out1; 2198 2199 error = security_sb_pivotroot(&old, &new); 2200 if (error) { 2201 path_put(&old); 2202 goto out1; 2203 } 2204 2205 read_lock(¤t->fs->lock); 2206 root = current->fs->root; 2207 path_get(¤t->fs->root); 2208 read_unlock(¤t->fs->lock); 2209 down_write(&namespace_sem); 2210 mutex_lock(&old.dentry->d_inode->i_mutex); 2211 error = -EINVAL; 2212 if (IS_MNT_SHARED(old.mnt) || 2213 IS_MNT_SHARED(new.mnt->mnt_parent) || 2214 IS_MNT_SHARED(root.mnt->mnt_parent)) 2215 goto out2; 2216 if (!check_mnt(root.mnt)) 2217 goto out2; 2218 error = -ENOENT; 2219 if (IS_DEADDIR(new.dentry->d_inode)) 2220 goto out2; 2221 if (d_unhashed(new.dentry) && !IS_ROOT(new.dentry)) 2222 goto out2; 2223 if (d_unhashed(old.dentry) && !IS_ROOT(old.dentry)) 2224 goto out2; 2225 error = -EBUSY; 2226 if (new.mnt == root.mnt || 2227 old.mnt == root.mnt) 2228 goto out2; /* loop, on the same file system */ 2229 error = -EINVAL; 2230 if (root.mnt->mnt_root != root.dentry) 2231 goto out2; /* not a mountpoint */ 2232 if (root.mnt->mnt_parent == root.mnt) 2233 goto out2; /* not attached */ 2234 if (new.mnt->mnt_root != new.dentry) 2235 goto out2; /* not a mountpoint */ 2236 if (new.mnt->mnt_parent == new.mnt) 2237 goto out2; /* not attached */ 2238 /* make sure we can reach put_old from new_root */ 2239 tmp = old.mnt; 2240 spin_lock(&vfsmount_lock); 2241 if (tmp != new.mnt) { 2242 for (;;) { 2243 if (tmp->mnt_parent == tmp) 2244 goto out3; /* already mounted on put_old */ 2245 if (tmp->mnt_parent == new.mnt) 2246 break; 2247 tmp = tmp->mnt_parent; 2248 } 2249 if (!is_subdir(tmp->mnt_mountpoint, new.dentry)) 2250 goto out3; 2251 } else if (!is_subdir(old.dentry, new.dentry)) 2252 goto out3; 2253 detach_mnt(new.mnt, &parent_path); 2254 detach_mnt(root.mnt, &root_parent); 2255 /* mount old root on put_old */ 2256 attach_mnt(root.mnt, &old); 2257 /* mount new_root on / */ 2258 attach_mnt(new.mnt, &root_parent); 2259 touch_mnt_namespace(current->nsproxy->mnt_ns); 2260 spin_unlock(&vfsmount_lock); 2261 chroot_fs_refs(&root, &new); 2262 security_sb_post_pivotroot(&root, &new); 2263 error = 0; 2264 path_put(&root_parent); 2265 path_put(&parent_path); 2266 out2: 2267 mutex_unlock(&old.dentry->d_inode->i_mutex); 2268 up_write(&namespace_sem); 2269 path_put(&root); 2270 path_put(&old); 2271 out1: 2272 path_put(&new); 2273 out0: 2274 return error; 2275 out3: 2276 spin_unlock(&vfsmount_lock); 2277 goto out2; 2278 } 2279 2280 static void __init init_mount_tree(void) 2281 { 2282 struct vfsmount *mnt; 2283 struct mnt_namespace *ns; 2284 struct path root; 2285 2286 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL); 2287 if (IS_ERR(mnt)) 2288 panic("Can't create rootfs"); 2289 ns = kmalloc(sizeof(*ns), GFP_KERNEL); 2290 if (!ns) 2291 panic("Can't allocate initial namespace"); 2292 atomic_set(&ns->count, 1); 2293 INIT_LIST_HEAD(&ns->list); 2294 init_waitqueue_head(&ns->poll); 2295 ns->event = 0; 2296 list_add(&mnt->mnt_list, &ns->list); 2297 ns->root = mnt; 2298 mnt->mnt_ns = ns; 2299 2300 init_task.nsproxy->mnt_ns = ns; 2301 get_mnt_ns(ns); 2302 2303 root.mnt = ns->root; 2304 root.dentry = ns->root->mnt_root; 2305 2306 set_fs_pwd(current->fs, &root); 2307 set_fs_root(current->fs, &root); 2308 } 2309 2310 void __init mnt_init(void) 2311 { 2312 unsigned u; 2313 int err; 2314 2315 init_rwsem(&namespace_sem); 2316 2317 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount), 2318 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 2319 2320 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC); 2321 2322 if (!mount_hashtable) 2323 panic("Failed to allocate mount hash table\n"); 2324 2325 printk("Mount-cache hash table entries: %lu\n", HASH_SIZE); 2326 2327 for (u = 0; u < HASH_SIZE; u++) 2328 INIT_LIST_HEAD(&mount_hashtable[u]); 2329 2330 err = sysfs_init(); 2331 if (err) 2332 printk(KERN_WARNING "%s: sysfs_init error: %d\n", 2333 __func__, err); 2334 fs_kobj = kobject_create_and_add("fs", NULL); 2335 if (!fs_kobj) 2336 printk(KERN_WARNING "%s: kobj create error\n", __func__); 2337 init_rootfs(); 2338 init_mount_tree(); 2339 } 2340 2341 void __put_mnt_ns(struct mnt_namespace *ns) 2342 { 2343 struct vfsmount *root = ns->root; 2344 LIST_HEAD(umount_list); 2345 ns->root = NULL; 2346 spin_unlock(&vfsmount_lock); 2347 down_write(&namespace_sem); 2348 spin_lock(&vfsmount_lock); 2349 umount_tree(root, 0, &umount_list); 2350 spin_unlock(&vfsmount_lock); 2351 up_write(&namespace_sem); 2352 release_mounts(&umount_list); 2353 kfree(ns); 2354 } 2355