1 /* 2 * linux/fs/namespace.c 3 * 4 * (C) Copyright Al Viro 2000, 2001 5 * Released under GPL v2. 6 * 7 * Based on code from fs/super.c, copyright Linus Torvalds and others. 8 * Heavily rewritten. 9 */ 10 11 #include <linux/syscalls.h> 12 #include <linux/export.h> 13 #include <linux/capability.h> 14 #include <linux/mnt_namespace.h> 15 #include <linux/user_namespace.h> 16 #include <linux/namei.h> 17 #include <linux/security.h> 18 #include <linux/cred.h> 19 #include <linux/idr.h> 20 #include <linux/init.h> /* init_rootfs */ 21 #include <linux/fs_struct.h> /* get_fs_root et.al. */ 22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */ 23 #include <linux/uaccess.h> 24 #include <linux/proc_ns.h> 25 #include <linux/magic.h> 26 #include <linux/bootmem.h> 27 #include <linux/task_work.h> 28 #include <linux/sched/task.h> 29 30 #include "pnode.h" 31 #include "internal.h" 32 33 /* Maximum number of mounts in a mount namespace */ 34 unsigned int sysctl_mount_max __read_mostly = 100000; 35 36 static unsigned int m_hash_mask __read_mostly; 37 static unsigned int m_hash_shift __read_mostly; 38 static unsigned int mp_hash_mask __read_mostly; 39 static unsigned int mp_hash_shift __read_mostly; 40 41 static __initdata unsigned long mhash_entries; 42 static int __init set_mhash_entries(char *str) 43 { 44 if (!str) 45 return 0; 46 mhash_entries = simple_strtoul(str, &str, 0); 47 return 1; 48 } 49 __setup("mhash_entries=", set_mhash_entries); 50 51 static __initdata unsigned long mphash_entries; 52 static int __init set_mphash_entries(char *str) 53 { 54 if (!str) 55 return 0; 56 mphash_entries = simple_strtoul(str, &str, 0); 57 return 1; 58 } 59 __setup("mphash_entries=", set_mphash_entries); 60 61 static u64 event; 62 static DEFINE_IDA(mnt_id_ida); 63 static DEFINE_IDA(mnt_group_ida); 64 static DEFINE_SPINLOCK(mnt_id_lock); 65 static int mnt_id_start = 0; 66 static int mnt_group_start = 1; 67 68 static struct hlist_head *mount_hashtable __read_mostly; 69 static struct hlist_head *mountpoint_hashtable __read_mostly; 70 static struct kmem_cache *mnt_cache __read_mostly; 71 static DECLARE_RWSEM(namespace_sem); 72 73 /* /sys/fs */ 74 struct kobject *fs_kobj; 75 EXPORT_SYMBOL_GPL(fs_kobj); 76 77 /* 78 * vfsmount lock may be taken for read to prevent changes to the 79 * vfsmount hash, ie. during mountpoint lookups or walking back 80 * up the tree. 81 * 82 * It should be taken for write in all cases where the vfsmount 83 * tree or hash is modified or when a vfsmount structure is modified. 84 */ 85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock); 86 87 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry) 88 { 89 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); 90 tmp += ((unsigned long)dentry / L1_CACHE_BYTES); 91 tmp = tmp + (tmp >> m_hash_shift); 92 return &mount_hashtable[tmp & m_hash_mask]; 93 } 94 95 static inline struct hlist_head *mp_hash(struct dentry *dentry) 96 { 97 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES); 98 tmp = tmp + (tmp >> mp_hash_shift); 99 return &mountpoint_hashtable[tmp & mp_hash_mask]; 100 } 101 102 static int mnt_alloc_id(struct mount *mnt) 103 { 104 int res; 105 106 retry: 107 ida_pre_get(&mnt_id_ida, GFP_KERNEL); 108 spin_lock(&mnt_id_lock); 109 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id); 110 if (!res) 111 mnt_id_start = mnt->mnt_id + 1; 112 spin_unlock(&mnt_id_lock); 113 if (res == -EAGAIN) 114 goto retry; 115 116 return res; 117 } 118 119 static void mnt_free_id(struct mount *mnt) 120 { 121 int id = mnt->mnt_id; 122 spin_lock(&mnt_id_lock); 123 ida_remove(&mnt_id_ida, id); 124 if (mnt_id_start > id) 125 mnt_id_start = id; 126 spin_unlock(&mnt_id_lock); 127 } 128 129 /* 130 * Allocate a new peer group ID 131 * 132 * mnt_group_ida is protected by namespace_sem 133 */ 134 static int mnt_alloc_group_id(struct mount *mnt) 135 { 136 int res; 137 138 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL)) 139 return -ENOMEM; 140 141 res = ida_get_new_above(&mnt_group_ida, 142 mnt_group_start, 143 &mnt->mnt_group_id); 144 if (!res) 145 mnt_group_start = mnt->mnt_group_id + 1; 146 147 return res; 148 } 149 150 /* 151 * Release a peer group ID 152 */ 153 void mnt_release_group_id(struct mount *mnt) 154 { 155 int id = mnt->mnt_group_id; 156 ida_remove(&mnt_group_ida, id); 157 if (mnt_group_start > id) 158 mnt_group_start = id; 159 mnt->mnt_group_id = 0; 160 } 161 162 /* 163 * vfsmount lock must be held for read 164 */ 165 static inline void mnt_add_count(struct mount *mnt, int n) 166 { 167 #ifdef CONFIG_SMP 168 this_cpu_add(mnt->mnt_pcp->mnt_count, n); 169 #else 170 preempt_disable(); 171 mnt->mnt_count += n; 172 preempt_enable(); 173 #endif 174 } 175 176 /* 177 * vfsmount lock must be held for write 178 */ 179 unsigned int mnt_get_count(struct mount *mnt) 180 { 181 #ifdef CONFIG_SMP 182 unsigned int count = 0; 183 int cpu; 184 185 for_each_possible_cpu(cpu) { 186 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count; 187 } 188 189 return count; 190 #else 191 return mnt->mnt_count; 192 #endif 193 } 194 195 static void drop_mountpoint(struct fs_pin *p) 196 { 197 struct mount *m = container_of(p, struct mount, mnt_umount); 198 dput(m->mnt_ex_mountpoint); 199 pin_remove(p); 200 mntput(&m->mnt); 201 } 202 203 static struct mount *alloc_vfsmnt(const char *name) 204 { 205 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); 206 if (mnt) { 207 int err; 208 209 err = mnt_alloc_id(mnt); 210 if (err) 211 goto out_free_cache; 212 213 if (name) { 214 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL); 215 if (!mnt->mnt_devname) 216 goto out_free_id; 217 } 218 219 #ifdef CONFIG_SMP 220 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp); 221 if (!mnt->mnt_pcp) 222 goto out_free_devname; 223 224 this_cpu_add(mnt->mnt_pcp->mnt_count, 1); 225 #else 226 mnt->mnt_count = 1; 227 mnt->mnt_writers = 0; 228 #endif 229 230 INIT_HLIST_NODE(&mnt->mnt_hash); 231 INIT_LIST_HEAD(&mnt->mnt_child); 232 INIT_LIST_HEAD(&mnt->mnt_mounts); 233 INIT_LIST_HEAD(&mnt->mnt_list); 234 INIT_LIST_HEAD(&mnt->mnt_expire); 235 INIT_LIST_HEAD(&mnt->mnt_share); 236 INIT_LIST_HEAD(&mnt->mnt_slave_list); 237 INIT_LIST_HEAD(&mnt->mnt_slave); 238 INIT_HLIST_NODE(&mnt->mnt_mp_list); 239 INIT_LIST_HEAD(&mnt->mnt_umounting); 240 init_fs_pin(&mnt->mnt_umount, drop_mountpoint); 241 } 242 return mnt; 243 244 #ifdef CONFIG_SMP 245 out_free_devname: 246 kfree_const(mnt->mnt_devname); 247 #endif 248 out_free_id: 249 mnt_free_id(mnt); 250 out_free_cache: 251 kmem_cache_free(mnt_cache, mnt); 252 return NULL; 253 } 254 255 /* 256 * Most r/o checks on a fs are for operations that take 257 * discrete amounts of time, like a write() or unlink(). 258 * We must keep track of when those operations start 259 * (for permission checks) and when they end, so that 260 * we can determine when writes are able to occur to 261 * a filesystem. 262 */ 263 /* 264 * __mnt_is_readonly: check whether a mount is read-only 265 * @mnt: the mount to check for its write status 266 * 267 * This shouldn't be used directly ouside of the VFS. 268 * It does not guarantee that the filesystem will stay 269 * r/w, just that it is right *now*. This can not and 270 * should not be used in place of IS_RDONLY(inode). 271 * mnt_want/drop_write() will _keep_ the filesystem 272 * r/w. 273 */ 274 int __mnt_is_readonly(struct vfsmount *mnt) 275 { 276 if (mnt->mnt_flags & MNT_READONLY) 277 return 1; 278 if (sb_rdonly(mnt->mnt_sb)) 279 return 1; 280 return 0; 281 } 282 EXPORT_SYMBOL_GPL(__mnt_is_readonly); 283 284 static inline void mnt_inc_writers(struct mount *mnt) 285 { 286 #ifdef CONFIG_SMP 287 this_cpu_inc(mnt->mnt_pcp->mnt_writers); 288 #else 289 mnt->mnt_writers++; 290 #endif 291 } 292 293 static inline void mnt_dec_writers(struct mount *mnt) 294 { 295 #ifdef CONFIG_SMP 296 this_cpu_dec(mnt->mnt_pcp->mnt_writers); 297 #else 298 mnt->mnt_writers--; 299 #endif 300 } 301 302 static unsigned int mnt_get_writers(struct mount *mnt) 303 { 304 #ifdef CONFIG_SMP 305 unsigned int count = 0; 306 int cpu; 307 308 for_each_possible_cpu(cpu) { 309 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers; 310 } 311 312 return count; 313 #else 314 return mnt->mnt_writers; 315 #endif 316 } 317 318 static int mnt_is_readonly(struct vfsmount *mnt) 319 { 320 if (mnt->mnt_sb->s_readonly_remount) 321 return 1; 322 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */ 323 smp_rmb(); 324 return __mnt_is_readonly(mnt); 325 } 326 327 /* 328 * Most r/o & frozen checks on a fs are for operations that take discrete 329 * amounts of time, like a write() or unlink(). We must keep track of when 330 * those operations start (for permission checks) and when they end, so that we 331 * can determine when writes are able to occur to a filesystem. 332 */ 333 /** 334 * __mnt_want_write - get write access to a mount without freeze protection 335 * @m: the mount on which to take a write 336 * 337 * This tells the low-level filesystem that a write is about to be performed to 338 * it, and makes sure that writes are allowed (mnt it read-write) before 339 * returning success. This operation does not protect against filesystem being 340 * frozen. When the write operation is finished, __mnt_drop_write() must be 341 * called. This is effectively a refcount. 342 */ 343 int __mnt_want_write(struct vfsmount *m) 344 { 345 struct mount *mnt = real_mount(m); 346 int ret = 0; 347 348 preempt_disable(); 349 mnt_inc_writers(mnt); 350 /* 351 * The store to mnt_inc_writers must be visible before we pass 352 * MNT_WRITE_HOLD loop below, so that the slowpath can see our 353 * incremented count after it has set MNT_WRITE_HOLD. 354 */ 355 smp_mb(); 356 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) 357 cpu_relax(); 358 /* 359 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will 360 * be set to match its requirements. So we must not load that until 361 * MNT_WRITE_HOLD is cleared. 362 */ 363 smp_rmb(); 364 if (mnt_is_readonly(m)) { 365 mnt_dec_writers(mnt); 366 ret = -EROFS; 367 } 368 preempt_enable(); 369 370 return ret; 371 } 372 373 /** 374 * mnt_want_write - get write access to a mount 375 * @m: the mount on which to take a write 376 * 377 * This tells the low-level filesystem that a write is about to be performed to 378 * it, and makes sure that writes are allowed (mount is read-write, filesystem 379 * is not frozen) before returning success. When the write operation is 380 * finished, mnt_drop_write() must be called. This is effectively a refcount. 381 */ 382 int mnt_want_write(struct vfsmount *m) 383 { 384 int ret; 385 386 sb_start_write(m->mnt_sb); 387 ret = __mnt_want_write(m); 388 if (ret) 389 sb_end_write(m->mnt_sb); 390 return ret; 391 } 392 EXPORT_SYMBOL_GPL(mnt_want_write); 393 394 /** 395 * mnt_clone_write - get write access to a mount 396 * @mnt: the mount on which to take a write 397 * 398 * This is effectively like mnt_want_write, except 399 * it must only be used to take an extra write reference 400 * on a mountpoint that we already know has a write reference 401 * on it. This allows some optimisation. 402 * 403 * After finished, mnt_drop_write must be called as usual to 404 * drop the reference. 405 */ 406 int mnt_clone_write(struct vfsmount *mnt) 407 { 408 /* superblock may be r/o */ 409 if (__mnt_is_readonly(mnt)) 410 return -EROFS; 411 preempt_disable(); 412 mnt_inc_writers(real_mount(mnt)); 413 preempt_enable(); 414 return 0; 415 } 416 EXPORT_SYMBOL_GPL(mnt_clone_write); 417 418 /** 419 * __mnt_want_write_file - get write access to a file's mount 420 * @file: the file who's mount on which to take a write 421 * 422 * This is like __mnt_want_write, but it takes a file and can 423 * do some optimisations if the file is open for write already 424 */ 425 int __mnt_want_write_file(struct file *file) 426 { 427 if (!(file->f_mode & FMODE_WRITER)) 428 return __mnt_want_write(file->f_path.mnt); 429 else 430 return mnt_clone_write(file->f_path.mnt); 431 } 432 433 /** 434 * mnt_want_write_file_path - get write access to a file's mount 435 * @file: the file who's mount on which to take a write 436 * 437 * This is like mnt_want_write, but it takes a file and can 438 * do some optimisations if the file is open for write already 439 * 440 * Called by the vfs for cases when we have an open file at hand, but will do an 441 * inode operation on it (important distinction for files opened on overlayfs, 442 * since the file operations will come from the real underlying file, while 443 * inode operations come from the overlay). 444 */ 445 int mnt_want_write_file_path(struct file *file) 446 { 447 int ret; 448 449 sb_start_write(file->f_path.mnt->mnt_sb); 450 ret = __mnt_want_write_file(file); 451 if (ret) 452 sb_end_write(file->f_path.mnt->mnt_sb); 453 return ret; 454 } 455 456 static inline int may_write_real(struct file *file) 457 { 458 struct dentry *dentry = file->f_path.dentry; 459 struct dentry *upperdentry; 460 461 /* Writable file? */ 462 if (file->f_mode & FMODE_WRITER) 463 return 0; 464 465 /* Not overlayfs? */ 466 if (likely(!(dentry->d_flags & DCACHE_OP_REAL))) 467 return 0; 468 469 /* File refers to upper, writable layer? */ 470 upperdentry = d_real(dentry, NULL, 0, D_REAL_UPPER); 471 if (upperdentry && file_inode(file) == d_inode(upperdentry)) 472 return 0; 473 474 /* Lower layer: can't write to real file, sorry... */ 475 return -EPERM; 476 } 477 478 /** 479 * mnt_want_write_file - get write access to a file's mount 480 * @file: the file who's mount on which to take a write 481 * 482 * This is like mnt_want_write, but it takes a file and can 483 * do some optimisations if the file is open for write already 484 * 485 * Mostly called by filesystems from their ioctl operation before performing 486 * modification. On overlayfs this needs to check if the file is on a read-only 487 * lower layer and deny access in that case. 488 */ 489 int mnt_want_write_file(struct file *file) 490 { 491 int ret; 492 493 ret = may_write_real(file); 494 if (!ret) { 495 sb_start_write(file_inode(file)->i_sb); 496 ret = __mnt_want_write_file(file); 497 if (ret) 498 sb_end_write(file_inode(file)->i_sb); 499 } 500 return ret; 501 } 502 EXPORT_SYMBOL_GPL(mnt_want_write_file); 503 504 /** 505 * __mnt_drop_write - give up write access to a mount 506 * @mnt: the mount on which to give up write access 507 * 508 * Tells the low-level filesystem that we are done 509 * performing writes to it. Must be matched with 510 * __mnt_want_write() call above. 511 */ 512 void __mnt_drop_write(struct vfsmount *mnt) 513 { 514 preempt_disable(); 515 mnt_dec_writers(real_mount(mnt)); 516 preempt_enable(); 517 } 518 519 /** 520 * mnt_drop_write - give up write access to a mount 521 * @mnt: the mount on which to give up write access 522 * 523 * Tells the low-level filesystem that we are done performing writes to it and 524 * also allows filesystem to be frozen again. Must be matched with 525 * mnt_want_write() call above. 526 */ 527 void mnt_drop_write(struct vfsmount *mnt) 528 { 529 __mnt_drop_write(mnt); 530 sb_end_write(mnt->mnt_sb); 531 } 532 EXPORT_SYMBOL_GPL(mnt_drop_write); 533 534 void __mnt_drop_write_file(struct file *file) 535 { 536 __mnt_drop_write(file->f_path.mnt); 537 } 538 539 void mnt_drop_write_file_path(struct file *file) 540 { 541 mnt_drop_write(file->f_path.mnt); 542 } 543 544 void mnt_drop_write_file(struct file *file) 545 { 546 __mnt_drop_write(file->f_path.mnt); 547 sb_end_write(file_inode(file)->i_sb); 548 } 549 EXPORT_SYMBOL(mnt_drop_write_file); 550 551 static int mnt_make_readonly(struct mount *mnt) 552 { 553 int ret = 0; 554 555 lock_mount_hash(); 556 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 557 /* 558 * After storing MNT_WRITE_HOLD, we'll read the counters. This store 559 * should be visible before we do. 560 */ 561 smp_mb(); 562 563 /* 564 * With writers on hold, if this value is zero, then there are 565 * definitely no active writers (although held writers may subsequently 566 * increment the count, they'll have to wait, and decrement it after 567 * seeing MNT_READONLY). 568 * 569 * It is OK to have counter incremented on one CPU and decremented on 570 * another: the sum will add up correctly. The danger would be when we 571 * sum up each counter, if we read a counter before it is incremented, 572 * but then read another CPU's count which it has been subsequently 573 * decremented from -- we would see more decrements than we should. 574 * MNT_WRITE_HOLD protects against this scenario, because 575 * mnt_want_write first increments count, then smp_mb, then spins on 576 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while 577 * we're counting up here. 578 */ 579 if (mnt_get_writers(mnt) > 0) 580 ret = -EBUSY; 581 else 582 mnt->mnt.mnt_flags |= MNT_READONLY; 583 /* 584 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers 585 * that become unheld will see MNT_READONLY. 586 */ 587 smp_wmb(); 588 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 589 unlock_mount_hash(); 590 return ret; 591 } 592 593 static void __mnt_unmake_readonly(struct mount *mnt) 594 { 595 lock_mount_hash(); 596 mnt->mnt.mnt_flags &= ~MNT_READONLY; 597 unlock_mount_hash(); 598 } 599 600 int sb_prepare_remount_readonly(struct super_block *sb) 601 { 602 struct mount *mnt; 603 int err = 0; 604 605 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */ 606 if (atomic_long_read(&sb->s_remove_count)) 607 return -EBUSY; 608 609 lock_mount_hash(); 610 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 611 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) { 612 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 613 smp_mb(); 614 if (mnt_get_writers(mnt) > 0) { 615 err = -EBUSY; 616 break; 617 } 618 } 619 } 620 if (!err && atomic_long_read(&sb->s_remove_count)) 621 err = -EBUSY; 622 623 if (!err) { 624 sb->s_readonly_remount = 1; 625 smp_wmb(); 626 } 627 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 628 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD) 629 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 630 } 631 unlock_mount_hash(); 632 633 return err; 634 } 635 636 static void free_vfsmnt(struct mount *mnt) 637 { 638 kfree_const(mnt->mnt_devname); 639 #ifdef CONFIG_SMP 640 free_percpu(mnt->mnt_pcp); 641 #endif 642 kmem_cache_free(mnt_cache, mnt); 643 } 644 645 static void delayed_free_vfsmnt(struct rcu_head *head) 646 { 647 free_vfsmnt(container_of(head, struct mount, mnt_rcu)); 648 } 649 650 /* call under rcu_read_lock */ 651 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq) 652 { 653 struct mount *mnt; 654 if (read_seqretry(&mount_lock, seq)) 655 return 1; 656 if (bastard == NULL) 657 return 0; 658 mnt = real_mount(bastard); 659 mnt_add_count(mnt, 1); 660 if (likely(!read_seqretry(&mount_lock, seq))) 661 return 0; 662 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) { 663 mnt_add_count(mnt, -1); 664 return 1; 665 } 666 return -1; 667 } 668 669 /* call under rcu_read_lock */ 670 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq) 671 { 672 int res = __legitimize_mnt(bastard, seq); 673 if (likely(!res)) 674 return true; 675 if (unlikely(res < 0)) { 676 rcu_read_unlock(); 677 mntput(bastard); 678 rcu_read_lock(); 679 } 680 return false; 681 } 682 683 /* 684 * find the first mount at @dentry on vfsmount @mnt. 685 * call under rcu_read_lock() 686 */ 687 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry) 688 { 689 struct hlist_head *head = m_hash(mnt, dentry); 690 struct mount *p; 691 692 hlist_for_each_entry_rcu(p, head, mnt_hash) 693 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) 694 return p; 695 return NULL; 696 } 697 698 /* 699 * lookup_mnt - Return the first child mount mounted at path 700 * 701 * "First" means first mounted chronologically. If you create the 702 * following mounts: 703 * 704 * mount /dev/sda1 /mnt 705 * mount /dev/sda2 /mnt 706 * mount /dev/sda3 /mnt 707 * 708 * Then lookup_mnt() on the base /mnt dentry in the root mount will 709 * return successively the root dentry and vfsmount of /dev/sda1, then 710 * /dev/sda2, then /dev/sda3, then NULL. 711 * 712 * lookup_mnt takes a reference to the found vfsmount. 713 */ 714 struct vfsmount *lookup_mnt(const struct path *path) 715 { 716 struct mount *child_mnt; 717 struct vfsmount *m; 718 unsigned seq; 719 720 rcu_read_lock(); 721 do { 722 seq = read_seqbegin(&mount_lock); 723 child_mnt = __lookup_mnt(path->mnt, path->dentry); 724 m = child_mnt ? &child_mnt->mnt : NULL; 725 } while (!legitimize_mnt(m, seq)); 726 rcu_read_unlock(); 727 return m; 728 } 729 730 /* 731 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the 732 * current mount namespace. 733 * 734 * The common case is dentries are not mountpoints at all and that 735 * test is handled inline. For the slow case when we are actually 736 * dealing with a mountpoint of some kind, walk through all of the 737 * mounts in the current mount namespace and test to see if the dentry 738 * is a mountpoint. 739 * 740 * The mount_hashtable is not usable in the context because we 741 * need to identify all mounts that may be in the current mount 742 * namespace not just a mount that happens to have some specified 743 * parent mount. 744 */ 745 bool __is_local_mountpoint(struct dentry *dentry) 746 { 747 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 748 struct mount *mnt; 749 bool is_covered = false; 750 751 if (!d_mountpoint(dentry)) 752 goto out; 753 754 down_read(&namespace_sem); 755 list_for_each_entry(mnt, &ns->list, mnt_list) { 756 is_covered = (mnt->mnt_mountpoint == dentry); 757 if (is_covered) 758 break; 759 } 760 up_read(&namespace_sem); 761 out: 762 return is_covered; 763 } 764 765 static struct mountpoint *lookup_mountpoint(struct dentry *dentry) 766 { 767 struct hlist_head *chain = mp_hash(dentry); 768 struct mountpoint *mp; 769 770 hlist_for_each_entry(mp, chain, m_hash) { 771 if (mp->m_dentry == dentry) { 772 /* might be worth a WARN_ON() */ 773 if (d_unlinked(dentry)) 774 return ERR_PTR(-ENOENT); 775 mp->m_count++; 776 return mp; 777 } 778 } 779 return NULL; 780 } 781 782 static struct mountpoint *get_mountpoint(struct dentry *dentry) 783 { 784 struct mountpoint *mp, *new = NULL; 785 int ret; 786 787 if (d_mountpoint(dentry)) { 788 mountpoint: 789 read_seqlock_excl(&mount_lock); 790 mp = lookup_mountpoint(dentry); 791 read_sequnlock_excl(&mount_lock); 792 if (mp) 793 goto done; 794 } 795 796 if (!new) 797 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL); 798 if (!new) 799 return ERR_PTR(-ENOMEM); 800 801 802 /* Exactly one processes may set d_mounted */ 803 ret = d_set_mounted(dentry); 804 805 /* Someone else set d_mounted? */ 806 if (ret == -EBUSY) 807 goto mountpoint; 808 809 /* The dentry is not available as a mountpoint? */ 810 mp = ERR_PTR(ret); 811 if (ret) 812 goto done; 813 814 /* Add the new mountpoint to the hash table */ 815 read_seqlock_excl(&mount_lock); 816 new->m_dentry = dentry; 817 new->m_count = 1; 818 hlist_add_head(&new->m_hash, mp_hash(dentry)); 819 INIT_HLIST_HEAD(&new->m_list); 820 read_sequnlock_excl(&mount_lock); 821 822 mp = new; 823 new = NULL; 824 done: 825 kfree(new); 826 return mp; 827 } 828 829 static void put_mountpoint(struct mountpoint *mp) 830 { 831 if (!--mp->m_count) { 832 struct dentry *dentry = mp->m_dentry; 833 BUG_ON(!hlist_empty(&mp->m_list)); 834 spin_lock(&dentry->d_lock); 835 dentry->d_flags &= ~DCACHE_MOUNTED; 836 spin_unlock(&dentry->d_lock); 837 hlist_del(&mp->m_hash); 838 kfree(mp); 839 } 840 } 841 842 static inline int check_mnt(struct mount *mnt) 843 { 844 return mnt->mnt_ns == current->nsproxy->mnt_ns; 845 } 846 847 /* 848 * vfsmount lock must be held for write 849 */ 850 static void touch_mnt_namespace(struct mnt_namespace *ns) 851 { 852 if (ns) { 853 ns->event = ++event; 854 wake_up_interruptible(&ns->poll); 855 } 856 } 857 858 /* 859 * vfsmount lock must be held for write 860 */ 861 static void __touch_mnt_namespace(struct mnt_namespace *ns) 862 { 863 if (ns && ns->event != event) { 864 ns->event = event; 865 wake_up_interruptible(&ns->poll); 866 } 867 } 868 869 /* 870 * vfsmount lock must be held for write 871 */ 872 static void unhash_mnt(struct mount *mnt) 873 { 874 mnt->mnt_parent = mnt; 875 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 876 list_del_init(&mnt->mnt_child); 877 hlist_del_init_rcu(&mnt->mnt_hash); 878 hlist_del_init(&mnt->mnt_mp_list); 879 put_mountpoint(mnt->mnt_mp); 880 mnt->mnt_mp = NULL; 881 } 882 883 /* 884 * vfsmount lock must be held for write 885 */ 886 static void detach_mnt(struct mount *mnt, struct path *old_path) 887 { 888 old_path->dentry = mnt->mnt_mountpoint; 889 old_path->mnt = &mnt->mnt_parent->mnt; 890 unhash_mnt(mnt); 891 } 892 893 /* 894 * vfsmount lock must be held for write 895 */ 896 static void umount_mnt(struct mount *mnt) 897 { 898 /* old mountpoint will be dropped when we can do that */ 899 mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint; 900 unhash_mnt(mnt); 901 } 902 903 /* 904 * vfsmount lock must be held for write 905 */ 906 void mnt_set_mountpoint(struct mount *mnt, 907 struct mountpoint *mp, 908 struct mount *child_mnt) 909 { 910 mp->m_count++; 911 mnt_add_count(mnt, 1); /* essentially, that's mntget */ 912 child_mnt->mnt_mountpoint = dget(mp->m_dentry); 913 child_mnt->mnt_parent = mnt; 914 child_mnt->mnt_mp = mp; 915 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list); 916 } 917 918 static void __attach_mnt(struct mount *mnt, struct mount *parent) 919 { 920 hlist_add_head_rcu(&mnt->mnt_hash, 921 m_hash(&parent->mnt, mnt->mnt_mountpoint)); 922 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 923 } 924 925 /* 926 * vfsmount lock must be held for write 927 */ 928 static void attach_mnt(struct mount *mnt, 929 struct mount *parent, 930 struct mountpoint *mp) 931 { 932 mnt_set_mountpoint(parent, mp, mnt); 933 __attach_mnt(mnt, parent); 934 } 935 936 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt) 937 { 938 struct mountpoint *old_mp = mnt->mnt_mp; 939 struct dentry *old_mountpoint = mnt->mnt_mountpoint; 940 struct mount *old_parent = mnt->mnt_parent; 941 942 list_del_init(&mnt->mnt_child); 943 hlist_del_init(&mnt->mnt_mp_list); 944 hlist_del_init_rcu(&mnt->mnt_hash); 945 946 attach_mnt(mnt, parent, mp); 947 948 put_mountpoint(old_mp); 949 950 /* 951 * Safely avoid even the suggestion this code might sleep or 952 * lock the mount hash by taking advantage of the knowledge that 953 * mnt_change_mountpoint will not release the final reference 954 * to a mountpoint. 955 * 956 * During mounting, the mount passed in as the parent mount will 957 * continue to use the old mountpoint and during unmounting, the 958 * old mountpoint will continue to exist until namespace_unlock, 959 * which happens well after mnt_change_mountpoint. 960 */ 961 spin_lock(&old_mountpoint->d_lock); 962 old_mountpoint->d_lockref.count--; 963 spin_unlock(&old_mountpoint->d_lock); 964 965 mnt_add_count(old_parent, -1); 966 } 967 968 /* 969 * vfsmount lock must be held for write 970 */ 971 static void commit_tree(struct mount *mnt) 972 { 973 struct mount *parent = mnt->mnt_parent; 974 struct mount *m; 975 LIST_HEAD(head); 976 struct mnt_namespace *n = parent->mnt_ns; 977 978 BUG_ON(parent == mnt); 979 980 list_add_tail(&head, &mnt->mnt_list); 981 list_for_each_entry(m, &head, mnt_list) 982 m->mnt_ns = n; 983 984 list_splice(&head, n->list.prev); 985 986 n->mounts += n->pending_mounts; 987 n->pending_mounts = 0; 988 989 __attach_mnt(mnt, parent); 990 touch_mnt_namespace(n); 991 } 992 993 static struct mount *next_mnt(struct mount *p, struct mount *root) 994 { 995 struct list_head *next = p->mnt_mounts.next; 996 if (next == &p->mnt_mounts) { 997 while (1) { 998 if (p == root) 999 return NULL; 1000 next = p->mnt_child.next; 1001 if (next != &p->mnt_parent->mnt_mounts) 1002 break; 1003 p = p->mnt_parent; 1004 } 1005 } 1006 return list_entry(next, struct mount, mnt_child); 1007 } 1008 1009 static struct mount *skip_mnt_tree(struct mount *p) 1010 { 1011 struct list_head *prev = p->mnt_mounts.prev; 1012 while (prev != &p->mnt_mounts) { 1013 p = list_entry(prev, struct mount, mnt_child); 1014 prev = p->mnt_mounts.prev; 1015 } 1016 return p; 1017 } 1018 1019 struct vfsmount * 1020 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data) 1021 { 1022 struct mount *mnt; 1023 struct dentry *root; 1024 1025 if (!type) 1026 return ERR_PTR(-ENODEV); 1027 1028 mnt = alloc_vfsmnt(name); 1029 if (!mnt) 1030 return ERR_PTR(-ENOMEM); 1031 1032 if (flags & SB_KERNMOUNT) 1033 mnt->mnt.mnt_flags = MNT_INTERNAL; 1034 1035 root = mount_fs(type, flags, name, data); 1036 if (IS_ERR(root)) { 1037 mnt_free_id(mnt); 1038 free_vfsmnt(mnt); 1039 return ERR_CAST(root); 1040 } 1041 1042 mnt->mnt.mnt_root = root; 1043 mnt->mnt.mnt_sb = root->d_sb; 1044 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 1045 mnt->mnt_parent = mnt; 1046 lock_mount_hash(); 1047 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts); 1048 unlock_mount_hash(); 1049 return &mnt->mnt; 1050 } 1051 EXPORT_SYMBOL_GPL(vfs_kern_mount); 1052 1053 struct vfsmount * 1054 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type, 1055 const char *name, void *data) 1056 { 1057 /* Until it is worked out how to pass the user namespace 1058 * through from the parent mount to the submount don't support 1059 * unprivileged mounts with submounts. 1060 */ 1061 if (mountpoint->d_sb->s_user_ns != &init_user_ns) 1062 return ERR_PTR(-EPERM); 1063 1064 return vfs_kern_mount(type, SB_SUBMOUNT, name, data); 1065 } 1066 EXPORT_SYMBOL_GPL(vfs_submount); 1067 1068 static struct mount *clone_mnt(struct mount *old, struct dentry *root, 1069 int flag) 1070 { 1071 struct super_block *sb = old->mnt.mnt_sb; 1072 struct mount *mnt; 1073 int err; 1074 1075 mnt = alloc_vfsmnt(old->mnt_devname); 1076 if (!mnt) 1077 return ERR_PTR(-ENOMEM); 1078 1079 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE)) 1080 mnt->mnt_group_id = 0; /* not a peer of original */ 1081 else 1082 mnt->mnt_group_id = old->mnt_group_id; 1083 1084 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) { 1085 err = mnt_alloc_group_id(mnt); 1086 if (err) 1087 goto out_free; 1088 } 1089 1090 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED); 1091 /* Don't allow unprivileged users to change mount flags */ 1092 if (flag & CL_UNPRIVILEGED) { 1093 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME; 1094 1095 if (mnt->mnt.mnt_flags & MNT_READONLY) 1096 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY; 1097 1098 if (mnt->mnt.mnt_flags & MNT_NODEV) 1099 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV; 1100 1101 if (mnt->mnt.mnt_flags & MNT_NOSUID) 1102 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID; 1103 1104 if (mnt->mnt.mnt_flags & MNT_NOEXEC) 1105 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC; 1106 } 1107 1108 /* Don't allow unprivileged users to reveal what is under a mount */ 1109 if ((flag & CL_UNPRIVILEGED) && 1110 (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire))) 1111 mnt->mnt.mnt_flags |= MNT_LOCKED; 1112 1113 atomic_inc(&sb->s_active); 1114 mnt->mnt.mnt_sb = sb; 1115 mnt->mnt.mnt_root = dget(root); 1116 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 1117 mnt->mnt_parent = mnt; 1118 lock_mount_hash(); 1119 list_add_tail(&mnt->mnt_instance, &sb->s_mounts); 1120 unlock_mount_hash(); 1121 1122 if ((flag & CL_SLAVE) || 1123 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) { 1124 list_add(&mnt->mnt_slave, &old->mnt_slave_list); 1125 mnt->mnt_master = old; 1126 CLEAR_MNT_SHARED(mnt); 1127 } else if (!(flag & CL_PRIVATE)) { 1128 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old)) 1129 list_add(&mnt->mnt_share, &old->mnt_share); 1130 if (IS_MNT_SLAVE(old)) 1131 list_add(&mnt->mnt_slave, &old->mnt_slave); 1132 mnt->mnt_master = old->mnt_master; 1133 } else { 1134 CLEAR_MNT_SHARED(mnt); 1135 } 1136 if (flag & CL_MAKE_SHARED) 1137 set_mnt_shared(mnt); 1138 1139 /* stick the duplicate mount on the same expiry list 1140 * as the original if that was on one */ 1141 if (flag & CL_EXPIRE) { 1142 if (!list_empty(&old->mnt_expire)) 1143 list_add(&mnt->mnt_expire, &old->mnt_expire); 1144 } 1145 1146 return mnt; 1147 1148 out_free: 1149 mnt_free_id(mnt); 1150 free_vfsmnt(mnt); 1151 return ERR_PTR(err); 1152 } 1153 1154 static void cleanup_mnt(struct mount *mnt) 1155 { 1156 /* 1157 * This probably indicates that somebody messed 1158 * up a mnt_want/drop_write() pair. If this 1159 * happens, the filesystem was probably unable 1160 * to make r/w->r/o transitions. 1161 */ 1162 /* 1163 * The locking used to deal with mnt_count decrement provides barriers, 1164 * so mnt_get_writers() below is safe. 1165 */ 1166 WARN_ON(mnt_get_writers(mnt)); 1167 if (unlikely(mnt->mnt_pins.first)) 1168 mnt_pin_kill(mnt); 1169 fsnotify_vfsmount_delete(&mnt->mnt); 1170 dput(mnt->mnt.mnt_root); 1171 deactivate_super(mnt->mnt.mnt_sb); 1172 mnt_free_id(mnt); 1173 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt); 1174 } 1175 1176 static void __cleanup_mnt(struct rcu_head *head) 1177 { 1178 cleanup_mnt(container_of(head, struct mount, mnt_rcu)); 1179 } 1180 1181 static LLIST_HEAD(delayed_mntput_list); 1182 static void delayed_mntput(struct work_struct *unused) 1183 { 1184 struct llist_node *node = llist_del_all(&delayed_mntput_list); 1185 struct mount *m, *t; 1186 1187 llist_for_each_entry_safe(m, t, node, mnt_llist) 1188 cleanup_mnt(m); 1189 } 1190 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput); 1191 1192 static void mntput_no_expire(struct mount *mnt) 1193 { 1194 rcu_read_lock(); 1195 mnt_add_count(mnt, -1); 1196 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */ 1197 rcu_read_unlock(); 1198 return; 1199 } 1200 lock_mount_hash(); 1201 if (mnt_get_count(mnt)) { 1202 rcu_read_unlock(); 1203 unlock_mount_hash(); 1204 return; 1205 } 1206 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) { 1207 rcu_read_unlock(); 1208 unlock_mount_hash(); 1209 return; 1210 } 1211 mnt->mnt.mnt_flags |= MNT_DOOMED; 1212 rcu_read_unlock(); 1213 1214 list_del(&mnt->mnt_instance); 1215 1216 if (unlikely(!list_empty(&mnt->mnt_mounts))) { 1217 struct mount *p, *tmp; 1218 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) { 1219 umount_mnt(p); 1220 } 1221 } 1222 unlock_mount_hash(); 1223 1224 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) { 1225 struct task_struct *task = current; 1226 if (likely(!(task->flags & PF_KTHREAD))) { 1227 init_task_work(&mnt->mnt_rcu, __cleanup_mnt); 1228 if (!task_work_add(task, &mnt->mnt_rcu, true)) 1229 return; 1230 } 1231 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list)) 1232 schedule_delayed_work(&delayed_mntput_work, 1); 1233 return; 1234 } 1235 cleanup_mnt(mnt); 1236 } 1237 1238 void mntput(struct vfsmount *mnt) 1239 { 1240 if (mnt) { 1241 struct mount *m = real_mount(mnt); 1242 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */ 1243 if (unlikely(m->mnt_expiry_mark)) 1244 m->mnt_expiry_mark = 0; 1245 mntput_no_expire(m); 1246 } 1247 } 1248 EXPORT_SYMBOL(mntput); 1249 1250 struct vfsmount *mntget(struct vfsmount *mnt) 1251 { 1252 if (mnt) 1253 mnt_add_count(real_mount(mnt), 1); 1254 return mnt; 1255 } 1256 EXPORT_SYMBOL(mntget); 1257 1258 /* path_is_mountpoint() - Check if path is a mount in the current 1259 * namespace. 1260 * 1261 * d_mountpoint() can only be used reliably to establish if a dentry is 1262 * not mounted in any namespace and that common case is handled inline. 1263 * d_mountpoint() isn't aware of the possibility there may be multiple 1264 * mounts using a given dentry in a different namespace. This function 1265 * checks if the passed in path is a mountpoint rather than the dentry 1266 * alone. 1267 */ 1268 bool path_is_mountpoint(const struct path *path) 1269 { 1270 unsigned seq; 1271 bool res; 1272 1273 if (!d_mountpoint(path->dentry)) 1274 return false; 1275 1276 rcu_read_lock(); 1277 do { 1278 seq = read_seqbegin(&mount_lock); 1279 res = __path_is_mountpoint(path); 1280 } while (read_seqretry(&mount_lock, seq)); 1281 rcu_read_unlock(); 1282 1283 return res; 1284 } 1285 EXPORT_SYMBOL(path_is_mountpoint); 1286 1287 struct vfsmount *mnt_clone_internal(const struct path *path) 1288 { 1289 struct mount *p; 1290 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE); 1291 if (IS_ERR(p)) 1292 return ERR_CAST(p); 1293 p->mnt.mnt_flags |= MNT_INTERNAL; 1294 return &p->mnt; 1295 } 1296 1297 #ifdef CONFIG_PROC_FS 1298 /* iterator; we want it to have access to namespace_sem, thus here... */ 1299 static void *m_start(struct seq_file *m, loff_t *pos) 1300 { 1301 struct proc_mounts *p = m->private; 1302 1303 down_read(&namespace_sem); 1304 if (p->cached_event == p->ns->event) { 1305 void *v = p->cached_mount; 1306 if (*pos == p->cached_index) 1307 return v; 1308 if (*pos == p->cached_index + 1) { 1309 v = seq_list_next(v, &p->ns->list, &p->cached_index); 1310 return p->cached_mount = v; 1311 } 1312 } 1313 1314 p->cached_event = p->ns->event; 1315 p->cached_mount = seq_list_start(&p->ns->list, *pos); 1316 p->cached_index = *pos; 1317 return p->cached_mount; 1318 } 1319 1320 static void *m_next(struct seq_file *m, void *v, loff_t *pos) 1321 { 1322 struct proc_mounts *p = m->private; 1323 1324 p->cached_mount = seq_list_next(v, &p->ns->list, pos); 1325 p->cached_index = *pos; 1326 return p->cached_mount; 1327 } 1328 1329 static void m_stop(struct seq_file *m, void *v) 1330 { 1331 up_read(&namespace_sem); 1332 } 1333 1334 static int m_show(struct seq_file *m, void *v) 1335 { 1336 struct proc_mounts *p = m->private; 1337 struct mount *r = list_entry(v, struct mount, mnt_list); 1338 return p->show(m, &r->mnt); 1339 } 1340 1341 const struct seq_operations mounts_op = { 1342 .start = m_start, 1343 .next = m_next, 1344 .stop = m_stop, 1345 .show = m_show, 1346 }; 1347 #endif /* CONFIG_PROC_FS */ 1348 1349 /** 1350 * may_umount_tree - check if a mount tree is busy 1351 * @mnt: root of mount tree 1352 * 1353 * This is called to check if a tree of mounts has any 1354 * open files, pwds, chroots or sub mounts that are 1355 * busy. 1356 */ 1357 int may_umount_tree(struct vfsmount *m) 1358 { 1359 struct mount *mnt = real_mount(m); 1360 int actual_refs = 0; 1361 int minimum_refs = 0; 1362 struct mount *p; 1363 BUG_ON(!m); 1364 1365 /* write lock needed for mnt_get_count */ 1366 lock_mount_hash(); 1367 for (p = mnt; p; p = next_mnt(p, mnt)) { 1368 actual_refs += mnt_get_count(p); 1369 minimum_refs += 2; 1370 } 1371 unlock_mount_hash(); 1372 1373 if (actual_refs > minimum_refs) 1374 return 0; 1375 1376 return 1; 1377 } 1378 1379 EXPORT_SYMBOL(may_umount_tree); 1380 1381 /** 1382 * may_umount - check if a mount point is busy 1383 * @mnt: root of mount 1384 * 1385 * This is called to check if a mount point has any 1386 * open files, pwds, chroots or sub mounts. If the 1387 * mount has sub mounts this will return busy 1388 * regardless of whether the sub mounts are busy. 1389 * 1390 * Doesn't take quota and stuff into account. IOW, in some cases it will 1391 * give false negatives. The main reason why it's here is that we need 1392 * a non-destructive way to look for easily umountable filesystems. 1393 */ 1394 int may_umount(struct vfsmount *mnt) 1395 { 1396 int ret = 1; 1397 down_read(&namespace_sem); 1398 lock_mount_hash(); 1399 if (propagate_mount_busy(real_mount(mnt), 2)) 1400 ret = 0; 1401 unlock_mount_hash(); 1402 up_read(&namespace_sem); 1403 return ret; 1404 } 1405 1406 EXPORT_SYMBOL(may_umount); 1407 1408 static HLIST_HEAD(unmounted); /* protected by namespace_sem */ 1409 1410 static void namespace_unlock(void) 1411 { 1412 struct hlist_head head; 1413 1414 hlist_move_list(&unmounted, &head); 1415 1416 up_write(&namespace_sem); 1417 1418 if (likely(hlist_empty(&head))) 1419 return; 1420 1421 synchronize_rcu(); 1422 1423 group_pin_kill(&head); 1424 } 1425 1426 static inline void namespace_lock(void) 1427 { 1428 down_write(&namespace_sem); 1429 } 1430 1431 enum umount_tree_flags { 1432 UMOUNT_SYNC = 1, 1433 UMOUNT_PROPAGATE = 2, 1434 UMOUNT_CONNECTED = 4, 1435 }; 1436 1437 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how) 1438 { 1439 /* Leaving mounts connected is only valid for lazy umounts */ 1440 if (how & UMOUNT_SYNC) 1441 return true; 1442 1443 /* A mount without a parent has nothing to be connected to */ 1444 if (!mnt_has_parent(mnt)) 1445 return true; 1446 1447 /* Because the reference counting rules change when mounts are 1448 * unmounted and connected, umounted mounts may not be 1449 * connected to mounted mounts. 1450 */ 1451 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT)) 1452 return true; 1453 1454 /* Has it been requested that the mount remain connected? */ 1455 if (how & UMOUNT_CONNECTED) 1456 return false; 1457 1458 /* Is the mount locked such that it needs to remain connected? */ 1459 if (IS_MNT_LOCKED(mnt)) 1460 return false; 1461 1462 /* By default disconnect the mount */ 1463 return true; 1464 } 1465 1466 /* 1467 * mount_lock must be held 1468 * namespace_sem must be held for write 1469 */ 1470 static void umount_tree(struct mount *mnt, enum umount_tree_flags how) 1471 { 1472 LIST_HEAD(tmp_list); 1473 struct mount *p; 1474 1475 if (how & UMOUNT_PROPAGATE) 1476 propagate_mount_unlock(mnt); 1477 1478 /* Gather the mounts to umount */ 1479 for (p = mnt; p; p = next_mnt(p, mnt)) { 1480 p->mnt.mnt_flags |= MNT_UMOUNT; 1481 list_move(&p->mnt_list, &tmp_list); 1482 } 1483 1484 /* Hide the mounts from mnt_mounts */ 1485 list_for_each_entry(p, &tmp_list, mnt_list) { 1486 list_del_init(&p->mnt_child); 1487 } 1488 1489 /* Add propogated mounts to the tmp_list */ 1490 if (how & UMOUNT_PROPAGATE) 1491 propagate_umount(&tmp_list); 1492 1493 while (!list_empty(&tmp_list)) { 1494 struct mnt_namespace *ns; 1495 bool disconnect; 1496 p = list_first_entry(&tmp_list, struct mount, mnt_list); 1497 list_del_init(&p->mnt_expire); 1498 list_del_init(&p->mnt_list); 1499 ns = p->mnt_ns; 1500 if (ns) { 1501 ns->mounts--; 1502 __touch_mnt_namespace(ns); 1503 } 1504 p->mnt_ns = NULL; 1505 if (how & UMOUNT_SYNC) 1506 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT; 1507 1508 disconnect = disconnect_mount(p, how); 1509 1510 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt, 1511 disconnect ? &unmounted : NULL); 1512 if (mnt_has_parent(p)) { 1513 mnt_add_count(p->mnt_parent, -1); 1514 if (!disconnect) { 1515 /* Don't forget about p */ 1516 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts); 1517 } else { 1518 umount_mnt(p); 1519 } 1520 } 1521 change_mnt_propagation(p, MS_PRIVATE); 1522 } 1523 } 1524 1525 static void shrink_submounts(struct mount *mnt); 1526 1527 static int do_umount(struct mount *mnt, int flags) 1528 { 1529 struct super_block *sb = mnt->mnt.mnt_sb; 1530 int retval; 1531 1532 retval = security_sb_umount(&mnt->mnt, flags); 1533 if (retval) 1534 return retval; 1535 1536 /* 1537 * Allow userspace to request a mountpoint be expired rather than 1538 * unmounting unconditionally. Unmount only happens if: 1539 * (1) the mark is already set (the mark is cleared by mntput()) 1540 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] 1541 */ 1542 if (flags & MNT_EXPIRE) { 1543 if (&mnt->mnt == current->fs->root.mnt || 1544 flags & (MNT_FORCE | MNT_DETACH)) 1545 return -EINVAL; 1546 1547 /* 1548 * probably don't strictly need the lock here if we examined 1549 * all race cases, but it's a slowpath. 1550 */ 1551 lock_mount_hash(); 1552 if (mnt_get_count(mnt) != 2) { 1553 unlock_mount_hash(); 1554 return -EBUSY; 1555 } 1556 unlock_mount_hash(); 1557 1558 if (!xchg(&mnt->mnt_expiry_mark, 1)) 1559 return -EAGAIN; 1560 } 1561 1562 /* 1563 * If we may have to abort operations to get out of this 1564 * mount, and they will themselves hold resources we must 1565 * allow the fs to do things. In the Unix tradition of 1566 * 'Gee thats tricky lets do it in userspace' the umount_begin 1567 * might fail to complete on the first run through as other tasks 1568 * must return, and the like. Thats for the mount program to worry 1569 * about for the moment. 1570 */ 1571 1572 if (flags & MNT_FORCE && sb->s_op->umount_begin) { 1573 sb->s_op->umount_begin(sb); 1574 } 1575 1576 /* 1577 * No sense to grab the lock for this test, but test itself looks 1578 * somewhat bogus. Suggestions for better replacement? 1579 * Ho-hum... In principle, we might treat that as umount + switch 1580 * to rootfs. GC would eventually take care of the old vfsmount. 1581 * Actually it makes sense, especially if rootfs would contain a 1582 * /reboot - static binary that would close all descriptors and 1583 * call reboot(9). Then init(8) could umount root and exec /reboot. 1584 */ 1585 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) { 1586 /* 1587 * Special case for "unmounting" root ... 1588 * we just try to remount it readonly. 1589 */ 1590 if (!capable(CAP_SYS_ADMIN)) 1591 return -EPERM; 1592 down_write(&sb->s_umount); 1593 if (!sb_rdonly(sb)) 1594 retval = do_remount_sb(sb, SB_RDONLY, NULL, 0); 1595 up_write(&sb->s_umount); 1596 return retval; 1597 } 1598 1599 namespace_lock(); 1600 lock_mount_hash(); 1601 event++; 1602 1603 if (flags & MNT_DETACH) { 1604 if (!list_empty(&mnt->mnt_list)) 1605 umount_tree(mnt, UMOUNT_PROPAGATE); 1606 retval = 0; 1607 } else { 1608 shrink_submounts(mnt); 1609 retval = -EBUSY; 1610 if (!propagate_mount_busy(mnt, 2)) { 1611 if (!list_empty(&mnt->mnt_list)) 1612 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 1613 retval = 0; 1614 } 1615 } 1616 unlock_mount_hash(); 1617 namespace_unlock(); 1618 return retval; 1619 } 1620 1621 /* 1622 * __detach_mounts - lazily unmount all mounts on the specified dentry 1623 * 1624 * During unlink, rmdir, and d_drop it is possible to loose the path 1625 * to an existing mountpoint, and wind up leaking the mount. 1626 * detach_mounts allows lazily unmounting those mounts instead of 1627 * leaking them. 1628 * 1629 * The caller may hold dentry->d_inode->i_mutex. 1630 */ 1631 void __detach_mounts(struct dentry *dentry) 1632 { 1633 struct mountpoint *mp; 1634 struct mount *mnt; 1635 1636 namespace_lock(); 1637 lock_mount_hash(); 1638 mp = lookup_mountpoint(dentry); 1639 if (IS_ERR_OR_NULL(mp)) 1640 goto out_unlock; 1641 1642 event++; 1643 while (!hlist_empty(&mp->m_list)) { 1644 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list); 1645 if (mnt->mnt.mnt_flags & MNT_UMOUNT) { 1646 hlist_add_head(&mnt->mnt_umount.s_list, &unmounted); 1647 umount_mnt(mnt); 1648 } 1649 else umount_tree(mnt, UMOUNT_CONNECTED); 1650 } 1651 put_mountpoint(mp); 1652 out_unlock: 1653 unlock_mount_hash(); 1654 namespace_unlock(); 1655 } 1656 1657 /* 1658 * Is the caller allowed to modify his namespace? 1659 */ 1660 static inline bool may_mount(void) 1661 { 1662 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN); 1663 } 1664 1665 static inline bool may_mandlock(void) 1666 { 1667 #ifndef CONFIG_MANDATORY_FILE_LOCKING 1668 return false; 1669 #endif 1670 return capable(CAP_SYS_ADMIN); 1671 } 1672 1673 /* 1674 * Now umount can handle mount points as well as block devices. 1675 * This is important for filesystems which use unnamed block devices. 1676 * 1677 * We now support a flag for forced unmount like the other 'big iron' 1678 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD 1679 */ 1680 1681 SYSCALL_DEFINE2(umount, char __user *, name, int, flags) 1682 { 1683 struct path path; 1684 struct mount *mnt; 1685 int retval; 1686 int lookup_flags = 0; 1687 1688 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW)) 1689 return -EINVAL; 1690 1691 if (!may_mount()) 1692 return -EPERM; 1693 1694 if (!(flags & UMOUNT_NOFOLLOW)) 1695 lookup_flags |= LOOKUP_FOLLOW; 1696 1697 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path); 1698 if (retval) 1699 goto out; 1700 mnt = real_mount(path.mnt); 1701 retval = -EINVAL; 1702 if (path.dentry != path.mnt->mnt_root) 1703 goto dput_and_out; 1704 if (!check_mnt(mnt)) 1705 goto dput_and_out; 1706 if (mnt->mnt.mnt_flags & MNT_LOCKED) 1707 goto dput_and_out; 1708 retval = -EPERM; 1709 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN)) 1710 goto dput_and_out; 1711 1712 retval = do_umount(mnt, flags); 1713 dput_and_out: 1714 /* we mustn't call path_put() as that would clear mnt_expiry_mark */ 1715 dput(path.dentry); 1716 mntput_no_expire(mnt); 1717 out: 1718 return retval; 1719 } 1720 1721 #ifdef __ARCH_WANT_SYS_OLDUMOUNT 1722 1723 /* 1724 * The 2.0 compatible umount. No flags. 1725 */ 1726 SYSCALL_DEFINE1(oldumount, char __user *, name) 1727 { 1728 return sys_umount(name, 0); 1729 } 1730 1731 #endif 1732 1733 static bool is_mnt_ns_file(struct dentry *dentry) 1734 { 1735 /* Is this a proxy for a mount namespace? */ 1736 return dentry->d_op == &ns_dentry_operations && 1737 dentry->d_fsdata == &mntns_operations; 1738 } 1739 1740 struct mnt_namespace *to_mnt_ns(struct ns_common *ns) 1741 { 1742 return container_of(ns, struct mnt_namespace, ns); 1743 } 1744 1745 static bool mnt_ns_loop(struct dentry *dentry) 1746 { 1747 /* Could bind mounting the mount namespace inode cause a 1748 * mount namespace loop? 1749 */ 1750 struct mnt_namespace *mnt_ns; 1751 if (!is_mnt_ns_file(dentry)) 1752 return false; 1753 1754 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode)); 1755 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq; 1756 } 1757 1758 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry, 1759 int flag) 1760 { 1761 struct mount *res, *p, *q, *r, *parent; 1762 1763 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt)) 1764 return ERR_PTR(-EINVAL); 1765 1766 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry)) 1767 return ERR_PTR(-EINVAL); 1768 1769 res = q = clone_mnt(mnt, dentry, flag); 1770 if (IS_ERR(q)) 1771 return q; 1772 1773 q->mnt_mountpoint = mnt->mnt_mountpoint; 1774 1775 p = mnt; 1776 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) { 1777 struct mount *s; 1778 if (!is_subdir(r->mnt_mountpoint, dentry)) 1779 continue; 1780 1781 for (s = r; s; s = next_mnt(s, r)) { 1782 if (!(flag & CL_COPY_UNBINDABLE) && 1783 IS_MNT_UNBINDABLE(s)) { 1784 s = skip_mnt_tree(s); 1785 continue; 1786 } 1787 if (!(flag & CL_COPY_MNT_NS_FILE) && 1788 is_mnt_ns_file(s->mnt.mnt_root)) { 1789 s = skip_mnt_tree(s); 1790 continue; 1791 } 1792 while (p != s->mnt_parent) { 1793 p = p->mnt_parent; 1794 q = q->mnt_parent; 1795 } 1796 p = s; 1797 parent = q; 1798 q = clone_mnt(p, p->mnt.mnt_root, flag); 1799 if (IS_ERR(q)) 1800 goto out; 1801 lock_mount_hash(); 1802 list_add_tail(&q->mnt_list, &res->mnt_list); 1803 attach_mnt(q, parent, p->mnt_mp); 1804 unlock_mount_hash(); 1805 } 1806 } 1807 return res; 1808 out: 1809 if (res) { 1810 lock_mount_hash(); 1811 umount_tree(res, UMOUNT_SYNC); 1812 unlock_mount_hash(); 1813 } 1814 return q; 1815 } 1816 1817 /* Caller should check returned pointer for errors */ 1818 1819 struct vfsmount *collect_mounts(const struct path *path) 1820 { 1821 struct mount *tree; 1822 namespace_lock(); 1823 if (!check_mnt(real_mount(path->mnt))) 1824 tree = ERR_PTR(-EINVAL); 1825 else 1826 tree = copy_tree(real_mount(path->mnt), path->dentry, 1827 CL_COPY_ALL | CL_PRIVATE); 1828 namespace_unlock(); 1829 if (IS_ERR(tree)) 1830 return ERR_CAST(tree); 1831 return &tree->mnt; 1832 } 1833 1834 void drop_collected_mounts(struct vfsmount *mnt) 1835 { 1836 namespace_lock(); 1837 lock_mount_hash(); 1838 umount_tree(real_mount(mnt), UMOUNT_SYNC); 1839 unlock_mount_hash(); 1840 namespace_unlock(); 1841 } 1842 1843 /** 1844 * clone_private_mount - create a private clone of a path 1845 * 1846 * This creates a new vfsmount, which will be the clone of @path. The new will 1847 * not be attached anywhere in the namespace and will be private (i.e. changes 1848 * to the originating mount won't be propagated into this). 1849 * 1850 * Release with mntput(). 1851 */ 1852 struct vfsmount *clone_private_mount(const struct path *path) 1853 { 1854 struct mount *old_mnt = real_mount(path->mnt); 1855 struct mount *new_mnt; 1856 1857 if (IS_MNT_UNBINDABLE(old_mnt)) 1858 return ERR_PTR(-EINVAL); 1859 1860 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE); 1861 if (IS_ERR(new_mnt)) 1862 return ERR_CAST(new_mnt); 1863 1864 return &new_mnt->mnt; 1865 } 1866 EXPORT_SYMBOL_GPL(clone_private_mount); 1867 1868 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg, 1869 struct vfsmount *root) 1870 { 1871 struct mount *mnt; 1872 int res = f(root, arg); 1873 if (res) 1874 return res; 1875 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) { 1876 res = f(&mnt->mnt, arg); 1877 if (res) 1878 return res; 1879 } 1880 return 0; 1881 } 1882 1883 static void cleanup_group_ids(struct mount *mnt, struct mount *end) 1884 { 1885 struct mount *p; 1886 1887 for (p = mnt; p != end; p = next_mnt(p, mnt)) { 1888 if (p->mnt_group_id && !IS_MNT_SHARED(p)) 1889 mnt_release_group_id(p); 1890 } 1891 } 1892 1893 static int invent_group_ids(struct mount *mnt, bool recurse) 1894 { 1895 struct mount *p; 1896 1897 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) { 1898 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) { 1899 int err = mnt_alloc_group_id(p); 1900 if (err) { 1901 cleanup_group_ids(mnt, p); 1902 return err; 1903 } 1904 } 1905 } 1906 1907 return 0; 1908 } 1909 1910 int count_mounts(struct mnt_namespace *ns, struct mount *mnt) 1911 { 1912 unsigned int max = READ_ONCE(sysctl_mount_max); 1913 unsigned int mounts = 0, old, pending, sum; 1914 struct mount *p; 1915 1916 for (p = mnt; p; p = next_mnt(p, mnt)) 1917 mounts++; 1918 1919 old = ns->mounts; 1920 pending = ns->pending_mounts; 1921 sum = old + pending; 1922 if ((old > sum) || 1923 (pending > sum) || 1924 (max < sum) || 1925 (mounts > (max - sum))) 1926 return -ENOSPC; 1927 1928 ns->pending_mounts = pending + mounts; 1929 return 0; 1930 } 1931 1932 /* 1933 * @source_mnt : mount tree to be attached 1934 * @nd : place the mount tree @source_mnt is attached 1935 * @parent_nd : if non-null, detach the source_mnt from its parent and 1936 * store the parent mount and mountpoint dentry. 1937 * (done when source_mnt is moved) 1938 * 1939 * NOTE: in the table below explains the semantics when a source mount 1940 * of a given type is attached to a destination mount of a given type. 1941 * --------------------------------------------------------------------------- 1942 * | BIND MOUNT OPERATION | 1943 * |************************************************************************** 1944 * | source-->| shared | private | slave | unbindable | 1945 * | dest | | | | | 1946 * | | | | | | | 1947 * | v | | | | | 1948 * |************************************************************************** 1949 * | shared | shared (++) | shared (+) | shared(+++)| invalid | 1950 * | | | | | | 1951 * |non-shared| shared (+) | private | slave (*) | invalid | 1952 * *************************************************************************** 1953 * A bind operation clones the source mount and mounts the clone on the 1954 * destination mount. 1955 * 1956 * (++) the cloned mount is propagated to all the mounts in the propagation 1957 * tree of the destination mount and the cloned mount is added to 1958 * the peer group of the source mount. 1959 * (+) the cloned mount is created under the destination mount and is marked 1960 * as shared. The cloned mount is added to the peer group of the source 1961 * mount. 1962 * (+++) the mount is propagated to all the mounts in the propagation tree 1963 * of the destination mount and the cloned mount is made slave 1964 * of the same master as that of the source mount. The cloned mount 1965 * is marked as 'shared and slave'. 1966 * (*) the cloned mount is made a slave of the same master as that of the 1967 * source mount. 1968 * 1969 * --------------------------------------------------------------------------- 1970 * | MOVE MOUNT OPERATION | 1971 * |************************************************************************** 1972 * | source-->| shared | private | slave | unbindable | 1973 * | dest | | | | | 1974 * | | | | | | | 1975 * | v | | | | | 1976 * |************************************************************************** 1977 * | shared | shared (+) | shared (+) | shared(+++) | invalid | 1978 * | | | | | | 1979 * |non-shared| shared (+*) | private | slave (*) | unbindable | 1980 * *************************************************************************** 1981 * 1982 * (+) the mount is moved to the destination. And is then propagated to 1983 * all the mounts in the propagation tree of the destination mount. 1984 * (+*) the mount is moved to the destination. 1985 * (+++) the mount is moved to the destination and is then propagated to 1986 * all the mounts belonging to the destination mount's propagation tree. 1987 * the mount is marked as 'shared and slave'. 1988 * (*) the mount continues to be a slave at the new location. 1989 * 1990 * if the source mount is a tree, the operations explained above is 1991 * applied to each mount in the tree. 1992 * Must be called without spinlocks held, since this function can sleep 1993 * in allocations. 1994 */ 1995 static int attach_recursive_mnt(struct mount *source_mnt, 1996 struct mount *dest_mnt, 1997 struct mountpoint *dest_mp, 1998 struct path *parent_path) 1999 { 2000 HLIST_HEAD(tree_list); 2001 struct mnt_namespace *ns = dest_mnt->mnt_ns; 2002 struct mountpoint *smp; 2003 struct mount *child, *p; 2004 struct hlist_node *n; 2005 int err; 2006 2007 /* Preallocate a mountpoint in case the new mounts need 2008 * to be tucked under other mounts. 2009 */ 2010 smp = get_mountpoint(source_mnt->mnt.mnt_root); 2011 if (IS_ERR(smp)) 2012 return PTR_ERR(smp); 2013 2014 /* Is there space to add these mounts to the mount namespace? */ 2015 if (!parent_path) { 2016 err = count_mounts(ns, source_mnt); 2017 if (err) 2018 goto out; 2019 } 2020 2021 if (IS_MNT_SHARED(dest_mnt)) { 2022 err = invent_group_ids(source_mnt, true); 2023 if (err) 2024 goto out; 2025 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list); 2026 lock_mount_hash(); 2027 if (err) 2028 goto out_cleanup_ids; 2029 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 2030 set_mnt_shared(p); 2031 } else { 2032 lock_mount_hash(); 2033 } 2034 if (parent_path) { 2035 detach_mnt(source_mnt, parent_path); 2036 attach_mnt(source_mnt, dest_mnt, dest_mp); 2037 touch_mnt_namespace(source_mnt->mnt_ns); 2038 } else { 2039 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt); 2040 commit_tree(source_mnt); 2041 } 2042 2043 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) { 2044 struct mount *q; 2045 hlist_del_init(&child->mnt_hash); 2046 q = __lookup_mnt(&child->mnt_parent->mnt, 2047 child->mnt_mountpoint); 2048 if (q) 2049 mnt_change_mountpoint(child, smp, q); 2050 commit_tree(child); 2051 } 2052 put_mountpoint(smp); 2053 unlock_mount_hash(); 2054 2055 return 0; 2056 2057 out_cleanup_ids: 2058 while (!hlist_empty(&tree_list)) { 2059 child = hlist_entry(tree_list.first, struct mount, mnt_hash); 2060 child->mnt_parent->mnt_ns->pending_mounts = 0; 2061 umount_tree(child, UMOUNT_SYNC); 2062 } 2063 unlock_mount_hash(); 2064 cleanup_group_ids(source_mnt, NULL); 2065 out: 2066 ns->pending_mounts = 0; 2067 2068 read_seqlock_excl(&mount_lock); 2069 put_mountpoint(smp); 2070 read_sequnlock_excl(&mount_lock); 2071 2072 return err; 2073 } 2074 2075 static struct mountpoint *lock_mount(struct path *path) 2076 { 2077 struct vfsmount *mnt; 2078 struct dentry *dentry = path->dentry; 2079 retry: 2080 inode_lock(dentry->d_inode); 2081 if (unlikely(cant_mount(dentry))) { 2082 inode_unlock(dentry->d_inode); 2083 return ERR_PTR(-ENOENT); 2084 } 2085 namespace_lock(); 2086 mnt = lookup_mnt(path); 2087 if (likely(!mnt)) { 2088 struct mountpoint *mp = get_mountpoint(dentry); 2089 if (IS_ERR(mp)) { 2090 namespace_unlock(); 2091 inode_unlock(dentry->d_inode); 2092 return mp; 2093 } 2094 return mp; 2095 } 2096 namespace_unlock(); 2097 inode_unlock(path->dentry->d_inode); 2098 path_put(path); 2099 path->mnt = mnt; 2100 dentry = path->dentry = dget(mnt->mnt_root); 2101 goto retry; 2102 } 2103 2104 static void unlock_mount(struct mountpoint *where) 2105 { 2106 struct dentry *dentry = where->m_dentry; 2107 2108 read_seqlock_excl(&mount_lock); 2109 put_mountpoint(where); 2110 read_sequnlock_excl(&mount_lock); 2111 2112 namespace_unlock(); 2113 inode_unlock(dentry->d_inode); 2114 } 2115 2116 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp) 2117 { 2118 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER) 2119 return -EINVAL; 2120 2121 if (d_is_dir(mp->m_dentry) != 2122 d_is_dir(mnt->mnt.mnt_root)) 2123 return -ENOTDIR; 2124 2125 return attach_recursive_mnt(mnt, p, mp, NULL); 2126 } 2127 2128 /* 2129 * Sanity check the flags to change_mnt_propagation. 2130 */ 2131 2132 static int flags_to_propagation_type(int ms_flags) 2133 { 2134 int type = ms_flags & ~(MS_REC | MS_SILENT); 2135 2136 /* Fail if any non-propagation flags are set */ 2137 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 2138 return 0; 2139 /* Only one propagation flag should be set */ 2140 if (!is_power_of_2(type)) 2141 return 0; 2142 return type; 2143 } 2144 2145 /* 2146 * recursively change the type of the mountpoint. 2147 */ 2148 static int do_change_type(struct path *path, int ms_flags) 2149 { 2150 struct mount *m; 2151 struct mount *mnt = real_mount(path->mnt); 2152 int recurse = ms_flags & MS_REC; 2153 int type; 2154 int err = 0; 2155 2156 if (path->dentry != path->mnt->mnt_root) 2157 return -EINVAL; 2158 2159 type = flags_to_propagation_type(ms_flags); 2160 if (!type) 2161 return -EINVAL; 2162 2163 namespace_lock(); 2164 if (type == MS_SHARED) { 2165 err = invent_group_ids(mnt, recurse); 2166 if (err) 2167 goto out_unlock; 2168 } 2169 2170 lock_mount_hash(); 2171 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) 2172 change_mnt_propagation(m, type); 2173 unlock_mount_hash(); 2174 2175 out_unlock: 2176 namespace_unlock(); 2177 return err; 2178 } 2179 2180 static bool has_locked_children(struct mount *mnt, struct dentry *dentry) 2181 { 2182 struct mount *child; 2183 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 2184 if (!is_subdir(child->mnt_mountpoint, dentry)) 2185 continue; 2186 2187 if (child->mnt.mnt_flags & MNT_LOCKED) 2188 return true; 2189 } 2190 return false; 2191 } 2192 2193 /* 2194 * do loopback mount. 2195 */ 2196 static int do_loopback(struct path *path, const char *old_name, 2197 int recurse) 2198 { 2199 struct path old_path; 2200 struct mount *mnt = NULL, *old, *parent; 2201 struct mountpoint *mp; 2202 int err; 2203 if (!old_name || !*old_name) 2204 return -EINVAL; 2205 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path); 2206 if (err) 2207 return err; 2208 2209 err = -EINVAL; 2210 if (mnt_ns_loop(old_path.dentry)) 2211 goto out; 2212 2213 mp = lock_mount(path); 2214 err = PTR_ERR(mp); 2215 if (IS_ERR(mp)) 2216 goto out; 2217 2218 old = real_mount(old_path.mnt); 2219 parent = real_mount(path->mnt); 2220 2221 err = -EINVAL; 2222 if (IS_MNT_UNBINDABLE(old)) 2223 goto out2; 2224 2225 if (!check_mnt(parent)) 2226 goto out2; 2227 2228 if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations) 2229 goto out2; 2230 2231 if (!recurse && has_locked_children(old, old_path.dentry)) 2232 goto out2; 2233 2234 if (recurse) 2235 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE); 2236 else 2237 mnt = clone_mnt(old, old_path.dentry, 0); 2238 2239 if (IS_ERR(mnt)) { 2240 err = PTR_ERR(mnt); 2241 goto out2; 2242 } 2243 2244 mnt->mnt.mnt_flags &= ~MNT_LOCKED; 2245 2246 err = graft_tree(mnt, parent, mp); 2247 if (err) { 2248 lock_mount_hash(); 2249 umount_tree(mnt, UMOUNT_SYNC); 2250 unlock_mount_hash(); 2251 } 2252 out2: 2253 unlock_mount(mp); 2254 out: 2255 path_put(&old_path); 2256 return err; 2257 } 2258 2259 static int change_mount_flags(struct vfsmount *mnt, int ms_flags) 2260 { 2261 int error = 0; 2262 int readonly_request = 0; 2263 2264 if (ms_flags & MS_RDONLY) 2265 readonly_request = 1; 2266 if (readonly_request == __mnt_is_readonly(mnt)) 2267 return 0; 2268 2269 if (readonly_request) 2270 error = mnt_make_readonly(real_mount(mnt)); 2271 else 2272 __mnt_unmake_readonly(real_mount(mnt)); 2273 return error; 2274 } 2275 2276 /* 2277 * change filesystem flags. dir should be a physical root of filesystem. 2278 * If you've mounted a non-root directory somewhere and want to do remount 2279 * on it - tough luck. 2280 */ 2281 static int do_remount(struct path *path, int ms_flags, int sb_flags, 2282 int mnt_flags, void *data) 2283 { 2284 int err; 2285 struct super_block *sb = path->mnt->mnt_sb; 2286 struct mount *mnt = real_mount(path->mnt); 2287 2288 if (!check_mnt(mnt)) 2289 return -EINVAL; 2290 2291 if (path->dentry != path->mnt->mnt_root) 2292 return -EINVAL; 2293 2294 /* Don't allow changing of locked mnt flags. 2295 * 2296 * No locks need to be held here while testing the various 2297 * MNT_LOCK flags because those flags can never be cleared 2298 * once they are set. 2299 */ 2300 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) && 2301 !(mnt_flags & MNT_READONLY)) { 2302 return -EPERM; 2303 } 2304 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) && 2305 !(mnt_flags & MNT_NODEV)) { 2306 return -EPERM; 2307 } 2308 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) && 2309 !(mnt_flags & MNT_NOSUID)) { 2310 return -EPERM; 2311 } 2312 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) && 2313 !(mnt_flags & MNT_NOEXEC)) { 2314 return -EPERM; 2315 } 2316 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) && 2317 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) { 2318 return -EPERM; 2319 } 2320 2321 err = security_sb_remount(sb, data); 2322 if (err) 2323 return err; 2324 2325 down_write(&sb->s_umount); 2326 if (ms_flags & MS_BIND) 2327 err = change_mount_flags(path->mnt, ms_flags); 2328 else if (!capable(CAP_SYS_ADMIN)) 2329 err = -EPERM; 2330 else 2331 err = do_remount_sb(sb, sb_flags, data, 0); 2332 if (!err) { 2333 lock_mount_hash(); 2334 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK; 2335 mnt->mnt.mnt_flags = mnt_flags; 2336 touch_mnt_namespace(mnt->mnt_ns); 2337 unlock_mount_hash(); 2338 } 2339 up_write(&sb->s_umount); 2340 return err; 2341 } 2342 2343 static inline int tree_contains_unbindable(struct mount *mnt) 2344 { 2345 struct mount *p; 2346 for (p = mnt; p; p = next_mnt(p, mnt)) { 2347 if (IS_MNT_UNBINDABLE(p)) 2348 return 1; 2349 } 2350 return 0; 2351 } 2352 2353 static int do_move_mount(struct path *path, const char *old_name) 2354 { 2355 struct path old_path, parent_path; 2356 struct mount *p; 2357 struct mount *old; 2358 struct mountpoint *mp; 2359 int err; 2360 if (!old_name || !*old_name) 2361 return -EINVAL; 2362 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); 2363 if (err) 2364 return err; 2365 2366 mp = lock_mount(path); 2367 err = PTR_ERR(mp); 2368 if (IS_ERR(mp)) 2369 goto out; 2370 2371 old = real_mount(old_path.mnt); 2372 p = real_mount(path->mnt); 2373 2374 err = -EINVAL; 2375 if (!check_mnt(p) || !check_mnt(old)) 2376 goto out1; 2377 2378 if (old->mnt.mnt_flags & MNT_LOCKED) 2379 goto out1; 2380 2381 err = -EINVAL; 2382 if (old_path.dentry != old_path.mnt->mnt_root) 2383 goto out1; 2384 2385 if (!mnt_has_parent(old)) 2386 goto out1; 2387 2388 if (d_is_dir(path->dentry) != 2389 d_is_dir(old_path.dentry)) 2390 goto out1; 2391 /* 2392 * Don't move a mount residing in a shared parent. 2393 */ 2394 if (IS_MNT_SHARED(old->mnt_parent)) 2395 goto out1; 2396 /* 2397 * Don't move a mount tree containing unbindable mounts to a destination 2398 * mount which is shared. 2399 */ 2400 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old)) 2401 goto out1; 2402 err = -ELOOP; 2403 for (; mnt_has_parent(p); p = p->mnt_parent) 2404 if (p == old) 2405 goto out1; 2406 2407 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path); 2408 if (err) 2409 goto out1; 2410 2411 /* if the mount is moved, it should no longer be expire 2412 * automatically */ 2413 list_del_init(&old->mnt_expire); 2414 out1: 2415 unlock_mount(mp); 2416 out: 2417 if (!err) 2418 path_put(&parent_path); 2419 path_put(&old_path); 2420 return err; 2421 } 2422 2423 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype) 2424 { 2425 int err; 2426 const char *subtype = strchr(fstype, '.'); 2427 if (subtype) { 2428 subtype++; 2429 err = -EINVAL; 2430 if (!subtype[0]) 2431 goto err; 2432 } else 2433 subtype = ""; 2434 2435 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL); 2436 err = -ENOMEM; 2437 if (!mnt->mnt_sb->s_subtype) 2438 goto err; 2439 return mnt; 2440 2441 err: 2442 mntput(mnt); 2443 return ERR_PTR(err); 2444 } 2445 2446 /* 2447 * add a mount into a namespace's mount tree 2448 */ 2449 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags) 2450 { 2451 struct mountpoint *mp; 2452 struct mount *parent; 2453 int err; 2454 2455 mnt_flags &= ~MNT_INTERNAL_FLAGS; 2456 2457 mp = lock_mount(path); 2458 if (IS_ERR(mp)) 2459 return PTR_ERR(mp); 2460 2461 parent = real_mount(path->mnt); 2462 err = -EINVAL; 2463 if (unlikely(!check_mnt(parent))) { 2464 /* that's acceptable only for automounts done in private ns */ 2465 if (!(mnt_flags & MNT_SHRINKABLE)) 2466 goto unlock; 2467 /* ... and for those we'd better have mountpoint still alive */ 2468 if (!parent->mnt_ns) 2469 goto unlock; 2470 } 2471 2472 /* Refuse the same filesystem on the same mount point */ 2473 err = -EBUSY; 2474 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && 2475 path->mnt->mnt_root == path->dentry) 2476 goto unlock; 2477 2478 err = -EINVAL; 2479 if (d_is_symlink(newmnt->mnt.mnt_root)) 2480 goto unlock; 2481 2482 newmnt->mnt.mnt_flags = mnt_flags; 2483 err = graft_tree(newmnt, parent, mp); 2484 2485 unlock: 2486 unlock_mount(mp); 2487 return err; 2488 } 2489 2490 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags); 2491 2492 /* 2493 * create a new mount for userspace and request it to be added into the 2494 * namespace's tree 2495 */ 2496 static int do_new_mount(struct path *path, const char *fstype, int sb_flags, 2497 int mnt_flags, const char *name, void *data) 2498 { 2499 struct file_system_type *type; 2500 struct vfsmount *mnt; 2501 int err; 2502 2503 if (!fstype) 2504 return -EINVAL; 2505 2506 type = get_fs_type(fstype); 2507 if (!type) 2508 return -ENODEV; 2509 2510 mnt = vfs_kern_mount(type, sb_flags, name, data); 2511 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) && 2512 !mnt->mnt_sb->s_subtype) 2513 mnt = fs_set_subtype(mnt, fstype); 2514 2515 put_filesystem(type); 2516 if (IS_ERR(mnt)) 2517 return PTR_ERR(mnt); 2518 2519 if (mount_too_revealing(mnt, &mnt_flags)) { 2520 mntput(mnt); 2521 return -EPERM; 2522 } 2523 2524 err = do_add_mount(real_mount(mnt), path, mnt_flags); 2525 if (err) 2526 mntput(mnt); 2527 return err; 2528 } 2529 2530 int finish_automount(struct vfsmount *m, struct path *path) 2531 { 2532 struct mount *mnt = real_mount(m); 2533 int err; 2534 /* The new mount record should have at least 2 refs to prevent it being 2535 * expired before we get a chance to add it 2536 */ 2537 BUG_ON(mnt_get_count(mnt) < 2); 2538 2539 if (m->mnt_sb == path->mnt->mnt_sb && 2540 m->mnt_root == path->dentry) { 2541 err = -ELOOP; 2542 goto fail; 2543 } 2544 2545 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE); 2546 if (!err) 2547 return 0; 2548 fail: 2549 /* remove m from any expiration list it may be on */ 2550 if (!list_empty(&mnt->mnt_expire)) { 2551 namespace_lock(); 2552 list_del_init(&mnt->mnt_expire); 2553 namespace_unlock(); 2554 } 2555 mntput(m); 2556 mntput(m); 2557 return err; 2558 } 2559 2560 /** 2561 * mnt_set_expiry - Put a mount on an expiration list 2562 * @mnt: The mount to list. 2563 * @expiry_list: The list to add the mount to. 2564 */ 2565 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list) 2566 { 2567 namespace_lock(); 2568 2569 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list); 2570 2571 namespace_unlock(); 2572 } 2573 EXPORT_SYMBOL(mnt_set_expiry); 2574 2575 /* 2576 * process a list of expirable mountpoints with the intent of discarding any 2577 * mountpoints that aren't in use and haven't been touched since last we came 2578 * here 2579 */ 2580 void mark_mounts_for_expiry(struct list_head *mounts) 2581 { 2582 struct mount *mnt, *next; 2583 LIST_HEAD(graveyard); 2584 2585 if (list_empty(mounts)) 2586 return; 2587 2588 namespace_lock(); 2589 lock_mount_hash(); 2590 2591 /* extract from the expiration list every vfsmount that matches the 2592 * following criteria: 2593 * - only referenced by its parent vfsmount 2594 * - still marked for expiry (marked on the last call here; marks are 2595 * cleared by mntput()) 2596 */ 2597 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { 2598 if (!xchg(&mnt->mnt_expiry_mark, 1) || 2599 propagate_mount_busy(mnt, 1)) 2600 continue; 2601 list_move(&mnt->mnt_expire, &graveyard); 2602 } 2603 while (!list_empty(&graveyard)) { 2604 mnt = list_first_entry(&graveyard, struct mount, mnt_expire); 2605 touch_mnt_namespace(mnt->mnt_ns); 2606 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 2607 } 2608 unlock_mount_hash(); 2609 namespace_unlock(); 2610 } 2611 2612 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); 2613 2614 /* 2615 * Ripoff of 'select_parent()' 2616 * 2617 * search the list of submounts for a given mountpoint, and move any 2618 * shrinkable submounts to the 'graveyard' list. 2619 */ 2620 static int select_submounts(struct mount *parent, struct list_head *graveyard) 2621 { 2622 struct mount *this_parent = parent; 2623 struct list_head *next; 2624 int found = 0; 2625 2626 repeat: 2627 next = this_parent->mnt_mounts.next; 2628 resume: 2629 while (next != &this_parent->mnt_mounts) { 2630 struct list_head *tmp = next; 2631 struct mount *mnt = list_entry(tmp, struct mount, mnt_child); 2632 2633 next = tmp->next; 2634 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE)) 2635 continue; 2636 /* 2637 * Descend a level if the d_mounts list is non-empty. 2638 */ 2639 if (!list_empty(&mnt->mnt_mounts)) { 2640 this_parent = mnt; 2641 goto repeat; 2642 } 2643 2644 if (!propagate_mount_busy(mnt, 1)) { 2645 list_move_tail(&mnt->mnt_expire, graveyard); 2646 found++; 2647 } 2648 } 2649 /* 2650 * All done at this level ... ascend and resume the search 2651 */ 2652 if (this_parent != parent) { 2653 next = this_parent->mnt_child.next; 2654 this_parent = this_parent->mnt_parent; 2655 goto resume; 2656 } 2657 return found; 2658 } 2659 2660 /* 2661 * process a list of expirable mountpoints with the intent of discarding any 2662 * submounts of a specific parent mountpoint 2663 * 2664 * mount_lock must be held for write 2665 */ 2666 static void shrink_submounts(struct mount *mnt) 2667 { 2668 LIST_HEAD(graveyard); 2669 struct mount *m; 2670 2671 /* extract submounts of 'mountpoint' from the expiration list */ 2672 while (select_submounts(mnt, &graveyard)) { 2673 while (!list_empty(&graveyard)) { 2674 m = list_first_entry(&graveyard, struct mount, 2675 mnt_expire); 2676 touch_mnt_namespace(m->mnt_ns); 2677 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC); 2678 } 2679 } 2680 } 2681 2682 /* 2683 * Some copy_from_user() implementations do not return the exact number of 2684 * bytes remaining to copy on a fault. But copy_mount_options() requires that. 2685 * Note that this function differs from copy_from_user() in that it will oops 2686 * on bad values of `to', rather than returning a short copy. 2687 */ 2688 static long exact_copy_from_user(void *to, const void __user * from, 2689 unsigned long n) 2690 { 2691 char *t = to; 2692 const char __user *f = from; 2693 char c; 2694 2695 if (!access_ok(VERIFY_READ, from, n)) 2696 return n; 2697 2698 while (n) { 2699 if (__get_user(c, f)) { 2700 memset(t, 0, n); 2701 break; 2702 } 2703 *t++ = c; 2704 f++; 2705 n--; 2706 } 2707 return n; 2708 } 2709 2710 void *copy_mount_options(const void __user * data) 2711 { 2712 int i; 2713 unsigned long size; 2714 char *copy; 2715 2716 if (!data) 2717 return NULL; 2718 2719 copy = kmalloc(PAGE_SIZE, GFP_KERNEL); 2720 if (!copy) 2721 return ERR_PTR(-ENOMEM); 2722 2723 /* We only care that *some* data at the address the user 2724 * gave us is valid. Just in case, we'll zero 2725 * the remainder of the page. 2726 */ 2727 /* copy_from_user cannot cross TASK_SIZE ! */ 2728 size = TASK_SIZE - (unsigned long)data; 2729 if (size > PAGE_SIZE) 2730 size = PAGE_SIZE; 2731 2732 i = size - exact_copy_from_user(copy, data, size); 2733 if (!i) { 2734 kfree(copy); 2735 return ERR_PTR(-EFAULT); 2736 } 2737 if (i != PAGE_SIZE) 2738 memset(copy + i, 0, PAGE_SIZE - i); 2739 return copy; 2740 } 2741 2742 char *copy_mount_string(const void __user *data) 2743 { 2744 return data ? strndup_user(data, PAGE_SIZE) : NULL; 2745 } 2746 2747 /* 2748 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to 2749 * be given to the mount() call (ie: read-only, no-dev, no-suid etc). 2750 * 2751 * data is a (void *) that can point to any structure up to 2752 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent 2753 * information (or be NULL). 2754 * 2755 * Pre-0.97 versions of mount() didn't have a flags word. 2756 * When the flags word was introduced its top half was required 2757 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. 2758 * Therefore, if this magic number is present, it carries no information 2759 * and must be discarded. 2760 */ 2761 long do_mount(const char *dev_name, const char __user *dir_name, 2762 const char *type_page, unsigned long flags, void *data_page) 2763 { 2764 struct path path; 2765 unsigned int mnt_flags = 0, sb_flags; 2766 int retval = 0; 2767 2768 /* Discard magic */ 2769 if ((flags & MS_MGC_MSK) == MS_MGC_VAL) 2770 flags &= ~MS_MGC_MSK; 2771 2772 /* Basic sanity checks */ 2773 if (data_page) 2774 ((char *)data_page)[PAGE_SIZE - 1] = 0; 2775 2776 if (flags & MS_NOUSER) 2777 return -EINVAL; 2778 2779 /* ... and get the mountpoint */ 2780 retval = user_path(dir_name, &path); 2781 if (retval) 2782 return retval; 2783 2784 retval = security_sb_mount(dev_name, &path, 2785 type_page, flags, data_page); 2786 if (!retval && !may_mount()) 2787 retval = -EPERM; 2788 if (!retval && (flags & SB_MANDLOCK) && !may_mandlock()) 2789 retval = -EPERM; 2790 if (retval) 2791 goto dput_out; 2792 2793 /* Default to relatime unless overriden */ 2794 if (!(flags & MS_NOATIME)) 2795 mnt_flags |= MNT_RELATIME; 2796 2797 /* Separate the per-mountpoint flags */ 2798 if (flags & MS_NOSUID) 2799 mnt_flags |= MNT_NOSUID; 2800 if (flags & MS_NODEV) 2801 mnt_flags |= MNT_NODEV; 2802 if (flags & MS_NOEXEC) 2803 mnt_flags |= MNT_NOEXEC; 2804 if (flags & MS_NOATIME) 2805 mnt_flags |= MNT_NOATIME; 2806 if (flags & MS_NODIRATIME) 2807 mnt_flags |= MNT_NODIRATIME; 2808 if (flags & MS_STRICTATIME) 2809 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME); 2810 if (flags & SB_RDONLY) 2811 mnt_flags |= MNT_READONLY; 2812 2813 /* The default atime for remount is preservation */ 2814 if ((flags & MS_REMOUNT) && 2815 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME | 2816 MS_STRICTATIME)) == 0)) { 2817 mnt_flags &= ~MNT_ATIME_MASK; 2818 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK; 2819 } 2820 2821 sb_flags = flags & (SB_RDONLY | 2822 SB_SYNCHRONOUS | 2823 SB_MANDLOCK | 2824 SB_DIRSYNC | 2825 SB_SILENT | 2826 SB_POSIXACL); 2827 2828 if (flags & MS_REMOUNT) 2829 retval = do_remount(&path, flags, sb_flags, mnt_flags, 2830 data_page); 2831 else if (flags & MS_BIND) 2832 retval = do_loopback(&path, dev_name, flags & MS_REC); 2833 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 2834 retval = do_change_type(&path, flags); 2835 else if (flags & MS_MOVE) 2836 retval = do_move_mount(&path, dev_name); 2837 else 2838 retval = do_new_mount(&path, type_page, sb_flags, mnt_flags, 2839 dev_name, data_page); 2840 dput_out: 2841 path_put(&path); 2842 return retval; 2843 } 2844 2845 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns) 2846 { 2847 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES); 2848 } 2849 2850 static void dec_mnt_namespaces(struct ucounts *ucounts) 2851 { 2852 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES); 2853 } 2854 2855 static void free_mnt_ns(struct mnt_namespace *ns) 2856 { 2857 ns_free_inum(&ns->ns); 2858 dec_mnt_namespaces(ns->ucounts); 2859 put_user_ns(ns->user_ns); 2860 kfree(ns); 2861 } 2862 2863 /* 2864 * Assign a sequence number so we can detect when we attempt to bind 2865 * mount a reference to an older mount namespace into the current 2866 * mount namespace, preventing reference counting loops. A 64bit 2867 * number incrementing at 10Ghz will take 12,427 years to wrap which 2868 * is effectively never, so we can ignore the possibility. 2869 */ 2870 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1); 2871 2872 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns) 2873 { 2874 struct mnt_namespace *new_ns; 2875 struct ucounts *ucounts; 2876 int ret; 2877 2878 ucounts = inc_mnt_namespaces(user_ns); 2879 if (!ucounts) 2880 return ERR_PTR(-ENOSPC); 2881 2882 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL); 2883 if (!new_ns) { 2884 dec_mnt_namespaces(ucounts); 2885 return ERR_PTR(-ENOMEM); 2886 } 2887 ret = ns_alloc_inum(&new_ns->ns); 2888 if (ret) { 2889 kfree(new_ns); 2890 dec_mnt_namespaces(ucounts); 2891 return ERR_PTR(ret); 2892 } 2893 new_ns->ns.ops = &mntns_operations; 2894 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq); 2895 atomic_set(&new_ns->count, 1); 2896 new_ns->root = NULL; 2897 INIT_LIST_HEAD(&new_ns->list); 2898 init_waitqueue_head(&new_ns->poll); 2899 new_ns->event = 0; 2900 new_ns->user_ns = get_user_ns(user_ns); 2901 new_ns->ucounts = ucounts; 2902 new_ns->mounts = 0; 2903 new_ns->pending_mounts = 0; 2904 return new_ns; 2905 } 2906 2907 __latent_entropy 2908 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns, 2909 struct user_namespace *user_ns, struct fs_struct *new_fs) 2910 { 2911 struct mnt_namespace *new_ns; 2912 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL; 2913 struct mount *p, *q; 2914 struct mount *old; 2915 struct mount *new; 2916 int copy_flags; 2917 2918 BUG_ON(!ns); 2919 2920 if (likely(!(flags & CLONE_NEWNS))) { 2921 get_mnt_ns(ns); 2922 return ns; 2923 } 2924 2925 old = ns->root; 2926 2927 new_ns = alloc_mnt_ns(user_ns); 2928 if (IS_ERR(new_ns)) 2929 return new_ns; 2930 2931 namespace_lock(); 2932 /* First pass: copy the tree topology */ 2933 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE; 2934 if (user_ns != ns->user_ns) 2935 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED; 2936 new = copy_tree(old, old->mnt.mnt_root, copy_flags); 2937 if (IS_ERR(new)) { 2938 namespace_unlock(); 2939 free_mnt_ns(new_ns); 2940 return ERR_CAST(new); 2941 } 2942 new_ns->root = new; 2943 list_add_tail(&new_ns->list, &new->mnt_list); 2944 2945 /* 2946 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts 2947 * as belonging to new namespace. We have already acquired a private 2948 * fs_struct, so tsk->fs->lock is not needed. 2949 */ 2950 p = old; 2951 q = new; 2952 while (p) { 2953 q->mnt_ns = new_ns; 2954 new_ns->mounts++; 2955 if (new_fs) { 2956 if (&p->mnt == new_fs->root.mnt) { 2957 new_fs->root.mnt = mntget(&q->mnt); 2958 rootmnt = &p->mnt; 2959 } 2960 if (&p->mnt == new_fs->pwd.mnt) { 2961 new_fs->pwd.mnt = mntget(&q->mnt); 2962 pwdmnt = &p->mnt; 2963 } 2964 } 2965 p = next_mnt(p, old); 2966 q = next_mnt(q, new); 2967 if (!q) 2968 break; 2969 while (p->mnt.mnt_root != q->mnt.mnt_root) 2970 p = next_mnt(p, old); 2971 } 2972 namespace_unlock(); 2973 2974 if (rootmnt) 2975 mntput(rootmnt); 2976 if (pwdmnt) 2977 mntput(pwdmnt); 2978 2979 return new_ns; 2980 } 2981 2982 /** 2983 * create_mnt_ns - creates a private namespace and adds a root filesystem 2984 * @mnt: pointer to the new root filesystem mountpoint 2985 */ 2986 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m) 2987 { 2988 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns); 2989 if (!IS_ERR(new_ns)) { 2990 struct mount *mnt = real_mount(m); 2991 mnt->mnt_ns = new_ns; 2992 new_ns->root = mnt; 2993 new_ns->mounts++; 2994 list_add(&mnt->mnt_list, &new_ns->list); 2995 } else { 2996 mntput(m); 2997 } 2998 return new_ns; 2999 } 3000 3001 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name) 3002 { 3003 struct mnt_namespace *ns; 3004 struct super_block *s; 3005 struct path path; 3006 int err; 3007 3008 ns = create_mnt_ns(mnt); 3009 if (IS_ERR(ns)) 3010 return ERR_CAST(ns); 3011 3012 err = vfs_path_lookup(mnt->mnt_root, mnt, 3013 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path); 3014 3015 put_mnt_ns(ns); 3016 3017 if (err) 3018 return ERR_PTR(err); 3019 3020 /* trade a vfsmount reference for active sb one */ 3021 s = path.mnt->mnt_sb; 3022 atomic_inc(&s->s_active); 3023 mntput(path.mnt); 3024 /* lock the sucker */ 3025 down_write(&s->s_umount); 3026 /* ... and return the root of (sub)tree on it */ 3027 return path.dentry; 3028 } 3029 EXPORT_SYMBOL(mount_subtree); 3030 3031 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name, 3032 char __user *, type, unsigned long, flags, void __user *, data) 3033 { 3034 int ret; 3035 char *kernel_type; 3036 char *kernel_dev; 3037 void *options; 3038 3039 kernel_type = copy_mount_string(type); 3040 ret = PTR_ERR(kernel_type); 3041 if (IS_ERR(kernel_type)) 3042 goto out_type; 3043 3044 kernel_dev = copy_mount_string(dev_name); 3045 ret = PTR_ERR(kernel_dev); 3046 if (IS_ERR(kernel_dev)) 3047 goto out_dev; 3048 3049 options = copy_mount_options(data); 3050 ret = PTR_ERR(options); 3051 if (IS_ERR(options)) 3052 goto out_data; 3053 3054 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options); 3055 3056 kfree(options); 3057 out_data: 3058 kfree(kernel_dev); 3059 out_dev: 3060 kfree(kernel_type); 3061 out_type: 3062 return ret; 3063 } 3064 3065 /* 3066 * Return true if path is reachable from root 3067 * 3068 * namespace_sem or mount_lock is held 3069 */ 3070 bool is_path_reachable(struct mount *mnt, struct dentry *dentry, 3071 const struct path *root) 3072 { 3073 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) { 3074 dentry = mnt->mnt_mountpoint; 3075 mnt = mnt->mnt_parent; 3076 } 3077 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry); 3078 } 3079 3080 bool path_is_under(const struct path *path1, const struct path *path2) 3081 { 3082 bool res; 3083 read_seqlock_excl(&mount_lock); 3084 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2); 3085 read_sequnlock_excl(&mount_lock); 3086 return res; 3087 } 3088 EXPORT_SYMBOL(path_is_under); 3089 3090 /* 3091 * pivot_root Semantics: 3092 * Moves the root file system of the current process to the directory put_old, 3093 * makes new_root as the new root file system of the current process, and sets 3094 * root/cwd of all processes which had them on the current root to new_root. 3095 * 3096 * Restrictions: 3097 * The new_root and put_old must be directories, and must not be on the 3098 * same file system as the current process root. The put_old must be 3099 * underneath new_root, i.e. adding a non-zero number of /.. to the string 3100 * pointed to by put_old must yield the same directory as new_root. No other 3101 * file system may be mounted on put_old. After all, new_root is a mountpoint. 3102 * 3103 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. 3104 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives 3105 * in this situation. 3106 * 3107 * Notes: 3108 * - we don't move root/cwd if they are not at the root (reason: if something 3109 * cared enough to change them, it's probably wrong to force them elsewhere) 3110 * - it's okay to pick a root that isn't the root of a file system, e.g. 3111 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, 3112 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root 3113 * first. 3114 */ 3115 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root, 3116 const char __user *, put_old) 3117 { 3118 struct path new, old, parent_path, root_parent, root; 3119 struct mount *new_mnt, *root_mnt, *old_mnt; 3120 struct mountpoint *old_mp, *root_mp; 3121 int error; 3122 3123 if (!may_mount()) 3124 return -EPERM; 3125 3126 error = user_path_dir(new_root, &new); 3127 if (error) 3128 goto out0; 3129 3130 error = user_path_dir(put_old, &old); 3131 if (error) 3132 goto out1; 3133 3134 error = security_sb_pivotroot(&old, &new); 3135 if (error) 3136 goto out2; 3137 3138 get_fs_root(current->fs, &root); 3139 old_mp = lock_mount(&old); 3140 error = PTR_ERR(old_mp); 3141 if (IS_ERR(old_mp)) 3142 goto out3; 3143 3144 error = -EINVAL; 3145 new_mnt = real_mount(new.mnt); 3146 root_mnt = real_mount(root.mnt); 3147 old_mnt = real_mount(old.mnt); 3148 if (IS_MNT_SHARED(old_mnt) || 3149 IS_MNT_SHARED(new_mnt->mnt_parent) || 3150 IS_MNT_SHARED(root_mnt->mnt_parent)) 3151 goto out4; 3152 if (!check_mnt(root_mnt) || !check_mnt(new_mnt)) 3153 goto out4; 3154 if (new_mnt->mnt.mnt_flags & MNT_LOCKED) 3155 goto out4; 3156 error = -ENOENT; 3157 if (d_unlinked(new.dentry)) 3158 goto out4; 3159 error = -EBUSY; 3160 if (new_mnt == root_mnt || old_mnt == root_mnt) 3161 goto out4; /* loop, on the same file system */ 3162 error = -EINVAL; 3163 if (root.mnt->mnt_root != root.dentry) 3164 goto out4; /* not a mountpoint */ 3165 if (!mnt_has_parent(root_mnt)) 3166 goto out4; /* not attached */ 3167 root_mp = root_mnt->mnt_mp; 3168 if (new.mnt->mnt_root != new.dentry) 3169 goto out4; /* not a mountpoint */ 3170 if (!mnt_has_parent(new_mnt)) 3171 goto out4; /* not attached */ 3172 /* make sure we can reach put_old from new_root */ 3173 if (!is_path_reachable(old_mnt, old.dentry, &new)) 3174 goto out4; 3175 /* make certain new is below the root */ 3176 if (!is_path_reachable(new_mnt, new.dentry, &root)) 3177 goto out4; 3178 root_mp->m_count++; /* pin it so it won't go away */ 3179 lock_mount_hash(); 3180 detach_mnt(new_mnt, &parent_path); 3181 detach_mnt(root_mnt, &root_parent); 3182 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) { 3183 new_mnt->mnt.mnt_flags |= MNT_LOCKED; 3184 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED; 3185 } 3186 /* mount old root on put_old */ 3187 attach_mnt(root_mnt, old_mnt, old_mp); 3188 /* mount new_root on / */ 3189 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp); 3190 touch_mnt_namespace(current->nsproxy->mnt_ns); 3191 /* A moved mount should not expire automatically */ 3192 list_del_init(&new_mnt->mnt_expire); 3193 put_mountpoint(root_mp); 3194 unlock_mount_hash(); 3195 chroot_fs_refs(&root, &new); 3196 error = 0; 3197 out4: 3198 unlock_mount(old_mp); 3199 if (!error) { 3200 path_put(&root_parent); 3201 path_put(&parent_path); 3202 } 3203 out3: 3204 path_put(&root); 3205 out2: 3206 path_put(&old); 3207 out1: 3208 path_put(&new); 3209 out0: 3210 return error; 3211 } 3212 3213 static void __init init_mount_tree(void) 3214 { 3215 struct vfsmount *mnt; 3216 struct mnt_namespace *ns; 3217 struct path root; 3218 struct file_system_type *type; 3219 3220 type = get_fs_type("rootfs"); 3221 if (!type) 3222 panic("Can't find rootfs type"); 3223 mnt = vfs_kern_mount(type, 0, "rootfs", NULL); 3224 put_filesystem(type); 3225 if (IS_ERR(mnt)) 3226 panic("Can't create rootfs"); 3227 3228 ns = create_mnt_ns(mnt); 3229 if (IS_ERR(ns)) 3230 panic("Can't allocate initial namespace"); 3231 3232 init_task.nsproxy->mnt_ns = ns; 3233 get_mnt_ns(ns); 3234 3235 root.mnt = mnt; 3236 root.dentry = mnt->mnt_root; 3237 mnt->mnt_flags |= MNT_LOCKED; 3238 3239 set_fs_pwd(current->fs, &root); 3240 set_fs_root(current->fs, &root); 3241 } 3242 3243 void __init mnt_init(void) 3244 { 3245 int err; 3246 3247 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount), 3248 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 3249 3250 mount_hashtable = alloc_large_system_hash("Mount-cache", 3251 sizeof(struct hlist_head), 3252 mhash_entries, 19, 3253 HASH_ZERO, 3254 &m_hash_shift, &m_hash_mask, 0, 0); 3255 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache", 3256 sizeof(struct hlist_head), 3257 mphash_entries, 19, 3258 HASH_ZERO, 3259 &mp_hash_shift, &mp_hash_mask, 0, 0); 3260 3261 if (!mount_hashtable || !mountpoint_hashtable) 3262 panic("Failed to allocate mount hash table\n"); 3263 3264 kernfs_init(); 3265 3266 err = sysfs_init(); 3267 if (err) 3268 printk(KERN_WARNING "%s: sysfs_init error: %d\n", 3269 __func__, err); 3270 fs_kobj = kobject_create_and_add("fs", NULL); 3271 if (!fs_kobj) 3272 printk(KERN_WARNING "%s: kobj create error\n", __func__); 3273 init_rootfs(); 3274 init_mount_tree(); 3275 } 3276 3277 void put_mnt_ns(struct mnt_namespace *ns) 3278 { 3279 if (!atomic_dec_and_test(&ns->count)) 3280 return; 3281 drop_collected_mounts(&ns->root->mnt); 3282 free_mnt_ns(ns); 3283 } 3284 3285 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data) 3286 { 3287 struct vfsmount *mnt; 3288 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, data); 3289 if (!IS_ERR(mnt)) { 3290 /* 3291 * it is a longterm mount, don't release mnt until 3292 * we unmount before file sys is unregistered 3293 */ 3294 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL; 3295 } 3296 return mnt; 3297 } 3298 EXPORT_SYMBOL_GPL(kern_mount_data); 3299 3300 void kern_unmount(struct vfsmount *mnt) 3301 { 3302 /* release long term mount so mount point can be released */ 3303 if (!IS_ERR_OR_NULL(mnt)) { 3304 real_mount(mnt)->mnt_ns = NULL; 3305 synchronize_rcu(); /* yecchhh... */ 3306 mntput(mnt); 3307 } 3308 } 3309 EXPORT_SYMBOL(kern_unmount); 3310 3311 bool our_mnt(struct vfsmount *mnt) 3312 { 3313 return check_mnt(real_mount(mnt)); 3314 } 3315 3316 bool current_chrooted(void) 3317 { 3318 /* Does the current process have a non-standard root */ 3319 struct path ns_root; 3320 struct path fs_root; 3321 bool chrooted; 3322 3323 /* Find the namespace root */ 3324 ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt; 3325 ns_root.dentry = ns_root.mnt->mnt_root; 3326 path_get(&ns_root); 3327 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root)) 3328 ; 3329 3330 get_fs_root(current->fs, &fs_root); 3331 3332 chrooted = !path_equal(&fs_root, &ns_root); 3333 3334 path_put(&fs_root); 3335 path_put(&ns_root); 3336 3337 return chrooted; 3338 } 3339 3340 static bool mnt_already_visible(struct mnt_namespace *ns, struct vfsmount *new, 3341 int *new_mnt_flags) 3342 { 3343 int new_flags = *new_mnt_flags; 3344 struct mount *mnt; 3345 bool visible = false; 3346 3347 down_read(&namespace_sem); 3348 list_for_each_entry(mnt, &ns->list, mnt_list) { 3349 struct mount *child; 3350 int mnt_flags; 3351 3352 if (mnt->mnt.mnt_sb->s_type != new->mnt_sb->s_type) 3353 continue; 3354 3355 /* This mount is not fully visible if it's root directory 3356 * is not the root directory of the filesystem. 3357 */ 3358 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root) 3359 continue; 3360 3361 /* A local view of the mount flags */ 3362 mnt_flags = mnt->mnt.mnt_flags; 3363 3364 /* Don't miss readonly hidden in the superblock flags */ 3365 if (sb_rdonly(mnt->mnt.mnt_sb)) 3366 mnt_flags |= MNT_LOCK_READONLY; 3367 3368 /* Verify the mount flags are equal to or more permissive 3369 * than the proposed new mount. 3370 */ 3371 if ((mnt_flags & MNT_LOCK_READONLY) && 3372 !(new_flags & MNT_READONLY)) 3373 continue; 3374 if ((mnt_flags & MNT_LOCK_ATIME) && 3375 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK))) 3376 continue; 3377 3378 /* This mount is not fully visible if there are any 3379 * locked child mounts that cover anything except for 3380 * empty directories. 3381 */ 3382 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 3383 struct inode *inode = child->mnt_mountpoint->d_inode; 3384 /* Only worry about locked mounts */ 3385 if (!(child->mnt.mnt_flags & MNT_LOCKED)) 3386 continue; 3387 /* Is the directory permanetly empty? */ 3388 if (!is_empty_dir_inode(inode)) 3389 goto next; 3390 } 3391 /* Preserve the locked attributes */ 3392 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \ 3393 MNT_LOCK_ATIME); 3394 visible = true; 3395 goto found; 3396 next: ; 3397 } 3398 found: 3399 up_read(&namespace_sem); 3400 return visible; 3401 } 3402 3403 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags) 3404 { 3405 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV; 3406 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 3407 unsigned long s_iflags; 3408 3409 if (ns->user_ns == &init_user_ns) 3410 return false; 3411 3412 /* Can this filesystem be too revealing? */ 3413 s_iflags = mnt->mnt_sb->s_iflags; 3414 if (!(s_iflags & SB_I_USERNS_VISIBLE)) 3415 return false; 3416 3417 if ((s_iflags & required_iflags) != required_iflags) { 3418 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n", 3419 required_iflags); 3420 return true; 3421 } 3422 3423 return !mnt_already_visible(ns, mnt, new_mnt_flags); 3424 } 3425 3426 bool mnt_may_suid(struct vfsmount *mnt) 3427 { 3428 /* 3429 * Foreign mounts (accessed via fchdir or through /proc 3430 * symlinks) are always treated as if they are nosuid. This 3431 * prevents namespaces from trusting potentially unsafe 3432 * suid/sgid bits, file caps, or security labels that originate 3433 * in other namespaces. 3434 */ 3435 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) && 3436 current_in_userns(mnt->mnt_sb->s_user_ns); 3437 } 3438 3439 static struct ns_common *mntns_get(struct task_struct *task) 3440 { 3441 struct ns_common *ns = NULL; 3442 struct nsproxy *nsproxy; 3443 3444 task_lock(task); 3445 nsproxy = task->nsproxy; 3446 if (nsproxy) { 3447 ns = &nsproxy->mnt_ns->ns; 3448 get_mnt_ns(to_mnt_ns(ns)); 3449 } 3450 task_unlock(task); 3451 3452 return ns; 3453 } 3454 3455 static void mntns_put(struct ns_common *ns) 3456 { 3457 put_mnt_ns(to_mnt_ns(ns)); 3458 } 3459 3460 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns) 3461 { 3462 struct fs_struct *fs = current->fs; 3463 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns; 3464 struct path root; 3465 int err; 3466 3467 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) || 3468 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) || 3469 !ns_capable(current_user_ns(), CAP_SYS_ADMIN)) 3470 return -EPERM; 3471 3472 if (fs->users != 1) 3473 return -EINVAL; 3474 3475 get_mnt_ns(mnt_ns); 3476 old_mnt_ns = nsproxy->mnt_ns; 3477 nsproxy->mnt_ns = mnt_ns; 3478 3479 /* Find the root */ 3480 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt, 3481 "/", LOOKUP_DOWN, &root); 3482 if (err) { 3483 /* revert to old namespace */ 3484 nsproxy->mnt_ns = old_mnt_ns; 3485 put_mnt_ns(mnt_ns); 3486 return err; 3487 } 3488 3489 put_mnt_ns(old_mnt_ns); 3490 3491 /* Update the pwd and root */ 3492 set_fs_pwd(fs, &root); 3493 set_fs_root(fs, &root); 3494 3495 path_put(&root); 3496 return 0; 3497 } 3498 3499 static struct user_namespace *mntns_owner(struct ns_common *ns) 3500 { 3501 return to_mnt_ns(ns)->user_ns; 3502 } 3503 3504 const struct proc_ns_operations mntns_operations = { 3505 .name = "mnt", 3506 .type = CLONE_NEWNS, 3507 .get = mntns_get, 3508 .put = mntns_put, 3509 .install = mntns_install, 3510 .owner = mntns_owner, 3511 }; 3512