xref: /openbmc/linux/fs/namespace.c (revision 28efb0046512e8a13ed9f9bdf0d68d10bbfbe9cf)
1 /*
2  *  linux/fs/namespace.c
3  *
4  * (C) Copyright Al Viro 2000, 2001
5  *	Released under GPL v2.
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h>		/* init_rootfs */
21 #include <linux/fs_struct.h>	/* get_fs_root et.al. */
22 #include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
23 #include <linux/uaccess.h>
24 #include <linux/proc_ns.h>
25 #include <linux/magic.h>
26 #include <linux/bootmem.h>
27 #include <linux/task_work.h>
28 #include <linux/sched/task.h>
29 
30 #include "pnode.h"
31 #include "internal.h"
32 
33 /* Maximum number of mounts in a mount namespace */
34 unsigned int sysctl_mount_max __read_mostly = 100000;
35 
36 static unsigned int m_hash_mask __read_mostly;
37 static unsigned int m_hash_shift __read_mostly;
38 static unsigned int mp_hash_mask __read_mostly;
39 static unsigned int mp_hash_shift __read_mostly;
40 
41 static __initdata unsigned long mhash_entries;
42 static int __init set_mhash_entries(char *str)
43 {
44 	if (!str)
45 		return 0;
46 	mhash_entries = simple_strtoul(str, &str, 0);
47 	return 1;
48 }
49 __setup("mhash_entries=", set_mhash_entries);
50 
51 static __initdata unsigned long mphash_entries;
52 static int __init set_mphash_entries(char *str)
53 {
54 	if (!str)
55 		return 0;
56 	mphash_entries = simple_strtoul(str, &str, 0);
57 	return 1;
58 }
59 __setup("mphash_entries=", set_mphash_entries);
60 
61 static u64 event;
62 static DEFINE_IDA(mnt_id_ida);
63 static DEFINE_IDA(mnt_group_ida);
64 static DEFINE_SPINLOCK(mnt_id_lock);
65 static int mnt_id_start = 0;
66 static int mnt_group_start = 1;
67 
68 static struct hlist_head *mount_hashtable __read_mostly;
69 static struct hlist_head *mountpoint_hashtable __read_mostly;
70 static struct kmem_cache *mnt_cache __read_mostly;
71 static DECLARE_RWSEM(namespace_sem);
72 
73 /* /sys/fs */
74 struct kobject *fs_kobj;
75 EXPORT_SYMBOL_GPL(fs_kobj);
76 
77 /*
78  * vfsmount lock may be taken for read to prevent changes to the
79  * vfsmount hash, ie. during mountpoint lookups or walking back
80  * up the tree.
81  *
82  * It should be taken for write in all cases where the vfsmount
83  * tree or hash is modified or when a vfsmount structure is modified.
84  */
85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
86 
87 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
88 {
89 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
90 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
91 	tmp = tmp + (tmp >> m_hash_shift);
92 	return &mount_hashtable[tmp & m_hash_mask];
93 }
94 
95 static inline struct hlist_head *mp_hash(struct dentry *dentry)
96 {
97 	unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
98 	tmp = tmp + (tmp >> mp_hash_shift);
99 	return &mountpoint_hashtable[tmp & mp_hash_mask];
100 }
101 
102 static int mnt_alloc_id(struct mount *mnt)
103 {
104 	int res;
105 
106 retry:
107 	ida_pre_get(&mnt_id_ida, GFP_KERNEL);
108 	spin_lock(&mnt_id_lock);
109 	res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
110 	if (!res)
111 		mnt_id_start = mnt->mnt_id + 1;
112 	spin_unlock(&mnt_id_lock);
113 	if (res == -EAGAIN)
114 		goto retry;
115 
116 	return res;
117 }
118 
119 static void mnt_free_id(struct mount *mnt)
120 {
121 	int id = mnt->mnt_id;
122 	spin_lock(&mnt_id_lock);
123 	ida_remove(&mnt_id_ida, id);
124 	if (mnt_id_start > id)
125 		mnt_id_start = id;
126 	spin_unlock(&mnt_id_lock);
127 }
128 
129 /*
130  * Allocate a new peer group ID
131  *
132  * mnt_group_ida is protected by namespace_sem
133  */
134 static int mnt_alloc_group_id(struct mount *mnt)
135 {
136 	int res;
137 
138 	if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
139 		return -ENOMEM;
140 
141 	res = ida_get_new_above(&mnt_group_ida,
142 				mnt_group_start,
143 				&mnt->mnt_group_id);
144 	if (!res)
145 		mnt_group_start = mnt->mnt_group_id + 1;
146 
147 	return res;
148 }
149 
150 /*
151  * Release a peer group ID
152  */
153 void mnt_release_group_id(struct mount *mnt)
154 {
155 	int id = mnt->mnt_group_id;
156 	ida_remove(&mnt_group_ida, id);
157 	if (mnt_group_start > id)
158 		mnt_group_start = id;
159 	mnt->mnt_group_id = 0;
160 }
161 
162 /*
163  * vfsmount lock must be held for read
164  */
165 static inline void mnt_add_count(struct mount *mnt, int n)
166 {
167 #ifdef CONFIG_SMP
168 	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
169 #else
170 	preempt_disable();
171 	mnt->mnt_count += n;
172 	preempt_enable();
173 #endif
174 }
175 
176 /*
177  * vfsmount lock must be held for write
178  */
179 unsigned int mnt_get_count(struct mount *mnt)
180 {
181 #ifdef CONFIG_SMP
182 	unsigned int count = 0;
183 	int cpu;
184 
185 	for_each_possible_cpu(cpu) {
186 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
187 	}
188 
189 	return count;
190 #else
191 	return mnt->mnt_count;
192 #endif
193 }
194 
195 static void drop_mountpoint(struct fs_pin *p)
196 {
197 	struct mount *m = container_of(p, struct mount, mnt_umount);
198 	dput(m->mnt_ex_mountpoint);
199 	pin_remove(p);
200 	mntput(&m->mnt);
201 }
202 
203 static struct mount *alloc_vfsmnt(const char *name)
204 {
205 	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
206 	if (mnt) {
207 		int err;
208 
209 		err = mnt_alloc_id(mnt);
210 		if (err)
211 			goto out_free_cache;
212 
213 		if (name) {
214 			mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
215 			if (!mnt->mnt_devname)
216 				goto out_free_id;
217 		}
218 
219 #ifdef CONFIG_SMP
220 		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
221 		if (!mnt->mnt_pcp)
222 			goto out_free_devname;
223 
224 		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
225 #else
226 		mnt->mnt_count = 1;
227 		mnt->mnt_writers = 0;
228 #endif
229 
230 		INIT_HLIST_NODE(&mnt->mnt_hash);
231 		INIT_LIST_HEAD(&mnt->mnt_child);
232 		INIT_LIST_HEAD(&mnt->mnt_mounts);
233 		INIT_LIST_HEAD(&mnt->mnt_list);
234 		INIT_LIST_HEAD(&mnt->mnt_expire);
235 		INIT_LIST_HEAD(&mnt->mnt_share);
236 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
237 		INIT_LIST_HEAD(&mnt->mnt_slave);
238 		INIT_HLIST_NODE(&mnt->mnt_mp_list);
239 		INIT_LIST_HEAD(&mnt->mnt_umounting);
240 		init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
241 	}
242 	return mnt;
243 
244 #ifdef CONFIG_SMP
245 out_free_devname:
246 	kfree_const(mnt->mnt_devname);
247 #endif
248 out_free_id:
249 	mnt_free_id(mnt);
250 out_free_cache:
251 	kmem_cache_free(mnt_cache, mnt);
252 	return NULL;
253 }
254 
255 /*
256  * Most r/o checks on a fs are for operations that take
257  * discrete amounts of time, like a write() or unlink().
258  * We must keep track of when those operations start
259  * (for permission checks) and when they end, so that
260  * we can determine when writes are able to occur to
261  * a filesystem.
262  */
263 /*
264  * __mnt_is_readonly: check whether a mount is read-only
265  * @mnt: the mount to check for its write status
266  *
267  * This shouldn't be used directly ouside of the VFS.
268  * It does not guarantee that the filesystem will stay
269  * r/w, just that it is right *now*.  This can not and
270  * should not be used in place of IS_RDONLY(inode).
271  * mnt_want/drop_write() will _keep_ the filesystem
272  * r/w.
273  */
274 int __mnt_is_readonly(struct vfsmount *mnt)
275 {
276 	if (mnt->mnt_flags & MNT_READONLY)
277 		return 1;
278 	if (sb_rdonly(mnt->mnt_sb))
279 		return 1;
280 	return 0;
281 }
282 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
283 
284 static inline void mnt_inc_writers(struct mount *mnt)
285 {
286 #ifdef CONFIG_SMP
287 	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
288 #else
289 	mnt->mnt_writers++;
290 #endif
291 }
292 
293 static inline void mnt_dec_writers(struct mount *mnt)
294 {
295 #ifdef CONFIG_SMP
296 	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
297 #else
298 	mnt->mnt_writers--;
299 #endif
300 }
301 
302 static unsigned int mnt_get_writers(struct mount *mnt)
303 {
304 #ifdef CONFIG_SMP
305 	unsigned int count = 0;
306 	int cpu;
307 
308 	for_each_possible_cpu(cpu) {
309 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
310 	}
311 
312 	return count;
313 #else
314 	return mnt->mnt_writers;
315 #endif
316 }
317 
318 static int mnt_is_readonly(struct vfsmount *mnt)
319 {
320 	if (mnt->mnt_sb->s_readonly_remount)
321 		return 1;
322 	/* Order wrt setting s_flags/s_readonly_remount in do_remount() */
323 	smp_rmb();
324 	return __mnt_is_readonly(mnt);
325 }
326 
327 /*
328  * Most r/o & frozen checks on a fs are for operations that take discrete
329  * amounts of time, like a write() or unlink().  We must keep track of when
330  * those operations start (for permission checks) and when they end, so that we
331  * can determine when writes are able to occur to a filesystem.
332  */
333 /**
334  * __mnt_want_write - get write access to a mount without freeze protection
335  * @m: the mount on which to take a write
336  *
337  * This tells the low-level filesystem that a write is about to be performed to
338  * it, and makes sure that writes are allowed (mnt it read-write) before
339  * returning success. This operation does not protect against filesystem being
340  * frozen. When the write operation is finished, __mnt_drop_write() must be
341  * called. This is effectively a refcount.
342  */
343 int __mnt_want_write(struct vfsmount *m)
344 {
345 	struct mount *mnt = real_mount(m);
346 	int ret = 0;
347 
348 	preempt_disable();
349 	mnt_inc_writers(mnt);
350 	/*
351 	 * The store to mnt_inc_writers must be visible before we pass
352 	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
353 	 * incremented count after it has set MNT_WRITE_HOLD.
354 	 */
355 	smp_mb();
356 	while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
357 		cpu_relax();
358 	/*
359 	 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
360 	 * be set to match its requirements. So we must not load that until
361 	 * MNT_WRITE_HOLD is cleared.
362 	 */
363 	smp_rmb();
364 	if (mnt_is_readonly(m)) {
365 		mnt_dec_writers(mnt);
366 		ret = -EROFS;
367 	}
368 	preempt_enable();
369 
370 	return ret;
371 }
372 
373 /**
374  * mnt_want_write - get write access to a mount
375  * @m: the mount on which to take a write
376  *
377  * This tells the low-level filesystem that a write is about to be performed to
378  * it, and makes sure that writes are allowed (mount is read-write, filesystem
379  * is not frozen) before returning success.  When the write operation is
380  * finished, mnt_drop_write() must be called.  This is effectively a refcount.
381  */
382 int mnt_want_write(struct vfsmount *m)
383 {
384 	int ret;
385 
386 	sb_start_write(m->mnt_sb);
387 	ret = __mnt_want_write(m);
388 	if (ret)
389 		sb_end_write(m->mnt_sb);
390 	return ret;
391 }
392 EXPORT_SYMBOL_GPL(mnt_want_write);
393 
394 /**
395  * mnt_clone_write - get write access to a mount
396  * @mnt: the mount on which to take a write
397  *
398  * This is effectively like mnt_want_write, except
399  * it must only be used to take an extra write reference
400  * on a mountpoint that we already know has a write reference
401  * on it. This allows some optimisation.
402  *
403  * After finished, mnt_drop_write must be called as usual to
404  * drop the reference.
405  */
406 int mnt_clone_write(struct vfsmount *mnt)
407 {
408 	/* superblock may be r/o */
409 	if (__mnt_is_readonly(mnt))
410 		return -EROFS;
411 	preempt_disable();
412 	mnt_inc_writers(real_mount(mnt));
413 	preempt_enable();
414 	return 0;
415 }
416 EXPORT_SYMBOL_GPL(mnt_clone_write);
417 
418 /**
419  * __mnt_want_write_file - get write access to a file's mount
420  * @file: the file who's mount on which to take a write
421  *
422  * This is like __mnt_want_write, but it takes a file and can
423  * do some optimisations if the file is open for write already
424  */
425 int __mnt_want_write_file(struct file *file)
426 {
427 	if (!(file->f_mode & FMODE_WRITER))
428 		return __mnt_want_write(file->f_path.mnt);
429 	else
430 		return mnt_clone_write(file->f_path.mnt);
431 }
432 
433 /**
434  * mnt_want_write_file_path - get write access to a file's mount
435  * @file: the file who's mount on which to take a write
436  *
437  * This is like mnt_want_write, but it takes a file and can
438  * do some optimisations if the file is open for write already
439  *
440  * Called by the vfs for cases when we have an open file at hand, but will do an
441  * inode operation on it (important distinction for files opened on overlayfs,
442  * since the file operations will come from the real underlying file, while
443  * inode operations come from the overlay).
444  */
445 int mnt_want_write_file_path(struct file *file)
446 {
447 	int ret;
448 
449 	sb_start_write(file->f_path.mnt->mnt_sb);
450 	ret = __mnt_want_write_file(file);
451 	if (ret)
452 		sb_end_write(file->f_path.mnt->mnt_sb);
453 	return ret;
454 }
455 
456 static inline int may_write_real(struct file *file)
457 {
458 	struct dentry *dentry = file->f_path.dentry;
459 	struct dentry *upperdentry;
460 
461 	/* Writable file? */
462 	if (file->f_mode & FMODE_WRITER)
463 		return 0;
464 
465 	/* Not overlayfs? */
466 	if (likely(!(dentry->d_flags & DCACHE_OP_REAL)))
467 		return 0;
468 
469 	/* File refers to upper, writable layer? */
470 	upperdentry = d_real(dentry, NULL, 0, D_REAL_UPPER);
471 	if (upperdentry && file_inode(file) == d_inode(upperdentry))
472 		return 0;
473 
474 	/* Lower layer: can't write to real file, sorry... */
475 	return -EPERM;
476 }
477 
478 /**
479  * mnt_want_write_file - get write access to a file's mount
480  * @file: the file who's mount on which to take a write
481  *
482  * This is like mnt_want_write, but it takes a file and can
483  * do some optimisations if the file is open for write already
484  *
485  * Mostly called by filesystems from their ioctl operation before performing
486  * modification.  On overlayfs this needs to check if the file is on a read-only
487  * lower layer and deny access in that case.
488  */
489 int mnt_want_write_file(struct file *file)
490 {
491 	int ret;
492 
493 	ret = may_write_real(file);
494 	if (!ret) {
495 		sb_start_write(file_inode(file)->i_sb);
496 		ret = __mnt_want_write_file(file);
497 		if (ret)
498 			sb_end_write(file_inode(file)->i_sb);
499 	}
500 	return ret;
501 }
502 EXPORT_SYMBOL_GPL(mnt_want_write_file);
503 
504 /**
505  * __mnt_drop_write - give up write access to a mount
506  * @mnt: the mount on which to give up write access
507  *
508  * Tells the low-level filesystem that we are done
509  * performing writes to it.  Must be matched with
510  * __mnt_want_write() call above.
511  */
512 void __mnt_drop_write(struct vfsmount *mnt)
513 {
514 	preempt_disable();
515 	mnt_dec_writers(real_mount(mnt));
516 	preempt_enable();
517 }
518 
519 /**
520  * mnt_drop_write - give up write access to a mount
521  * @mnt: the mount on which to give up write access
522  *
523  * Tells the low-level filesystem that we are done performing writes to it and
524  * also allows filesystem to be frozen again.  Must be matched with
525  * mnt_want_write() call above.
526  */
527 void mnt_drop_write(struct vfsmount *mnt)
528 {
529 	__mnt_drop_write(mnt);
530 	sb_end_write(mnt->mnt_sb);
531 }
532 EXPORT_SYMBOL_GPL(mnt_drop_write);
533 
534 void __mnt_drop_write_file(struct file *file)
535 {
536 	__mnt_drop_write(file->f_path.mnt);
537 }
538 
539 void mnt_drop_write_file_path(struct file *file)
540 {
541 	mnt_drop_write(file->f_path.mnt);
542 }
543 
544 void mnt_drop_write_file(struct file *file)
545 {
546 	__mnt_drop_write(file->f_path.mnt);
547 	sb_end_write(file_inode(file)->i_sb);
548 }
549 EXPORT_SYMBOL(mnt_drop_write_file);
550 
551 static int mnt_make_readonly(struct mount *mnt)
552 {
553 	int ret = 0;
554 
555 	lock_mount_hash();
556 	mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
557 	/*
558 	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
559 	 * should be visible before we do.
560 	 */
561 	smp_mb();
562 
563 	/*
564 	 * With writers on hold, if this value is zero, then there are
565 	 * definitely no active writers (although held writers may subsequently
566 	 * increment the count, they'll have to wait, and decrement it after
567 	 * seeing MNT_READONLY).
568 	 *
569 	 * It is OK to have counter incremented on one CPU and decremented on
570 	 * another: the sum will add up correctly. The danger would be when we
571 	 * sum up each counter, if we read a counter before it is incremented,
572 	 * but then read another CPU's count which it has been subsequently
573 	 * decremented from -- we would see more decrements than we should.
574 	 * MNT_WRITE_HOLD protects against this scenario, because
575 	 * mnt_want_write first increments count, then smp_mb, then spins on
576 	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
577 	 * we're counting up here.
578 	 */
579 	if (mnt_get_writers(mnt) > 0)
580 		ret = -EBUSY;
581 	else
582 		mnt->mnt.mnt_flags |= MNT_READONLY;
583 	/*
584 	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
585 	 * that become unheld will see MNT_READONLY.
586 	 */
587 	smp_wmb();
588 	mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
589 	unlock_mount_hash();
590 	return ret;
591 }
592 
593 static void __mnt_unmake_readonly(struct mount *mnt)
594 {
595 	lock_mount_hash();
596 	mnt->mnt.mnt_flags &= ~MNT_READONLY;
597 	unlock_mount_hash();
598 }
599 
600 int sb_prepare_remount_readonly(struct super_block *sb)
601 {
602 	struct mount *mnt;
603 	int err = 0;
604 
605 	/* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
606 	if (atomic_long_read(&sb->s_remove_count))
607 		return -EBUSY;
608 
609 	lock_mount_hash();
610 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
611 		if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
612 			mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
613 			smp_mb();
614 			if (mnt_get_writers(mnt) > 0) {
615 				err = -EBUSY;
616 				break;
617 			}
618 		}
619 	}
620 	if (!err && atomic_long_read(&sb->s_remove_count))
621 		err = -EBUSY;
622 
623 	if (!err) {
624 		sb->s_readonly_remount = 1;
625 		smp_wmb();
626 	}
627 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
628 		if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
629 			mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
630 	}
631 	unlock_mount_hash();
632 
633 	return err;
634 }
635 
636 static void free_vfsmnt(struct mount *mnt)
637 {
638 	kfree_const(mnt->mnt_devname);
639 #ifdef CONFIG_SMP
640 	free_percpu(mnt->mnt_pcp);
641 #endif
642 	kmem_cache_free(mnt_cache, mnt);
643 }
644 
645 static void delayed_free_vfsmnt(struct rcu_head *head)
646 {
647 	free_vfsmnt(container_of(head, struct mount, mnt_rcu));
648 }
649 
650 /* call under rcu_read_lock */
651 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
652 {
653 	struct mount *mnt;
654 	if (read_seqretry(&mount_lock, seq))
655 		return 1;
656 	if (bastard == NULL)
657 		return 0;
658 	mnt = real_mount(bastard);
659 	mnt_add_count(mnt, 1);
660 	if (likely(!read_seqretry(&mount_lock, seq)))
661 		return 0;
662 	if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
663 		mnt_add_count(mnt, -1);
664 		return 1;
665 	}
666 	return -1;
667 }
668 
669 /* call under rcu_read_lock */
670 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
671 {
672 	int res = __legitimize_mnt(bastard, seq);
673 	if (likely(!res))
674 		return true;
675 	if (unlikely(res < 0)) {
676 		rcu_read_unlock();
677 		mntput(bastard);
678 		rcu_read_lock();
679 	}
680 	return false;
681 }
682 
683 /*
684  * find the first mount at @dentry on vfsmount @mnt.
685  * call under rcu_read_lock()
686  */
687 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
688 {
689 	struct hlist_head *head = m_hash(mnt, dentry);
690 	struct mount *p;
691 
692 	hlist_for_each_entry_rcu(p, head, mnt_hash)
693 		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
694 			return p;
695 	return NULL;
696 }
697 
698 /*
699  * lookup_mnt - Return the first child mount mounted at path
700  *
701  * "First" means first mounted chronologically.  If you create the
702  * following mounts:
703  *
704  * mount /dev/sda1 /mnt
705  * mount /dev/sda2 /mnt
706  * mount /dev/sda3 /mnt
707  *
708  * Then lookup_mnt() on the base /mnt dentry in the root mount will
709  * return successively the root dentry and vfsmount of /dev/sda1, then
710  * /dev/sda2, then /dev/sda3, then NULL.
711  *
712  * lookup_mnt takes a reference to the found vfsmount.
713  */
714 struct vfsmount *lookup_mnt(const struct path *path)
715 {
716 	struct mount *child_mnt;
717 	struct vfsmount *m;
718 	unsigned seq;
719 
720 	rcu_read_lock();
721 	do {
722 		seq = read_seqbegin(&mount_lock);
723 		child_mnt = __lookup_mnt(path->mnt, path->dentry);
724 		m = child_mnt ? &child_mnt->mnt : NULL;
725 	} while (!legitimize_mnt(m, seq));
726 	rcu_read_unlock();
727 	return m;
728 }
729 
730 /*
731  * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
732  *                         current mount namespace.
733  *
734  * The common case is dentries are not mountpoints at all and that
735  * test is handled inline.  For the slow case when we are actually
736  * dealing with a mountpoint of some kind, walk through all of the
737  * mounts in the current mount namespace and test to see if the dentry
738  * is a mountpoint.
739  *
740  * The mount_hashtable is not usable in the context because we
741  * need to identify all mounts that may be in the current mount
742  * namespace not just a mount that happens to have some specified
743  * parent mount.
744  */
745 bool __is_local_mountpoint(struct dentry *dentry)
746 {
747 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
748 	struct mount *mnt;
749 	bool is_covered = false;
750 
751 	if (!d_mountpoint(dentry))
752 		goto out;
753 
754 	down_read(&namespace_sem);
755 	list_for_each_entry(mnt, &ns->list, mnt_list) {
756 		is_covered = (mnt->mnt_mountpoint == dentry);
757 		if (is_covered)
758 			break;
759 	}
760 	up_read(&namespace_sem);
761 out:
762 	return is_covered;
763 }
764 
765 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
766 {
767 	struct hlist_head *chain = mp_hash(dentry);
768 	struct mountpoint *mp;
769 
770 	hlist_for_each_entry(mp, chain, m_hash) {
771 		if (mp->m_dentry == dentry) {
772 			/* might be worth a WARN_ON() */
773 			if (d_unlinked(dentry))
774 				return ERR_PTR(-ENOENT);
775 			mp->m_count++;
776 			return mp;
777 		}
778 	}
779 	return NULL;
780 }
781 
782 static struct mountpoint *get_mountpoint(struct dentry *dentry)
783 {
784 	struct mountpoint *mp, *new = NULL;
785 	int ret;
786 
787 	if (d_mountpoint(dentry)) {
788 mountpoint:
789 		read_seqlock_excl(&mount_lock);
790 		mp = lookup_mountpoint(dentry);
791 		read_sequnlock_excl(&mount_lock);
792 		if (mp)
793 			goto done;
794 	}
795 
796 	if (!new)
797 		new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
798 	if (!new)
799 		return ERR_PTR(-ENOMEM);
800 
801 
802 	/* Exactly one processes may set d_mounted */
803 	ret = d_set_mounted(dentry);
804 
805 	/* Someone else set d_mounted? */
806 	if (ret == -EBUSY)
807 		goto mountpoint;
808 
809 	/* The dentry is not available as a mountpoint? */
810 	mp = ERR_PTR(ret);
811 	if (ret)
812 		goto done;
813 
814 	/* Add the new mountpoint to the hash table */
815 	read_seqlock_excl(&mount_lock);
816 	new->m_dentry = dentry;
817 	new->m_count = 1;
818 	hlist_add_head(&new->m_hash, mp_hash(dentry));
819 	INIT_HLIST_HEAD(&new->m_list);
820 	read_sequnlock_excl(&mount_lock);
821 
822 	mp = new;
823 	new = NULL;
824 done:
825 	kfree(new);
826 	return mp;
827 }
828 
829 static void put_mountpoint(struct mountpoint *mp)
830 {
831 	if (!--mp->m_count) {
832 		struct dentry *dentry = mp->m_dentry;
833 		BUG_ON(!hlist_empty(&mp->m_list));
834 		spin_lock(&dentry->d_lock);
835 		dentry->d_flags &= ~DCACHE_MOUNTED;
836 		spin_unlock(&dentry->d_lock);
837 		hlist_del(&mp->m_hash);
838 		kfree(mp);
839 	}
840 }
841 
842 static inline int check_mnt(struct mount *mnt)
843 {
844 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
845 }
846 
847 /*
848  * vfsmount lock must be held for write
849  */
850 static void touch_mnt_namespace(struct mnt_namespace *ns)
851 {
852 	if (ns) {
853 		ns->event = ++event;
854 		wake_up_interruptible(&ns->poll);
855 	}
856 }
857 
858 /*
859  * vfsmount lock must be held for write
860  */
861 static void __touch_mnt_namespace(struct mnt_namespace *ns)
862 {
863 	if (ns && ns->event != event) {
864 		ns->event = event;
865 		wake_up_interruptible(&ns->poll);
866 	}
867 }
868 
869 /*
870  * vfsmount lock must be held for write
871  */
872 static void unhash_mnt(struct mount *mnt)
873 {
874 	mnt->mnt_parent = mnt;
875 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
876 	list_del_init(&mnt->mnt_child);
877 	hlist_del_init_rcu(&mnt->mnt_hash);
878 	hlist_del_init(&mnt->mnt_mp_list);
879 	put_mountpoint(mnt->mnt_mp);
880 	mnt->mnt_mp = NULL;
881 }
882 
883 /*
884  * vfsmount lock must be held for write
885  */
886 static void detach_mnt(struct mount *mnt, struct path *old_path)
887 {
888 	old_path->dentry = mnt->mnt_mountpoint;
889 	old_path->mnt = &mnt->mnt_parent->mnt;
890 	unhash_mnt(mnt);
891 }
892 
893 /*
894  * vfsmount lock must be held for write
895  */
896 static void umount_mnt(struct mount *mnt)
897 {
898 	/* old mountpoint will be dropped when we can do that */
899 	mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
900 	unhash_mnt(mnt);
901 }
902 
903 /*
904  * vfsmount lock must be held for write
905  */
906 void mnt_set_mountpoint(struct mount *mnt,
907 			struct mountpoint *mp,
908 			struct mount *child_mnt)
909 {
910 	mp->m_count++;
911 	mnt_add_count(mnt, 1);	/* essentially, that's mntget */
912 	child_mnt->mnt_mountpoint = dget(mp->m_dentry);
913 	child_mnt->mnt_parent = mnt;
914 	child_mnt->mnt_mp = mp;
915 	hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
916 }
917 
918 static void __attach_mnt(struct mount *mnt, struct mount *parent)
919 {
920 	hlist_add_head_rcu(&mnt->mnt_hash,
921 			   m_hash(&parent->mnt, mnt->mnt_mountpoint));
922 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
923 }
924 
925 /*
926  * vfsmount lock must be held for write
927  */
928 static void attach_mnt(struct mount *mnt,
929 			struct mount *parent,
930 			struct mountpoint *mp)
931 {
932 	mnt_set_mountpoint(parent, mp, mnt);
933 	__attach_mnt(mnt, parent);
934 }
935 
936 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
937 {
938 	struct mountpoint *old_mp = mnt->mnt_mp;
939 	struct dentry *old_mountpoint = mnt->mnt_mountpoint;
940 	struct mount *old_parent = mnt->mnt_parent;
941 
942 	list_del_init(&mnt->mnt_child);
943 	hlist_del_init(&mnt->mnt_mp_list);
944 	hlist_del_init_rcu(&mnt->mnt_hash);
945 
946 	attach_mnt(mnt, parent, mp);
947 
948 	put_mountpoint(old_mp);
949 
950 	/*
951 	 * Safely avoid even the suggestion this code might sleep or
952 	 * lock the mount hash by taking advantage of the knowledge that
953 	 * mnt_change_mountpoint will not release the final reference
954 	 * to a mountpoint.
955 	 *
956 	 * During mounting, the mount passed in as the parent mount will
957 	 * continue to use the old mountpoint and during unmounting, the
958 	 * old mountpoint will continue to exist until namespace_unlock,
959 	 * which happens well after mnt_change_mountpoint.
960 	 */
961 	spin_lock(&old_mountpoint->d_lock);
962 	old_mountpoint->d_lockref.count--;
963 	spin_unlock(&old_mountpoint->d_lock);
964 
965 	mnt_add_count(old_parent, -1);
966 }
967 
968 /*
969  * vfsmount lock must be held for write
970  */
971 static void commit_tree(struct mount *mnt)
972 {
973 	struct mount *parent = mnt->mnt_parent;
974 	struct mount *m;
975 	LIST_HEAD(head);
976 	struct mnt_namespace *n = parent->mnt_ns;
977 
978 	BUG_ON(parent == mnt);
979 
980 	list_add_tail(&head, &mnt->mnt_list);
981 	list_for_each_entry(m, &head, mnt_list)
982 		m->mnt_ns = n;
983 
984 	list_splice(&head, n->list.prev);
985 
986 	n->mounts += n->pending_mounts;
987 	n->pending_mounts = 0;
988 
989 	__attach_mnt(mnt, parent);
990 	touch_mnt_namespace(n);
991 }
992 
993 static struct mount *next_mnt(struct mount *p, struct mount *root)
994 {
995 	struct list_head *next = p->mnt_mounts.next;
996 	if (next == &p->mnt_mounts) {
997 		while (1) {
998 			if (p == root)
999 				return NULL;
1000 			next = p->mnt_child.next;
1001 			if (next != &p->mnt_parent->mnt_mounts)
1002 				break;
1003 			p = p->mnt_parent;
1004 		}
1005 	}
1006 	return list_entry(next, struct mount, mnt_child);
1007 }
1008 
1009 static struct mount *skip_mnt_tree(struct mount *p)
1010 {
1011 	struct list_head *prev = p->mnt_mounts.prev;
1012 	while (prev != &p->mnt_mounts) {
1013 		p = list_entry(prev, struct mount, mnt_child);
1014 		prev = p->mnt_mounts.prev;
1015 	}
1016 	return p;
1017 }
1018 
1019 struct vfsmount *
1020 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
1021 {
1022 	struct mount *mnt;
1023 	struct dentry *root;
1024 
1025 	if (!type)
1026 		return ERR_PTR(-ENODEV);
1027 
1028 	mnt = alloc_vfsmnt(name);
1029 	if (!mnt)
1030 		return ERR_PTR(-ENOMEM);
1031 
1032 	if (flags & SB_KERNMOUNT)
1033 		mnt->mnt.mnt_flags = MNT_INTERNAL;
1034 
1035 	root = mount_fs(type, flags, name, data);
1036 	if (IS_ERR(root)) {
1037 		mnt_free_id(mnt);
1038 		free_vfsmnt(mnt);
1039 		return ERR_CAST(root);
1040 	}
1041 
1042 	mnt->mnt.mnt_root = root;
1043 	mnt->mnt.mnt_sb = root->d_sb;
1044 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1045 	mnt->mnt_parent = mnt;
1046 	lock_mount_hash();
1047 	list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
1048 	unlock_mount_hash();
1049 	return &mnt->mnt;
1050 }
1051 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1052 
1053 struct vfsmount *
1054 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1055 	     const char *name, void *data)
1056 {
1057 	/* Until it is worked out how to pass the user namespace
1058 	 * through from the parent mount to the submount don't support
1059 	 * unprivileged mounts with submounts.
1060 	 */
1061 	if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1062 		return ERR_PTR(-EPERM);
1063 
1064 	return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1065 }
1066 EXPORT_SYMBOL_GPL(vfs_submount);
1067 
1068 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1069 					int flag)
1070 {
1071 	struct super_block *sb = old->mnt.mnt_sb;
1072 	struct mount *mnt;
1073 	int err;
1074 
1075 	mnt = alloc_vfsmnt(old->mnt_devname);
1076 	if (!mnt)
1077 		return ERR_PTR(-ENOMEM);
1078 
1079 	if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1080 		mnt->mnt_group_id = 0; /* not a peer of original */
1081 	else
1082 		mnt->mnt_group_id = old->mnt_group_id;
1083 
1084 	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1085 		err = mnt_alloc_group_id(mnt);
1086 		if (err)
1087 			goto out_free;
1088 	}
1089 
1090 	mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
1091 	/* Don't allow unprivileged users to change mount flags */
1092 	if (flag & CL_UNPRIVILEGED) {
1093 		mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
1094 
1095 		if (mnt->mnt.mnt_flags & MNT_READONLY)
1096 			mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
1097 
1098 		if (mnt->mnt.mnt_flags & MNT_NODEV)
1099 			mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
1100 
1101 		if (mnt->mnt.mnt_flags & MNT_NOSUID)
1102 			mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
1103 
1104 		if (mnt->mnt.mnt_flags & MNT_NOEXEC)
1105 			mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
1106 	}
1107 
1108 	/* Don't allow unprivileged users to reveal what is under a mount */
1109 	if ((flag & CL_UNPRIVILEGED) &&
1110 	    (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
1111 		mnt->mnt.mnt_flags |= MNT_LOCKED;
1112 
1113 	atomic_inc(&sb->s_active);
1114 	mnt->mnt.mnt_sb = sb;
1115 	mnt->mnt.mnt_root = dget(root);
1116 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1117 	mnt->mnt_parent = mnt;
1118 	lock_mount_hash();
1119 	list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1120 	unlock_mount_hash();
1121 
1122 	if ((flag & CL_SLAVE) ||
1123 	    ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1124 		list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1125 		mnt->mnt_master = old;
1126 		CLEAR_MNT_SHARED(mnt);
1127 	} else if (!(flag & CL_PRIVATE)) {
1128 		if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1129 			list_add(&mnt->mnt_share, &old->mnt_share);
1130 		if (IS_MNT_SLAVE(old))
1131 			list_add(&mnt->mnt_slave, &old->mnt_slave);
1132 		mnt->mnt_master = old->mnt_master;
1133 	} else {
1134 		CLEAR_MNT_SHARED(mnt);
1135 	}
1136 	if (flag & CL_MAKE_SHARED)
1137 		set_mnt_shared(mnt);
1138 
1139 	/* stick the duplicate mount on the same expiry list
1140 	 * as the original if that was on one */
1141 	if (flag & CL_EXPIRE) {
1142 		if (!list_empty(&old->mnt_expire))
1143 			list_add(&mnt->mnt_expire, &old->mnt_expire);
1144 	}
1145 
1146 	return mnt;
1147 
1148  out_free:
1149 	mnt_free_id(mnt);
1150 	free_vfsmnt(mnt);
1151 	return ERR_PTR(err);
1152 }
1153 
1154 static void cleanup_mnt(struct mount *mnt)
1155 {
1156 	/*
1157 	 * This probably indicates that somebody messed
1158 	 * up a mnt_want/drop_write() pair.  If this
1159 	 * happens, the filesystem was probably unable
1160 	 * to make r/w->r/o transitions.
1161 	 */
1162 	/*
1163 	 * The locking used to deal with mnt_count decrement provides barriers,
1164 	 * so mnt_get_writers() below is safe.
1165 	 */
1166 	WARN_ON(mnt_get_writers(mnt));
1167 	if (unlikely(mnt->mnt_pins.first))
1168 		mnt_pin_kill(mnt);
1169 	fsnotify_vfsmount_delete(&mnt->mnt);
1170 	dput(mnt->mnt.mnt_root);
1171 	deactivate_super(mnt->mnt.mnt_sb);
1172 	mnt_free_id(mnt);
1173 	call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1174 }
1175 
1176 static void __cleanup_mnt(struct rcu_head *head)
1177 {
1178 	cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1179 }
1180 
1181 static LLIST_HEAD(delayed_mntput_list);
1182 static void delayed_mntput(struct work_struct *unused)
1183 {
1184 	struct llist_node *node = llist_del_all(&delayed_mntput_list);
1185 	struct mount *m, *t;
1186 
1187 	llist_for_each_entry_safe(m, t, node, mnt_llist)
1188 		cleanup_mnt(m);
1189 }
1190 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1191 
1192 static void mntput_no_expire(struct mount *mnt)
1193 {
1194 	rcu_read_lock();
1195 	mnt_add_count(mnt, -1);
1196 	if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
1197 		rcu_read_unlock();
1198 		return;
1199 	}
1200 	lock_mount_hash();
1201 	if (mnt_get_count(mnt)) {
1202 		rcu_read_unlock();
1203 		unlock_mount_hash();
1204 		return;
1205 	}
1206 	if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1207 		rcu_read_unlock();
1208 		unlock_mount_hash();
1209 		return;
1210 	}
1211 	mnt->mnt.mnt_flags |= MNT_DOOMED;
1212 	rcu_read_unlock();
1213 
1214 	list_del(&mnt->mnt_instance);
1215 
1216 	if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1217 		struct mount *p, *tmp;
1218 		list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts,  mnt_child) {
1219 			umount_mnt(p);
1220 		}
1221 	}
1222 	unlock_mount_hash();
1223 
1224 	if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1225 		struct task_struct *task = current;
1226 		if (likely(!(task->flags & PF_KTHREAD))) {
1227 			init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1228 			if (!task_work_add(task, &mnt->mnt_rcu, true))
1229 				return;
1230 		}
1231 		if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1232 			schedule_delayed_work(&delayed_mntput_work, 1);
1233 		return;
1234 	}
1235 	cleanup_mnt(mnt);
1236 }
1237 
1238 void mntput(struct vfsmount *mnt)
1239 {
1240 	if (mnt) {
1241 		struct mount *m = real_mount(mnt);
1242 		/* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1243 		if (unlikely(m->mnt_expiry_mark))
1244 			m->mnt_expiry_mark = 0;
1245 		mntput_no_expire(m);
1246 	}
1247 }
1248 EXPORT_SYMBOL(mntput);
1249 
1250 struct vfsmount *mntget(struct vfsmount *mnt)
1251 {
1252 	if (mnt)
1253 		mnt_add_count(real_mount(mnt), 1);
1254 	return mnt;
1255 }
1256 EXPORT_SYMBOL(mntget);
1257 
1258 /* path_is_mountpoint() - Check if path is a mount in the current
1259  *                          namespace.
1260  *
1261  *  d_mountpoint() can only be used reliably to establish if a dentry is
1262  *  not mounted in any namespace and that common case is handled inline.
1263  *  d_mountpoint() isn't aware of the possibility there may be multiple
1264  *  mounts using a given dentry in a different namespace. This function
1265  *  checks if the passed in path is a mountpoint rather than the dentry
1266  *  alone.
1267  */
1268 bool path_is_mountpoint(const struct path *path)
1269 {
1270 	unsigned seq;
1271 	bool res;
1272 
1273 	if (!d_mountpoint(path->dentry))
1274 		return false;
1275 
1276 	rcu_read_lock();
1277 	do {
1278 		seq = read_seqbegin(&mount_lock);
1279 		res = __path_is_mountpoint(path);
1280 	} while (read_seqretry(&mount_lock, seq));
1281 	rcu_read_unlock();
1282 
1283 	return res;
1284 }
1285 EXPORT_SYMBOL(path_is_mountpoint);
1286 
1287 struct vfsmount *mnt_clone_internal(const struct path *path)
1288 {
1289 	struct mount *p;
1290 	p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1291 	if (IS_ERR(p))
1292 		return ERR_CAST(p);
1293 	p->mnt.mnt_flags |= MNT_INTERNAL;
1294 	return &p->mnt;
1295 }
1296 
1297 #ifdef CONFIG_PROC_FS
1298 /* iterator; we want it to have access to namespace_sem, thus here... */
1299 static void *m_start(struct seq_file *m, loff_t *pos)
1300 {
1301 	struct proc_mounts *p = m->private;
1302 
1303 	down_read(&namespace_sem);
1304 	if (p->cached_event == p->ns->event) {
1305 		void *v = p->cached_mount;
1306 		if (*pos == p->cached_index)
1307 			return v;
1308 		if (*pos == p->cached_index + 1) {
1309 			v = seq_list_next(v, &p->ns->list, &p->cached_index);
1310 			return p->cached_mount = v;
1311 		}
1312 	}
1313 
1314 	p->cached_event = p->ns->event;
1315 	p->cached_mount = seq_list_start(&p->ns->list, *pos);
1316 	p->cached_index = *pos;
1317 	return p->cached_mount;
1318 }
1319 
1320 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1321 {
1322 	struct proc_mounts *p = m->private;
1323 
1324 	p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1325 	p->cached_index = *pos;
1326 	return p->cached_mount;
1327 }
1328 
1329 static void m_stop(struct seq_file *m, void *v)
1330 {
1331 	up_read(&namespace_sem);
1332 }
1333 
1334 static int m_show(struct seq_file *m, void *v)
1335 {
1336 	struct proc_mounts *p = m->private;
1337 	struct mount *r = list_entry(v, struct mount, mnt_list);
1338 	return p->show(m, &r->mnt);
1339 }
1340 
1341 const struct seq_operations mounts_op = {
1342 	.start	= m_start,
1343 	.next	= m_next,
1344 	.stop	= m_stop,
1345 	.show	= m_show,
1346 };
1347 #endif  /* CONFIG_PROC_FS */
1348 
1349 /**
1350  * may_umount_tree - check if a mount tree is busy
1351  * @mnt: root of mount tree
1352  *
1353  * This is called to check if a tree of mounts has any
1354  * open files, pwds, chroots or sub mounts that are
1355  * busy.
1356  */
1357 int may_umount_tree(struct vfsmount *m)
1358 {
1359 	struct mount *mnt = real_mount(m);
1360 	int actual_refs = 0;
1361 	int minimum_refs = 0;
1362 	struct mount *p;
1363 	BUG_ON(!m);
1364 
1365 	/* write lock needed for mnt_get_count */
1366 	lock_mount_hash();
1367 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1368 		actual_refs += mnt_get_count(p);
1369 		minimum_refs += 2;
1370 	}
1371 	unlock_mount_hash();
1372 
1373 	if (actual_refs > minimum_refs)
1374 		return 0;
1375 
1376 	return 1;
1377 }
1378 
1379 EXPORT_SYMBOL(may_umount_tree);
1380 
1381 /**
1382  * may_umount - check if a mount point is busy
1383  * @mnt: root of mount
1384  *
1385  * This is called to check if a mount point has any
1386  * open files, pwds, chroots or sub mounts. If the
1387  * mount has sub mounts this will return busy
1388  * regardless of whether the sub mounts are busy.
1389  *
1390  * Doesn't take quota and stuff into account. IOW, in some cases it will
1391  * give false negatives. The main reason why it's here is that we need
1392  * a non-destructive way to look for easily umountable filesystems.
1393  */
1394 int may_umount(struct vfsmount *mnt)
1395 {
1396 	int ret = 1;
1397 	down_read(&namespace_sem);
1398 	lock_mount_hash();
1399 	if (propagate_mount_busy(real_mount(mnt), 2))
1400 		ret = 0;
1401 	unlock_mount_hash();
1402 	up_read(&namespace_sem);
1403 	return ret;
1404 }
1405 
1406 EXPORT_SYMBOL(may_umount);
1407 
1408 static HLIST_HEAD(unmounted);	/* protected by namespace_sem */
1409 
1410 static void namespace_unlock(void)
1411 {
1412 	struct hlist_head head;
1413 
1414 	hlist_move_list(&unmounted, &head);
1415 
1416 	up_write(&namespace_sem);
1417 
1418 	if (likely(hlist_empty(&head)))
1419 		return;
1420 
1421 	synchronize_rcu();
1422 
1423 	group_pin_kill(&head);
1424 }
1425 
1426 static inline void namespace_lock(void)
1427 {
1428 	down_write(&namespace_sem);
1429 }
1430 
1431 enum umount_tree_flags {
1432 	UMOUNT_SYNC = 1,
1433 	UMOUNT_PROPAGATE = 2,
1434 	UMOUNT_CONNECTED = 4,
1435 };
1436 
1437 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1438 {
1439 	/* Leaving mounts connected is only valid for lazy umounts */
1440 	if (how & UMOUNT_SYNC)
1441 		return true;
1442 
1443 	/* A mount without a parent has nothing to be connected to */
1444 	if (!mnt_has_parent(mnt))
1445 		return true;
1446 
1447 	/* Because the reference counting rules change when mounts are
1448 	 * unmounted and connected, umounted mounts may not be
1449 	 * connected to mounted mounts.
1450 	 */
1451 	if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1452 		return true;
1453 
1454 	/* Has it been requested that the mount remain connected? */
1455 	if (how & UMOUNT_CONNECTED)
1456 		return false;
1457 
1458 	/* Is the mount locked such that it needs to remain connected? */
1459 	if (IS_MNT_LOCKED(mnt))
1460 		return false;
1461 
1462 	/* By default disconnect the mount */
1463 	return true;
1464 }
1465 
1466 /*
1467  * mount_lock must be held
1468  * namespace_sem must be held for write
1469  */
1470 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1471 {
1472 	LIST_HEAD(tmp_list);
1473 	struct mount *p;
1474 
1475 	if (how & UMOUNT_PROPAGATE)
1476 		propagate_mount_unlock(mnt);
1477 
1478 	/* Gather the mounts to umount */
1479 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1480 		p->mnt.mnt_flags |= MNT_UMOUNT;
1481 		list_move(&p->mnt_list, &tmp_list);
1482 	}
1483 
1484 	/* Hide the mounts from mnt_mounts */
1485 	list_for_each_entry(p, &tmp_list, mnt_list) {
1486 		list_del_init(&p->mnt_child);
1487 	}
1488 
1489 	/* Add propogated mounts to the tmp_list */
1490 	if (how & UMOUNT_PROPAGATE)
1491 		propagate_umount(&tmp_list);
1492 
1493 	while (!list_empty(&tmp_list)) {
1494 		struct mnt_namespace *ns;
1495 		bool disconnect;
1496 		p = list_first_entry(&tmp_list, struct mount, mnt_list);
1497 		list_del_init(&p->mnt_expire);
1498 		list_del_init(&p->mnt_list);
1499 		ns = p->mnt_ns;
1500 		if (ns) {
1501 			ns->mounts--;
1502 			__touch_mnt_namespace(ns);
1503 		}
1504 		p->mnt_ns = NULL;
1505 		if (how & UMOUNT_SYNC)
1506 			p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1507 
1508 		disconnect = disconnect_mount(p, how);
1509 
1510 		pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1511 				 disconnect ? &unmounted : NULL);
1512 		if (mnt_has_parent(p)) {
1513 			mnt_add_count(p->mnt_parent, -1);
1514 			if (!disconnect) {
1515 				/* Don't forget about p */
1516 				list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1517 			} else {
1518 				umount_mnt(p);
1519 			}
1520 		}
1521 		change_mnt_propagation(p, MS_PRIVATE);
1522 	}
1523 }
1524 
1525 static void shrink_submounts(struct mount *mnt);
1526 
1527 static int do_umount(struct mount *mnt, int flags)
1528 {
1529 	struct super_block *sb = mnt->mnt.mnt_sb;
1530 	int retval;
1531 
1532 	retval = security_sb_umount(&mnt->mnt, flags);
1533 	if (retval)
1534 		return retval;
1535 
1536 	/*
1537 	 * Allow userspace to request a mountpoint be expired rather than
1538 	 * unmounting unconditionally. Unmount only happens if:
1539 	 *  (1) the mark is already set (the mark is cleared by mntput())
1540 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1541 	 */
1542 	if (flags & MNT_EXPIRE) {
1543 		if (&mnt->mnt == current->fs->root.mnt ||
1544 		    flags & (MNT_FORCE | MNT_DETACH))
1545 			return -EINVAL;
1546 
1547 		/*
1548 		 * probably don't strictly need the lock here if we examined
1549 		 * all race cases, but it's a slowpath.
1550 		 */
1551 		lock_mount_hash();
1552 		if (mnt_get_count(mnt) != 2) {
1553 			unlock_mount_hash();
1554 			return -EBUSY;
1555 		}
1556 		unlock_mount_hash();
1557 
1558 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1559 			return -EAGAIN;
1560 	}
1561 
1562 	/*
1563 	 * If we may have to abort operations to get out of this
1564 	 * mount, and they will themselves hold resources we must
1565 	 * allow the fs to do things. In the Unix tradition of
1566 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1567 	 * might fail to complete on the first run through as other tasks
1568 	 * must return, and the like. Thats for the mount program to worry
1569 	 * about for the moment.
1570 	 */
1571 
1572 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1573 		sb->s_op->umount_begin(sb);
1574 	}
1575 
1576 	/*
1577 	 * No sense to grab the lock for this test, but test itself looks
1578 	 * somewhat bogus. Suggestions for better replacement?
1579 	 * Ho-hum... In principle, we might treat that as umount + switch
1580 	 * to rootfs. GC would eventually take care of the old vfsmount.
1581 	 * Actually it makes sense, especially if rootfs would contain a
1582 	 * /reboot - static binary that would close all descriptors and
1583 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1584 	 */
1585 	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1586 		/*
1587 		 * Special case for "unmounting" root ...
1588 		 * we just try to remount it readonly.
1589 		 */
1590 		if (!capable(CAP_SYS_ADMIN))
1591 			return -EPERM;
1592 		down_write(&sb->s_umount);
1593 		if (!sb_rdonly(sb))
1594 			retval = do_remount_sb(sb, SB_RDONLY, NULL, 0);
1595 		up_write(&sb->s_umount);
1596 		return retval;
1597 	}
1598 
1599 	namespace_lock();
1600 	lock_mount_hash();
1601 	event++;
1602 
1603 	if (flags & MNT_DETACH) {
1604 		if (!list_empty(&mnt->mnt_list))
1605 			umount_tree(mnt, UMOUNT_PROPAGATE);
1606 		retval = 0;
1607 	} else {
1608 		shrink_submounts(mnt);
1609 		retval = -EBUSY;
1610 		if (!propagate_mount_busy(mnt, 2)) {
1611 			if (!list_empty(&mnt->mnt_list))
1612 				umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1613 			retval = 0;
1614 		}
1615 	}
1616 	unlock_mount_hash();
1617 	namespace_unlock();
1618 	return retval;
1619 }
1620 
1621 /*
1622  * __detach_mounts - lazily unmount all mounts on the specified dentry
1623  *
1624  * During unlink, rmdir, and d_drop it is possible to loose the path
1625  * to an existing mountpoint, and wind up leaking the mount.
1626  * detach_mounts allows lazily unmounting those mounts instead of
1627  * leaking them.
1628  *
1629  * The caller may hold dentry->d_inode->i_mutex.
1630  */
1631 void __detach_mounts(struct dentry *dentry)
1632 {
1633 	struct mountpoint *mp;
1634 	struct mount *mnt;
1635 
1636 	namespace_lock();
1637 	lock_mount_hash();
1638 	mp = lookup_mountpoint(dentry);
1639 	if (IS_ERR_OR_NULL(mp))
1640 		goto out_unlock;
1641 
1642 	event++;
1643 	while (!hlist_empty(&mp->m_list)) {
1644 		mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1645 		if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1646 			hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1647 			umount_mnt(mnt);
1648 		}
1649 		else umount_tree(mnt, UMOUNT_CONNECTED);
1650 	}
1651 	put_mountpoint(mp);
1652 out_unlock:
1653 	unlock_mount_hash();
1654 	namespace_unlock();
1655 }
1656 
1657 /*
1658  * Is the caller allowed to modify his namespace?
1659  */
1660 static inline bool may_mount(void)
1661 {
1662 	return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1663 }
1664 
1665 static inline bool may_mandlock(void)
1666 {
1667 #ifndef	CONFIG_MANDATORY_FILE_LOCKING
1668 	return false;
1669 #endif
1670 	return capable(CAP_SYS_ADMIN);
1671 }
1672 
1673 /*
1674  * Now umount can handle mount points as well as block devices.
1675  * This is important for filesystems which use unnamed block devices.
1676  *
1677  * We now support a flag for forced unmount like the other 'big iron'
1678  * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1679  */
1680 
1681 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1682 {
1683 	struct path path;
1684 	struct mount *mnt;
1685 	int retval;
1686 	int lookup_flags = 0;
1687 
1688 	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1689 		return -EINVAL;
1690 
1691 	if (!may_mount())
1692 		return -EPERM;
1693 
1694 	if (!(flags & UMOUNT_NOFOLLOW))
1695 		lookup_flags |= LOOKUP_FOLLOW;
1696 
1697 	retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1698 	if (retval)
1699 		goto out;
1700 	mnt = real_mount(path.mnt);
1701 	retval = -EINVAL;
1702 	if (path.dentry != path.mnt->mnt_root)
1703 		goto dput_and_out;
1704 	if (!check_mnt(mnt))
1705 		goto dput_and_out;
1706 	if (mnt->mnt.mnt_flags & MNT_LOCKED)
1707 		goto dput_and_out;
1708 	retval = -EPERM;
1709 	if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1710 		goto dput_and_out;
1711 
1712 	retval = do_umount(mnt, flags);
1713 dput_and_out:
1714 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
1715 	dput(path.dentry);
1716 	mntput_no_expire(mnt);
1717 out:
1718 	return retval;
1719 }
1720 
1721 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1722 
1723 /*
1724  *	The 2.0 compatible umount. No flags.
1725  */
1726 SYSCALL_DEFINE1(oldumount, char __user *, name)
1727 {
1728 	return sys_umount(name, 0);
1729 }
1730 
1731 #endif
1732 
1733 static bool is_mnt_ns_file(struct dentry *dentry)
1734 {
1735 	/* Is this a proxy for a mount namespace? */
1736 	return dentry->d_op == &ns_dentry_operations &&
1737 	       dentry->d_fsdata == &mntns_operations;
1738 }
1739 
1740 struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1741 {
1742 	return container_of(ns, struct mnt_namespace, ns);
1743 }
1744 
1745 static bool mnt_ns_loop(struct dentry *dentry)
1746 {
1747 	/* Could bind mounting the mount namespace inode cause a
1748 	 * mount namespace loop?
1749 	 */
1750 	struct mnt_namespace *mnt_ns;
1751 	if (!is_mnt_ns_file(dentry))
1752 		return false;
1753 
1754 	mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1755 	return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1756 }
1757 
1758 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1759 					int flag)
1760 {
1761 	struct mount *res, *p, *q, *r, *parent;
1762 
1763 	if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1764 		return ERR_PTR(-EINVAL);
1765 
1766 	if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1767 		return ERR_PTR(-EINVAL);
1768 
1769 	res = q = clone_mnt(mnt, dentry, flag);
1770 	if (IS_ERR(q))
1771 		return q;
1772 
1773 	q->mnt_mountpoint = mnt->mnt_mountpoint;
1774 
1775 	p = mnt;
1776 	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1777 		struct mount *s;
1778 		if (!is_subdir(r->mnt_mountpoint, dentry))
1779 			continue;
1780 
1781 		for (s = r; s; s = next_mnt(s, r)) {
1782 			if (!(flag & CL_COPY_UNBINDABLE) &&
1783 			    IS_MNT_UNBINDABLE(s)) {
1784 				s = skip_mnt_tree(s);
1785 				continue;
1786 			}
1787 			if (!(flag & CL_COPY_MNT_NS_FILE) &&
1788 			    is_mnt_ns_file(s->mnt.mnt_root)) {
1789 				s = skip_mnt_tree(s);
1790 				continue;
1791 			}
1792 			while (p != s->mnt_parent) {
1793 				p = p->mnt_parent;
1794 				q = q->mnt_parent;
1795 			}
1796 			p = s;
1797 			parent = q;
1798 			q = clone_mnt(p, p->mnt.mnt_root, flag);
1799 			if (IS_ERR(q))
1800 				goto out;
1801 			lock_mount_hash();
1802 			list_add_tail(&q->mnt_list, &res->mnt_list);
1803 			attach_mnt(q, parent, p->mnt_mp);
1804 			unlock_mount_hash();
1805 		}
1806 	}
1807 	return res;
1808 out:
1809 	if (res) {
1810 		lock_mount_hash();
1811 		umount_tree(res, UMOUNT_SYNC);
1812 		unlock_mount_hash();
1813 	}
1814 	return q;
1815 }
1816 
1817 /* Caller should check returned pointer for errors */
1818 
1819 struct vfsmount *collect_mounts(const struct path *path)
1820 {
1821 	struct mount *tree;
1822 	namespace_lock();
1823 	if (!check_mnt(real_mount(path->mnt)))
1824 		tree = ERR_PTR(-EINVAL);
1825 	else
1826 		tree = copy_tree(real_mount(path->mnt), path->dentry,
1827 				 CL_COPY_ALL | CL_PRIVATE);
1828 	namespace_unlock();
1829 	if (IS_ERR(tree))
1830 		return ERR_CAST(tree);
1831 	return &tree->mnt;
1832 }
1833 
1834 void drop_collected_mounts(struct vfsmount *mnt)
1835 {
1836 	namespace_lock();
1837 	lock_mount_hash();
1838 	umount_tree(real_mount(mnt), UMOUNT_SYNC);
1839 	unlock_mount_hash();
1840 	namespace_unlock();
1841 }
1842 
1843 /**
1844  * clone_private_mount - create a private clone of a path
1845  *
1846  * This creates a new vfsmount, which will be the clone of @path.  The new will
1847  * not be attached anywhere in the namespace and will be private (i.e. changes
1848  * to the originating mount won't be propagated into this).
1849  *
1850  * Release with mntput().
1851  */
1852 struct vfsmount *clone_private_mount(const struct path *path)
1853 {
1854 	struct mount *old_mnt = real_mount(path->mnt);
1855 	struct mount *new_mnt;
1856 
1857 	if (IS_MNT_UNBINDABLE(old_mnt))
1858 		return ERR_PTR(-EINVAL);
1859 
1860 	new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1861 	if (IS_ERR(new_mnt))
1862 		return ERR_CAST(new_mnt);
1863 
1864 	return &new_mnt->mnt;
1865 }
1866 EXPORT_SYMBOL_GPL(clone_private_mount);
1867 
1868 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1869 		   struct vfsmount *root)
1870 {
1871 	struct mount *mnt;
1872 	int res = f(root, arg);
1873 	if (res)
1874 		return res;
1875 	list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1876 		res = f(&mnt->mnt, arg);
1877 		if (res)
1878 			return res;
1879 	}
1880 	return 0;
1881 }
1882 
1883 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1884 {
1885 	struct mount *p;
1886 
1887 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1888 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
1889 			mnt_release_group_id(p);
1890 	}
1891 }
1892 
1893 static int invent_group_ids(struct mount *mnt, bool recurse)
1894 {
1895 	struct mount *p;
1896 
1897 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1898 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1899 			int err = mnt_alloc_group_id(p);
1900 			if (err) {
1901 				cleanup_group_ids(mnt, p);
1902 				return err;
1903 			}
1904 		}
1905 	}
1906 
1907 	return 0;
1908 }
1909 
1910 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1911 {
1912 	unsigned int max = READ_ONCE(sysctl_mount_max);
1913 	unsigned int mounts = 0, old, pending, sum;
1914 	struct mount *p;
1915 
1916 	for (p = mnt; p; p = next_mnt(p, mnt))
1917 		mounts++;
1918 
1919 	old = ns->mounts;
1920 	pending = ns->pending_mounts;
1921 	sum = old + pending;
1922 	if ((old > sum) ||
1923 	    (pending > sum) ||
1924 	    (max < sum) ||
1925 	    (mounts > (max - sum)))
1926 		return -ENOSPC;
1927 
1928 	ns->pending_mounts = pending + mounts;
1929 	return 0;
1930 }
1931 
1932 /*
1933  *  @source_mnt : mount tree to be attached
1934  *  @nd         : place the mount tree @source_mnt is attached
1935  *  @parent_nd  : if non-null, detach the source_mnt from its parent and
1936  *  		   store the parent mount and mountpoint dentry.
1937  *  		   (done when source_mnt is moved)
1938  *
1939  *  NOTE: in the table below explains the semantics when a source mount
1940  *  of a given type is attached to a destination mount of a given type.
1941  * ---------------------------------------------------------------------------
1942  * |         BIND MOUNT OPERATION                                            |
1943  * |**************************************************************************
1944  * | source-->| shared        |       private  |       slave    | unbindable |
1945  * | dest     |               |                |                |            |
1946  * |   |      |               |                |                |            |
1947  * |   v      |               |                |                |            |
1948  * |**************************************************************************
1949  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
1950  * |          |               |                |                |            |
1951  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
1952  * ***************************************************************************
1953  * A bind operation clones the source mount and mounts the clone on the
1954  * destination mount.
1955  *
1956  * (++)  the cloned mount is propagated to all the mounts in the propagation
1957  * 	 tree of the destination mount and the cloned mount is added to
1958  * 	 the peer group of the source mount.
1959  * (+)   the cloned mount is created under the destination mount and is marked
1960  *       as shared. The cloned mount is added to the peer group of the source
1961  *       mount.
1962  * (+++) the mount is propagated to all the mounts in the propagation tree
1963  *       of the destination mount and the cloned mount is made slave
1964  *       of the same master as that of the source mount. The cloned mount
1965  *       is marked as 'shared and slave'.
1966  * (*)   the cloned mount is made a slave of the same master as that of the
1967  * 	 source mount.
1968  *
1969  * ---------------------------------------------------------------------------
1970  * |         		MOVE MOUNT OPERATION                                 |
1971  * |**************************************************************************
1972  * | source-->| shared        |       private  |       slave    | unbindable |
1973  * | dest     |               |                |                |            |
1974  * |   |      |               |                |                |            |
1975  * |   v      |               |                |                |            |
1976  * |**************************************************************************
1977  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
1978  * |          |               |                |                |            |
1979  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
1980  * ***************************************************************************
1981  *
1982  * (+)  the mount is moved to the destination. And is then propagated to
1983  * 	all the mounts in the propagation tree of the destination mount.
1984  * (+*)  the mount is moved to the destination.
1985  * (+++)  the mount is moved to the destination and is then propagated to
1986  * 	all the mounts belonging to the destination mount's propagation tree.
1987  * 	the mount is marked as 'shared and slave'.
1988  * (*)	the mount continues to be a slave at the new location.
1989  *
1990  * if the source mount is a tree, the operations explained above is
1991  * applied to each mount in the tree.
1992  * Must be called without spinlocks held, since this function can sleep
1993  * in allocations.
1994  */
1995 static int attach_recursive_mnt(struct mount *source_mnt,
1996 			struct mount *dest_mnt,
1997 			struct mountpoint *dest_mp,
1998 			struct path *parent_path)
1999 {
2000 	HLIST_HEAD(tree_list);
2001 	struct mnt_namespace *ns = dest_mnt->mnt_ns;
2002 	struct mountpoint *smp;
2003 	struct mount *child, *p;
2004 	struct hlist_node *n;
2005 	int err;
2006 
2007 	/* Preallocate a mountpoint in case the new mounts need
2008 	 * to be tucked under other mounts.
2009 	 */
2010 	smp = get_mountpoint(source_mnt->mnt.mnt_root);
2011 	if (IS_ERR(smp))
2012 		return PTR_ERR(smp);
2013 
2014 	/* Is there space to add these mounts to the mount namespace? */
2015 	if (!parent_path) {
2016 		err = count_mounts(ns, source_mnt);
2017 		if (err)
2018 			goto out;
2019 	}
2020 
2021 	if (IS_MNT_SHARED(dest_mnt)) {
2022 		err = invent_group_ids(source_mnt, true);
2023 		if (err)
2024 			goto out;
2025 		err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2026 		lock_mount_hash();
2027 		if (err)
2028 			goto out_cleanup_ids;
2029 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2030 			set_mnt_shared(p);
2031 	} else {
2032 		lock_mount_hash();
2033 	}
2034 	if (parent_path) {
2035 		detach_mnt(source_mnt, parent_path);
2036 		attach_mnt(source_mnt, dest_mnt, dest_mp);
2037 		touch_mnt_namespace(source_mnt->mnt_ns);
2038 	} else {
2039 		mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2040 		commit_tree(source_mnt);
2041 	}
2042 
2043 	hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2044 		struct mount *q;
2045 		hlist_del_init(&child->mnt_hash);
2046 		q = __lookup_mnt(&child->mnt_parent->mnt,
2047 				 child->mnt_mountpoint);
2048 		if (q)
2049 			mnt_change_mountpoint(child, smp, q);
2050 		commit_tree(child);
2051 	}
2052 	put_mountpoint(smp);
2053 	unlock_mount_hash();
2054 
2055 	return 0;
2056 
2057  out_cleanup_ids:
2058 	while (!hlist_empty(&tree_list)) {
2059 		child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2060 		child->mnt_parent->mnt_ns->pending_mounts = 0;
2061 		umount_tree(child, UMOUNT_SYNC);
2062 	}
2063 	unlock_mount_hash();
2064 	cleanup_group_ids(source_mnt, NULL);
2065  out:
2066 	ns->pending_mounts = 0;
2067 
2068 	read_seqlock_excl(&mount_lock);
2069 	put_mountpoint(smp);
2070 	read_sequnlock_excl(&mount_lock);
2071 
2072 	return err;
2073 }
2074 
2075 static struct mountpoint *lock_mount(struct path *path)
2076 {
2077 	struct vfsmount *mnt;
2078 	struct dentry *dentry = path->dentry;
2079 retry:
2080 	inode_lock(dentry->d_inode);
2081 	if (unlikely(cant_mount(dentry))) {
2082 		inode_unlock(dentry->d_inode);
2083 		return ERR_PTR(-ENOENT);
2084 	}
2085 	namespace_lock();
2086 	mnt = lookup_mnt(path);
2087 	if (likely(!mnt)) {
2088 		struct mountpoint *mp = get_mountpoint(dentry);
2089 		if (IS_ERR(mp)) {
2090 			namespace_unlock();
2091 			inode_unlock(dentry->d_inode);
2092 			return mp;
2093 		}
2094 		return mp;
2095 	}
2096 	namespace_unlock();
2097 	inode_unlock(path->dentry->d_inode);
2098 	path_put(path);
2099 	path->mnt = mnt;
2100 	dentry = path->dentry = dget(mnt->mnt_root);
2101 	goto retry;
2102 }
2103 
2104 static void unlock_mount(struct mountpoint *where)
2105 {
2106 	struct dentry *dentry = where->m_dentry;
2107 
2108 	read_seqlock_excl(&mount_lock);
2109 	put_mountpoint(where);
2110 	read_sequnlock_excl(&mount_lock);
2111 
2112 	namespace_unlock();
2113 	inode_unlock(dentry->d_inode);
2114 }
2115 
2116 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2117 {
2118 	if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2119 		return -EINVAL;
2120 
2121 	if (d_is_dir(mp->m_dentry) !=
2122 	      d_is_dir(mnt->mnt.mnt_root))
2123 		return -ENOTDIR;
2124 
2125 	return attach_recursive_mnt(mnt, p, mp, NULL);
2126 }
2127 
2128 /*
2129  * Sanity check the flags to change_mnt_propagation.
2130  */
2131 
2132 static int flags_to_propagation_type(int ms_flags)
2133 {
2134 	int type = ms_flags & ~(MS_REC | MS_SILENT);
2135 
2136 	/* Fail if any non-propagation flags are set */
2137 	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2138 		return 0;
2139 	/* Only one propagation flag should be set */
2140 	if (!is_power_of_2(type))
2141 		return 0;
2142 	return type;
2143 }
2144 
2145 /*
2146  * recursively change the type of the mountpoint.
2147  */
2148 static int do_change_type(struct path *path, int ms_flags)
2149 {
2150 	struct mount *m;
2151 	struct mount *mnt = real_mount(path->mnt);
2152 	int recurse = ms_flags & MS_REC;
2153 	int type;
2154 	int err = 0;
2155 
2156 	if (path->dentry != path->mnt->mnt_root)
2157 		return -EINVAL;
2158 
2159 	type = flags_to_propagation_type(ms_flags);
2160 	if (!type)
2161 		return -EINVAL;
2162 
2163 	namespace_lock();
2164 	if (type == MS_SHARED) {
2165 		err = invent_group_ids(mnt, recurse);
2166 		if (err)
2167 			goto out_unlock;
2168 	}
2169 
2170 	lock_mount_hash();
2171 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2172 		change_mnt_propagation(m, type);
2173 	unlock_mount_hash();
2174 
2175  out_unlock:
2176 	namespace_unlock();
2177 	return err;
2178 }
2179 
2180 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2181 {
2182 	struct mount *child;
2183 	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2184 		if (!is_subdir(child->mnt_mountpoint, dentry))
2185 			continue;
2186 
2187 		if (child->mnt.mnt_flags & MNT_LOCKED)
2188 			return true;
2189 	}
2190 	return false;
2191 }
2192 
2193 /*
2194  * do loopback mount.
2195  */
2196 static int do_loopback(struct path *path, const char *old_name,
2197 				int recurse)
2198 {
2199 	struct path old_path;
2200 	struct mount *mnt = NULL, *old, *parent;
2201 	struct mountpoint *mp;
2202 	int err;
2203 	if (!old_name || !*old_name)
2204 		return -EINVAL;
2205 	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2206 	if (err)
2207 		return err;
2208 
2209 	err = -EINVAL;
2210 	if (mnt_ns_loop(old_path.dentry))
2211 		goto out;
2212 
2213 	mp = lock_mount(path);
2214 	err = PTR_ERR(mp);
2215 	if (IS_ERR(mp))
2216 		goto out;
2217 
2218 	old = real_mount(old_path.mnt);
2219 	parent = real_mount(path->mnt);
2220 
2221 	err = -EINVAL;
2222 	if (IS_MNT_UNBINDABLE(old))
2223 		goto out2;
2224 
2225 	if (!check_mnt(parent))
2226 		goto out2;
2227 
2228 	if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
2229 		goto out2;
2230 
2231 	if (!recurse && has_locked_children(old, old_path.dentry))
2232 		goto out2;
2233 
2234 	if (recurse)
2235 		mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
2236 	else
2237 		mnt = clone_mnt(old, old_path.dentry, 0);
2238 
2239 	if (IS_ERR(mnt)) {
2240 		err = PTR_ERR(mnt);
2241 		goto out2;
2242 	}
2243 
2244 	mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2245 
2246 	err = graft_tree(mnt, parent, mp);
2247 	if (err) {
2248 		lock_mount_hash();
2249 		umount_tree(mnt, UMOUNT_SYNC);
2250 		unlock_mount_hash();
2251 	}
2252 out2:
2253 	unlock_mount(mp);
2254 out:
2255 	path_put(&old_path);
2256 	return err;
2257 }
2258 
2259 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2260 {
2261 	int error = 0;
2262 	int readonly_request = 0;
2263 
2264 	if (ms_flags & MS_RDONLY)
2265 		readonly_request = 1;
2266 	if (readonly_request == __mnt_is_readonly(mnt))
2267 		return 0;
2268 
2269 	if (readonly_request)
2270 		error = mnt_make_readonly(real_mount(mnt));
2271 	else
2272 		__mnt_unmake_readonly(real_mount(mnt));
2273 	return error;
2274 }
2275 
2276 /*
2277  * change filesystem flags. dir should be a physical root of filesystem.
2278  * If you've mounted a non-root directory somewhere and want to do remount
2279  * on it - tough luck.
2280  */
2281 static int do_remount(struct path *path, int ms_flags, int sb_flags,
2282 		      int mnt_flags, void *data)
2283 {
2284 	int err;
2285 	struct super_block *sb = path->mnt->mnt_sb;
2286 	struct mount *mnt = real_mount(path->mnt);
2287 
2288 	if (!check_mnt(mnt))
2289 		return -EINVAL;
2290 
2291 	if (path->dentry != path->mnt->mnt_root)
2292 		return -EINVAL;
2293 
2294 	/* Don't allow changing of locked mnt flags.
2295 	 *
2296 	 * No locks need to be held here while testing the various
2297 	 * MNT_LOCK flags because those flags can never be cleared
2298 	 * once they are set.
2299 	 */
2300 	if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2301 	    !(mnt_flags & MNT_READONLY)) {
2302 		return -EPERM;
2303 	}
2304 	if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2305 	    !(mnt_flags & MNT_NODEV)) {
2306 		return -EPERM;
2307 	}
2308 	if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2309 	    !(mnt_flags & MNT_NOSUID)) {
2310 		return -EPERM;
2311 	}
2312 	if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2313 	    !(mnt_flags & MNT_NOEXEC)) {
2314 		return -EPERM;
2315 	}
2316 	if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2317 	    ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2318 		return -EPERM;
2319 	}
2320 
2321 	err = security_sb_remount(sb, data);
2322 	if (err)
2323 		return err;
2324 
2325 	down_write(&sb->s_umount);
2326 	if (ms_flags & MS_BIND)
2327 		err = change_mount_flags(path->mnt, ms_flags);
2328 	else if (!capable(CAP_SYS_ADMIN))
2329 		err = -EPERM;
2330 	else
2331 		err = do_remount_sb(sb, sb_flags, data, 0);
2332 	if (!err) {
2333 		lock_mount_hash();
2334 		mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2335 		mnt->mnt.mnt_flags = mnt_flags;
2336 		touch_mnt_namespace(mnt->mnt_ns);
2337 		unlock_mount_hash();
2338 	}
2339 	up_write(&sb->s_umount);
2340 	return err;
2341 }
2342 
2343 static inline int tree_contains_unbindable(struct mount *mnt)
2344 {
2345 	struct mount *p;
2346 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2347 		if (IS_MNT_UNBINDABLE(p))
2348 			return 1;
2349 	}
2350 	return 0;
2351 }
2352 
2353 static int do_move_mount(struct path *path, const char *old_name)
2354 {
2355 	struct path old_path, parent_path;
2356 	struct mount *p;
2357 	struct mount *old;
2358 	struct mountpoint *mp;
2359 	int err;
2360 	if (!old_name || !*old_name)
2361 		return -EINVAL;
2362 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2363 	if (err)
2364 		return err;
2365 
2366 	mp = lock_mount(path);
2367 	err = PTR_ERR(mp);
2368 	if (IS_ERR(mp))
2369 		goto out;
2370 
2371 	old = real_mount(old_path.mnt);
2372 	p = real_mount(path->mnt);
2373 
2374 	err = -EINVAL;
2375 	if (!check_mnt(p) || !check_mnt(old))
2376 		goto out1;
2377 
2378 	if (old->mnt.mnt_flags & MNT_LOCKED)
2379 		goto out1;
2380 
2381 	err = -EINVAL;
2382 	if (old_path.dentry != old_path.mnt->mnt_root)
2383 		goto out1;
2384 
2385 	if (!mnt_has_parent(old))
2386 		goto out1;
2387 
2388 	if (d_is_dir(path->dentry) !=
2389 	      d_is_dir(old_path.dentry))
2390 		goto out1;
2391 	/*
2392 	 * Don't move a mount residing in a shared parent.
2393 	 */
2394 	if (IS_MNT_SHARED(old->mnt_parent))
2395 		goto out1;
2396 	/*
2397 	 * Don't move a mount tree containing unbindable mounts to a destination
2398 	 * mount which is shared.
2399 	 */
2400 	if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2401 		goto out1;
2402 	err = -ELOOP;
2403 	for (; mnt_has_parent(p); p = p->mnt_parent)
2404 		if (p == old)
2405 			goto out1;
2406 
2407 	err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2408 	if (err)
2409 		goto out1;
2410 
2411 	/* if the mount is moved, it should no longer be expire
2412 	 * automatically */
2413 	list_del_init(&old->mnt_expire);
2414 out1:
2415 	unlock_mount(mp);
2416 out:
2417 	if (!err)
2418 		path_put(&parent_path);
2419 	path_put(&old_path);
2420 	return err;
2421 }
2422 
2423 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2424 {
2425 	int err;
2426 	const char *subtype = strchr(fstype, '.');
2427 	if (subtype) {
2428 		subtype++;
2429 		err = -EINVAL;
2430 		if (!subtype[0])
2431 			goto err;
2432 	} else
2433 		subtype = "";
2434 
2435 	mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2436 	err = -ENOMEM;
2437 	if (!mnt->mnt_sb->s_subtype)
2438 		goto err;
2439 	return mnt;
2440 
2441  err:
2442 	mntput(mnt);
2443 	return ERR_PTR(err);
2444 }
2445 
2446 /*
2447  * add a mount into a namespace's mount tree
2448  */
2449 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2450 {
2451 	struct mountpoint *mp;
2452 	struct mount *parent;
2453 	int err;
2454 
2455 	mnt_flags &= ~MNT_INTERNAL_FLAGS;
2456 
2457 	mp = lock_mount(path);
2458 	if (IS_ERR(mp))
2459 		return PTR_ERR(mp);
2460 
2461 	parent = real_mount(path->mnt);
2462 	err = -EINVAL;
2463 	if (unlikely(!check_mnt(parent))) {
2464 		/* that's acceptable only for automounts done in private ns */
2465 		if (!(mnt_flags & MNT_SHRINKABLE))
2466 			goto unlock;
2467 		/* ... and for those we'd better have mountpoint still alive */
2468 		if (!parent->mnt_ns)
2469 			goto unlock;
2470 	}
2471 
2472 	/* Refuse the same filesystem on the same mount point */
2473 	err = -EBUSY;
2474 	if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2475 	    path->mnt->mnt_root == path->dentry)
2476 		goto unlock;
2477 
2478 	err = -EINVAL;
2479 	if (d_is_symlink(newmnt->mnt.mnt_root))
2480 		goto unlock;
2481 
2482 	newmnt->mnt.mnt_flags = mnt_flags;
2483 	err = graft_tree(newmnt, parent, mp);
2484 
2485 unlock:
2486 	unlock_mount(mp);
2487 	return err;
2488 }
2489 
2490 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags);
2491 
2492 /*
2493  * create a new mount for userspace and request it to be added into the
2494  * namespace's tree
2495  */
2496 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
2497 			int mnt_flags, const char *name, void *data)
2498 {
2499 	struct file_system_type *type;
2500 	struct vfsmount *mnt;
2501 	int err;
2502 
2503 	if (!fstype)
2504 		return -EINVAL;
2505 
2506 	type = get_fs_type(fstype);
2507 	if (!type)
2508 		return -ENODEV;
2509 
2510 	mnt = vfs_kern_mount(type, sb_flags, name, data);
2511 	if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2512 	    !mnt->mnt_sb->s_subtype)
2513 		mnt = fs_set_subtype(mnt, fstype);
2514 
2515 	put_filesystem(type);
2516 	if (IS_ERR(mnt))
2517 		return PTR_ERR(mnt);
2518 
2519 	if (mount_too_revealing(mnt, &mnt_flags)) {
2520 		mntput(mnt);
2521 		return -EPERM;
2522 	}
2523 
2524 	err = do_add_mount(real_mount(mnt), path, mnt_flags);
2525 	if (err)
2526 		mntput(mnt);
2527 	return err;
2528 }
2529 
2530 int finish_automount(struct vfsmount *m, struct path *path)
2531 {
2532 	struct mount *mnt = real_mount(m);
2533 	int err;
2534 	/* The new mount record should have at least 2 refs to prevent it being
2535 	 * expired before we get a chance to add it
2536 	 */
2537 	BUG_ON(mnt_get_count(mnt) < 2);
2538 
2539 	if (m->mnt_sb == path->mnt->mnt_sb &&
2540 	    m->mnt_root == path->dentry) {
2541 		err = -ELOOP;
2542 		goto fail;
2543 	}
2544 
2545 	err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2546 	if (!err)
2547 		return 0;
2548 fail:
2549 	/* remove m from any expiration list it may be on */
2550 	if (!list_empty(&mnt->mnt_expire)) {
2551 		namespace_lock();
2552 		list_del_init(&mnt->mnt_expire);
2553 		namespace_unlock();
2554 	}
2555 	mntput(m);
2556 	mntput(m);
2557 	return err;
2558 }
2559 
2560 /**
2561  * mnt_set_expiry - Put a mount on an expiration list
2562  * @mnt: The mount to list.
2563  * @expiry_list: The list to add the mount to.
2564  */
2565 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2566 {
2567 	namespace_lock();
2568 
2569 	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2570 
2571 	namespace_unlock();
2572 }
2573 EXPORT_SYMBOL(mnt_set_expiry);
2574 
2575 /*
2576  * process a list of expirable mountpoints with the intent of discarding any
2577  * mountpoints that aren't in use and haven't been touched since last we came
2578  * here
2579  */
2580 void mark_mounts_for_expiry(struct list_head *mounts)
2581 {
2582 	struct mount *mnt, *next;
2583 	LIST_HEAD(graveyard);
2584 
2585 	if (list_empty(mounts))
2586 		return;
2587 
2588 	namespace_lock();
2589 	lock_mount_hash();
2590 
2591 	/* extract from the expiration list every vfsmount that matches the
2592 	 * following criteria:
2593 	 * - only referenced by its parent vfsmount
2594 	 * - still marked for expiry (marked on the last call here; marks are
2595 	 *   cleared by mntput())
2596 	 */
2597 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2598 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2599 			propagate_mount_busy(mnt, 1))
2600 			continue;
2601 		list_move(&mnt->mnt_expire, &graveyard);
2602 	}
2603 	while (!list_empty(&graveyard)) {
2604 		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2605 		touch_mnt_namespace(mnt->mnt_ns);
2606 		umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2607 	}
2608 	unlock_mount_hash();
2609 	namespace_unlock();
2610 }
2611 
2612 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2613 
2614 /*
2615  * Ripoff of 'select_parent()'
2616  *
2617  * search the list of submounts for a given mountpoint, and move any
2618  * shrinkable submounts to the 'graveyard' list.
2619  */
2620 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2621 {
2622 	struct mount *this_parent = parent;
2623 	struct list_head *next;
2624 	int found = 0;
2625 
2626 repeat:
2627 	next = this_parent->mnt_mounts.next;
2628 resume:
2629 	while (next != &this_parent->mnt_mounts) {
2630 		struct list_head *tmp = next;
2631 		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2632 
2633 		next = tmp->next;
2634 		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2635 			continue;
2636 		/*
2637 		 * Descend a level if the d_mounts list is non-empty.
2638 		 */
2639 		if (!list_empty(&mnt->mnt_mounts)) {
2640 			this_parent = mnt;
2641 			goto repeat;
2642 		}
2643 
2644 		if (!propagate_mount_busy(mnt, 1)) {
2645 			list_move_tail(&mnt->mnt_expire, graveyard);
2646 			found++;
2647 		}
2648 	}
2649 	/*
2650 	 * All done at this level ... ascend and resume the search
2651 	 */
2652 	if (this_parent != parent) {
2653 		next = this_parent->mnt_child.next;
2654 		this_parent = this_parent->mnt_parent;
2655 		goto resume;
2656 	}
2657 	return found;
2658 }
2659 
2660 /*
2661  * process a list of expirable mountpoints with the intent of discarding any
2662  * submounts of a specific parent mountpoint
2663  *
2664  * mount_lock must be held for write
2665  */
2666 static void shrink_submounts(struct mount *mnt)
2667 {
2668 	LIST_HEAD(graveyard);
2669 	struct mount *m;
2670 
2671 	/* extract submounts of 'mountpoint' from the expiration list */
2672 	while (select_submounts(mnt, &graveyard)) {
2673 		while (!list_empty(&graveyard)) {
2674 			m = list_first_entry(&graveyard, struct mount,
2675 						mnt_expire);
2676 			touch_mnt_namespace(m->mnt_ns);
2677 			umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2678 		}
2679 	}
2680 }
2681 
2682 /*
2683  * Some copy_from_user() implementations do not return the exact number of
2684  * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
2685  * Note that this function differs from copy_from_user() in that it will oops
2686  * on bad values of `to', rather than returning a short copy.
2687  */
2688 static long exact_copy_from_user(void *to, const void __user * from,
2689 				 unsigned long n)
2690 {
2691 	char *t = to;
2692 	const char __user *f = from;
2693 	char c;
2694 
2695 	if (!access_ok(VERIFY_READ, from, n))
2696 		return n;
2697 
2698 	while (n) {
2699 		if (__get_user(c, f)) {
2700 			memset(t, 0, n);
2701 			break;
2702 		}
2703 		*t++ = c;
2704 		f++;
2705 		n--;
2706 	}
2707 	return n;
2708 }
2709 
2710 void *copy_mount_options(const void __user * data)
2711 {
2712 	int i;
2713 	unsigned long size;
2714 	char *copy;
2715 
2716 	if (!data)
2717 		return NULL;
2718 
2719 	copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
2720 	if (!copy)
2721 		return ERR_PTR(-ENOMEM);
2722 
2723 	/* We only care that *some* data at the address the user
2724 	 * gave us is valid.  Just in case, we'll zero
2725 	 * the remainder of the page.
2726 	 */
2727 	/* copy_from_user cannot cross TASK_SIZE ! */
2728 	size = TASK_SIZE - (unsigned long)data;
2729 	if (size > PAGE_SIZE)
2730 		size = PAGE_SIZE;
2731 
2732 	i = size - exact_copy_from_user(copy, data, size);
2733 	if (!i) {
2734 		kfree(copy);
2735 		return ERR_PTR(-EFAULT);
2736 	}
2737 	if (i != PAGE_SIZE)
2738 		memset(copy + i, 0, PAGE_SIZE - i);
2739 	return copy;
2740 }
2741 
2742 char *copy_mount_string(const void __user *data)
2743 {
2744 	return data ? strndup_user(data, PAGE_SIZE) : NULL;
2745 }
2746 
2747 /*
2748  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2749  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2750  *
2751  * data is a (void *) that can point to any structure up to
2752  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2753  * information (or be NULL).
2754  *
2755  * Pre-0.97 versions of mount() didn't have a flags word.
2756  * When the flags word was introduced its top half was required
2757  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2758  * Therefore, if this magic number is present, it carries no information
2759  * and must be discarded.
2760  */
2761 long do_mount(const char *dev_name, const char __user *dir_name,
2762 		const char *type_page, unsigned long flags, void *data_page)
2763 {
2764 	struct path path;
2765 	unsigned int mnt_flags = 0, sb_flags;
2766 	int retval = 0;
2767 
2768 	/* Discard magic */
2769 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2770 		flags &= ~MS_MGC_MSK;
2771 
2772 	/* Basic sanity checks */
2773 	if (data_page)
2774 		((char *)data_page)[PAGE_SIZE - 1] = 0;
2775 
2776 	if (flags & MS_NOUSER)
2777 		return -EINVAL;
2778 
2779 	/* ... and get the mountpoint */
2780 	retval = user_path(dir_name, &path);
2781 	if (retval)
2782 		return retval;
2783 
2784 	retval = security_sb_mount(dev_name, &path,
2785 				   type_page, flags, data_page);
2786 	if (!retval && !may_mount())
2787 		retval = -EPERM;
2788 	if (!retval && (flags & SB_MANDLOCK) && !may_mandlock())
2789 		retval = -EPERM;
2790 	if (retval)
2791 		goto dput_out;
2792 
2793 	/* Default to relatime unless overriden */
2794 	if (!(flags & MS_NOATIME))
2795 		mnt_flags |= MNT_RELATIME;
2796 
2797 	/* Separate the per-mountpoint flags */
2798 	if (flags & MS_NOSUID)
2799 		mnt_flags |= MNT_NOSUID;
2800 	if (flags & MS_NODEV)
2801 		mnt_flags |= MNT_NODEV;
2802 	if (flags & MS_NOEXEC)
2803 		mnt_flags |= MNT_NOEXEC;
2804 	if (flags & MS_NOATIME)
2805 		mnt_flags |= MNT_NOATIME;
2806 	if (flags & MS_NODIRATIME)
2807 		mnt_flags |= MNT_NODIRATIME;
2808 	if (flags & MS_STRICTATIME)
2809 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2810 	if (flags & SB_RDONLY)
2811 		mnt_flags |= MNT_READONLY;
2812 
2813 	/* The default atime for remount is preservation */
2814 	if ((flags & MS_REMOUNT) &&
2815 	    ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2816 		       MS_STRICTATIME)) == 0)) {
2817 		mnt_flags &= ~MNT_ATIME_MASK;
2818 		mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2819 	}
2820 
2821 	sb_flags = flags & (SB_RDONLY |
2822 			    SB_SYNCHRONOUS |
2823 			    SB_MANDLOCK |
2824 			    SB_DIRSYNC |
2825 			    SB_SILENT |
2826 			    SB_POSIXACL);
2827 
2828 	if (flags & MS_REMOUNT)
2829 		retval = do_remount(&path, flags, sb_flags, mnt_flags,
2830 				    data_page);
2831 	else if (flags & MS_BIND)
2832 		retval = do_loopback(&path, dev_name, flags & MS_REC);
2833 	else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2834 		retval = do_change_type(&path, flags);
2835 	else if (flags & MS_MOVE)
2836 		retval = do_move_mount(&path, dev_name);
2837 	else
2838 		retval = do_new_mount(&path, type_page, sb_flags, mnt_flags,
2839 				      dev_name, data_page);
2840 dput_out:
2841 	path_put(&path);
2842 	return retval;
2843 }
2844 
2845 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
2846 {
2847 	return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
2848 }
2849 
2850 static void dec_mnt_namespaces(struct ucounts *ucounts)
2851 {
2852 	dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
2853 }
2854 
2855 static void free_mnt_ns(struct mnt_namespace *ns)
2856 {
2857 	ns_free_inum(&ns->ns);
2858 	dec_mnt_namespaces(ns->ucounts);
2859 	put_user_ns(ns->user_ns);
2860 	kfree(ns);
2861 }
2862 
2863 /*
2864  * Assign a sequence number so we can detect when we attempt to bind
2865  * mount a reference to an older mount namespace into the current
2866  * mount namespace, preventing reference counting loops.  A 64bit
2867  * number incrementing at 10Ghz will take 12,427 years to wrap which
2868  * is effectively never, so we can ignore the possibility.
2869  */
2870 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2871 
2872 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2873 {
2874 	struct mnt_namespace *new_ns;
2875 	struct ucounts *ucounts;
2876 	int ret;
2877 
2878 	ucounts = inc_mnt_namespaces(user_ns);
2879 	if (!ucounts)
2880 		return ERR_PTR(-ENOSPC);
2881 
2882 	new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2883 	if (!new_ns) {
2884 		dec_mnt_namespaces(ucounts);
2885 		return ERR_PTR(-ENOMEM);
2886 	}
2887 	ret = ns_alloc_inum(&new_ns->ns);
2888 	if (ret) {
2889 		kfree(new_ns);
2890 		dec_mnt_namespaces(ucounts);
2891 		return ERR_PTR(ret);
2892 	}
2893 	new_ns->ns.ops = &mntns_operations;
2894 	new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2895 	atomic_set(&new_ns->count, 1);
2896 	new_ns->root = NULL;
2897 	INIT_LIST_HEAD(&new_ns->list);
2898 	init_waitqueue_head(&new_ns->poll);
2899 	new_ns->event = 0;
2900 	new_ns->user_ns = get_user_ns(user_ns);
2901 	new_ns->ucounts = ucounts;
2902 	new_ns->mounts = 0;
2903 	new_ns->pending_mounts = 0;
2904 	return new_ns;
2905 }
2906 
2907 __latent_entropy
2908 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2909 		struct user_namespace *user_ns, struct fs_struct *new_fs)
2910 {
2911 	struct mnt_namespace *new_ns;
2912 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2913 	struct mount *p, *q;
2914 	struct mount *old;
2915 	struct mount *new;
2916 	int copy_flags;
2917 
2918 	BUG_ON(!ns);
2919 
2920 	if (likely(!(flags & CLONE_NEWNS))) {
2921 		get_mnt_ns(ns);
2922 		return ns;
2923 	}
2924 
2925 	old = ns->root;
2926 
2927 	new_ns = alloc_mnt_ns(user_ns);
2928 	if (IS_ERR(new_ns))
2929 		return new_ns;
2930 
2931 	namespace_lock();
2932 	/* First pass: copy the tree topology */
2933 	copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2934 	if (user_ns != ns->user_ns)
2935 		copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2936 	new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2937 	if (IS_ERR(new)) {
2938 		namespace_unlock();
2939 		free_mnt_ns(new_ns);
2940 		return ERR_CAST(new);
2941 	}
2942 	new_ns->root = new;
2943 	list_add_tail(&new_ns->list, &new->mnt_list);
2944 
2945 	/*
2946 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2947 	 * as belonging to new namespace.  We have already acquired a private
2948 	 * fs_struct, so tsk->fs->lock is not needed.
2949 	 */
2950 	p = old;
2951 	q = new;
2952 	while (p) {
2953 		q->mnt_ns = new_ns;
2954 		new_ns->mounts++;
2955 		if (new_fs) {
2956 			if (&p->mnt == new_fs->root.mnt) {
2957 				new_fs->root.mnt = mntget(&q->mnt);
2958 				rootmnt = &p->mnt;
2959 			}
2960 			if (&p->mnt == new_fs->pwd.mnt) {
2961 				new_fs->pwd.mnt = mntget(&q->mnt);
2962 				pwdmnt = &p->mnt;
2963 			}
2964 		}
2965 		p = next_mnt(p, old);
2966 		q = next_mnt(q, new);
2967 		if (!q)
2968 			break;
2969 		while (p->mnt.mnt_root != q->mnt.mnt_root)
2970 			p = next_mnt(p, old);
2971 	}
2972 	namespace_unlock();
2973 
2974 	if (rootmnt)
2975 		mntput(rootmnt);
2976 	if (pwdmnt)
2977 		mntput(pwdmnt);
2978 
2979 	return new_ns;
2980 }
2981 
2982 /**
2983  * create_mnt_ns - creates a private namespace and adds a root filesystem
2984  * @mnt: pointer to the new root filesystem mountpoint
2985  */
2986 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2987 {
2988 	struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2989 	if (!IS_ERR(new_ns)) {
2990 		struct mount *mnt = real_mount(m);
2991 		mnt->mnt_ns = new_ns;
2992 		new_ns->root = mnt;
2993 		new_ns->mounts++;
2994 		list_add(&mnt->mnt_list, &new_ns->list);
2995 	} else {
2996 		mntput(m);
2997 	}
2998 	return new_ns;
2999 }
3000 
3001 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
3002 {
3003 	struct mnt_namespace *ns;
3004 	struct super_block *s;
3005 	struct path path;
3006 	int err;
3007 
3008 	ns = create_mnt_ns(mnt);
3009 	if (IS_ERR(ns))
3010 		return ERR_CAST(ns);
3011 
3012 	err = vfs_path_lookup(mnt->mnt_root, mnt,
3013 			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3014 
3015 	put_mnt_ns(ns);
3016 
3017 	if (err)
3018 		return ERR_PTR(err);
3019 
3020 	/* trade a vfsmount reference for active sb one */
3021 	s = path.mnt->mnt_sb;
3022 	atomic_inc(&s->s_active);
3023 	mntput(path.mnt);
3024 	/* lock the sucker */
3025 	down_write(&s->s_umount);
3026 	/* ... and return the root of (sub)tree on it */
3027 	return path.dentry;
3028 }
3029 EXPORT_SYMBOL(mount_subtree);
3030 
3031 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3032 		char __user *, type, unsigned long, flags, void __user *, data)
3033 {
3034 	int ret;
3035 	char *kernel_type;
3036 	char *kernel_dev;
3037 	void *options;
3038 
3039 	kernel_type = copy_mount_string(type);
3040 	ret = PTR_ERR(kernel_type);
3041 	if (IS_ERR(kernel_type))
3042 		goto out_type;
3043 
3044 	kernel_dev = copy_mount_string(dev_name);
3045 	ret = PTR_ERR(kernel_dev);
3046 	if (IS_ERR(kernel_dev))
3047 		goto out_dev;
3048 
3049 	options = copy_mount_options(data);
3050 	ret = PTR_ERR(options);
3051 	if (IS_ERR(options))
3052 		goto out_data;
3053 
3054 	ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3055 
3056 	kfree(options);
3057 out_data:
3058 	kfree(kernel_dev);
3059 out_dev:
3060 	kfree(kernel_type);
3061 out_type:
3062 	return ret;
3063 }
3064 
3065 /*
3066  * Return true if path is reachable from root
3067  *
3068  * namespace_sem or mount_lock is held
3069  */
3070 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3071 			 const struct path *root)
3072 {
3073 	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3074 		dentry = mnt->mnt_mountpoint;
3075 		mnt = mnt->mnt_parent;
3076 	}
3077 	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3078 }
3079 
3080 bool path_is_under(const struct path *path1, const struct path *path2)
3081 {
3082 	bool res;
3083 	read_seqlock_excl(&mount_lock);
3084 	res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3085 	read_sequnlock_excl(&mount_lock);
3086 	return res;
3087 }
3088 EXPORT_SYMBOL(path_is_under);
3089 
3090 /*
3091  * pivot_root Semantics:
3092  * Moves the root file system of the current process to the directory put_old,
3093  * makes new_root as the new root file system of the current process, and sets
3094  * root/cwd of all processes which had them on the current root to new_root.
3095  *
3096  * Restrictions:
3097  * The new_root and put_old must be directories, and  must not be on the
3098  * same file  system as the current process root. The put_old  must  be
3099  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
3100  * pointed to by put_old must yield the same directory as new_root. No other
3101  * file system may be mounted on put_old. After all, new_root is a mountpoint.
3102  *
3103  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3104  * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3105  * in this situation.
3106  *
3107  * Notes:
3108  *  - we don't move root/cwd if they are not at the root (reason: if something
3109  *    cared enough to change them, it's probably wrong to force them elsewhere)
3110  *  - it's okay to pick a root that isn't the root of a file system, e.g.
3111  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3112  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3113  *    first.
3114  */
3115 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3116 		const char __user *, put_old)
3117 {
3118 	struct path new, old, parent_path, root_parent, root;
3119 	struct mount *new_mnt, *root_mnt, *old_mnt;
3120 	struct mountpoint *old_mp, *root_mp;
3121 	int error;
3122 
3123 	if (!may_mount())
3124 		return -EPERM;
3125 
3126 	error = user_path_dir(new_root, &new);
3127 	if (error)
3128 		goto out0;
3129 
3130 	error = user_path_dir(put_old, &old);
3131 	if (error)
3132 		goto out1;
3133 
3134 	error = security_sb_pivotroot(&old, &new);
3135 	if (error)
3136 		goto out2;
3137 
3138 	get_fs_root(current->fs, &root);
3139 	old_mp = lock_mount(&old);
3140 	error = PTR_ERR(old_mp);
3141 	if (IS_ERR(old_mp))
3142 		goto out3;
3143 
3144 	error = -EINVAL;
3145 	new_mnt = real_mount(new.mnt);
3146 	root_mnt = real_mount(root.mnt);
3147 	old_mnt = real_mount(old.mnt);
3148 	if (IS_MNT_SHARED(old_mnt) ||
3149 		IS_MNT_SHARED(new_mnt->mnt_parent) ||
3150 		IS_MNT_SHARED(root_mnt->mnt_parent))
3151 		goto out4;
3152 	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3153 		goto out4;
3154 	if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3155 		goto out4;
3156 	error = -ENOENT;
3157 	if (d_unlinked(new.dentry))
3158 		goto out4;
3159 	error = -EBUSY;
3160 	if (new_mnt == root_mnt || old_mnt == root_mnt)
3161 		goto out4; /* loop, on the same file system  */
3162 	error = -EINVAL;
3163 	if (root.mnt->mnt_root != root.dentry)
3164 		goto out4; /* not a mountpoint */
3165 	if (!mnt_has_parent(root_mnt))
3166 		goto out4; /* not attached */
3167 	root_mp = root_mnt->mnt_mp;
3168 	if (new.mnt->mnt_root != new.dentry)
3169 		goto out4; /* not a mountpoint */
3170 	if (!mnt_has_parent(new_mnt))
3171 		goto out4; /* not attached */
3172 	/* make sure we can reach put_old from new_root */
3173 	if (!is_path_reachable(old_mnt, old.dentry, &new))
3174 		goto out4;
3175 	/* make certain new is below the root */
3176 	if (!is_path_reachable(new_mnt, new.dentry, &root))
3177 		goto out4;
3178 	root_mp->m_count++; /* pin it so it won't go away */
3179 	lock_mount_hash();
3180 	detach_mnt(new_mnt, &parent_path);
3181 	detach_mnt(root_mnt, &root_parent);
3182 	if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3183 		new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3184 		root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3185 	}
3186 	/* mount old root on put_old */
3187 	attach_mnt(root_mnt, old_mnt, old_mp);
3188 	/* mount new_root on / */
3189 	attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
3190 	touch_mnt_namespace(current->nsproxy->mnt_ns);
3191 	/* A moved mount should not expire automatically */
3192 	list_del_init(&new_mnt->mnt_expire);
3193 	put_mountpoint(root_mp);
3194 	unlock_mount_hash();
3195 	chroot_fs_refs(&root, &new);
3196 	error = 0;
3197 out4:
3198 	unlock_mount(old_mp);
3199 	if (!error) {
3200 		path_put(&root_parent);
3201 		path_put(&parent_path);
3202 	}
3203 out3:
3204 	path_put(&root);
3205 out2:
3206 	path_put(&old);
3207 out1:
3208 	path_put(&new);
3209 out0:
3210 	return error;
3211 }
3212 
3213 static void __init init_mount_tree(void)
3214 {
3215 	struct vfsmount *mnt;
3216 	struct mnt_namespace *ns;
3217 	struct path root;
3218 	struct file_system_type *type;
3219 
3220 	type = get_fs_type("rootfs");
3221 	if (!type)
3222 		panic("Can't find rootfs type");
3223 	mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3224 	put_filesystem(type);
3225 	if (IS_ERR(mnt))
3226 		panic("Can't create rootfs");
3227 
3228 	ns = create_mnt_ns(mnt);
3229 	if (IS_ERR(ns))
3230 		panic("Can't allocate initial namespace");
3231 
3232 	init_task.nsproxy->mnt_ns = ns;
3233 	get_mnt_ns(ns);
3234 
3235 	root.mnt = mnt;
3236 	root.dentry = mnt->mnt_root;
3237 	mnt->mnt_flags |= MNT_LOCKED;
3238 
3239 	set_fs_pwd(current->fs, &root);
3240 	set_fs_root(current->fs, &root);
3241 }
3242 
3243 void __init mnt_init(void)
3244 {
3245 	int err;
3246 
3247 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3248 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3249 
3250 	mount_hashtable = alloc_large_system_hash("Mount-cache",
3251 				sizeof(struct hlist_head),
3252 				mhash_entries, 19,
3253 				HASH_ZERO,
3254 				&m_hash_shift, &m_hash_mask, 0, 0);
3255 	mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3256 				sizeof(struct hlist_head),
3257 				mphash_entries, 19,
3258 				HASH_ZERO,
3259 				&mp_hash_shift, &mp_hash_mask, 0, 0);
3260 
3261 	if (!mount_hashtable || !mountpoint_hashtable)
3262 		panic("Failed to allocate mount hash table\n");
3263 
3264 	kernfs_init();
3265 
3266 	err = sysfs_init();
3267 	if (err)
3268 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3269 			__func__, err);
3270 	fs_kobj = kobject_create_and_add("fs", NULL);
3271 	if (!fs_kobj)
3272 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
3273 	init_rootfs();
3274 	init_mount_tree();
3275 }
3276 
3277 void put_mnt_ns(struct mnt_namespace *ns)
3278 {
3279 	if (!atomic_dec_and_test(&ns->count))
3280 		return;
3281 	drop_collected_mounts(&ns->root->mnt);
3282 	free_mnt_ns(ns);
3283 }
3284 
3285 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3286 {
3287 	struct vfsmount *mnt;
3288 	mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, data);
3289 	if (!IS_ERR(mnt)) {
3290 		/*
3291 		 * it is a longterm mount, don't release mnt until
3292 		 * we unmount before file sys is unregistered
3293 		*/
3294 		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3295 	}
3296 	return mnt;
3297 }
3298 EXPORT_SYMBOL_GPL(kern_mount_data);
3299 
3300 void kern_unmount(struct vfsmount *mnt)
3301 {
3302 	/* release long term mount so mount point can be released */
3303 	if (!IS_ERR_OR_NULL(mnt)) {
3304 		real_mount(mnt)->mnt_ns = NULL;
3305 		synchronize_rcu();	/* yecchhh... */
3306 		mntput(mnt);
3307 	}
3308 }
3309 EXPORT_SYMBOL(kern_unmount);
3310 
3311 bool our_mnt(struct vfsmount *mnt)
3312 {
3313 	return check_mnt(real_mount(mnt));
3314 }
3315 
3316 bool current_chrooted(void)
3317 {
3318 	/* Does the current process have a non-standard root */
3319 	struct path ns_root;
3320 	struct path fs_root;
3321 	bool chrooted;
3322 
3323 	/* Find the namespace root */
3324 	ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3325 	ns_root.dentry = ns_root.mnt->mnt_root;
3326 	path_get(&ns_root);
3327 	while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3328 		;
3329 
3330 	get_fs_root(current->fs, &fs_root);
3331 
3332 	chrooted = !path_equal(&fs_root, &ns_root);
3333 
3334 	path_put(&fs_root);
3335 	path_put(&ns_root);
3336 
3337 	return chrooted;
3338 }
3339 
3340 static bool mnt_already_visible(struct mnt_namespace *ns, struct vfsmount *new,
3341 				int *new_mnt_flags)
3342 {
3343 	int new_flags = *new_mnt_flags;
3344 	struct mount *mnt;
3345 	bool visible = false;
3346 
3347 	down_read(&namespace_sem);
3348 	list_for_each_entry(mnt, &ns->list, mnt_list) {
3349 		struct mount *child;
3350 		int mnt_flags;
3351 
3352 		if (mnt->mnt.mnt_sb->s_type != new->mnt_sb->s_type)
3353 			continue;
3354 
3355 		/* This mount is not fully visible if it's root directory
3356 		 * is not the root directory of the filesystem.
3357 		 */
3358 		if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3359 			continue;
3360 
3361 		/* A local view of the mount flags */
3362 		mnt_flags = mnt->mnt.mnt_flags;
3363 
3364 		/* Don't miss readonly hidden in the superblock flags */
3365 		if (sb_rdonly(mnt->mnt.mnt_sb))
3366 			mnt_flags |= MNT_LOCK_READONLY;
3367 
3368 		/* Verify the mount flags are equal to or more permissive
3369 		 * than the proposed new mount.
3370 		 */
3371 		if ((mnt_flags & MNT_LOCK_READONLY) &&
3372 		    !(new_flags & MNT_READONLY))
3373 			continue;
3374 		if ((mnt_flags & MNT_LOCK_ATIME) &&
3375 		    ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3376 			continue;
3377 
3378 		/* This mount is not fully visible if there are any
3379 		 * locked child mounts that cover anything except for
3380 		 * empty directories.
3381 		 */
3382 		list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3383 			struct inode *inode = child->mnt_mountpoint->d_inode;
3384 			/* Only worry about locked mounts */
3385 			if (!(child->mnt.mnt_flags & MNT_LOCKED))
3386 				continue;
3387 			/* Is the directory permanetly empty? */
3388 			if (!is_empty_dir_inode(inode))
3389 				goto next;
3390 		}
3391 		/* Preserve the locked attributes */
3392 		*new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
3393 					       MNT_LOCK_ATIME);
3394 		visible = true;
3395 		goto found;
3396 	next:	;
3397 	}
3398 found:
3399 	up_read(&namespace_sem);
3400 	return visible;
3401 }
3402 
3403 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags)
3404 {
3405 	const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
3406 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3407 	unsigned long s_iflags;
3408 
3409 	if (ns->user_ns == &init_user_ns)
3410 		return false;
3411 
3412 	/* Can this filesystem be too revealing? */
3413 	s_iflags = mnt->mnt_sb->s_iflags;
3414 	if (!(s_iflags & SB_I_USERNS_VISIBLE))
3415 		return false;
3416 
3417 	if ((s_iflags & required_iflags) != required_iflags) {
3418 		WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3419 			  required_iflags);
3420 		return true;
3421 	}
3422 
3423 	return !mnt_already_visible(ns, mnt, new_mnt_flags);
3424 }
3425 
3426 bool mnt_may_suid(struct vfsmount *mnt)
3427 {
3428 	/*
3429 	 * Foreign mounts (accessed via fchdir or through /proc
3430 	 * symlinks) are always treated as if they are nosuid.  This
3431 	 * prevents namespaces from trusting potentially unsafe
3432 	 * suid/sgid bits, file caps, or security labels that originate
3433 	 * in other namespaces.
3434 	 */
3435 	return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3436 	       current_in_userns(mnt->mnt_sb->s_user_ns);
3437 }
3438 
3439 static struct ns_common *mntns_get(struct task_struct *task)
3440 {
3441 	struct ns_common *ns = NULL;
3442 	struct nsproxy *nsproxy;
3443 
3444 	task_lock(task);
3445 	nsproxy = task->nsproxy;
3446 	if (nsproxy) {
3447 		ns = &nsproxy->mnt_ns->ns;
3448 		get_mnt_ns(to_mnt_ns(ns));
3449 	}
3450 	task_unlock(task);
3451 
3452 	return ns;
3453 }
3454 
3455 static void mntns_put(struct ns_common *ns)
3456 {
3457 	put_mnt_ns(to_mnt_ns(ns));
3458 }
3459 
3460 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
3461 {
3462 	struct fs_struct *fs = current->fs;
3463 	struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
3464 	struct path root;
3465 	int err;
3466 
3467 	if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3468 	    !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3469 	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3470 		return -EPERM;
3471 
3472 	if (fs->users != 1)
3473 		return -EINVAL;
3474 
3475 	get_mnt_ns(mnt_ns);
3476 	old_mnt_ns = nsproxy->mnt_ns;
3477 	nsproxy->mnt_ns = mnt_ns;
3478 
3479 	/* Find the root */
3480 	err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
3481 				"/", LOOKUP_DOWN, &root);
3482 	if (err) {
3483 		/* revert to old namespace */
3484 		nsproxy->mnt_ns = old_mnt_ns;
3485 		put_mnt_ns(mnt_ns);
3486 		return err;
3487 	}
3488 
3489 	put_mnt_ns(old_mnt_ns);
3490 
3491 	/* Update the pwd and root */
3492 	set_fs_pwd(fs, &root);
3493 	set_fs_root(fs, &root);
3494 
3495 	path_put(&root);
3496 	return 0;
3497 }
3498 
3499 static struct user_namespace *mntns_owner(struct ns_common *ns)
3500 {
3501 	return to_mnt_ns(ns)->user_ns;
3502 }
3503 
3504 const struct proc_ns_operations mntns_operations = {
3505 	.name		= "mnt",
3506 	.type		= CLONE_NEWNS,
3507 	.get		= mntns_get,
3508 	.put		= mntns_put,
3509 	.install	= mntns_install,
3510 	.owner		= mntns_owner,
3511 };
3512