1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/namespace.c 4 * 5 * (C) Copyright Al Viro 2000, 2001 6 * 7 * Based on code from fs/super.c, copyright Linus Torvalds and others. 8 * Heavily rewritten. 9 */ 10 11 #include <linux/syscalls.h> 12 #include <linux/export.h> 13 #include <linux/capability.h> 14 #include <linux/mnt_namespace.h> 15 #include <linux/user_namespace.h> 16 #include <linux/namei.h> 17 #include <linux/security.h> 18 #include <linux/cred.h> 19 #include <linux/idr.h> 20 #include <linux/init.h> /* init_rootfs */ 21 #include <linux/fs_struct.h> /* get_fs_root et.al. */ 22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */ 23 #include <linux/file.h> 24 #include <linux/uaccess.h> 25 #include <linux/proc_ns.h> 26 #include <linux/magic.h> 27 #include <linux/memblock.h> 28 #include <linux/proc_fs.h> 29 #include <linux/task_work.h> 30 #include <linux/sched/task.h> 31 #include <uapi/linux/mount.h> 32 #include <linux/fs_context.h> 33 #include <linux/shmem_fs.h> 34 35 #include "pnode.h" 36 #include "internal.h" 37 38 /* Maximum number of mounts in a mount namespace */ 39 unsigned int sysctl_mount_max __read_mostly = 100000; 40 41 static unsigned int m_hash_mask __read_mostly; 42 static unsigned int m_hash_shift __read_mostly; 43 static unsigned int mp_hash_mask __read_mostly; 44 static unsigned int mp_hash_shift __read_mostly; 45 46 static __initdata unsigned long mhash_entries; 47 static int __init set_mhash_entries(char *str) 48 { 49 if (!str) 50 return 0; 51 mhash_entries = simple_strtoul(str, &str, 0); 52 return 1; 53 } 54 __setup("mhash_entries=", set_mhash_entries); 55 56 static __initdata unsigned long mphash_entries; 57 static int __init set_mphash_entries(char *str) 58 { 59 if (!str) 60 return 0; 61 mphash_entries = simple_strtoul(str, &str, 0); 62 return 1; 63 } 64 __setup("mphash_entries=", set_mphash_entries); 65 66 static u64 event; 67 static DEFINE_IDA(mnt_id_ida); 68 static DEFINE_IDA(mnt_group_ida); 69 70 static struct hlist_head *mount_hashtable __read_mostly; 71 static struct hlist_head *mountpoint_hashtable __read_mostly; 72 static struct kmem_cache *mnt_cache __read_mostly; 73 static DECLARE_RWSEM(namespace_sem); 74 static HLIST_HEAD(unmounted); /* protected by namespace_sem */ 75 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */ 76 77 struct mount_kattr { 78 unsigned int attr_set; 79 unsigned int attr_clr; 80 unsigned int propagation; 81 unsigned int lookup_flags; 82 bool recurse; 83 struct user_namespace *mnt_userns; 84 }; 85 86 /* /sys/fs */ 87 struct kobject *fs_kobj; 88 EXPORT_SYMBOL_GPL(fs_kobj); 89 90 /* 91 * vfsmount lock may be taken for read to prevent changes to the 92 * vfsmount hash, ie. during mountpoint lookups or walking back 93 * up the tree. 94 * 95 * It should be taken for write in all cases where the vfsmount 96 * tree or hash is modified or when a vfsmount structure is modified. 97 */ 98 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock); 99 100 static inline void lock_mount_hash(void) 101 { 102 write_seqlock(&mount_lock); 103 } 104 105 static inline void unlock_mount_hash(void) 106 { 107 write_sequnlock(&mount_lock); 108 } 109 110 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry) 111 { 112 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); 113 tmp += ((unsigned long)dentry / L1_CACHE_BYTES); 114 tmp = tmp + (tmp >> m_hash_shift); 115 return &mount_hashtable[tmp & m_hash_mask]; 116 } 117 118 static inline struct hlist_head *mp_hash(struct dentry *dentry) 119 { 120 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES); 121 tmp = tmp + (tmp >> mp_hash_shift); 122 return &mountpoint_hashtable[tmp & mp_hash_mask]; 123 } 124 125 static int mnt_alloc_id(struct mount *mnt) 126 { 127 int res = ida_alloc(&mnt_id_ida, GFP_KERNEL); 128 129 if (res < 0) 130 return res; 131 mnt->mnt_id = res; 132 return 0; 133 } 134 135 static void mnt_free_id(struct mount *mnt) 136 { 137 ida_free(&mnt_id_ida, mnt->mnt_id); 138 } 139 140 /* 141 * Allocate a new peer group ID 142 */ 143 static int mnt_alloc_group_id(struct mount *mnt) 144 { 145 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL); 146 147 if (res < 0) 148 return res; 149 mnt->mnt_group_id = res; 150 return 0; 151 } 152 153 /* 154 * Release a peer group ID 155 */ 156 void mnt_release_group_id(struct mount *mnt) 157 { 158 ida_free(&mnt_group_ida, mnt->mnt_group_id); 159 mnt->mnt_group_id = 0; 160 } 161 162 /* 163 * vfsmount lock must be held for read 164 */ 165 static inline void mnt_add_count(struct mount *mnt, int n) 166 { 167 #ifdef CONFIG_SMP 168 this_cpu_add(mnt->mnt_pcp->mnt_count, n); 169 #else 170 preempt_disable(); 171 mnt->mnt_count += n; 172 preempt_enable(); 173 #endif 174 } 175 176 /* 177 * vfsmount lock must be held for write 178 */ 179 int mnt_get_count(struct mount *mnt) 180 { 181 #ifdef CONFIG_SMP 182 int count = 0; 183 int cpu; 184 185 for_each_possible_cpu(cpu) { 186 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count; 187 } 188 189 return count; 190 #else 191 return mnt->mnt_count; 192 #endif 193 } 194 195 static struct mount *alloc_vfsmnt(const char *name) 196 { 197 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); 198 if (mnt) { 199 int err; 200 201 err = mnt_alloc_id(mnt); 202 if (err) 203 goto out_free_cache; 204 205 if (name) { 206 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL); 207 if (!mnt->mnt_devname) 208 goto out_free_id; 209 } 210 211 #ifdef CONFIG_SMP 212 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp); 213 if (!mnt->mnt_pcp) 214 goto out_free_devname; 215 216 this_cpu_add(mnt->mnt_pcp->mnt_count, 1); 217 #else 218 mnt->mnt_count = 1; 219 mnt->mnt_writers = 0; 220 #endif 221 222 INIT_HLIST_NODE(&mnt->mnt_hash); 223 INIT_LIST_HEAD(&mnt->mnt_child); 224 INIT_LIST_HEAD(&mnt->mnt_mounts); 225 INIT_LIST_HEAD(&mnt->mnt_list); 226 INIT_LIST_HEAD(&mnt->mnt_expire); 227 INIT_LIST_HEAD(&mnt->mnt_share); 228 INIT_LIST_HEAD(&mnt->mnt_slave_list); 229 INIT_LIST_HEAD(&mnt->mnt_slave); 230 INIT_HLIST_NODE(&mnt->mnt_mp_list); 231 INIT_LIST_HEAD(&mnt->mnt_umounting); 232 INIT_HLIST_HEAD(&mnt->mnt_stuck_children); 233 mnt->mnt.mnt_userns = &init_user_ns; 234 } 235 return mnt; 236 237 #ifdef CONFIG_SMP 238 out_free_devname: 239 kfree_const(mnt->mnt_devname); 240 #endif 241 out_free_id: 242 mnt_free_id(mnt); 243 out_free_cache: 244 kmem_cache_free(mnt_cache, mnt); 245 return NULL; 246 } 247 248 /* 249 * Most r/o checks on a fs are for operations that take 250 * discrete amounts of time, like a write() or unlink(). 251 * We must keep track of when those operations start 252 * (for permission checks) and when they end, so that 253 * we can determine when writes are able to occur to 254 * a filesystem. 255 */ 256 /* 257 * __mnt_is_readonly: check whether a mount is read-only 258 * @mnt: the mount to check for its write status 259 * 260 * This shouldn't be used directly ouside of the VFS. 261 * It does not guarantee that the filesystem will stay 262 * r/w, just that it is right *now*. This can not and 263 * should not be used in place of IS_RDONLY(inode). 264 * mnt_want/drop_write() will _keep_ the filesystem 265 * r/w. 266 */ 267 bool __mnt_is_readonly(struct vfsmount *mnt) 268 { 269 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb); 270 } 271 EXPORT_SYMBOL_GPL(__mnt_is_readonly); 272 273 static inline void mnt_inc_writers(struct mount *mnt) 274 { 275 #ifdef CONFIG_SMP 276 this_cpu_inc(mnt->mnt_pcp->mnt_writers); 277 #else 278 mnt->mnt_writers++; 279 #endif 280 } 281 282 static inline void mnt_dec_writers(struct mount *mnt) 283 { 284 #ifdef CONFIG_SMP 285 this_cpu_dec(mnt->mnt_pcp->mnt_writers); 286 #else 287 mnt->mnt_writers--; 288 #endif 289 } 290 291 static unsigned int mnt_get_writers(struct mount *mnt) 292 { 293 #ifdef CONFIG_SMP 294 unsigned int count = 0; 295 int cpu; 296 297 for_each_possible_cpu(cpu) { 298 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers; 299 } 300 301 return count; 302 #else 303 return mnt->mnt_writers; 304 #endif 305 } 306 307 static int mnt_is_readonly(struct vfsmount *mnt) 308 { 309 if (mnt->mnt_sb->s_readonly_remount) 310 return 1; 311 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */ 312 smp_rmb(); 313 return __mnt_is_readonly(mnt); 314 } 315 316 /* 317 * Most r/o & frozen checks on a fs are for operations that take discrete 318 * amounts of time, like a write() or unlink(). We must keep track of when 319 * those operations start (for permission checks) and when they end, so that we 320 * can determine when writes are able to occur to a filesystem. 321 */ 322 /** 323 * __mnt_want_write - get write access to a mount without freeze protection 324 * @m: the mount on which to take a write 325 * 326 * This tells the low-level filesystem that a write is about to be performed to 327 * it, and makes sure that writes are allowed (mnt it read-write) before 328 * returning success. This operation does not protect against filesystem being 329 * frozen. When the write operation is finished, __mnt_drop_write() must be 330 * called. This is effectively a refcount. 331 */ 332 int __mnt_want_write(struct vfsmount *m) 333 { 334 struct mount *mnt = real_mount(m); 335 int ret = 0; 336 337 preempt_disable(); 338 mnt_inc_writers(mnt); 339 /* 340 * The store to mnt_inc_writers must be visible before we pass 341 * MNT_WRITE_HOLD loop below, so that the slowpath can see our 342 * incremented count after it has set MNT_WRITE_HOLD. 343 */ 344 smp_mb(); 345 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) 346 cpu_relax(); 347 /* 348 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will 349 * be set to match its requirements. So we must not load that until 350 * MNT_WRITE_HOLD is cleared. 351 */ 352 smp_rmb(); 353 if (mnt_is_readonly(m)) { 354 mnt_dec_writers(mnt); 355 ret = -EROFS; 356 } 357 preempt_enable(); 358 359 return ret; 360 } 361 362 /** 363 * mnt_want_write - get write access to a mount 364 * @m: the mount on which to take a write 365 * 366 * This tells the low-level filesystem that a write is about to be performed to 367 * it, and makes sure that writes are allowed (mount is read-write, filesystem 368 * is not frozen) before returning success. When the write operation is 369 * finished, mnt_drop_write() must be called. This is effectively a refcount. 370 */ 371 int mnt_want_write(struct vfsmount *m) 372 { 373 int ret; 374 375 sb_start_write(m->mnt_sb); 376 ret = __mnt_want_write(m); 377 if (ret) 378 sb_end_write(m->mnt_sb); 379 return ret; 380 } 381 EXPORT_SYMBOL_GPL(mnt_want_write); 382 383 /** 384 * __mnt_want_write_file - get write access to a file's mount 385 * @file: the file who's mount on which to take a write 386 * 387 * This is like __mnt_want_write, but if the file is already open for writing it 388 * skips incrementing mnt_writers (since the open file already has a reference) 389 * and instead only does the check for emergency r/o remounts. This must be 390 * paired with __mnt_drop_write_file. 391 */ 392 int __mnt_want_write_file(struct file *file) 393 { 394 if (file->f_mode & FMODE_WRITER) { 395 /* 396 * Superblock may have become readonly while there are still 397 * writable fd's, e.g. due to a fs error with errors=remount-ro 398 */ 399 if (__mnt_is_readonly(file->f_path.mnt)) 400 return -EROFS; 401 return 0; 402 } 403 return __mnt_want_write(file->f_path.mnt); 404 } 405 406 /** 407 * mnt_want_write_file - get write access to a file's mount 408 * @file: the file who's mount on which to take a write 409 * 410 * This is like mnt_want_write, but if the file is already open for writing it 411 * skips incrementing mnt_writers (since the open file already has a reference) 412 * and instead only does the freeze protection and the check for emergency r/o 413 * remounts. This must be paired with mnt_drop_write_file. 414 */ 415 int mnt_want_write_file(struct file *file) 416 { 417 int ret; 418 419 sb_start_write(file_inode(file)->i_sb); 420 ret = __mnt_want_write_file(file); 421 if (ret) 422 sb_end_write(file_inode(file)->i_sb); 423 return ret; 424 } 425 EXPORT_SYMBOL_GPL(mnt_want_write_file); 426 427 /** 428 * __mnt_drop_write - give up write access to a mount 429 * @mnt: the mount on which to give up write access 430 * 431 * Tells the low-level filesystem that we are done 432 * performing writes to it. Must be matched with 433 * __mnt_want_write() call above. 434 */ 435 void __mnt_drop_write(struct vfsmount *mnt) 436 { 437 preempt_disable(); 438 mnt_dec_writers(real_mount(mnt)); 439 preempt_enable(); 440 } 441 442 /** 443 * mnt_drop_write - give up write access to a mount 444 * @mnt: the mount on which to give up write access 445 * 446 * Tells the low-level filesystem that we are done performing writes to it and 447 * also allows filesystem to be frozen again. Must be matched with 448 * mnt_want_write() call above. 449 */ 450 void mnt_drop_write(struct vfsmount *mnt) 451 { 452 __mnt_drop_write(mnt); 453 sb_end_write(mnt->mnt_sb); 454 } 455 EXPORT_SYMBOL_GPL(mnt_drop_write); 456 457 void __mnt_drop_write_file(struct file *file) 458 { 459 if (!(file->f_mode & FMODE_WRITER)) 460 __mnt_drop_write(file->f_path.mnt); 461 } 462 463 void mnt_drop_write_file(struct file *file) 464 { 465 __mnt_drop_write_file(file); 466 sb_end_write(file_inode(file)->i_sb); 467 } 468 EXPORT_SYMBOL(mnt_drop_write_file); 469 470 static inline int mnt_hold_writers(struct mount *mnt) 471 { 472 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 473 /* 474 * After storing MNT_WRITE_HOLD, we'll read the counters. This store 475 * should be visible before we do. 476 */ 477 smp_mb(); 478 479 /* 480 * With writers on hold, if this value is zero, then there are 481 * definitely no active writers (although held writers may subsequently 482 * increment the count, they'll have to wait, and decrement it after 483 * seeing MNT_READONLY). 484 * 485 * It is OK to have counter incremented on one CPU and decremented on 486 * another: the sum will add up correctly. The danger would be when we 487 * sum up each counter, if we read a counter before it is incremented, 488 * but then read another CPU's count which it has been subsequently 489 * decremented from -- we would see more decrements than we should. 490 * MNT_WRITE_HOLD protects against this scenario, because 491 * mnt_want_write first increments count, then smp_mb, then spins on 492 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while 493 * we're counting up here. 494 */ 495 if (mnt_get_writers(mnt) > 0) 496 return -EBUSY; 497 498 return 0; 499 } 500 501 static inline void mnt_unhold_writers(struct mount *mnt) 502 { 503 /* 504 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers 505 * that become unheld will see MNT_READONLY. 506 */ 507 smp_wmb(); 508 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 509 } 510 511 static int mnt_make_readonly(struct mount *mnt) 512 { 513 int ret; 514 515 ret = mnt_hold_writers(mnt); 516 if (!ret) 517 mnt->mnt.mnt_flags |= MNT_READONLY; 518 mnt_unhold_writers(mnt); 519 return ret; 520 } 521 522 int sb_prepare_remount_readonly(struct super_block *sb) 523 { 524 struct mount *mnt; 525 int err = 0; 526 527 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */ 528 if (atomic_long_read(&sb->s_remove_count)) 529 return -EBUSY; 530 531 lock_mount_hash(); 532 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 533 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) { 534 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 535 smp_mb(); 536 if (mnt_get_writers(mnt) > 0) { 537 err = -EBUSY; 538 break; 539 } 540 } 541 } 542 if (!err && atomic_long_read(&sb->s_remove_count)) 543 err = -EBUSY; 544 545 if (!err) { 546 sb->s_readonly_remount = 1; 547 smp_wmb(); 548 } 549 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 550 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD) 551 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 552 } 553 unlock_mount_hash(); 554 555 return err; 556 } 557 558 static void free_vfsmnt(struct mount *mnt) 559 { 560 struct user_namespace *mnt_userns; 561 562 mnt_userns = mnt_user_ns(&mnt->mnt); 563 if (mnt_userns != &init_user_ns) 564 put_user_ns(mnt_userns); 565 kfree_const(mnt->mnt_devname); 566 #ifdef CONFIG_SMP 567 free_percpu(mnt->mnt_pcp); 568 #endif 569 kmem_cache_free(mnt_cache, mnt); 570 } 571 572 static void delayed_free_vfsmnt(struct rcu_head *head) 573 { 574 free_vfsmnt(container_of(head, struct mount, mnt_rcu)); 575 } 576 577 /* call under rcu_read_lock */ 578 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq) 579 { 580 struct mount *mnt; 581 if (read_seqretry(&mount_lock, seq)) 582 return 1; 583 if (bastard == NULL) 584 return 0; 585 mnt = real_mount(bastard); 586 mnt_add_count(mnt, 1); 587 smp_mb(); // see mntput_no_expire() 588 if (likely(!read_seqretry(&mount_lock, seq))) 589 return 0; 590 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) { 591 mnt_add_count(mnt, -1); 592 return 1; 593 } 594 lock_mount_hash(); 595 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) { 596 mnt_add_count(mnt, -1); 597 unlock_mount_hash(); 598 return 1; 599 } 600 unlock_mount_hash(); 601 /* caller will mntput() */ 602 return -1; 603 } 604 605 /* call under rcu_read_lock */ 606 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq) 607 { 608 int res = __legitimize_mnt(bastard, seq); 609 if (likely(!res)) 610 return true; 611 if (unlikely(res < 0)) { 612 rcu_read_unlock(); 613 mntput(bastard); 614 rcu_read_lock(); 615 } 616 return false; 617 } 618 619 /* 620 * find the first mount at @dentry on vfsmount @mnt. 621 * call under rcu_read_lock() 622 */ 623 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry) 624 { 625 struct hlist_head *head = m_hash(mnt, dentry); 626 struct mount *p; 627 628 hlist_for_each_entry_rcu(p, head, mnt_hash) 629 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) 630 return p; 631 return NULL; 632 } 633 634 /* 635 * lookup_mnt - Return the first child mount mounted at path 636 * 637 * "First" means first mounted chronologically. If you create the 638 * following mounts: 639 * 640 * mount /dev/sda1 /mnt 641 * mount /dev/sda2 /mnt 642 * mount /dev/sda3 /mnt 643 * 644 * Then lookup_mnt() on the base /mnt dentry in the root mount will 645 * return successively the root dentry and vfsmount of /dev/sda1, then 646 * /dev/sda2, then /dev/sda3, then NULL. 647 * 648 * lookup_mnt takes a reference to the found vfsmount. 649 */ 650 struct vfsmount *lookup_mnt(const struct path *path) 651 { 652 struct mount *child_mnt; 653 struct vfsmount *m; 654 unsigned seq; 655 656 rcu_read_lock(); 657 do { 658 seq = read_seqbegin(&mount_lock); 659 child_mnt = __lookup_mnt(path->mnt, path->dentry); 660 m = child_mnt ? &child_mnt->mnt : NULL; 661 } while (!legitimize_mnt(m, seq)); 662 rcu_read_unlock(); 663 return m; 664 } 665 666 static inline void lock_ns_list(struct mnt_namespace *ns) 667 { 668 spin_lock(&ns->ns_lock); 669 } 670 671 static inline void unlock_ns_list(struct mnt_namespace *ns) 672 { 673 spin_unlock(&ns->ns_lock); 674 } 675 676 static inline bool mnt_is_cursor(struct mount *mnt) 677 { 678 return mnt->mnt.mnt_flags & MNT_CURSOR; 679 } 680 681 /* 682 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the 683 * current mount namespace. 684 * 685 * The common case is dentries are not mountpoints at all and that 686 * test is handled inline. For the slow case when we are actually 687 * dealing with a mountpoint of some kind, walk through all of the 688 * mounts in the current mount namespace and test to see if the dentry 689 * is a mountpoint. 690 * 691 * The mount_hashtable is not usable in the context because we 692 * need to identify all mounts that may be in the current mount 693 * namespace not just a mount that happens to have some specified 694 * parent mount. 695 */ 696 bool __is_local_mountpoint(struct dentry *dentry) 697 { 698 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 699 struct mount *mnt; 700 bool is_covered = false; 701 702 down_read(&namespace_sem); 703 lock_ns_list(ns); 704 list_for_each_entry(mnt, &ns->list, mnt_list) { 705 if (mnt_is_cursor(mnt)) 706 continue; 707 is_covered = (mnt->mnt_mountpoint == dentry); 708 if (is_covered) 709 break; 710 } 711 unlock_ns_list(ns); 712 up_read(&namespace_sem); 713 714 return is_covered; 715 } 716 717 static struct mountpoint *lookup_mountpoint(struct dentry *dentry) 718 { 719 struct hlist_head *chain = mp_hash(dentry); 720 struct mountpoint *mp; 721 722 hlist_for_each_entry(mp, chain, m_hash) { 723 if (mp->m_dentry == dentry) { 724 mp->m_count++; 725 return mp; 726 } 727 } 728 return NULL; 729 } 730 731 static struct mountpoint *get_mountpoint(struct dentry *dentry) 732 { 733 struct mountpoint *mp, *new = NULL; 734 int ret; 735 736 if (d_mountpoint(dentry)) { 737 /* might be worth a WARN_ON() */ 738 if (d_unlinked(dentry)) 739 return ERR_PTR(-ENOENT); 740 mountpoint: 741 read_seqlock_excl(&mount_lock); 742 mp = lookup_mountpoint(dentry); 743 read_sequnlock_excl(&mount_lock); 744 if (mp) 745 goto done; 746 } 747 748 if (!new) 749 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL); 750 if (!new) 751 return ERR_PTR(-ENOMEM); 752 753 754 /* Exactly one processes may set d_mounted */ 755 ret = d_set_mounted(dentry); 756 757 /* Someone else set d_mounted? */ 758 if (ret == -EBUSY) 759 goto mountpoint; 760 761 /* The dentry is not available as a mountpoint? */ 762 mp = ERR_PTR(ret); 763 if (ret) 764 goto done; 765 766 /* Add the new mountpoint to the hash table */ 767 read_seqlock_excl(&mount_lock); 768 new->m_dentry = dget(dentry); 769 new->m_count = 1; 770 hlist_add_head(&new->m_hash, mp_hash(dentry)); 771 INIT_HLIST_HEAD(&new->m_list); 772 read_sequnlock_excl(&mount_lock); 773 774 mp = new; 775 new = NULL; 776 done: 777 kfree(new); 778 return mp; 779 } 780 781 /* 782 * vfsmount lock must be held. Additionally, the caller is responsible 783 * for serializing calls for given disposal list. 784 */ 785 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list) 786 { 787 if (!--mp->m_count) { 788 struct dentry *dentry = mp->m_dentry; 789 BUG_ON(!hlist_empty(&mp->m_list)); 790 spin_lock(&dentry->d_lock); 791 dentry->d_flags &= ~DCACHE_MOUNTED; 792 spin_unlock(&dentry->d_lock); 793 dput_to_list(dentry, list); 794 hlist_del(&mp->m_hash); 795 kfree(mp); 796 } 797 } 798 799 /* called with namespace_lock and vfsmount lock */ 800 static void put_mountpoint(struct mountpoint *mp) 801 { 802 __put_mountpoint(mp, &ex_mountpoints); 803 } 804 805 static inline int check_mnt(struct mount *mnt) 806 { 807 return mnt->mnt_ns == current->nsproxy->mnt_ns; 808 } 809 810 /* 811 * vfsmount lock must be held for write 812 */ 813 static void touch_mnt_namespace(struct mnt_namespace *ns) 814 { 815 if (ns) { 816 ns->event = ++event; 817 wake_up_interruptible(&ns->poll); 818 } 819 } 820 821 /* 822 * vfsmount lock must be held for write 823 */ 824 static void __touch_mnt_namespace(struct mnt_namespace *ns) 825 { 826 if (ns && ns->event != event) { 827 ns->event = event; 828 wake_up_interruptible(&ns->poll); 829 } 830 } 831 832 /* 833 * vfsmount lock must be held for write 834 */ 835 static struct mountpoint *unhash_mnt(struct mount *mnt) 836 { 837 struct mountpoint *mp; 838 mnt->mnt_parent = mnt; 839 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 840 list_del_init(&mnt->mnt_child); 841 hlist_del_init_rcu(&mnt->mnt_hash); 842 hlist_del_init(&mnt->mnt_mp_list); 843 mp = mnt->mnt_mp; 844 mnt->mnt_mp = NULL; 845 return mp; 846 } 847 848 /* 849 * vfsmount lock must be held for write 850 */ 851 static void umount_mnt(struct mount *mnt) 852 { 853 put_mountpoint(unhash_mnt(mnt)); 854 } 855 856 /* 857 * vfsmount lock must be held for write 858 */ 859 void mnt_set_mountpoint(struct mount *mnt, 860 struct mountpoint *mp, 861 struct mount *child_mnt) 862 { 863 mp->m_count++; 864 mnt_add_count(mnt, 1); /* essentially, that's mntget */ 865 child_mnt->mnt_mountpoint = mp->m_dentry; 866 child_mnt->mnt_parent = mnt; 867 child_mnt->mnt_mp = mp; 868 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list); 869 } 870 871 static void __attach_mnt(struct mount *mnt, struct mount *parent) 872 { 873 hlist_add_head_rcu(&mnt->mnt_hash, 874 m_hash(&parent->mnt, mnt->mnt_mountpoint)); 875 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 876 } 877 878 /* 879 * vfsmount lock must be held for write 880 */ 881 static void attach_mnt(struct mount *mnt, 882 struct mount *parent, 883 struct mountpoint *mp) 884 { 885 mnt_set_mountpoint(parent, mp, mnt); 886 __attach_mnt(mnt, parent); 887 } 888 889 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt) 890 { 891 struct mountpoint *old_mp = mnt->mnt_mp; 892 struct mount *old_parent = mnt->mnt_parent; 893 894 list_del_init(&mnt->mnt_child); 895 hlist_del_init(&mnt->mnt_mp_list); 896 hlist_del_init_rcu(&mnt->mnt_hash); 897 898 attach_mnt(mnt, parent, mp); 899 900 put_mountpoint(old_mp); 901 mnt_add_count(old_parent, -1); 902 } 903 904 /* 905 * vfsmount lock must be held for write 906 */ 907 static void commit_tree(struct mount *mnt) 908 { 909 struct mount *parent = mnt->mnt_parent; 910 struct mount *m; 911 LIST_HEAD(head); 912 struct mnt_namespace *n = parent->mnt_ns; 913 914 BUG_ON(parent == mnt); 915 916 list_add_tail(&head, &mnt->mnt_list); 917 list_for_each_entry(m, &head, mnt_list) 918 m->mnt_ns = n; 919 920 list_splice(&head, n->list.prev); 921 922 n->mounts += n->pending_mounts; 923 n->pending_mounts = 0; 924 925 __attach_mnt(mnt, parent); 926 touch_mnt_namespace(n); 927 } 928 929 static struct mount *next_mnt(struct mount *p, struct mount *root) 930 { 931 struct list_head *next = p->mnt_mounts.next; 932 if (next == &p->mnt_mounts) { 933 while (1) { 934 if (p == root) 935 return NULL; 936 next = p->mnt_child.next; 937 if (next != &p->mnt_parent->mnt_mounts) 938 break; 939 p = p->mnt_parent; 940 } 941 } 942 return list_entry(next, struct mount, mnt_child); 943 } 944 945 static struct mount *skip_mnt_tree(struct mount *p) 946 { 947 struct list_head *prev = p->mnt_mounts.prev; 948 while (prev != &p->mnt_mounts) { 949 p = list_entry(prev, struct mount, mnt_child); 950 prev = p->mnt_mounts.prev; 951 } 952 return p; 953 } 954 955 /** 956 * vfs_create_mount - Create a mount for a configured superblock 957 * @fc: The configuration context with the superblock attached 958 * 959 * Create a mount to an already configured superblock. If necessary, the 960 * caller should invoke vfs_get_tree() before calling this. 961 * 962 * Note that this does not attach the mount to anything. 963 */ 964 struct vfsmount *vfs_create_mount(struct fs_context *fc) 965 { 966 struct mount *mnt; 967 968 if (!fc->root) 969 return ERR_PTR(-EINVAL); 970 971 mnt = alloc_vfsmnt(fc->source ?: "none"); 972 if (!mnt) 973 return ERR_PTR(-ENOMEM); 974 975 if (fc->sb_flags & SB_KERNMOUNT) 976 mnt->mnt.mnt_flags = MNT_INTERNAL; 977 978 atomic_inc(&fc->root->d_sb->s_active); 979 mnt->mnt.mnt_sb = fc->root->d_sb; 980 mnt->mnt.mnt_root = dget(fc->root); 981 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 982 mnt->mnt_parent = mnt; 983 984 lock_mount_hash(); 985 list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts); 986 unlock_mount_hash(); 987 return &mnt->mnt; 988 } 989 EXPORT_SYMBOL(vfs_create_mount); 990 991 struct vfsmount *fc_mount(struct fs_context *fc) 992 { 993 int err = vfs_get_tree(fc); 994 if (!err) { 995 up_write(&fc->root->d_sb->s_umount); 996 return vfs_create_mount(fc); 997 } 998 return ERR_PTR(err); 999 } 1000 EXPORT_SYMBOL(fc_mount); 1001 1002 struct vfsmount *vfs_kern_mount(struct file_system_type *type, 1003 int flags, const char *name, 1004 void *data) 1005 { 1006 struct fs_context *fc; 1007 struct vfsmount *mnt; 1008 int ret = 0; 1009 1010 if (!type) 1011 return ERR_PTR(-EINVAL); 1012 1013 fc = fs_context_for_mount(type, flags); 1014 if (IS_ERR(fc)) 1015 return ERR_CAST(fc); 1016 1017 if (name) 1018 ret = vfs_parse_fs_string(fc, "source", 1019 name, strlen(name)); 1020 if (!ret) 1021 ret = parse_monolithic_mount_data(fc, data); 1022 if (!ret) 1023 mnt = fc_mount(fc); 1024 else 1025 mnt = ERR_PTR(ret); 1026 1027 put_fs_context(fc); 1028 return mnt; 1029 } 1030 EXPORT_SYMBOL_GPL(vfs_kern_mount); 1031 1032 struct vfsmount * 1033 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type, 1034 const char *name, void *data) 1035 { 1036 /* Until it is worked out how to pass the user namespace 1037 * through from the parent mount to the submount don't support 1038 * unprivileged mounts with submounts. 1039 */ 1040 if (mountpoint->d_sb->s_user_ns != &init_user_ns) 1041 return ERR_PTR(-EPERM); 1042 1043 return vfs_kern_mount(type, SB_SUBMOUNT, name, data); 1044 } 1045 EXPORT_SYMBOL_GPL(vfs_submount); 1046 1047 static struct mount *clone_mnt(struct mount *old, struct dentry *root, 1048 int flag) 1049 { 1050 struct super_block *sb = old->mnt.mnt_sb; 1051 struct mount *mnt; 1052 int err; 1053 1054 mnt = alloc_vfsmnt(old->mnt_devname); 1055 if (!mnt) 1056 return ERR_PTR(-ENOMEM); 1057 1058 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE)) 1059 mnt->mnt_group_id = 0; /* not a peer of original */ 1060 else 1061 mnt->mnt_group_id = old->mnt_group_id; 1062 1063 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) { 1064 err = mnt_alloc_group_id(mnt); 1065 if (err) 1066 goto out_free; 1067 } 1068 1069 mnt->mnt.mnt_flags = old->mnt.mnt_flags; 1070 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL); 1071 1072 atomic_inc(&sb->s_active); 1073 mnt->mnt.mnt_userns = mnt_user_ns(&old->mnt); 1074 if (mnt->mnt.mnt_userns != &init_user_ns) 1075 mnt->mnt.mnt_userns = get_user_ns(mnt->mnt.mnt_userns); 1076 mnt->mnt.mnt_sb = sb; 1077 mnt->mnt.mnt_root = dget(root); 1078 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 1079 mnt->mnt_parent = mnt; 1080 lock_mount_hash(); 1081 list_add_tail(&mnt->mnt_instance, &sb->s_mounts); 1082 unlock_mount_hash(); 1083 1084 if ((flag & CL_SLAVE) || 1085 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) { 1086 list_add(&mnt->mnt_slave, &old->mnt_slave_list); 1087 mnt->mnt_master = old; 1088 CLEAR_MNT_SHARED(mnt); 1089 } else if (!(flag & CL_PRIVATE)) { 1090 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old)) 1091 list_add(&mnt->mnt_share, &old->mnt_share); 1092 if (IS_MNT_SLAVE(old)) 1093 list_add(&mnt->mnt_slave, &old->mnt_slave); 1094 mnt->mnt_master = old->mnt_master; 1095 } else { 1096 CLEAR_MNT_SHARED(mnt); 1097 } 1098 if (flag & CL_MAKE_SHARED) 1099 set_mnt_shared(mnt); 1100 1101 /* stick the duplicate mount on the same expiry list 1102 * as the original if that was on one */ 1103 if (flag & CL_EXPIRE) { 1104 if (!list_empty(&old->mnt_expire)) 1105 list_add(&mnt->mnt_expire, &old->mnt_expire); 1106 } 1107 1108 return mnt; 1109 1110 out_free: 1111 mnt_free_id(mnt); 1112 free_vfsmnt(mnt); 1113 return ERR_PTR(err); 1114 } 1115 1116 static void cleanup_mnt(struct mount *mnt) 1117 { 1118 struct hlist_node *p; 1119 struct mount *m; 1120 /* 1121 * The warning here probably indicates that somebody messed 1122 * up a mnt_want/drop_write() pair. If this happens, the 1123 * filesystem was probably unable to make r/w->r/o transitions. 1124 * The locking used to deal with mnt_count decrement provides barriers, 1125 * so mnt_get_writers() below is safe. 1126 */ 1127 WARN_ON(mnt_get_writers(mnt)); 1128 if (unlikely(mnt->mnt_pins.first)) 1129 mnt_pin_kill(mnt); 1130 hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) { 1131 hlist_del(&m->mnt_umount); 1132 mntput(&m->mnt); 1133 } 1134 fsnotify_vfsmount_delete(&mnt->mnt); 1135 dput(mnt->mnt.mnt_root); 1136 deactivate_super(mnt->mnt.mnt_sb); 1137 mnt_free_id(mnt); 1138 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt); 1139 } 1140 1141 static void __cleanup_mnt(struct rcu_head *head) 1142 { 1143 cleanup_mnt(container_of(head, struct mount, mnt_rcu)); 1144 } 1145 1146 static LLIST_HEAD(delayed_mntput_list); 1147 static void delayed_mntput(struct work_struct *unused) 1148 { 1149 struct llist_node *node = llist_del_all(&delayed_mntput_list); 1150 struct mount *m, *t; 1151 1152 llist_for_each_entry_safe(m, t, node, mnt_llist) 1153 cleanup_mnt(m); 1154 } 1155 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput); 1156 1157 static void mntput_no_expire(struct mount *mnt) 1158 { 1159 LIST_HEAD(list); 1160 int count; 1161 1162 rcu_read_lock(); 1163 if (likely(READ_ONCE(mnt->mnt_ns))) { 1164 /* 1165 * Since we don't do lock_mount_hash() here, 1166 * ->mnt_ns can change under us. However, if it's 1167 * non-NULL, then there's a reference that won't 1168 * be dropped until after an RCU delay done after 1169 * turning ->mnt_ns NULL. So if we observe it 1170 * non-NULL under rcu_read_lock(), the reference 1171 * we are dropping is not the final one. 1172 */ 1173 mnt_add_count(mnt, -1); 1174 rcu_read_unlock(); 1175 return; 1176 } 1177 lock_mount_hash(); 1178 /* 1179 * make sure that if __legitimize_mnt() has not seen us grab 1180 * mount_lock, we'll see their refcount increment here. 1181 */ 1182 smp_mb(); 1183 mnt_add_count(mnt, -1); 1184 count = mnt_get_count(mnt); 1185 if (count != 0) { 1186 WARN_ON(count < 0); 1187 rcu_read_unlock(); 1188 unlock_mount_hash(); 1189 return; 1190 } 1191 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) { 1192 rcu_read_unlock(); 1193 unlock_mount_hash(); 1194 return; 1195 } 1196 mnt->mnt.mnt_flags |= MNT_DOOMED; 1197 rcu_read_unlock(); 1198 1199 list_del(&mnt->mnt_instance); 1200 1201 if (unlikely(!list_empty(&mnt->mnt_mounts))) { 1202 struct mount *p, *tmp; 1203 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) { 1204 __put_mountpoint(unhash_mnt(p), &list); 1205 hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children); 1206 } 1207 } 1208 unlock_mount_hash(); 1209 shrink_dentry_list(&list); 1210 1211 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) { 1212 struct task_struct *task = current; 1213 if (likely(!(task->flags & PF_KTHREAD))) { 1214 init_task_work(&mnt->mnt_rcu, __cleanup_mnt); 1215 if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME)) 1216 return; 1217 } 1218 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list)) 1219 schedule_delayed_work(&delayed_mntput_work, 1); 1220 return; 1221 } 1222 cleanup_mnt(mnt); 1223 } 1224 1225 void mntput(struct vfsmount *mnt) 1226 { 1227 if (mnt) { 1228 struct mount *m = real_mount(mnt); 1229 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */ 1230 if (unlikely(m->mnt_expiry_mark)) 1231 m->mnt_expiry_mark = 0; 1232 mntput_no_expire(m); 1233 } 1234 } 1235 EXPORT_SYMBOL(mntput); 1236 1237 struct vfsmount *mntget(struct vfsmount *mnt) 1238 { 1239 if (mnt) 1240 mnt_add_count(real_mount(mnt), 1); 1241 return mnt; 1242 } 1243 EXPORT_SYMBOL(mntget); 1244 1245 /** 1246 * path_is_mountpoint() - Check if path is a mount in the current namespace. 1247 * @path: path to check 1248 * 1249 * d_mountpoint() can only be used reliably to establish if a dentry is 1250 * not mounted in any namespace and that common case is handled inline. 1251 * d_mountpoint() isn't aware of the possibility there may be multiple 1252 * mounts using a given dentry in a different namespace. This function 1253 * checks if the passed in path is a mountpoint rather than the dentry 1254 * alone. 1255 */ 1256 bool path_is_mountpoint(const struct path *path) 1257 { 1258 unsigned seq; 1259 bool res; 1260 1261 if (!d_mountpoint(path->dentry)) 1262 return false; 1263 1264 rcu_read_lock(); 1265 do { 1266 seq = read_seqbegin(&mount_lock); 1267 res = __path_is_mountpoint(path); 1268 } while (read_seqretry(&mount_lock, seq)); 1269 rcu_read_unlock(); 1270 1271 return res; 1272 } 1273 EXPORT_SYMBOL(path_is_mountpoint); 1274 1275 struct vfsmount *mnt_clone_internal(const struct path *path) 1276 { 1277 struct mount *p; 1278 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE); 1279 if (IS_ERR(p)) 1280 return ERR_CAST(p); 1281 p->mnt.mnt_flags |= MNT_INTERNAL; 1282 return &p->mnt; 1283 } 1284 1285 #ifdef CONFIG_PROC_FS 1286 static struct mount *mnt_list_next(struct mnt_namespace *ns, 1287 struct list_head *p) 1288 { 1289 struct mount *mnt, *ret = NULL; 1290 1291 lock_ns_list(ns); 1292 list_for_each_continue(p, &ns->list) { 1293 mnt = list_entry(p, typeof(*mnt), mnt_list); 1294 if (!mnt_is_cursor(mnt)) { 1295 ret = mnt; 1296 break; 1297 } 1298 } 1299 unlock_ns_list(ns); 1300 1301 return ret; 1302 } 1303 1304 /* iterator; we want it to have access to namespace_sem, thus here... */ 1305 static void *m_start(struct seq_file *m, loff_t *pos) 1306 { 1307 struct proc_mounts *p = m->private; 1308 struct list_head *prev; 1309 1310 down_read(&namespace_sem); 1311 if (!*pos) { 1312 prev = &p->ns->list; 1313 } else { 1314 prev = &p->cursor.mnt_list; 1315 1316 /* Read after we'd reached the end? */ 1317 if (list_empty(prev)) 1318 return NULL; 1319 } 1320 1321 return mnt_list_next(p->ns, prev); 1322 } 1323 1324 static void *m_next(struct seq_file *m, void *v, loff_t *pos) 1325 { 1326 struct proc_mounts *p = m->private; 1327 struct mount *mnt = v; 1328 1329 ++*pos; 1330 return mnt_list_next(p->ns, &mnt->mnt_list); 1331 } 1332 1333 static void m_stop(struct seq_file *m, void *v) 1334 { 1335 struct proc_mounts *p = m->private; 1336 struct mount *mnt = v; 1337 1338 lock_ns_list(p->ns); 1339 if (mnt) 1340 list_move_tail(&p->cursor.mnt_list, &mnt->mnt_list); 1341 else 1342 list_del_init(&p->cursor.mnt_list); 1343 unlock_ns_list(p->ns); 1344 up_read(&namespace_sem); 1345 } 1346 1347 static int m_show(struct seq_file *m, void *v) 1348 { 1349 struct proc_mounts *p = m->private; 1350 struct mount *r = v; 1351 return p->show(m, &r->mnt); 1352 } 1353 1354 const struct seq_operations mounts_op = { 1355 .start = m_start, 1356 .next = m_next, 1357 .stop = m_stop, 1358 .show = m_show, 1359 }; 1360 1361 void mnt_cursor_del(struct mnt_namespace *ns, struct mount *cursor) 1362 { 1363 down_read(&namespace_sem); 1364 lock_ns_list(ns); 1365 list_del(&cursor->mnt_list); 1366 unlock_ns_list(ns); 1367 up_read(&namespace_sem); 1368 } 1369 #endif /* CONFIG_PROC_FS */ 1370 1371 /** 1372 * may_umount_tree - check if a mount tree is busy 1373 * @m: root of mount tree 1374 * 1375 * This is called to check if a tree of mounts has any 1376 * open files, pwds, chroots or sub mounts that are 1377 * busy. 1378 */ 1379 int may_umount_tree(struct vfsmount *m) 1380 { 1381 struct mount *mnt = real_mount(m); 1382 int actual_refs = 0; 1383 int minimum_refs = 0; 1384 struct mount *p; 1385 BUG_ON(!m); 1386 1387 /* write lock needed for mnt_get_count */ 1388 lock_mount_hash(); 1389 for (p = mnt; p; p = next_mnt(p, mnt)) { 1390 actual_refs += mnt_get_count(p); 1391 minimum_refs += 2; 1392 } 1393 unlock_mount_hash(); 1394 1395 if (actual_refs > minimum_refs) 1396 return 0; 1397 1398 return 1; 1399 } 1400 1401 EXPORT_SYMBOL(may_umount_tree); 1402 1403 /** 1404 * may_umount - check if a mount point is busy 1405 * @mnt: root of mount 1406 * 1407 * This is called to check if a mount point has any 1408 * open files, pwds, chroots or sub mounts. If the 1409 * mount has sub mounts this will return busy 1410 * regardless of whether the sub mounts are busy. 1411 * 1412 * Doesn't take quota and stuff into account. IOW, in some cases it will 1413 * give false negatives. The main reason why it's here is that we need 1414 * a non-destructive way to look for easily umountable filesystems. 1415 */ 1416 int may_umount(struct vfsmount *mnt) 1417 { 1418 int ret = 1; 1419 down_read(&namespace_sem); 1420 lock_mount_hash(); 1421 if (propagate_mount_busy(real_mount(mnt), 2)) 1422 ret = 0; 1423 unlock_mount_hash(); 1424 up_read(&namespace_sem); 1425 return ret; 1426 } 1427 1428 EXPORT_SYMBOL(may_umount); 1429 1430 static void namespace_unlock(void) 1431 { 1432 struct hlist_head head; 1433 struct hlist_node *p; 1434 struct mount *m; 1435 LIST_HEAD(list); 1436 1437 hlist_move_list(&unmounted, &head); 1438 list_splice_init(&ex_mountpoints, &list); 1439 1440 up_write(&namespace_sem); 1441 1442 shrink_dentry_list(&list); 1443 1444 if (likely(hlist_empty(&head))) 1445 return; 1446 1447 synchronize_rcu_expedited(); 1448 1449 hlist_for_each_entry_safe(m, p, &head, mnt_umount) { 1450 hlist_del(&m->mnt_umount); 1451 mntput(&m->mnt); 1452 } 1453 } 1454 1455 static inline void namespace_lock(void) 1456 { 1457 down_write(&namespace_sem); 1458 } 1459 1460 enum umount_tree_flags { 1461 UMOUNT_SYNC = 1, 1462 UMOUNT_PROPAGATE = 2, 1463 UMOUNT_CONNECTED = 4, 1464 }; 1465 1466 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how) 1467 { 1468 /* Leaving mounts connected is only valid for lazy umounts */ 1469 if (how & UMOUNT_SYNC) 1470 return true; 1471 1472 /* A mount without a parent has nothing to be connected to */ 1473 if (!mnt_has_parent(mnt)) 1474 return true; 1475 1476 /* Because the reference counting rules change when mounts are 1477 * unmounted and connected, umounted mounts may not be 1478 * connected to mounted mounts. 1479 */ 1480 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT)) 1481 return true; 1482 1483 /* Has it been requested that the mount remain connected? */ 1484 if (how & UMOUNT_CONNECTED) 1485 return false; 1486 1487 /* Is the mount locked such that it needs to remain connected? */ 1488 if (IS_MNT_LOCKED(mnt)) 1489 return false; 1490 1491 /* By default disconnect the mount */ 1492 return true; 1493 } 1494 1495 /* 1496 * mount_lock must be held 1497 * namespace_sem must be held for write 1498 */ 1499 static void umount_tree(struct mount *mnt, enum umount_tree_flags how) 1500 { 1501 LIST_HEAD(tmp_list); 1502 struct mount *p; 1503 1504 if (how & UMOUNT_PROPAGATE) 1505 propagate_mount_unlock(mnt); 1506 1507 /* Gather the mounts to umount */ 1508 for (p = mnt; p; p = next_mnt(p, mnt)) { 1509 p->mnt.mnt_flags |= MNT_UMOUNT; 1510 list_move(&p->mnt_list, &tmp_list); 1511 } 1512 1513 /* Hide the mounts from mnt_mounts */ 1514 list_for_each_entry(p, &tmp_list, mnt_list) { 1515 list_del_init(&p->mnt_child); 1516 } 1517 1518 /* Add propogated mounts to the tmp_list */ 1519 if (how & UMOUNT_PROPAGATE) 1520 propagate_umount(&tmp_list); 1521 1522 while (!list_empty(&tmp_list)) { 1523 struct mnt_namespace *ns; 1524 bool disconnect; 1525 p = list_first_entry(&tmp_list, struct mount, mnt_list); 1526 list_del_init(&p->mnt_expire); 1527 list_del_init(&p->mnt_list); 1528 ns = p->mnt_ns; 1529 if (ns) { 1530 ns->mounts--; 1531 __touch_mnt_namespace(ns); 1532 } 1533 p->mnt_ns = NULL; 1534 if (how & UMOUNT_SYNC) 1535 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT; 1536 1537 disconnect = disconnect_mount(p, how); 1538 if (mnt_has_parent(p)) { 1539 mnt_add_count(p->mnt_parent, -1); 1540 if (!disconnect) { 1541 /* Don't forget about p */ 1542 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts); 1543 } else { 1544 umount_mnt(p); 1545 } 1546 } 1547 change_mnt_propagation(p, MS_PRIVATE); 1548 if (disconnect) 1549 hlist_add_head(&p->mnt_umount, &unmounted); 1550 } 1551 } 1552 1553 static void shrink_submounts(struct mount *mnt); 1554 1555 static int do_umount_root(struct super_block *sb) 1556 { 1557 int ret = 0; 1558 1559 down_write(&sb->s_umount); 1560 if (!sb_rdonly(sb)) { 1561 struct fs_context *fc; 1562 1563 fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY, 1564 SB_RDONLY); 1565 if (IS_ERR(fc)) { 1566 ret = PTR_ERR(fc); 1567 } else { 1568 ret = parse_monolithic_mount_data(fc, NULL); 1569 if (!ret) 1570 ret = reconfigure_super(fc); 1571 put_fs_context(fc); 1572 } 1573 } 1574 up_write(&sb->s_umount); 1575 return ret; 1576 } 1577 1578 static int do_umount(struct mount *mnt, int flags) 1579 { 1580 struct super_block *sb = mnt->mnt.mnt_sb; 1581 int retval; 1582 1583 retval = security_sb_umount(&mnt->mnt, flags); 1584 if (retval) 1585 return retval; 1586 1587 /* 1588 * Allow userspace to request a mountpoint be expired rather than 1589 * unmounting unconditionally. Unmount only happens if: 1590 * (1) the mark is already set (the mark is cleared by mntput()) 1591 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] 1592 */ 1593 if (flags & MNT_EXPIRE) { 1594 if (&mnt->mnt == current->fs->root.mnt || 1595 flags & (MNT_FORCE | MNT_DETACH)) 1596 return -EINVAL; 1597 1598 /* 1599 * probably don't strictly need the lock here if we examined 1600 * all race cases, but it's a slowpath. 1601 */ 1602 lock_mount_hash(); 1603 if (mnt_get_count(mnt) != 2) { 1604 unlock_mount_hash(); 1605 return -EBUSY; 1606 } 1607 unlock_mount_hash(); 1608 1609 if (!xchg(&mnt->mnt_expiry_mark, 1)) 1610 return -EAGAIN; 1611 } 1612 1613 /* 1614 * If we may have to abort operations to get out of this 1615 * mount, and they will themselves hold resources we must 1616 * allow the fs to do things. In the Unix tradition of 1617 * 'Gee thats tricky lets do it in userspace' the umount_begin 1618 * might fail to complete on the first run through as other tasks 1619 * must return, and the like. Thats for the mount program to worry 1620 * about for the moment. 1621 */ 1622 1623 if (flags & MNT_FORCE && sb->s_op->umount_begin) { 1624 sb->s_op->umount_begin(sb); 1625 } 1626 1627 /* 1628 * No sense to grab the lock for this test, but test itself looks 1629 * somewhat bogus. Suggestions for better replacement? 1630 * Ho-hum... In principle, we might treat that as umount + switch 1631 * to rootfs. GC would eventually take care of the old vfsmount. 1632 * Actually it makes sense, especially if rootfs would contain a 1633 * /reboot - static binary that would close all descriptors and 1634 * call reboot(9). Then init(8) could umount root and exec /reboot. 1635 */ 1636 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) { 1637 /* 1638 * Special case for "unmounting" root ... 1639 * we just try to remount it readonly. 1640 */ 1641 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) 1642 return -EPERM; 1643 return do_umount_root(sb); 1644 } 1645 1646 namespace_lock(); 1647 lock_mount_hash(); 1648 1649 /* Recheck MNT_LOCKED with the locks held */ 1650 retval = -EINVAL; 1651 if (mnt->mnt.mnt_flags & MNT_LOCKED) 1652 goto out; 1653 1654 event++; 1655 if (flags & MNT_DETACH) { 1656 if (!list_empty(&mnt->mnt_list)) 1657 umount_tree(mnt, UMOUNT_PROPAGATE); 1658 retval = 0; 1659 } else { 1660 shrink_submounts(mnt); 1661 retval = -EBUSY; 1662 if (!propagate_mount_busy(mnt, 2)) { 1663 if (!list_empty(&mnt->mnt_list)) 1664 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 1665 retval = 0; 1666 } 1667 } 1668 out: 1669 unlock_mount_hash(); 1670 namespace_unlock(); 1671 return retval; 1672 } 1673 1674 /* 1675 * __detach_mounts - lazily unmount all mounts on the specified dentry 1676 * 1677 * During unlink, rmdir, and d_drop it is possible to loose the path 1678 * to an existing mountpoint, and wind up leaking the mount. 1679 * detach_mounts allows lazily unmounting those mounts instead of 1680 * leaking them. 1681 * 1682 * The caller may hold dentry->d_inode->i_mutex. 1683 */ 1684 void __detach_mounts(struct dentry *dentry) 1685 { 1686 struct mountpoint *mp; 1687 struct mount *mnt; 1688 1689 namespace_lock(); 1690 lock_mount_hash(); 1691 mp = lookup_mountpoint(dentry); 1692 if (!mp) 1693 goto out_unlock; 1694 1695 event++; 1696 while (!hlist_empty(&mp->m_list)) { 1697 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list); 1698 if (mnt->mnt.mnt_flags & MNT_UMOUNT) { 1699 umount_mnt(mnt); 1700 hlist_add_head(&mnt->mnt_umount, &unmounted); 1701 } 1702 else umount_tree(mnt, UMOUNT_CONNECTED); 1703 } 1704 put_mountpoint(mp); 1705 out_unlock: 1706 unlock_mount_hash(); 1707 namespace_unlock(); 1708 } 1709 1710 /* 1711 * Is the caller allowed to modify his namespace? 1712 */ 1713 static inline bool may_mount(void) 1714 { 1715 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN); 1716 } 1717 1718 #ifdef CONFIG_MANDATORY_FILE_LOCKING 1719 static inline bool may_mandlock(void) 1720 { 1721 return capable(CAP_SYS_ADMIN); 1722 } 1723 #else 1724 static inline bool may_mandlock(void) 1725 { 1726 pr_warn("VFS: \"mand\" mount option not supported"); 1727 return false; 1728 } 1729 #endif 1730 1731 static int can_umount(const struct path *path, int flags) 1732 { 1733 struct mount *mnt = real_mount(path->mnt); 1734 1735 if (!may_mount()) 1736 return -EPERM; 1737 if (path->dentry != path->mnt->mnt_root) 1738 return -EINVAL; 1739 if (!check_mnt(mnt)) 1740 return -EINVAL; 1741 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */ 1742 return -EINVAL; 1743 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN)) 1744 return -EPERM; 1745 return 0; 1746 } 1747 1748 // caller is responsible for flags being sane 1749 int path_umount(struct path *path, int flags) 1750 { 1751 struct mount *mnt = real_mount(path->mnt); 1752 int ret; 1753 1754 ret = can_umount(path, flags); 1755 if (!ret) 1756 ret = do_umount(mnt, flags); 1757 1758 /* we mustn't call path_put() as that would clear mnt_expiry_mark */ 1759 dput(path->dentry); 1760 mntput_no_expire(mnt); 1761 return ret; 1762 } 1763 1764 static int ksys_umount(char __user *name, int flags) 1765 { 1766 int lookup_flags = LOOKUP_MOUNTPOINT; 1767 struct path path; 1768 int ret; 1769 1770 // basic validity checks done first 1771 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW)) 1772 return -EINVAL; 1773 1774 if (!(flags & UMOUNT_NOFOLLOW)) 1775 lookup_flags |= LOOKUP_FOLLOW; 1776 ret = user_path_at(AT_FDCWD, name, lookup_flags, &path); 1777 if (ret) 1778 return ret; 1779 return path_umount(&path, flags); 1780 } 1781 1782 SYSCALL_DEFINE2(umount, char __user *, name, int, flags) 1783 { 1784 return ksys_umount(name, flags); 1785 } 1786 1787 #ifdef __ARCH_WANT_SYS_OLDUMOUNT 1788 1789 /* 1790 * The 2.0 compatible umount. No flags. 1791 */ 1792 SYSCALL_DEFINE1(oldumount, char __user *, name) 1793 { 1794 return ksys_umount(name, 0); 1795 } 1796 1797 #endif 1798 1799 static bool is_mnt_ns_file(struct dentry *dentry) 1800 { 1801 /* Is this a proxy for a mount namespace? */ 1802 return dentry->d_op == &ns_dentry_operations && 1803 dentry->d_fsdata == &mntns_operations; 1804 } 1805 1806 static struct mnt_namespace *to_mnt_ns(struct ns_common *ns) 1807 { 1808 return container_of(ns, struct mnt_namespace, ns); 1809 } 1810 1811 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt) 1812 { 1813 return &mnt->ns; 1814 } 1815 1816 static bool mnt_ns_loop(struct dentry *dentry) 1817 { 1818 /* Could bind mounting the mount namespace inode cause a 1819 * mount namespace loop? 1820 */ 1821 struct mnt_namespace *mnt_ns; 1822 if (!is_mnt_ns_file(dentry)) 1823 return false; 1824 1825 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode)); 1826 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq; 1827 } 1828 1829 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry, 1830 int flag) 1831 { 1832 struct mount *res, *p, *q, *r, *parent; 1833 1834 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt)) 1835 return ERR_PTR(-EINVAL); 1836 1837 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry)) 1838 return ERR_PTR(-EINVAL); 1839 1840 res = q = clone_mnt(mnt, dentry, flag); 1841 if (IS_ERR(q)) 1842 return q; 1843 1844 q->mnt_mountpoint = mnt->mnt_mountpoint; 1845 1846 p = mnt; 1847 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) { 1848 struct mount *s; 1849 if (!is_subdir(r->mnt_mountpoint, dentry)) 1850 continue; 1851 1852 for (s = r; s; s = next_mnt(s, r)) { 1853 if (!(flag & CL_COPY_UNBINDABLE) && 1854 IS_MNT_UNBINDABLE(s)) { 1855 if (s->mnt.mnt_flags & MNT_LOCKED) { 1856 /* Both unbindable and locked. */ 1857 q = ERR_PTR(-EPERM); 1858 goto out; 1859 } else { 1860 s = skip_mnt_tree(s); 1861 continue; 1862 } 1863 } 1864 if (!(flag & CL_COPY_MNT_NS_FILE) && 1865 is_mnt_ns_file(s->mnt.mnt_root)) { 1866 s = skip_mnt_tree(s); 1867 continue; 1868 } 1869 while (p != s->mnt_parent) { 1870 p = p->mnt_parent; 1871 q = q->mnt_parent; 1872 } 1873 p = s; 1874 parent = q; 1875 q = clone_mnt(p, p->mnt.mnt_root, flag); 1876 if (IS_ERR(q)) 1877 goto out; 1878 lock_mount_hash(); 1879 list_add_tail(&q->mnt_list, &res->mnt_list); 1880 attach_mnt(q, parent, p->mnt_mp); 1881 unlock_mount_hash(); 1882 } 1883 } 1884 return res; 1885 out: 1886 if (res) { 1887 lock_mount_hash(); 1888 umount_tree(res, UMOUNT_SYNC); 1889 unlock_mount_hash(); 1890 } 1891 return q; 1892 } 1893 1894 /* Caller should check returned pointer for errors */ 1895 1896 struct vfsmount *collect_mounts(const struct path *path) 1897 { 1898 struct mount *tree; 1899 namespace_lock(); 1900 if (!check_mnt(real_mount(path->mnt))) 1901 tree = ERR_PTR(-EINVAL); 1902 else 1903 tree = copy_tree(real_mount(path->mnt), path->dentry, 1904 CL_COPY_ALL | CL_PRIVATE); 1905 namespace_unlock(); 1906 if (IS_ERR(tree)) 1907 return ERR_CAST(tree); 1908 return &tree->mnt; 1909 } 1910 1911 static void free_mnt_ns(struct mnt_namespace *); 1912 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool); 1913 1914 void dissolve_on_fput(struct vfsmount *mnt) 1915 { 1916 struct mnt_namespace *ns; 1917 namespace_lock(); 1918 lock_mount_hash(); 1919 ns = real_mount(mnt)->mnt_ns; 1920 if (ns) { 1921 if (is_anon_ns(ns)) 1922 umount_tree(real_mount(mnt), UMOUNT_CONNECTED); 1923 else 1924 ns = NULL; 1925 } 1926 unlock_mount_hash(); 1927 namespace_unlock(); 1928 if (ns) 1929 free_mnt_ns(ns); 1930 } 1931 1932 void drop_collected_mounts(struct vfsmount *mnt) 1933 { 1934 namespace_lock(); 1935 lock_mount_hash(); 1936 umount_tree(real_mount(mnt), 0); 1937 unlock_mount_hash(); 1938 namespace_unlock(); 1939 } 1940 1941 /** 1942 * clone_private_mount - create a private clone of a path 1943 * @path: path to clone 1944 * 1945 * This creates a new vfsmount, which will be the clone of @path. The new mount 1946 * will not be attached anywhere in the namespace and will be private (i.e. 1947 * changes to the originating mount won't be propagated into this). 1948 * 1949 * Release with mntput(). 1950 */ 1951 struct vfsmount *clone_private_mount(const struct path *path) 1952 { 1953 struct mount *old_mnt = real_mount(path->mnt); 1954 struct mount *new_mnt; 1955 1956 if (IS_MNT_UNBINDABLE(old_mnt)) 1957 return ERR_PTR(-EINVAL); 1958 1959 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE); 1960 if (IS_ERR(new_mnt)) 1961 return ERR_CAST(new_mnt); 1962 1963 /* Longterm mount to be removed by kern_unmount*() */ 1964 new_mnt->mnt_ns = MNT_NS_INTERNAL; 1965 1966 return &new_mnt->mnt; 1967 } 1968 EXPORT_SYMBOL_GPL(clone_private_mount); 1969 1970 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg, 1971 struct vfsmount *root) 1972 { 1973 struct mount *mnt; 1974 int res = f(root, arg); 1975 if (res) 1976 return res; 1977 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) { 1978 res = f(&mnt->mnt, arg); 1979 if (res) 1980 return res; 1981 } 1982 return 0; 1983 } 1984 1985 static void lock_mnt_tree(struct mount *mnt) 1986 { 1987 struct mount *p; 1988 1989 for (p = mnt; p; p = next_mnt(p, mnt)) { 1990 int flags = p->mnt.mnt_flags; 1991 /* Don't allow unprivileged users to change mount flags */ 1992 flags |= MNT_LOCK_ATIME; 1993 1994 if (flags & MNT_READONLY) 1995 flags |= MNT_LOCK_READONLY; 1996 1997 if (flags & MNT_NODEV) 1998 flags |= MNT_LOCK_NODEV; 1999 2000 if (flags & MNT_NOSUID) 2001 flags |= MNT_LOCK_NOSUID; 2002 2003 if (flags & MNT_NOEXEC) 2004 flags |= MNT_LOCK_NOEXEC; 2005 /* Don't allow unprivileged users to reveal what is under a mount */ 2006 if (list_empty(&p->mnt_expire)) 2007 flags |= MNT_LOCKED; 2008 p->mnt.mnt_flags = flags; 2009 } 2010 } 2011 2012 static void cleanup_group_ids(struct mount *mnt, struct mount *end) 2013 { 2014 struct mount *p; 2015 2016 for (p = mnt; p != end; p = next_mnt(p, mnt)) { 2017 if (p->mnt_group_id && !IS_MNT_SHARED(p)) 2018 mnt_release_group_id(p); 2019 } 2020 } 2021 2022 static int invent_group_ids(struct mount *mnt, bool recurse) 2023 { 2024 struct mount *p; 2025 2026 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) { 2027 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) { 2028 int err = mnt_alloc_group_id(p); 2029 if (err) { 2030 cleanup_group_ids(mnt, p); 2031 return err; 2032 } 2033 } 2034 } 2035 2036 return 0; 2037 } 2038 2039 int count_mounts(struct mnt_namespace *ns, struct mount *mnt) 2040 { 2041 unsigned int max = READ_ONCE(sysctl_mount_max); 2042 unsigned int mounts = 0, old, pending, sum; 2043 struct mount *p; 2044 2045 for (p = mnt; p; p = next_mnt(p, mnt)) 2046 mounts++; 2047 2048 old = ns->mounts; 2049 pending = ns->pending_mounts; 2050 sum = old + pending; 2051 if ((old > sum) || 2052 (pending > sum) || 2053 (max < sum) || 2054 (mounts > (max - sum))) 2055 return -ENOSPC; 2056 2057 ns->pending_mounts = pending + mounts; 2058 return 0; 2059 } 2060 2061 /* 2062 * @source_mnt : mount tree to be attached 2063 * @nd : place the mount tree @source_mnt is attached 2064 * @parent_nd : if non-null, detach the source_mnt from its parent and 2065 * store the parent mount and mountpoint dentry. 2066 * (done when source_mnt is moved) 2067 * 2068 * NOTE: in the table below explains the semantics when a source mount 2069 * of a given type is attached to a destination mount of a given type. 2070 * --------------------------------------------------------------------------- 2071 * | BIND MOUNT OPERATION | 2072 * |************************************************************************** 2073 * | source-->| shared | private | slave | unbindable | 2074 * | dest | | | | | 2075 * | | | | | | | 2076 * | v | | | | | 2077 * |************************************************************************** 2078 * | shared | shared (++) | shared (+) | shared(+++)| invalid | 2079 * | | | | | | 2080 * |non-shared| shared (+) | private | slave (*) | invalid | 2081 * *************************************************************************** 2082 * A bind operation clones the source mount and mounts the clone on the 2083 * destination mount. 2084 * 2085 * (++) the cloned mount is propagated to all the mounts in the propagation 2086 * tree of the destination mount and the cloned mount is added to 2087 * the peer group of the source mount. 2088 * (+) the cloned mount is created under the destination mount and is marked 2089 * as shared. The cloned mount is added to the peer group of the source 2090 * mount. 2091 * (+++) the mount is propagated to all the mounts in the propagation tree 2092 * of the destination mount and the cloned mount is made slave 2093 * of the same master as that of the source mount. The cloned mount 2094 * is marked as 'shared and slave'. 2095 * (*) the cloned mount is made a slave of the same master as that of the 2096 * source mount. 2097 * 2098 * --------------------------------------------------------------------------- 2099 * | MOVE MOUNT OPERATION | 2100 * |************************************************************************** 2101 * | source-->| shared | private | slave | unbindable | 2102 * | dest | | | | | 2103 * | | | | | | | 2104 * | v | | | | | 2105 * |************************************************************************** 2106 * | shared | shared (+) | shared (+) | shared(+++) | invalid | 2107 * | | | | | | 2108 * |non-shared| shared (+*) | private | slave (*) | unbindable | 2109 * *************************************************************************** 2110 * 2111 * (+) the mount is moved to the destination. And is then propagated to 2112 * all the mounts in the propagation tree of the destination mount. 2113 * (+*) the mount is moved to the destination. 2114 * (+++) the mount is moved to the destination and is then propagated to 2115 * all the mounts belonging to the destination mount's propagation tree. 2116 * the mount is marked as 'shared and slave'. 2117 * (*) the mount continues to be a slave at the new location. 2118 * 2119 * if the source mount is a tree, the operations explained above is 2120 * applied to each mount in the tree. 2121 * Must be called without spinlocks held, since this function can sleep 2122 * in allocations. 2123 */ 2124 static int attach_recursive_mnt(struct mount *source_mnt, 2125 struct mount *dest_mnt, 2126 struct mountpoint *dest_mp, 2127 bool moving) 2128 { 2129 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; 2130 HLIST_HEAD(tree_list); 2131 struct mnt_namespace *ns = dest_mnt->mnt_ns; 2132 struct mountpoint *smp; 2133 struct mount *child, *p; 2134 struct hlist_node *n; 2135 int err; 2136 2137 /* Preallocate a mountpoint in case the new mounts need 2138 * to be tucked under other mounts. 2139 */ 2140 smp = get_mountpoint(source_mnt->mnt.mnt_root); 2141 if (IS_ERR(smp)) 2142 return PTR_ERR(smp); 2143 2144 /* Is there space to add these mounts to the mount namespace? */ 2145 if (!moving) { 2146 err = count_mounts(ns, source_mnt); 2147 if (err) 2148 goto out; 2149 } 2150 2151 if (IS_MNT_SHARED(dest_mnt)) { 2152 err = invent_group_ids(source_mnt, true); 2153 if (err) 2154 goto out; 2155 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list); 2156 lock_mount_hash(); 2157 if (err) 2158 goto out_cleanup_ids; 2159 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 2160 set_mnt_shared(p); 2161 } else { 2162 lock_mount_hash(); 2163 } 2164 if (moving) { 2165 unhash_mnt(source_mnt); 2166 attach_mnt(source_mnt, dest_mnt, dest_mp); 2167 touch_mnt_namespace(source_mnt->mnt_ns); 2168 } else { 2169 if (source_mnt->mnt_ns) { 2170 /* move from anon - the caller will destroy */ 2171 list_del_init(&source_mnt->mnt_ns->list); 2172 } 2173 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt); 2174 commit_tree(source_mnt); 2175 } 2176 2177 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) { 2178 struct mount *q; 2179 hlist_del_init(&child->mnt_hash); 2180 q = __lookup_mnt(&child->mnt_parent->mnt, 2181 child->mnt_mountpoint); 2182 if (q) 2183 mnt_change_mountpoint(child, smp, q); 2184 /* Notice when we are propagating across user namespaces */ 2185 if (child->mnt_parent->mnt_ns->user_ns != user_ns) 2186 lock_mnt_tree(child); 2187 child->mnt.mnt_flags &= ~MNT_LOCKED; 2188 commit_tree(child); 2189 } 2190 put_mountpoint(smp); 2191 unlock_mount_hash(); 2192 2193 return 0; 2194 2195 out_cleanup_ids: 2196 while (!hlist_empty(&tree_list)) { 2197 child = hlist_entry(tree_list.first, struct mount, mnt_hash); 2198 child->mnt_parent->mnt_ns->pending_mounts = 0; 2199 umount_tree(child, UMOUNT_SYNC); 2200 } 2201 unlock_mount_hash(); 2202 cleanup_group_ids(source_mnt, NULL); 2203 out: 2204 ns->pending_mounts = 0; 2205 2206 read_seqlock_excl(&mount_lock); 2207 put_mountpoint(smp); 2208 read_sequnlock_excl(&mount_lock); 2209 2210 return err; 2211 } 2212 2213 static struct mountpoint *lock_mount(struct path *path) 2214 { 2215 struct vfsmount *mnt; 2216 struct dentry *dentry = path->dentry; 2217 retry: 2218 inode_lock(dentry->d_inode); 2219 if (unlikely(cant_mount(dentry))) { 2220 inode_unlock(dentry->d_inode); 2221 return ERR_PTR(-ENOENT); 2222 } 2223 namespace_lock(); 2224 mnt = lookup_mnt(path); 2225 if (likely(!mnt)) { 2226 struct mountpoint *mp = get_mountpoint(dentry); 2227 if (IS_ERR(mp)) { 2228 namespace_unlock(); 2229 inode_unlock(dentry->d_inode); 2230 return mp; 2231 } 2232 return mp; 2233 } 2234 namespace_unlock(); 2235 inode_unlock(path->dentry->d_inode); 2236 path_put(path); 2237 path->mnt = mnt; 2238 dentry = path->dentry = dget(mnt->mnt_root); 2239 goto retry; 2240 } 2241 2242 static void unlock_mount(struct mountpoint *where) 2243 { 2244 struct dentry *dentry = where->m_dentry; 2245 2246 read_seqlock_excl(&mount_lock); 2247 put_mountpoint(where); 2248 read_sequnlock_excl(&mount_lock); 2249 2250 namespace_unlock(); 2251 inode_unlock(dentry->d_inode); 2252 } 2253 2254 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp) 2255 { 2256 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER) 2257 return -EINVAL; 2258 2259 if (d_is_dir(mp->m_dentry) != 2260 d_is_dir(mnt->mnt.mnt_root)) 2261 return -ENOTDIR; 2262 2263 return attach_recursive_mnt(mnt, p, mp, false); 2264 } 2265 2266 /* 2267 * Sanity check the flags to change_mnt_propagation. 2268 */ 2269 2270 static int flags_to_propagation_type(int ms_flags) 2271 { 2272 int type = ms_flags & ~(MS_REC | MS_SILENT); 2273 2274 /* Fail if any non-propagation flags are set */ 2275 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 2276 return 0; 2277 /* Only one propagation flag should be set */ 2278 if (!is_power_of_2(type)) 2279 return 0; 2280 return type; 2281 } 2282 2283 /* 2284 * recursively change the type of the mountpoint. 2285 */ 2286 static int do_change_type(struct path *path, int ms_flags) 2287 { 2288 struct mount *m; 2289 struct mount *mnt = real_mount(path->mnt); 2290 int recurse = ms_flags & MS_REC; 2291 int type; 2292 int err = 0; 2293 2294 if (path->dentry != path->mnt->mnt_root) 2295 return -EINVAL; 2296 2297 type = flags_to_propagation_type(ms_flags); 2298 if (!type) 2299 return -EINVAL; 2300 2301 namespace_lock(); 2302 if (type == MS_SHARED) { 2303 err = invent_group_ids(mnt, recurse); 2304 if (err) 2305 goto out_unlock; 2306 } 2307 2308 lock_mount_hash(); 2309 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) 2310 change_mnt_propagation(m, type); 2311 unlock_mount_hash(); 2312 2313 out_unlock: 2314 namespace_unlock(); 2315 return err; 2316 } 2317 2318 static bool has_locked_children(struct mount *mnt, struct dentry *dentry) 2319 { 2320 struct mount *child; 2321 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 2322 if (!is_subdir(child->mnt_mountpoint, dentry)) 2323 continue; 2324 2325 if (child->mnt.mnt_flags & MNT_LOCKED) 2326 return true; 2327 } 2328 return false; 2329 } 2330 2331 static struct mount *__do_loopback(struct path *old_path, int recurse) 2332 { 2333 struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt); 2334 2335 if (IS_MNT_UNBINDABLE(old)) 2336 return mnt; 2337 2338 if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations) 2339 return mnt; 2340 2341 if (!recurse && has_locked_children(old, old_path->dentry)) 2342 return mnt; 2343 2344 if (recurse) 2345 mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE); 2346 else 2347 mnt = clone_mnt(old, old_path->dentry, 0); 2348 2349 if (!IS_ERR(mnt)) 2350 mnt->mnt.mnt_flags &= ~MNT_LOCKED; 2351 2352 return mnt; 2353 } 2354 2355 /* 2356 * do loopback mount. 2357 */ 2358 static int do_loopback(struct path *path, const char *old_name, 2359 int recurse) 2360 { 2361 struct path old_path; 2362 struct mount *mnt = NULL, *parent; 2363 struct mountpoint *mp; 2364 int err; 2365 if (!old_name || !*old_name) 2366 return -EINVAL; 2367 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path); 2368 if (err) 2369 return err; 2370 2371 err = -EINVAL; 2372 if (mnt_ns_loop(old_path.dentry)) 2373 goto out; 2374 2375 mp = lock_mount(path); 2376 if (IS_ERR(mp)) { 2377 err = PTR_ERR(mp); 2378 goto out; 2379 } 2380 2381 parent = real_mount(path->mnt); 2382 if (!check_mnt(parent)) 2383 goto out2; 2384 2385 mnt = __do_loopback(&old_path, recurse); 2386 if (IS_ERR(mnt)) { 2387 err = PTR_ERR(mnt); 2388 goto out2; 2389 } 2390 2391 err = graft_tree(mnt, parent, mp); 2392 if (err) { 2393 lock_mount_hash(); 2394 umount_tree(mnt, UMOUNT_SYNC); 2395 unlock_mount_hash(); 2396 } 2397 out2: 2398 unlock_mount(mp); 2399 out: 2400 path_put(&old_path); 2401 return err; 2402 } 2403 2404 static struct file *open_detached_copy(struct path *path, bool recursive) 2405 { 2406 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; 2407 struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true); 2408 struct mount *mnt, *p; 2409 struct file *file; 2410 2411 if (IS_ERR(ns)) 2412 return ERR_CAST(ns); 2413 2414 namespace_lock(); 2415 mnt = __do_loopback(path, recursive); 2416 if (IS_ERR(mnt)) { 2417 namespace_unlock(); 2418 free_mnt_ns(ns); 2419 return ERR_CAST(mnt); 2420 } 2421 2422 lock_mount_hash(); 2423 for (p = mnt; p; p = next_mnt(p, mnt)) { 2424 p->mnt_ns = ns; 2425 ns->mounts++; 2426 } 2427 ns->root = mnt; 2428 list_add_tail(&ns->list, &mnt->mnt_list); 2429 mntget(&mnt->mnt); 2430 unlock_mount_hash(); 2431 namespace_unlock(); 2432 2433 mntput(path->mnt); 2434 path->mnt = &mnt->mnt; 2435 file = dentry_open(path, O_PATH, current_cred()); 2436 if (IS_ERR(file)) 2437 dissolve_on_fput(path->mnt); 2438 else 2439 file->f_mode |= FMODE_NEED_UNMOUNT; 2440 return file; 2441 } 2442 2443 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags) 2444 { 2445 struct file *file; 2446 struct path path; 2447 int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW; 2448 bool detached = flags & OPEN_TREE_CLONE; 2449 int error; 2450 int fd; 2451 2452 BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC); 2453 2454 if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE | 2455 AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE | 2456 OPEN_TREE_CLOEXEC)) 2457 return -EINVAL; 2458 2459 if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE) 2460 return -EINVAL; 2461 2462 if (flags & AT_NO_AUTOMOUNT) 2463 lookup_flags &= ~LOOKUP_AUTOMOUNT; 2464 if (flags & AT_SYMLINK_NOFOLLOW) 2465 lookup_flags &= ~LOOKUP_FOLLOW; 2466 if (flags & AT_EMPTY_PATH) 2467 lookup_flags |= LOOKUP_EMPTY; 2468 2469 if (detached && !may_mount()) 2470 return -EPERM; 2471 2472 fd = get_unused_fd_flags(flags & O_CLOEXEC); 2473 if (fd < 0) 2474 return fd; 2475 2476 error = user_path_at(dfd, filename, lookup_flags, &path); 2477 if (unlikely(error)) { 2478 file = ERR_PTR(error); 2479 } else { 2480 if (detached) 2481 file = open_detached_copy(&path, flags & AT_RECURSIVE); 2482 else 2483 file = dentry_open(&path, O_PATH, current_cred()); 2484 path_put(&path); 2485 } 2486 if (IS_ERR(file)) { 2487 put_unused_fd(fd); 2488 return PTR_ERR(file); 2489 } 2490 fd_install(fd, file); 2491 return fd; 2492 } 2493 2494 /* 2495 * Don't allow locked mount flags to be cleared. 2496 * 2497 * No locks need to be held here while testing the various MNT_LOCK 2498 * flags because those flags can never be cleared once they are set. 2499 */ 2500 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags) 2501 { 2502 unsigned int fl = mnt->mnt.mnt_flags; 2503 2504 if ((fl & MNT_LOCK_READONLY) && 2505 !(mnt_flags & MNT_READONLY)) 2506 return false; 2507 2508 if ((fl & MNT_LOCK_NODEV) && 2509 !(mnt_flags & MNT_NODEV)) 2510 return false; 2511 2512 if ((fl & MNT_LOCK_NOSUID) && 2513 !(mnt_flags & MNT_NOSUID)) 2514 return false; 2515 2516 if ((fl & MNT_LOCK_NOEXEC) && 2517 !(mnt_flags & MNT_NOEXEC)) 2518 return false; 2519 2520 if ((fl & MNT_LOCK_ATIME) && 2521 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) 2522 return false; 2523 2524 return true; 2525 } 2526 2527 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags) 2528 { 2529 bool readonly_request = (mnt_flags & MNT_READONLY); 2530 2531 if (readonly_request == __mnt_is_readonly(&mnt->mnt)) 2532 return 0; 2533 2534 if (readonly_request) 2535 return mnt_make_readonly(mnt); 2536 2537 mnt->mnt.mnt_flags &= ~MNT_READONLY; 2538 return 0; 2539 } 2540 2541 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags) 2542 { 2543 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK; 2544 mnt->mnt.mnt_flags = mnt_flags; 2545 touch_mnt_namespace(mnt->mnt_ns); 2546 } 2547 2548 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt) 2549 { 2550 struct super_block *sb = mnt->mnt_sb; 2551 2552 if (!__mnt_is_readonly(mnt) && 2553 (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) { 2554 char *buf = (char *)__get_free_page(GFP_KERNEL); 2555 char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM); 2556 struct tm tm; 2557 2558 time64_to_tm(sb->s_time_max, 0, &tm); 2559 2560 pr_warn("%s filesystem being %s at %s supports timestamps until %04ld (0x%llx)\n", 2561 sb->s_type->name, 2562 is_mounted(mnt) ? "remounted" : "mounted", 2563 mntpath, 2564 tm.tm_year+1900, (unsigned long long)sb->s_time_max); 2565 2566 free_page((unsigned long)buf); 2567 } 2568 } 2569 2570 /* 2571 * Handle reconfiguration of the mountpoint only without alteration of the 2572 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND 2573 * to mount(2). 2574 */ 2575 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags) 2576 { 2577 struct super_block *sb = path->mnt->mnt_sb; 2578 struct mount *mnt = real_mount(path->mnt); 2579 int ret; 2580 2581 if (!check_mnt(mnt)) 2582 return -EINVAL; 2583 2584 if (path->dentry != mnt->mnt.mnt_root) 2585 return -EINVAL; 2586 2587 if (!can_change_locked_flags(mnt, mnt_flags)) 2588 return -EPERM; 2589 2590 /* 2591 * We're only checking whether the superblock is read-only not 2592 * changing it, so only take down_read(&sb->s_umount). 2593 */ 2594 down_read(&sb->s_umount); 2595 lock_mount_hash(); 2596 ret = change_mount_ro_state(mnt, mnt_flags); 2597 if (ret == 0) 2598 set_mount_attributes(mnt, mnt_flags); 2599 unlock_mount_hash(); 2600 up_read(&sb->s_umount); 2601 2602 mnt_warn_timestamp_expiry(path, &mnt->mnt); 2603 2604 return ret; 2605 } 2606 2607 /* 2608 * change filesystem flags. dir should be a physical root of filesystem. 2609 * If you've mounted a non-root directory somewhere and want to do remount 2610 * on it - tough luck. 2611 */ 2612 static int do_remount(struct path *path, int ms_flags, int sb_flags, 2613 int mnt_flags, void *data) 2614 { 2615 int err; 2616 struct super_block *sb = path->mnt->mnt_sb; 2617 struct mount *mnt = real_mount(path->mnt); 2618 struct fs_context *fc; 2619 2620 if (!check_mnt(mnt)) 2621 return -EINVAL; 2622 2623 if (path->dentry != path->mnt->mnt_root) 2624 return -EINVAL; 2625 2626 if (!can_change_locked_flags(mnt, mnt_flags)) 2627 return -EPERM; 2628 2629 fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK); 2630 if (IS_ERR(fc)) 2631 return PTR_ERR(fc); 2632 2633 fc->oldapi = true; 2634 err = parse_monolithic_mount_data(fc, data); 2635 if (!err) { 2636 down_write(&sb->s_umount); 2637 err = -EPERM; 2638 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) { 2639 err = reconfigure_super(fc); 2640 if (!err) { 2641 lock_mount_hash(); 2642 set_mount_attributes(mnt, mnt_flags); 2643 unlock_mount_hash(); 2644 } 2645 } 2646 up_write(&sb->s_umount); 2647 } 2648 2649 mnt_warn_timestamp_expiry(path, &mnt->mnt); 2650 2651 put_fs_context(fc); 2652 return err; 2653 } 2654 2655 static inline int tree_contains_unbindable(struct mount *mnt) 2656 { 2657 struct mount *p; 2658 for (p = mnt; p; p = next_mnt(p, mnt)) { 2659 if (IS_MNT_UNBINDABLE(p)) 2660 return 1; 2661 } 2662 return 0; 2663 } 2664 2665 /* 2666 * Check that there aren't references to earlier/same mount namespaces in the 2667 * specified subtree. Such references can act as pins for mount namespaces 2668 * that aren't checked by the mount-cycle checking code, thereby allowing 2669 * cycles to be made. 2670 */ 2671 static bool check_for_nsfs_mounts(struct mount *subtree) 2672 { 2673 struct mount *p; 2674 bool ret = false; 2675 2676 lock_mount_hash(); 2677 for (p = subtree; p; p = next_mnt(p, subtree)) 2678 if (mnt_ns_loop(p->mnt.mnt_root)) 2679 goto out; 2680 2681 ret = true; 2682 out: 2683 unlock_mount_hash(); 2684 return ret; 2685 } 2686 2687 static int do_move_mount(struct path *old_path, struct path *new_path) 2688 { 2689 struct mnt_namespace *ns; 2690 struct mount *p; 2691 struct mount *old; 2692 struct mount *parent; 2693 struct mountpoint *mp, *old_mp; 2694 int err; 2695 bool attached; 2696 2697 mp = lock_mount(new_path); 2698 if (IS_ERR(mp)) 2699 return PTR_ERR(mp); 2700 2701 old = real_mount(old_path->mnt); 2702 p = real_mount(new_path->mnt); 2703 parent = old->mnt_parent; 2704 attached = mnt_has_parent(old); 2705 old_mp = old->mnt_mp; 2706 ns = old->mnt_ns; 2707 2708 err = -EINVAL; 2709 /* The mountpoint must be in our namespace. */ 2710 if (!check_mnt(p)) 2711 goto out; 2712 2713 /* The thing moved must be mounted... */ 2714 if (!is_mounted(&old->mnt)) 2715 goto out; 2716 2717 /* ... and either ours or the root of anon namespace */ 2718 if (!(attached ? check_mnt(old) : is_anon_ns(ns))) 2719 goto out; 2720 2721 if (old->mnt.mnt_flags & MNT_LOCKED) 2722 goto out; 2723 2724 if (old_path->dentry != old_path->mnt->mnt_root) 2725 goto out; 2726 2727 if (d_is_dir(new_path->dentry) != 2728 d_is_dir(old_path->dentry)) 2729 goto out; 2730 /* 2731 * Don't move a mount residing in a shared parent. 2732 */ 2733 if (attached && IS_MNT_SHARED(parent)) 2734 goto out; 2735 /* 2736 * Don't move a mount tree containing unbindable mounts to a destination 2737 * mount which is shared. 2738 */ 2739 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old)) 2740 goto out; 2741 err = -ELOOP; 2742 if (!check_for_nsfs_mounts(old)) 2743 goto out; 2744 for (; mnt_has_parent(p); p = p->mnt_parent) 2745 if (p == old) 2746 goto out; 2747 2748 err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp, 2749 attached); 2750 if (err) 2751 goto out; 2752 2753 /* if the mount is moved, it should no longer be expire 2754 * automatically */ 2755 list_del_init(&old->mnt_expire); 2756 if (attached) 2757 put_mountpoint(old_mp); 2758 out: 2759 unlock_mount(mp); 2760 if (!err) { 2761 if (attached) 2762 mntput_no_expire(parent); 2763 else 2764 free_mnt_ns(ns); 2765 } 2766 return err; 2767 } 2768 2769 static int do_move_mount_old(struct path *path, const char *old_name) 2770 { 2771 struct path old_path; 2772 int err; 2773 2774 if (!old_name || !*old_name) 2775 return -EINVAL; 2776 2777 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); 2778 if (err) 2779 return err; 2780 2781 err = do_move_mount(&old_path, path); 2782 path_put(&old_path); 2783 return err; 2784 } 2785 2786 /* 2787 * add a mount into a namespace's mount tree 2788 */ 2789 static int do_add_mount(struct mount *newmnt, struct mountpoint *mp, 2790 struct path *path, int mnt_flags) 2791 { 2792 struct mount *parent = real_mount(path->mnt); 2793 2794 mnt_flags &= ~MNT_INTERNAL_FLAGS; 2795 2796 if (unlikely(!check_mnt(parent))) { 2797 /* that's acceptable only for automounts done in private ns */ 2798 if (!(mnt_flags & MNT_SHRINKABLE)) 2799 return -EINVAL; 2800 /* ... and for those we'd better have mountpoint still alive */ 2801 if (!parent->mnt_ns) 2802 return -EINVAL; 2803 } 2804 2805 /* Refuse the same filesystem on the same mount point */ 2806 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && 2807 path->mnt->mnt_root == path->dentry) 2808 return -EBUSY; 2809 2810 if (d_is_symlink(newmnt->mnt.mnt_root)) 2811 return -EINVAL; 2812 2813 newmnt->mnt.mnt_flags = mnt_flags; 2814 return graft_tree(newmnt, parent, mp); 2815 } 2816 2817 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags); 2818 2819 /* 2820 * Create a new mount using a superblock configuration and request it 2821 * be added to the namespace tree. 2822 */ 2823 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint, 2824 unsigned int mnt_flags) 2825 { 2826 struct vfsmount *mnt; 2827 struct mountpoint *mp; 2828 struct super_block *sb = fc->root->d_sb; 2829 int error; 2830 2831 error = security_sb_kern_mount(sb); 2832 if (!error && mount_too_revealing(sb, &mnt_flags)) 2833 error = -EPERM; 2834 2835 if (unlikely(error)) { 2836 fc_drop_locked(fc); 2837 return error; 2838 } 2839 2840 up_write(&sb->s_umount); 2841 2842 mnt = vfs_create_mount(fc); 2843 if (IS_ERR(mnt)) 2844 return PTR_ERR(mnt); 2845 2846 mnt_warn_timestamp_expiry(mountpoint, mnt); 2847 2848 mp = lock_mount(mountpoint); 2849 if (IS_ERR(mp)) { 2850 mntput(mnt); 2851 return PTR_ERR(mp); 2852 } 2853 error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags); 2854 unlock_mount(mp); 2855 if (error < 0) 2856 mntput(mnt); 2857 return error; 2858 } 2859 2860 /* 2861 * create a new mount for userspace and request it to be added into the 2862 * namespace's tree 2863 */ 2864 static int do_new_mount(struct path *path, const char *fstype, int sb_flags, 2865 int mnt_flags, const char *name, void *data) 2866 { 2867 struct file_system_type *type; 2868 struct fs_context *fc; 2869 const char *subtype = NULL; 2870 int err = 0; 2871 2872 if (!fstype) 2873 return -EINVAL; 2874 2875 type = get_fs_type(fstype); 2876 if (!type) 2877 return -ENODEV; 2878 2879 if (type->fs_flags & FS_HAS_SUBTYPE) { 2880 subtype = strchr(fstype, '.'); 2881 if (subtype) { 2882 subtype++; 2883 if (!*subtype) { 2884 put_filesystem(type); 2885 return -EINVAL; 2886 } 2887 } 2888 } 2889 2890 fc = fs_context_for_mount(type, sb_flags); 2891 put_filesystem(type); 2892 if (IS_ERR(fc)) 2893 return PTR_ERR(fc); 2894 2895 if (subtype) 2896 err = vfs_parse_fs_string(fc, "subtype", 2897 subtype, strlen(subtype)); 2898 if (!err && name) 2899 err = vfs_parse_fs_string(fc, "source", name, strlen(name)); 2900 if (!err) 2901 err = parse_monolithic_mount_data(fc, data); 2902 if (!err && !mount_capable(fc)) 2903 err = -EPERM; 2904 if (!err) 2905 err = vfs_get_tree(fc); 2906 if (!err) 2907 err = do_new_mount_fc(fc, path, mnt_flags); 2908 2909 put_fs_context(fc); 2910 return err; 2911 } 2912 2913 int finish_automount(struct vfsmount *m, struct path *path) 2914 { 2915 struct dentry *dentry = path->dentry; 2916 struct mountpoint *mp; 2917 struct mount *mnt; 2918 int err; 2919 2920 if (!m) 2921 return 0; 2922 if (IS_ERR(m)) 2923 return PTR_ERR(m); 2924 2925 mnt = real_mount(m); 2926 /* The new mount record should have at least 2 refs to prevent it being 2927 * expired before we get a chance to add it 2928 */ 2929 BUG_ON(mnt_get_count(mnt) < 2); 2930 2931 if (m->mnt_sb == path->mnt->mnt_sb && 2932 m->mnt_root == dentry) { 2933 err = -ELOOP; 2934 goto discard; 2935 } 2936 2937 /* 2938 * we don't want to use lock_mount() - in this case finding something 2939 * that overmounts our mountpoint to be means "quitely drop what we've 2940 * got", not "try to mount it on top". 2941 */ 2942 inode_lock(dentry->d_inode); 2943 namespace_lock(); 2944 if (unlikely(cant_mount(dentry))) { 2945 err = -ENOENT; 2946 goto discard_locked; 2947 } 2948 rcu_read_lock(); 2949 if (unlikely(__lookup_mnt(path->mnt, dentry))) { 2950 rcu_read_unlock(); 2951 err = 0; 2952 goto discard_locked; 2953 } 2954 rcu_read_unlock(); 2955 mp = get_mountpoint(dentry); 2956 if (IS_ERR(mp)) { 2957 err = PTR_ERR(mp); 2958 goto discard_locked; 2959 } 2960 2961 err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE); 2962 unlock_mount(mp); 2963 if (unlikely(err)) 2964 goto discard; 2965 mntput(m); 2966 return 0; 2967 2968 discard_locked: 2969 namespace_unlock(); 2970 inode_unlock(dentry->d_inode); 2971 discard: 2972 /* remove m from any expiration list it may be on */ 2973 if (!list_empty(&mnt->mnt_expire)) { 2974 namespace_lock(); 2975 list_del_init(&mnt->mnt_expire); 2976 namespace_unlock(); 2977 } 2978 mntput(m); 2979 mntput(m); 2980 return err; 2981 } 2982 2983 /** 2984 * mnt_set_expiry - Put a mount on an expiration list 2985 * @mnt: The mount to list. 2986 * @expiry_list: The list to add the mount to. 2987 */ 2988 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list) 2989 { 2990 namespace_lock(); 2991 2992 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list); 2993 2994 namespace_unlock(); 2995 } 2996 EXPORT_SYMBOL(mnt_set_expiry); 2997 2998 /* 2999 * process a list of expirable mountpoints with the intent of discarding any 3000 * mountpoints that aren't in use and haven't been touched since last we came 3001 * here 3002 */ 3003 void mark_mounts_for_expiry(struct list_head *mounts) 3004 { 3005 struct mount *mnt, *next; 3006 LIST_HEAD(graveyard); 3007 3008 if (list_empty(mounts)) 3009 return; 3010 3011 namespace_lock(); 3012 lock_mount_hash(); 3013 3014 /* extract from the expiration list every vfsmount that matches the 3015 * following criteria: 3016 * - only referenced by its parent vfsmount 3017 * - still marked for expiry (marked on the last call here; marks are 3018 * cleared by mntput()) 3019 */ 3020 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { 3021 if (!xchg(&mnt->mnt_expiry_mark, 1) || 3022 propagate_mount_busy(mnt, 1)) 3023 continue; 3024 list_move(&mnt->mnt_expire, &graveyard); 3025 } 3026 while (!list_empty(&graveyard)) { 3027 mnt = list_first_entry(&graveyard, struct mount, mnt_expire); 3028 touch_mnt_namespace(mnt->mnt_ns); 3029 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 3030 } 3031 unlock_mount_hash(); 3032 namespace_unlock(); 3033 } 3034 3035 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); 3036 3037 /* 3038 * Ripoff of 'select_parent()' 3039 * 3040 * search the list of submounts for a given mountpoint, and move any 3041 * shrinkable submounts to the 'graveyard' list. 3042 */ 3043 static int select_submounts(struct mount *parent, struct list_head *graveyard) 3044 { 3045 struct mount *this_parent = parent; 3046 struct list_head *next; 3047 int found = 0; 3048 3049 repeat: 3050 next = this_parent->mnt_mounts.next; 3051 resume: 3052 while (next != &this_parent->mnt_mounts) { 3053 struct list_head *tmp = next; 3054 struct mount *mnt = list_entry(tmp, struct mount, mnt_child); 3055 3056 next = tmp->next; 3057 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE)) 3058 continue; 3059 /* 3060 * Descend a level if the d_mounts list is non-empty. 3061 */ 3062 if (!list_empty(&mnt->mnt_mounts)) { 3063 this_parent = mnt; 3064 goto repeat; 3065 } 3066 3067 if (!propagate_mount_busy(mnt, 1)) { 3068 list_move_tail(&mnt->mnt_expire, graveyard); 3069 found++; 3070 } 3071 } 3072 /* 3073 * All done at this level ... ascend and resume the search 3074 */ 3075 if (this_parent != parent) { 3076 next = this_parent->mnt_child.next; 3077 this_parent = this_parent->mnt_parent; 3078 goto resume; 3079 } 3080 return found; 3081 } 3082 3083 /* 3084 * process a list of expirable mountpoints with the intent of discarding any 3085 * submounts of a specific parent mountpoint 3086 * 3087 * mount_lock must be held for write 3088 */ 3089 static void shrink_submounts(struct mount *mnt) 3090 { 3091 LIST_HEAD(graveyard); 3092 struct mount *m; 3093 3094 /* extract submounts of 'mountpoint' from the expiration list */ 3095 while (select_submounts(mnt, &graveyard)) { 3096 while (!list_empty(&graveyard)) { 3097 m = list_first_entry(&graveyard, struct mount, 3098 mnt_expire); 3099 touch_mnt_namespace(m->mnt_ns); 3100 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC); 3101 } 3102 } 3103 } 3104 3105 static void *copy_mount_options(const void __user * data) 3106 { 3107 char *copy; 3108 unsigned left, offset; 3109 3110 if (!data) 3111 return NULL; 3112 3113 copy = kmalloc(PAGE_SIZE, GFP_KERNEL); 3114 if (!copy) 3115 return ERR_PTR(-ENOMEM); 3116 3117 left = copy_from_user(copy, data, PAGE_SIZE); 3118 3119 /* 3120 * Not all architectures have an exact copy_from_user(). Resort to 3121 * byte at a time. 3122 */ 3123 offset = PAGE_SIZE - left; 3124 while (left) { 3125 char c; 3126 if (get_user(c, (const char __user *)data + offset)) 3127 break; 3128 copy[offset] = c; 3129 left--; 3130 offset++; 3131 } 3132 3133 if (left == PAGE_SIZE) { 3134 kfree(copy); 3135 return ERR_PTR(-EFAULT); 3136 } 3137 3138 return copy; 3139 } 3140 3141 static char *copy_mount_string(const void __user *data) 3142 { 3143 return data ? strndup_user(data, PATH_MAX) : NULL; 3144 } 3145 3146 /* 3147 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to 3148 * be given to the mount() call (ie: read-only, no-dev, no-suid etc). 3149 * 3150 * data is a (void *) that can point to any structure up to 3151 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent 3152 * information (or be NULL). 3153 * 3154 * Pre-0.97 versions of mount() didn't have a flags word. 3155 * When the flags word was introduced its top half was required 3156 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. 3157 * Therefore, if this magic number is present, it carries no information 3158 * and must be discarded. 3159 */ 3160 int path_mount(const char *dev_name, struct path *path, 3161 const char *type_page, unsigned long flags, void *data_page) 3162 { 3163 unsigned int mnt_flags = 0, sb_flags; 3164 int ret; 3165 3166 /* Discard magic */ 3167 if ((flags & MS_MGC_MSK) == MS_MGC_VAL) 3168 flags &= ~MS_MGC_MSK; 3169 3170 /* Basic sanity checks */ 3171 if (data_page) 3172 ((char *)data_page)[PAGE_SIZE - 1] = 0; 3173 3174 if (flags & MS_NOUSER) 3175 return -EINVAL; 3176 3177 ret = security_sb_mount(dev_name, path, type_page, flags, data_page); 3178 if (ret) 3179 return ret; 3180 if (!may_mount()) 3181 return -EPERM; 3182 if ((flags & SB_MANDLOCK) && !may_mandlock()) 3183 return -EPERM; 3184 3185 /* Default to relatime unless overriden */ 3186 if (!(flags & MS_NOATIME)) 3187 mnt_flags |= MNT_RELATIME; 3188 3189 /* Separate the per-mountpoint flags */ 3190 if (flags & MS_NOSUID) 3191 mnt_flags |= MNT_NOSUID; 3192 if (flags & MS_NODEV) 3193 mnt_flags |= MNT_NODEV; 3194 if (flags & MS_NOEXEC) 3195 mnt_flags |= MNT_NOEXEC; 3196 if (flags & MS_NOATIME) 3197 mnt_flags |= MNT_NOATIME; 3198 if (flags & MS_NODIRATIME) 3199 mnt_flags |= MNT_NODIRATIME; 3200 if (flags & MS_STRICTATIME) 3201 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME); 3202 if (flags & MS_RDONLY) 3203 mnt_flags |= MNT_READONLY; 3204 if (flags & MS_NOSYMFOLLOW) 3205 mnt_flags |= MNT_NOSYMFOLLOW; 3206 3207 /* The default atime for remount is preservation */ 3208 if ((flags & MS_REMOUNT) && 3209 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME | 3210 MS_STRICTATIME)) == 0)) { 3211 mnt_flags &= ~MNT_ATIME_MASK; 3212 mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK; 3213 } 3214 3215 sb_flags = flags & (SB_RDONLY | 3216 SB_SYNCHRONOUS | 3217 SB_MANDLOCK | 3218 SB_DIRSYNC | 3219 SB_SILENT | 3220 SB_POSIXACL | 3221 SB_LAZYTIME | 3222 SB_I_VERSION); 3223 3224 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND)) 3225 return do_reconfigure_mnt(path, mnt_flags); 3226 if (flags & MS_REMOUNT) 3227 return do_remount(path, flags, sb_flags, mnt_flags, data_page); 3228 if (flags & MS_BIND) 3229 return do_loopback(path, dev_name, flags & MS_REC); 3230 if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 3231 return do_change_type(path, flags); 3232 if (flags & MS_MOVE) 3233 return do_move_mount_old(path, dev_name); 3234 3235 return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name, 3236 data_page); 3237 } 3238 3239 long do_mount(const char *dev_name, const char __user *dir_name, 3240 const char *type_page, unsigned long flags, void *data_page) 3241 { 3242 struct path path; 3243 int ret; 3244 3245 ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path); 3246 if (ret) 3247 return ret; 3248 ret = path_mount(dev_name, &path, type_page, flags, data_page); 3249 path_put(&path); 3250 return ret; 3251 } 3252 3253 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns) 3254 { 3255 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES); 3256 } 3257 3258 static void dec_mnt_namespaces(struct ucounts *ucounts) 3259 { 3260 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES); 3261 } 3262 3263 static void free_mnt_ns(struct mnt_namespace *ns) 3264 { 3265 if (!is_anon_ns(ns)) 3266 ns_free_inum(&ns->ns); 3267 dec_mnt_namespaces(ns->ucounts); 3268 put_user_ns(ns->user_ns); 3269 kfree(ns); 3270 } 3271 3272 /* 3273 * Assign a sequence number so we can detect when we attempt to bind 3274 * mount a reference to an older mount namespace into the current 3275 * mount namespace, preventing reference counting loops. A 64bit 3276 * number incrementing at 10Ghz will take 12,427 years to wrap which 3277 * is effectively never, so we can ignore the possibility. 3278 */ 3279 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1); 3280 3281 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon) 3282 { 3283 struct mnt_namespace *new_ns; 3284 struct ucounts *ucounts; 3285 int ret; 3286 3287 ucounts = inc_mnt_namespaces(user_ns); 3288 if (!ucounts) 3289 return ERR_PTR(-ENOSPC); 3290 3291 new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL); 3292 if (!new_ns) { 3293 dec_mnt_namespaces(ucounts); 3294 return ERR_PTR(-ENOMEM); 3295 } 3296 if (!anon) { 3297 ret = ns_alloc_inum(&new_ns->ns); 3298 if (ret) { 3299 kfree(new_ns); 3300 dec_mnt_namespaces(ucounts); 3301 return ERR_PTR(ret); 3302 } 3303 } 3304 new_ns->ns.ops = &mntns_operations; 3305 if (!anon) 3306 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq); 3307 refcount_set(&new_ns->ns.count, 1); 3308 INIT_LIST_HEAD(&new_ns->list); 3309 init_waitqueue_head(&new_ns->poll); 3310 spin_lock_init(&new_ns->ns_lock); 3311 new_ns->user_ns = get_user_ns(user_ns); 3312 new_ns->ucounts = ucounts; 3313 return new_ns; 3314 } 3315 3316 __latent_entropy 3317 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns, 3318 struct user_namespace *user_ns, struct fs_struct *new_fs) 3319 { 3320 struct mnt_namespace *new_ns; 3321 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL; 3322 struct mount *p, *q; 3323 struct mount *old; 3324 struct mount *new; 3325 int copy_flags; 3326 3327 BUG_ON(!ns); 3328 3329 if (likely(!(flags & CLONE_NEWNS))) { 3330 get_mnt_ns(ns); 3331 return ns; 3332 } 3333 3334 old = ns->root; 3335 3336 new_ns = alloc_mnt_ns(user_ns, false); 3337 if (IS_ERR(new_ns)) 3338 return new_ns; 3339 3340 namespace_lock(); 3341 /* First pass: copy the tree topology */ 3342 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE; 3343 if (user_ns != ns->user_ns) 3344 copy_flags |= CL_SHARED_TO_SLAVE; 3345 new = copy_tree(old, old->mnt.mnt_root, copy_flags); 3346 if (IS_ERR(new)) { 3347 namespace_unlock(); 3348 free_mnt_ns(new_ns); 3349 return ERR_CAST(new); 3350 } 3351 if (user_ns != ns->user_ns) { 3352 lock_mount_hash(); 3353 lock_mnt_tree(new); 3354 unlock_mount_hash(); 3355 } 3356 new_ns->root = new; 3357 list_add_tail(&new_ns->list, &new->mnt_list); 3358 3359 /* 3360 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts 3361 * as belonging to new namespace. We have already acquired a private 3362 * fs_struct, so tsk->fs->lock is not needed. 3363 */ 3364 p = old; 3365 q = new; 3366 while (p) { 3367 q->mnt_ns = new_ns; 3368 new_ns->mounts++; 3369 if (new_fs) { 3370 if (&p->mnt == new_fs->root.mnt) { 3371 new_fs->root.mnt = mntget(&q->mnt); 3372 rootmnt = &p->mnt; 3373 } 3374 if (&p->mnt == new_fs->pwd.mnt) { 3375 new_fs->pwd.mnt = mntget(&q->mnt); 3376 pwdmnt = &p->mnt; 3377 } 3378 } 3379 p = next_mnt(p, old); 3380 q = next_mnt(q, new); 3381 if (!q) 3382 break; 3383 while (p->mnt.mnt_root != q->mnt.mnt_root) 3384 p = next_mnt(p, old); 3385 } 3386 namespace_unlock(); 3387 3388 if (rootmnt) 3389 mntput(rootmnt); 3390 if (pwdmnt) 3391 mntput(pwdmnt); 3392 3393 return new_ns; 3394 } 3395 3396 struct dentry *mount_subtree(struct vfsmount *m, const char *name) 3397 { 3398 struct mount *mnt = real_mount(m); 3399 struct mnt_namespace *ns; 3400 struct super_block *s; 3401 struct path path; 3402 int err; 3403 3404 ns = alloc_mnt_ns(&init_user_ns, true); 3405 if (IS_ERR(ns)) { 3406 mntput(m); 3407 return ERR_CAST(ns); 3408 } 3409 mnt->mnt_ns = ns; 3410 ns->root = mnt; 3411 ns->mounts++; 3412 list_add(&mnt->mnt_list, &ns->list); 3413 3414 err = vfs_path_lookup(m->mnt_root, m, 3415 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path); 3416 3417 put_mnt_ns(ns); 3418 3419 if (err) 3420 return ERR_PTR(err); 3421 3422 /* trade a vfsmount reference for active sb one */ 3423 s = path.mnt->mnt_sb; 3424 atomic_inc(&s->s_active); 3425 mntput(path.mnt); 3426 /* lock the sucker */ 3427 down_write(&s->s_umount); 3428 /* ... and return the root of (sub)tree on it */ 3429 return path.dentry; 3430 } 3431 EXPORT_SYMBOL(mount_subtree); 3432 3433 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name, 3434 char __user *, type, unsigned long, flags, void __user *, data) 3435 { 3436 int ret; 3437 char *kernel_type; 3438 char *kernel_dev; 3439 void *options; 3440 3441 kernel_type = copy_mount_string(type); 3442 ret = PTR_ERR(kernel_type); 3443 if (IS_ERR(kernel_type)) 3444 goto out_type; 3445 3446 kernel_dev = copy_mount_string(dev_name); 3447 ret = PTR_ERR(kernel_dev); 3448 if (IS_ERR(kernel_dev)) 3449 goto out_dev; 3450 3451 options = copy_mount_options(data); 3452 ret = PTR_ERR(options); 3453 if (IS_ERR(options)) 3454 goto out_data; 3455 3456 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options); 3457 3458 kfree(options); 3459 out_data: 3460 kfree(kernel_dev); 3461 out_dev: 3462 kfree(kernel_type); 3463 out_type: 3464 return ret; 3465 } 3466 3467 #define FSMOUNT_VALID_FLAGS \ 3468 (MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV | \ 3469 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME) 3470 3471 #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP) 3472 3473 #define MOUNT_SETATTR_PROPAGATION_FLAGS \ 3474 (MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED) 3475 3476 static unsigned int attr_flags_to_mnt_flags(u64 attr_flags) 3477 { 3478 unsigned int mnt_flags = 0; 3479 3480 if (attr_flags & MOUNT_ATTR_RDONLY) 3481 mnt_flags |= MNT_READONLY; 3482 if (attr_flags & MOUNT_ATTR_NOSUID) 3483 mnt_flags |= MNT_NOSUID; 3484 if (attr_flags & MOUNT_ATTR_NODEV) 3485 mnt_flags |= MNT_NODEV; 3486 if (attr_flags & MOUNT_ATTR_NOEXEC) 3487 mnt_flags |= MNT_NOEXEC; 3488 if (attr_flags & MOUNT_ATTR_NODIRATIME) 3489 mnt_flags |= MNT_NODIRATIME; 3490 3491 return mnt_flags; 3492 } 3493 3494 /* 3495 * Create a kernel mount representation for a new, prepared superblock 3496 * (specified by fs_fd) and attach to an open_tree-like file descriptor. 3497 */ 3498 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags, 3499 unsigned int, attr_flags) 3500 { 3501 struct mnt_namespace *ns; 3502 struct fs_context *fc; 3503 struct file *file; 3504 struct path newmount; 3505 struct mount *mnt; 3506 struct fd f; 3507 unsigned int mnt_flags = 0; 3508 long ret; 3509 3510 if (!may_mount()) 3511 return -EPERM; 3512 3513 if ((flags & ~(FSMOUNT_CLOEXEC)) != 0) 3514 return -EINVAL; 3515 3516 if (attr_flags & ~FSMOUNT_VALID_FLAGS) 3517 return -EINVAL; 3518 3519 mnt_flags = attr_flags_to_mnt_flags(attr_flags); 3520 3521 switch (attr_flags & MOUNT_ATTR__ATIME) { 3522 case MOUNT_ATTR_STRICTATIME: 3523 break; 3524 case MOUNT_ATTR_NOATIME: 3525 mnt_flags |= MNT_NOATIME; 3526 break; 3527 case MOUNT_ATTR_RELATIME: 3528 mnt_flags |= MNT_RELATIME; 3529 break; 3530 default: 3531 return -EINVAL; 3532 } 3533 3534 f = fdget(fs_fd); 3535 if (!f.file) 3536 return -EBADF; 3537 3538 ret = -EINVAL; 3539 if (f.file->f_op != &fscontext_fops) 3540 goto err_fsfd; 3541 3542 fc = f.file->private_data; 3543 3544 ret = mutex_lock_interruptible(&fc->uapi_mutex); 3545 if (ret < 0) 3546 goto err_fsfd; 3547 3548 /* There must be a valid superblock or we can't mount it */ 3549 ret = -EINVAL; 3550 if (!fc->root) 3551 goto err_unlock; 3552 3553 ret = -EPERM; 3554 if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) { 3555 pr_warn("VFS: Mount too revealing\n"); 3556 goto err_unlock; 3557 } 3558 3559 ret = -EBUSY; 3560 if (fc->phase != FS_CONTEXT_AWAITING_MOUNT) 3561 goto err_unlock; 3562 3563 ret = -EPERM; 3564 if ((fc->sb_flags & SB_MANDLOCK) && !may_mandlock()) 3565 goto err_unlock; 3566 3567 newmount.mnt = vfs_create_mount(fc); 3568 if (IS_ERR(newmount.mnt)) { 3569 ret = PTR_ERR(newmount.mnt); 3570 goto err_unlock; 3571 } 3572 newmount.dentry = dget(fc->root); 3573 newmount.mnt->mnt_flags = mnt_flags; 3574 3575 /* We've done the mount bit - now move the file context into more or 3576 * less the same state as if we'd done an fspick(). We don't want to 3577 * do any memory allocation or anything like that at this point as we 3578 * don't want to have to handle any errors incurred. 3579 */ 3580 vfs_clean_context(fc); 3581 3582 ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true); 3583 if (IS_ERR(ns)) { 3584 ret = PTR_ERR(ns); 3585 goto err_path; 3586 } 3587 mnt = real_mount(newmount.mnt); 3588 mnt->mnt_ns = ns; 3589 ns->root = mnt; 3590 ns->mounts = 1; 3591 list_add(&mnt->mnt_list, &ns->list); 3592 mntget(newmount.mnt); 3593 3594 /* Attach to an apparent O_PATH fd with a note that we need to unmount 3595 * it, not just simply put it. 3596 */ 3597 file = dentry_open(&newmount, O_PATH, fc->cred); 3598 if (IS_ERR(file)) { 3599 dissolve_on_fput(newmount.mnt); 3600 ret = PTR_ERR(file); 3601 goto err_path; 3602 } 3603 file->f_mode |= FMODE_NEED_UNMOUNT; 3604 3605 ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0); 3606 if (ret >= 0) 3607 fd_install(ret, file); 3608 else 3609 fput(file); 3610 3611 err_path: 3612 path_put(&newmount); 3613 err_unlock: 3614 mutex_unlock(&fc->uapi_mutex); 3615 err_fsfd: 3616 fdput(f); 3617 return ret; 3618 } 3619 3620 /* 3621 * Move a mount from one place to another. In combination with 3622 * fsopen()/fsmount() this is used to install a new mount and in combination 3623 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy 3624 * a mount subtree. 3625 * 3626 * Note the flags value is a combination of MOVE_MOUNT_* flags. 3627 */ 3628 SYSCALL_DEFINE5(move_mount, 3629 int, from_dfd, const char __user *, from_pathname, 3630 int, to_dfd, const char __user *, to_pathname, 3631 unsigned int, flags) 3632 { 3633 struct path from_path, to_path; 3634 unsigned int lflags; 3635 int ret = 0; 3636 3637 if (!may_mount()) 3638 return -EPERM; 3639 3640 if (flags & ~MOVE_MOUNT__MASK) 3641 return -EINVAL; 3642 3643 /* If someone gives a pathname, they aren't permitted to move 3644 * from an fd that requires unmount as we can't get at the flag 3645 * to clear it afterwards. 3646 */ 3647 lflags = 0; 3648 if (flags & MOVE_MOUNT_F_SYMLINKS) lflags |= LOOKUP_FOLLOW; 3649 if (flags & MOVE_MOUNT_F_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT; 3650 if (flags & MOVE_MOUNT_F_EMPTY_PATH) lflags |= LOOKUP_EMPTY; 3651 3652 ret = user_path_at(from_dfd, from_pathname, lflags, &from_path); 3653 if (ret < 0) 3654 return ret; 3655 3656 lflags = 0; 3657 if (flags & MOVE_MOUNT_T_SYMLINKS) lflags |= LOOKUP_FOLLOW; 3658 if (flags & MOVE_MOUNT_T_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT; 3659 if (flags & MOVE_MOUNT_T_EMPTY_PATH) lflags |= LOOKUP_EMPTY; 3660 3661 ret = user_path_at(to_dfd, to_pathname, lflags, &to_path); 3662 if (ret < 0) 3663 goto out_from; 3664 3665 ret = security_move_mount(&from_path, &to_path); 3666 if (ret < 0) 3667 goto out_to; 3668 3669 ret = do_move_mount(&from_path, &to_path); 3670 3671 out_to: 3672 path_put(&to_path); 3673 out_from: 3674 path_put(&from_path); 3675 return ret; 3676 } 3677 3678 /* 3679 * Return true if path is reachable from root 3680 * 3681 * namespace_sem or mount_lock is held 3682 */ 3683 bool is_path_reachable(struct mount *mnt, struct dentry *dentry, 3684 const struct path *root) 3685 { 3686 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) { 3687 dentry = mnt->mnt_mountpoint; 3688 mnt = mnt->mnt_parent; 3689 } 3690 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry); 3691 } 3692 3693 bool path_is_under(const struct path *path1, const struct path *path2) 3694 { 3695 bool res; 3696 read_seqlock_excl(&mount_lock); 3697 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2); 3698 read_sequnlock_excl(&mount_lock); 3699 return res; 3700 } 3701 EXPORT_SYMBOL(path_is_under); 3702 3703 /* 3704 * pivot_root Semantics: 3705 * Moves the root file system of the current process to the directory put_old, 3706 * makes new_root as the new root file system of the current process, and sets 3707 * root/cwd of all processes which had them on the current root to new_root. 3708 * 3709 * Restrictions: 3710 * The new_root and put_old must be directories, and must not be on the 3711 * same file system as the current process root. The put_old must be 3712 * underneath new_root, i.e. adding a non-zero number of /.. to the string 3713 * pointed to by put_old must yield the same directory as new_root. No other 3714 * file system may be mounted on put_old. After all, new_root is a mountpoint. 3715 * 3716 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. 3717 * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives 3718 * in this situation. 3719 * 3720 * Notes: 3721 * - we don't move root/cwd if they are not at the root (reason: if something 3722 * cared enough to change them, it's probably wrong to force them elsewhere) 3723 * - it's okay to pick a root that isn't the root of a file system, e.g. 3724 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, 3725 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root 3726 * first. 3727 */ 3728 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root, 3729 const char __user *, put_old) 3730 { 3731 struct path new, old, root; 3732 struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent; 3733 struct mountpoint *old_mp, *root_mp; 3734 int error; 3735 3736 if (!may_mount()) 3737 return -EPERM; 3738 3739 error = user_path_at(AT_FDCWD, new_root, 3740 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new); 3741 if (error) 3742 goto out0; 3743 3744 error = user_path_at(AT_FDCWD, put_old, 3745 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old); 3746 if (error) 3747 goto out1; 3748 3749 error = security_sb_pivotroot(&old, &new); 3750 if (error) 3751 goto out2; 3752 3753 get_fs_root(current->fs, &root); 3754 old_mp = lock_mount(&old); 3755 error = PTR_ERR(old_mp); 3756 if (IS_ERR(old_mp)) 3757 goto out3; 3758 3759 error = -EINVAL; 3760 new_mnt = real_mount(new.mnt); 3761 root_mnt = real_mount(root.mnt); 3762 old_mnt = real_mount(old.mnt); 3763 ex_parent = new_mnt->mnt_parent; 3764 root_parent = root_mnt->mnt_parent; 3765 if (IS_MNT_SHARED(old_mnt) || 3766 IS_MNT_SHARED(ex_parent) || 3767 IS_MNT_SHARED(root_parent)) 3768 goto out4; 3769 if (!check_mnt(root_mnt) || !check_mnt(new_mnt)) 3770 goto out4; 3771 if (new_mnt->mnt.mnt_flags & MNT_LOCKED) 3772 goto out4; 3773 error = -ENOENT; 3774 if (d_unlinked(new.dentry)) 3775 goto out4; 3776 error = -EBUSY; 3777 if (new_mnt == root_mnt || old_mnt == root_mnt) 3778 goto out4; /* loop, on the same file system */ 3779 error = -EINVAL; 3780 if (root.mnt->mnt_root != root.dentry) 3781 goto out4; /* not a mountpoint */ 3782 if (!mnt_has_parent(root_mnt)) 3783 goto out4; /* not attached */ 3784 if (new.mnt->mnt_root != new.dentry) 3785 goto out4; /* not a mountpoint */ 3786 if (!mnt_has_parent(new_mnt)) 3787 goto out4; /* not attached */ 3788 /* make sure we can reach put_old from new_root */ 3789 if (!is_path_reachable(old_mnt, old.dentry, &new)) 3790 goto out4; 3791 /* make certain new is below the root */ 3792 if (!is_path_reachable(new_mnt, new.dentry, &root)) 3793 goto out4; 3794 lock_mount_hash(); 3795 umount_mnt(new_mnt); 3796 root_mp = unhash_mnt(root_mnt); /* we'll need its mountpoint */ 3797 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) { 3798 new_mnt->mnt.mnt_flags |= MNT_LOCKED; 3799 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED; 3800 } 3801 /* mount old root on put_old */ 3802 attach_mnt(root_mnt, old_mnt, old_mp); 3803 /* mount new_root on / */ 3804 attach_mnt(new_mnt, root_parent, root_mp); 3805 mnt_add_count(root_parent, -1); 3806 touch_mnt_namespace(current->nsproxy->mnt_ns); 3807 /* A moved mount should not expire automatically */ 3808 list_del_init(&new_mnt->mnt_expire); 3809 put_mountpoint(root_mp); 3810 unlock_mount_hash(); 3811 chroot_fs_refs(&root, &new); 3812 error = 0; 3813 out4: 3814 unlock_mount(old_mp); 3815 if (!error) 3816 mntput_no_expire(ex_parent); 3817 out3: 3818 path_put(&root); 3819 out2: 3820 path_put(&old); 3821 out1: 3822 path_put(&new); 3823 out0: 3824 return error; 3825 } 3826 3827 static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt) 3828 { 3829 unsigned int flags = mnt->mnt.mnt_flags; 3830 3831 /* flags to clear */ 3832 flags &= ~kattr->attr_clr; 3833 /* flags to raise */ 3834 flags |= kattr->attr_set; 3835 3836 return flags; 3837 } 3838 3839 static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt) 3840 { 3841 struct vfsmount *m = &mnt->mnt; 3842 3843 if (!kattr->mnt_userns) 3844 return 0; 3845 3846 /* 3847 * Once a mount has been idmapped we don't allow it to change its 3848 * mapping. It makes things simpler and callers can just create 3849 * another bind-mount they can idmap if they want to. 3850 */ 3851 if (mnt_user_ns(m) != &init_user_ns) 3852 return -EPERM; 3853 3854 /* The underlying filesystem doesn't support idmapped mounts yet. */ 3855 if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP)) 3856 return -EINVAL; 3857 3858 /* We're not controlling the superblock. */ 3859 if (!ns_capable(m->mnt_sb->s_user_ns, CAP_SYS_ADMIN)) 3860 return -EPERM; 3861 3862 /* Mount has already been visible in the filesystem hierarchy. */ 3863 if (!is_anon_ns(mnt->mnt_ns)) 3864 return -EINVAL; 3865 3866 return 0; 3867 } 3868 3869 static struct mount *mount_setattr_prepare(struct mount_kattr *kattr, 3870 struct mount *mnt, int *err) 3871 { 3872 struct mount *m = mnt, *last = NULL; 3873 3874 if (!is_mounted(&m->mnt)) { 3875 *err = -EINVAL; 3876 goto out; 3877 } 3878 3879 if (!(mnt_has_parent(m) ? check_mnt(m) : is_anon_ns(m->mnt_ns))) { 3880 *err = -EINVAL; 3881 goto out; 3882 } 3883 3884 do { 3885 unsigned int flags; 3886 3887 flags = recalc_flags(kattr, m); 3888 if (!can_change_locked_flags(m, flags)) { 3889 *err = -EPERM; 3890 goto out; 3891 } 3892 3893 *err = can_idmap_mount(kattr, m); 3894 if (*err) 3895 goto out; 3896 3897 last = m; 3898 3899 if ((kattr->attr_set & MNT_READONLY) && 3900 !(m->mnt.mnt_flags & MNT_READONLY)) { 3901 *err = mnt_hold_writers(m); 3902 if (*err) 3903 goto out; 3904 } 3905 } while (kattr->recurse && (m = next_mnt(m, mnt))); 3906 3907 out: 3908 return last; 3909 } 3910 3911 static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt) 3912 { 3913 struct user_namespace *mnt_userns; 3914 3915 if (!kattr->mnt_userns) 3916 return; 3917 3918 mnt_userns = get_user_ns(kattr->mnt_userns); 3919 /* Pairs with smp_load_acquire() in mnt_user_ns(). */ 3920 smp_store_release(&mnt->mnt.mnt_userns, mnt_userns); 3921 } 3922 3923 static void mount_setattr_commit(struct mount_kattr *kattr, 3924 struct mount *mnt, struct mount *last, 3925 int err) 3926 { 3927 struct mount *m = mnt; 3928 3929 do { 3930 if (!err) { 3931 unsigned int flags; 3932 3933 do_idmap_mount(kattr, m); 3934 flags = recalc_flags(kattr, m); 3935 WRITE_ONCE(m->mnt.mnt_flags, flags); 3936 } 3937 3938 /* 3939 * We either set MNT_READONLY above so make it visible 3940 * before ~MNT_WRITE_HOLD or we failed to recursively 3941 * apply mount options. 3942 */ 3943 if ((kattr->attr_set & MNT_READONLY) && 3944 (m->mnt.mnt_flags & MNT_WRITE_HOLD)) 3945 mnt_unhold_writers(m); 3946 3947 if (!err && kattr->propagation) 3948 change_mnt_propagation(m, kattr->propagation); 3949 3950 /* 3951 * On failure, only cleanup until we found the first mount 3952 * we failed to handle. 3953 */ 3954 if (err && m == last) 3955 break; 3956 } while (kattr->recurse && (m = next_mnt(m, mnt))); 3957 3958 if (!err) 3959 touch_mnt_namespace(mnt->mnt_ns); 3960 } 3961 3962 static int do_mount_setattr(struct path *path, struct mount_kattr *kattr) 3963 { 3964 struct mount *mnt = real_mount(path->mnt), *last = NULL; 3965 int err = 0; 3966 3967 if (path->dentry != mnt->mnt.mnt_root) 3968 return -EINVAL; 3969 3970 if (kattr->propagation) { 3971 /* 3972 * Only take namespace_lock() if we're actually changing 3973 * propagation. 3974 */ 3975 namespace_lock(); 3976 if (kattr->propagation == MS_SHARED) { 3977 err = invent_group_ids(mnt, kattr->recurse); 3978 if (err) { 3979 namespace_unlock(); 3980 return err; 3981 } 3982 } 3983 } 3984 3985 lock_mount_hash(); 3986 3987 /* 3988 * Get the mount tree in a shape where we can change mount 3989 * properties without failure. 3990 */ 3991 last = mount_setattr_prepare(kattr, mnt, &err); 3992 if (last) /* Commit all changes or revert to the old state. */ 3993 mount_setattr_commit(kattr, mnt, last, err); 3994 3995 unlock_mount_hash(); 3996 3997 if (kattr->propagation) { 3998 namespace_unlock(); 3999 if (err) 4000 cleanup_group_ids(mnt, NULL); 4001 } 4002 4003 return err; 4004 } 4005 4006 static int build_mount_idmapped(const struct mount_attr *attr, size_t usize, 4007 struct mount_kattr *kattr, unsigned int flags) 4008 { 4009 int err = 0; 4010 struct ns_common *ns; 4011 struct user_namespace *mnt_userns; 4012 struct file *file; 4013 4014 if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP)) 4015 return 0; 4016 4017 /* 4018 * We currently do not support clearing an idmapped mount. If this ever 4019 * is a use-case we can revisit this but for now let's keep it simple 4020 * and not allow it. 4021 */ 4022 if (attr->attr_clr & MOUNT_ATTR_IDMAP) 4023 return -EINVAL; 4024 4025 if (attr->userns_fd > INT_MAX) 4026 return -EINVAL; 4027 4028 file = fget(attr->userns_fd); 4029 if (!file) 4030 return -EBADF; 4031 4032 if (!proc_ns_file(file)) { 4033 err = -EINVAL; 4034 goto out_fput; 4035 } 4036 4037 ns = get_proc_ns(file_inode(file)); 4038 if (ns->ops->type != CLONE_NEWUSER) { 4039 err = -EINVAL; 4040 goto out_fput; 4041 } 4042 4043 /* 4044 * The init_user_ns is used to indicate that a vfsmount is not idmapped. 4045 * This is simpler than just having to treat NULL as unmapped. Users 4046 * wanting to idmap a mount to init_user_ns can just use a namespace 4047 * with an identity mapping. 4048 */ 4049 mnt_userns = container_of(ns, struct user_namespace, ns); 4050 if (mnt_userns == &init_user_ns) { 4051 err = -EPERM; 4052 goto out_fput; 4053 } 4054 kattr->mnt_userns = get_user_ns(mnt_userns); 4055 4056 out_fput: 4057 fput(file); 4058 return err; 4059 } 4060 4061 static int build_mount_kattr(const struct mount_attr *attr, size_t usize, 4062 struct mount_kattr *kattr, unsigned int flags) 4063 { 4064 unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW; 4065 4066 if (flags & AT_NO_AUTOMOUNT) 4067 lookup_flags &= ~LOOKUP_AUTOMOUNT; 4068 if (flags & AT_SYMLINK_NOFOLLOW) 4069 lookup_flags &= ~LOOKUP_FOLLOW; 4070 if (flags & AT_EMPTY_PATH) 4071 lookup_flags |= LOOKUP_EMPTY; 4072 4073 *kattr = (struct mount_kattr) { 4074 .lookup_flags = lookup_flags, 4075 .recurse = !!(flags & AT_RECURSIVE), 4076 }; 4077 4078 if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS) 4079 return -EINVAL; 4080 if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1) 4081 return -EINVAL; 4082 kattr->propagation = attr->propagation; 4083 4084 if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS) 4085 return -EINVAL; 4086 4087 kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set); 4088 kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr); 4089 4090 /* 4091 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap, 4092 * users wanting to transition to a different atime setting cannot 4093 * simply specify the atime setting in @attr_set, but must also 4094 * specify MOUNT_ATTR__ATIME in the @attr_clr field. 4095 * So ensure that MOUNT_ATTR__ATIME can't be partially set in 4096 * @attr_clr and that @attr_set can't have any atime bits set if 4097 * MOUNT_ATTR__ATIME isn't set in @attr_clr. 4098 */ 4099 if (attr->attr_clr & MOUNT_ATTR__ATIME) { 4100 if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME) 4101 return -EINVAL; 4102 4103 /* 4104 * Clear all previous time settings as they are mutually 4105 * exclusive. 4106 */ 4107 kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME; 4108 switch (attr->attr_set & MOUNT_ATTR__ATIME) { 4109 case MOUNT_ATTR_RELATIME: 4110 kattr->attr_set |= MNT_RELATIME; 4111 break; 4112 case MOUNT_ATTR_NOATIME: 4113 kattr->attr_set |= MNT_NOATIME; 4114 break; 4115 case MOUNT_ATTR_STRICTATIME: 4116 break; 4117 default: 4118 return -EINVAL; 4119 } 4120 } else { 4121 if (attr->attr_set & MOUNT_ATTR__ATIME) 4122 return -EINVAL; 4123 } 4124 4125 return build_mount_idmapped(attr, usize, kattr, flags); 4126 } 4127 4128 static void finish_mount_kattr(struct mount_kattr *kattr) 4129 { 4130 put_user_ns(kattr->mnt_userns); 4131 kattr->mnt_userns = NULL; 4132 } 4133 4134 SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path, 4135 unsigned int, flags, struct mount_attr __user *, uattr, 4136 size_t, usize) 4137 { 4138 int err; 4139 struct path target; 4140 struct mount_attr attr; 4141 struct mount_kattr kattr; 4142 4143 BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0); 4144 4145 if (flags & ~(AT_EMPTY_PATH | 4146 AT_RECURSIVE | 4147 AT_SYMLINK_NOFOLLOW | 4148 AT_NO_AUTOMOUNT)) 4149 return -EINVAL; 4150 4151 if (unlikely(usize > PAGE_SIZE)) 4152 return -E2BIG; 4153 if (unlikely(usize < MOUNT_ATTR_SIZE_VER0)) 4154 return -EINVAL; 4155 4156 if (!may_mount()) 4157 return -EPERM; 4158 4159 err = copy_struct_from_user(&attr, sizeof(attr), uattr, usize); 4160 if (err) 4161 return err; 4162 4163 /* Don't bother walking through the mounts if this is a nop. */ 4164 if (attr.attr_set == 0 && 4165 attr.attr_clr == 0 && 4166 attr.propagation == 0) 4167 return 0; 4168 4169 err = build_mount_kattr(&attr, usize, &kattr, flags); 4170 if (err) 4171 return err; 4172 4173 err = user_path_at(dfd, path, kattr.lookup_flags, &target); 4174 if (err) 4175 return err; 4176 4177 err = do_mount_setattr(&target, &kattr); 4178 finish_mount_kattr(&kattr); 4179 path_put(&target); 4180 return err; 4181 } 4182 4183 static void __init init_mount_tree(void) 4184 { 4185 struct vfsmount *mnt; 4186 struct mount *m; 4187 struct mnt_namespace *ns; 4188 struct path root; 4189 4190 mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL); 4191 if (IS_ERR(mnt)) 4192 panic("Can't create rootfs"); 4193 4194 ns = alloc_mnt_ns(&init_user_ns, false); 4195 if (IS_ERR(ns)) 4196 panic("Can't allocate initial namespace"); 4197 m = real_mount(mnt); 4198 m->mnt_ns = ns; 4199 ns->root = m; 4200 ns->mounts = 1; 4201 list_add(&m->mnt_list, &ns->list); 4202 init_task.nsproxy->mnt_ns = ns; 4203 get_mnt_ns(ns); 4204 4205 root.mnt = mnt; 4206 root.dentry = mnt->mnt_root; 4207 mnt->mnt_flags |= MNT_LOCKED; 4208 4209 set_fs_pwd(current->fs, &root); 4210 set_fs_root(current->fs, &root); 4211 } 4212 4213 void __init mnt_init(void) 4214 { 4215 int err; 4216 4217 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount), 4218 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 4219 4220 mount_hashtable = alloc_large_system_hash("Mount-cache", 4221 sizeof(struct hlist_head), 4222 mhash_entries, 19, 4223 HASH_ZERO, 4224 &m_hash_shift, &m_hash_mask, 0, 0); 4225 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache", 4226 sizeof(struct hlist_head), 4227 mphash_entries, 19, 4228 HASH_ZERO, 4229 &mp_hash_shift, &mp_hash_mask, 0, 0); 4230 4231 if (!mount_hashtable || !mountpoint_hashtable) 4232 panic("Failed to allocate mount hash table\n"); 4233 4234 kernfs_init(); 4235 4236 err = sysfs_init(); 4237 if (err) 4238 printk(KERN_WARNING "%s: sysfs_init error: %d\n", 4239 __func__, err); 4240 fs_kobj = kobject_create_and_add("fs", NULL); 4241 if (!fs_kobj) 4242 printk(KERN_WARNING "%s: kobj create error\n", __func__); 4243 shmem_init(); 4244 init_rootfs(); 4245 init_mount_tree(); 4246 } 4247 4248 void put_mnt_ns(struct mnt_namespace *ns) 4249 { 4250 if (!refcount_dec_and_test(&ns->ns.count)) 4251 return; 4252 drop_collected_mounts(&ns->root->mnt); 4253 free_mnt_ns(ns); 4254 } 4255 4256 struct vfsmount *kern_mount(struct file_system_type *type) 4257 { 4258 struct vfsmount *mnt; 4259 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL); 4260 if (!IS_ERR(mnt)) { 4261 /* 4262 * it is a longterm mount, don't release mnt until 4263 * we unmount before file sys is unregistered 4264 */ 4265 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL; 4266 } 4267 return mnt; 4268 } 4269 EXPORT_SYMBOL_GPL(kern_mount); 4270 4271 void kern_unmount(struct vfsmount *mnt) 4272 { 4273 /* release long term mount so mount point can be released */ 4274 if (!IS_ERR_OR_NULL(mnt)) { 4275 real_mount(mnt)->mnt_ns = NULL; 4276 synchronize_rcu(); /* yecchhh... */ 4277 mntput(mnt); 4278 } 4279 } 4280 EXPORT_SYMBOL(kern_unmount); 4281 4282 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num) 4283 { 4284 unsigned int i; 4285 4286 for (i = 0; i < num; i++) 4287 if (mnt[i]) 4288 real_mount(mnt[i])->mnt_ns = NULL; 4289 synchronize_rcu_expedited(); 4290 for (i = 0; i < num; i++) 4291 mntput(mnt[i]); 4292 } 4293 EXPORT_SYMBOL(kern_unmount_array); 4294 4295 bool our_mnt(struct vfsmount *mnt) 4296 { 4297 return check_mnt(real_mount(mnt)); 4298 } 4299 4300 bool current_chrooted(void) 4301 { 4302 /* Does the current process have a non-standard root */ 4303 struct path ns_root; 4304 struct path fs_root; 4305 bool chrooted; 4306 4307 /* Find the namespace root */ 4308 ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt; 4309 ns_root.dentry = ns_root.mnt->mnt_root; 4310 path_get(&ns_root); 4311 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root)) 4312 ; 4313 4314 get_fs_root(current->fs, &fs_root); 4315 4316 chrooted = !path_equal(&fs_root, &ns_root); 4317 4318 path_put(&fs_root); 4319 path_put(&ns_root); 4320 4321 return chrooted; 4322 } 4323 4324 static bool mnt_already_visible(struct mnt_namespace *ns, 4325 const struct super_block *sb, 4326 int *new_mnt_flags) 4327 { 4328 int new_flags = *new_mnt_flags; 4329 struct mount *mnt; 4330 bool visible = false; 4331 4332 down_read(&namespace_sem); 4333 lock_ns_list(ns); 4334 list_for_each_entry(mnt, &ns->list, mnt_list) { 4335 struct mount *child; 4336 int mnt_flags; 4337 4338 if (mnt_is_cursor(mnt)) 4339 continue; 4340 4341 if (mnt->mnt.mnt_sb->s_type != sb->s_type) 4342 continue; 4343 4344 /* This mount is not fully visible if it's root directory 4345 * is not the root directory of the filesystem. 4346 */ 4347 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root) 4348 continue; 4349 4350 /* A local view of the mount flags */ 4351 mnt_flags = mnt->mnt.mnt_flags; 4352 4353 /* Don't miss readonly hidden in the superblock flags */ 4354 if (sb_rdonly(mnt->mnt.mnt_sb)) 4355 mnt_flags |= MNT_LOCK_READONLY; 4356 4357 /* Verify the mount flags are equal to or more permissive 4358 * than the proposed new mount. 4359 */ 4360 if ((mnt_flags & MNT_LOCK_READONLY) && 4361 !(new_flags & MNT_READONLY)) 4362 continue; 4363 if ((mnt_flags & MNT_LOCK_ATIME) && 4364 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK))) 4365 continue; 4366 4367 /* This mount is not fully visible if there are any 4368 * locked child mounts that cover anything except for 4369 * empty directories. 4370 */ 4371 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 4372 struct inode *inode = child->mnt_mountpoint->d_inode; 4373 /* Only worry about locked mounts */ 4374 if (!(child->mnt.mnt_flags & MNT_LOCKED)) 4375 continue; 4376 /* Is the directory permanetly empty? */ 4377 if (!is_empty_dir_inode(inode)) 4378 goto next; 4379 } 4380 /* Preserve the locked attributes */ 4381 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \ 4382 MNT_LOCK_ATIME); 4383 visible = true; 4384 goto found; 4385 next: ; 4386 } 4387 found: 4388 unlock_ns_list(ns); 4389 up_read(&namespace_sem); 4390 return visible; 4391 } 4392 4393 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags) 4394 { 4395 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV; 4396 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 4397 unsigned long s_iflags; 4398 4399 if (ns->user_ns == &init_user_ns) 4400 return false; 4401 4402 /* Can this filesystem be too revealing? */ 4403 s_iflags = sb->s_iflags; 4404 if (!(s_iflags & SB_I_USERNS_VISIBLE)) 4405 return false; 4406 4407 if ((s_iflags & required_iflags) != required_iflags) { 4408 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n", 4409 required_iflags); 4410 return true; 4411 } 4412 4413 return !mnt_already_visible(ns, sb, new_mnt_flags); 4414 } 4415 4416 bool mnt_may_suid(struct vfsmount *mnt) 4417 { 4418 /* 4419 * Foreign mounts (accessed via fchdir or through /proc 4420 * symlinks) are always treated as if they are nosuid. This 4421 * prevents namespaces from trusting potentially unsafe 4422 * suid/sgid bits, file caps, or security labels that originate 4423 * in other namespaces. 4424 */ 4425 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) && 4426 current_in_userns(mnt->mnt_sb->s_user_ns); 4427 } 4428 4429 static struct ns_common *mntns_get(struct task_struct *task) 4430 { 4431 struct ns_common *ns = NULL; 4432 struct nsproxy *nsproxy; 4433 4434 task_lock(task); 4435 nsproxy = task->nsproxy; 4436 if (nsproxy) { 4437 ns = &nsproxy->mnt_ns->ns; 4438 get_mnt_ns(to_mnt_ns(ns)); 4439 } 4440 task_unlock(task); 4441 4442 return ns; 4443 } 4444 4445 static void mntns_put(struct ns_common *ns) 4446 { 4447 put_mnt_ns(to_mnt_ns(ns)); 4448 } 4449 4450 static int mntns_install(struct nsset *nsset, struct ns_common *ns) 4451 { 4452 struct nsproxy *nsproxy = nsset->nsproxy; 4453 struct fs_struct *fs = nsset->fs; 4454 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns; 4455 struct user_namespace *user_ns = nsset->cred->user_ns; 4456 struct path root; 4457 int err; 4458 4459 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) || 4460 !ns_capable(user_ns, CAP_SYS_CHROOT) || 4461 !ns_capable(user_ns, CAP_SYS_ADMIN)) 4462 return -EPERM; 4463 4464 if (is_anon_ns(mnt_ns)) 4465 return -EINVAL; 4466 4467 if (fs->users != 1) 4468 return -EINVAL; 4469 4470 get_mnt_ns(mnt_ns); 4471 old_mnt_ns = nsproxy->mnt_ns; 4472 nsproxy->mnt_ns = mnt_ns; 4473 4474 /* Find the root */ 4475 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt, 4476 "/", LOOKUP_DOWN, &root); 4477 if (err) { 4478 /* revert to old namespace */ 4479 nsproxy->mnt_ns = old_mnt_ns; 4480 put_mnt_ns(mnt_ns); 4481 return err; 4482 } 4483 4484 put_mnt_ns(old_mnt_ns); 4485 4486 /* Update the pwd and root */ 4487 set_fs_pwd(fs, &root); 4488 set_fs_root(fs, &root); 4489 4490 path_put(&root); 4491 return 0; 4492 } 4493 4494 static struct user_namespace *mntns_owner(struct ns_common *ns) 4495 { 4496 return to_mnt_ns(ns)->user_ns; 4497 } 4498 4499 const struct proc_ns_operations mntns_operations = { 4500 .name = "mnt", 4501 .type = CLONE_NEWNS, 4502 .get = mntns_get, 4503 .put = mntns_put, 4504 .install = mntns_install, 4505 .owner = mntns_owner, 4506 }; 4507