1 /* 2 * linux/fs/namespace.c 3 * 4 * (C) Copyright Al Viro 2000, 2001 5 * Released under GPL v2. 6 * 7 * Based on code from fs/super.c, copyright Linus Torvalds and others. 8 * Heavily rewritten. 9 */ 10 11 #include <linux/syscalls.h> 12 #include <linux/export.h> 13 #include <linux/capability.h> 14 #include <linux/mnt_namespace.h> 15 #include <linux/user_namespace.h> 16 #include <linux/namei.h> 17 #include <linux/security.h> 18 #include <linux/idr.h> 19 #include <linux/init.h> /* init_rootfs */ 20 #include <linux/fs_struct.h> /* get_fs_root et.al. */ 21 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */ 22 #include <linux/uaccess.h> 23 #include <linux/proc_ns.h> 24 #include <linux/magic.h> 25 #include <linux/bootmem.h> 26 #include "pnode.h" 27 #include "internal.h" 28 29 static unsigned int m_hash_mask __read_mostly; 30 static unsigned int m_hash_shift __read_mostly; 31 static unsigned int mp_hash_mask __read_mostly; 32 static unsigned int mp_hash_shift __read_mostly; 33 34 static __initdata unsigned long mhash_entries; 35 static int __init set_mhash_entries(char *str) 36 { 37 if (!str) 38 return 0; 39 mhash_entries = simple_strtoul(str, &str, 0); 40 return 1; 41 } 42 __setup("mhash_entries=", set_mhash_entries); 43 44 static __initdata unsigned long mphash_entries; 45 static int __init set_mphash_entries(char *str) 46 { 47 if (!str) 48 return 0; 49 mphash_entries = simple_strtoul(str, &str, 0); 50 return 1; 51 } 52 __setup("mphash_entries=", set_mphash_entries); 53 54 static u64 event; 55 static DEFINE_IDA(mnt_id_ida); 56 static DEFINE_IDA(mnt_group_ida); 57 static DEFINE_SPINLOCK(mnt_id_lock); 58 static int mnt_id_start = 0; 59 static int mnt_group_start = 1; 60 61 static struct hlist_head *mount_hashtable __read_mostly; 62 static struct hlist_head *mountpoint_hashtable __read_mostly; 63 static struct kmem_cache *mnt_cache __read_mostly; 64 static DECLARE_RWSEM(namespace_sem); 65 66 /* /sys/fs */ 67 struct kobject *fs_kobj; 68 EXPORT_SYMBOL_GPL(fs_kobj); 69 70 /* 71 * vfsmount lock may be taken for read to prevent changes to the 72 * vfsmount hash, ie. during mountpoint lookups or walking back 73 * up the tree. 74 * 75 * It should be taken for write in all cases where the vfsmount 76 * tree or hash is modified or when a vfsmount structure is modified. 77 */ 78 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock); 79 80 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry) 81 { 82 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); 83 tmp += ((unsigned long)dentry / L1_CACHE_BYTES); 84 tmp = tmp + (tmp >> m_hash_shift); 85 return &mount_hashtable[tmp & m_hash_mask]; 86 } 87 88 static inline struct hlist_head *mp_hash(struct dentry *dentry) 89 { 90 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES); 91 tmp = tmp + (tmp >> mp_hash_shift); 92 return &mountpoint_hashtable[tmp & mp_hash_mask]; 93 } 94 95 /* 96 * allocation is serialized by namespace_sem, but we need the spinlock to 97 * serialize with freeing. 98 */ 99 static int mnt_alloc_id(struct mount *mnt) 100 { 101 int res; 102 103 retry: 104 ida_pre_get(&mnt_id_ida, GFP_KERNEL); 105 spin_lock(&mnt_id_lock); 106 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id); 107 if (!res) 108 mnt_id_start = mnt->mnt_id + 1; 109 spin_unlock(&mnt_id_lock); 110 if (res == -EAGAIN) 111 goto retry; 112 113 return res; 114 } 115 116 static void mnt_free_id(struct mount *mnt) 117 { 118 int id = mnt->mnt_id; 119 spin_lock(&mnt_id_lock); 120 ida_remove(&mnt_id_ida, id); 121 if (mnt_id_start > id) 122 mnt_id_start = id; 123 spin_unlock(&mnt_id_lock); 124 } 125 126 /* 127 * Allocate a new peer group ID 128 * 129 * mnt_group_ida is protected by namespace_sem 130 */ 131 static int mnt_alloc_group_id(struct mount *mnt) 132 { 133 int res; 134 135 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL)) 136 return -ENOMEM; 137 138 res = ida_get_new_above(&mnt_group_ida, 139 mnt_group_start, 140 &mnt->mnt_group_id); 141 if (!res) 142 mnt_group_start = mnt->mnt_group_id + 1; 143 144 return res; 145 } 146 147 /* 148 * Release a peer group ID 149 */ 150 void mnt_release_group_id(struct mount *mnt) 151 { 152 int id = mnt->mnt_group_id; 153 ida_remove(&mnt_group_ida, id); 154 if (mnt_group_start > id) 155 mnt_group_start = id; 156 mnt->mnt_group_id = 0; 157 } 158 159 /* 160 * vfsmount lock must be held for read 161 */ 162 static inline void mnt_add_count(struct mount *mnt, int n) 163 { 164 #ifdef CONFIG_SMP 165 this_cpu_add(mnt->mnt_pcp->mnt_count, n); 166 #else 167 preempt_disable(); 168 mnt->mnt_count += n; 169 preempt_enable(); 170 #endif 171 } 172 173 /* 174 * vfsmount lock must be held for write 175 */ 176 unsigned int mnt_get_count(struct mount *mnt) 177 { 178 #ifdef CONFIG_SMP 179 unsigned int count = 0; 180 int cpu; 181 182 for_each_possible_cpu(cpu) { 183 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count; 184 } 185 186 return count; 187 #else 188 return mnt->mnt_count; 189 #endif 190 } 191 192 static struct mount *alloc_vfsmnt(const char *name) 193 { 194 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); 195 if (mnt) { 196 int err; 197 198 err = mnt_alloc_id(mnt); 199 if (err) 200 goto out_free_cache; 201 202 if (name) { 203 mnt->mnt_devname = kstrdup(name, GFP_KERNEL); 204 if (!mnt->mnt_devname) 205 goto out_free_id; 206 } 207 208 #ifdef CONFIG_SMP 209 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp); 210 if (!mnt->mnt_pcp) 211 goto out_free_devname; 212 213 this_cpu_add(mnt->mnt_pcp->mnt_count, 1); 214 #else 215 mnt->mnt_count = 1; 216 mnt->mnt_writers = 0; 217 #endif 218 219 INIT_HLIST_NODE(&mnt->mnt_hash); 220 INIT_LIST_HEAD(&mnt->mnt_child); 221 INIT_LIST_HEAD(&mnt->mnt_mounts); 222 INIT_LIST_HEAD(&mnt->mnt_list); 223 INIT_LIST_HEAD(&mnt->mnt_expire); 224 INIT_LIST_HEAD(&mnt->mnt_share); 225 INIT_LIST_HEAD(&mnt->mnt_slave_list); 226 INIT_LIST_HEAD(&mnt->mnt_slave); 227 #ifdef CONFIG_FSNOTIFY 228 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks); 229 #endif 230 } 231 return mnt; 232 233 #ifdef CONFIG_SMP 234 out_free_devname: 235 kfree(mnt->mnt_devname); 236 #endif 237 out_free_id: 238 mnt_free_id(mnt); 239 out_free_cache: 240 kmem_cache_free(mnt_cache, mnt); 241 return NULL; 242 } 243 244 /* 245 * Most r/o checks on a fs are for operations that take 246 * discrete amounts of time, like a write() or unlink(). 247 * We must keep track of when those operations start 248 * (for permission checks) and when they end, so that 249 * we can determine when writes are able to occur to 250 * a filesystem. 251 */ 252 /* 253 * __mnt_is_readonly: check whether a mount is read-only 254 * @mnt: the mount to check for its write status 255 * 256 * This shouldn't be used directly ouside of the VFS. 257 * It does not guarantee that the filesystem will stay 258 * r/w, just that it is right *now*. This can not and 259 * should not be used in place of IS_RDONLY(inode). 260 * mnt_want/drop_write() will _keep_ the filesystem 261 * r/w. 262 */ 263 int __mnt_is_readonly(struct vfsmount *mnt) 264 { 265 if (mnt->mnt_flags & MNT_READONLY) 266 return 1; 267 if (mnt->mnt_sb->s_flags & MS_RDONLY) 268 return 1; 269 return 0; 270 } 271 EXPORT_SYMBOL_GPL(__mnt_is_readonly); 272 273 static inline void mnt_inc_writers(struct mount *mnt) 274 { 275 #ifdef CONFIG_SMP 276 this_cpu_inc(mnt->mnt_pcp->mnt_writers); 277 #else 278 mnt->mnt_writers++; 279 #endif 280 } 281 282 static inline void mnt_dec_writers(struct mount *mnt) 283 { 284 #ifdef CONFIG_SMP 285 this_cpu_dec(mnt->mnt_pcp->mnt_writers); 286 #else 287 mnt->mnt_writers--; 288 #endif 289 } 290 291 static unsigned int mnt_get_writers(struct mount *mnt) 292 { 293 #ifdef CONFIG_SMP 294 unsigned int count = 0; 295 int cpu; 296 297 for_each_possible_cpu(cpu) { 298 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers; 299 } 300 301 return count; 302 #else 303 return mnt->mnt_writers; 304 #endif 305 } 306 307 static int mnt_is_readonly(struct vfsmount *mnt) 308 { 309 if (mnt->mnt_sb->s_readonly_remount) 310 return 1; 311 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */ 312 smp_rmb(); 313 return __mnt_is_readonly(mnt); 314 } 315 316 /* 317 * Most r/o & frozen checks on a fs are for operations that take discrete 318 * amounts of time, like a write() or unlink(). We must keep track of when 319 * those operations start (for permission checks) and when they end, so that we 320 * can determine when writes are able to occur to a filesystem. 321 */ 322 /** 323 * __mnt_want_write - get write access to a mount without freeze protection 324 * @m: the mount on which to take a write 325 * 326 * This tells the low-level filesystem that a write is about to be performed to 327 * it, and makes sure that writes are allowed (mnt it read-write) before 328 * returning success. This operation does not protect against filesystem being 329 * frozen. When the write operation is finished, __mnt_drop_write() must be 330 * called. This is effectively a refcount. 331 */ 332 int __mnt_want_write(struct vfsmount *m) 333 { 334 struct mount *mnt = real_mount(m); 335 int ret = 0; 336 337 preempt_disable(); 338 mnt_inc_writers(mnt); 339 /* 340 * The store to mnt_inc_writers must be visible before we pass 341 * MNT_WRITE_HOLD loop below, so that the slowpath can see our 342 * incremented count after it has set MNT_WRITE_HOLD. 343 */ 344 smp_mb(); 345 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) 346 cpu_relax(); 347 /* 348 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will 349 * be set to match its requirements. So we must not load that until 350 * MNT_WRITE_HOLD is cleared. 351 */ 352 smp_rmb(); 353 if (mnt_is_readonly(m)) { 354 mnt_dec_writers(mnt); 355 ret = -EROFS; 356 } 357 preempt_enable(); 358 359 return ret; 360 } 361 362 /** 363 * mnt_want_write - get write access to a mount 364 * @m: the mount on which to take a write 365 * 366 * This tells the low-level filesystem that a write is about to be performed to 367 * it, and makes sure that writes are allowed (mount is read-write, filesystem 368 * is not frozen) before returning success. When the write operation is 369 * finished, mnt_drop_write() must be called. This is effectively a refcount. 370 */ 371 int mnt_want_write(struct vfsmount *m) 372 { 373 int ret; 374 375 sb_start_write(m->mnt_sb); 376 ret = __mnt_want_write(m); 377 if (ret) 378 sb_end_write(m->mnt_sb); 379 return ret; 380 } 381 EXPORT_SYMBOL_GPL(mnt_want_write); 382 383 /** 384 * mnt_clone_write - get write access to a mount 385 * @mnt: the mount on which to take a write 386 * 387 * This is effectively like mnt_want_write, except 388 * it must only be used to take an extra write reference 389 * on a mountpoint that we already know has a write reference 390 * on it. This allows some optimisation. 391 * 392 * After finished, mnt_drop_write must be called as usual to 393 * drop the reference. 394 */ 395 int mnt_clone_write(struct vfsmount *mnt) 396 { 397 /* superblock may be r/o */ 398 if (__mnt_is_readonly(mnt)) 399 return -EROFS; 400 preempt_disable(); 401 mnt_inc_writers(real_mount(mnt)); 402 preempt_enable(); 403 return 0; 404 } 405 EXPORT_SYMBOL_GPL(mnt_clone_write); 406 407 /** 408 * __mnt_want_write_file - get write access to a file's mount 409 * @file: the file who's mount on which to take a write 410 * 411 * This is like __mnt_want_write, but it takes a file and can 412 * do some optimisations if the file is open for write already 413 */ 414 int __mnt_want_write_file(struct file *file) 415 { 416 if (!(file->f_mode & FMODE_WRITER)) 417 return __mnt_want_write(file->f_path.mnt); 418 else 419 return mnt_clone_write(file->f_path.mnt); 420 } 421 422 /** 423 * mnt_want_write_file - get write access to a file's mount 424 * @file: the file who's mount on which to take a write 425 * 426 * This is like mnt_want_write, but it takes a file and can 427 * do some optimisations if the file is open for write already 428 */ 429 int mnt_want_write_file(struct file *file) 430 { 431 int ret; 432 433 sb_start_write(file->f_path.mnt->mnt_sb); 434 ret = __mnt_want_write_file(file); 435 if (ret) 436 sb_end_write(file->f_path.mnt->mnt_sb); 437 return ret; 438 } 439 EXPORT_SYMBOL_GPL(mnt_want_write_file); 440 441 /** 442 * __mnt_drop_write - give up write access to a mount 443 * @mnt: the mount on which to give up write access 444 * 445 * Tells the low-level filesystem that we are done 446 * performing writes to it. Must be matched with 447 * __mnt_want_write() call above. 448 */ 449 void __mnt_drop_write(struct vfsmount *mnt) 450 { 451 preempt_disable(); 452 mnt_dec_writers(real_mount(mnt)); 453 preempt_enable(); 454 } 455 456 /** 457 * mnt_drop_write - give up write access to a mount 458 * @mnt: the mount on which to give up write access 459 * 460 * Tells the low-level filesystem that we are done performing writes to it and 461 * also allows filesystem to be frozen again. Must be matched with 462 * mnt_want_write() call above. 463 */ 464 void mnt_drop_write(struct vfsmount *mnt) 465 { 466 __mnt_drop_write(mnt); 467 sb_end_write(mnt->mnt_sb); 468 } 469 EXPORT_SYMBOL_GPL(mnt_drop_write); 470 471 void __mnt_drop_write_file(struct file *file) 472 { 473 __mnt_drop_write(file->f_path.mnt); 474 } 475 476 void mnt_drop_write_file(struct file *file) 477 { 478 mnt_drop_write(file->f_path.mnt); 479 } 480 EXPORT_SYMBOL(mnt_drop_write_file); 481 482 static int mnt_make_readonly(struct mount *mnt) 483 { 484 int ret = 0; 485 486 lock_mount_hash(); 487 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 488 /* 489 * After storing MNT_WRITE_HOLD, we'll read the counters. This store 490 * should be visible before we do. 491 */ 492 smp_mb(); 493 494 /* 495 * With writers on hold, if this value is zero, then there are 496 * definitely no active writers (although held writers may subsequently 497 * increment the count, they'll have to wait, and decrement it after 498 * seeing MNT_READONLY). 499 * 500 * It is OK to have counter incremented on one CPU and decremented on 501 * another: the sum will add up correctly. The danger would be when we 502 * sum up each counter, if we read a counter before it is incremented, 503 * but then read another CPU's count which it has been subsequently 504 * decremented from -- we would see more decrements than we should. 505 * MNT_WRITE_HOLD protects against this scenario, because 506 * mnt_want_write first increments count, then smp_mb, then spins on 507 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while 508 * we're counting up here. 509 */ 510 if (mnt_get_writers(mnt) > 0) 511 ret = -EBUSY; 512 else 513 mnt->mnt.mnt_flags |= MNT_READONLY; 514 /* 515 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers 516 * that become unheld will see MNT_READONLY. 517 */ 518 smp_wmb(); 519 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 520 unlock_mount_hash(); 521 return ret; 522 } 523 524 static void __mnt_unmake_readonly(struct mount *mnt) 525 { 526 lock_mount_hash(); 527 mnt->mnt.mnt_flags &= ~MNT_READONLY; 528 unlock_mount_hash(); 529 } 530 531 int sb_prepare_remount_readonly(struct super_block *sb) 532 { 533 struct mount *mnt; 534 int err = 0; 535 536 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */ 537 if (atomic_long_read(&sb->s_remove_count)) 538 return -EBUSY; 539 540 lock_mount_hash(); 541 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 542 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) { 543 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 544 smp_mb(); 545 if (mnt_get_writers(mnt) > 0) { 546 err = -EBUSY; 547 break; 548 } 549 } 550 } 551 if (!err && atomic_long_read(&sb->s_remove_count)) 552 err = -EBUSY; 553 554 if (!err) { 555 sb->s_readonly_remount = 1; 556 smp_wmb(); 557 } 558 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 559 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD) 560 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 561 } 562 unlock_mount_hash(); 563 564 return err; 565 } 566 567 static void free_vfsmnt(struct mount *mnt) 568 { 569 kfree(mnt->mnt_devname); 570 #ifdef CONFIG_SMP 571 free_percpu(mnt->mnt_pcp); 572 #endif 573 kmem_cache_free(mnt_cache, mnt); 574 } 575 576 static void delayed_free_vfsmnt(struct rcu_head *head) 577 { 578 free_vfsmnt(container_of(head, struct mount, mnt_rcu)); 579 } 580 581 /* call under rcu_read_lock */ 582 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq) 583 { 584 struct mount *mnt; 585 if (read_seqretry(&mount_lock, seq)) 586 return false; 587 if (bastard == NULL) 588 return true; 589 mnt = real_mount(bastard); 590 mnt_add_count(mnt, 1); 591 if (likely(!read_seqretry(&mount_lock, seq))) 592 return true; 593 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) { 594 mnt_add_count(mnt, -1); 595 return false; 596 } 597 rcu_read_unlock(); 598 mntput(bastard); 599 rcu_read_lock(); 600 return false; 601 } 602 603 /* 604 * find the first mount at @dentry on vfsmount @mnt. 605 * call under rcu_read_lock() 606 */ 607 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry) 608 { 609 struct hlist_head *head = m_hash(mnt, dentry); 610 struct mount *p; 611 612 hlist_for_each_entry_rcu(p, head, mnt_hash) 613 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) 614 return p; 615 return NULL; 616 } 617 618 /* 619 * find the last mount at @dentry on vfsmount @mnt. 620 * mount_lock must be held. 621 */ 622 struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry) 623 { 624 struct mount *p, *res; 625 res = p = __lookup_mnt(mnt, dentry); 626 if (!p) 627 goto out; 628 hlist_for_each_entry_continue(p, mnt_hash) { 629 if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry) 630 break; 631 res = p; 632 } 633 out: 634 return res; 635 } 636 637 /* 638 * lookup_mnt - Return the first child mount mounted at path 639 * 640 * "First" means first mounted chronologically. If you create the 641 * following mounts: 642 * 643 * mount /dev/sda1 /mnt 644 * mount /dev/sda2 /mnt 645 * mount /dev/sda3 /mnt 646 * 647 * Then lookup_mnt() on the base /mnt dentry in the root mount will 648 * return successively the root dentry and vfsmount of /dev/sda1, then 649 * /dev/sda2, then /dev/sda3, then NULL. 650 * 651 * lookup_mnt takes a reference to the found vfsmount. 652 */ 653 struct vfsmount *lookup_mnt(struct path *path) 654 { 655 struct mount *child_mnt; 656 struct vfsmount *m; 657 unsigned seq; 658 659 rcu_read_lock(); 660 do { 661 seq = read_seqbegin(&mount_lock); 662 child_mnt = __lookup_mnt(path->mnt, path->dentry); 663 m = child_mnt ? &child_mnt->mnt : NULL; 664 } while (!legitimize_mnt(m, seq)); 665 rcu_read_unlock(); 666 return m; 667 } 668 669 static struct mountpoint *new_mountpoint(struct dentry *dentry) 670 { 671 struct hlist_head *chain = mp_hash(dentry); 672 struct mountpoint *mp; 673 int ret; 674 675 hlist_for_each_entry(mp, chain, m_hash) { 676 if (mp->m_dentry == dentry) { 677 /* might be worth a WARN_ON() */ 678 if (d_unlinked(dentry)) 679 return ERR_PTR(-ENOENT); 680 mp->m_count++; 681 return mp; 682 } 683 } 684 685 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL); 686 if (!mp) 687 return ERR_PTR(-ENOMEM); 688 689 ret = d_set_mounted(dentry); 690 if (ret) { 691 kfree(mp); 692 return ERR_PTR(ret); 693 } 694 695 mp->m_dentry = dentry; 696 mp->m_count = 1; 697 hlist_add_head(&mp->m_hash, chain); 698 return mp; 699 } 700 701 static void put_mountpoint(struct mountpoint *mp) 702 { 703 if (!--mp->m_count) { 704 struct dentry *dentry = mp->m_dentry; 705 spin_lock(&dentry->d_lock); 706 dentry->d_flags &= ~DCACHE_MOUNTED; 707 spin_unlock(&dentry->d_lock); 708 hlist_del(&mp->m_hash); 709 kfree(mp); 710 } 711 } 712 713 static inline int check_mnt(struct mount *mnt) 714 { 715 return mnt->mnt_ns == current->nsproxy->mnt_ns; 716 } 717 718 /* 719 * vfsmount lock must be held for write 720 */ 721 static void touch_mnt_namespace(struct mnt_namespace *ns) 722 { 723 if (ns) { 724 ns->event = ++event; 725 wake_up_interruptible(&ns->poll); 726 } 727 } 728 729 /* 730 * vfsmount lock must be held for write 731 */ 732 static void __touch_mnt_namespace(struct mnt_namespace *ns) 733 { 734 if (ns && ns->event != event) { 735 ns->event = event; 736 wake_up_interruptible(&ns->poll); 737 } 738 } 739 740 /* 741 * vfsmount lock must be held for write 742 */ 743 static void detach_mnt(struct mount *mnt, struct path *old_path) 744 { 745 old_path->dentry = mnt->mnt_mountpoint; 746 old_path->mnt = &mnt->mnt_parent->mnt; 747 mnt->mnt_parent = mnt; 748 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 749 list_del_init(&mnt->mnt_child); 750 hlist_del_init_rcu(&mnt->mnt_hash); 751 put_mountpoint(mnt->mnt_mp); 752 mnt->mnt_mp = NULL; 753 } 754 755 /* 756 * vfsmount lock must be held for write 757 */ 758 void mnt_set_mountpoint(struct mount *mnt, 759 struct mountpoint *mp, 760 struct mount *child_mnt) 761 { 762 mp->m_count++; 763 mnt_add_count(mnt, 1); /* essentially, that's mntget */ 764 child_mnt->mnt_mountpoint = dget(mp->m_dentry); 765 child_mnt->mnt_parent = mnt; 766 child_mnt->mnt_mp = mp; 767 } 768 769 /* 770 * vfsmount lock must be held for write 771 */ 772 static void attach_mnt(struct mount *mnt, 773 struct mount *parent, 774 struct mountpoint *mp) 775 { 776 mnt_set_mountpoint(parent, mp, mnt); 777 hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry)); 778 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 779 } 780 781 static void attach_shadowed(struct mount *mnt, 782 struct mount *parent, 783 struct mount *shadows) 784 { 785 if (shadows) { 786 hlist_add_behind_rcu(&mnt->mnt_hash, &shadows->mnt_hash); 787 list_add(&mnt->mnt_child, &shadows->mnt_child); 788 } else { 789 hlist_add_head_rcu(&mnt->mnt_hash, 790 m_hash(&parent->mnt, mnt->mnt_mountpoint)); 791 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 792 } 793 } 794 795 /* 796 * vfsmount lock must be held for write 797 */ 798 static void commit_tree(struct mount *mnt, struct mount *shadows) 799 { 800 struct mount *parent = mnt->mnt_parent; 801 struct mount *m; 802 LIST_HEAD(head); 803 struct mnt_namespace *n = parent->mnt_ns; 804 805 BUG_ON(parent == mnt); 806 807 list_add_tail(&head, &mnt->mnt_list); 808 list_for_each_entry(m, &head, mnt_list) 809 m->mnt_ns = n; 810 811 list_splice(&head, n->list.prev); 812 813 attach_shadowed(mnt, parent, shadows); 814 touch_mnt_namespace(n); 815 } 816 817 static struct mount *next_mnt(struct mount *p, struct mount *root) 818 { 819 struct list_head *next = p->mnt_mounts.next; 820 if (next == &p->mnt_mounts) { 821 while (1) { 822 if (p == root) 823 return NULL; 824 next = p->mnt_child.next; 825 if (next != &p->mnt_parent->mnt_mounts) 826 break; 827 p = p->mnt_parent; 828 } 829 } 830 return list_entry(next, struct mount, mnt_child); 831 } 832 833 static struct mount *skip_mnt_tree(struct mount *p) 834 { 835 struct list_head *prev = p->mnt_mounts.prev; 836 while (prev != &p->mnt_mounts) { 837 p = list_entry(prev, struct mount, mnt_child); 838 prev = p->mnt_mounts.prev; 839 } 840 return p; 841 } 842 843 struct vfsmount * 844 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data) 845 { 846 struct mount *mnt; 847 struct dentry *root; 848 849 if (!type) 850 return ERR_PTR(-ENODEV); 851 852 mnt = alloc_vfsmnt(name); 853 if (!mnt) 854 return ERR_PTR(-ENOMEM); 855 856 if (flags & MS_KERNMOUNT) 857 mnt->mnt.mnt_flags = MNT_INTERNAL; 858 859 root = mount_fs(type, flags, name, data); 860 if (IS_ERR(root)) { 861 mnt_free_id(mnt); 862 free_vfsmnt(mnt); 863 return ERR_CAST(root); 864 } 865 866 mnt->mnt.mnt_root = root; 867 mnt->mnt.mnt_sb = root->d_sb; 868 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 869 mnt->mnt_parent = mnt; 870 lock_mount_hash(); 871 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts); 872 unlock_mount_hash(); 873 return &mnt->mnt; 874 } 875 EXPORT_SYMBOL_GPL(vfs_kern_mount); 876 877 static struct mount *clone_mnt(struct mount *old, struct dentry *root, 878 int flag) 879 { 880 struct super_block *sb = old->mnt.mnt_sb; 881 struct mount *mnt; 882 int err; 883 884 mnt = alloc_vfsmnt(old->mnt_devname); 885 if (!mnt) 886 return ERR_PTR(-ENOMEM); 887 888 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE)) 889 mnt->mnt_group_id = 0; /* not a peer of original */ 890 else 891 mnt->mnt_group_id = old->mnt_group_id; 892 893 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) { 894 err = mnt_alloc_group_id(mnt); 895 if (err) 896 goto out_free; 897 } 898 899 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED); 900 /* Don't allow unprivileged users to change mount flags */ 901 if (flag & CL_UNPRIVILEGED) { 902 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME; 903 904 if (mnt->mnt.mnt_flags & MNT_READONLY) 905 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY; 906 907 if (mnt->mnt.mnt_flags & MNT_NODEV) 908 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV; 909 910 if (mnt->mnt.mnt_flags & MNT_NOSUID) 911 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID; 912 913 if (mnt->mnt.mnt_flags & MNT_NOEXEC) 914 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC; 915 } 916 917 /* Don't allow unprivileged users to reveal what is under a mount */ 918 if ((flag & CL_UNPRIVILEGED) && list_empty(&old->mnt_expire)) 919 mnt->mnt.mnt_flags |= MNT_LOCKED; 920 921 atomic_inc(&sb->s_active); 922 mnt->mnt.mnt_sb = sb; 923 mnt->mnt.mnt_root = dget(root); 924 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 925 mnt->mnt_parent = mnt; 926 lock_mount_hash(); 927 list_add_tail(&mnt->mnt_instance, &sb->s_mounts); 928 unlock_mount_hash(); 929 930 if ((flag & CL_SLAVE) || 931 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) { 932 list_add(&mnt->mnt_slave, &old->mnt_slave_list); 933 mnt->mnt_master = old; 934 CLEAR_MNT_SHARED(mnt); 935 } else if (!(flag & CL_PRIVATE)) { 936 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old)) 937 list_add(&mnt->mnt_share, &old->mnt_share); 938 if (IS_MNT_SLAVE(old)) 939 list_add(&mnt->mnt_slave, &old->mnt_slave); 940 mnt->mnt_master = old->mnt_master; 941 } 942 if (flag & CL_MAKE_SHARED) 943 set_mnt_shared(mnt); 944 945 /* stick the duplicate mount on the same expiry list 946 * as the original if that was on one */ 947 if (flag & CL_EXPIRE) { 948 if (!list_empty(&old->mnt_expire)) 949 list_add(&mnt->mnt_expire, &old->mnt_expire); 950 } 951 952 return mnt; 953 954 out_free: 955 mnt_free_id(mnt); 956 free_vfsmnt(mnt); 957 return ERR_PTR(err); 958 } 959 960 static void mntput_no_expire(struct mount *mnt) 961 { 962 rcu_read_lock(); 963 mnt_add_count(mnt, -1); 964 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */ 965 rcu_read_unlock(); 966 return; 967 } 968 lock_mount_hash(); 969 if (mnt_get_count(mnt)) { 970 rcu_read_unlock(); 971 unlock_mount_hash(); 972 return; 973 } 974 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) { 975 rcu_read_unlock(); 976 unlock_mount_hash(); 977 return; 978 } 979 mnt->mnt.mnt_flags |= MNT_DOOMED; 980 rcu_read_unlock(); 981 982 list_del(&mnt->mnt_instance); 983 unlock_mount_hash(); 984 985 /* 986 * This probably indicates that somebody messed 987 * up a mnt_want/drop_write() pair. If this 988 * happens, the filesystem was probably unable 989 * to make r/w->r/o transitions. 990 */ 991 /* 992 * The locking used to deal with mnt_count decrement provides barriers, 993 * so mnt_get_writers() below is safe. 994 */ 995 WARN_ON(mnt_get_writers(mnt)); 996 if (unlikely(mnt->mnt_pins.first)) 997 mnt_pin_kill(mnt); 998 fsnotify_vfsmount_delete(&mnt->mnt); 999 dput(mnt->mnt.mnt_root); 1000 deactivate_super(mnt->mnt.mnt_sb); 1001 mnt_free_id(mnt); 1002 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt); 1003 } 1004 1005 void mntput(struct vfsmount *mnt) 1006 { 1007 if (mnt) { 1008 struct mount *m = real_mount(mnt); 1009 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */ 1010 if (unlikely(m->mnt_expiry_mark)) 1011 m->mnt_expiry_mark = 0; 1012 mntput_no_expire(m); 1013 } 1014 } 1015 EXPORT_SYMBOL(mntput); 1016 1017 struct vfsmount *mntget(struct vfsmount *mnt) 1018 { 1019 if (mnt) 1020 mnt_add_count(real_mount(mnt), 1); 1021 return mnt; 1022 } 1023 EXPORT_SYMBOL(mntget); 1024 1025 struct vfsmount *mnt_clone_internal(struct path *path) 1026 { 1027 struct mount *p; 1028 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE); 1029 if (IS_ERR(p)) 1030 return ERR_CAST(p); 1031 p->mnt.mnt_flags |= MNT_INTERNAL; 1032 return &p->mnt; 1033 } 1034 1035 static inline void mangle(struct seq_file *m, const char *s) 1036 { 1037 seq_escape(m, s, " \t\n\\"); 1038 } 1039 1040 /* 1041 * Simple .show_options callback for filesystems which don't want to 1042 * implement more complex mount option showing. 1043 * 1044 * See also save_mount_options(). 1045 */ 1046 int generic_show_options(struct seq_file *m, struct dentry *root) 1047 { 1048 const char *options; 1049 1050 rcu_read_lock(); 1051 options = rcu_dereference(root->d_sb->s_options); 1052 1053 if (options != NULL && options[0]) { 1054 seq_putc(m, ','); 1055 mangle(m, options); 1056 } 1057 rcu_read_unlock(); 1058 1059 return 0; 1060 } 1061 EXPORT_SYMBOL(generic_show_options); 1062 1063 /* 1064 * If filesystem uses generic_show_options(), this function should be 1065 * called from the fill_super() callback. 1066 * 1067 * The .remount_fs callback usually needs to be handled in a special 1068 * way, to make sure, that previous options are not overwritten if the 1069 * remount fails. 1070 * 1071 * Also note, that if the filesystem's .remount_fs function doesn't 1072 * reset all options to their default value, but changes only newly 1073 * given options, then the displayed options will not reflect reality 1074 * any more. 1075 */ 1076 void save_mount_options(struct super_block *sb, char *options) 1077 { 1078 BUG_ON(sb->s_options); 1079 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL)); 1080 } 1081 EXPORT_SYMBOL(save_mount_options); 1082 1083 void replace_mount_options(struct super_block *sb, char *options) 1084 { 1085 char *old = sb->s_options; 1086 rcu_assign_pointer(sb->s_options, options); 1087 if (old) { 1088 synchronize_rcu(); 1089 kfree(old); 1090 } 1091 } 1092 EXPORT_SYMBOL(replace_mount_options); 1093 1094 #ifdef CONFIG_PROC_FS 1095 /* iterator; we want it to have access to namespace_sem, thus here... */ 1096 static void *m_start(struct seq_file *m, loff_t *pos) 1097 { 1098 struct proc_mounts *p = proc_mounts(m); 1099 1100 down_read(&namespace_sem); 1101 if (p->cached_event == p->ns->event) { 1102 void *v = p->cached_mount; 1103 if (*pos == p->cached_index) 1104 return v; 1105 if (*pos == p->cached_index + 1) { 1106 v = seq_list_next(v, &p->ns->list, &p->cached_index); 1107 return p->cached_mount = v; 1108 } 1109 } 1110 1111 p->cached_event = p->ns->event; 1112 p->cached_mount = seq_list_start(&p->ns->list, *pos); 1113 p->cached_index = *pos; 1114 return p->cached_mount; 1115 } 1116 1117 static void *m_next(struct seq_file *m, void *v, loff_t *pos) 1118 { 1119 struct proc_mounts *p = proc_mounts(m); 1120 1121 p->cached_mount = seq_list_next(v, &p->ns->list, pos); 1122 p->cached_index = *pos; 1123 return p->cached_mount; 1124 } 1125 1126 static void m_stop(struct seq_file *m, void *v) 1127 { 1128 up_read(&namespace_sem); 1129 } 1130 1131 static int m_show(struct seq_file *m, void *v) 1132 { 1133 struct proc_mounts *p = proc_mounts(m); 1134 struct mount *r = list_entry(v, struct mount, mnt_list); 1135 return p->show(m, &r->mnt); 1136 } 1137 1138 const struct seq_operations mounts_op = { 1139 .start = m_start, 1140 .next = m_next, 1141 .stop = m_stop, 1142 .show = m_show, 1143 }; 1144 #endif /* CONFIG_PROC_FS */ 1145 1146 /** 1147 * may_umount_tree - check if a mount tree is busy 1148 * @mnt: root of mount tree 1149 * 1150 * This is called to check if a tree of mounts has any 1151 * open files, pwds, chroots or sub mounts that are 1152 * busy. 1153 */ 1154 int may_umount_tree(struct vfsmount *m) 1155 { 1156 struct mount *mnt = real_mount(m); 1157 int actual_refs = 0; 1158 int minimum_refs = 0; 1159 struct mount *p; 1160 BUG_ON(!m); 1161 1162 /* write lock needed for mnt_get_count */ 1163 lock_mount_hash(); 1164 for (p = mnt; p; p = next_mnt(p, mnt)) { 1165 actual_refs += mnt_get_count(p); 1166 minimum_refs += 2; 1167 } 1168 unlock_mount_hash(); 1169 1170 if (actual_refs > minimum_refs) 1171 return 0; 1172 1173 return 1; 1174 } 1175 1176 EXPORT_SYMBOL(may_umount_tree); 1177 1178 /** 1179 * may_umount - check if a mount point is busy 1180 * @mnt: root of mount 1181 * 1182 * This is called to check if a mount point has any 1183 * open files, pwds, chroots or sub mounts. If the 1184 * mount has sub mounts this will return busy 1185 * regardless of whether the sub mounts are busy. 1186 * 1187 * Doesn't take quota and stuff into account. IOW, in some cases it will 1188 * give false negatives. The main reason why it's here is that we need 1189 * a non-destructive way to look for easily umountable filesystems. 1190 */ 1191 int may_umount(struct vfsmount *mnt) 1192 { 1193 int ret = 1; 1194 down_read(&namespace_sem); 1195 lock_mount_hash(); 1196 if (propagate_mount_busy(real_mount(mnt), 2)) 1197 ret = 0; 1198 unlock_mount_hash(); 1199 up_read(&namespace_sem); 1200 return ret; 1201 } 1202 1203 EXPORT_SYMBOL(may_umount); 1204 1205 static HLIST_HEAD(unmounted); /* protected by namespace_sem */ 1206 1207 static void namespace_unlock(void) 1208 { 1209 struct mount *mnt; 1210 struct hlist_head head = unmounted; 1211 1212 if (likely(hlist_empty(&head))) { 1213 up_write(&namespace_sem); 1214 return; 1215 } 1216 1217 head.first->pprev = &head.first; 1218 INIT_HLIST_HEAD(&unmounted); 1219 1220 up_write(&namespace_sem); 1221 1222 synchronize_rcu(); 1223 1224 while (!hlist_empty(&head)) { 1225 mnt = hlist_entry(head.first, struct mount, mnt_hash); 1226 hlist_del_init(&mnt->mnt_hash); 1227 if (mnt->mnt_ex_mountpoint.mnt) 1228 path_put(&mnt->mnt_ex_mountpoint); 1229 mntput(&mnt->mnt); 1230 } 1231 } 1232 1233 static inline void namespace_lock(void) 1234 { 1235 down_write(&namespace_sem); 1236 } 1237 1238 /* 1239 * mount_lock must be held 1240 * namespace_sem must be held for write 1241 * how = 0 => just this tree, don't propagate 1242 * how = 1 => propagate; we know that nobody else has reference to any victims 1243 * how = 2 => lazy umount 1244 */ 1245 void umount_tree(struct mount *mnt, int how) 1246 { 1247 HLIST_HEAD(tmp_list); 1248 struct mount *p; 1249 struct mount *last = NULL; 1250 1251 for (p = mnt; p; p = next_mnt(p, mnt)) { 1252 hlist_del_init_rcu(&p->mnt_hash); 1253 hlist_add_head(&p->mnt_hash, &tmp_list); 1254 } 1255 1256 if (how) 1257 propagate_umount(&tmp_list); 1258 1259 hlist_for_each_entry(p, &tmp_list, mnt_hash) { 1260 list_del_init(&p->mnt_expire); 1261 list_del_init(&p->mnt_list); 1262 __touch_mnt_namespace(p->mnt_ns); 1263 p->mnt_ns = NULL; 1264 if (how < 2) 1265 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT; 1266 list_del_init(&p->mnt_child); 1267 if (mnt_has_parent(p)) { 1268 put_mountpoint(p->mnt_mp); 1269 /* move the reference to mountpoint into ->mnt_ex_mountpoint */ 1270 p->mnt_ex_mountpoint.dentry = p->mnt_mountpoint; 1271 p->mnt_ex_mountpoint.mnt = &p->mnt_parent->mnt; 1272 p->mnt_mountpoint = p->mnt.mnt_root; 1273 p->mnt_parent = p; 1274 p->mnt_mp = NULL; 1275 } 1276 change_mnt_propagation(p, MS_PRIVATE); 1277 last = p; 1278 } 1279 if (last) { 1280 last->mnt_hash.next = unmounted.first; 1281 unmounted.first = tmp_list.first; 1282 unmounted.first->pprev = &unmounted.first; 1283 } 1284 } 1285 1286 static void shrink_submounts(struct mount *mnt); 1287 1288 static int do_umount(struct mount *mnt, int flags) 1289 { 1290 struct super_block *sb = mnt->mnt.mnt_sb; 1291 int retval; 1292 1293 retval = security_sb_umount(&mnt->mnt, flags); 1294 if (retval) 1295 return retval; 1296 1297 /* 1298 * Allow userspace to request a mountpoint be expired rather than 1299 * unmounting unconditionally. Unmount only happens if: 1300 * (1) the mark is already set (the mark is cleared by mntput()) 1301 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] 1302 */ 1303 if (flags & MNT_EXPIRE) { 1304 if (&mnt->mnt == current->fs->root.mnt || 1305 flags & (MNT_FORCE | MNT_DETACH)) 1306 return -EINVAL; 1307 1308 /* 1309 * probably don't strictly need the lock here if we examined 1310 * all race cases, but it's a slowpath. 1311 */ 1312 lock_mount_hash(); 1313 if (mnt_get_count(mnt) != 2) { 1314 unlock_mount_hash(); 1315 return -EBUSY; 1316 } 1317 unlock_mount_hash(); 1318 1319 if (!xchg(&mnt->mnt_expiry_mark, 1)) 1320 return -EAGAIN; 1321 } 1322 1323 /* 1324 * If we may have to abort operations to get out of this 1325 * mount, and they will themselves hold resources we must 1326 * allow the fs to do things. In the Unix tradition of 1327 * 'Gee thats tricky lets do it in userspace' the umount_begin 1328 * might fail to complete on the first run through as other tasks 1329 * must return, and the like. Thats for the mount program to worry 1330 * about for the moment. 1331 */ 1332 1333 if (flags & MNT_FORCE && sb->s_op->umount_begin) { 1334 sb->s_op->umount_begin(sb); 1335 } 1336 1337 /* 1338 * No sense to grab the lock for this test, but test itself looks 1339 * somewhat bogus. Suggestions for better replacement? 1340 * Ho-hum... In principle, we might treat that as umount + switch 1341 * to rootfs. GC would eventually take care of the old vfsmount. 1342 * Actually it makes sense, especially if rootfs would contain a 1343 * /reboot - static binary that would close all descriptors and 1344 * call reboot(9). Then init(8) could umount root and exec /reboot. 1345 */ 1346 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) { 1347 /* 1348 * Special case for "unmounting" root ... 1349 * we just try to remount it readonly. 1350 */ 1351 down_write(&sb->s_umount); 1352 if (!(sb->s_flags & MS_RDONLY)) 1353 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0); 1354 up_write(&sb->s_umount); 1355 return retval; 1356 } 1357 1358 namespace_lock(); 1359 lock_mount_hash(); 1360 event++; 1361 1362 if (flags & MNT_DETACH) { 1363 if (!list_empty(&mnt->mnt_list)) 1364 umount_tree(mnt, 2); 1365 retval = 0; 1366 } else { 1367 shrink_submounts(mnt); 1368 retval = -EBUSY; 1369 if (!propagate_mount_busy(mnt, 2)) { 1370 if (!list_empty(&mnt->mnt_list)) 1371 umount_tree(mnt, 1); 1372 retval = 0; 1373 } 1374 } 1375 unlock_mount_hash(); 1376 namespace_unlock(); 1377 return retval; 1378 } 1379 1380 /* 1381 * Is the caller allowed to modify his namespace? 1382 */ 1383 static inline bool may_mount(void) 1384 { 1385 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN); 1386 } 1387 1388 /* 1389 * Now umount can handle mount points as well as block devices. 1390 * This is important for filesystems which use unnamed block devices. 1391 * 1392 * We now support a flag for forced unmount like the other 'big iron' 1393 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD 1394 */ 1395 1396 SYSCALL_DEFINE2(umount, char __user *, name, int, flags) 1397 { 1398 struct path path; 1399 struct mount *mnt; 1400 int retval; 1401 int lookup_flags = 0; 1402 1403 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW)) 1404 return -EINVAL; 1405 1406 if (!may_mount()) 1407 return -EPERM; 1408 1409 if (!(flags & UMOUNT_NOFOLLOW)) 1410 lookup_flags |= LOOKUP_FOLLOW; 1411 1412 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path); 1413 if (retval) 1414 goto out; 1415 mnt = real_mount(path.mnt); 1416 retval = -EINVAL; 1417 if (path.dentry != path.mnt->mnt_root) 1418 goto dput_and_out; 1419 if (!check_mnt(mnt)) 1420 goto dput_and_out; 1421 if (mnt->mnt.mnt_flags & MNT_LOCKED) 1422 goto dput_and_out; 1423 1424 retval = do_umount(mnt, flags); 1425 dput_and_out: 1426 /* we mustn't call path_put() as that would clear mnt_expiry_mark */ 1427 dput(path.dentry); 1428 mntput_no_expire(mnt); 1429 out: 1430 return retval; 1431 } 1432 1433 #ifdef __ARCH_WANT_SYS_OLDUMOUNT 1434 1435 /* 1436 * The 2.0 compatible umount. No flags. 1437 */ 1438 SYSCALL_DEFINE1(oldumount, char __user *, name) 1439 { 1440 return sys_umount(name, 0); 1441 } 1442 1443 #endif 1444 1445 static bool is_mnt_ns_file(struct dentry *dentry) 1446 { 1447 /* Is this a proxy for a mount namespace? */ 1448 struct inode *inode = dentry->d_inode; 1449 struct proc_ns *ei; 1450 1451 if (!proc_ns_inode(inode)) 1452 return false; 1453 1454 ei = get_proc_ns(inode); 1455 if (ei->ns_ops != &mntns_operations) 1456 return false; 1457 1458 return true; 1459 } 1460 1461 static bool mnt_ns_loop(struct dentry *dentry) 1462 { 1463 /* Could bind mounting the mount namespace inode cause a 1464 * mount namespace loop? 1465 */ 1466 struct mnt_namespace *mnt_ns; 1467 if (!is_mnt_ns_file(dentry)) 1468 return false; 1469 1470 mnt_ns = get_proc_ns(dentry->d_inode)->ns; 1471 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq; 1472 } 1473 1474 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry, 1475 int flag) 1476 { 1477 struct mount *res, *p, *q, *r, *parent; 1478 1479 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt)) 1480 return ERR_PTR(-EINVAL); 1481 1482 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry)) 1483 return ERR_PTR(-EINVAL); 1484 1485 res = q = clone_mnt(mnt, dentry, flag); 1486 if (IS_ERR(q)) 1487 return q; 1488 1489 q->mnt.mnt_flags &= ~MNT_LOCKED; 1490 q->mnt_mountpoint = mnt->mnt_mountpoint; 1491 1492 p = mnt; 1493 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) { 1494 struct mount *s; 1495 if (!is_subdir(r->mnt_mountpoint, dentry)) 1496 continue; 1497 1498 for (s = r; s; s = next_mnt(s, r)) { 1499 struct mount *t = NULL; 1500 if (!(flag & CL_COPY_UNBINDABLE) && 1501 IS_MNT_UNBINDABLE(s)) { 1502 s = skip_mnt_tree(s); 1503 continue; 1504 } 1505 if (!(flag & CL_COPY_MNT_NS_FILE) && 1506 is_mnt_ns_file(s->mnt.mnt_root)) { 1507 s = skip_mnt_tree(s); 1508 continue; 1509 } 1510 while (p != s->mnt_parent) { 1511 p = p->mnt_parent; 1512 q = q->mnt_parent; 1513 } 1514 p = s; 1515 parent = q; 1516 q = clone_mnt(p, p->mnt.mnt_root, flag); 1517 if (IS_ERR(q)) 1518 goto out; 1519 lock_mount_hash(); 1520 list_add_tail(&q->mnt_list, &res->mnt_list); 1521 mnt_set_mountpoint(parent, p->mnt_mp, q); 1522 if (!list_empty(&parent->mnt_mounts)) { 1523 t = list_last_entry(&parent->mnt_mounts, 1524 struct mount, mnt_child); 1525 if (t->mnt_mp != p->mnt_mp) 1526 t = NULL; 1527 } 1528 attach_shadowed(q, parent, t); 1529 unlock_mount_hash(); 1530 } 1531 } 1532 return res; 1533 out: 1534 if (res) { 1535 lock_mount_hash(); 1536 umount_tree(res, 0); 1537 unlock_mount_hash(); 1538 } 1539 return q; 1540 } 1541 1542 /* Caller should check returned pointer for errors */ 1543 1544 struct vfsmount *collect_mounts(struct path *path) 1545 { 1546 struct mount *tree; 1547 namespace_lock(); 1548 tree = copy_tree(real_mount(path->mnt), path->dentry, 1549 CL_COPY_ALL | CL_PRIVATE); 1550 namespace_unlock(); 1551 if (IS_ERR(tree)) 1552 return ERR_CAST(tree); 1553 return &tree->mnt; 1554 } 1555 1556 void drop_collected_mounts(struct vfsmount *mnt) 1557 { 1558 namespace_lock(); 1559 lock_mount_hash(); 1560 umount_tree(real_mount(mnt), 0); 1561 unlock_mount_hash(); 1562 namespace_unlock(); 1563 } 1564 1565 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg, 1566 struct vfsmount *root) 1567 { 1568 struct mount *mnt; 1569 int res = f(root, arg); 1570 if (res) 1571 return res; 1572 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) { 1573 res = f(&mnt->mnt, arg); 1574 if (res) 1575 return res; 1576 } 1577 return 0; 1578 } 1579 1580 static void cleanup_group_ids(struct mount *mnt, struct mount *end) 1581 { 1582 struct mount *p; 1583 1584 for (p = mnt; p != end; p = next_mnt(p, mnt)) { 1585 if (p->mnt_group_id && !IS_MNT_SHARED(p)) 1586 mnt_release_group_id(p); 1587 } 1588 } 1589 1590 static int invent_group_ids(struct mount *mnt, bool recurse) 1591 { 1592 struct mount *p; 1593 1594 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) { 1595 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) { 1596 int err = mnt_alloc_group_id(p); 1597 if (err) { 1598 cleanup_group_ids(mnt, p); 1599 return err; 1600 } 1601 } 1602 } 1603 1604 return 0; 1605 } 1606 1607 /* 1608 * @source_mnt : mount tree to be attached 1609 * @nd : place the mount tree @source_mnt is attached 1610 * @parent_nd : if non-null, detach the source_mnt from its parent and 1611 * store the parent mount and mountpoint dentry. 1612 * (done when source_mnt is moved) 1613 * 1614 * NOTE: in the table below explains the semantics when a source mount 1615 * of a given type is attached to a destination mount of a given type. 1616 * --------------------------------------------------------------------------- 1617 * | BIND MOUNT OPERATION | 1618 * |************************************************************************** 1619 * | source-->| shared | private | slave | unbindable | 1620 * | dest | | | | | 1621 * | | | | | | | 1622 * | v | | | | | 1623 * |************************************************************************** 1624 * | shared | shared (++) | shared (+) | shared(+++)| invalid | 1625 * | | | | | | 1626 * |non-shared| shared (+) | private | slave (*) | invalid | 1627 * *************************************************************************** 1628 * A bind operation clones the source mount and mounts the clone on the 1629 * destination mount. 1630 * 1631 * (++) the cloned mount is propagated to all the mounts in the propagation 1632 * tree of the destination mount and the cloned mount is added to 1633 * the peer group of the source mount. 1634 * (+) the cloned mount is created under the destination mount and is marked 1635 * as shared. The cloned mount is added to the peer group of the source 1636 * mount. 1637 * (+++) the mount is propagated to all the mounts in the propagation tree 1638 * of the destination mount and the cloned mount is made slave 1639 * of the same master as that of the source mount. The cloned mount 1640 * is marked as 'shared and slave'. 1641 * (*) the cloned mount is made a slave of the same master as that of the 1642 * source mount. 1643 * 1644 * --------------------------------------------------------------------------- 1645 * | MOVE MOUNT OPERATION | 1646 * |************************************************************************** 1647 * | source-->| shared | private | slave | unbindable | 1648 * | dest | | | | | 1649 * | | | | | | | 1650 * | v | | | | | 1651 * |************************************************************************** 1652 * | shared | shared (+) | shared (+) | shared(+++) | invalid | 1653 * | | | | | | 1654 * |non-shared| shared (+*) | private | slave (*) | unbindable | 1655 * *************************************************************************** 1656 * 1657 * (+) the mount is moved to the destination. And is then propagated to 1658 * all the mounts in the propagation tree of the destination mount. 1659 * (+*) the mount is moved to the destination. 1660 * (+++) the mount is moved to the destination and is then propagated to 1661 * all the mounts belonging to the destination mount's propagation tree. 1662 * the mount is marked as 'shared and slave'. 1663 * (*) the mount continues to be a slave at the new location. 1664 * 1665 * if the source mount is a tree, the operations explained above is 1666 * applied to each mount in the tree. 1667 * Must be called without spinlocks held, since this function can sleep 1668 * in allocations. 1669 */ 1670 static int attach_recursive_mnt(struct mount *source_mnt, 1671 struct mount *dest_mnt, 1672 struct mountpoint *dest_mp, 1673 struct path *parent_path) 1674 { 1675 HLIST_HEAD(tree_list); 1676 struct mount *child, *p; 1677 struct hlist_node *n; 1678 int err; 1679 1680 if (IS_MNT_SHARED(dest_mnt)) { 1681 err = invent_group_ids(source_mnt, true); 1682 if (err) 1683 goto out; 1684 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list); 1685 lock_mount_hash(); 1686 if (err) 1687 goto out_cleanup_ids; 1688 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 1689 set_mnt_shared(p); 1690 } else { 1691 lock_mount_hash(); 1692 } 1693 if (parent_path) { 1694 detach_mnt(source_mnt, parent_path); 1695 attach_mnt(source_mnt, dest_mnt, dest_mp); 1696 touch_mnt_namespace(source_mnt->mnt_ns); 1697 } else { 1698 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt); 1699 commit_tree(source_mnt, NULL); 1700 } 1701 1702 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) { 1703 struct mount *q; 1704 hlist_del_init(&child->mnt_hash); 1705 q = __lookup_mnt_last(&child->mnt_parent->mnt, 1706 child->mnt_mountpoint); 1707 commit_tree(child, q); 1708 } 1709 unlock_mount_hash(); 1710 1711 return 0; 1712 1713 out_cleanup_ids: 1714 while (!hlist_empty(&tree_list)) { 1715 child = hlist_entry(tree_list.first, struct mount, mnt_hash); 1716 umount_tree(child, 0); 1717 } 1718 unlock_mount_hash(); 1719 cleanup_group_ids(source_mnt, NULL); 1720 out: 1721 return err; 1722 } 1723 1724 static struct mountpoint *lock_mount(struct path *path) 1725 { 1726 struct vfsmount *mnt; 1727 struct dentry *dentry = path->dentry; 1728 retry: 1729 mutex_lock(&dentry->d_inode->i_mutex); 1730 if (unlikely(cant_mount(dentry))) { 1731 mutex_unlock(&dentry->d_inode->i_mutex); 1732 return ERR_PTR(-ENOENT); 1733 } 1734 namespace_lock(); 1735 mnt = lookup_mnt(path); 1736 if (likely(!mnt)) { 1737 struct mountpoint *mp = new_mountpoint(dentry); 1738 if (IS_ERR(mp)) { 1739 namespace_unlock(); 1740 mutex_unlock(&dentry->d_inode->i_mutex); 1741 return mp; 1742 } 1743 return mp; 1744 } 1745 namespace_unlock(); 1746 mutex_unlock(&path->dentry->d_inode->i_mutex); 1747 path_put(path); 1748 path->mnt = mnt; 1749 dentry = path->dentry = dget(mnt->mnt_root); 1750 goto retry; 1751 } 1752 1753 static void unlock_mount(struct mountpoint *where) 1754 { 1755 struct dentry *dentry = where->m_dentry; 1756 put_mountpoint(where); 1757 namespace_unlock(); 1758 mutex_unlock(&dentry->d_inode->i_mutex); 1759 } 1760 1761 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp) 1762 { 1763 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER) 1764 return -EINVAL; 1765 1766 if (S_ISDIR(mp->m_dentry->d_inode->i_mode) != 1767 S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode)) 1768 return -ENOTDIR; 1769 1770 return attach_recursive_mnt(mnt, p, mp, NULL); 1771 } 1772 1773 /* 1774 * Sanity check the flags to change_mnt_propagation. 1775 */ 1776 1777 static int flags_to_propagation_type(int flags) 1778 { 1779 int type = flags & ~(MS_REC | MS_SILENT); 1780 1781 /* Fail if any non-propagation flags are set */ 1782 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 1783 return 0; 1784 /* Only one propagation flag should be set */ 1785 if (!is_power_of_2(type)) 1786 return 0; 1787 return type; 1788 } 1789 1790 /* 1791 * recursively change the type of the mountpoint. 1792 */ 1793 static int do_change_type(struct path *path, int flag) 1794 { 1795 struct mount *m; 1796 struct mount *mnt = real_mount(path->mnt); 1797 int recurse = flag & MS_REC; 1798 int type; 1799 int err = 0; 1800 1801 if (path->dentry != path->mnt->mnt_root) 1802 return -EINVAL; 1803 1804 type = flags_to_propagation_type(flag); 1805 if (!type) 1806 return -EINVAL; 1807 1808 namespace_lock(); 1809 if (type == MS_SHARED) { 1810 err = invent_group_ids(mnt, recurse); 1811 if (err) 1812 goto out_unlock; 1813 } 1814 1815 lock_mount_hash(); 1816 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) 1817 change_mnt_propagation(m, type); 1818 unlock_mount_hash(); 1819 1820 out_unlock: 1821 namespace_unlock(); 1822 return err; 1823 } 1824 1825 static bool has_locked_children(struct mount *mnt, struct dentry *dentry) 1826 { 1827 struct mount *child; 1828 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 1829 if (!is_subdir(child->mnt_mountpoint, dentry)) 1830 continue; 1831 1832 if (child->mnt.mnt_flags & MNT_LOCKED) 1833 return true; 1834 } 1835 return false; 1836 } 1837 1838 /* 1839 * do loopback mount. 1840 */ 1841 static int do_loopback(struct path *path, const char *old_name, 1842 int recurse) 1843 { 1844 struct path old_path; 1845 struct mount *mnt = NULL, *old, *parent; 1846 struct mountpoint *mp; 1847 int err; 1848 if (!old_name || !*old_name) 1849 return -EINVAL; 1850 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path); 1851 if (err) 1852 return err; 1853 1854 err = -EINVAL; 1855 if (mnt_ns_loop(old_path.dentry)) 1856 goto out; 1857 1858 mp = lock_mount(path); 1859 err = PTR_ERR(mp); 1860 if (IS_ERR(mp)) 1861 goto out; 1862 1863 old = real_mount(old_path.mnt); 1864 parent = real_mount(path->mnt); 1865 1866 err = -EINVAL; 1867 if (IS_MNT_UNBINDABLE(old)) 1868 goto out2; 1869 1870 if (!check_mnt(parent) || !check_mnt(old)) 1871 goto out2; 1872 1873 if (!recurse && has_locked_children(old, old_path.dentry)) 1874 goto out2; 1875 1876 if (recurse) 1877 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE); 1878 else 1879 mnt = clone_mnt(old, old_path.dentry, 0); 1880 1881 if (IS_ERR(mnt)) { 1882 err = PTR_ERR(mnt); 1883 goto out2; 1884 } 1885 1886 mnt->mnt.mnt_flags &= ~MNT_LOCKED; 1887 1888 err = graft_tree(mnt, parent, mp); 1889 if (err) { 1890 lock_mount_hash(); 1891 umount_tree(mnt, 0); 1892 unlock_mount_hash(); 1893 } 1894 out2: 1895 unlock_mount(mp); 1896 out: 1897 path_put(&old_path); 1898 return err; 1899 } 1900 1901 static int change_mount_flags(struct vfsmount *mnt, int ms_flags) 1902 { 1903 int error = 0; 1904 int readonly_request = 0; 1905 1906 if (ms_flags & MS_RDONLY) 1907 readonly_request = 1; 1908 if (readonly_request == __mnt_is_readonly(mnt)) 1909 return 0; 1910 1911 if (readonly_request) 1912 error = mnt_make_readonly(real_mount(mnt)); 1913 else 1914 __mnt_unmake_readonly(real_mount(mnt)); 1915 return error; 1916 } 1917 1918 /* 1919 * change filesystem flags. dir should be a physical root of filesystem. 1920 * If you've mounted a non-root directory somewhere and want to do remount 1921 * on it - tough luck. 1922 */ 1923 static int do_remount(struct path *path, int flags, int mnt_flags, 1924 void *data) 1925 { 1926 int err; 1927 struct super_block *sb = path->mnt->mnt_sb; 1928 struct mount *mnt = real_mount(path->mnt); 1929 1930 if (!check_mnt(mnt)) 1931 return -EINVAL; 1932 1933 if (path->dentry != path->mnt->mnt_root) 1934 return -EINVAL; 1935 1936 /* Don't allow changing of locked mnt flags. 1937 * 1938 * No locks need to be held here while testing the various 1939 * MNT_LOCK flags because those flags can never be cleared 1940 * once they are set. 1941 */ 1942 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) && 1943 !(mnt_flags & MNT_READONLY)) { 1944 return -EPERM; 1945 } 1946 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) && 1947 !(mnt_flags & MNT_NODEV)) { 1948 return -EPERM; 1949 } 1950 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) && 1951 !(mnt_flags & MNT_NOSUID)) { 1952 return -EPERM; 1953 } 1954 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) && 1955 !(mnt_flags & MNT_NOEXEC)) { 1956 return -EPERM; 1957 } 1958 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) && 1959 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) { 1960 return -EPERM; 1961 } 1962 1963 err = security_sb_remount(sb, data); 1964 if (err) 1965 return err; 1966 1967 down_write(&sb->s_umount); 1968 if (flags & MS_BIND) 1969 err = change_mount_flags(path->mnt, flags); 1970 else if (!capable(CAP_SYS_ADMIN)) 1971 err = -EPERM; 1972 else 1973 err = do_remount_sb(sb, flags, data, 0); 1974 if (!err) { 1975 lock_mount_hash(); 1976 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK; 1977 mnt->mnt.mnt_flags = mnt_flags; 1978 touch_mnt_namespace(mnt->mnt_ns); 1979 unlock_mount_hash(); 1980 } 1981 up_write(&sb->s_umount); 1982 return err; 1983 } 1984 1985 static inline int tree_contains_unbindable(struct mount *mnt) 1986 { 1987 struct mount *p; 1988 for (p = mnt; p; p = next_mnt(p, mnt)) { 1989 if (IS_MNT_UNBINDABLE(p)) 1990 return 1; 1991 } 1992 return 0; 1993 } 1994 1995 static int do_move_mount(struct path *path, const char *old_name) 1996 { 1997 struct path old_path, parent_path; 1998 struct mount *p; 1999 struct mount *old; 2000 struct mountpoint *mp; 2001 int err; 2002 if (!old_name || !*old_name) 2003 return -EINVAL; 2004 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); 2005 if (err) 2006 return err; 2007 2008 mp = lock_mount(path); 2009 err = PTR_ERR(mp); 2010 if (IS_ERR(mp)) 2011 goto out; 2012 2013 old = real_mount(old_path.mnt); 2014 p = real_mount(path->mnt); 2015 2016 err = -EINVAL; 2017 if (!check_mnt(p) || !check_mnt(old)) 2018 goto out1; 2019 2020 if (old->mnt.mnt_flags & MNT_LOCKED) 2021 goto out1; 2022 2023 err = -EINVAL; 2024 if (old_path.dentry != old_path.mnt->mnt_root) 2025 goto out1; 2026 2027 if (!mnt_has_parent(old)) 2028 goto out1; 2029 2030 if (S_ISDIR(path->dentry->d_inode->i_mode) != 2031 S_ISDIR(old_path.dentry->d_inode->i_mode)) 2032 goto out1; 2033 /* 2034 * Don't move a mount residing in a shared parent. 2035 */ 2036 if (IS_MNT_SHARED(old->mnt_parent)) 2037 goto out1; 2038 /* 2039 * Don't move a mount tree containing unbindable mounts to a destination 2040 * mount which is shared. 2041 */ 2042 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old)) 2043 goto out1; 2044 err = -ELOOP; 2045 for (; mnt_has_parent(p); p = p->mnt_parent) 2046 if (p == old) 2047 goto out1; 2048 2049 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path); 2050 if (err) 2051 goto out1; 2052 2053 /* if the mount is moved, it should no longer be expire 2054 * automatically */ 2055 list_del_init(&old->mnt_expire); 2056 out1: 2057 unlock_mount(mp); 2058 out: 2059 if (!err) 2060 path_put(&parent_path); 2061 path_put(&old_path); 2062 return err; 2063 } 2064 2065 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype) 2066 { 2067 int err; 2068 const char *subtype = strchr(fstype, '.'); 2069 if (subtype) { 2070 subtype++; 2071 err = -EINVAL; 2072 if (!subtype[0]) 2073 goto err; 2074 } else 2075 subtype = ""; 2076 2077 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL); 2078 err = -ENOMEM; 2079 if (!mnt->mnt_sb->s_subtype) 2080 goto err; 2081 return mnt; 2082 2083 err: 2084 mntput(mnt); 2085 return ERR_PTR(err); 2086 } 2087 2088 /* 2089 * add a mount into a namespace's mount tree 2090 */ 2091 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags) 2092 { 2093 struct mountpoint *mp; 2094 struct mount *parent; 2095 int err; 2096 2097 mnt_flags &= ~MNT_INTERNAL_FLAGS; 2098 2099 mp = lock_mount(path); 2100 if (IS_ERR(mp)) 2101 return PTR_ERR(mp); 2102 2103 parent = real_mount(path->mnt); 2104 err = -EINVAL; 2105 if (unlikely(!check_mnt(parent))) { 2106 /* that's acceptable only for automounts done in private ns */ 2107 if (!(mnt_flags & MNT_SHRINKABLE)) 2108 goto unlock; 2109 /* ... and for those we'd better have mountpoint still alive */ 2110 if (!parent->mnt_ns) 2111 goto unlock; 2112 } 2113 2114 /* Refuse the same filesystem on the same mount point */ 2115 err = -EBUSY; 2116 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && 2117 path->mnt->mnt_root == path->dentry) 2118 goto unlock; 2119 2120 err = -EINVAL; 2121 if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode)) 2122 goto unlock; 2123 2124 newmnt->mnt.mnt_flags = mnt_flags; 2125 err = graft_tree(newmnt, parent, mp); 2126 2127 unlock: 2128 unlock_mount(mp); 2129 return err; 2130 } 2131 2132 /* 2133 * create a new mount for userspace and request it to be added into the 2134 * namespace's tree 2135 */ 2136 static int do_new_mount(struct path *path, const char *fstype, int flags, 2137 int mnt_flags, const char *name, void *data) 2138 { 2139 struct file_system_type *type; 2140 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; 2141 struct vfsmount *mnt; 2142 int err; 2143 2144 if (!fstype) 2145 return -EINVAL; 2146 2147 type = get_fs_type(fstype); 2148 if (!type) 2149 return -ENODEV; 2150 2151 if (user_ns != &init_user_ns) { 2152 if (!(type->fs_flags & FS_USERNS_MOUNT)) { 2153 put_filesystem(type); 2154 return -EPERM; 2155 } 2156 /* Only in special cases allow devices from mounts 2157 * created outside the initial user namespace. 2158 */ 2159 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) { 2160 flags |= MS_NODEV; 2161 mnt_flags |= MNT_NODEV | MNT_LOCK_NODEV; 2162 } 2163 } 2164 2165 mnt = vfs_kern_mount(type, flags, name, data); 2166 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) && 2167 !mnt->mnt_sb->s_subtype) 2168 mnt = fs_set_subtype(mnt, fstype); 2169 2170 put_filesystem(type); 2171 if (IS_ERR(mnt)) 2172 return PTR_ERR(mnt); 2173 2174 err = do_add_mount(real_mount(mnt), path, mnt_flags); 2175 if (err) 2176 mntput(mnt); 2177 return err; 2178 } 2179 2180 int finish_automount(struct vfsmount *m, struct path *path) 2181 { 2182 struct mount *mnt = real_mount(m); 2183 int err; 2184 /* The new mount record should have at least 2 refs to prevent it being 2185 * expired before we get a chance to add it 2186 */ 2187 BUG_ON(mnt_get_count(mnt) < 2); 2188 2189 if (m->mnt_sb == path->mnt->mnt_sb && 2190 m->mnt_root == path->dentry) { 2191 err = -ELOOP; 2192 goto fail; 2193 } 2194 2195 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE); 2196 if (!err) 2197 return 0; 2198 fail: 2199 /* remove m from any expiration list it may be on */ 2200 if (!list_empty(&mnt->mnt_expire)) { 2201 namespace_lock(); 2202 list_del_init(&mnt->mnt_expire); 2203 namespace_unlock(); 2204 } 2205 mntput(m); 2206 mntput(m); 2207 return err; 2208 } 2209 2210 /** 2211 * mnt_set_expiry - Put a mount on an expiration list 2212 * @mnt: The mount to list. 2213 * @expiry_list: The list to add the mount to. 2214 */ 2215 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list) 2216 { 2217 namespace_lock(); 2218 2219 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list); 2220 2221 namespace_unlock(); 2222 } 2223 EXPORT_SYMBOL(mnt_set_expiry); 2224 2225 /* 2226 * process a list of expirable mountpoints with the intent of discarding any 2227 * mountpoints that aren't in use and haven't been touched since last we came 2228 * here 2229 */ 2230 void mark_mounts_for_expiry(struct list_head *mounts) 2231 { 2232 struct mount *mnt, *next; 2233 LIST_HEAD(graveyard); 2234 2235 if (list_empty(mounts)) 2236 return; 2237 2238 namespace_lock(); 2239 lock_mount_hash(); 2240 2241 /* extract from the expiration list every vfsmount that matches the 2242 * following criteria: 2243 * - only referenced by its parent vfsmount 2244 * - still marked for expiry (marked on the last call here; marks are 2245 * cleared by mntput()) 2246 */ 2247 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { 2248 if (!xchg(&mnt->mnt_expiry_mark, 1) || 2249 propagate_mount_busy(mnt, 1)) 2250 continue; 2251 list_move(&mnt->mnt_expire, &graveyard); 2252 } 2253 while (!list_empty(&graveyard)) { 2254 mnt = list_first_entry(&graveyard, struct mount, mnt_expire); 2255 touch_mnt_namespace(mnt->mnt_ns); 2256 umount_tree(mnt, 1); 2257 } 2258 unlock_mount_hash(); 2259 namespace_unlock(); 2260 } 2261 2262 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); 2263 2264 /* 2265 * Ripoff of 'select_parent()' 2266 * 2267 * search the list of submounts for a given mountpoint, and move any 2268 * shrinkable submounts to the 'graveyard' list. 2269 */ 2270 static int select_submounts(struct mount *parent, struct list_head *graveyard) 2271 { 2272 struct mount *this_parent = parent; 2273 struct list_head *next; 2274 int found = 0; 2275 2276 repeat: 2277 next = this_parent->mnt_mounts.next; 2278 resume: 2279 while (next != &this_parent->mnt_mounts) { 2280 struct list_head *tmp = next; 2281 struct mount *mnt = list_entry(tmp, struct mount, mnt_child); 2282 2283 next = tmp->next; 2284 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE)) 2285 continue; 2286 /* 2287 * Descend a level if the d_mounts list is non-empty. 2288 */ 2289 if (!list_empty(&mnt->mnt_mounts)) { 2290 this_parent = mnt; 2291 goto repeat; 2292 } 2293 2294 if (!propagate_mount_busy(mnt, 1)) { 2295 list_move_tail(&mnt->mnt_expire, graveyard); 2296 found++; 2297 } 2298 } 2299 /* 2300 * All done at this level ... ascend and resume the search 2301 */ 2302 if (this_parent != parent) { 2303 next = this_parent->mnt_child.next; 2304 this_parent = this_parent->mnt_parent; 2305 goto resume; 2306 } 2307 return found; 2308 } 2309 2310 /* 2311 * process a list of expirable mountpoints with the intent of discarding any 2312 * submounts of a specific parent mountpoint 2313 * 2314 * mount_lock must be held for write 2315 */ 2316 static void shrink_submounts(struct mount *mnt) 2317 { 2318 LIST_HEAD(graveyard); 2319 struct mount *m; 2320 2321 /* extract submounts of 'mountpoint' from the expiration list */ 2322 while (select_submounts(mnt, &graveyard)) { 2323 while (!list_empty(&graveyard)) { 2324 m = list_first_entry(&graveyard, struct mount, 2325 mnt_expire); 2326 touch_mnt_namespace(m->mnt_ns); 2327 umount_tree(m, 1); 2328 } 2329 } 2330 } 2331 2332 /* 2333 * Some copy_from_user() implementations do not return the exact number of 2334 * bytes remaining to copy on a fault. But copy_mount_options() requires that. 2335 * Note that this function differs from copy_from_user() in that it will oops 2336 * on bad values of `to', rather than returning a short copy. 2337 */ 2338 static long exact_copy_from_user(void *to, const void __user * from, 2339 unsigned long n) 2340 { 2341 char *t = to; 2342 const char __user *f = from; 2343 char c; 2344 2345 if (!access_ok(VERIFY_READ, from, n)) 2346 return n; 2347 2348 while (n) { 2349 if (__get_user(c, f)) { 2350 memset(t, 0, n); 2351 break; 2352 } 2353 *t++ = c; 2354 f++; 2355 n--; 2356 } 2357 return n; 2358 } 2359 2360 int copy_mount_options(const void __user * data, unsigned long *where) 2361 { 2362 int i; 2363 unsigned long page; 2364 unsigned long size; 2365 2366 *where = 0; 2367 if (!data) 2368 return 0; 2369 2370 if (!(page = __get_free_page(GFP_KERNEL))) 2371 return -ENOMEM; 2372 2373 /* We only care that *some* data at the address the user 2374 * gave us is valid. Just in case, we'll zero 2375 * the remainder of the page. 2376 */ 2377 /* copy_from_user cannot cross TASK_SIZE ! */ 2378 size = TASK_SIZE - (unsigned long)data; 2379 if (size > PAGE_SIZE) 2380 size = PAGE_SIZE; 2381 2382 i = size - exact_copy_from_user((void *)page, data, size); 2383 if (!i) { 2384 free_page(page); 2385 return -EFAULT; 2386 } 2387 if (i != PAGE_SIZE) 2388 memset((char *)page + i, 0, PAGE_SIZE - i); 2389 *where = page; 2390 return 0; 2391 } 2392 2393 int copy_mount_string(const void __user *data, char **where) 2394 { 2395 char *tmp; 2396 2397 if (!data) { 2398 *where = NULL; 2399 return 0; 2400 } 2401 2402 tmp = strndup_user(data, PAGE_SIZE); 2403 if (IS_ERR(tmp)) 2404 return PTR_ERR(tmp); 2405 2406 *where = tmp; 2407 return 0; 2408 } 2409 2410 /* 2411 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to 2412 * be given to the mount() call (ie: read-only, no-dev, no-suid etc). 2413 * 2414 * data is a (void *) that can point to any structure up to 2415 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent 2416 * information (or be NULL). 2417 * 2418 * Pre-0.97 versions of mount() didn't have a flags word. 2419 * When the flags word was introduced its top half was required 2420 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. 2421 * Therefore, if this magic number is present, it carries no information 2422 * and must be discarded. 2423 */ 2424 long do_mount(const char *dev_name, const char *dir_name, 2425 const char *type_page, unsigned long flags, void *data_page) 2426 { 2427 struct path path; 2428 int retval = 0; 2429 int mnt_flags = 0; 2430 2431 /* Discard magic */ 2432 if ((flags & MS_MGC_MSK) == MS_MGC_VAL) 2433 flags &= ~MS_MGC_MSK; 2434 2435 /* Basic sanity checks */ 2436 2437 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE)) 2438 return -EINVAL; 2439 2440 if (data_page) 2441 ((char *)data_page)[PAGE_SIZE - 1] = 0; 2442 2443 /* ... and get the mountpoint */ 2444 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path); 2445 if (retval) 2446 return retval; 2447 2448 retval = security_sb_mount(dev_name, &path, 2449 type_page, flags, data_page); 2450 if (!retval && !may_mount()) 2451 retval = -EPERM; 2452 if (retval) 2453 goto dput_out; 2454 2455 /* Default to relatime unless overriden */ 2456 if (!(flags & MS_NOATIME)) 2457 mnt_flags |= MNT_RELATIME; 2458 2459 /* Separate the per-mountpoint flags */ 2460 if (flags & MS_NOSUID) 2461 mnt_flags |= MNT_NOSUID; 2462 if (flags & MS_NODEV) 2463 mnt_flags |= MNT_NODEV; 2464 if (flags & MS_NOEXEC) 2465 mnt_flags |= MNT_NOEXEC; 2466 if (flags & MS_NOATIME) 2467 mnt_flags |= MNT_NOATIME; 2468 if (flags & MS_NODIRATIME) 2469 mnt_flags |= MNT_NODIRATIME; 2470 if (flags & MS_STRICTATIME) 2471 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME); 2472 if (flags & MS_RDONLY) 2473 mnt_flags |= MNT_READONLY; 2474 2475 /* The default atime for remount is preservation */ 2476 if ((flags & MS_REMOUNT) && 2477 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME | 2478 MS_STRICTATIME)) == 0)) { 2479 mnt_flags &= ~MNT_ATIME_MASK; 2480 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK; 2481 } 2482 2483 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN | 2484 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT | 2485 MS_STRICTATIME); 2486 2487 if (flags & MS_REMOUNT) 2488 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags, 2489 data_page); 2490 else if (flags & MS_BIND) 2491 retval = do_loopback(&path, dev_name, flags & MS_REC); 2492 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 2493 retval = do_change_type(&path, flags); 2494 else if (flags & MS_MOVE) 2495 retval = do_move_mount(&path, dev_name); 2496 else 2497 retval = do_new_mount(&path, type_page, flags, mnt_flags, 2498 dev_name, data_page); 2499 dput_out: 2500 path_put(&path); 2501 return retval; 2502 } 2503 2504 static void free_mnt_ns(struct mnt_namespace *ns) 2505 { 2506 proc_free_inum(ns->proc_inum); 2507 put_user_ns(ns->user_ns); 2508 kfree(ns); 2509 } 2510 2511 /* 2512 * Assign a sequence number so we can detect when we attempt to bind 2513 * mount a reference to an older mount namespace into the current 2514 * mount namespace, preventing reference counting loops. A 64bit 2515 * number incrementing at 10Ghz will take 12,427 years to wrap which 2516 * is effectively never, so we can ignore the possibility. 2517 */ 2518 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1); 2519 2520 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns) 2521 { 2522 struct mnt_namespace *new_ns; 2523 int ret; 2524 2525 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL); 2526 if (!new_ns) 2527 return ERR_PTR(-ENOMEM); 2528 ret = proc_alloc_inum(&new_ns->proc_inum); 2529 if (ret) { 2530 kfree(new_ns); 2531 return ERR_PTR(ret); 2532 } 2533 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq); 2534 atomic_set(&new_ns->count, 1); 2535 new_ns->root = NULL; 2536 INIT_LIST_HEAD(&new_ns->list); 2537 init_waitqueue_head(&new_ns->poll); 2538 new_ns->event = 0; 2539 new_ns->user_ns = get_user_ns(user_ns); 2540 return new_ns; 2541 } 2542 2543 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns, 2544 struct user_namespace *user_ns, struct fs_struct *new_fs) 2545 { 2546 struct mnt_namespace *new_ns; 2547 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL; 2548 struct mount *p, *q; 2549 struct mount *old; 2550 struct mount *new; 2551 int copy_flags; 2552 2553 BUG_ON(!ns); 2554 2555 if (likely(!(flags & CLONE_NEWNS))) { 2556 get_mnt_ns(ns); 2557 return ns; 2558 } 2559 2560 old = ns->root; 2561 2562 new_ns = alloc_mnt_ns(user_ns); 2563 if (IS_ERR(new_ns)) 2564 return new_ns; 2565 2566 namespace_lock(); 2567 /* First pass: copy the tree topology */ 2568 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE; 2569 if (user_ns != ns->user_ns) 2570 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED; 2571 new = copy_tree(old, old->mnt.mnt_root, copy_flags); 2572 if (IS_ERR(new)) { 2573 namespace_unlock(); 2574 free_mnt_ns(new_ns); 2575 return ERR_CAST(new); 2576 } 2577 new_ns->root = new; 2578 list_add_tail(&new_ns->list, &new->mnt_list); 2579 2580 /* 2581 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts 2582 * as belonging to new namespace. We have already acquired a private 2583 * fs_struct, so tsk->fs->lock is not needed. 2584 */ 2585 p = old; 2586 q = new; 2587 while (p) { 2588 q->mnt_ns = new_ns; 2589 if (new_fs) { 2590 if (&p->mnt == new_fs->root.mnt) { 2591 new_fs->root.mnt = mntget(&q->mnt); 2592 rootmnt = &p->mnt; 2593 } 2594 if (&p->mnt == new_fs->pwd.mnt) { 2595 new_fs->pwd.mnt = mntget(&q->mnt); 2596 pwdmnt = &p->mnt; 2597 } 2598 } 2599 p = next_mnt(p, old); 2600 q = next_mnt(q, new); 2601 if (!q) 2602 break; 2603 while (p->mnt.mnt_root != q->mnt.mnt_root) 2604 p = next_mnt(p, old); 2605 } 2606 namespace_unlock(); 2607 2608 if (rootmnt) 2609 mntput(rootmnt); 2610 if (pwdmnt) 2611 mntput(pwdmnt); 2612 2613 return new_ns; 2614 } 2615 2616 /** 2617 * create_mnt_ns - creates a private namespace and adds a root filesystem 2618 * @mnt: pointer to the new root filesystem mountpoint 2619 */ 2620 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m) 2621 { 2622 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns); 2623 if (!IS_ERR(new_ns)) { 2624 struct mount *mnt = real_mount(m); 2625 mnt->mnt_ns = new_ns; 2626 new_ns->root = mnt; 2627 list_add(&mnt->mnt_list, &new_ns->list); 2628 } else { 2629 mntput(m); 2630 } 2631 return new_ns; 2632 } 2633 2634 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name) 2635 { 2636 struct mnt_namespace *ns; 2637 struct super_block *s; 2638 struct path path; 2639 int err; 2640 2641 ns = create_mnt_ns(mnt); 2642 if (IS_ERR(ns)) 2643 return ERR_CAST(ns); 2644 2645 err = vfs_path_lookup(mnt->mnt_root, mnt, 2646 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path); 2647 2648 put_mnt_ns(ns); 2649 2650 if (err) 2651 return ERR_PTR(err); 2652 2653 /* trade a vfsmount reference for active sb one */ 2654 s = path.mnt->mnt_sb; 2655 atomic_inc(&s->s_active); 2656 mntput(path.mnt); 2657 /* lock the sucker */ 2658 down_write(&s->s_umount); 2659 /* ... and return the root of (sub)tree on it */ 2660 return path.dentry; 2661 } 2662 EXPORT_SYMBOL(mount_subtree); 2663 2664 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name, 2665 char __user *, type, unsigned long, flags, void __user *, data) 2666 { 2667 int ret; 2668 char *kernel_type; 2669 struct filename *kernel_dir; 2670 char *kernel_dev; 2671 unsigned long data_page; 2672 2673 ret = copy_mount_string(type, &kernel_type); 2674 if (ret < 0) 2675 goto out_type; 2676 2677 kernel_dir = getname(dir_name); 2678 if (IS_ERR(kernel_dir)) { 2679 ret = PTR_ERR(kernel_dir); 2680 goto out_dir; 2681 } 2682 2683 ret = copy_mount_string(dev_name, &kernel_dev); 2684 if (ret < 0) 2685 goto out_dev; 2686 2687 ret = copy_mount_options(data, &data_page); 2688 if (ret < 0) 2689 goto out_data; 2690 2691 ret = do_mount(kernel_dev, kernel_dir->name, kernel_type, flags, 2692 (void *) data_page); 2693 2694 free_page(data_page); 2695 out_data: 2696 kfree(kernel_dev); 2697 out_dev: 2698 putname(kernel_dir); 2699 out_dir: 2700 kfree(kernel_type); 2701 out_type: 2702 return ret; 2703 } 2704 2705 /* 2706 * Return true if path is reachable from root 2707 * 2708 * namespace_sem or mount_lock is held 2709 */ 2710 bool is_path_reachable(struct mount *mnt, struct dentry *dentry, 2711 const struct path *root) 2712 { 2713 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) { 2714 dentry = mnt->mnt_mountpoint; 2715 mnt = mnt->mnt_parent; 2716 } 2717 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry); 2718 } 2719 2720 int path_is_under(struct path *path1, struct path *path2) 2721 { 2722 int res; 2723 read_seqlock_excl(&mount_lock); 2724 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2); 2725 read_sequnlock_excl(&mount_lock); 2726 return res; 2727 } 2728 EXPORT_SYMBOL(path_is_under); 2729 2730 /* 2731 * pivot_root Semantics: 2732 * Moves the root file system of the current process to the directory put_old, 2733 * makes new_root as the new root file system of the current process, and sets 2734 * root/cwd of all processes which had them on the current root to new_root. 2735 * 2736 * Restrictions: 2737 * The new_root and put_old must be directories, and must not be on the 2738 * same file system as the current process root. The put_old must be 2739 * underneath new_root, i.e. adding a non-zero number of /.. to the string 2740 * pointed to by put_old must yield the same directory as new_root. No other 2741 * file system may be mounted on put_old. After all, new_root is a mountpoint. 2742 * 2743 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. 2744 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives 2745 * in this situation. 2746 * 2747 * Notes: 2748 * - we don't move root/cwd if they are not at the root (reason: if something 2749 * cared enough to change them, it's probably wrong to force them elsewhere) 2750 * - it's okay to pick a root that isn't the root of a file system, e.g. 2751 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, 2752 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root 2753 * first. 2754 */ 2755 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root, 2756 const char __user *, put_old) 2757 { 2758 struct path new, old, parent_path, root_parent, root; 2759 struct mount *new_mnt, *root_mnt, *old_mnt; 2760 struct mountpoint *old_mp, *root_mp; 2761 int error; 2762 2763 if (!may_mount()) 2764 return -EPERM; 2765 2766 error = user_path_dir(new_root, &new); 2767 if (error) 2768 goto out0; 2769 2770 error = user_path_dir(put_old, &old); 2771 if (error) 2772 goto out1; 2773 2774 error = security_sb_pivotroot(&old, &new); 2775 if (error) 2776 goto out2; 2777 2778 get_fs_root(current->fs, &root); 2779 old_mp = lock_mount(&old); 2780 error = PTR_ERR(old_mp); 2781 if (IS_ERR(old_mp)) 2782 goto out3; 2783 2784 error = -EINVAL; 2785 new_mnt = real_mount(new.mnt); 2786 root_mnt = real_mount(root.mnt); 2787 old_mnt = real_mount(old.mnt); 2788 if (IS_MNT_SHARED(old_mnt) || 2789 IS_MNT_SHARED(new_mnt->mnt_parent) || 2790 IS_MNT_SHARED(root_mnt->mnt_parent)) 2791 goto out4; 2792 if (!check_mnt(root_mnt) || !check_mnt(new_mnt)) 2793 goto out4; 2794 if (new_mnt->mnt.mnt_flags & MNT_LOCKED) 2795 goto out4; 2796 error = -ENOENT; 2797 if (d_unlinked(new.dentry)) 2798 goto out4; 2799 error = -EBUSY; 2800 if (new_mnt == root_mnt || old_mnt == root_mnt) 2801 goto out4; /* loop, on the same file system */ 2802 error = -EINVAL; 2803 if (root.mnt->mnt_root != root.dentry) 2804 goto out4; /* not a mountpoint */ 2805 if (!mnt_has_parent(root_mnt)) 2806 goto out4; /* not attached */ 2807 root_mp = root_mnt->mnt_mp; 2808 if (new.mnt->mnt_root != new.dentry) 2809 goto out4; /* not a mountpoint */ 2810 if (!mnt_has_parent(new_mnt)) 2811 goto out4; /* not attached */ 2812 /* make sure we can reach put_old from new_root */ 2813 if (!is_path_reachable(old_mnt, old.dentry, &new)) 2814 goto out4; 2815 root_mp->m_count++; /* pin it so it won't go away */ 2816 lock_mount_hash(); 2817 detach_mnt(new_mnt, &parent_path); 2818 detach_mnt(root_mnt, &root_parent); 2819 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) { 2820 new_mnt->mnt.mnt_flags |= MNT_LOCKED; 2821 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED; 2822 } 2823 /* mount old root on put_old */ 2824 attach_mnt(root_mnt, old_mnt, old_mp); 2825 /* mount new_root on / */ 2826 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp); 2827 touch_mnt_namespace(current->nsproxy->mnt_ns); 2828 unlock_mount_hash(); 2829 chroot_fs_refs(&root, &new); 2830 put_mountpoint(root_mp); 2831 error = 0; 2832 out4: 2833 unlock_mount(old_mp); 2834 if (!error) { 2835 path_put(&root_parent); 2836 path_put(&parent_path); 2837 } 2838 out3: 2839 path_put(&root); 2840 out2: 2841 path_put(&old); 2842 out1: 2843 path_put(&new); 2844 out0: 2845 return error; 2846 } 2847 2848 static void __init init_mount_tree(void) 2849 { 2850 struct vfsmount *mnt; 2851 struct mnt_namespace *ns; 2852 struct path root; 2853 struct file_system_type *type; 2854 2855 type = get_fs_type("rootfs"); 2856 if (!type) 2857 panic("Can't find rootfs type"); 2858 mnt = vfs_kern_mount(type, 0, "rootfs", NULL); 2859 put_filesystem(type); 2860 if (IS_ERR(mnt)) 2861 panic("Can't create rootfs"); 2862 2863 ns = create_mnt_ns(mnt); 2864 if (IS_ERR(ns)) 2865 panic("Can't allocate initial namespace"); 2866 2867 init_task.nsproxy->mnt_ns = ns; 2868 get_mnt_ns(ns); 2869 2870 root.mnt = mnt; 2871 root.dentry = mnt->mnt_root; 2872 2873 set_fs_pwd(current->fs, &root); 2874 set_fs_root(current->fs, &root); 2875 } 2876 2877 void __init mnt_init(void) 2878 { 2879 unsigned u; 2880 int err; 2881 2882 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount), 2883 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 2884 2885 mount_hashtable = alloc_large_system_hash("Mount-cache", 2886 sizeof(struct hlist_head), 2887 mhash_entries, 19, 2888 0, 2889 &m_hash_shift, &m_hash_mask, 0, 0); 2890 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache", 2891 sizeof(struct hlist_head), 2892 mphash_entries, 19, 2893 0, 2894 &mp_hash_shift, &mp_hash_mask, 0, 0); 2895 2896 if (!mount_hashtable || !mountpoint_hashtable) 2897 panic("Failed to allocate mount hash table\n"); 2898 2899 for (u = 0; u <= m_hash_mask; u++) 2900 INIT_HLIST_HEAD(&mount_hashtable[u]); 2901 for (u = 0; u <= mp_hash_mask; u++) 2902 INIT_HLIST_HEAD(&mountpoint_hashtable[u]); 2903 2904 kernfs_init(); 2905 2906 err = sysfs_init(); 2907 if (err) 2908 printk(KERN_WARNING "%s: sysfs_init error: %d\n", 2909 __func__, err); 2910 fs_kobj = kobject_create_and_add("fs", NULL); 2911 if (!fs_kobj) 2912 printk(KERN_WARNING "%s: kobj create error\n", __func__); 2913 init_rootfs(); 2914 init_mount_tree(); 2915 } 2916 2917 void put_mnt_ns(struct mnt_namespace *ns) 2918 { 2919 if (!atomic_dec_and_test(&ns->count)) 2920 return; 2921 drop_collected_mounts(&ns->root->mnt); 2922 free_mnt_ns(ns); 2923 } 2924 2925 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data) 2926 { 2927 struct vfsmount *mnt; 2928 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data); 2929 if (!IS_ERR(mnt)) { 2930 /* 2931 * it is a longterm mount, don't release mnt until 2932 * we unmount before file sys is unregistered 2933 */ 2934 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL; 2935 } 2936 return mnt; 2937 } 2938 EXPORT_SYMBOL_GPL(kern_mount_data); 2939 2940 void kern_unmount(struct vfsmount *mnt) 2941 { 2942 /* release long term mount so mount point can be released */ 2943 if (!IS_ERR_OR_NULL(mnt)) { 2944 real_mount(mnt)->mnt_ns = NULL; 2945 synchronize_rcu(); /* yecchhh... */ 2946 mntput(mnt); 2947 } 2948 } 2949 EXPORT_SYMBOL(kern_unmount); 2950 2951 bool our_mnt(struct vfsmount *mnt) 2952 { 2953 return check_mnt(real_mount(mnt)); 2954 } 2955 2956 bool current_chrooted(void) 2957 { 2958 /* Does the current process have a non-standard root */ 2959 struct path ns_root; 2960 struct path fs_root; 2961 bool chrooted; 2962 2963 /* Find the namespace root */ 2964 ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt; 2965 ns_root.dentry = ns_root.mnt->mnt_root; 2966 path_get(&ns_root); 2967 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root)) 2968 ; 2969 2970 get_fs_root(current->fs, &fs_root); 2971 2972 chrooted = !path_equal(&fs_root, &ns_root); 2973 2974 path_put(&fs_root); 2975 path_put(&ns_root); 2976 2977 return chrooted; 2978 } 2979 2980 bool fs_fully_visible(struct file_system_type *type) 2981 { 2982 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 2983 struct mount *mnt; 2984 bool visible = false; 2985 2986 if (unlikely(!ns)) 2987 return false; 2988 2989 down_read(&namespace_sem); 2990 list_for_each_entry(mnt, &ns->list, mnt_list) { 2991 struct mount *child; 2992 if (mnt->mnt.mnt_sb->s_type != type) 2993 continue; 2994 2995 /* This mount is not fully visible if there are any child mounts 2996 * that cover anything except for empty directories. 2997 */ 2998 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 2999 struct inode *inode = child->mnt_mountpoint->d_inode; 3000 if (!S_ISDIR(inode->i_mode)) 3001 goto next; 3002 if (inode->i_nlink > 2) 3003 goto next; 3004 } 3005 visible = true; 3006 goto found; 3007 next: ; 3008 } 3009 found: 3010 up_read(&namespace_sem); 3011 return visible; 3012 } 3013 3014 static void *mntns_get(struct task_struct *task) 3015 { 3016 struct mnt_namespace *ns = NULL; 3017 struct nsproxy *nsproxy; 3018 3019 task_lock(task); 3020 nsproxy = task->nsproxy; 3021 if (nsproxy) { 3022 ns = nsproxy->mnt_ns; 3023 get_mnt_ns(ns); 3024 } 3025 task_unlock(task); 3026 3027 return ns; 3028 } 3029 3030 static void mntns_put(void *ns) 3031 { 3032 put_mnt_ns(ns); 3033 } 3034 3035 static int mntns_install(struct nsproxy *nsproxy, void *ns) 3036 { 3037 struct fs_struct *fs = current->fs; 3038 struct mnt_namespace *mnt_ns = ns; 3039 struct path root; 3040 3041 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) || 3042 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) || 3043 !ns_capable(current_user_ns(), CAP_SYS_ADMIN)) 3044 return -EPERM; 3045 3046 if (fs->users != 1) 3047 return -EINVAL; 3048 3049 get_mnt_ns(mnt_ns); 3050 put_mnt_ns(nsproxy->mnt_ns); 3051 nsproxy->mnt_ns = mnt_ns; 3052 3053 /* Find the root */ 3054 root.mnt = &mnt_ns->root->mnt; 3055 root.dentry = mnt_ns->root->mnt.mnt_root; 3056 path_get(&root); 3057 while(d_mountpoint(root.dentry) && follow_down_one(&root)) 3058 ; 3059 3060 /* Update the pwd and root */ 3061 set_fs_pwd(fs, &root); 3062 set_fs_root(fs, &root); 3063 3064 path_put(&root); 3065 return 0; 3066 } 3067 3068 static unsigned int mntns_inum(void *ns) 3069 { 3070 struct mnt_namespace *mnt_ns = ns; 3071 return mnt_ns->proc_inum; 3072 } 3073 3074 const struct proc_ns_operations mntns_operations = { 3075 .name = "mnt", 3076 .type = CLONE_NEWNS, 3077 .get = mntns_get, 3078 .put = mntns_put, 3079 .install = mntns_install, 3080 .inum = mntns_inum, 3081 }; 3082