xref: /openbmc/linux/fs/namespace.c (revision 275876e2)
1 /*
2  *  linux/fs/namespace.c
3  *
4  * (C) Copyright Al Viro 2000, 2001
5  *	Released under GPL v2.
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/idr.h>
19 #include <linux/init.h>		/* init_rootfs */
20 #include <linux/fs_struct.h>	/* get_fs_root et.al. */
21 #include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
22 #include <linux/uaccess.h>
23 #include <linux/proc_ns.h>
24 #include <linux/magic.h>
25 #include <linux/bootmem.h>
26 #include "pnode.h"
27 #include "internal.h"
28 
29 static unsigned int m_hash_mask __read_mostly;
30 static unsigned int m_hash_shift __read_mostly;
31 static unsigned int mp_hash_mask __read_mostly;
32 static unsigned int mp_hash_shift __read_mostly;
33 
34 static __initdata unsigned long mhash_entries;
35 static int __init set_mhash_entries(char *str)
36 {
37 	if (!str)
38 		return 0;
39 	mhash_entries = simple_strtoul(str, &str, 0);
40 	return 1;
41 }
42 __setup("mhash_entries=", set_mhash_entries);
43 
44 static __initdata unsigned long mphash_entries;
45 static int __init set_mphash_entries(char *str)
46 {
47 	if (!str)
48 		return 0;
49 	mphash_entries = simple_strtoul(str, &str, 0);
50 	return 1;
51 }
52 __setup("mphash_entries=", set_mphash_entries);
53 
54 static u64 event;
55 static DEFINE_IDA(mnt_id_ida);
56 static DEFINE_IDA(mnt_group_ida);
57 static DEFINE_SPINLOCK(mnt_id_lock);
58 static int mnt_id_start = 0;
59 static int mnt_group_start = 1;
60 
61 static struct hlist_head *mount_hashtable __read_mostly;
62 static struct hlist_head *mountpoint_hashtable __read_mostly;
63 static struct kmem_cache *mnt_cache __read_mostly;
64 static DECLARE_RWSEM(namespace_sem);
65 
66 /* /sys/fs */
67 struct kobject *fs_kobj;
68 EXPORT_SYMBOL_GPL(fs_kobj);
69 
70 /*
71  * vfsmount lock may be taken for read to prevent changes to the
72  * vfsmount hash, ie. during mountpoint lookups or walking back
73  * up the tree.
74  *
75  * It should be taken for write in all cases where the vfsmount
76  * tree or hash is modified or when a vfsmount structure is modified.
77  */
78 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
79 
80 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
81 {
82 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
83 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
84 	tmp = tmp + (tmp >> m_hash_shift);
85 	return &mount_hashtable[tmp & m_hash_mask];
86 }
87 
88 static inline struct hlist_head *mp_hash(struct dentry *dentry)
89 {
90 	unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
91 	tmp = tmp + (tmp >> mp_hash_shift);
92 	return &mountpoint_hashtable[tmp & mp_hash_mask];
93 }
94 
95 /*
96  * allocation is serialized by namespace_sem, but we need the spinlock to
97  * serialize with freeing.
98  */
99 static int mnt_alloc_id(struct mount *mnt)
100 {
101 	int res;
102 
103 retry:
104 	ida_pre_get(&mnt_id_ida, GFP_KERNEL);
105 	spin_lock(&mnt_id_lock);
106 	res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
107 	if (!res)
108 		mnt_id_start = mnt->mnt_id + 1;
109 	spin_unlock(&mnt_id_lock);
110 	if (res == -EAGAIN)
111 		goto retry;
112 
113 	return res;
114 }
115 
116 static void mnt_free_id(struct mount *mnt)
117 {
118 	int id = mnt->mnt_id;
119 	spin_lock(&mnt_id_lock);
120 	ida_remove(&mnt_id_ida, id);
121 	if (mnt_id_start > id)
122 		mnt_id_start = id;
123 	spin_unlock(&mnt_id_lock);
124 }
125 
126 /*
127  * Allocate a new peer group ID
128  *
129  * mnt_group_ida is protected by namespace_sem
130  */
131 static int mnt_alloc_group_id(struct mount *mnt)
132 {
133 	int res;
134 
135 	if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
136 		return -ENOMEM;
137 
138 	res = ida_get_new_above(&mnt_group_ida,
139 				mnt_group_start,
140 				&mnt->mnt_group_id);
141 	if (!res)
142 		mnt_group_start = mnt->mnt_group_id + 1;
143 
144 	return res;
145 }
146 
147 /*
148  * Release a peer group ID
149  */
150 void mnt_release_group_id(struct mount *mnt)
151 {
152 	int id = mnt->mnt_group_id;
153 	ida_remove(&mnt_group_ida, id);
154 	if (mnt_group_start > id)
155 		mnt_group_start = id;
156 	mnt->mnt_group_id = 0;
157 }
158 
159 /*
160  * vfsmount lock must be held for read
161  */
162 static inline void mnt_add_count(struct mount *mnt, int n)
163 {
164 #ifdef CONFIG_SMP
165 	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
166 #else
167 	preempt_disable();
168 	mnt->mnt_count += n;
169 	preempt_enable();
170 #endif
171 }
172 
173 /*
174  * vfsmount lock must be held for write
175  */
176 unsigned int mnt_get_count(struct mount *mnt)
177 {
178 #ifdef CONFIG_SMP
179 	unsigned int count = 0;
180 	int cpu;
181 
182 	for_each_possible_cpu(cpu) {
183 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
184 	}
185 
186 	return count;
187 #else
188 	return mnt->mnt_count;
189 #endif
190 }
191 
192 static struct mount *alloc_vfsmnt(const char *name)
193 {
194 	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
195 	if (mnt) {
196 		int err;
197 
198 		err = mnt_alloc_id(mnt);
199 		if (err)
200 			goto out_free_cache;
201 
202 		if (name) {
203 			mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
204 			if (!mnt->mnt_devname)
205 				goto out_free_id;
206 		}
207 
208 #ifdef CONFIG_SMP
209 		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
210 		if (!mnt->mnt_pcp)
211 			goto out_free_devname;
212 
213 		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
214 #else
215 		mnt->mnt_count = 1;
216 		mnt->mnt_writers = 0;
217 #endif
218 
219 		INIT_HLIST_NODE(&mnt->mnt_hash);
220 		INIT_LIST_HEAD(&mnt->mnt_child);
221 		INIT_LIST_HEAD(&mnt->mnt_mounts);
222 		INIT_LIST_HEAD(&mnt->mnt_list);
223 		INIT_LIST_HEAD(&mnt->mnt_expire);
224 		INIT_LIST_HEAD(&mnt->mnt_share);
225 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
226 		INIT_LIST_HEAD(&mnt->mnt_slave);
227 #ifdef CONFIG_FSNOTIFY
228 		INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
229 #endif
230 	}
231 	return mnt;
232 
233 #ifdef CONFIG_SMP
234 out_free_devname:
235 	kfree(mnt->mnt_devname);
236 #endif
237 out_free_id:
238 	mnt_free_id(mnt);
239 out_free_cache:
240 	kmem_cache_free(mnt_cache, mnt);
241 	return NULL;
242 }
243 
244 /*
245  * Most r/o checks on a fs are for operations that take
246  * discrete amounts of time, like a write() or unlink().
247  * We must keep track of when those operations start
248  * (for permission checks) and when they end, so that
249  * we can determine when writes are able to occur to
250  * a filesystem.
251  */
252 /*
253  * __mnt_is_readonly: check whether a mount is read-only
254  * @mnt: the mount to check for its write status
255  *
256  * This shouldn't be used directly ouside of the VFS.
257  * It does not guarantee that the filesystem will stay
258  * r/w, just that it is right *now*.  This can not and
259  * should not be used in place of IS_RDONLY(inode).
260  * mnt_want/drop_write() will _keep_ the filesystem
261  * r/w.
262  */
263 int __mnt_is_readonly(struct vfsmount *mnt)
264 {
265 	if (mnt->mnt_flags & MNT_READONLY)
266 		return 1;
267 	if (mnt->mnt_sb->s_flags & MS_RDONLY)
268 		return 1;
269 	return 0;
270 }
271 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
272 
273 static inline void mnt_inc_writers(struct mount *mnt)
274 {
275 #ifdef CONFIG_SMP
276 	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
277 #else
278 	mnt->mnt_writers++;
279 #endif
280 }
281 
282 static inline void mnt_dec_writers(struct mount *mnt)
283 {
284 #ifdef CONFIG_SMP
285 	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
286 #else
287 	mnt->mnt_writers--;
288 #endif
289 }
290 
291 static unsigned int mnt_get_writers(struct mount *mnt)
292 {
293 #ifdef CONFIG_SMP
294 	unsigned int count = 0;
295 	int cpu;
296 
297 	for_each_possible_cpu(cpu) {
298 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
299 	}
300 
301 	return count;
302 #else
303 	return mnt->mnt_writers;
304 #endif
305 }
306 
307 static int mnt_is_readonly(struct vfsmount *mnt)
308 {
309 	if (mnt->mnt_sb->s_readonly_remount)
310 		return 1;
311 	/* Order wrt setting s_flags/s_readonly_remount in do_remount() */
312 	smp_rmb();
313 	return __mnt_is_readonly(mnt);
314 }
315 
316 /*
317  * Most r/o & frozen checks on a fs are for operations that take discrete
318  * amounts of time, like a write() or unlink().  We must keep track of when
319  * those operations start (for permission checks) and when they end, so that we
320  * can determine when writes are able to occur to a filesystem.
321  */
322 /**
323  * __mnt_want_write - get write access to a mount without freeze protection
324  * @m: the mount on which to take a write
325  *
326  * This tells the low-level filesystem that a write is about to be performed to
327  * it, and makes sure that writes are allowed (mnt it read-write) before
328  * returning success. This operation does not protect against filesystem being
329  * frozen. When the write operation is finished, __mnt_drop_write() must be
330  * called. This is effectively a refcount.
331  */
332 int __mnt_want_write(struct vfsmount *m)
333 {
334 	struct mount *mnt = real_mount(m);
335 	int ret = 0;
336 
337 	preempt_disable();
338 	mnt_inc_writers(mnt);
339 	/*
340 	 * The store to mnt_inc_writers must be visible before we pass
341 	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
342 	 * incremented count after it has set MNT_WRITE_HOLD.
343 	 */
344 	smp_mb();
345 	while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
346 		cpu_relax();
347 	/*
348 	 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
349 	 * be set to match its requirements. So we must not load that until
350 	 * MNT_WRITE_HOLD is cleared.
351 	 */
352 	smp_rmb();
353 	if (mnt_is_readonly(m)) {
354 		mnt_dec_writers(mnt);
355 		ret = -EROFS;
356 	}
357 	preempt_enable();
358 
359 	return ret;
360 }
361 
362 /**
363  * mnt_want_write - get write access to a mount
364  * @m: the mount on which to take a write
365  *
366  * This tells the low-level filesystem that a write is about to be performed to
367  * it, and makes sure that writes are allowed (mount is read-write, filesystem
368  * is not frozen) before returning success.  When the write operation is
369  * finished, mnt_drop_write() must be called.  This is effectively a refcount.
370  */
371 int mnt_want_write(struct vfsmount *m)
372 {
373 	int ret;
374 
375 	sb_start_write(m->mnt_sb);
376 	ret = __mnt_want_write(m);
377 	if (ret)
378 		sb_end_write(m->mnt_sb);
379 	return ret;
380 }
381 EXPORT_SYMBOL_GPL(mnt_want_write);
382 
383 /**
384  * mnt_clone_write - get write access to a mount
385  * @mnt: the mount on which to take a write
386  *
387  * This is effectively like mnt_want_write, except
388  * it must only be used to take an extra write reference
389  * on a mountpoint that we already know has a write reference
390  * on it. This allows some optimisation.
391  *
392  * After finished, mnt_drop_write must be called as usual to
393  * drop the reference.
394  */
395 int mnt_clone_write(struct vfsmount *mnt)
396 {
397 	/* superblock may be r/o */
398 	if (__mnt_is_readonly(mnt))
399 		return -EROFS;
400 	preempt_disable();
401 	mnt_inc_writers(real_mount(mnt));
402 	preempt_enable();
403 	return 0;
404 }
405 EXPORT_SYMBOL_GPL(mnt_clone_write);
406 
407 /**
408  * __mnt_want_write_file - get write access to a file's mount
409  * @file: the file who's mount on which to take a write
410  *
411  * This is like __mnt_want_write, but it takes a file and can
412  * do some optimisations if the file is open for write already
413  */
414 int __mnt_want_write_file(struct file *file)
415 {
416 	if (!(file->f_mode & FMODE_WRITER))
417 		return __mnt_want_write(file->f_path.mnt);
418 	else
419 		return mnt_clone_write(file->f_path.mnt);
420 }
421 
422 /**
423  * mnt_want_write_file - get write access to a file's mount
424  * @file: the file who's mount on which to take a write
425  *
426  * This is like mnt_want_write, but it takes a file and can
427  * do some optimisations if the file is open for write already
428  */
429 int mnt_want_write_file(struct file *file)
430 {
431 	int ret;
432 
433 	sb_start_write(file->f_path.mnt->mnt_sb);
434 	ret = __mnt_want_write_file(file);
435 	if (ret)
436 		sb_end_write(file->f_path.mnt->mnt_sb);
437 	return ret;
438 }
439 EXPORT_SYMBOL_GPL(mnt_want_write_file);
440 
441 /**
442  * __mnt_drop_write - give up write access to a mount
443  * @mnt: the mount on which to give up write access
444  *
445  * Tells the low-level filesystem that we are done
446  * performing writes to it.  Must be matched with
447  * __mnt_want_write() call above.
448  */
449 void __mnt_drop_write(struct vfsmount *mnt)
450 {
451 	preempt_disable();
452 	mnt_dec_writers(real_mount(mnt));
453 	preempt_enable();
454 }
455 
456 /**
457  * mnt_drop_write - give up write access to a mount
458  * @mnt: the mount on which to give up write access
459  *
460  * Tells the low-level filesystem that we are done performing writes to it and
461  * also allows filesystem to be frozen again.  Must be matched with
462  * mnt_want_write() call above.
463  */
464 void mnt_drop_write(struct vfsmount *mnt)
465 {
466 	__mnt_drop_write(mnt);
467 	sb_end_write(mnt->mnt_sb);
468 }
469 EXPORT_SYMBOL_GPL(mnt_drop_write);
470 
471 void __mnt_drop_write_file(struct file *file)
472 {
473 	__mnt_drop_write(file->f_path.mnt);
474 }
475 
476 void mnt_drop_write_file(struct file *file)
477 {
478 	mnt_drop_write(file->f_path.mnt);
479 }
480 EXPORT_SYMBOL(mnt_drop_write_file);
481 
482 static int mnt_make_readonly(struct mount *mnt)
483 {
484 	int ret = 0;
485 
486 	lock_mount_hash();
487 	mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
488 	/*
489 	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
490 	 * should be visible before we do.
491 	 */
492 	smp_mb();
493 
494 	/*
495 	 * With writers on hold, if this value is zero, then there are
496 	 * definitely no active writers (although held writers may subsequently
497 	 * increment the count, they'll have to wait, and decrement it after
498 	 * seeing MNT_READONLY).
499 	 *
500 	 * It is OK to have counter incremented on one CPU and decremented on
501 	 * another: the sum will add up correctly. The danger would be when we
502 	 * sum up each counter, if we read a counter before it is incremented,
503 	 * but then read another CPU's count which it has been subsequently
504 	 * decremented from -- we would see more decrements than we should.
505 	 * MNT_WRITE_HOLD protects against this scenario, because
506 	 * mnt_want_write first increments count, then smp_mb, then spins on
507 	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
508 	 * we're counting up here.
509 	 */
510 	if (mnt_get_writers(mnt) > 0)
511 		ret = -EBUSY;
512 	else
513 		mnt->mnt.mnt_flags |= MNT_READONLY;
514 	/*
515 	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
516 	 * that become unheld will see MNT_READONLY.
517 	 */
518 	smp_wmb();
519 	mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
520 	unlock_mount_hash();
521 	return ret;
522 }
523 
524 static void __mnt_unmake_readonly(struct mount *mnt)
525 {
526 	lock_mount_hash();
527 	mnt->mnt.mnt_flags &= ~MNT_READONLY;
528 	unlock_mount_hash();
529 }
530 
531 int sb_prepare_remount_readonly(struct super_block *sb)
532 {
533 	struct mount *mnt;
534 	int err = 0;
535 
536 	/* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
537 	if (atomic_long_read(&sb->s_remove_count))
538 		return -EBUSY;
539 
540 	lock_mount_hash();
541 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
542 		if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
543 			mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
544 			smp_mb();
545 			if (mnt_get_writers(mnt) > 0) {
546 				err = -EBUSY;
547 				break;
548 			}
549 		}
550 	}
551 	if (!err && atomic_long_read(&sb->s_remove_count))
552 		err = -EBUSY;
553 
554 	if (!err) {
555 		sb->s_readonly_remount = 1;
556 		smp_wmb();
557 	}
558 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
559 		if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
560 			mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
561 	}
562 	unlock_mount_hash();
563 
564 	return err;
565 }
566 
567 static void free_vfsmnt(struct mount *mnt)
568 {
569 	kfree(mnt->mnt_devname);
570 #ifdef CONFIG_SMP
571 	free_percpu(mnt->mnt_pcp);
572 #endif
573 	kmem_cache_free(mnt_cache, mnt);
574 }
575 
576 static void delayed_free_vfsmnt(struct rcu_head *head)
577 {
578 	free_vfsmnt(container_of(head, struct mount, mnt_rcu));
579 }
580 
581 /* call under rcu_read_lock */
582 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
583 {
584 	struct mount *mnt;
585 	if (read_seqretry(&mount_lock, seq))
586 		return false;
587 	if (bastard == NULL)
588 		return true;
589 	mnt = real_mount(bastard);
590 	mnt_add_count(mnt, 1);
591 	if (likely(!read_seqretry(&mount_lock, seq)))
592 		return true;
593 	if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
594 		mnt_add_count(mnt, -1);
595 		return false;
596 	}
597 	rcu_read_unlock();
598 	mntput(bastard);
599 	rcu_read_lock();
600 	return false;
601 }
602 
603 /*
604  * find the first mount at @dentry on vfsmount @mnt.
605  * call under rcu_read_lock()
606  */
607 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
608 {
609 	struct hlist_head *head = m_hash(mnt, dentry);
610 	struct mount *p;
611 
612 	hlist_for_each_entry_rcu(p, head, mnt_hash)
613 		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
614 			return p;
615 	return NULL;
616 }
617 
618 /*
619  * find the last mount at @dentry on vfsmount @mnt.
620  * mount_lock must be held.
621  */
622 struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
623 {
624 	struct mount *p, *res;
625 	res = p = __lookup_mnt(mnt, dentry);
626 	if (!p)
627 		goto out;
628 	hlist_for_each_entry_continue(p, mnt_hash) {
629 		if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry)
630 			break;
631 		res = p;
632 	}
633 out:
634 	return res;
635 }
636 
637 /*
638  * lookup_mnt - Return the first child mount mounted at path
639  *
640  * "First" means first mounted chronologically.  If you create the
641  * following mounts:
642  *
643  * mount /dev/sda1 /mnt
644  * mount /dev/sda2 /mnt
645  * mount /dev/sda3 /mnt
646  *
647  * Then lookup_mnt() on the base /mnt dentry in the root mount will
648  * return successively the root dentry and vfsmount of /dev/sda1, then
649  * /dev/sda2, then /dev/sda3, then NULL.
650  *
651  * lookup_mnt takes a reference to the found vfsmount.
652  */
653 struct vfsmount *lookup_mnt(struct path *path)
654 {
655 	struct mount *child_mnt;
656 	struct vfsmount *m;
657 	unsigned seq;
658 
659 	rcu_read_lock();
660 	do {
661 		seq = read_seqbegin(&mount_lock);
662 		child_mnt = __lookup_mnt(path->mnt, path->dentry);
663 		m = child_mnt ? &child_mnt->mnt : NULL;
664 	} while (!legitimize_mnt(m, seq));
665 	rcu_read_unlock();
666 	return m;
667 }
668 
669 static struct mountpoint *new_mountpoint(struct dentry *dentry)
670 {
671 	struct hlist_head *chain = mp_hash(dentry);
672 	struct mountpoint *mp;
673 	int ret;
674 
675 	hlist_for_each_entry(mp, chain, m_hash) {
676 		if (mp->m_dentry == dentry) {
677 			/* might be worth a WARN_ON() */
678 			if (d_unlinked(dentry))
679 				return ERR_PTR(-ENOENT);
680 			mp->m_count++;
681 			return mp;
682 		}
683 	}
684 
685 	mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
686 	if (!mp)
687 		return ERR_PTR(-ENOMEM);
688 
689 	ret = d_set_mounted(dentry);
690 	if (ret) {
691 		kfree(mp);
692 		return ERR_PTR(ret);
693 	}
694 
695 	mp->m_dentry = dentry;
696 	mp->m_count = 1;
697 	hlist_add_head(&mp->m_hash, chain);
698 	return mp;
699 }
700 
701 static void put_mountpoint(struct mountpoint *mp)
702 {
703 	if (!--mp->m_count) {
704 		struct dentry *dentry = mp->m_dentry;
705 		spin_lock(&dentry->d_lock);
706 		dentry->d_flags &= ~DCACHE_MOUNTED;
707 		spin_unlock(&dentry->d_lock);
708 		hlist_del(&mp->m_hash);
709 		kfree(mp);
710 	}
711 }
712 
713 static inline int check_mnt(struct mount *mnt)
714 {
715 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
716 }
717 
718 /*
719  * vfsmount lock must be held for write
720  */
721 static void touch_mnt_namespace(struct mnt_namespace *ns)
722 {
723 	if (ns) {
724 		ns->event = ++event;
725 		wake_up_interruptible(&ns->poll);
726 	}
727 }
728 
729 /*
730  * vfsmount lock must be held for write
731  */
732 static void __touch_mnt_namespace(struct mnt_namespace *ns)
733 {
734 	if (ns && ns->event != event) {
735 		ns->event = event;
736 		wake_up_interruptible(&ns->poll);
737 	}
738 }
739 
740 /*
741  * vfsmount lock must be held for write
742  */
743 static void detach_mnt(struct mount *mnt, struct path *old_path)
744 {
745 	old_path->dentry = mnt->mnt_mountpoint;
746 	old_path->mnt = &mnt->mnt_parent->mnt;
747 	mnt->mnt_parent = mnt;
748 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
749 	list_del_init(&mnt->mnt_child);
750 	hlist_del_init_rcu(&mnt->mnt_hash);
751 	put_mountpoint(mnt->mnt_mp);
752 	mnt->mnt_mp = NULL;
753 }
754 
755 /*
756  * vfsmount lock must be held for write
757  */
758 void mnt_set_mountpoint(struct mount *mnt,
759 			struct mountpoint *mp,
760 			struct mount *child_mnt)
761 {
762 	mp->m_count++;
763 	mnt_add_count(mnt, 1);	/* essentially, that's mntget */
764 	child_mnt->mnt_mountpoint = dget(mp->m_dentry);
765 	child_mnt->mnt_parent = mnt;
766 	child_mnt->mnt_mp = mp;
767 }
768 
769 /*
770  * vfsmount lock must be held for write
771  */
772 static void attach_mnt(struct mount *mnt,
773 			struct mount *parent,
774 			struct mountpoint *mp)
775 {
776 	mnt_set_mountpoint(parent, mp, mnt);
777 	hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry));
778 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
779 }
780 
781 static void attach_shadowed(struct mount *mnt,
782 			struct mount *parent,
783 			struct mount *shadows)
784 {
785 	if (shadows) {
786 		hlist_add_behind_rcu(&mnt->mnt_hash, &shadows->mnt_hash);
787 		list_add(&mnt->mnt_child, &shadows->mnt_child);
788 	} else {
789 		hlist_add_head_rcu(&mnt->mnt_hash,
790 				m_hash(&parent->mnt, mnt->mnt_mountpoint));
791 		list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
792 	}
793 }
794 
795 /*
796  * vfsmount lock must be held for write
797  */
798 static void commit_tree(struct mount *mnt, struct mount *shadows)
799 {
800 	struct mount *parent = mnt->mnt_parent;
801 	struct mount *m;
802 	LIST_HEAD(head);
803 	struct mnt_namespace *n = parent->mnt_ns;
804 
805 	BUG_ON(parent == mnt);
806 
807 	list_add_tail(&head, &mnt->mnt_list);
808 	list_for_each_entry(m, &head, mnt_list)
809 		m->mnt_ns = n;
810 
811 	list_splice(&head, n->list.prev);
812 
813 	attach_shadowed(mnt, parent, shadows);
814 	touch_mnt_namespace(n);
815 }
816 
817 static struct mount *next_mnt(struct mount *p, struct mount *root)
818 {
819 	struct list_head *next = p->mnt_mounts.next;
820 	if (next == &p->mnt_mounts) {
821 		while (1) {
822 			if (p == root)
823 				return NULL;
824 			next = p->mnt_child.next;
825 			if (next != &p->mnt_parent->mnt_mounts)
826 				break;
827 			p = p->mnt_parent;
828 		}
829 	}
830 	return list_entry(next, struct mount, mnt_child);
831 }
832 
833 static struct mount *skip_mnt_tree(struct mount *p)
834 {
835 	struct list_head *prev = p->mnt_mounts.prev;
836 	while (prev != &p->mnt_mounts) {
837 		p = list_entry(prev, struct mount, mnt_child);
838 		prev = p->mnt_mounts.prev;
839 	}
840 	return p;
841 }
842 
843 struct vfsmount *
844 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
845 {
846 	struct mount *mnt;
847 	struct dentry *root;
848 
849 	if (!type)
850 		return ERR_PTR(-ENODEV);
851 
852 	mnt = alloc_vfsmnt(name);
853 	if (!mnt)
854 		return ERR_PTR(-ENOMEM);
855 
856 	if (flags & MS_KERNMOUNT)
857 		mnt->mnt.mnt_flags = MNT_INTERNAL;
858 
859 	root = mount_fs(type, flags, name, data);
860 	if (IS_ERR(root)) {
861 		mnt_free_id(mnt);
862 		free_vfsmnt(mnt);
863 		return ERR_CAST(root);
864 	}
865 
866 	mnt->mnt.mnt_root = root;
867 	mnt->mnt.mnt_sb = root->d_sb;
868 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
869 	mnt->mnt_parent = mnt;
870 	lock_mount_hash();
871 	list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
872 	unlock_mount_hash();
873 	return &mnt->mnt;
874 }
875 EXPORT_SYMBOL_GPL(vfs_kern_mount);
876 
877 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
878 					int flag)
879 {
880 	struct super_block *sb = old->mnt.mnt_sb;
881 	struct mount *mnt;
882 	int err;
883 
884 	mnt = alloc_vfsmnt(old->mnt_devname);
885 	if (!mnt)
886 		return ERR_PTR(-ENOMEM);
887 
888 	if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
889 		mnt->mnt_group_id = 0; /* not a peer of original */
890 	else
891 		mnt->mnt_group_id = old->mnt_group_id;
892 
893 	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
894 		err = mnt_alloc_group_id(mnt);
895 		if (err)
896 			goto out_free;
897 	}
898 
899 	mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
900 	/* Don't allow unprivileged users to change mount flags */
901 	if (flag & CL_UNPRIVILEGED) {
902 		mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
903 
904 		if (mnt->mnt.mnt_flags & MNT_READONLY)
905 			mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
906 
907 		if (mnt->mnt.mnt_flags & MNT_NODEV)
908 			mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
909 
910 		if (mnt->mnt.mnt_flags & MNT_NOSUID)
911 			mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
912 
913 		if (mnt->mnt.mnt_flags & MNT_NOEXEC)
914 			mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
915 	}
916 
917 	/* Don't allow unprivileged users to reveal what is under a mount */
918 	if ((flag & CL_UNPRIVILEGED) && list_empty(&old->mnt_expire))
919 		mnt->mnt.mnt_flags |= MNT_LOCKED;
920 
921 	atomic_inc(&sb->s_active);
922 	mnt->mnt.mnt_sb = sb;
923 	mnt->mnt.mnt_root = dget(root);
924 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
925 	mnt->mnt_parent = mnt;
926 	lock_mount_hash();
927 	list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
928 	unlock_mount_hash();
929 
930 	if ((flag & CL_SLAVE) ||
931 	    ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
932 		list_add(&mnt->mnt_slave, &old->mnt_slave_list);
933 		mnt->mnt_master = old;
934 		CLEAR_MNT_SHARED(mnt);
935 	} else if (!(flag & CL_PRIVATE)) {
936 		if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
937 			list_add(&mnt->mnt_share, &old->mnt_share);
938 		if (IS_MNT_SLAVE(old))
939 			list_add(&mnt->mnt_slave, &old->mnt_slave);
940 		mnt->mnt_master = old->mnt_master;
941 	}
942 	if (flag & CL_MAKE_SHARED)
943 		set_mnt_shared(mnt);
944 
945 	/* stick the duplicate mount on the same expiry list
946 	 * as the original if that was on one */
947 	if (flag & CL_EXPIRE) {
948 		if (!list_empty(&old->mnt_expire))
949 			list_add(&mnt->mnt_expire, &old->mnt_expire);
950 	}
951 
952 	return mnt;
953 
954  out_free:
955 	mnt_free_id(mnt);
956 	free_vfsmnt(mnt);
957 	return ERR_PTR(err);
958 }
959 
960 static void mntput_no_expire(struct mount *mnt)
961 {
962 	rcu_read_lock();
963 	mnt_add_count(mnt, -1);
964 	if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
965 		rcu_read_unlock();
966 		return;
967 	}
968 	lock_mount_hash();
969 	if (mnt_get_count(mnt)) {
970 		rcu_read_unlock();
971 		unlock_mount_hash();
972 		return;
973 	}
974 	if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
975 		rcu_read_unlock();
976 		unlock_mount_hash();
977 		return;
978 	}
979 	mnt->mnt.mnt_flags |= MNT_DOOMED;
980 	rcu_read_unlock();
981 
982 	list_del(&mnt->mnt_instance);
983 	unlock_mount_hash();
984 
985 	/*
986 	 * This probably indicates that somebody messed
987 	 * up a mnt_want/drop_write() pair.  If this
988 	 * happens, the filesystem was probably unable
989 	 * to make r/w->r/o transitions.
990 	 */
991 	/*
992 	 * The locking used to deal with mnt_count decrement provides barriers,
993 	 * so mnt_get_writers() below is safe.
994 	 */
995 	WARN_ON(mnt_get_writers(mnt));
996 	if (unlikely(mnt->mnt_pins.first))
997 		mnt_pin_kill(mnt);
998 	fsnotify_vfsmount_delete(&mnt->mnt);
999 	dput(mnt->mnt.mnt_root);
1000 	deactivate_super(mnt->mnt.mnt_sb);
1001 	mnt_free_id(mnt);
1002 	call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1003 }
1004 
1005 void mntput(struct vfsmount *mnt)
1006 {
1007 	if (mnt) {
1008 		struct mount *m = real_mount(mnt);
1009 		/* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1010 		if (unlikely(m->mnt_expiry_mark))
1011 			m->mnt_expiry_mark = 0;
1012 		mntput_no_expire(m);
1013 	}
1014 }
1015 EXPORT_SYMBOL(mntput);
1016 
1017 struct vfsmount *mntget(struct vfsmount *mnt)
1018 {
1019 	if (mnt)
1020 		mnt_add_count(real_mount(mnt), 1);
1021 	return mnt;
1022 }
1023 EXPORT_SYMBOL(mntget);
1024 
1025 struct vfsmount *mnt_clone_internal(struct path *path)
1026 {
1027 	struct mount *p;
1028 	p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1029 	if (IS_ERR(p))
1030 		return ERR_CAST(p);
1031 	p->mnt.mnt_flags |= MNT_INTERNAL;
1032 	return &p->mnt;
1033 }
1034 
1035 static inline void mangle(struct seq_file *m, const char *s)
1036 {
1037 	seq_escape(m, s, " \t\n\\");
1038 }
1039 
1040 /*
1041  * Simple .show_options callback for filesystems which don't want to
1042  * implement more complex mount option showing.
1043  *
1044  * See also save_mount_options().
1045  */
1046 int generic_show_options(struct seq_file *m, struct dentry *root)
1047 {
1048 	const char *options;
1049 
1050 	rcu_read_lock();
1051 	options = rcu_dereference(root->d_sb->s_options);
1052 
1053 	if (options != NULL && options[0]) {
1054 		seq_putc(m, ',');
1055 		mangle(m, options);
1056 	}
1057 	rcu_read_unlock();
1058 
1059 	return 0;
1060 }
1061 EXPORT_SYMBOL(generic_show_options);
1062 
1063 /*
1064  * If filesystem uses generic_show_options(), this function should be
1065  * called from the fill_super() callback.
1066  *
1067  * The .remount_fs callback usually needs to be handled in a special
1068  * way, to make sure, that previous options are not overwritten if the
1069  * remount fails.
1070  *
1071  * Also note, that if the filesystem's .remount_fs function doesn't
1072  * reset all options to their default value, but changes only newly
1073  * given options, then the displayed options will not reflect reality
1074  * any more.
1075  */
1076 void save_mount_options(struct super_block *sb, char *options)
1077 {
1078 	BUG_ON(sb->s_options);
1079 	rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
1080 }
1081 EXPORT_SYMBOL(save_mount_options);
1082 
1083 void replace_mount_options(struct super_block *sb, char *options)
1084 {
1085 	char *old = sb->s_options;
1086 	rcu_assign_pointer(sb->s_options, options);
1087 	if (old) {
1088 		synchronize_rcu();
1089 		kfree(old);
1090 	}
1091 }
1092 EXPORT_SYMBOL(replace_mount_options);
1093 
1094 #ifdef CONFIG_PROC_FS
1095 /* iterator; we want it to have access to namespace_sem, thus here... */
1096 static void *m_start(struct seq_file *m, loff_t *pos)
1097 {
1098 	struct proc_mounts *p = proc_mounts(m);
1099 
1100 	down_read(&namespace_sem);
1101 	if (p->cached_event == p->ns->event) {
1102 		void *v = p->cached_mount;
1103 		if (*pos == p->cached_index)
1104 			return v;
1105 		if (*pos == p->cached_index + 1) {
1106 			v = seq_list_next(v, &p->ns->list, &p->cached_index);
1107 			return p->cached_mount = v;
1108 		}
1109 	}
1110 
1111 	p->cached_event = p->ns->event;
1112 	p->cached_mount = seq_list_start(&p->ns->list, *pos);
1113 	p->cached_index = *pos;
1114 	return p->cached_mount;
1115 }
1116 
1117 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1118 {
1119 	struct proc_mounts *p = proc_mounts(m);
1120 
1121 	p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1122 	p->cached_index = *pos;
1123 	return p->cached_mount;
1124 }
1125 
1126 static void m_stop(struct seq_file *m, void *v)
1127 {
1128 	up_read(&namespace_sem);
1129 }
1130 
1131 static int m_show(struct seq_file *m, void *v)
1132 {
1133 	struct proc_mounts *p = proc_mounts(m);
1134 	struct mount *r = list_entry(v, struct mount, mnt_list);
1135 	return p->show(m, &r->mnt);
1136 }
1137 
1138 const struct seq_operations mounts_op = {
1139 	.start	= m_start,
1140 	.next	= m_next,
1141 	.stop	= m_stop,
1142 	.show	= m_show,
1143 };
1144 #endif  /* CONFIG_PROC_FS */
1145 
1146 /**
1147  * may_umount_tree - check if a mount tree is busy
1148  * @mnt: root of mount tree
1149  *
1150  * This is called to check if a tree of mounts has any
1151  * open files, pwds, chroots or sub mounts that are
1152  * busy.
1153  */
1154 int may_umount_tree(struct vfsmount *m)
1155 {
1156 	struct mount *mnt = real_mount(m);
1157 	int actual_refs = 0;
1158 	int minimum_refs = 0;
1159 	struct mount *p;
1160 	BUG_ON(!m);
1161 
1162 	/* write lock needed for mnt_get_count */
1163 	lock_mount_hash();
1164 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1165 		actual_refs += mnt_get_count(p);
1166 		minimum_refs += 2;
1167 	}
1168 	unlock_mount_hash();
1169 
1170 	if (actual_refs > minimum_refs)
1171 		return 0;
1172 
1173 	return 1;
1174 }
1175 
1176 EXPORT_SYMBOL(may_umount_tree);
1177 
1178 /**
1179  * may_umount - check if a mount point is busy
1180  * @mnt: root of mount
1181  *
1182  * This is called to check if a mount point has any
1183  * open files, pwds, chroots or sub mounts. If the
1184  * mount has sub mounts this will return busy
1185  * regardless of whether the sub mounts are busy.
1186  *
1187  * Doesn't take quota and stuff into account. IOW, in some cases it will
1188  * give false negatives. The main reason why it's here is that we need
1189  * a non-destructive way to look for easily umountable filesystems.
1190  */
1191 int may_umount(struct vfsmount *mnt)
1192 {
1193 	int ret = 1;
1194 	down_read(&namespace_sem);
1195 	lock_mount_hash();
1196 	if (propagate_mount_busy(real_mount(mnt), 2))
1197 		ret = 0;
1198 	unlock_mount_hash();
1199 	up_read(&namespace_sem);
1200 	return ret;
1201 }
1202 
1203 EXPORT_SYMBOL(may_umount);
1204 
1205 static HLIST_HEAD(unmounted);	/* protected by namespace_sem */
1206 
1207 static void namespace_unlock(void)
1208 {
1209 	struct mount *mnt;
1210 	struct hlist_head head = unmounted;
1211 
1212 	if (likely(hlist_empty(&head))) {
1213 		up_write(&namespace_sem);
1214 		return;
1215 	}
1216 
1217 	head.first->pprev = &head.first;
1218 	INIT_HLIST_HEAD(&unmounted);
1219 
1220 	up_write(&namespace_sem);
1221 
1222 	synchronize_rcu();
1223 
1224 	while (!hlist_empty(&head)) {
1225 		mnt = hlist_entry(head.first, struct mount, mnt_hash);
1226 		hlist_del_init(&mnt->mnt_hash);
1227 		if (mnt->mnt_ex_mountpoint.mnt)
1228 			path_put(&mnt->mnt_ex_mountpoint);
1229 		mntput(&mnt->mnt);
1230 	}
1231 }
1232 
1233 static inline void namespace_lock(void)
1234 {
1235 	down_write(&namespace_sem);
1236 }
1237 
1238 /*
1239  * mount_lock must be held
1240  * namespace_sem must be held for write
1241  * how = 0 => just this tree, don't propagate
1242  * how = 1 => propagate; we know that nobody else has reference to any victims
1243  * how = 2 => lazy umount
1244  */
1245 void umount_tree(struct mount *mnt, int how)
1246 {
1247 	HLIST_HEAD(tmp_list);
1248 	struct mount *p;
1249 	struct mount *last = NULL;
1250 
1251 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1252 		hlist_del_init_rcu(&p->mnt_hash);
1253 		hlist_add_head(&p->mnt_hash, &tmp_list);
1254 	}
1255 
1256 	if (how)
1257 		propagate_umount(&tmp_list);
1258 
1259 	hlist_for_each_entry(p, &tmp_list, mnt_hash) {
1260 		list_del_init(&p->mnt_expire);
1261 		list_del_init(&p->mnt_list);
1262 		__touch_mnt_namespace(p->mnt_ns);
1263 		p->mnt_ns = NULL;
1264 		if (how < 2)
1265 			p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1266 		list_del_init(&p->mnt_child);
1267 		if (mnt_has_parent(p)) {
1268 			put_mountpoint(p->mnt_mp);
1269 			/* move the reference to mountpoint into ->mnt_ex_mountpoint */
1270 			p->mnt_ex_mountpoint.dentry = p->mnt_mountpoint;
1271 			p->mnt_ex_mountpoint.mnt = &p->mnt_parent->mnt;
1272 			p->mnt_mountpoint = p->mnt.mnt_root;
1273 			p->mnt_parent = p;
1274 			p->mnt_mp = NULL;
1275 		}
1276 		change_mnt_propagation(p, MS_PRIVATE);
1277 		last = p;
1278 	}
1279 	if (last) {
1280 		last->mnt_hash.next = unmounted.first;
1281 		unmounted.first = tmp_list.first;
1282 		unmounted.first->pprev = &unmounted.first;
1283 	}
1284 }
1285 
1286 static void shrink_submounts(struct mount *mnt);
1287 
1288 static int do_umount(struct mount *mnt, int flags)
1289 {
1290 	struct super_block *sb = mnt->mnt.mnt_sb;
1291 	int retval;
1292 
1293 	retval = security_sb_umount(&mnt->mnt, flags);
1294 	if (retval)
1295 		return retval;
1296 
1297 	/*
1298 	 * Allow userspace to request a mountpoint be expired rather than
1299 	 * unmounting unconditionally. Unmount only happens if:
1300 	 *  (1) the mark is already set (the mark is cleared by mntput())
1301 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1302 	 */
1303 	if (flags & MNT_EXPIRE) {
1304 		if (&mnt->mnt == current->fs->root.mnt ||
1305 		    flags & (MNT_FORCE | MNT_DETACH))
1306 			return -EINVAL;
1307 
1308 		/*
1309 		 * probably don't strictly need the lock here if we examined
1310 		 * all race cases, but it's a slowpath.
1311 		 */
1312 		lock_mount_hash();
1313 		if (mnt_get_count(mnt) != 2) {
1314 			unlock_mount_hash();
1315 			return -EBUSY;
1316 		}
1317 		unlock_mount_hash();
1318 
1319 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1320 			return -EAGAIN;
1321 	}
1322 
1323 	/*
1324 	 * If we may have to abort operations to get out of this
1325 	 * mount, and they will themselves hold resources we must
1326 	 * allow the fs to do things. In the Unix tradition of
1327 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1328 	 * might fail to complete on the first run through as other tasks
1329 	 * must return, and the like. Thats for the mount program to worry
1330 	 * about for the moment.
1331 	 */
1332 
1333 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1334 		sb->s_op->umount_begin(sb);
1335 	}
1336 
1337 	/*
1338 	 * No sense to grab the lock for this test, but test itself looks
1339 	 * somewhat bogus. Suggestions for better replacement?
1340 	 * Ho-hum... In principle, we might treat that as umount + switch
1341 	 * to rootfs. GC would eventually take care of the old vfsmount.
1342 	 * Actually it makes sense, especially if rootfs would contain a
1343 	 * /reboot - static binary that would close all descriptors and
1344 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1345 	 */
1346 	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1347 		/*
1348 		 * Special case for "unmounting" root ...
1349 		 * we just try to remount it readonly.
1350 		 */
1351 		down_write(&sb->s_umount);
1352 		if (!(sb->s_flags & MS_RDONLY))
1353 			retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1354 		up_write(&sb->s_umount);
1355 		return retval;
1356 	}
1357 
1358 	namespace_lock();
1359 	lock_mount_hash();
1360 	event++;
1361 
1362 	if (flags & MNT_DETACH) {
1363 		if (!list_empty(&mnt->mnt_list))
1364 			umount_tree(mnt, 2);
1365 		retval = 0;
1366 	} else {
1367 		shrink_submounts(mnt);
1368 		retval = -EBUSY;
1369 		if (!propagate_mount_busy(mnt, 2)) {
1370 			if (!list_empty(&mnt->mnt_list))
1371 				umount_tree(mnt, 1);
1372 			retval = 0;
1373 		}
1374 	}
1375 	unlock_mount_hash();
1376 	namespace_unlock();
1377 	return retval;
1378 }
1379 
1380 /*
1381  * Is the caller allowed to modify his namespace?
1382  */
1383 static inline bool may_mount(void)
1384 {
1385 	return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1386 }
1387 
1388 /*
1389  * Now umount can handle mount points as well as block devices.
1390  * This is important for filesystems which use unnamed block devices.
1391  *
1392  * We now support a flag for forced unmount like the other 'big iron'
1393  * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1394  */
1395 
1396 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1397 {
1398 	struct path path;
1399 	struct mount *mnt;
1400 	int retval;
1401 	int lookup_flags = 0;
1402 
1403 	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1404 		return -EINVAL;
1405 
1406 	if (!may_mount())
1407 		return -EPERM;
1408 
1409 	if (!(flags & UMOUNT_NOFOLLOW))
1410 		lookup_flags |= LOOKUP_FOLLOW;
1411 
1412 	retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1413 	if (retval)
1414 		goto out;
1415 	mnt = real_mount(path.mnt);
1416 	retval = -EINVAL;
1417 	if (path.dentry != path.mnt->mnt_root)
1418 		goto dput_and_out;
1419 	if (!check_mnt(mnt))
1420 		goto dput_and_out;
1421 	if (mnt->mnt.mnt_flags & MNT_LOCKED)
1422 		goto dput_and_out;
1423 
1424 	retval = do_umount(mnt, flags);
1425 dput_and_out:
1426 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
1427 	dput(path.dentry);
1428 	mntput_no_expire(mnt);
1429 out:
1430 	return retval;
1431 }
1432 
1433 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1434 
1435 /*
1436  *	The 2.0 compatible umount. No flags.
1437  */
1438 SYSCALL_DEFINE1(oldumount, char __user *, name)
1439 {
1440 	return sys_umount(name, 0);
1441 }
1442 
1443 #endif
1444 
1445 static bool is_mnt_ns_file(struct dentry *dentry)
1446 {
1447 	/* Is this a proxy for a mount namespace? */
1448 	struct inode *inode = dentry->d_inode;
1449 	struct proc_ns *ei;
1450 
1451 	if (!proc_ns_inode(inode))
1452 		return false;
1453 
1454 	ei = get_proc_ns(inode);
1455 	if (ei->ns_ops != &mntns_operations)
1456 		return false;
1457 
1458 	return true;
1459 }
1460 
1461 static bool mnt_ns_loop(struct dentry *dentry)
1462 {
1463 	/* Could bind mounting the mount namespace inode cause a
1464 	 * mount namespace loop?
1465 	 */
1466 	struct mnt_namespace *mnt_ns;
1467 	if (!is_mnt_ns_file(dentry))
1468 		return false;
1469 
1470 	mnt_ns = get_proc_ns(dentry->d_inode)->ns;
1471 	return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1472 }
1473 
1474 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1475 					int flag)
1476 {
1477 	struct mount *res, *p, *q, *r, *parent;
1478 
1479 	if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1480 		return ERR_PTR(-EINVAL);
1481 
1482 	if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1483 		return ERR_PTR(-EINVAL);
1484 
1485 	res = q = clone_mnt(mnt, dentry, flag);
1486 	if (IS_ERR(q))
1487 		return q;
1488 
1489 	q->mnt.mnt_flags &= ~MNT_LOCKED;
1490 	q->mnt_mountpoint = mnt->mnt_mountpoint;
1491 
1492 	p = mnt;
1493 	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1494 		struct mount *s;
1495 		if (!is_subdir(r->mnt_mountpoint, dentry))
1496 			continue;
1497 
1498 		for (s = r; s; s = next_mnt(s, r)) {
1499 			struct mount *t = NULL;
1500 			if (!(flag & CL_COPY_UNBINDABLE) &&
1501 			    IS_MNT_UNBINDABLE(s)) {
1502 				s = skip_mnt_tree(s);
1503 				continue;
1504 			}
1505 			if (!(flag & CL_COPY_MNT_NS_FILE) &&
1506 			    is_mnt_ns_file(s->mnt.mnt_root)) {
1507 				s = skip_mnt_tree(s);
1508 				continue;
1509 			}
1510 			while (p != s->mnt_parent) {
1511 				p = p->mnt_parent;
1512 				q = q->mnt_parent;
1513 			}
1514 			p = s;
1515 			parent = q;
1516 			q = clone_mnt(p, p->mnt.mnt_root, flag);
1517 			if (IS_ERR(q))
1518 				goto out;
1519 			lock_mount_hash();
1520 			list_add_tail(&q->mnt_list, &res->mnt_list);
1521 			mnt_set_mountpoint(parent, p->mnt_mp, q);
1522 			if (!list_empty(&parent->mnt_mounts)) {
1523 				t = list_last_entry(&parent->mnt_mounts,
1524 					struct mount, mnt_child);
1525 				if (t->mnt_mp != p->mnt_mp)
1526 					t = NULL;
1527 			}
1528 			attach_shadowed(q, parent, t);
1529 			unlock_mount_hash();
1530 		}
1531 	}
1532 	return res;
1533 out:
1534 	if (res) {
1535 		lock_mount_hash();
1536 		umount_tree(res, 0);
1537 		unlock_mount_hash();
1538 	}
1539 	return q;
1540 }
1541 
1542 /* Caller should check returned pointer for errors */
1543 
1544 struct vfsmount *collect_mounts(struct path *path)
1545 {
1546 	struct mount *tree;
1547 	namespace_lock();
1548 	tree = copy_tree(real_mount(path->mnt), path->dentry,
1549 			 CL_COPY_ALL | CL_PRIVATE);
1550 	namespace_unlock();
1551 	if (IS_ERR(tree))
1552 		return ERR_CAST(tree);
1553 	return &tree->mnt;
1554 }
1555 
1556 void drop_collected_mounts(struct vfsmount *mnt)
1557 {
1558 	namespace_lock();
1559 	lock_mount_hash();
1560 	umount_tree(real_mount(mnt), 0);
1561 	unlock_mount_hash();
1562 	namespace_unlock();
1563 }
1564 
1565 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1566 		   struct vfsmount *root)
1567 {
1568 	struct mount *mnt;
1569 	int res = f(root, arg);
1570 	if (res)
1571 		return res;
1572 	list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1573 		res = f(&mnt->mnt, arg);
1574 		if (res)
1575 			return res;
1576 	}
1577 	return 0;
1578 }
1579 
1580 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1581 {
1582 	struct mount *p;
1583 
1584 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1585 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
1586 			mnt_release_group_id(p);
1587 	}
1588 }
1589 
1590 static int invent_group_ids(struct mount *mnt, bool recurse)
1591 {
1592 	struct mount *p;
1593 
1594 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1595 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1596 			int err = mnt_alloc_group_id(p);
1597 			if (err) {
1598 				cleanup_group_ids(mnt, p);
1599 				return err;
1600 			}
1601 		}
1602 	}
1603 
1604 	return 0;
1605 }
1606 
1607 /*
1608  *  @source_mnt : mount tree to be attached
1609  *  @nd         : place the mount tree @source_mnt is attached
1610  *  @parent_nd  : if non-null, detach the source_mnt from its parent and
1611  *  		   store the parent mount and mountpoint dentry.
1612  *  		   (done when source_mnt is moved)
1613  *
1614  *  NOTE: in the table below explains the semantics when a source mount
1615  *  of a given type is attached to a destination mount of a given type.
1616  * ---------------------------------------------------------------------------
1617  * |         BIND MOUNT OPERATION                                            |
1618  * |**************************************************************************
1619  * | source-->| shared        |       private  |       slave    | unbindable |
1620  * | dest     |               |                |                |            |
1621  * |   |      |               |                |                |            |
1622  * |   v      |               |                |                |            |
1623  * |**************************************************************************
1624  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
1625  * |          |               |                |                |            |
1626  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
1627  * ***************************************************************************
1628  * A bind operation clones the source mount and mounts the clone on the
1629  * destination mount.
1630  *
1631  * (++)  the cloned mount is propagated to all the mounts in the propagation
1632  * 	 tree of the destination mount and the cloned mount is added to
1633  * 	 the peer group of the source mount.
1634  * (+)   the cloned mount is created under the destination mount and is marked
1635  *       as shared. The cloned mount is added to the peer group of the source
1636  *       mount.
1637  * (+++) the mount is propagated to all the mounts in the propagation tree
1638  *       of the destination mount and the cloned mount is made slave
1639  *       of the same master as that of the source mount. The cloned mount
1640  *       is marked as 'shared and slave'.
1641  * (*)   the cloned mount is made a slave of the same master as that of the
1642  * 	 source mount.
1643  *
1644  * ---------------------------------------------------------------------------
1645  * |         		MOVE MOUNT OPERATION                                 |
1646  * |**************************************************************************
1647  * | source-->| shared        |       private  |       slave    | unbindable |
1648  * | dest     |               |                |                |            |
1649  * |   |      |               |                |                |            |
1650  * |   v      |               |                |                |            |
1651  * |**************************************************************************
1652  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
1653  * |          |               |                |                |            |
1654  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
1655  * ***************************************************************************
1656  *
1657  * (+)  the mount is moved to the destination. And is then propagated to
1658  * 	all the mounts in the propagation tree of the destination mount.
1659  * (+*)  the mount is moved to the destination.
1660  * (+++)  the mount is moved to the destination and is then propagated to
1661  * 	all the mounts belonging to the destination mount's propagation tree.
1662  * 	the mount is marked as 'shared and slave'.
1663  * (*)	the mount continues to be a slave at the new location.
1664  *
1665  * if the source mount is a tree, the operations explained above is
1666  * applied to each mount in the tree.
1667  * Must be called without spinlocks held, since this function can sleep
1668  * in allocations.
1669  */
1670 static int attach_recursive_mnt(struct mount *source_mnt,
1671 			struct mount *dest_mnt,
1672 			struct mountpoint *dest_mp,
1673 			struct path *parent_path)
1674 {
1675 	HLIST_HEAD(tree_list);
1676 	struct mount *child, *p;
1677 	struct hlist_node *n;
1678 	int err;
1679 
1680 	if (IS_MNT_SHARED(dest_mnt)) {
1681 		err = invent_group_ids(source_mnt, true);
1682 		if (err)
1683 			goto out;
1684 		err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
1685 		lock_mount_hash();
1686 		if (err)
1687 			goto out_cleanup_ids;
1688 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1689 			set_mnt_shared(p);
1690 	} else {
1691 		lock_mount_hash();
1692 	}
1693 	if (parent_path) {
1694 		detach_mnt(source_mnt, parent_path);
1695 		attach_mnt(source_mnt, dest_mnt, dest_mp);
1696 		touch_mnt_namespace(source_mnt->mnt_ns);
1697 	} else {
1698 		mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1699 		commit_tree(source_mnt, NULL);
1700 	}
1701 
1702 	hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1703 		struct mount *q;
1704 		hlist_del_init(&child->mnt_hash);
1705 		q = __lookup_mnt_last(&child->mnt_parent->mnt,
1706 				      child->mnt_mountpoint);
1707 		commit_tree(child, q);
1708 	}
1709 	unlock_mount_hash();
1710 
1711 	return 0;
1712 
1713  out_cleanup_ids:
1714 	while (!hlist_empty(&tree_list)) {
1715 		child = hlist_entry(tree_list.first, struct mount, mnt_hash);
1716 		umount_tree(child, 0);
1717 	}
1718 	unlock_mount_hash();
1719 	cleanup_group_ids(source_mnt, NULL);
1720  out:
1721 	return err;
1722 }
1723 
1724 static struct mountpoint *lock_mount(struct path *path)
1725 {
1726 	struct vfsmount *mnt;
1727 	struct dentry *dentry = path->dentry;
1728 retry:
1729 	mutex_lock(&dentry->d_inode->i_mutex);
1730 	if (unlikely(cant_mount(dentry))) {
1731 		mutex_unlock(&dentry->d_inode->i_mutex);
1732 		return ERR_PTR(-ENOENT);
1733 	}
1734 	namespace_lock();
1735 	mnt = lookup_mnt(path);
1736 	if (likely(!mnt)) {
1737 		struct mountpoint *mp = new_mountpoint(dentry);
1738 		if (IS_ERR(mp)) {
1739 			namespace_unlock();
1740 			mutex_unlock(&dentry->d_inode->i_mutex);
1741 			return mp;
1742 		}
1743 		return mp;
1744 	}
1745 	namespace_unlock();
1746 	mutex_unlock(&path->dentry->d_inode->i_mutex);
1747 	path_put(path);
1748 	path->mnt = mnt;
1749 	dentry = path->dentry = dget(mnt->mnt_root);
1750 	goto retry;
1751 }
1752 
1753 static void unlock_mount(struct mountpoint *where)
1754 {
1755 	struct dentry *dentry = where->m_dentry;
1756 	put_mountpoint(where);
1757 	namespace_unlock();
1758 	mutex_unlock(&dentry->d_inode->i_mutex);
1759 }
1760 
1761 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1762 {
1763 	if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1764 		return -EINVAL;
1765 
1766 	if (S_ISDIR(mp->m_dentry->d_inode->i_mode) !=
1767 	      S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1768 		return -ENOTDIR;
1769 
1770 	return attach_recursive_mnt(mnt, p, mp, NULL);
1771 }
1772 
1773 /*
1774  * Sanity check the flags to change_mnt_propagation.
1775  */
1776 
1777 static int flags_to_propagation_type(int flags)
1778 {
1779 	int type = flags & ~(MS_REC | MS_SILENT);
1780 
1781 	/* Fail if any non-propagation flags are set */
1782 	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1783 		return 0;
1784 	/* Only one propagation flag should be set */
1785 	if (!is_power_of_2(type))
1786 		return 0;
1787 	return type;
1788 }
1789 
1790 /*
1791  * recursively change the type of the mountpoint.
1792  */
1793 static int do_change_type(struct path *path, int flag)
1794 {
1795 	struct mount *m;
1796 	struct mount *mnt = real_mount(path->mnt);
1797 	int recurse = flag & MS_REC;
1798 	int type;
1799 	int err = 0;
1800 
1801 	if (path->dentry != path->mnt->mnt_root)
1802 		return -EINVAL;
1803 
1804 	type = flags_to_propagation_type(flag);
1805 	if (!type)
1806 		return -EINVAL;
1807 
1808 	namespace_lock();
1809 	if (type == MS_SHARED) {
1810 		err = invent_group_ids(mnt, recurse);
1811 		if (err)
1812 			goto out_unlock;
1813 	}
1814 
1815 	lock_mount_hash();
1816 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1817 		change_mnt_propagation(m, type);
1818 	unlock_mount_hash();
1819 
1820  out_unlock:
1821 	namespace_unlock();
1822 	return err;
1823 }
1824 
1825 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
1826 {
1827 	struct mount *child;
1828 	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
1829 		if (!is_subdir(child->mnt_mountpoint, dentry))
1830 			continue;
1831 
1832 		if (child->mnt.mnt_flags & MNT_LOCKED)
1833 			return true;
1834 	}
1835 	return false;
1836 }
1837 
1838 /*
1839  * do loopback mount.
1840  */
1841 static int do_loopback(struct path *path, const char *old_name,
1842 				int recurse)
1843 {
1844 	struct path old_path;
1845 	struct mount *mnt = NULL, *old, *parent;
1846 	struct mountpoint *mp;
1847 	int err;
1848 	if (!old_name || !*old_name)
1849 		return -EINVAL;
1850 	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1851 	if (err)
1852 		return err;
1853 
1854 	err = -EINVAL;
1855 	if (mnt_ns_loop(old_path.dentry))
1856 		goto out;
1857 
1858 	mp = lock_mount(path);
1859 	err = PTR_ERR(mp);
1860 	if (IS_ERR(mp))
1861 		goto out;
1862 
1863 	old = real_mount(old_path.mnt);
1864 	parent = real_mount(path->mnt);
1865 
1866 	err = -EINVAL;
1867 	if (IS_MNT_UNBINDABLE(old))
1868 		goto out2;
1869 
1870 	if (!check_mnt(parent) || !check_mnt(old))
1871 		goto out2;
1872 
1873 	if (!recurse && has_locked_children(old, old_path.dentry))
1874 		goto out2;
1875 
1876 	if (recurse)
1877 		mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
1878 	else
1879 		mnt = clone_mnt(old, old_path.dentry, 0);
1880 
1881 	if (IS_ERR(mnt)) {
1882 		err = PTR_ERR(mnt);
1883 		goto out2;
1884 	}
1885 
1886 	mnt->mnt.mnt_flags &= ~MNT_LOCKED;
1887 
1888 	err = graft_tree(mnt, parent, mp);
1889 	if (err) {
1890 		lock_mount_hash();
1891 		umount_tree(mnt, 0);
1892 		unlock_mount_hash();
1893 	}
1894 out2:
1895 	unlock_mount(mp);
1896 out:
1897 	path_put(&old_path);
1898 	return err;
1899 }
1900 
1901 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1902 {
1903 	int error = 0;
1904 	int readonly_request = 0;
1905 
1906 	if (ms_flags & MS_RDONLY)
1907 		readonly_request = 1;
1908 	if (readonly_request == __mnt_is_readonly(mnt))
1909 		return 0;
1910 
1911 	if (readonly_request)
1912 		error = mnt_make_readonly(real_mount(mnt));
1913 	else
1914 		__mnt_unmake_readonly(real_mount(mnt));
1915 	return error;
1916 }
1917 
1918 /*
1919  * change filesystem flags. dir should be a physical root of filesystem.
1920  * If you've mounted a non-root directory somewhere and want to do remount
1921  * on it - tough luck.
1922  */
1923 static int do_remount(struct path *path, int flags, int mnt_flags,
1924 		      void *data)
1925 {
1926 	int err;
1927 	struct super_block *sb = path->mnt->mnt_sb;
1928 	struct mount *mnt = real_mount(path->mnt);
1929 
1930 	if (!check_mnt(mnt))
1931 		return -EINVAL;
1932 
1933 	if (path->dentry != path->mnt->mnt_root)
1934 		return -EINVAL;
1935 
1936 	/* Don't allow changing of locked mnt flags.
1937 	 *
1938 	 * No locks need to be held here while testing the various
1939 	 * MNT_LOCK flags because those flags can never be cleared
1940 	 * once they are set.
1941 	 */
1942 	if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
1943 	    !(mnt_flags & MNT_READONLY)) {
1944 		return -EPERM;
1945 	}
1946 	if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
1947 	    !(mnt_flags & MNT_NODEV)) {
1948 		return -EPERM;
1949 	}
1950 	if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
1951 	    !(mnt_flags & MNT_NOSUID)) {
1952 		return -EPERM;
1953 	}
1954 	if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
1955 	    !(mnt_flags & MNT_NOEXEC)) {
1956 		return -EPERM;
1957 	}
1958 	if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
1959 	    ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
1960 		return -EPERM;
1961 	}
1962 
1963 	err = security_sb_remount(sb, data);
1964 	if (err)
1965 		return err;
1966 
1967 	down_write(&sb->s_umount);
1968 	if (flags & MS_BIND)
1969 		err = change_mount_flags(path->mnt, flags);
1970 	else if (!capable(CAP_SYS_ADMIN))
1971 		err = -EPERM;
1972 	else
1973 		err = do_remount_sb(sb, flags, data, 0);
1974 	if (!err) {
1975 		lock_mount_hash();
1976 		mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
1977 		mnt->mnt.mnt_flags = mnt_flags;
1978 		touch_mnt_namespace(mnt->mnt_ns);
1979 		unlock_mount_hash();
1980 	}
1981 	up_write(&sb->s_umount);
1982 	return err;
1983 }
1984 
1985 static inline int tree_contains_unbindable(struct mount *mnt)
1986 {
1987 	struct mount *p;
1988 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1989 		if (IS_MNT_UNBINDABLE(p))
1990 			return 1;
1991 	}
1992 	return 0;
1993 }
1994 
1995 static int do_move_mount(struct path *path, const char *old_name)
1996 {
1997 	struct path old_path, parent_path;
1998 	struct mount *p;
1999 	struct mount *old;
2000 	struct mountpoint *mp;
2001 	int err;
2002 	if (!old_name || !*old_name)
2003 		return -EINVAL;
2004 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2005 	if (err)
2006 		return err;
2007 
2008 	mp = lock_mount(path);
2009 	err = PTR_ERR(mp);
2010 	if (IS_ERR(mp))
2011 		goto out;
2012 
2013 	old = real_mount(old_path.mnt);
2014 	p = real_mount(path->mnt);
2015 
2016 	err = -EINVAL;
2017 	if (!check_mnt(p) || !check_mnt(old))
2018 		goto out1;
2019 
2020 	if (old->mnt.mnt_flags & MNT_LOCKED)
2021 		goto out1;
2022 
2023 	err = -EINVAL;
2024 	if (old_path.dentry != old_path.mnt->mnt_root)
2025 		goto out1;
2026 
2027 	if (!mnt_has_parent(old))
2028 		goto out1;
2029 
2030 	if (S_ISDIR(path->dentry->d_inode->i_mode) !=
2031 	      S_ISDIR(old_path.dentry->d_inode->i_mode))
2032 		goto out1;
2033 	/*
2034 	 * Don't move a mount residing in a shared parent.
2035 	 */
2036 	if (IS_MNT_SHARED(old->mnt_parent))
2037 		goto out1;
2038 	/*
2039 	 * Don't move a mount tree containing unbindable mounts to a destination
2040 	 * mount which is shared.
2041 	 */
2042 	if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2043 		goto out1;
2044 	err = -ELOOP;
2045 	for (; mnt_has_parent(p); p = p->mnt_parent)
2046 		if (p == old)
2047 			goto out1;
2048 
2049 	err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2050 	if (err)
2051 		goto out1;
2052 
2053 	/* if the mount is moved, it should no longer be expire
2054 	 * automatically */
2055 	list_del_init(&old->mnt_expire);
2056 out1:
2057 	unlock_mount(mp);
2058 out:
2059 	if (!err)
2060 		path_put(&parent_path);
2061 	path_put(&old_path);
2062 	return err;
2063 }
2064 
2065 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2066 {
2067 	int err;
2068 	const char *subtype = strchr(fstype, '.');
2069 	if (subtype) {
2070 		subtype++;
2071 		err = -EINVAL;
2072 		if (!subtype[0])
2073 			goto err;
2074 	} else
2075 		subtype = "";
2076 
2077 	mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2078 	err = -ENOMEM;
2079 	if (!mnt->mnt_sb->s_subtype)
2080 		goto err;
2081 	return mnt;
2082 
2083  err:
2084 	mntput(mnt);
2085 	return ERR_PTR(err);
2086 }
2087 
2088 /*
2089  * add a mount into a namespace's mount tree
2090  */
2091 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2092 {
2093 	struct mountpoint *mp;
2094 	struct mount *parent;
2095 	int err;
2096 
2097 	mnt_flags &= ~MNT_INTERNAL_FLAGS;
2098 
2099 	mp = lock_mount(path);
2100 	if (IS_ERR(mp))
2101 		return PTR_ERR(mp);
2102 
2103 	parent = real_mount(path->mnt);
2104 	err = -EINVAL;
2105 	if (unlikely(!check_mnt(parent))) {
2106 		/* that's acceptable only for automounts done in private ns */
2107 		if (!(mnt_flags & MNT_SHRINKABLE))
2108 			goto unlock;
2109 		/* ... and for those we'd better have mountpoint still alive */
2110 		if (!parent->mnt_ns)
2111 			goto unlock;
2112 	}
2113 
2114 	/* Refuse the same filesystem on the same mount point */
2115 	err = -EBUSY;
2116 	if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2117 	    path->mnt->mnt_root == path->dentry)
2118 		goto unlock;
2119 
2120 	err = -EINVAL;
2121 	if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
2122 		goto unlock;
2123 
2124 	newmnt->mnt.mnt_flags = mnt_flags;
2125 	err = graft_tree(newmnt, parent, mp);
2126 
2127 unlock:
2128 	unlock_mount(mp);
2129 	return err;
2130 }
2131 
2132 /*
2133  * create a new mount for userspace and request it to be added into the
2134  * namespace's tree
2135  */
2136 static int do_new_mount(struct path *path, const char *fstype, int flags,
2137 			int mnt_flags, const char *name, void *data)
2138 {
2139 	struct file_system_type *type;
2140 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2141 	struct vfsmount *mnt;
2142 	int err;
2143 
2144 	if (!fstype)
2145 		return -EINVAL;
2146 
2147 	type = get_fs_type(fstype);
2148 	if (!type)
2149 		return -ENODEV;
2150 
2151 	if (user_ns != &init_user_ns) {
2152 		if (!(type->fs_flags & FS_USERNS_MOUNT)) {
2153 			put_filesystem(type);
2154 			return -EPERM;
2155 		}
2156 		/* Only in special cases allow devices from mounts
2157 		 * created outside the initial user namespace.
2158 		 */
2159 		if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2160 			flags |= MS_NODEV;
2161 			mnt_flags |= MNT_NODEV | MNT_LOCK_NODEV;
2162 		}
2163 	}
2164 
2165 	mnt = vfs_kern_mount(type, flags, name, data);
2166 	if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2167 	    !mnt->mnt_sb->s_subtype)
2168 		mnt = fs_set_subtype(mnt, fstype);
2169 
2170 	put_filesystem(type);
2171 	if (IS_ERR(mnt))
2172 		return PTR_ERR(mnt);
2173 
2174 	err = do_add_mount(real_mount(mnt), path, mnt_flags);
2175 	if (err)
2176 		mntput(mnt);
2177 	return err;
2178 }
2179 
2180 int finish_automount(struct vfsmount *m, struct path *path)
2181 {
2182 	struct mount *mnt = real_mount(m);
2183 	int err;
2184 	/* The new mount record should have at least 2 refs to prevent it being
2185 	 * expired before we get a chance to add it
2186 	 */
2187 	BUG_ON(mnt_get_count(mnt) < 2);
2188 
2189 	if (m->mnt_sb == path->mnt->mnt_sb &&
2190 	    m->mnt_root == path->dentry) {
2191 		err = -ELOOP;
2192 		goto fail;
2193 	}
2194 
2195 	err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2196 	if (!err)
2197 		return 0;
2198 fail:
2199 	/* remove m from any expiration list it may be on */
2200 	if (!list_empty(&mnt->mnt_expire)) {
2201 		namespace_lock();
2202 		list_del_init(&mnt->mnt_expire);
2203 		namespace_unlock();
2204 	}
2205 	mntput(m);
2206 	mntput(m);
2207 	return err;
2208 }
2209 
2210 /**
2211  * mnt_set_expiry - Put a mount on an expiration list
2212  * @mnt: The mount to list.
2213  * @expiry_list: The list to add the mount to.
2214  */
2215 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2216 {
2217 	namespace_lock();
2218 
2219 	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2220 
2221 	namespace_unlock();
2222 }
2223 EXPORT_SYMBOL(mnt_set_expiry);
2224 
2225 /*
2226  * process a list of expirable mountpoints with the intent of discarding any
2227  * mountpoints that aren't in use and haven't been touched since last we came
2228  * here
2229  */
2230 void mark_mounts_for_expiry(struct list_head *mounts)
2231 {
2232 	struct mount *mnt, *next;
2233 	LIST_HEAD(graveyard);
2234 
2235 	if (list_empty(mounts))
2236 		return;
2237 
2238 	namespace_lock();
2239 	lock_mount_hash();
2240 
2241 	/* extract from the expiration list every vfsmount that matches the
2242 	 * following criteria:
2243 	 * - only referenced by its parent vfsmount
2244 	 * - still marked for expiry (marked on the last call here; marks are
2245 	 *   cleared by mntput())
2246 	 */
2247 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2248 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2249 			propagate_mount_busy(mnt, 1))
2250 			continue;
2251 		list_move(&mnt->mnt_expire, &graveyard);
2252 	}
2253 	while (!list_empty(&graveyard)) {
2254 		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2255 		touch_mnt_namespace(mnt->mnt_ns);
2256 		umount_tree(mnt, 1);
2257 	}
2258 	unlock_mount_hash();
2259 	namespace_unlock();
2260 }
2261 
2262 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2263 
2264 /*
2265  * Ripoff of 'select_parent()'
2266  *
2267  * search the list of submounts for a given mountpoint, and move any
2268  * shrinkable submounts to the 'graveyard' list.
2269  */
2270 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2271 {
2272 	struct mount *this_parent = parent;
2273 	struct list_head *next;
2274 	int found = 0;
2275 
2276 repeat:
2277 	next = this_parent->mnt_mounts.next;
2278 resume:
2279 	while (next != &this_parent->mnt_mounts) {
2280 		struct list_head *tmp = next;
2281 		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2282 
2283 		next = tmp->next;
2284 		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2285 			continue;
2286 		/*
2287 		 * Descend a level if the d_mounts list is non-empty.
2288 		 */
2289 		if (!list_empty(&mnt->mnt_mounts)) {
2290 			this_parent = mnt;
2291 			goto repeat;
2292 		}
2293 
2294 		if (!propagate_mount_busy(mnt, 1)) {
2295 			list_move_tail(&mnt->mnt_expire, graveyard);
2296 			found++;
2297 		}
2298 	}
2299 	/*
2300 	 * All done at this level ... ascend and resume the search
2301 	 */
2302 	if (this_parent != parent) {
2303 		next = this_parent->mnt_child.next;
2304 		this_parent = this_parent->mnt_parent;
2305 		goto resume;
2306 	}
2307 	return found;
2308 }
2309 
2310 /*
2311  * process a list of expirable mountpoints with the intent of discarding any
2312  * submounts of a specific parent mountpoint
2313  *
2314  * mount_lock must be held for write
2315  */
2316 static void shrink_submounts(struct mount *mnt)
2317 {
2318 	LIST_HEAD(graveyard);
2319 	struct mount *m;
2320 
2321 	/* extract submounts of 'mountpoint' from the expiration list */
2322 	while (select_submounts(mnt, &graveyard)) {
2323 		while (!list_empty(&graveyard)) {
2324 			m = list_first_entry(&graveyard, struct mount,
2325 						mnt_expire);
2326 			touch_mnt_namespace(m->mnt_ns);
2327 			umount_tree(m, 1);
2328 		}
2329 	}
2330 }
2331 
2332 /*
2333  * Some copy_from_user() implementations do not return the exact number of
2334  * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
2335  * Note that this function differs from copy_from_user() in that it will oops
2336  * on bad values of `to', rather than returning a short copy.
2337  */
2338 static long exact_copy_from_user(void *to, const void __user * from,
2339 				 unsigned long n)
2340 {
2341 	char *t = to;
2342 	const char __user *f = from;
2343 	char c;
2344 
2345 	if (!access_ok(VERIFY_READ, from, n))
2346 		return n;
2347 
2348 	while (n) {
2349 		if (__get_user(c, f)) {
2350 			memset(t, 0, n);
2351 			break;
2352 		}
2353 		*t++ = c;
2354 		f++;
2355 		n--;
2356 	}
2357 	return n;
2358 }
2359 
2360 int copy_mount_options(const void __user * data, unsigned long *where)
2361 {
2362 	int i;
2363 	unsigned long page;
2364 	unsigned long size;
2365 
2366 	*where = 0;
2367 	if (!data)
2368 		return 0;
2369 
2370 	if (!(page = __get_free_page(GFP_KERNEL)))
2371 		return -ENOMEM;
2372 
2373 	/* We only care that *some* data at the address the user
2374 	 * gave us is valid.  Just in case, we'll zero
2375 	 * the remainder of the page.
2376 	 */
2377 	/* copy_from_user cannot cross TASK_SIZE ! */
2378 	size = TASK_SIZE - (unsigned long)data;
2379 	if (size > PAGE_SIZE)
2380 		size = PAGE_SIZE;
2381 
2382 	i = size - exact_copy_from_user((void *)page, data, size);
2383 	if (!i) {
2384 		free_page(page);
2385 		return -EFAULT;
2386 	}
2387 	if (i != PAGE_SIZE)
2388 		memset((char *)page + i, 0, PAGE_SIZE - i);
2389 	*where = page;
2390 	return 0;
2391 }
2392 
2393 int copy_mount_string(const void __user *data, char **where)
2394 {
2395 	char *tmp;
2396 
2397 	if (!data) {
2398 		*where = NULL;
2399 		return 0;
2400 	}
2401 
2402 	tmp = strndup_user(data, PAGE_SIZE);
2403 	if (IS_ERR(tmp))
2404 		return PTR_ERR(tmp);
2405 
2406 	*where = tmp;
2407 	return 0;
2408 }
2409 
2410 /*
2411  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2412  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2413  *
2414  * data is a (void *) that can point to any structure up to
2415  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2416  * information (or be NULL).
2417  *
2418  * Pre-0.97 versions of mount() didn't have a flags word.
2419  * When the flags word was introduced its top half was required
2420  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2421  * Therefore, if this magic number is present, it carries no information
2422  * and must be discarded.
2423  */
2424 long do_mount(const char *dev_name, const char *dir_name,
2425 		const char *type_page, unsigned long flags, void *data_page)
2426 {
2427 	struct path path;
2428 	int retval = 0;
2429 	int mnt_flags = 0;
2430 
2431 	/* Discard magic */
2432 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2433 		flags &= ~MS_MGC_MSK;
2434 
2435 	/* Basic sanity checks */
2436 
2437 	if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2438 		return -EINVAL;
2439 
2440 	if (data_page)
2441 		((char *)data_page)[PAGE_SIZE - 1] = 0;
2442 
2443 	/* ... and get the mountpoint */
2444 	retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2445 	if (retval)
2446 		return retval;
2447 
2448 	retval = security_sb_mount(dev_name, &path,
2449 				   type_page, flags, data_page);
2450 	if (!retval && !may_mount())
2451 		retval = -EPERM;
2452 	if (retval)
2453 		goto dput_out;
2454 
2455 	/* Default to relatime unless overriden */
2456 	if (!(flags & MS_NOATIME))
2457 		mnt_flags |= MNT_RELATIME;
2458 
2459 	/* Separate the per-mountpoint flags */
2460 	if (flags & MS_NOSUID)
2461 		mnt_flags |= MNT_NOSUID;
2462 	if (flags & MS_NODEV)
2463 		mnt_flags |= MNT_NODEV;
2464 	if (flags & MS_NOEXEC)
2465 		mnt_flags |= MNT_NOEXEC;
2466 	if (flags & MS_NOATIME)
2467 		mnt_flags |= MNT_NOATIME;
2468 	if (flags & MS_NODIRATIME)
2469 		mnt_flags |= MNT_NODIRATIME;
2470 	if (flags & MS_STRICTATIME)
2471 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2472 	if (flags & MS_RDONLY)
2473 		mnt_flags |= MNT_READONLY;
2474 
2475 	/* The default atime for remount is preservation */
2476 	if ((flags & MS_REMOUNT) &&
2477 	    ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2478 		       MS_STRICTATIME)) == 0)) {
2479 		mnt_flags &= ~MNT_ATIME_MASK;
2480 		mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2481 	}
2482 
2483 	flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2484 		   MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2485 		   MS_STRICTATIME);
2486 
2487 	if (flags & MS_REMOUNT)
2488 		retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2489 				    data_page);
2490 	else if (flags & MS_BIND)
2491 		retval = do_loopback(&path, dev_name, flags & MS_REC);
2492 	else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2493 		retval = do_change_type(&path, flags);
2494 	else if (flags & MS_MOVE)
2495 		retval = do_move_mount(&path, dev_name);
2496 	else
2497 		retval = do_new_mount(&path, type_page, flags, mnt_flags,
2498 				      dev_name, data_page);
2499 dput_out:
2500 	path_put(&path);
2501 	return retval;
2502 }
2503 
2504 static void free_mnt_ns(struct mnt_namespace *ns)
2505 {
2506 	proc_free_inum(ns->proc_inum);
2507 	put_user_ns(ns->user_ns);
2508 	kfree(ns);
2509 }
2510 
2511 /*
2512  * Assign a sequence number so we can detect when we attempt to bind
2513  * mount a reference to an older mount namespace into the current
2514  * mount namespace, preventing reference counting loops.  A 64bit
2515  * number incrementing at 10Ghz will take 12,427 years to wrap which
2516  * is effectively never, so we can ignore the possibility.
2517  */
2518 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2519 
2520 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2521 {
2522 	struct mnt_namespace *new_ns;
2523 	int ret;
2524 
2525 	new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2526 	if (!new_ns)
2527 		return ERR_PTR(-ENOMEM);
2528 	ret = proc_alloc_inum(&new_ns->proc_inum);
2529 	if (ret) {
2530 		kfree(new_ns);
2531 		return ERR_PTR(ret);
2532 	}
2533 	new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2534 	atomic_set(&new_ns->count, 1);
2535 	new_ns->root = NULL;
2536 	INIT_LIST_HEAD(&new_ns->list);
2537 	init_waitqueue_head(&new_ns->poll);
2538 	new_ns->event = 0;
2539 	new_ns->user_ns = get_user_ns(user_ns);
2540 	return new_ns;
2541 }
2542 
2543 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2544 		struct user_namespace *user_ns, struct fs_struct *new_fs)
2545 {
2546 	struct mnt_namespace *new_ns;
2547 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2548 	struct mount *p, *q;
2549 	struct mount *old;
2550 	struct mount *new;
2551 	int copy_flags;
2552 
2553 	BUG_ON(!ns);
2554 
2555 	if (likely(!(flags & CLONE_NEWNS))) {
2556 		get_mnt_ns(ns);
2557 		return ns;
2558 	}
2559 
2560 	old = ns->root;
2561 
2562 	new_ns = alloc_mnt_ns(user_ns);
2563 	if (IS_ERR(new_ns))
2564 		return new_ns;
2565 
2566 	namespace_lock();
2567 	/* First pass: copy the tree topology */
2568 	copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2569 	if (user_ns != ns->user_ns)
2570 		copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2571 	new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2572 	if (IS_ERR(new)) {
2573 		namespace_unlock();
2574 		free_mnt_ns(new_ns);
2575 		return ERR_CAST(new);
2576 	}
2577 	new_ns->root = new;
2578 	list_add_tail(&new_ns->list, &new->mnt_list);
2579 
2580 	/*
2581 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2582 	 * as belonging to new namespace.  We have already acquired a private
2583 	 * fs_struct, so tsk->fs->lock is not needed.
2584 	 */
2585 	p = old;
2586 	q = new;
2587 	while (p) {
2588 		q->mnt_ns = new_ns;
2589 		if (new_fs) {
2590 			if (&p->mnt == new_fs->root.mnt) {
2591 				new_fs->root.mnt = mntget(&q->mnt);
2592 				rootmnt = &p->mnt;
2593 			}
2594 			if (&p->mnt == new_fs->pwd.mnt) {
2595 				new_fs->pwd.mnt = mntget(&q->mnt);
2596 				pwdmnt = &p->mnt;
2597 			}
2598 		}
2599 		p = next_mnt(p, old);
2600 		q = next_mnt(q, new);
2601 		if (!q)
2602 			break;
2603 		while (p->mnt.mnt_root != q->mnt.mnt_root)
2604 			p = next_mnt(p, old);
2605 	}
2606 	namespace_unlock();
2607 
2608 	if (rootmnt)
2609 		mntput(rootmnt);
2610 	if (pwdmnt)
2611 		mntput(pwdmnt);
2612 
2613 	return new_ns;
2614 }
2615 
2616 /**
2617  * create_mnt_ns - creates a private namespace and adds a root filesystem
2618  * @mnt: pointer to the new root filesystem mountpoint
2619  */
2620 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2621 {
2622 	struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2623 	if (!IS_ERR(new_ns)) {
2624 		struct mount *mnt = real_mount(m);
2625 		mnt->mnt_ns = new_ns;
2626 		new_ns->root = mnt;
2627 		list_add(&mnt->mnt_list, &new_ns->list);
2628 	} else {
2629 		mntput(m);
2630 	}
2631 	return new_ns;
2632 }
2633 
2634 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2635 {
2636 	struct mnt_namespace *ns;
2637 	struct super_block *s;
2638 	struct path path;
2639 	int err;
2640 
2641 	ns = create_mnt_ns(mnt);
2642 	if (IS_ERR(ns))
2643 		return ERR_CAST(ns);
2644 
2645 	err = vfs_path_lookup(mnt->mnt_root, mnt,
2646 			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2647 
2648 	put_mnt_ns(ns);
2649 
2650 	if (err)
2651 		return ERR_PTR(err);
2652 
2653 	/* trade a vfsmount reference for active sb one */
2654 	s = path.mnt->mnt_sb;
2655 	atomic_inc(&s->s_active);
2656 	mntput(path.mnt);
2657 	/* lock the sucker */
2658 	down_write(&s->s_umount);
2659 	/* ... and return the root of (sub)tree on it */
2660 	return path.dentry;
2661 }
2662 EXPORT_SYMBOL(mount_subtree);
2663 
2664 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2665 		char __user *, type, unsigned long, flags, void __user *, data)
2666 {
2667 	int ret;
2668 	char *kernel_type;
2669 	struct filename *kernel_dir;
2670 	char *kernel_dev;
2671 	unsigned long data_page;
2672 
2673 	ret = copy_mount_string(type, &kernel_type);
2674 	if (ret < 0)
2675 		goto out_type;
2676 
2677 	kernel_dir = getname(dir_name);
2678 	if (IS_ERR(kernel_dir)) {
2679 		ret = PTR_ERR(kernel_dir);
2680 		goto out_dir;
2681 	}
2682 
2683 	ret = copy_mount_string(dev_name, &kernel_dev);
2684 	if (ret < 0)
2685 		goto out_dev;
2686 
2687 	ret = copy_mount_options(data, &data_page);
2688 	if (ret < 0)
2689 		goto out_data;
2690 
2691 	ret = do_mount(kernel_dev, kernel_dir->name, kernel_type, flags,
2692 		(void *) data_page);
2693 
2694 	free_page(data_page);
2695 out_data:
2696 	kfree(kernel_dev);
2697 out_dev:
2698 	putname(kernel_dir);
2699 out_dir:
2700 	kfree(kernel_type);
2701 out_type:
2702 	return ret;
2703 }
2704 
2705 /*
2706  * Return true if path is reachable from root
2707  *
2708  * namespace_sem or mount_lock is held
2709  */
2710 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
2711 			 const struct path *root)
2712 {
2713 	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
2714 		dentry = mnt->mnt_mountpoint;
2715 		mnt = mnt->mnt_parent;
2716 	}
2717 	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
2718 }
2719 
2720 int path_is_under(struct path *path1, struct path *path2)
2721 {
2722 	int res;
2723 	read_seqlock_excl(&mount_lock);
2724 	res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
2725 	read_sequnlock_excl(&mount_lock);
2726 	return res;
2727 }
2728 EXPORT_SYMBOL(path_is_under);
2729 
2730 /*
2731  * pivot_root Semantics:
2732  * Moves the root file system of the current process to the directory put_old,
2733  * makes new_root as the new root file system of the current process, and sets
2734  * root/cwd of all processes which had them on the current root to new_root.
2735  *
2736  * Restrictions:
2737  * The new_root and put_old must be directories, and  must not be on the
2738  * same file  system as the current process root. The put_old  must  be
2739  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
2740  * pointed to by put_old must yield the same directory as new_root. No other
2741  * file system may be mounted on put_old. After all, new_root is a mountpoint.
2742  *
2743  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2744  * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2745  * in this situation.
2746  *
2747  * Notes:
2748  *  - we don't move root/cwd if they are not at the root (reason: if something
2749  *    cared enough to change them, it's probably wrong to force them elsewhere)
2750  *  - it's okay to pick a root that isn't the root of a file system, e.g.
2751  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2752  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2753  *    first.
2754  */
2755 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2756 		const char __user *, put_old)
2757 {
2758 	struct path new, old, parent_path, root_parent, root;
2759 	struct mount *new_mnt, *root_mnt, *old_mnt;
2760 	struct mountpoint *old_mp, *root_mp;
2761 	int error;
2762 
2763 	if (!may_mount())
2764 		return -EPERM;
2765 
2766 	error = user_path_dir(new_root, &new);
2767 	if (error)
2768 		goto out0;
2769 
2770 	error = user_path_dir(put_old, &old);
2771 	if (error)
2772 		goto out1;
2773 
2774 	error = security_sb_pivotroot(&old, &new);
2775 	if (error)
2776 		goto out2;
2777 
2778 	get_fs_root(current->fs, &root);
2779 	old_mp = lock_mount(&old);
2780 	error = PTR_ERR(old_mp);
2781 	if (IS_ERR(old_mp))
2782 		goto out3;
2783 
2784 	error = -EINVAL;
2785 	new_mnt = real_mount(new.mnt);
2786 	root_mnt = real_mount(root.mnt);
2787 	old_mnt = real_mount(old.mnt);
2788 	if (IS_MNT_SHARED(old_mnt) ||
2789 		IS_MNT_SHARED(new_mnt->mnt_parent) ||
2790 		IS_MNT_SHARED(root_mnt->mnt_parent))
2791 		goto out4;
2792 	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
2793 		goto out4;
2794 	if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
2795 		goto out4;
2796 	error = -ENOENT;
2797 	if (d_unlinked(new.dentry))
2798 		goto out4;
2799 	error = -EBUSY;
2800 	if (new_mnt == root_mnt || old_mnt == root_mnt)
2801 		goto out4; /* loop, on the same file system  */
2802 	error = -EINVAL;
2803 	if (root.mnt->mnt_root != root.dentry)
2804 		goto out4; /* not a mountpoint */
2805 	if (!mnt_has_parent(root_mnt))
2806 		goto out4; /* not attached */
2807 	root_mp = root_mnt->mnt_mp;
2808 	if (new.mnt->mnt_root != new.dentry)
2809 		goto out4; /* not a mountpoint */
2810 	if (!mnt_has_parent(new_mnt))
2811 		goto out4; /* not attached */
2812 	/* make sure we can reach put_old from new_root */
2813 	if (!is_path_reachable(old_mnt, old.dentry, &new))
2814 		goto out4;
2815 	root_mp->m_count++; /* pin it so it won't go away */
2816 	lock_mount_hash();
2817 	detach_mnt(new_mnt, &parent_path);
2818 	detach_mnt(root_mnt, &root_parent);
2819 	if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
2820 		new_mnt->mnt.mnt_flags |= MNT_LOCKED;
2821 		root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2822 	}
2823 	/* mount old root on put_old */
2824 	attach_mnt(root_mnt, old_mnt, old_mp);
2825 	/* mount new_root on / */
2826 	attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
2827 	touch_mnt_namespace(current->nsproxy->mnt_ns);
2828 	unlock_mount_hash();
2829 	chroot_fs_refs(&root, &new);
2830 	put_mountpoint(root_mp);
2831 	error = 0;
2832 out4:
2833 	unlock_mount(old_mp);
2834 	if (!error) {
2835 		path_put(&root_parent);
2836 		path_put(&parent_path);
2837 	}
2838 out3:
2839 	path_put(&root);
2840 out2:
2841 	path_put(&old);
2842 out1:
2843 	path_put(&new);
2844 out0:
2845 	return error;
2846 }
2847 
2848 static void __init init_mount_tree(void)
2849 {
2850 	struct vfsmount *mnt;
2851 	struct mnt_namespace *ns;
2852 	struct path root;
2853 	struct file_system_type *type;
2854 
2855 	type = get_fs_type("rootfs");
2856 	if (!type)
2857 		panic("Can't find rootfs type");
2858 	mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
2859 	put_filesystem(type);
2860 	if (IS_ERR(mnt))
2861 		panic("Can't create rootfs");
2862 
2863 	ns = create_mnt_ns(mnt);
2864 	if (IS_ERR(ns))
2865 		panic("Can't allocate initial namespace");
2866 
2867 	init_task.nsproxy->mnt_ns = ns;
2868 	get_mnt_ns(ns);
2869 
2870 	root.mnt = mnt;
2871 	root.dentry = mnt->mnt_root;
2872 
2873 	set_fs_pwd(current->fs, &root);
2874 	set_fs_root(current->fs, &root);
2875 }
2876 
2877 void __init mnt_init(void)
2878 {
2879 	unsigned u;
2880 	int err;
2881 
2882 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
2883 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2884 
2885 	mount_hashtable = alloc_large_system_hash("Mount-cache",
2886 				sizeof(struct hlist_head),
2887 				mhash_entries, 19,
2888 				0,
2889 				&m_hash_shift, &m_hash_mask, 0, 0);
2890 	mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
2891 				sizeof(struct hlist_head),
2892 				mphash_entries, 19,
2893 				0,
2894 				&mp_hash_shift, &mp_hash_mask, 0, 0);
2895 
2896 	if (!mount_hashtable || !mountpoint_hashtable)
2897 		panic("Failed to allocate mount hash table\n");
2898 
2899 	for (u = 0; u <= m_hash_mask; u++)
2900 		INIT_HLIST_HEAD(&mount_hashtable[u]);
2901 	for (u = 0; u <= mp_hash_mask; u++)
2902 		INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
2903 
2904 	kernfs_init();
2905 
2906 	err = sysfs_init();
2907 	if (err)
2908 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2909 			__func__, err);
2910 	fs_kobj = kobject_create_and_add("fs", NULL);
2911 	if (!fs_kobj)
2912 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
2913 	init_rootfs();
2914 	init_mount_tree();
2915 }
2916 
2917 void put_mnt_ns(struct mnt_namespace *ns)
2918 {
2919 	if (!atomic_dec_and_test(&ns->count))
2920 		return;
2921 	drop_collected_mounts(&ns->root->mnt);
2922 	free_mnt_ns(ns);
2923 }
2924 
2925 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2926 {
2927 	struct vfsmount *mnt;
2928 	mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2929 	if (!IS_ERR(mnt)) {
2930 		/*
2931 		 * it is a longterm mount, don't release mnt until
2932 		 * we unmount before file sys is unregistered
2933 		*/
2934 		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
2935 	}
2936 	return mnt;
2937 }
2938 EXPORT_SYMBOL_GPL(kern_mount_data);
2939 
2940 void kern_unmount(struct vfsmount *mnt)
2941 {
2942 	/* release long term mount so mount point can be released */
2943 	if (!IS_ERR_OR_NULL(mnt)) {
2944 		real_mount(mnt)->mnt_ns = NULL;
2945 		synchronize_rcu();	/* yecchhh... */
2946 		mntput(mnt);
2947 	}
2948 }
2949 EXPORT_SYMBOL(kern_unmount);
2950 
2951 bool our_mnt(struct vfsmount *mnt)
2952 {
2953 	return check_mnt(real_mount(mnt));
2954 }
2955 
2956 bool current_chrooted(void)
2957 {
2958 	/* Does the current process have a non-standard root */
2959 	struct path ns_root;
2960 	struct path fs_root;
2961 	bool chrooted;
2962 
2963 	/* Find the namespace root */
2964 	ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
2965 	ns_root.dentry = ns_root.mnt->mnt_root;
2966 	path_get(&ns_root);
2967 	while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
2968 		;
2969 
2970 	get_fs_root(current->fs, &fs_root);
2971 
2972 	chrooted = !path_equal(&fs_root, &ns_root);
2973 
2974 	path_put(&fs_root);
2975 	path_put(&ns_root);
2976 
2977 	return chrooted;
2978 }
2979 
2980 bool fs_fully_visible(struct file_system_type *type)
2981 {
2982 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
2983 	struct mount *mnt;
2984 	bool visible = false;
2985 
2986 	if (unlikely(!ns))
2987 		return false;
2988 
2989 	down_read(&namespace_sem);
2990 	list_for_each_entry(mnt, &ns->list, mnt_list) {
2991 		struct mount *child;
2992 		if (mnt->mnt.mnt_sb->s_type != type)
2993 			continue;
2994 
2995 		/* This mount is not fully visible if there are any child mounts
2996 		 * that cover anything except for empty directories.
2997 		 */
2998 		list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2999 			struct inode *inode = child->mnt_mountpoint->d_inode;
3000 			if (!S_ISDIR(inode->i_mode))
3001 				goto next;
3002 			if (inode->i_nlink > 2)
3003 				goto next;
3004 		}
3005 		visible = true;
3006 		goto found;
3007 	next:	;
3008 	}
3009 found:
3010 	up_read(&namespace_sem);
3011 	return visible;
3012 }
3013 
3014 static void *mntns_get(struct task_struct *task)
3015 {
3016 	struct mnt_namespace *ns = NULL;
3017 	struct nsproxy *nsproxy;
3018 
3019 	task_lock(task);
3020 	nsproxy = task->nsproxy;
3021 	if (nsproxy) {
3022 		ns = nsproxy->mnt_ns;
3023 		get_mnt_ns(ns);
3024 	}
3025 	task_unlock(task);
3026 
3027 	return ns;
3028 }
3029 
3030 static void mntns_put(void *ns)
3031 {
3032 	put_mnt_ns(ns);
3033 }
3034 
3035 static int mntns_install(struct nsproxy *nsproxy, void *ns)
3036 {
3037 	struct fs_struct *fs = current->fs;
3038 	struct mnt_namespace *mnt_ns = ns;
3039 	struct path root;
3040 
3041 	if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3042 	    !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3043 	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3044 		return -EPERM;
3045 
3046 	if (fs->users != 1)
3047 		return -EINVAL;
3048 
3049 	get_mnt_ns(mnt_ns);
3050 	put_mnt_ns(nsproxy->mnt_ns);
3051 	nsproxy->mnt_ns = mnt_ns;
3052 
3053 	/* Find the root */
3054 	root.mnt    = &mnt_ns->root->mnt;
3055 	root.dentry = mnt_ns->root->mnt.mnt_root;
3056 	path_get(&root);
3057 	while(d_mountpoint(root.dentry) && follow_down_one(&root))
3058 		;
3059 
3060 	/* Update the pwd and root */
3061 	set_fs_pwd(fs, &root);
3062 	set_fs_root(fs, &root);
3063 
3064 	path_put(&root);
3065 	return 0;
3066 }
3067 
3068 static unsigned int mntns_inum(void *ns)
3069 {
3070 	struct mnt_namespace *mnt_ns = ns;
3071 	return mnt_ns->proc_inum;
3072 }
3073 
3074 const struct proc_ns_operations mntns_operations = {
3075 	.name		= "mnt",
3076 	.type		= CLONE_NEWNS,
3077 	.get		= mntns_get,
3078 	.put		= mntns_put,
3079 	.install	= mntns_install,
3080 	.inum		= mntns_inum,
3081 };
3082