xref: /openbmc/linux/fs/namespace.c (revision 26721b02)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/namespace.c
4  *
5  * (C) Copyright Al Viro 2000, 2001
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h>		/* init_rootfs */
21 #include <linux/fs_struct.h>	/* get_fs_root et.al. */
22 #include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
23 #include <linux/file.h>
24 #include <linux/uaccess.h>
25 #include <linux/proc_ns.h>
26 #include <linux/magic.h>
27 #include <linux/memblock.h>
28 #include <linux/task_work.h>
29 #include <linux/sched/task.h>
30 #include <uapi/linux/mount.h>
31 #include <linux/fs_context.h>
32 #include <linux/shmem_fs.h>
33 
34 #include "pnode.h"
35 #include "internal.h"
36 
37 /* Maximum number of mounts in a mount namespace */
38 unsigned int sysctl_mount_max __read_mostly = 100000;
39 
40 static unsigned int m_hash_mask __read_mostly;
41 static unsigned int m_hash_shift __read_mostly;
42 static unsigned int mp_hash_mask __read_mostly;
43 static unsigned int mp_hash_shift __read_mostly;
44 
45 static __initdata unsigned long mhash_entries;
46 static int __init set_mhash_entries(char *str)
47 {
48 	if (!str)
49 		return 0;
50 	mhash_entries = simple_strtoul(str, &str, 0);
51 	return 1;
52 }
53 __setup("mhash_entries=", set_mhash_entries);
54 
55 static __initdata unsigned long mphash_entries;
56 static int __init set_mphash_entries(char *str)
57 {
58 	if (!str)
59 		return 0;
60 	mphash_entries = simple_strtoul(str, &str, 0);
61 	return 1;
62 }
63 __setup("mphash_entries=", set_mphash_entries);
64 
65 static u64 event;
66 static DEFINE_IDA(mnt_id_ida);
67 static DEFINE_IDA(mnt_group_ida);
68 
69 static struct hlist_head *mount_hashtable __read_mostly;
70 static struct hlist_head *mountpoint_hashtable __read_mostly;
71 static struct kmem_cache *mnt_cache __read_mostly;
72 static DECLARE_RWSEM(namespace_sem);
73 static HLIST_HEAD(unmounted);	/* protected by namespace_sem */
74 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
75 
76 /* /sys/fs */
77 struct kobject *fs_kobj;
78 EXPORT_SYMBOL_GPL(fs_kobj);
79 
80 /*
81  * vfsmount lock may be taken for read to prevent changes to the
82  * vfsmount hash, ie. during mountpoint lookups or walking back
83  * up the tree.
84  *
85  * It should be taken for write in all cases where the vfsmount
86  * tree or hash is modified or when a vfsmount structure is modified.
87  */
88 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
89 
90 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
91 {
92 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
93 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
94 	tmp = tmp + (tmp >> m_hash_shift);
95 	return &mount_hashtable[tmp & m_hash_mask];
96 }
97 
98 static inline struct hlist_head *mp_hash(struct dentry *dentry)
99 {
100 	unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
101 	tmp = tmp + (tmp >> mp_hash_shift);
102 	return &mountpoint_hashtable[tmp & mp_hash_mask];
103 }
104 
105 static int mnt_alloc_id(struct mount *mnt)
106 {
107 	int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
108 
109 	if (res < 0)
110 		return res;
111 	mnt->mnt_id = res;
112 	return 0;
113 }
114 
115 static void mnt_free_id(struct mount *mnt)
116 {
117 	ida_free(&mnt_id_ida, mnt->mnt_id);
118 }
119 
120 /*
121  * Allocate a new peer group ID
122  */
123 static int mnt_alloc_group_id(struct mount *mnt)
124 {
125 	int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
126 
127 	if (res < 0)
128 		return res;
129 	mnt->mnt_group_id = res;
130 	return 0;
131 }
132 
133 /*
134  * Release a peer group ID
135  */
136 void mnt_release_group_id(struct mount *mnt)
137 {
138 	ida_free(&mnt_group_ida, mnt->mnt_group_id);
139 	mnt->mnt_group_id = 0;
140 }
141 
142 /*
143  * vfsmount lock must be held for read
144  */
145 static inline void mnt_add_count(struct mount *mnt, int n)
146 {
147 #ifdef CONFIG_SMP
148 	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
149 #else
150 	preempt_disable();
151 	mnt->mnt_count += n;
152 	preempt_enable();
153 #endif
154 }
155 
156 /*
157  * vfsmount lock must be held for write
158  */
159 unsigned int mnt_get_count(struct mount *mnt)
160 {
161 #ifdef CONFIG_SMP
162 	unsigned int count = 0;
163 	int cpu;
164 
165 	for_each_possible_cpu(cpu) {
166 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
167 	}
168 
169 	return count;
170 #else
171 	return mnt->mnt_count;
172 #endif
173 }
174 
175 static struct mount *alloc_vfsmnt(const char *name)
176 {
177 	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
178 	if (mnt) {
179 		int err;
180 
181 		err = mnt_alloc_id(mnt);
182 		if (err)
183 			goto out_free_cache;
184 
185 		if (name) {
186 			mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
187 			if (!mnt->mnt_devname)
188 				goto out_free_id;
189 		}
190 
191 #ifdef CONFIG_SMP
192 		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
193 		if (!mnt->mnt_pcp)
194 			goto out_free_devname;
195 
196 		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
197 #else
198 		mnt->mnt_count = 1;
199 		mnt->mnt_writers = 0;
200 #endif
201 
202 		INIT_HLIST_NODE(&mnt->mnt_hash);
203 		INIT_LIST_HEAD(&mnt->mnt_child);
204 		INIT_LIST_HEAD(&mnt->mnt_mounts);
205 		INIT_LIST_HEAD(&mnt->mnt_list);
206 		INIT_LIST_HEAD(&mnt->mnt_expire);
207 		INIT_LIST_HEAD(&mnt->mnt_share);
208 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
209 		INIT_LIST_HEAD(&mnt->mnt_slave);
210 		INIT_HLIST_NODE(&mnt->mnt_mp_list);
211 		INIT_LIST_HEAD(&mnt->mnt_umounting);
212 		INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
213 	}
214 	return mnt;
215 
216 #ifdef CONFIG_SMP
217 out_free_devname:
218 	kfree_const(mnt->mnt_devname);
219 #endif
220 out_free_id:
221 	mnt_free_id(mnt);
222 out_free_cache:
223 	kmem_cache_free(mnt_cache, mnt);
224 	return NULL;
225 }
226 
227 /*
228  * Most r/o checks on a fs are for operations that take
229  * discrete amounts of time, like a write() or unlink().
230  * We must keep track of when those operations start
231  * (for permission checks) and when they end, so that
232  * we can determine when writes are able to occur to
233  * a filesystem.
234  */
235 /*
236  * __mnt_is_readonly: check whether a mount is read-only
237  * @mnt: the mount to check for its write status
238  *
239  * This shouldn't be used directly ouside of the VFS.
240  * It does not guarantee that the filesystem will stay
241  * r/w, just that it is right *now*.  This can not and
242  * should not be used in place of IS_RDONLY(inode).
243  * mnt_want/drop_write() will _keep_ the filesystem
244  * r/w.
245  */
246 bool __mnt_is_readonly(struct vfsmount *mnt)
247 {
248 	return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
249 }
250 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
251 
252 static inline void mnt_inc_writers(struct mount *mnt)
253 {
254 #ifdef CONFIG_SMP
255 	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
256 #else
257 	mnt->mnt_writers++;
258 #endif
259 }
260 
261 static inline void mnt_dec_writers(struct mount *mnt)
262 {
263 #ifdef CONFIG_SMP
264 	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
265 #else
266 	mnt->mnt_writers--;
267 #endif
268 }
269 
270 static unsigned int mnt_get_writers(struct mount *mnt)
271 {
272 #ifdef CONFIG_SMP
273 	unsigned int count = 0;
274 	int cpu;
275 
276 	for_each_possible_cpu(cpu) {
277 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
278 	}
279 
280 	return count;
281 #else
282 	return mnt->mnt_writers;
283 #endif
284 }
285 
286 static int mnt_is_readonly(struct vfsmount *mnt)
287 {
288 	if (mnt->mnt_sb->s_readonly_remount)
289 		return 1;
290 	/* Order wrt setting s_flags/s_readonly_remount in do_remount() */
291 	smp_rmb();
292 	return __mnt_is_readonly(mnt);
293 }
294 
295 /*
296  * Most r/o & frozen checks on a fs are for operations that take discrete
297  * amounts of time, like a write() or unlink().  We must keep track of when
298  * those operations start (for permission checks) and when they end, so that we
299  * can determine when writes are able to occur to a filesystem.
300  */
301 /**
302  * __mnt_want_write - get write access to a mount without freeze protection
303  * @m: the mount on which to take a write
304  *
305  * This tells the low-level filesystem that a write is about to be performed to
306  * it, and makes sure that writes are allowed (mnt it read-write) before
307  * returning success. This operation does not protect against filesystem being
308  * frozen. When the write operation is finished, __mnt_drop_write() must be
309  * called. This is effectively a refcount.
310  */
311 int __mnt_want_write(struct vfsmount *m)
312 {
313 	struct mount *mnt = real_mount(m);
314 	int ret = 0;
315 
316 	preempt_disable();
317 	mnt_inc_writers(mnt);
318 	/*
319 	 * The store to mnt_inc_writers must be visible before we pass
320 	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
321 	 * incremented count after it has set MNT_WRITE_HOLD.
322 	 */
323 	smp_mb();
324 	while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
325 		cpu_relax();
326 	/*
327 	 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
328 	 * be set to match its requirements. So we must not load that until
329 	 * MNT_WRITE_HOLD is cleared.
330 	 */
331 	smp_rmb();
332 	if (mnt_is_readonly(m)) {
333 		mnt_dec_writers(mnt);
334 		ret = -EROFS;
335 	}
336 	preempt_enable();
337 
338 	return ret;
339 }
340 
341 /**
342  * mnt_want_write - get write access to a mount
343  * @m: the mount on which to take a write
344  *
345  * This tells the low-level filesystem that a write is about to be performed to
346  * it, and makes sure that writes are allowed (mount is read-write, filesystem
347  * is not frozen) before returning success.  When the write operation is
348  * finished, mnt_drop_write() must be called.  This is effectively a refcount.
349  */
350 int mnt_want_write(struct vfsmount *m)
351 {
352 	int ret;
353 
354 	sb_start_write(m->mnt_sb);
355 	ret = __mnt_want_write(m);
356 	if (ret)
357 		sb_end_write(m->mnt_sb);
358 	return ret;
359 }
360 EXPORT_SYMBOL_GPL(mnt_want_write);
361 
362 /**
363  * mnt_clone_write - get write access to a mount
364  * @mnt: the mount on which to take a write
365  *
366  * This is effectively like mnt_want_write, except
367  * it must only be used to take an extra write reference
368  * on a mountpoint that we already know has a write reference
369  * on it. This allows some optimisation.
370  *
371  * After finished, mnt_drop_write must be called as usual to
372  * drop the reference.
373  */
374 int mnt_clone_write(struct vfsmount *mnt)
375 {
376 	/* superblock may be r/o */
377 	if (__mnt_is_readonly(mnt))
378 		return -EROFS;
379 	preempt_disable();
380 	mnt_inc_writers(real_mount(mnt));
381 	preempt_enable();
382 	return 0;
383 }
384 EXPORT_SYMBOL_GPL(mnt_clone_write);
385 
386 /**
387  * __mnt_want_write_file - get write access to a file's mount
388  * @file: the file who's mount on which to take a write
389  *
390  * This is like __mnt_want_write, but it takes a file and can
391  * do some optimisations if the file is open for write already
392  */
393 int __mnt_want_write_file(struct file *file)
394 {
395 	if (!(file->f_mode & FMODE_WRITER))
396 		return __mnt_want_write(file->f_path.mnt);
397 	else
398 		return mnt_clone_write(file->f_path.mnt);
399 }
400 
401 /**
402  * mnt_want_write_file - get write access to a file's mount
403  * @file: the file who's mount on which to take a write
404  *
405  * This is like mnt_want_write, but it takes a file and can
406  * do some optimisations if the file is open for write already
407  */
408 int mnt_want_write_file(struct file *file)
409 {
410 	int ret;
411 
412 	sb_start_write(file_inode(file)->i_sb);
413 	ret = __mnt_want_write_file(file);
414 	if (ret)
415 		sb_end_write(file_inode(file)->i_sb);
416 	return ret;
417 }
418 EXPORT_SYMBOL_GPL(mnt_want_write_file);
419 
420 /**
421  * __mnt_drop_write - give up write access to a mount
422  * @mnt: the mount on which to give up write access
423  *
424  * Tells the low-level filesystem that we are done
425  * performing writes to it.  Must be matched with
426  * __mnt_want_write() call above.
427  */
428 void __mnt_drop_write(struct vfsmount *mnt)
429 {
430 	preempt_disable();
431 	mnt_dec_writers(real_mount(mnt));
432 	preempt_enable();
433 }
434 
435 /**
436  * mnt_drop_write - give up write access to a mount
437  * @mnt: the mount on which to give up write access
438  *
439  * Tells the low-level filesystem that we are done performing writes to it and
440  * also allows filesystem to be frozen again.  Must be matched with
441  * mnt_want_write() call above.
442  */
443 void mnt_drop_write(struct vfsmount *mnt)
444 {
445 	__mnt_drop_write(mnt);
446 	sb_end_write(mnt->mnt_sb);
447 }
448 EXPORT_SYMBOL_GPL(mnt_drop_write);
449 
450 void __mnt_drop_write_file(struct file *file)
451 {
452 	__mnt_drop_write(file->f_path.mnt);
453 }
454 
455 void mnt_drop_write_file(struct file *file)
456 {
457 	__mnt_drop_write_file(file);
458 	sb_end_write(file_inode(file)->i_sb);
459 }
460 EXPORT_SYMBOL(mnt_drop_write_file);
461 
462 static int mnt_make_readonly(struct mount *mnt)
463 {
464 	int ret = 0;
465 
466 	lock_mount_hash();
467 	mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
468 	/*
469 	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
470 	 * should be visible before we do.
471 	 */
472 	smp_mb();
473 
474 	/*
475 	 * With writers on hold, if this value is zero, then there are
476 	 * definitely no active writers (although held writers may subsequently
477 	 * increment the count, they'll have to wait, and decrement it after
478 	 * seeing MNT_READONLY).
479 	 *
480 	 * It is OK to have counter incremented on one CPU and decremented on
481 	 * another: the sum will add up correctly. The danger would be when we
482 	 * sum up each counter, if we read a counter before it is incremented,
483 	 * but then read another CPU's count which it has been subsequently
484 	 * decremented from -- we would see more decrements than we should.
485 	 * MNT_WRITE_HOLD protects against this scenario, because
486 	 * mnt_want_write first increments count, then smp_mb, then spins on
487 	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
488 	 * we're counting up here.
489 	 */
490 	if (mnt_get_writers(mnt) > 0)
491 		ret = -EBUSY;
492 	else
493 		mnt->mnt.mnt_flags |= MNT_READONLY;
494 	/*
495 	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
496 	 * that become unheld will see MNT_READONLY.
497 	 */
498 	smp_wmb();
499 	mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
500 	unlock_mount_hash();
501 	return ret;
502 }
503 
504 static int __mnt_unmake_readonly(struct mount *mnt)
505 {
506 	lock_mount_hash();
507 	mnt->mnt.mnt_flags &= ~MNT_READONLY;
508 	unlock_mount_hash();
509 	return 0;
510 }
511 
512 int sb_prepare_remount_readonly(struct super_block *sb)
513 {
514 	struct mount *mnt;
515 	int err = 0;
516 
517 	/* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
518 	if (atomic_long_read(&sb->s_remove_count))
519 		return -EBUSY;
520 
521 	lock_mount_hash();
522 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
523 		if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
524 			mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
525 			smp_mb();
526 			if (mnt_get_writers(mnt) > 0) {
527 				err = -EBUSY;
528 				break;
529 			}
530 		}
531 	}
532 	if (!err && atomic_long_read(&sb->s_remove_count))
533 		err = -EBUSY;
534 
535 	if (!err) {
536 		sb->s_readonly_remount = 1;
537 		smp_wmb();
538 	}
539 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
540 		if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
541 			mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
542 	}
543 	unlock_mount_hash();
544 
545 	return err;
546 }
547 
548 static void free_vfsmnt(struct mount *mnt)
549 {
550 	kfree_const(mnt->mnt_devname);
551 #ifdef CONFIG_SMP
552 	free_percpu(mnt->mnt_pcp);
553 #endif
554 	kmem_cache_free(mnt_cache, mnt);
555 }
556 
557 static void delayed_free_vfsmnt(struct rcu_head *head)
558 {
559 	free_vfsmnt(container_of(head, struct mount, mnt_rcu));
560 }
561 
562 /* call under rcu_read_lock */
563 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
564 {
565 	struct mount *mnt;
566 	if (read_seqretry(&mount_lock, seq))
567 		return 1;
568 	if (bastard == NULL)
569 		return 0;
570 	mnt = real_mount(bastard);
571 	mnt_add_count(mnt, 1);
572 	smp_mb();			// see mntput_no_expire()
573 	if (likely(!read_seqretry(&mount_lock, seq)))
574 		return 0;
575 	if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
576 		mnt_add_count(mnt, -1);
577 		return 1;
578 	}
579 	lock_mount_hash();
580 	if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
581 		mnt_add_count(mnt, -1);
582 		unlock_mount_hash();
583 		return 1;
584 	}
585 	unlock_mount_hash();
586 	/* caller will mntput() */
587 	return -1;
588 }
589 
590 /* call under rcu_read_lock */
591 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
592 {
593 	int res = __legitimize_mnt(bastard, seq);
594 	if (likely(!res))
595 		return true;
596 	if (unlikely(res < 0)) {
597 		rcu_read_unlock();
598 		mntput(bastard);
599 		rcu_read_lock();
600 	}
601 	return false;
602 }
603 
604 /*
605  * find the first mount at @dentry on vfsmount @mnt.
606  * call under rcu_read_lock()
607  */
608 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
609 {
610 	struct hlist_head *head = m_hash(mnt, dentry);
611 	struct mount *p;
612 
613 	hlist_for_each_entry_rcu(p, head, mnt_hash)
614 		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
615 			return p;
616 	return NULL;
617 }
618 
619 /*
620  * lookup_mnt - Return the first child mount mounted at path
621  *
622  * "First" means first mounted chronologically.  If you create the
623  * following mounts:
624  *
625  * mount /dev/sda1 /mnt
626  * mount /dev/sda2 /mnt
627  * mount /dev/sda3 /mnt
628  *
629  * Then lookup_mnt() on the base /mnt dentry in the root mount will
630  * return successively the root dentry and vfsmount of /dev/sda1, then
631  * /dev/sda2, then /dev/sda3, then NULL.
632  *
633  * lookup_mnt takes a reference to the found vfsmount.
634  */
635 struct vfsmount *lookup_mnt(const struct path *path)
636 {
637 	struct mount *child_mnt;
638 	struct vfsmount *m;
639 	unsigned seq;
640 
641 	rcu_read_lock();
642 	do {
643 		seq = read_seqbegin(&mount_lock);
644 		child_mnt = __lookup_mnt(path->mnt, path->dentry);
645 		m = child_mnt ? &child_mnt->mnt : NULL;
646 	} while (!legitimize_mnt(m, seq));
647 	rcu_read_unlock();
648 	return m;
649 }
650 
651 static inline void lock_ns_list(struct mnt_namespace *ns)
652 {
653 	spin_lock(&ns->ns_lock);
654 }
655 
656 static inline void unlock_ns_list(struct mnt_namespace *ns)
657 {
658 	spin_unlock(&ns->ns_lock);
659 }
660 
661 static inline bool mnt_is_cursor(struct mount *mnt)
662 {
663 	return mnt->mnt.mnt_flags & MNT_CURSOR;
664 }
665 
666 /*
667  * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
668  *                         current mount namespace.
669  *
670  * The common case is dentries are not mountpoints at all and that
671  * test is handled inline.  For the slow case when we are actually
672  * dealing with a mountpoint of some kind, walk through all of the
673  * mounts in the current mount namespace and test to see if the dentry
674  * is a mountpoint.
675  *
676  * The mount_hashtable is not usable in the context because we
677  * need to identify all mounts that may be in the current mount
678  * namespace not just a mount that happens to have some specified
679  * parent mount.
680  */
681 bool __is_local_mountpoint(struct dentry *dentry)
682 {
683 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
684 	struct mount *mnt;
685 	bool is_covered = false;
686 
687 	down_read(&namespace_sem);
688 	lock_ns_list(ns);
689 	list_for_each_entry(mnt, &ns->list, mnt_list) {
690 		if (mnt_is_cursor(mnt))
691 			continue;
692 		is_covered = (mnt->mnt_mountpoint == dentry);
693 		if (is_covered)
694 			break;
695 	}
696 	unlock_ns_list(ns);
697 	up_read(&namespace_sem);
698 
699 	return is_covered;
700 }
701 
702 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
703 {
704 	struct hlist_head *chain = mp_hash(dentry);
705 	struct mountpoint *mp;
706 
707 	hlist_for_each_entry(mp, chain, m_hash) {
708 		if (mp->m_dentry == dentry) {
709 			mp->m_count++;
710 			return mp;
711 		}
712 	}
713 	return NULL;
714 }
715 
716 static struct mountpoint *get_mountpoint(struct dentry *dentry)
717 {
718 	struct mountpoint *mp, *new = NULL;
719 	int ret;
720 
721 	if (d_mountpoint(dentry)) {
722 		/* might be worth a WARN_ON() */
723 		if (d_unlinked(dentry))
724 			return ERR_PTR(-ENOENT);
725 mountpoint:
726 		read_seqlock_excl(&mount_lock);
727 		mp = lookup_mountpoint(dentry);
728 		read_sequnlock_excl(&mount_lock);
729 		if (mp)
730 			goto done;
731 	}
732 
733 	if (!new)
734 		new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
735 	if (!new)
736 		return ERR_PTR(-ENOMEM);
737 
738 
739 	/* Exactly one processes may set d_mounted */
740 	ret = d_set_mounted(dentry);
741 
742 	/* Someone else set d_mounted? */
743 	if (ret == -EBUSY)
744 		goto mountpoint;
745 
746 	/* The dentry is not available as a mountpoint? */
747 	mp = ERR_PTR(ret);
748 	if (ret)
749 		goto done;
750 
751 	/* Add the new mountpoint to the hash table */
752 	read_seqlock_excl(&mount_lock);
753 	new->m_dentry = dget(dentry);
754 	new->m_count = 1;
755 	hlist_add_head(&new->m_hash, mp_hash(dentry));
756 	INIT_HLIST_HEAD(&new->m_list);
757 	read_sequnlock_excl(&mount_lock);
758 
759 	mp = new;
760 	new = NULL;
761 done:
762 	kfree(new);
763 	return mp;
764 }
765 
766 /*
767  * vfsmount lock must be held.  Additionally, the caller is responsible
768  * for serializing calls for given disposal list.
769  */
770 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
771 {
772 	if (!--mp->m_count) {
773 		struct dentry *dentry = mp->m_dentry;
774 		BUG_ON(!hlist_empty(&mp->m_list));
775 		spin_lock(&dentry->d_lock);
776 		dentry->d_flags &= ~DCACHE_MOUNTED;
777 		spin_unlock(&dentry->d_lock);
778 		dput_to_list(dentry, list);
779 		hlist_del(&mp->m_hash);
780 		kfree(mp);
781 	}
782 }
783 
784 /* called with namespace_lock and vfsmount lock */
785 static void put_mountpoint(struct mountpoint *mp)
786 {
787 	__put_mountpoint(mp, &ex_mountpoints);
788 }
789 
790 static inline int check_mnt(struct mount *mnt)
791 {
792 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
793 }
794 
795 /*
796  * vfsmount lock must be held for write
797  */
798 static void touch_mnt_namespace(struct mnt_namespace *ns)
799 {
800 	if (ns) {
801 		ns->event = ++event;
802 		wake_up_interruptible(&ns->poll);
803 	}
804 }
805 
806 /*
807  * vfsmount lock must be held for write
808  */
809 static void __touch_mnt_namespace(struct mnt_namespace *ns)
810 {
811 	if (ns && ns->event != event) {
812 		ns->event = event;
813 		wake_up_interruptible(&ns->poll);
814 	}
815 }
816 
817 /*
818  * vfsmount lock must be held for write
819  */
820 static struct mountpoint *unhash_mnt(struct mount *mnt)
821 {
822 	struct mountpoint *mp;
823 	mnt->mnt_parent = mnt;
824 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
825 	list_del_init(&mnt->mnt_child);
826 	hlist_del_init_rcu(&mnt->mnt_hash);
827 	hlist_del_init(&mnt->mnt_mp_list);
828 	mp = mnt->mnt_mp;
829 	mnt->mnt_mp = NULL;
830 	return mp;
831 }
832 
833 /*
834  * vfsmount lock must be held for write
835  */
836 static void umount_mnt(struct mount *mnt)
837 {
838 	put_mountpoint(unhash_mnt(mnt));
839 }
840 
841 /*
842  * vfsmount lock must be held for write
843  */
844 void mnt_set_mountpoint(struct mount *mnt,
845 			struct mountpoint *mp,
846 			struct mount *child_mnt)
847 {
848 	mp->m_count++;
849 	mnt_add_count(mnt, 1);	/* essentially, that's mntget */
850 	child_mnt->mnt_mountpoint = mp->m_dentry;
851 	child_mnt->mnt_parent = mnt;
852 	child_mnt->mnt_mp = mp;
853 	hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
854 }
855 
856 static void __attach_mnt(struct mount *mnt, struct mount *parent)
857 {
858 	hlist_add_head_rcu(&mnt->mnt_hash,
859 			   m_hash(&parent->mnt, mnt->mnt_mountpoint));
860 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
861 }
862 
863 /*
864  * vfsmount lock must be held for write
865  */
866 static void attach_mnt(struct mount *mnt,
867 			struct mount *parent,
868 			struct mountpoint *mp)
869 {
870 	mnt_set_mountpoint(parent, mp, mnt);
871 	__attach_mnt(mnt, parent);
872 }
873 
874 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
875 {
876 	struct mountpoint *old_mp = mnt->mnt_mp;
877 	struct mount *old_parent = mnt->mnt_parent;
878 
879 	list_del_init(&mnt->mnt_child);
880 	hlist_del_init(&mnt->mnt_mp_list);
881 	hlist_del_init_rcu(&mnt->mnt_hash);
882 
883 	attach_mnt(mnt, parent, mp);
884 
885 	put_mountpoint(old_mp);
886 	mnt_add_count(old_parent, -1);
887 }
888 
889 /*
890  * vfsmount lock must be held for write
891  */
892 static void commit_tree(struct mount *mnt)
893 {
894 	struct mount *parent = mnt->mnt_parent;
895 	struct mount *m;
896 	LIST_HEAD(head);
897 	struct mnt_namespace *n = parent->mnt_ns;
898 
899 	BUG_ON(parent == mnt);
900 
901 	list_add_tail(&head, &mnt->mnt_list);
902 	list_for_each_entry(m, &head, mnt_list)
903 		m->mnt_ns = n;
904 
905 	list_splice(&head, n->list.prev);
906 
907 	n->mounts += n->pending_mounts;
908 	n->pending_mounts = 0;
909 
910 	__attach_mnt(mnt, parent);
911 	touch_mnt_namespace(n);
912 }
913 
914 static struct mount *next_mnt(struct mount *p, struct mount *root)
915 {
916 	struct list_head *next = p->mnt_mounts.next;
917 	if (next == &p->mnt_mounts) {
918 		while (1) {
919 			if (p == root)
920 				return NULL;
921 			next = p->mnt_child.next;
922 			if (next != &p->mnt_parent->mnt_mounts)
923 				break;
924 			p = p->mnt_parent;
925 		}
926 	}
927 	return list_entry(next, struct mount, mnt_child);
928 }
929 
930 static struct mount *skip_mnt_tree(struct mount *p)
931 {
932 	struct list_head *prev = p->mnt_mounts.prev;
933 	while (prev != &p->mnt_mounts) {
934 		p = list_entry(prev, struct mount, mnt_child);
935 		prev = p->mnt_mounts.prev;
936 	}
937 	return p;
938 }
939 
940 /**
941  * vfs_create_mount - Create a mount for a configured superblock
942  * @fc: The configuration context with the superblock attached
943  *
944  * Create a mount to an already configured superblock.  If necessary, the
945  * caller should invoke vfs_get_tree() before calling this.
946  *
947  * Note that this does not attach the mount to anything.
948  */
949 struct vfsmount *vfs_create_mount(struct fs_context *fc)
950 {
951 	struct mount *mnt;
952 
953 	if (!fc->root)
954 		return ERR_PTR(-EINVAL);
955 
956 	mnt = alloc_vfsmnt(fc->source ?: "none");
957 	if (!mnt)
958 		return ERR_PTR(-ENOMEM);
959 
960 	if (fc->sb_flags & SB_KERNMOUNT)
961 		mnt->mnt.mnt_flags = MNT_INTERNAL;
962 
963 	atomic_inc(&fc->root->d_sb->s_active);
964 	mnt->mnt.mnt_sb		= fc->root->d_sb;
965 	mnt->mnt.mnt_root	= dget(fc->root);
966 	mnt->mnt_mountpoint	= mnt->mnt.mnt_root;
967 	mnt->mnt_parent		= mnt;
968 
969 	lock_mount_hash();
970 	list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
971 	unlock_mount_hash();
972 	return &mnt->mnt;
973 }
974 EXPORT_SYMBOL(vfs_create_mount);
975 
976 struct vfsmount *fc_mount(struct fs_context *fc)
977 {
978 	int err = vfs_get_tree(fc);
979 	if (!err) {
980 		up_write(&fc->root->d_sb->s_umount);
981 		return vfs_create_mount(fc);
982 	}
983 	return ERR_PTR(err);
984 }
985 EXPORT_SYMBOL(fc_mount);
986 
987 struct vfsmount *vfs_kern_mount(struct file_system_type *type,
988 				int flags, const char *name,
989 				void *data)
990 {
991 	struct fs_context *fc;
992 	struct vfsmount *mnt;
993 	int ret = 0;
994 
995 	if (!type)
996 		return ERR_PTR(-EINVAL);
997 
998 	fc = fs_context_for_mount(type, flags);
999 	if (IS_ERR(fc))
1000 		return ERR_CAST(fc);
1001 
1002 	if (name)
1003 		ret = vfs_parse_fs_string(fc, "source",
1004 					  name, strlen(name));
1005 	if (!ret)
1006 		ret = parse_monolithic_mount_data(fc, data);
1007 	if (!ret)
1008 		mnt = fc_mount(fc);
1009 	else
1010 		mnt = ERR_PTR(ret);
1011 
1012 	put_fs_context(fc);
1013 	return mnt;
1014 }
1015 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1016 
1017 struct vfsmount *
1018 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1019 	     const char *name, void *data)
1020 {
1021 	/* Until it is worked out how to pass the user namespace
1022 	 * through from the parent mount to the submount don't support
1023 	 * unprivileged mounts with submounts.
1024 	 */
1025 	if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1026 		return ERR_PTR(-EPERM);
1027 
1028 	return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1029 }
1030 EXPORT_SYMBOL_GPL(vfs_submount);
1031 
1032 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1033 					int flag)
1034 {
1035 	struct super_block *sb = old->mnt.mnt_sb;
1036 	struct mount *mnt;
1037 	int err;
1038 
1039 	mnt = alloc_vfsmnt(old->mnt_devname);
1040 	if (!mnt)
1041 		return ERR_PTR(-ENOMEM);
1042 
1043 	if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1044 		mnt->mnt_group_id = 0; /* not a peer of original */
1045 	else
1046 		mnt->mnt_group_id = old->mnt_group_id;
1047 
1048 	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1049 		err = mnt_alloc_group_id(mnt);
1050 		if (err)
1051 			goto out_free;
1052 	}
1053 
1054 	mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1055 	mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1056 
1057 	atomic_inc(&sb->s_active);
1058 	mnt->mnt.mnt_sb = sb;
1059 	mnt->mnt.mnt_root = dget(root);
1060 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1061 	mnt->mnt_parent = mnt;
1062 	lock_mount_hash();
1063 	list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1064 	unlock_mount_hash();
1065 
1066 	if ((flag & CL_SLAVE) ||
1067 	    ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1068 		list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1069 		mnt->mnt_master = old;
1070 		CLEAR_MNT_SHARED(mnt);
1071 	} else if (!(flag & CL_PRIVATE)) {
1072 		if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1073 			list_add(&mnt->mnt_share, &old->mnt_share);
1074 		if (IS_MNT_SLAVE(old))
1075 			list_add(&mnt->mnt_slave, &old->mnt_slave);
1076 		mnt->mnt_master = old->mnt_master;
1077 	} else {
1078 		CLEAR_MNT_SHARED(mnt);
1079 	}
1080 	if (flag & CL_MAKE_SHARED)
1081 		set_mnt_shared(mnt);
1082 
1083 	/* stick the duplicate mount on the same expiry list
1084 	 * as the original if that was on one */
1085 	if (flag & CL_EXPIRE) {
1086 		if (!list_empty(&old->mnt_expire))
1087 			list_add(&mnt->mnt_expire, &old->mnt_expire);
1088 	}
1089 
1090 	return mnt;
1091 
1092  out_free:
1093 	mnt_free_id(mnt);
1094 	free_vfsmnt(mnt);
1095 	return ERR_PTR(err);
1096 }
1097 
1098 static void cleanup_mnt(struct mount *mnt)
1099 {
1100 	struct hlist_node *p;
1101 	struct mount *m;
1102 	/*
1103 	 * The warning here probably indicates that somebody messed
1104 	 * up a mnt_want/drop_write() pair.  If this happens, the
1105 	 * filesystem was probably unable to make r/w->r/o transitions.
1106 	 * The locking used to deal with mnt_count decrement provides barriers,
1107 	 * so mnt_get_writers() below is safe.
1108 	 */
1109 	WARN_ON(mnt_get_writers(mnt));
1110 	if (unlikely(mnt->mnt_pins.first))
1111 		mnt_pin_kill(mnt);
1112 	hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1113 		hlist_del(&m->mnt_umount);
1114 		mntput(&m->mnt);
1115 	}
1116 	fsnotify_vfsmount_delete(&mnt->mnt);
1117 	dput(mnt->mnt.mnt_root);
1118 	deactivate_super(mnt->mnt.mnt_sb);
1119 	mnt_free_id(mnt);
1120 	call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1121 }
1122 
1123 static void __cleanup_mnt(struct rcu_head *head)
1124 {
1125 	cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1126 }
1127 
1128 static LLIST_HEAD(delayed_mntput_list);
1129 static void delayed_mntput(struct work_struct *unused)
1130 {
1131 	struct llist_node *node = llist_del_all(&delayed_mntput_list);
1132 	struct mount *m, *t;
1133 
1134 	llist_for_each_entry_safe(m, t, node, mnt_llist)
1135 		cleanup_mnt(m);
1136 }
1137 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1138 
1139 static void mntput_no_expire(struct mount *mnt)
1140 {
1141 	LIST_HEAD(list);
1142 
1143 	rcu_read_lock();
1144 	if (likely(READ_ONCE(mnt->mnt_ns))) {
1145 		/*
1146 		 * Since we don't do lock_mount_hash() here,
1147 		 * ->mnt_ns can change under us.  However, if it's
1148 		 * non-NULL, then there's a reference that won't
1149 		 * be dropped until after an RCU delay done after
1150 		 * turning ->mnt_ns NULL.  So if we observe it
1151 		 * non-NULL under rcu_read_lock(), the reference
1152 		 * we are dropping is not the final one.
1153 		 */
1154 		mnt_add_count(mnt, -1);
1155 		rcu_read_unlock();
1156 		return;
1157 	}
1158 	lock_mount_hash();
1159 	/*
1160 	 * make sure that if __legitimize_mnt() has not seen us grab
1161 	 * mount_lock, we'll see their refcount increment here.
1162 	 */
1163 	smp_mb();
1164 	mnt_add_count(mnt, -1);
1165 	if (mnt_get_count(mnt)) {
1166 		rcu_read_unlock();
1167 		unlock_mount_hash();
1168 		return;
1169 	}
1170 	if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1171 		rcu_read_unlock();
1172 		unlock_mount_hash();
1173 		return;
1174 	}
1175 	mnt->mnt.mnt_flags |= MNT_DOOMED;
1176 	rcu_read_unlock();
1177 
1178 	list_del(&mnt->mnt_instance);
1179 
1180 	if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1181 		struct mount *p, *tmp;
1182 		list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts,  mnt_child) {
1183 			__put_mountpoint(unhash_mnt(p), &list);
1184 			hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
1185 		}
1186 	}
1187 	unlock_mount_hash();
1188 	shrink_dentry_list(&list);
1189 
1190 	if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1191 		struct task_struct *task = current;
1192 		if (likely(!(task->flags & PF_KTHREAD))) {
1193 			init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1194 			if (!task_work_add(task, &mnt->mnt_rcu, true))
1195 				return;
1196 		}
1197 		if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1198 			schedule_delayed_work(&delayed_mntput_work, 1);
1199 		return;
1200 	}
1201 	cleanup_mnt(mnt);
1202 }
1203 
1204 void mntput(struct vfsmount *mnt)
1205 {
1206 	if (mnt) {
1207 		struct mount *m = real_mount(mnt);
1208 		/* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1209 		if (unlikely(m->mnt_expiry_mark))
1210 			m->mnt_expiry_mark = 0;
1211 		mntput_no_expire(m);
1212 	}
1213 }
1214 EXPORT_SYMBOL(mntput);
1215 
1216 struct vfsmount *mntget(struct vfsmount *mnt)
1217 {
1218 	if (mnt)
1219 		mnt_add_count(real_mount(mnt), 1);
1220 	return mnt;
1221 }
1222 EXPORT_SYMBOL(mntget);
1223 
1224 /* path_is_mountpoint() - Check if path is a mount in the current
1225  *                          namespace.
1226  *
1227  *  d_mountpoint() can only be used reliably to establish if a dentry is
1228  *  not mounted in any namespace and that common case is handled inline.
1229  *  d_mountpoint() isn't aware of the possibility there may be multiple
1230  *  mounts using a given dentry in a different namespace. This function
1231  *  checks if the passed in path is a mountpoint rather than the dentry
1232  *  alone.
1233  */
1234 bool path_is_mountpoint(const struct path *path)
1235 {
1236 	unsigned seq;
1237 	bool res;
1238 
1239 	if (!d_mountpoint(path->dentry))
1240 		return false;
1241 
1242 	rcu_read_lock();
1243 	do {
1244 		seq = read_seqbegin(&mount_lock);
1245 		res = __path_is_mountpoint(path);
1246 	} while (read_seqretry(&mount_lock, seq));
1247 	rcu_read_unlock();
1248 
1249 	return res;
1250 }
1251 EXPORT_SYMBOL(path_is_mountpoint);
1252 
1253 struct vfsmount *mnt_clone_internal(const struct path *path)
1254 {
1255 	struct mount *p;
1256 	p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1257 	if (IS_ERR(p))
1258 		return ERR_CAST(p);
1259 	p->mnt.mnt_flags |= MNT_INTERNAL;
1260 	return &p->mnt;
1261 }
1262 
1263 #ifdef CONFIG_PROC_FS
1264 static struct mount *mnt_list_next(struct mnt_namespace *ns,
1265 				   struct list_head *p)
1266 {
1267 	struct mount *mnt, *ret = NULL;
1268 
1269 	lock_ns_list(ns);
1270 	list_for_each_continue(p, &ns->list) {
1271 		mnt = list_entry(p, typeof(*mnt), mnt_list);
1272 		if (!mnt_is_cursor(mnt)) {
1273 			ret = mnt;
1274 			break;
1275 		}
1276 	}
1277 	unlock_ns_list(ns);
1278 
1279 	return ret;
1280 }
1281 
1282 /* iterator; we want it to have access to namespace_sem, thus here... */
1283 static void *m_start(struct seq_file *m, loff_t *pos)
1284 {
1285 	struct proc_mounts *p = m->private;
1286 	struct list_head *prev;
1287 
1288 	down_read(&namespace_sem);
1289 	if (!*pos) {
1290 		prev = &p->ns->list;
1291 	} else {
1292 		prev = &p->cursor.mnt_list;
1293 
1294 		/* Read after we'd reached the end? */
1295 		if (list_empty(prev))
1296 			return NULL;
1297 	}
1298 
1299 	return mnt_list_next(p->ns, prev);
1300 }
1301 
1302 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1303 {
1304 	struct proc_mounts *p = m->private;
1305 	struct mount *mnt = v;
1306 
1307 	++*pos;
1308 	return mnt_list_next(p->ns, &mnt->mnt_list);
1309 }
1310 
1311 static void m_stop(struct seq_file *m, void *v)
1312 {
1313 	struct proc_mounts *p = m->private;
1314 	struct mount *mnt = v;
1315 
1316 	lock_ns_list(p->ns);
1317 	if (mnt)
1318 		list_move_tail(&p->cursor.mnt_list, &mnt->mnt_list);
1319 	else
1320 		list_del_init(&p->cursor.mnt_list);
1321 	unlock_ns_list(p->ns);
1322 	up_read(&namespace_sem);
1323 }
1324 
1325 static int m_show(struct seq_file *m, void *v)
1326 {
1327 	struct proc_mounts *p = m->private;
1328 	struct mount *r = v;
1329 	return p->show(m, &r->mnt);
1330 }
1331 
1332 const struct seq_operations mounts_op = {
1333 	.start	= m_start,
1334 	.next	= m_next,
1335 	.stop	= m_stop,
1336 	.show	= m_show,
1337 };
1338 
1339 void mnt_cursor_del(struct mnt_namespace *ns, struct mount *cursor)
1340 {
1341 	down_read(&namespace_sem);
1342 	lock_ns_list(ns);
1343 	list_del(&cursor->mnt_list);
1344 	unlock_ns_list(ns);
1345 	up_read(&namespace_sem);
1346 }
1347 #endif  /* CONFIG_PROC_FS */
1348 
1349 /**
1350  * may_umount_tree - check if a mount tree is busy
1351  * @mnt: root of mount tree
1352  *
1353  * This is called to check if a tree of mounts has any
1354  * open files, pwds, chroots or sub mounts that are
1355  * busy.
1356  */
1357 int may_umount_tree(struct vfsmount *m)
1358 {
1359 	struct mount *mnt = real_mount(m);
1360 	int actual_refs = 0;
1361 	int minimum_refs = 0;
1362 	struct mount *p;
1363 	BUG_ON(!m);
1364 
1365 	/* write lock needed for mnt_get_count */
1366 	lock_mount_hash();
1367 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1368 		actual_refs += mnt_get_count(p);
1369 		minimum_refs += 2;
1370 	}
1371 	unlock_mount_hash();
1372 
1373 	if (actual_refs > minimum_refs)
1374 		return 0;
1375 
1376 	return 1;
1377 }
1378 
1379 EXPORT_SYMBOL(may_umount_tree);
1380 
1381 /**
1382  * may_umount - check if a mount point is busy
1383  * @mnt: root of mount
1384  *
1385  * This is called to check if a mount point has any
1386  * open files, pwds, chroots or sub mounts. If the
1387  * mount has sub mounts this will return busy
1388  * regardless of whether the sub mounts are busy.
1389  *
1390  * Doesn't take quota and stuff into account. IOW, in some cases it will
1391  * give false negatives. The main reason why it's here is that we need
1392  * a non-destructive way to look for easily umountable filesystems.
1393  */
1394 int may_umount(struct vfsmount *mnt)
1395 {
1396 	int ret = 1;
1397 	down_read(&namespace_sem);
1398 	lock_mount_hash();
1399 	if (propagate_mount_busy(real_mount(mnt), 2))
1400 		ret = 0;
1401 	unlock_mount_hash();
1402 	up_read(&namespace_sem);
1403 	return ret;
1404 }
1405 
1406 EXPORT_SYMBOL(may_umount);
1407 
1408 static void namespace_unlock(void)
1409 {
1410 	struct hlist_head head;
1411 	struct hlist_node *p;
1412 	struct mount *m;
1413 	LIST_HEAD(list);
1414 
1415 	hlist_move_list(&unmounted, &head);
1416 	list_splice_init(&ex_mountpoints, &list);
1417 
1418 	up_write(&namespace_sem);
1419 
1420 	shrink_dentry_list(&list);
1421 
1422 	if (likely(hlist_empty(&head)))
1423 		return;
1424 
1425 	synchronize_rcu_expedited();
1426 
1427 	hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1428 		hlist_del(&m->mnt_umount);
1429 		mntput(&m->mnt);
1430 	}
1431 }
1432 
1433 static inline void namespace_lock(void)
1434 {
1435 	down_write(&namespace_sem);
1436 }
1437 
1438 enum umount_tree_flags {
1439 	UMOUNT_SYNC = 1,
1440 	UMOUNT_PROPAGATE = 2,
1441 	UMOUNT_CONNECTED = 4,
1442 };
1443 
1444 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1445 {
1446 	/* Leaving mounts connected is only valid for lazy umounts */
1447 	if (how & UMOUNT_SYNC)
1448 		return true;
1449 
1450 	/* A mount without a parent has nothing to be connected to */
1451 	if (!mnt_has_parent(mnt))
1452 		return true;
1453 
1454 	/* Because the reference counting rules change when mounts are
1455 	 * unmounted and connected, umounted mounts may not be
1456 	 * connected to mounted mounts.
1457 	 */
1458 	if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1459 		return true;
1460 
1461 	/* Has it been requested that the mount remain connected? */
1462 	if (how & UMOUNT_CONNECTED)
1463 		return false;
1464 
1465 	/* Is the mount locked such that it needs to remain connected? */
1466 	if (IS_MNT_LOCKED(mnt))
1467 		return false;
1468 
1469 	/* By default disconnect the mount */
1470 	return true;
1471 }
1472 
1473 /*
1474  * mount_lock must be held
1475  * namespace_sem must be held for write
1476  */
1477 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1478 {
1479 	LIST_HEAD(tmp_list);
1480 	struct mount *p;
1481 
1482 	if (how & UMOUNT_PROPAGATE)
1483 		propagate_mount_unlock(mnt);
1484 
1485 	/* Gather the mounts to umount */
1486 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1487 		p->mnt.mnt_flags |= MNT_UMOUNT;
1488 		list_move(&p->mnt_list, &tmp_list);
1489 	}
1490 
1491 	/* Hide the mounts from mnt_mounts */
1492 	list_for_each_entry(p, &tmp_list, mnt_list) {
1493 		list_del_init(&p->mnt_child);
1494 	}
1495 
1496 	/* Add propogated mounts to the tmp_list */
1497 	if (how & UMOUNT_PROPAGATE)
1498 		propagate_umount(&tmp_list);
1499 
1500 	while (!list_empty(&tmp_list)) {
1501 		struct mnt_namespace *ns;
1502 		bool disconnect;
1503 		p = list_first_entry(&tmp_list, struct mount, mnt_list);
1504 		list_del_init(&p->mnt_expire);
1505 		list_del_init(&p->mnt_list);
1506 		ns = p->mnt_ns;
1507 		if (ns) {
1508 			ns->mounts--;
1509 			__touch_mnt_namespace(ns);
1510 		}
1511 		p->mnt_ns = NULL;
1512 		if (how & UMOUNT_SYNC)
1513 			p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1514 
1515 		disconnect = disconnect_mount(p, how);
1516 		if (mnt_has_parent(p)) {
1517 			mnt_add_count(p->mnt_parent, -1);
1518 			if (!disconnect) {
1519 				/* Don't forget about p */
1520 				list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1521 			} else {
1522 				umount_mnt(p);
1523 			}
1524 		}
1525 		change_mnt_propagation(p, MS_PRIVATE);
1526 		if (disconnect)
1527 			hlist_add_head(&p->mnt_umount, &unmounted);
1528 	}
1529 }
1530 
1531 static void shrink_submounts(struct mount *mnt);
1532 
1533 static int do_umount_root(struct super_block *sb)
1534 {
1535 	int ret = 0;
1536 
1537 	down_write(&sb->s_umount);
1538 	if (!sb_rdonly(sb)) {
1539 		struct fs_context *fc;
1540 
1541 		fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1542 						SB_RDONLY);
1543 		if (IS_ERR(fc)) {
1544 			ret = PTR_ERR(fc);
1545 		} else {
1546 			ret = parse_monolithic_mount_data(fc, NULL);
1547 			if (!ret)
1548 				ret = reconfigure_super(fc);
1549 			put_fs_context(fc);
1550 		}
1551 	}
1552 	up_write(&sb->s_umount);
1553 	return ret;
1554 }
1555 
1556 static int do_umount(struct mount *mnt, int flags)
1557 {
1558 	struct super_block *sb = mnt->mnt.mnt_sb;
1559 	int retval;
1560 
1561 	retval = security_sb_umount(&mnt->mnt, flags);
1562 	if (retval)
1563 		return retval;
1564 
1565 	/*
1566 	 * Allow userspace to request a mountpoint be expired rather than
1567 	 * unmounting unconditionally. Unmount only happens if:
1568 	 *  (1) the mark is already set (the mark is cleared by mntput())
1569 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1570 	 */
1571 	if (flags & MNT_EXPIRE) {
1572 		if (&mnt->mnt == current->fs->root.mnt ||
1573 		    flags & (MNT_FORCE | MNT_DETACH))
1574 			return -EINVAL;
1575 
1576 		/*
1577 		 * probably don't strictly need the lock here if we examined
1578 		 * all race cases, but it's a slowpath.
1579 		 */
1580 		lock_mount_hash();
1581 		if (mnt_get_count(mnt) != 2) {
1582 			unlock_mount_hash();
1583 			return -EBUSY;
1584 		}
1585 		unlock_mount_hash();
1586 
1587 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1588 			return -EAGAIN;
1589 	}
1590 
1591 	/*
1592 	 * If we may have to abort operations to get out of this
1593 	 * mount, and they will themselves hold resources we must
1594 	 * allow the fs to do things. In the Unix tradition of
1595 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1596 	 * might fail to complete on the first run through as other tasks
1597 	 * must return, and the like. Thats for the mount program to worry
1598 	 * about for the moment.
1599 	 */
1600 
1601 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1602 		sb->s_op->umount_begin(sb);
1603 	}
1604 
1605 	/*
1606 	 * No sense to grab the lock for this test, but test itself looks
1607 	 * somewhat bogus. Suggestions for better replacement?
1608 	 * Ho-hum... In principle, we might treat that as umount + switch
1609 	 * to rootfs. GC would eventually take care of the old vfsmount.
1610 	 * Actually it makes sense, especially if rootfs would contain a
1611 	 * /reboot - static binary that would close all descriptors and
1612 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1613 	 */
1614 	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1615 		/*
1616 		 * Special case for "unmounting" root ...
1617 		 * we just try to remount it readonly.
1618 		 */
1619 		if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1620 			return -EPERM;
1621 		return do_umount_root(sb);
1622 	}
1623 
1624 	namespace_lock();
1625 	lock_mount_hash();
1626 
1627 	/* Recheck MNT_LOCKED with the locks held */
1628 	retval = -EINVAL;
1629 	if (mnt->mnt.mnt_flags & MNT_LOCKED)
1630 		goto out;
1631 
1632 	event++;
1633 	if (flags & MNT_DETACH) {
1634 		if (!list_empty(&mnt->mnt_list))
1635 			umount_tree(mnt, UMOUNT_PROPAGATE);
1636 		retval = 0;
1637 	} else {
1638 		shrink_submounts(mnt);
1639 		retval = -EBUSY;
1640 		if (!propagate_mount_busy(mnt, 2)) {
1641 			if (!list_empty(&mnt->mnt_list))
1642 				umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1643 			retval = 0;
1644 		}
1645 	}
1646 out:
1647 	unlock_mount_hash();
1648 	namespace_unlock();
1649 	return retval;
1650 }
1651 
1652 /*
1653  * __detach_mounts - lazily unmount all mounts on the specified dentry
1654  *
1655  * During unlink, rmdir, and d_drop it is possible to loose the path
1656  * to an existing mountpoint, and wind up leaking the mount.
1657  * detach_mounts allows lazily unmounting those mounts instead of
1658  * leaking them.
1659  *
1660  * The caller may hold dentry->d_inode->i_mutex.
1661  */
1662 void __detach_mounts(struct dentry *dentry)
1663 {
1664 	struct mountpoint *mp;
1665 	struct mount *mnt;
1666 
1667 	namespace_lock();
1668 	lock_mount_hash();
1669 	mp = lookup_mountpoint(dentry);
1670 	if (!mp)
1671 		goto out_unlock;
1672 
1673 	event++;
1674 	while (!hlist_empty(&mp->m_list)) {
1675 		mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1676 		if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1677 			umount_mnt(mnt);
1678 			hlist_add_head(&mnt->mnt_umount, &unmounted);
1679 		}
1680 		else umount_tree(mnt, UMOUNT_CONNECTED);
1681 	}
1682 	put_mountpoint(mp);
1683 out_unlock:
1684 	unlock_mount_hash();
1685 	namespace_unlock();
1686 }
1687 
1688 /*
1689  * Is the caller allowed to modify his namespace?
1690  */
1691 static inline bool may_mount(void)
1692 {
1693 	return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1694 }
1695 
1696 #ifdef	CONFIG_MANDATORY_FILE_LOCKING
1697 static inline bool may_mandlock(void)
1698 {
1699 	return capable(CAP_SYS_ADMIN);
1700 }
1701 #else
1702 static inline bool may_mandlock(void)
1703 {
1704 	pr_warn("VFS: \"mand\" mount option not supported");
1705 	return false;
1706 }
1707 #endif
1708 
1709 static int can_umount(const struct path *path, int flags)
1710 {
1711 	struct mount *mnt = real_mount(path->mnt);
1712 
1713 	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1714 		return -EINVAL;
1715 	if (!may_mount())
1716 		return -EPERM;
1717 	if (path->dentry != path->mnt->mnt_root)
1718 		return -EINVAL;
1719 	if (!check_mnt(mnt))
1720 		return -EINVAL;
1721 	if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
1722 		return -EINVAL;
1723 	if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1724 		return -EPERM;
1725 	return 0;
1726 }
1727 
1728 int path_umount(struct path *path, int flags)
1729 {
1730 	struct mount *mnt = real_mount(path->mnt);
1731 	int ret;
1732 
1733 	ret = can_umount(path, flags);
1734 	if (!ret)
1735 		ret = do_umount(mnt, flags);
1736 
1737 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
1738 	dput(path->dentry);
1739 	mntput_no_expire(mnt);
1740 	return ret;
1741 }
1742 
1743 static int ksys_umount(char __user *name, int flags)
1744 {
1745 	int lookup_flags = LOOKUP_MOUNTPOINT;
1746 	struct path path;
1747 	int ret;
1748 
1749 	if (!(flags & UMOUNT_NOFOLLOW))
1750 		lookup_flags |= LOOKUP_FOLLOW;
1751 	ret = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1752 	if (ret)
1753 		return ret;
1754 	return path_umount(&path, flags);
1755 }
1756 
1757 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1758 {
1759 	return ksys_umount(name, flags);
1760 }
1761 
1762 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1763 
1764 /*
1765  *	The 2.0 compatible umount. No flags.
1766  */
1767 SYSCALL_DEFINE1(oldumount, char __user *, name)
1768 {
1769 	return ksys_umount(name, 0);
1770 }
1771 
1772 #endif
1773 
1774 static bool is_mnt_ns_file(struct dentry *dentry)
1775 {
1776 	/* Is this a proxy for a mount namespace? */
1777 	return dentry->d_op == &ns_dentry_operations &&
1778 	       dentry->d_fsdata == &mntns_operations;
1779 }
1780 
1781 static struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1782 {
1783 	return container_of(ns, struct mnt_namespace, ns);
1784 }
1785 
1786 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt)
1787 {
1788 	return &mnt->ns;
1789 }
1790 
1791 static bool mnt_ns_loop(struct dentry *dentry)
1792 {
1793 	/* Could bind mounting the mount namespace inode cause a
1794 	 * mount namespace loop?
1795 	 */
1796 	struct mnt_namespace *mnt_ns;
1797 	if (!is_mnt_ns_file(dentry))
1798 		return false;
1799 
1800 	mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1801 	return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1802 }
1803 
1804 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1805 					int flag)
1806 {
1807 	struct mount *res, *p, *q, *r, *parent;
1808 
1809 	if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1810 		return ERR_PTR(-EINVAL);
1811 
1812 	if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1813 		return ERR_PTR(-EINVAL);
1814 
1815 	res = q = clone_mnt(mnt, dentry, flag);
1816 	if (IS_ERR(q))
1817 		return q;
1818 
1819 	q->mnt_mountpoint = mnt->mnt_mountpoint;
1820 
1821 	p = mnt;
1822 	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1823 		struct mount *s;
1824 		if (!is_subdir(r->mnt_mountpoint, dentry))
1825 			continue;
1826 
1827 		for (s = r; s; s = next_mnt(s, r)) {
1828 			if (!(flag & CL_COPY_UNBINDABLE) &&
1829 			    IS_MNT_UNBINDABLE(s)) {
1830 				if (s->mnt.mnt_flags & MNT_LOCKED) {
1831 					/* Both unbindable and locked. */
1832 					q = ERR_PTR(-EPERM);
1833 					goto out;
1834 				} else {
1835 					s = skip_mnt_tree(s);
1836 					continue;
1837 				}
1838 			}
1839 			if (!(flag & CL_COPY_MNT_NS_FILE) &&
1840 			    is_mnt_ns_file(s->mnt.mnt_root)) {
1841 				s = skip_mnt_tree(s);
1842 				continue;
1843 			}
1844 			while (p != s->mnt_parent) {
1845 				p = p->mnt_parent;
1846 				q = q->mnt_parent;
1847 			}
1848 			p = s;
1849 			parent = q;
1850 			q = clone_mnt(p, p->mnt.mnt_root, flag);
1851 			if (IS_ERR(q))
1852 				goto out;
1853 			lock_mount_hash();
1854 			list_add_tail(&q->mnt_list, &res->mnt_list);
1855 			attach_mnt(q, parent, p->mnt_mp);
1856 			unlock_mount_hash();
1857 		}
1858 	}
1859 	return res;
1860 out:
1861 	if (res) {
1862 		lock_mount_hash();
1863 		umount_tree(res, UMOUNT_SYNC);
1864 		unlock_mount_hash();
1865 	}
1866 	return q;
1867 }
1868 
1869 /* Caller should check returned pointer for errors */
1870 
1871 struct vfsmount *collect_mounts(const struct path *path)
1872 {
1873 	struct mount *tree;
1874 	namespace_lock();
1875 	if (!check_mnt(real_mount(path->mnt)))
1876 		tree = ERR_PTR(-EINVAL);
1877 	else
1878 		tree = copy_tree(real_mount(path->mnt), path->dentry,
1879 				 CL_COPY_ALL | CL_PRIVATE);
1880 	namespace_unlock();
1881 	if (IS_ERR(tree))
1882 		return ERR_CAST(tree);
1883 	return &tree->mnt;
1884 }
1885 
1886 static void free_mnt_ns(struct mnt_namespace *);
1887 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
1888 
1889 void dissolve_on_fput(struct vfsmount *mnt)
1890 {
1891 	struct mnt_namespace *ns;
1892 	namespace_lock();
1893 	lock_mount_hash();
1894 	ns = real_mount(mnt)->mnt_ns;
1895 	if (ns) {
1896 		if (is_anon_ns(ns))
1897 			umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
1898 		else
1899 			ns = NULL;
1900 	}
1901 	unlock_mount_hash();
1902 	namespace_unlock();
1903 	if (ns)
1904 		free_mnt_ns(ns);
1905 }
1906 
1907 void drop_collected_mounts(struct vfsmount *mnt)
1908 {
1909 	namespace_lock();
1910 	lock_mount_hash();
1911 	umount_tree(real_mount(mnt), 0);
1912 	unlock_mount_hash();
1913 	namespace_unlock();
1914 }
1915 
1916 /**
1917  * clone_private_mount - create a private clone of a path
1918  *
1919  * This creates a new vfsmount, which will be the clone of @path.  The new will
1920  * not be attached anywhere in the namespace and will be private (i.e. changes
1921  * to the originating mount won't be propagated into this).
1922  *
1923  * Release with mntput().
1924  */
1925 struct vfsmount *clone_private_mount(const struct path *path)
1926 {
1927 	struct mount *old_mnt = real_mount(path->mnt);
1928 	struct mount *new_mnt;
1929 
1930 	if (IS_MNT_UNBINDABLE(old_mnt))
1931 		return ERR_PTR(-EINVAL);
1932 
1933 	new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1934 	if (IS_ERR(new_mnt))
1935 		return ERR_CAST(new_mnt);
1936 
1937 	/* Longterm mount to be removed by kern_unmount*() */
1938 	new_mnt->mnt_ns = MNT_NS_INTERNAL;
1939 
1940 	return &new_mnt->mnt;
1941 }
1942 EXPORT_SYMBOL_GPL(clone_private_mount);
1943 
1944 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1945 		   struct vfsmount *root)
1946 {
1947 	struct mount *mnt;
1948 	int res = f(root, arg);
1949 	if (res)
1950 		return res;
1951 	list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1952 		res = f(&mnt->mnt, arg);
1953 		if (res)
1954 			return res;
1955 	}
1956 	return 0;
1957 }
1958 
1959 static void lock_mnt_tree(struct mount *mnt)
1960 {
1961 	struct mount *p;
1962 
1963 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1964 		int flags = p->mnt.mnt_flags;
1965 		/* Don't allow unprivileged users to change mount flags */
1966 		flags |= MNT_LOCK_ATIME;
1967 
1968 		if (flags & MNT_READONLY)
1969 			flags |= MNT_LOCK_READONLY;
1970 
1971 		if (flags & MNT_NODEV)
1972 			flags |= MNT_LOCK_NODEV;
1973 
1974 		if (flags & MNT_NOSUID)
1975 			flags |= MNT_LOCK_NOSUID;
1976 
1977 		if (flags & MNT_NOEXEC)
1978 			flags |= MNT_LOCK_NOEXEC;
1979 		/* Don't allow unprivileged users to reveal what is under a mount */
1980 		if (list_empty(&p->mnt_expire))
1981 			flags |= MNT_LOCKED;
1982 		p->mnt.mnt_flags = flags;
1983 	}
1984 }
1985 
1986 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1987 {
1988 	struct mount *p;
1989 
1990 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1991 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
1992 			mnt_release_group_id(p);
1993 	}
1994 }
1995 
1996 static int invent_group_ids(struct mount *mnt, bool recurse)
1997 {
1998 	struct mount *p;
1999 
2000 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
2001 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
2002 			int err = mnt_alloc_group_id(p);
2003 			if (err) {
2004 				cleanup_group_ids(mnt, p);
2005 				return err;
2006 			}
2007 		}
2008 	}
2009 
2010 	return 0;
2011 }
2012 
2013 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
2014 {
2015 	unsigned int max = READ_ONCE(sysctl_mount_max);
2016 	unsigned int mounts = 0, old, pending, sum;
2017 	struct mount *p;
2018 
2019 	for (p = mnt; p; p = next_mnt(p, mnt))
2020 		mounts++;
2021 
2022 	old = ns->mounts;
2023 	pending = ns->pending_mounts;
2024 	sum = old + pending;
2025 	if ((old > sum) ||
2026 	    (pending > sum) ||
2027 	    (max < sum) ||
2028 	    (mounts > (max - sum)))
2029 		return -ENOSPC;
2030 
2031 	ns->pending_mounts = pending + mounts;
2032 	return 0;
2033 }
2034 
2035 /*
2036  *  @source_mnt : mount tree to be attached
2037  *  @nd         : place the mount tree @source_mnt is attached
2038  *  @parent_nd  : if non-null, detach the source_mnt from its parent and
2039  *  		   store the parent mount and mountpoint dentry.
2040  *  		   (done when source_mnt is moved)
2041  *
2042  *  NOTE: in the table below explains the semantics when a source mount
2043  *  of a given type is attached to a destination mount of a given type.
2044  * ---------------------------------------------------------------------------
2045  * |         BIND MOUNT OPERATION                                            |
2046  * |**************************************************************************
2047  * | source-->| shared        |       private  |       slave    | unbindable |
2048  * | dest     |               |                |                |            |
2049  * |   |      |               |                |                |            |
2050  * |   v      |               |                |                |            |
2051  * |**************************************************************************
2052  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
2053  * |          |               |                |                |            |
2054  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
2055  * ***************************************************************************
2056  * A bind operation clones the source mount and mounts the clone on the
2057  * destination mount.
2058  *
2059  * (++)  the cloned mount is propagated to all the mounts in the propagation
2060  * 	 tree of the destination mount and the cloned mount is added to
2061  * 	 the peer group of the source mount.
2062  * (+)   the cloned mount is created under the destination mount and is marked
2063  *       as shared. The cloned mount is added to the peer group of the source
2064  *       mount.
2065  * (+++) the mount is propagated to all the mounts in the propagation tree
2066  *       of the destination mount and the cloned mount is made slave
2067  *       of the same master as that of the source mount. The cloned mount
2068  *       is marked as 'shared and slave'.
2069  * (*)   the cloned mount is made a slave of the same master as that of the
2070  * 	 source mount.
2071  *
2072  * ---------------------------------------------------------------------------
2073  * |         		MOVE MOUNT OPERATION                                 |
2074  * |**************************************************************************
2075  * | source-->| shared        |       private  |       slave    | unbindable |
2076  * | dest     |               |                |                |            |
2077  * |   |      |               |                |                |            |
2078  * |   v      |               |                |                |            |
2079  * |**************************************************************************
2080  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
2081  * |          |               |                |                |            |
2082  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
2083  * ***************************************************************************
2084  *
2085  * (+)  the mount is moved to the destination. And is then propagated to
2086  * 	all the mounts in the propagation tree of the destination mount.
2087  * (+*)  the mount is moved to the destination.
2088  * (+++)  the mount is moved to the destination and is then propagated to
2089  * 	all the mounts belonging to the destination mount's propagation tree.
2090  * 	the mount is marked as 'shared and slave'.
2091  * (*)	the mount continues to be a slave at the new location.
2092  *
2093  * if the source mount is a tree, the operations explained above is
2094  * applied to each mount in the tree.
2095  * Must be called without spinlocks held, since this function can sleep
2096  * in allocations.
2097  */
2098 static int attach_recursive_mnt(struct mount *source_mnt,
2099 			struct mount *dest_mnt,
2100 			struct mountpoint *dest_mp,
2101 			bool moving)
2102 {
2103 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2104 	HLIST_HEAD(tree_list);
2105 	struct mnt_namespace *ns = dest_mnt->mnt_ns;
2106 	struct mountpoint *smp;
2107 	struct mount *child, *p;
2108 	struct hlist_node *n;
2109 	int err;
2110 
2111 	/* Preallocate a mountpoint in case the new mounts need
2112 	 * to be tucked under other mounts.
2113 	 */
2114 	smp = get_mountpoint(source_mnt->mnt.mnt_root);
2115 	if (IS_ERR(smp))
2116 		return PTR_ERR(smp);
2117 
2118 	/* Is there space to add these mounts to the mount namespace? */
2119 	if (!moving) {
2120 		err = count_mounts(ns, source_mnt);
2121 		if (err)
2122 			goto out;
2123 	}
2124 
2125 	if (IS_MNT_SHARED(dest_mnt)) {
2126 		err = invent_group_ids(source_mnt, true);
2127 		if (err)
2128 			goto out;
2129 		err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2130 		lock_mount_hash();
2131 		if (err)
2132 			goto out_cleanup_ids;
2133 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2134 			set_mnt_shared(p);
2135 	} else {
2136 		lock_mount_hash();
2137 	}
2138 	if (moving) {
2139 		unhash_mnt(source_mnt);
2140 		attach_mnt(source_mnt, dest_mnt, dest_mp);
2141 		touch_mnt_namespace(source_mnt->mnt_ns);
2142 	} else {
2143 		if (source_mnt->mnt_ns) {
2144 			/* move from anon - the caller will destroy */
2145 			list_del_init(&source_mnt->mnt_ns->list);
2146 		}
2147 		mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2148 		commit_tree(source_mnt);
2149 	}
2150 
2151 	hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2152 		struct mount *q;
2153 		hlist_del_init(&child->mnt_hash);
2154 		q = __lookup_mnt(&child->mnt_parent->mnt,
2155 				 child->mnt_mountpoint);
2156 		if (q)
2157 			mnt_change_mountpoint(child, smp, q);
2158 		/* Notice when we are propagating across user namespaces */
2159 		if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2160 			lock_mnt_tree(child);
2161 		child->mnt.mnt_flags &= ~MNT_LOCKED;
2162 		commit_tree(child);
2163 	}
2164 	put_mountpoint(smp);
2165 	unlock_mount_hash();
2166 
2167 	return 0;
2168 
2169  out_cleanup_ids:
2170 	while (!hlist_empty(&tree_list)) {
2171 		child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2172 		child->mnt_parent->mnt_ns->pending_mounts = 0;
2173 		umount_tree(child, UMOUNT_SYNC);
2174 	}
2175 	unlock_mount_hash();
2176 	cleanup_group_ids(source_mnt, NULL);
2177  out:
2178 	ns->pending_mounts = 0;
2179 
2180 	read_seqlock_excl(&mount_lock);
2181 	put_mountpoint(smp);
2182 	read_sequnlock_excl(&mount_lock);
2183 
2184 	return err;
2185 }
2186 
2187 static struct mountpoint *lock_mount(struct path *path)
2188 {
2189 	struct vfsmount *mnt;
2190 	struct dentry *dentry = path->dentry;
2191 retry:
2192 	inode_lock(dentry->d_inode);
2193 	if (unlikely(cant_mount(dentry))) {
2194 		inode_unlock(dentry->d_inode);
2195 		return ERR_PTR(-ENOENT);
2196 	}
2197 	namespace_lock();
2198 	mnt = lookup_mnt(path);
2199 	if (likely(!mnt)) {
2200 		struct mountpoint *mp = get_mountpoint(dentry);
2201 		if (IS_ERR(mp)) {
2202 			namespace_unlock();
2203 			inode_unlock(dentry->d_inode);
2204 			return mp;
2205 		}
2206 		return mp;
2207 	}
2208 	namespace_unlock();
2209 	inode_unlock(path->dentry->d_inode);
2210 	path_put(path);
2211 	path->mnt = mnt;
2212 	dentry = path->dentry = dget(mnt->mnt_root);
2213 	goto retry;
2214 }
2215 
2216 static void unlock_mount(struct mountpoint *where)
2217 {
2218 	struct dentry *dentry = where->m_dentry;
2219 
2220 	read_seqlock_excl(&mount_lock);
2221 	put_mountpoint(where);
2222 	read_sequnlock_excl(&mount_lock);
2223 
2224 	namespace_unlock();
2225 	inode_unlock(dentry->d_inode);
2226 }
2227 
2228 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2229 {
2230 	if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2231 		return -EINVAL;
2232 
2233 	if (d_is_dir(mp->m_dentry) !=
2234 	      d_is_dir(mnt->mnt.mnt_root))
2235 		return -ENOTDIR;
2236 
2237 	return attach_recursive_mnt(mnt, p, mp, false);
2238 }
2239 
2240 /*
2241  * Sanity check the flags to change_mnt_propagation.
2242  */
2243 
2244 static int flags_to_propagation_type(int ms_flags)
2245 {
2246 	int type = ms_flags & ~(MS_REC | MS_SILENT);
2247 
2248 	/* Fail if any non-propagation flags are set */
2249 	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2250 		return 0;
2251 	/* Only one propagation flag should be set */
2252 	if (!is_power_of_2(type))
2253 		return 0;
2254 	return type;
2255 }
2256 
2257 /*
2258  * recursively change the type of the mountpoint.
2259  */
2260 static int do_change_type(struct path *path, int ms_flags)
2261 {
2262 	struct mount *m;
2263 	struct mount *mnt = real_mount(path->mnt);
2264 	int recurse = ms_flags & MS_REC;
2265 	int type;
2266 	int err = 0;
2267 
2268 	if (path->dentry != path->mnt->mnt_root)
2269 		return -EINVAL;
2270 
2271 	type = flags_to_propagation_type(ms_flags);
2272 	if (!type)
2273 		return -EINVAL;
2274 
2275 	namespace_lock();
2276 	if (type == MS_SHARED) {
2277 		err = invent_group_ids(mnt, recurse);
2278 		if (err)
2279 			goto out_unlock;
2280 	}
2281 
2282 	lock_mount_hash();
2283 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2284 		change_mnt_propagation(m, type);
2285 	unlock_mount_hash();
2286 
2287  out_unlock:
2288 	namespace_unlock();
2289 	return err;
2290 }
2291 
2292 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2293 {
2294 	struct mount *child;
2295 	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2296 		if (!is_subdir(child->mnt_mountpoint, dentry))
2297 			continue;
2298 
2299 		if (child->mnt.mnt_flags & MNT_LOCKED)
2300 			return true;
2301 	}
2302 	return false;
2303 }
2304 
2305 static struct mount *__do_loopback(struct path *old_path, int recurse)
2306 {
2307 	struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2308 
2309 	if (IS_MNT_UNBINDABLE(old))
2310 		return mnt;
2311 
2312 	if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
2313 		return mnt;
2314 
2315 	if (!recurse && has_locked_children(old, old_path->dentry))
2316 		return mnt;
2317 
2318 	if (recurse)
2319 		mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2320 	else
2321 		mnt = clone_mnt(old, old_path->dentry, 0);
2322 
2323 	if (!IS_ERR(mnt))
2324 		mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2325 
2326 	return mnt;
2327 }
2328 
2329 /*
2330  * do loopback mount.
2331  */
2332 static int do_loopback(struct path *path, const char *old_name,
2333 				int recurse)
2334 {
2335 	struct path old_path;
2336 	struct mount *mnt = NULL, *parent;
2337 	struct mountpoint *mp;
2338 	int err;
2339 	if (!old_name || !*old_name)
2340 		return -EINVAL;
2341 	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2342 	if (err)
2343 		return err;
2344 
2345 	err = -EINVAL;
2346 	if (mnt_ns_loop(old_path.dentry))
2347 		goto out;
2348 
2349 	mp = lock_mount(path);
2350 	if (IS_ERR(mp)) {
2351 		err = PTR_ERR(mp);
2352 		goto out;
2353 	}
2354 
2355 	parent = real_mount(path->mnt);
2356 	if (!check_mnt(parent))
2357 		goto out2;
2358 
2359 	mnt = __do_loopback(&old_path, recurse);
2360 	if (IS_ERR(mnt)) {
2361 		err = PTR_ERR(mnt);
2362 		goto out2;
2363 	}
2364 
2365 	err = graft_tree(mnt, parent, mp);
2366 	if (err) {
2367 		lock_mount_hash();
2368 		umount_tree(mnt, UMOUNT_SYNC);
2369 		unlock_mount_hash();
2370 	}
2371 out2:
2372 	unlock_mount(mp);
2373 out:
2374 	path_put(&old_path);
2375 	return err;
2376 }
2377 
2378 static struct file *open_detached_copy(struct path *path, bool recursive)
2379 {
2380 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2381 	struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2382 	struct mount *mnt, *p;
2383 	struct file *file;
2384 
2385 	if (IS_ERR(ns))
2386 		return ERR_CAST(ns);
2387 
2388 	namespace_lock();
2389 	mnt = __do_loopback(path, recursive);
2390 	if (IS_ERR(mnt)) {
2391 		namespace_unlock();
2392 		free_mnt_ns(ns);
2393 		return ERR_CAST(mnt);
2394 	}
2395 
2396 	lock_mount_hash();
2397 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2398 		p->mnt_ns = ns;
2399 		ns->mounts++;
2400 	}
2401 	ns->root = mnt;
2402 	list_add_tail(&ns->list, &mnt->mnt_list);
2403 	mntget(&mnt->mnt);
2404 	unlock_mount_hash();
2405 	namespace_unlock();
2406 
2407 	mntput(path->mnt);
2408 	path->mnt = &mnt->mnt;
2409 	file = dentry_open(path, O_PATH, current_cred());
2410 	if (IS_ERR(file))
2411 		dissolve_on_fput(path->mnt);
2412 	else
2413 		file->f_mode |= FMODE_NEED_UNMOUNT;
2414 	return file;
2415 }
2416 
2417 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
2418 {
2419 	struct file *file;
2420 	struct path path;
2421 	int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2422 	bool detached = flags & OPEN_TREE_CLONE;
2423 	int error;
2424 	int fd;
2425 
2426 	BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2427 
2428 	if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2429 		      AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2430 		      OPEN_TREE_CLOEXEC))
2431 		return -EINVAL;
2432 
2433 	if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2434 		return -EINVAL;
2435 
2436 	if (flags & AT_NO_AUTOMOUNT)
2437 		lookup_flags &= ~LOOKUP_AUTOMOUNT;
2438 	if (flags & AT_SYMLINK_NOFOLLOW)
2439 		lookup_flags &= ~LOOKUP_FOLLOW;
2440 	if (flags & AT_EMPTY_PATH)
2441 		lookup_flags |= LOOKUP_EMPTY;
2442 
2443 	if (detached && !may_mount())
2444 		return -EPERM;
2445 
2446 	fd = get_unused_fd_flags(flags & O_CLOEXEC);
2447 	if (fd < 0)
2448 		return fd;
2449 
2450 	error = user_path_at(dfd, filename, lookup_flags, &path);
2451 	if (unlikely(error)) {
2452 		file = ERR_PTR(error);
2453 	} else {
2454 		if (detached)
2455 			file = open_detached_copy(&path, flags & AT_RECURSIVE);
2456 		else
2457 			file = dentry_open(&path, O_PATH, current_cred());
2458 		path_put(&path);
2459 	}
2460 	if (IS_ERR(file)) {
2461 		put_unused_fd(fd);
2462 		return PTR_ERR(file);
2463 	}
2464 	fd_install(fd, file);
2465 	return fd;
2466 }
2467 
2468 /*
2469  * Don't allow locked mount flags to be cleared.
2470  *
2471  * No locks need to be held here while testing the various MNT_LOCK
2472  * flags because those flags can never be cleared once they are set.
2473  */
2474 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2475 {
2476 	unsigned int fl = mnt->mnt.mnt_flags;
2477 
2478 	if ((fl & MNT_LOCK_READONLY) &&
2479 	    !(mnt_flags & MNT_READONLY))
2480 		return false;
2481 
2482 	if ((fl & MNT_LOCK_NODEV) &&
2483 	    !(mnt_flags & MNT_NODEV))
2484 		return false;
2485 
2486 	if ((fl & MNT_LOCK_NOSUID) &&
2487 	    !(mnt_flags & MNT_NOSUID))
2488 		return false;
2489 
2490 	if ((fl & MNT_LOCK_NOEXEC) &&
2491 	    !(mnt_flags & MNT_NOEXEC))
2492 		return false;
2493 
2494 	if ((fl & MNT_LOCK_ATIME) &&
2495 	    ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2496 		return false;
2497 
2498 	return true;
2499 }
2500 
2501 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2502 {
2503 	bool readonly_request = (mnt_flags & MNT_READONLY);
2504 
2505 	if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2506 		return 0;
2507 
2508 	if (readonly_request)
2509 		return mnt_make_readonly(mnt);
2510 
2511 	return __mnt_unmake_readonly(mnt);
2512 }
2513 
2514 /*
2515  * Update the user-settable attributes on a mount.  The caller must hold
2516  * sb->s_umount for writing.
2517  */
2518 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2519 {
2520 	lock_mount_hash();
2521 	mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2522 	mnt->mnt.mnt_flags = mnt_flags;
2523 	touch_mnt_namespace(mnt->mnt_ns);
2524 	unlock_mount_hash();
2525 }
2526 
2527 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
2528 {
2529 	struct super_block *sb = mnt->mnt_sb;
2530 
2531 	if (!__mnt_is_readonly(mnt) &&
2532 	   (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
2533 		char *buf = (char *)__get_free_page(GFP_KERNEL);
2534 		char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM);
2535 		struct tm tm;
2536 
2537 		time64_to_tm(sb->s_time_max, 0, &tm);
2538 
2539 		pr_warn("%s filesystem being %s at %s supports timestamps until %04ld (0x%llx)\n",
2540 			sb->s_type->name,
2541 			is_mounted(mnt) ? "remounted" : "mounted",
2542 			mntpath,
2543 			tm.tm_year+1900, (unsigned long long)sb->s_time_max);
2544 
2545 		free_page((unsigned long)buf);
2546 	}
2547 }
2548 
2549 /*
2550  * Handle reconfiguration of the mountpoint only without alteration of the
2551  * superblock it refers to.  This is triggered by specifying MS_REMOUNT|MS_BIND
2552  * to mount(2).
2553  */
2554 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2555 {
2556 	struct super_block *sb = path->mnt->mnt_sb;
2557 	struct mount *mnt = real_mount(path->mnt);
2558 	int ret;
2559 
2560 	if (!check_mnt(mnt))
2561 		return -EINVAL;
2562 
2563 	if (path->dentry != mnt->mnt.mnt_root)
2564 		return -EINVAL;
2565 
2566 	if (!can_change_locked_flags(mnt, mnt_flags))
2567 		return -EPERM;
2568 
2569 	down_write(&sb->s_umount);
2570 	ret = change_mount_ro_state(mnt, mnt_flags);
2571 	if (ret == 0)
2572 		set_mount_attributes(mnt, mnt_flags);
2573 	up_write(&sb->s_umount);
2574 
2575 	mnt_warn_timestamp_expiry(path, &mnt->mnt);
2576 
2577 	return ret;
2578 }
2579 
2580 /*
2581  * change filesystem flags. dir should be a physical root of filesystem.
2582  * If you've mounted a non-root directory somewhere and want to do remount
2583  * on it - tough luck.
2584  */
2585 static int do_remount(struct path *path, int ms_flags, int sb_flags,
2586 		      int mnt_flags, void *data)
2587 {
2588 	int err;
2589 	struct super_block *sb = path->mnt->mnt_sb;
2590 	struct mount *mnt = real_mount(path->mnt);
2591 	struct fs_context *fc;
2592 
2593 	if (!check_mnt(mnt))
2594 		return -EINVAL;
2595 
2596 	if (path->dentry != path->mnt->mnt_root)
2597 		return -EINVAL;
2598 
2599 	if (!can_change_locked_flags(mnt, mnt_flags))
2600 		return -EPERM;
2601 
2602 	fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
2603 	if (IS_ERR(fc))
2604 		return PTR_ERR(fc);
2605 
2606 	fc->oldapi = true;
2607 	err = parse_monolithic_mount_data(fc, data);
2608 	if (!err) {
2609 		down_write(&sb->s_umount);
2610 		err = -EPERM;
2611 		if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
2612 			err = reconfigure_super(fc);
2613 			if (!err)
2614 				set_mount_attributes(mnt, mnt_flags);
2615 		}
2616 		up_write(&sb->s_umount);
2617 	}
2618 
2619 	mnt_warn_timestamp_expiry(path, &mnt->mnt);
2620 
2621 	put_fs_context(fc);
2622 	return err;
2623 }
2624 
2625 static inline int tree_contains_unbindable(struct mount *mnt)
2626 {
2627 	struct mount *p;
2628 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2629 		if (IS_MNT_UNBINDABLE(p))
2630 			return 1;
2631 	}
2632 	return 0;
2633 }
2634 
2635 /*
2636  * Check that there aren't references to earlier/same mount namespaces in the
2637  * specified subtree.  Such references can act as pins for mount namespaces
2638  * that aren't checked by the mount-cycle checking code, thereby allowing
2639  * cycles to be made.
2640  */
2641 static bool check_for_nsfs_mounts(struct mount *subtree)
2642 {
2643 	struct mount *p;
2644 	bool ret = false;
2645 
2646 	lock_mount_hash();
2647 	for (p = subtree; p; p = next_mnt(p, subtree))
2648 		if (mnt_ns_loop(p->mnt.mnt_root))
2649 			goto out;
2650 
2651 	ret = true;
2652 out:
2653 	unlock_mount_hash();
2654 	return ret;
2655 }
2656 
2657 static int do_move_mount(struct path *old_path, struct path *new_path)
2658 {
2659 	struct mnt_namespace *ns;
2660 	struct mount *p;
2661 	struct mount *old;
2662 	struct mount *parent;
2663 	struct mountpoint *mp, *old_mp;
2664 	int err;
2665 	bool attached;
2666 
2667 	mp = lock_mount(new_path);
2668 	if (IS_ERR(mp))
2669 		return PTR_ERR(mp);
2670 
2671 	old = real_mount(old_path->mnt);
2672 	p = real_mount(new_path->mnt);
2673 	parent = old->mnt_parent;
2674 	attached = mnt_has_parent(old);
2675 	old_mp = old->mnt_mp;
2676 	ns = old->mnt_ns;
2677 
2678 	err = -EINVAL;
2679 	/* The mountpoint must be in our namespace. */
2680 	if (!check_mnt(p))
2681 		goto out;
2682 
2683 	/* The thing moved must be mounted... */
2684 	if (!is_mounted(&old->mnt))
2685 		goto out;
2686 
2687 	/* ... and either ours or the root of anon namespace */
2688 	if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
2689 		goto out;
2690 
2691 	if (old->mnt.mnt_flags & MNT_LOCKED)
2692 		goto out;
2693 
2694 	if (old_path->dentry != old_path->mnt->mnt_root)
2695 		goto out;
2696 
2697 	if (d_is_dir(new_path->dentry) !=
2698 	    d_is_dir(old_path->dentry))
2699 		goto out;
2700 	/*
2701 	 * Don't move a mount residing in a shared parent.
2702 	 */
2703 	if (attached && IS_MNT_SHARED(parent))
2704 		goto out;
2705 	/*
2706 	 * Don't move a mount tree containing unbindable mounts to a destination
2707 	 * mount which is shared.
2708 	 */
2709 	if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2710 		goto out;
2711 	err = -ELOOP;
2712 	if (!check_for_nsfs_mounts(old))
2713 		goto out;
2714 	for (; mnt_has_parent(p); p = p->mnt_parent)
2715 		if (p == old)
2716 			goto out;
2717 
2718 	err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp,
2719 				   attached);
2720 	if (err)
2721 		goto out;
2722 
2723 	/* if the mount is moved, it should no longer be expire
2724 	 * automatically */
2725 	list_del_init(&old->mnt_expire);
2726 	if (attached)
2727 		put_mountpoint(old_mp);
2728 out:
2729 	unlock_mount(mp);
2730 	if (!err) {
2731 		if (attached)
2732 			mntput_no_expire(parent);
2733 		else
2734 			free_mnt_ns(ns);
2735 	}
2736 	return err;
2737 }
2738 
2739 static int do_move_mount_old(struct path *path, const char *old_name)
2740 {
2741 	struct path old_path;
2742 	int err;
2743 
2744 	if (!old_name || !*old_name)
2745 		return -EINVAL;
2746 
2747 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2748 	if (err)
2749 		return err;
2750 
2751 	err = do_move_mount(&old_path, path);
2752 	path_put(&old_path);
2753 	return err;
2754 }
2755 
2756 /*
2757  * add a mount into a namespace's mount tree
2758  */
2759 static int do_add_mount(struct mount *newmnt, struct mountpoint *mp,
2760 			struct path *path, int mnt_flags)
2761 {
2762 	struct mount *parent = real_mount(path->mnt);
2763 
2764 	mnt_flags &= ~MNT_INTERNAL_FLAGS;
2765 
2766 	if (unlikely(!check_mnt(parent))) {
2767 		/* that's acceptable only for automounts done in private ns */
2768 		if (!(mnt_flags & MNT_SHRINKABLE))
2769 			return -EINVAL;
2770 		/* ... and for those we'd better have mountpoint still alive */
2771 		if (!parent->mnt_ns)
2772 			return -EINVAL;
2773 	}
2774 
2775 	/* Refuse the same filesystem on the same mount point */
2776 	if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2777 	    path->mnt->mnt_root == path->dentry)
2778 		return -EBUSY;
2779 
2780 	if (d_is_symlink(newmnt->mnt.mnt_root))
2781 		return -EINVAL;
2782 
2783 	newmnt->mnt.mnt_flags = mnt_flags;
2784 	return graft_tree(newmnt, parent, mp);
2785 }
2786 
2787 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
2788 
2789 /*
2790  * Create a new mount using a superblock configuration and request it
2791  * be added to the namespace tree.
2792  */
2793 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
2794 			   unsigned int mnt_flags)
2795 {
2796 	struct vfsmount *mnt;
2797 	struct mountpoint *mp;
2798 	struct super_block *sb = fc->root->d_sb;
2799 	int error;
2800 
2801 	error = security_sb_kern_mount(sb);
2802 	if (!error && mount_too_revealing(sb, &mnt_flags))
2803 		error = -EPERM;
2804 
2805 	if (unlikely(error)) {
2806 		fc_drop_locked(fc);
2807 		return error;
2808 	}
2809 
2810 	up_write(&sb->s_umount);
2811 
2812 	mnt = vfs_create_mount(fc);
2813 	if (IS_ERR(mnt))
2814 		return PTR_ERR(mnt);
2815 
2816 	mnt_warn_timestamp_expiry(mountpoint, mnt);
2817 
2818 	mp = lock_mount(mountpoint);
2819 	if (IS_ERR(mp)) {
2820 		mntput(mnt);
2821 		return PTR_ERR(mp);
2822 	}
2823 	error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags);
2824 	unlock_mount(mp);
2825 	if (error < 0)
2826 		mntput(mnt);
2827 	return error;
2828 }
2829 
2830 /*
2831  * create a new mount for userspace and request it to be added into the
2832  * namespace's tree
2833  */
2834 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
2835 			int mnt_flags, const char *name, void *data)
2836 {
2837 	struct file_system_type *type;
2838 	struct fs_context *fc;
2839 	const char *subtype = NULL;
2840 	int err = 0;
2841 
2842 	if (!fstype)
2843 		return -EINVAL;
2844 
2845 	type = get_fs_type(fstype);
2846 	if (!type)
2847 		return -ENODEV;
2848 
2849 	if (type->fs_flags & FS_HAS_SUBTYPE) {
2850 		subtype = strchr(fstype, '.');
2851 		if (subtype) {
2852 			subtype++;
2853 			if (!*subtype) {
2854 				put_filesystem(type);
2855 				return -EINVAL;
2856 			}
2857 		}
2858 	}
2859 
2860 	fc = fs_context_for_mount(type, sb_flags);
2861 	put_filesystem(type);
2862 	if (IS_ERR(fc))
2863 		return PTR_ERR(fc);
2864 
2865 	if (subtype)
2866 		err = vfs_parse_fs_string(fc, "subtype",
2867 					  subtype, strlen(subtype));
2868 	if (!err && name)
2869 		err = vfs_parse_fs_string(fc, "source", name, strlen(name));
2870 	if (!err)
2871 		err = parse_monolithic_mount_data(fc, data);
2872 	if (!err && !mount_capable(fc))
2873 		err = -EPERM;
2874 	if (!err)
2875 		err = vfs_get_tree(fc);
2876 	if (!err)
2877 		err = do_new_mount_fc(fc, path, mnt_flags);
2878 
2879 	put_fs_context(fc);
2880 	return err;
2881 }
2882 
2883 int finish_automount(struct vfsmount *m, struct path *path)
2884 {
2885 	struct dentry *dentry = path->dentry;
2886 	struct mountpoint *mp;
2887 	struct mount *mnt;
2888 	int err;
2889 
2890 	if (!m)
2891 		return 0;
2892 	if (IS_ERR(m))
2893 		return PTR_ERR(m);
2894 
2895 	mnt = real_mount(m);
2896 	/* The new mount record should have at least 2 refs to prevent it being
2897 	 * expired before we get a chance to add it
2898 	 */
2899 	BUG_ON(mnt_get_count(mnt) < 2);
2900 
2901 	if (m->mnt_sb == path->mnt->mnt_sb &&
2902 	    m->mnt_root == dentry) {
2903 		err = -ELOOP;
2904 		goto discard;
2905 	}
2906 
2907 	/*
2908 	 * we don't want to use lock_mount() - in this case finding something
2909 	 * that overmounts our mountpoint to be means "quitely drop what we've
2910 	 * got", not "try to mount it on top".
2911 	 */
2912 	inode_lock(dentry->d_inode);
2913 	namespace_lock();
2914 	if (unlikely(cant_mount(dentry))) {
2915 		err = -ENOENT;
2916 		goto discard_locked;
2917 	}
2918 	rcu_read_lock();
2919 	if (unlikely(__lookup_mnt(path->mnt, dentry))) {
2920 		rcu_read_unlock();
2921 		err = 0;
2922 		goto discard_locked;
2923 	}
2924 	rcu_read_unlock();
2925 	mp = get_mountpoint(dentry);
2926 	if (IS_ERR(mp)) {
2927 		err = PTR_ERR(mp);
2928 		goto discard_locked;
2929 	}
2930 
2931 	err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2932 	unlock_mount(mp);
2933 	if (unlikely(err))
2934 		goto discard;
2935 	mntput(m);
2936 	return 0;
2937 
2938 discard_locked:
2939 	namespace_unlock();
2940 	inode_unlock(dentry->d_inode);
2941 discard:
2942 	/* remove m from any expiration list it may be on */
2943 	if (!list_empty(&mnt->mnt_expire)) {
2944 		namespace_lock();
2945 		list_del_init(&mnt->mnt_expire);
2946 		namespace_unlock();
2947 	}
2948 	mntput(m);
2949 	mntput(m);
2950 	return err;
2951 }
2952 
2953 /**
2954  * mnt_set_expiry - Put a mount on an expiration list
2955  * @mnt: The mount to list.
2956  * @expiry_list: The list to add the mount to.
2957  */
2958 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2959 {
2960 	namespace_lock();
2961 
2962 	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2963 
2964 	namespace_unlock();
2965 }
2966 EXPORT_SYMBOL(mnt_set_expiry);
2967 
2968 /*
2969  * process a list of expirable mountpoints with the intent of discarding any
2970  * mountpoints that aren't in use and haven't been touched since last we came
2971  * here
2972  */
2973 void mark_mounts_for_expiry(struct list_head *mounts)
2974 {
2975 	struct mount *mnt, *next;
2976 	LIST_HEAD(graveyard);
2977 
2978 	if (list_empty(mounts))
2979 		return;
2980 
2981 	namespace_lock();
2982 	lock_mount_hash();
2983 
2984 	/* extract from the expiration list every vfsmount that matches the
2985 	 * following criteria:
2986 	 * - only referenced by its parent vfsmount
2987 	 * - still marked for expiry (marked on the last call here; marks are
2988 	 *   cleared by mntput())
2989 	 */
2990 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2991 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2992 			propagate_mount_busy(mnt, 1))
2993 			continue;
2994 		list_move(&mnt->mnt_expire, &graveyard);
2995 	}
2996 	while (!list_empty(&graveyard)) {
2997 		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2998 		touch_mnt_namespace(mnt->mnt_ns);
2999 		umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3000 	}
3001 	unlock_mount_hash();
3002 	namespace_unlock();
3003 }
3004 
3005 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
3006 
3007 /*
3008  * Ripoff of 'select_parent()'
3009  *
3010  * search the list of submounts for a given mountpoint, and move any
3011  * shrinkable submounts to the 'graveyard' list.
3012  */
3013 static int select_submounts(struct mount *parent, struct list_head *graveyard)
3014 {
3015 	struct mount *this_parent = parent;
3016 	struct list_head *next;
3017 	int found = 0;
3018 
3019 repeat:
3020 	next = this_parent->mnt_mounts.next;
3021 resume:
3022 	while (next != &this_parent->mnt_mounts) {
3023 		struct list_head *tmp = next;
3024 		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
3025 
3026 		next = tmp->next;
3027 		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
3028 			continue;
3029 		/*
3030 		 * Descend a level if the d_mounts list is non-empty.
3031 		 */
3032 		if (!list_empty(&mnt->mnt_mounts)) {
3033 			this_parent = mnt;
3034 			goto repeat;
3035 		}
3036 
3037 		if (!propagate_mount_busy(mnt, 1)) {
3038 			list_move_tail(&mnt->mnt_expire, graveyard);
3039 			found++;
3040 		}
3041 	}
3042 	/*
3043 	 * All done at this level ... ascend and resume the search
3044 	 */
3045 	if (this_parent != parent) {
3046 		next = this_parent->mnt_child.next;
3047 		this_parent = this_parent->mnt_parent;
3048 		goto resume;
3049 	}
3050 	return found;
3051 }
3052 
3053 /*
3054  * process a list of expirable mountpoints with the intent of discarding any
3055  * submounts of a specific parent mountpoint
3056  *
3057  * mount_lock must be held for write
3058  */
3059 static void shrink_submounts(struct mount *mnt)
3060 {
3061 	LIST_HEAD(graveyard);
3062 	struct mount *m;
3063 
3064 	/* extract submounts of 'mountpoint' from the expiration list */
3065 	while (select_submounts(mnt, &graveyard)) {
3066 		while (!list_empty(&graveyard)) {
3067 			m = list_first_entry(&graveyard, struct mount,
3068 						mnt_expire);
3069 			touch_mnt_namespace(m->mnt_ns);
3070 			umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3071 		}
3072 	}
3073 }
3074 
3075 void *copy_mount_options(const void __user * data)
3076 {
3077 	char *copy;
3078 	unsigned size;
3079 
3080 	if (!data)
3081 		return NULL;
3082 
3083 	copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
3084 	if (!copy)
3085 		return ERR_PTR(-ENOMEM);
3086 
3087 	size = PAGE_SIZE - offset_in_page(data);
3088 
3089 	if (copy_from_user(copy, data, size)) {
3090 		kfree(copy);
3091 		return ERR_PTR(-EFAULT);
3092 	}
3093 	if (size != PAGE_SIZE) {
3094 		if (copy_from_user(copy + size, data + size, PAGE_SIZE - size))
3095 			memset(copy + size, 0, PAGE_SIZE - size);
3096 	}
3097 	return copy;
3098 }
3099 
3100 char *copy_mount_string(const void __user *data)
3101 {
3102 	return data ? strndup_user(data, PATH_MAX) : NULL;
3103 }
3104 
3105 /*
3106  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3107  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3108  *
3109  * data is a (void *) that can point to any structure up to
3110  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3111  * information (or be NULL).
3112  *
3113  * Pre-0.97 versions of mount() didn't have a flags word.
3114  * When the flags word was introduced its top half was required
3115  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3116  * Therefore, if this magic number is present, it carries no information
3117  * and must be discarded.
3118  */
3119 int path_mount(const char *dev_name, struct path *path,
3120 		const char *type_page, unsigned long flags, void *data_page)
3121 {
3122 	unsigned int mnt_flags = 0, sb_flags;
3123 	int ret;
3124 
3125 	/* Discard magic */
3126 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3127 		flags &= ~MS_MGC_MSK;
3128 
3129 	/* Basic sanity checks */
3130 	if (data_page)
3131 		((char *)data_page)[PAGE_SIZE - 1] = 0;
3132 
3133 	if (flags & MS_NOUSER)
3134 		return -EINVAL;
3135 
3136 	ret = security_sb_mount(dev_name, path, type_page, flags, data_page);
3137 	if (ret)
3138 		return ret;
3139 	if (!may_mount())
3140 		return -EPERM;
3141 	if ((flags & SB_MANDLOCK) && !may_mandlock())
3142 		return -EPERM;
3143 
3144 	/* Default to relatime unless overriden */
3145 	if (!(flags & MS_NOATIME))
3146 		mnt_flags |= MNT_RELATIME;
3147 
3148 	/* Separate the per-mountpoint flags */
3149 	if (flags & MS_NOSUID)
3150 		mnt_flags |= MNT_NOSUID;
3151 	if (flags & MS_NODEV)
3152 		mnt_flags |= MNT_NODEV;
3153 	if (flags & MS_NOEXEC)
3154 		mnt_flags |= MNT_NOEXEC;
3155 	if (flags & MS_NOATIME)
3156 		mnt_flags |= MNT_NOATIME;
3157 	if (flags & MS_NODIRATIME)
3158 		mnt_flags |= MNT_NODIRATIME;
3159 	if (flags & MS_STRICTATIME)
3160 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
3161 	if (flags & MS_RDONLY)
3162 		mnt_flags |= MNT_READONLY;
3163 
3164 	/* The default atime for remount is preservation */
3165 	if ((flags & MS_REMOUNT) &&
3166 	    ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3167 		       MS_STRICTATIME)) == 0)) {
3168 		mnt_flags &= ~MNT_ATIME_MASK;
3169 		mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK;
3170 	}
3171 
3172 	sb_flags = flags & (SB_RDONLY |
3173 			    SB_SYNCHRONOUS |
3174 			    SB_MANDLOCK |
3175 			    SB_DIRSYNC |
3176 			    SB_SILENT |
3177 			    SB_POSIXACL |
3178 			    SB_LAZYTIME |
3179 			    SB_I_VERSION);
3180 
3181 	if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
3182 		return do_reconfigure_mnt(path, mnt_flags);
3183 	if (flags & MS_REMOUNT)
3184 		return do_remount(path, flags, sb_flags, mnt_flags, data_page);
3185 	if (flags & MS_BIND)
3186 		return do_loopback(path, dev_name, flags & MS_REC);
3187 	if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
3188 		return do_change_type(path, flags);
3189 	if (flags & MS_MOVE)
3190 		return do_move_mount_old(path, dev_name);
3191 
3192 	return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name,
3193 			    data_page);
3194 }
3195 
3196 long do_mount(const char *dev_name, const char __user *dir_name,
3197 		const char *type_page, unsigned long flags, void *data_page)
3198 {
3199 	struct path path;
3200 	int ret;
3201 
3202 	ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
3203 	if (ret)
3204 		return ret;
3205 	ret = path_mount(dev_name, &path, type_page, flags, data_page);
3206 	path_put(&path);
3207 	return ret;
3208 }
3209 
3210 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3211 {
3212 	return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3213 }
3214 
3215 static void dec_mnt_namespaces(struct ucounts *ucounts)
3216 {
3217 	dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3218 }
3219 
3220 static void free_mnt_ns(struct mnt_namespace *ns)
3221 {
3222 	if (!is_anon_ns(ns))
3223 		ns_free_inum(&ns->ns);
3224 	dec_mnt_namespaces(ns->ucounts);
3225 	put_user_ns(ns->user_ns);
3226 	kfree(ns);
3227 }
3228 
3229 /*
3230  * Assign a sequence number so we can detect when we attempt to bind
3231  * mount a reference to an older mount namespace into the current
3232  * mount namespace, preventing reference counting loops.  A 64bit
3233  * number incrementing at 10Ghz will take 12,427 years to wrap which
3234  * is effectively never, so we can ignore the possibility.
3235  */
3236 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3237 
3238 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
3239 {
3240 	struct mnt_namespace *new_ns;
3241 	struct ucounts *ucounts;
3242 	int ret;
3243 
3244 	ucounts = inc_mnt_namespaces(user_ns);
3245 	if (!ucounts)
3246 		return ERR_PTR(-ENOSPC);
3247 
3248 	new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
3249 	if (!new_ns) {
3250 		dec_mnt_namespaces(ucounts);
3251 		return ERR_PTR(-ENOMEM);
3252 	}
3253 	if (!anon) {
3254 		ret = ns_alloc_inum(&new_ns->ns);
3255 		if (ret) {
3256 			kfree(new_ns);
3257 			dec_mnt_namespaces(ucounts);
3258 			return ERR_PTR(ret);
3259 		}
3260 	}
3261 	new_ns->ns.ops = &mntns_operations;
3262 	if (!anon)
3263 		new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
3264 	atomic_set(&new_ns->count, 1);
3265 	INIT_LIST_HEAD(&new_ns->list);
3266 	init_waitqueue_head(&new_ns->poll);
3267 	spin_lock_init(&new_ns->ns_lock);
3268 	new_ns->user_ns = get_user_ns(user_ns);
3269 	new_ns->ucounts = ucounts;
3270 	return new_ns;
3271 }
3272 
3273 __latent_entropy
3274 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3275 		struct user_namespace *user_ns, struct fs_struct *new_fs)
3276 {
3277 	struct mnt_namespace *new_ns;
3278 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
3279 	struct mount *p, *q;
3280 	struct mount *old;
3281 	struct mount *new;
3282 	int copy_flags;
3283 
3284 	BUG_ON(!ns);
3285 
3286 	if (likely(!(flags & CLONE_NEWNS))) {
3287 		get_mnt_ns(ns);
3288 		return ns;
3289 	}
3290 
3291 	old = ns->root;
3292 
3293 	new_ns = alloc_mnt_ns(user_ns, false);
3294 	if (IS_ERR(new_ns))
3295 		return new_ns;
3296 
3297 	namespace_lock();
3298 	/* First pass: copy the tree topology */
3299 	copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
3300 	if (user_ns != ns->user_ns)
3301 		copy_flags |= CL_SHARED_TO_SLAVE;
3302 	new = copy_tree(old, old->mnt.mnt_root, copy_flags);
3303 	if (IS_ERR(new)) {
3304 		namespace_unlock();
3305 		free_mnt_ns(new_ns);
3306 		return ERR_CAST(new);
3307 	}
3308 	if (user_ns != ns->user_ns) {
3309 		lock_mount_hash();
3310 		lock_mnt_tree(new);
3311 		unlock_mount_hash();
3312 	}
3313 	new_ns->root = new;
3314 	list_add_tail(&new_ns->list, &new->mnt_list);
3315 
3316 	/*
3317 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3318 	 * as belonging to new namespace.  We have already acquired a private
3319 	 * fs_struct, so tsk->fs->lock is not needed.
3320 	 */
3321 	p = old;
3322 	q = new;
3323 	while (p) {
3324 		q->mnt_ns = new_ns;
3325 		new_ns->mounts++;
3326 		if (new_fs) {
3327 			if (&p->mnt == new_fs->root.mnt) {
3328 				new_fs->root.mnt = mntget(&q->mnt);
3329 				rootmnt = &p->mnt;
3330 			}
3331 			if (&p->mnt == new_fs->pwd.mnt) {
3332 				new_fs->pwd.mnt = mntget(&q->mnt);
3333 				pwdmnt = &p->mnt;
3334 			}
3335 		}
3336 		p = next_mnt(p, old);
3337 		q = next_mnt(q, new);
3338 		if (!q)
3339 			break;
3340 		while (p->mnt.mnt_root != q->mnt.mnt_root)
3341 			p = next_mnt(p, old);
3342 	}
3343 	namespace_unlock();
3344 
3345 	if (rootmnt)
3346 		mntput(rootmnt);
3347 	if (pwdmnt)
3348 		mntput(pwdmnt);
3349 
3350 	return new_ns;
3351 }
3352 
3353 struct dentry *mount_subtree(struct vfsmount *m, const char *name)
3354 {
3355 	struct mount *mnt = real_mount(m);
3356 	struct mnt_namespace *ns;
3357 	struct super_block *s;
3358 	struct path path;
3359 	int err;
3360 
3361 	ns = alloc_mnt_ns(&init_user_ns, true);
3362 	if (IS_ERR(ns)) {
3363 		mntput(m);
3364 		return ERR_CAST(ns);
3365 	}
3366 	mnt->mnt_ns = ns;
3367 	ns->root = mnt;
3368 	ns->mounts++;
3369 	list_add(&mnt->mnt_list, &ns->list);
3370 
3371 	err = vfs_path_lookup(m->mnt_root, m,
3372 			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3373 
3374 	put_mnt_ns(ns);
3375 
3376 	if (err)
3377 		return ERR_PTR(err);
3378 
3379 	/* trade a vfsmount reference for active sb one */
3380 	s = path.mnt->mnt_sb;
3381 	atomic_inc(&s->s_active);
3382 	mntput(path.mnt);
3383 	/* lock the sucker */
3384 	down_write(&s->s_umount);
3385 	/* ... and return the root of (sub)tree on it */
3386 	return path.dentry;
3387 }
3388 EXPORT_SYMBOL(mount_subtree);
3389 
3390 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3391 		char __user *, type, unsigned long, flags, void __user *, data)
3392 {
3393 	int ret;
3394 	char *kernel_type;
3395 	char *kernel_dev;
3396 	void *options;
3397 
3398 	kernel_type = copy_mount_string(type);
3399 	ret = PTR_ERR(kernel_type);
3400 	if (IS_ERR(kernel_type))
3401 		goto out_type;
3402 
3403 	kernel_dev = copy_mount_string(dev_name);
3404 	ret = PTR_ERR(kernel_dev);
3405 	if (IS_ERR(kernel_dev))
3406 		goto out_dev;
3407 
3408 	options = copy_mount_options(data);
3409 	ret = PTR_ERR(options);
3410 	if (IS_ERR(options))
3411 		goto out_data;
3412 
3413 	ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3414 
3415 	kfree(options);
3416 out_data:
3417 	kfree(kernel_dev);
3418 out_dev:
3419 	kfree(kernel_type);
3420 out_type:
3421 	return ret;
3422 }
3423 
3424 /*
3425  * Create a kernel mount representation for a new, prepared superblock
3426  * (specified by fs_fd) and attach to an open_tree-like file descriptor.
3427  */
3428 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
3429 		unsigned int, attr_flags)
3430 {
3431 	struct mnt_namespace *ns;
3432 	struct fs_context *fc;
3433 	struct file *file;
3434 	struct path newmount;
3435 	struct mount *mnt;
3436 	struct fd f;
3437 	unsigned int mnt_flags = 0;
3438 	long ret;
3439 
3440 	if (!may_mount())
3441 		return -EPERM;
3442 
3443 	if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
3444 		return -EINVAL;
3445 
3446 	if (attr_flags & ~(MOUNT_ATTR_RDONLY |
3447 			   MOUNT_ATTR_NOSUID |
3448 			   MOUNT_ATTR_NODEV |
3449 			   MOUNT_ATTR_NOEXEC |
3450 			   MOUNT_ATTR__ATIME |
3451 			   MOUNT_ATTR_NODIRATIME))
3452 		return -EINVAL;
3453 
3454 	if (attr_flags & MOUNT_ATTR_RDONLY)
3455 		mnt_flags |= MNT_READONLY;
3456 	if (attr_flags & MOUNT_ATTR_NOSUID)
3457 		mnt_flags |= MNT_NOSUID;
3458 	if (attr_flags & MOUNT_ATTR_NODEV)
3459 		mnt_flags |= MNT_NODEV;
3460 	if (attr_flags & MOUNT_ATTR_NOEXEC)
3461 		mnt_flags |= MNT_NOEXEC;
3462 	if (attr_flags & MOUNT_ATTR_NODIRATIME)
3463 		mnt_flags |= MNT_NODIRATIME;
3464 
3465 	switch (attr_flags & MOUNT_ATTR__ATIME) {
3466 	case MOUNT_ATTR_STRICTATIME:
3467 		break;
3468 	case MOUNT_ATTR_NOATIME:
3469 		mnt_flags |= MNT_NOATIME;
3470 		break;
3471 	case MOUNT_ATTR_RELATIME:
3472 		mnt_flags |= MNT_RELATIME;
3473 		break;
3474 	default:
3475 		return -EINVAL;
3476 	}
3477 
3478 	f = fdget(fs_fd);
3479 	if (!f.file)
3480 		return -EBADF;
3481 
3482 	ret = -EINVAL;
3483 	if (f.file->f_op != &fscontext_fops)
3484 		goto err_fsfd;
3485 
3486 	fc = f.file->private_data;
3487 
3488 	ret = mutex_lock_interruptible(&fc->uapi_mutex);
3489 	if (ret < 0)
3490 		goto err_fsfd;
3491 
3492 	/* There must be a valid superblock or we can't mount it */
3493 	ret = -EINVAL;
3494 	if (!fc->root)
3495 		goto err_unlock;
3496 
3497 	ret = -EPERM;
3498 	if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
3499 		pr_warn("VFS: Mount too revealing\n");
3500 		goto err_unlock;
3501 	}
3502 
3503 	ret = -EBUSY;
3504 	if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
3505 		goto err_unlock;
3506 
3507 	ret = -EPERM;
3508 	if ((fc->sb_flags & SB_MANDLOCK) && !may_mandlock())
3509 		goto err_unlock;
3510 
3511 	newmount.mnt = vfs_create_mount(fc);
3512 	if (IS_ERR(newmount.mnt)) {
3513 		ret = PTR_ERR(newmount.mnt);
3514 		goto err_unlock;
3515 	}
3516 	newmount.dentry = dget(fc->root);
3517 	newmount.mnt->mnt_flags = mnt_flags;
3518 
3519 	/* We've done the mount bit - now move the file context into more or
3520 	 * less the same state as if we'd done an fspick().  We don't want to
3521 	 * do any memory allocation or anything like that at this point as we
3522 	 * don't want to have to handle any errors incurred.
3523 	 */
3524 	vfs_clean_context(fc);
3525 
3526 	ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
3527 	if (IS_ERR(ns)) {
3528 		ret = PTR_ERR(ns);
3529 		goto err_path;
3530 	}
3531 	mnt = real_mount(newmount.mnt);
3532 	mnt->mnt_ns = ns;
3533 	ns->root = mnt;
3534 	ns->mounts = 1;
3535 	list_add(&mnt->mnt_list, &ns->list);
3536 	mntget(newmount.mnt);
3537 
3538 	/* Attach to an apparent O_PATH fd with a note that we need to unmount
3539 	 * it, not just simply put it.
3540 	 */
3541 	file = dentry_open(&newmount, O_PATH, fc->cred);
3542 	if (IS_ERR(file)) {
3543 		dissolve_on_fput(newmount.mnt);
3544 		ret = PTR_ERR(file);
3545 		goto err_path;
3546 	}
3547 	file->f_mode |= FMODE_NEED_UNMOUNT;
3548 
3549 	ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
3550 	if (ret >= 0)
3551 		fd_install(ret, file);
3552 	else
3553 		fput(file);
3554 
3555 err_path:
3556 	path_put(&newmount);
3557 err_unlock:
3558 	mutex_unlock(&fc->uapi_mutex);
3559 err_fsfd:
3560 	fdput(f);
3561 	return ret;
3562 }
3563 
3564 /*
3565  * Move a mount from one place to another.  In combination with
3566  * fsopen()/fsmount() this is used to install a new mount and in combination
3567  * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
3568  * a mount subtree.
3569  *
3570  * Note the flags value is a combination of MOVE_MOUNT_* flags.
3571  */
3572 SYSCALL_DEFINE5(move_mount,
3573 		int, from_dfd, const char __user *, from_pathname,
3574 		int, to_dfd, const char __user *, to_pathname,
3575 		unsigned int, flags)
3576 {
3577 	struct path from_path, to_path;
3578 	unsigned int lflags;
3579 	int ret = 0;
3580 
3581 	if (!may_mount())
3582 		return -EPERM;
3583 
3584 	if (flags & ~MOVE_MOUNT__MASK)
3585 		return -EINVAL;
3586 
3587 	/* If someone gives a pathname, they aren't permitted to move
3588 	 * from an fd that requires unmount as we can't get at the flag
3589 	 * to clear it afterwards.
3590 	 */
3591 	lflags = 0;
3592 	if (flags & MOVE_MOUNT_F_SYMLINKS)	lflags |= LOOKUP_FOLLOW;
3593 	if (flags & MOVE_MOUNT_F_AUTOMOUNTS)	lflags |= LOOKUP_AUTOMOUNT;
3594 	if (flags & MOVE_MOUNT_F_EMPTY_PATH)	lflags |= LOOKUP_EMPTY;
3595 
3596 	ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
3597 	if (ret < 0)
3598 		return ret;
3599 
3600 	lflags = 0;
3601 	if (flags & MOVE_MOUNT_T_SYMLINKS)	lflags |= LOOKUP_FOLLOW;
3602 	if (flags & MOVE_MOUNT_T_AUTOMOUNTS)	lflags |= LOOKUP_AUTOMOUNT;
3603 	if (flags & MOVE_MOUNT_T_EMPTY_PATH)	lflags |= LOOKUP_EMPTY;
3604 
3605 	ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
3606 	if (ret < 0)
3607 		goto out_from;
3608 
3609 	ret = security_move_mount(&from_path, &to_path);
3610 	if (ret < 0)
3611 		goto out_to;
3612 
3613 	ret = do_move_mount(&from_path, &to_path);
3614 
3615 out_to:
3616 	path_put(&to_path);
3617 out_from:
3618 	path_put(&from_path);
3619 	return ret;
3620 }
3621 
3622 /*
3623  * Return true if path is reachable from root
3624  *
3625  * namespace_sem or mount_lock is held
3626  */
3627 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3628 			 const struct path *root)
3629 {
3630 	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3631 		dentry = mnt->mnt_mountpoint;
3632 		mnt = mnt->mnt_parent;
3633 	}
3634 	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3635 }
3636 
3637 bool path_is_under(const struct path *path1, const struct path *path2)
3638 {
3639 	bool res;
3640 	read_seqlock_excl(&mount_lock);
3641 	res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3642 	read_sequnlock_excl(&mount_lock);
3643 	return res;
3644 }
3645 EXPORT_SYMBOL(path_is_under);
3646 
3647 /*
3648  * pivot_root Semantics:
3649  * Moves the root file system of the current process to the directory put_old,
3650  * makes new_root as the new root file system of the current process, and sets
3651  * root/cwd of all processes which had them on the current root to new_root.
3652  *
3653  * Restrictions:
3654  * The new_root and put_old must be directories, and  must not be on the
3655  * same file  system as the current process root. The put_old  must  be
3656  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
3657  * pointed to by put_old must yield the same directory as new_root. No other
3658  * file system may be mounted on put_old. After all, new_root is a mountpoint.
3659  *
3660  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3661  * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives
3662  * in this situation.
3663  *
3664  * Notes:
3665  *  - we don't move root/cwd if they are not at the root (reason: if something
3666  *    cared enough to change them, it's probably wrong to force them elsewhere)
3667  *  - it's okay to pick a root that isn't the root of a file system, e.g.
3668  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3669  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3670  *    first.
3671  */
3672 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3673 		const char __user *, put_old)
3674 {
3675 	struct path new, old, root;
3676 	struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
3677 	struct mountpoint *old_mp, *root_mp;
3678 	int error;
3679 
3680 	if (!may_mount())
3681 		return -EPERM;
3682 
3683 	error = user_path_at(AT_FDCWD, new_root,
3684 			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
3685 	if (error)
3686 		goto out0;
3687 
3688 	error = user_path_at(AT_FDCWD, put_old,
3689 			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
3690 	if (error)
3691 		goto out1;
3692 
3693 	error = security_sb_pivotroot(&old, &new);
3694 	if (error)
3695 		goto out2;
3696 
3697 	get_fs_root(current->fs, &root);
3698 	old_mp = lock_mount(&old);
3699 	error = PTR_ERR(old_mp);
3700 	if (IS_ERR(old_mp))
3701 		goto out3;
3702 
3703 	error = -EINVAL;
3704 	new_mnt = real_mount(new.mnt);
3705 	root_mnt = real_mount(root.mnt);
3706 	old_mnt = real_mount(old.mnt);
3707 	ex_parent = new_mnt->mnt_parent;
3708 	root_parent = root_mnt->mnt_parent;
3709 	if (IS_MNT_SHARED(old_mnt) ||
3710 		IS_MNT_SHARED(ex_parent) ||
3711 		IS_MNT_SHARED(root_parent))
3712 		goto out4;
3713 	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3714 		goto out4;
3715 	if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3716 		goto out4;
3717 	error = -ENOENT;
3718 	if (d_unlinked(new.dentry))
3719 		goto out4;
3720 	error = -EBUSY;
3721 	if (new_mnt == root_mnt || old_mnt == root_mnt)
3722 		goto out4; /* loop, on the same file system  */
3723 	error = -EINVAL;
3724 	if (root.mnt->mnt_root != root.dentry)
3725 		goto out4; /* not a mountpoint */
3726 	if (!mnt_has_parent(root_mnt))
3727 		goto out4; /* not attached */
3728 	if (new.mnt->mnt_root != new.dentry)
3729 		goto out4; /* not a mountpoint */
3730 	if (!mnt_has_parent(new_mnt))
3731 		goto out4; /* not attached */
3732 	/* make sure we can reach put_old from new_root */
3733 	if (!is_path_reachable(old_mnt, old.dentry, &new))
3734 		goto out4;
3735 	/* make certain new is below the root */
3736 	if (!is_path_reachable(new_mnt, new.dentry, &root))
3737 		goto out4;
3738 	lock_mount_hash();
3739 	umount_mnt(new_mnt);
3740 	root_mp = unhash_mnt(root_mnt);  /* we'll need its mountpoint */
3741 	if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3742 		new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3743 		root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3744 	}
3745 	/* mount old root on put_old */
3746 	attach_mnt(root_mnt, old_mnt, old_mp);
3747 	/* mount new_root on / */
3748 	attach_mnt(new_mnt, root_parent, root_mp);
3749 	mnt_add_count(root_parent, -1);
3750 	touch_mnt_namespace(current->nsproxy->mnt_ns);
3751 	/* A moved mount should not expire automatically */
3752 	list_del_init(&new_mnt->mnt_expire);
3753 	put_mountpoint(root_mp);
3754 	unlock_mount_hash();
3755 	chroot_fs_refs(&root, &new);
3756 	error = 0;
3757 out4:
3758 	unlock_mount(old_mp);
3759 	if (!error)
3760 		mntput_no_expire(ex_parent);
3761 out3:
3762 	path_put(&root);
3763 out2:
3764 	path_put(&old);
3765 out1:
3766 	path_put(&new);
3767 out0:
3768 	return error;
3769 }
3770 
3771 static void __init init_mount_tree(void)
3772 {
3773 	struct vfsmount *mnt;
3774 	struct mount *m;
3775 	struct mnt_namespace *ns;
3776 	struct path root;
3777 
3778 	mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
3779 	if (IS_ERR(mnt))
3780 		panic("Can't create rootfs");
3781 
3782 	ns = alloc_mnt_ns(&init_user_ns, false);
3783 	if (IS_ERR(ns))
3784 		panic("Can't allocate initial namespace");
3785 	m = real_mount(mnt);
3786 	m->mnt_ns = ns;
3787 	ns->root = m;
3788 	ns->mounts = 1;
3789 	list_add(&m->mnt_list, &ns->list);
3790 	init_task.nsproxy->mnt_ns = ns;
3791 	get_mnt_ns(ns);
3792 
3793 	root.mnt = mnt;
3794 	root.dentry = mnt->mnt_root;
3795 	mnt->mnt_flags |= MNT_LOCKED;
3796 
3797 	set_fs_pwd(current->fs, &root);
3798 	set_fs_root(current->fs, &root);
3799 }
3800 
3801 void __init mnt_init(void)
3802 {
3803 	int err;
3804 
3805 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3806 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3807 
3808 	mount_hashtable = alloc_large_system_hash("Mount-cache",
3809 				sizeof(struct hlist_head),
3810 				mhash_entries, 19,
3811 				HASH_ZERO,
3812 				&m_hash_shift, &m_hash_mask, 0, 0);
3813 	mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3814 				sizeof(struct hlist_head),
3815 				mphash_entries, 19,
3816 				HASH_ZERO,
3817 				&mp_hash_shift, &mp_hash_mask, 0, 0);
3818 
3819 	if (!mount_hashtable || !mountpoint_hashtable)
3820 		panic("Failed to allocate mount hash table\n");
3821 
3822 	kernfs_init();
3823 
3824 	err = sysfs_init();
3825 	if (err)
3826 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3827 			__func__, err);
3828 	fs_kobj = kobject_create_and_add("fs", NULL);
3829 	if (!fs_kobj)
3830 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
3831 	shmem_init();
3832 	init_rootfs();
3833 	init_mount_tree();
3834 }
3835 
3836 void put_mnt_ns(struct mnt_namespace *ns)
3837 {
3838 	if (!atomic_dec_and_test(&ns->count))
3839 		return;
3840 	drop_collected_mounts(&ns->root->mnt);
3841 	free_mnt_ns(ns);
3842 }
3843 
3844 struct vfsmount *kern_mount(struct file_system_type *type)
3845 {
3846 	struct vfsmount *mnt;
3847 	mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
3848 	if (!IS_ERR(mnt)) {
3849 		/*
3850 		 * it is a longterm mount, don't release mnt until
3851 		 * we unmount before file sys is unregistered
3852 		*/
3853 		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3854 	}
3855 	return mnt;
3856 }
3857 EXPORT_SYMBOL_GPL(kern_mount);
3858 
3859 void kern_unmount(struct vfsmount *mnt)
3860 {
3861 	/* release long term mount so mount point can be released */
3862 	if (!IS_ERR_OR_NULL(mnt)) {
3863 		real_mount(mnt)->mnt_ns = NULL;
3864 		synchronize_rcu();	/* yecchhh... */
3865 		mntput(mnt);
3866 	}
3867 }
3868 EXPORT_SYMBOL(kern_unmount);
3869 
3870 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num)
3871 {
3872 	unsigned int i;
3873 
3874 	for (i = 0; i < num; i++)
3875 		if (mnt[i])
3876 			real_mount(mnt[i])->mnt_ns = NULL;
3877 	synchronize_rcu_expedited();
3878 	for (i = 0; i < num; i++)
3879 		mntput(mnt[i]);
3880 }
3881 EXPORT_SYMBOL(kern_unmount_array);
3882 
3883 bool our_mnt(struct vfsmount *mnt)
3884 {
3885 	return check_mnt(real_mount(mnt));
3886 }
3887 
3888 bool current_chrooted(void)
3889 {
3890 	/* Does the current process have a non-standard root */
3891 	struct path ns_root;
3892 	struct path fs_root;
3893 	bool chrooted;
3894 
3895 	/* Find the namespace root */
3896 	ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3897 	ns_root.dentry = ns_root.mnt->mnt_root;
3898 	path_get(&ns_root);
3899 	while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3900 		;
3901 
3902 	get_fs_root(current->fs, &fs_root);
3903 
3904 	chrooted = !path_equal(&fs_root, &ns_root);
3905 
3906 	path_put(&fs_root);
3907 	path_put(&ns_root);
3908 
3909 	return chrooted;
3910 }
3911 
3912 static bool mnt_already_visible(struct mnt_namespace *ns,
3913 				const struct super_block *sb,
3914 				int *new_mnt_flags)
3915 {
3916 	int new_flags = *new_mnt_flags;
3917 	struct mount *mnt;
3918 	bool visible = false;
3919 
3920 	down_read(&namespace_sem);
3921 	lock_ns_list(ns);
3922 	list_for_each_entry(mnt, &ns->list, mnt_list) {
3923 		struct mount *child;
3924 		int mnt_flags;
3925 
3926 		if (mnt_is_cursor(mnt))
3927 			continue;
3928 
3929 		if (mnt->mnt.mnt_sb->s_type != sb->s_type)
3930 			continue;
3931 
3932 		/* This mount is not fully visible if it's root directory
3933 		 * is not the root directory of the filesystem.
3934 		 */
3935 		if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3936 			continue;
3937 
3938 		/* A local view of the mount flags */
3939 		mnt_flags = mnt->mnt.mnt_flags;
3940 
3941 		/* Don't miss readonly hidden in the superblock flags */
3942 		if (sb_rdonly(mnt->mnt.mnt_sb))
3943 			mnt_flags |= MNT_LOCK_READONLY;
3944 
3945 		/* Verify the mount flags are equal to or more permissive
3946 		 * than the proposed new mount.
3947 		 */
3948 		if ((mnt_flags & MNT_LOCK_READONLY) &&
3949 		    !(new_flags & MNT_READONLY))
3950 			continue;
3951 		if ((mnt_flags & MNT_LOCK_ATIME) &&
3952 		    ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3953 			continue;
3954 
3955 		/* This mount is not fully visible if there are any
3956 		 * locked child mounts that cover anything except for
3957 		 * empty directories.
3958 		 */
3959 		list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3960 			struct inode *inode = child->mnt_mountpoint->d_inode;
3961 			/* Only worry about locked mounts */
3962 			if (!(child->mnt.mnt_flags & MNT_LOCKED))
3963 				continue;
3964 			/* Is the directory permanetly empty? */
3965 			if (!is_empty_dir_inode(inode))
3966 				goto next;
3967 		}
3968 		/* Preserve the locked attributes */
3969 		*new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
3970 					       MNT_LOCK_ATIME);
3971 		visible = true;
3972 		goto found;
3973 	next:	;
3974 	}
3975 found:
3976 	unlock_ns_list(ns);
3977 	up_read(&namespace_sem);
3978 	return visible;
3979 }
3980 
3981 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
3982 {
3983 	const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
3984 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3985 	unsigned long s_iflags;
3986 
3987 	if (ns->user_ns == &init_user_ns)
3988 		return false;
3989 
3990 	/* Can this filesystem be too revealing? */
3991 	s_iflags = sb->s_iflags;
3992 	if (!(s_iflags & SB_I_USERNS_VISIBLE))
3993 		return false;
3994 
3995 	if ((s_iflags & required_iflags) != required_iflags) {
3996 		WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3997 			  required_iflags);
3998 		return true;
3999 	}
4000 
4001 	return !mnt_already_visible(ns, sb, new_mnt_flags);
4002 }
4003 
4004 bool mnt_may_suid(struct vfsmount *mnt)
4005 {
4006 	/*
4007 	 * Foreign mounts (accessed via fchdir or through /proc
4008 	 * symlinks) are always treated as if they are nosuid.  This
4009 	 * prevents namespaces from trusting potentially unsafe
4010 	 * suid/sgid bits, file caps, or security labels that originate
4011 	 * in other namespaces.
4012 	 */
4013 	return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
4014 	       current_in_userns(mnt->mnt_sb->s_user_ns);
4015 }
4016 
4017 static struct ns_common *mntns_get(struct task_struct *task)
4018 {
4019 	struct ns_common *ns = NULL;
4020 	struct nsproxy *nsproxy;
4021 
4022 	task_lock(task);
4023 	nsproxy = task->nsproxy;
4024 	if (nsproxy) {
4025 		ns = &nsproxy->mnt_ns->ns;
4026 		get_mnt_ns(to_mnt_ns(ns));
4027 	}
4028 	task_unlock(task);
4029 
4030 	return ns;
4031 }
4032 
4033 static void mntns_put(struct ns_common *ns)
4034 {
4035 	put_mnt_ns(to_mnt_ns(ns));
4036 }
4037 
4038 static int mntns_install(struct nsset *nsset, struct ns_common *ns)
4039 {
4040 	struct nsproxy *nsproxy = nsset->nsproxy;
4041 	struct fs_struct *fs = nsset->fs;
4042 	struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
4043 	struct user_namespace *user_ns = nsset->cred->user_ns;
4044 	struct path root;
4045 	int err;
4046 
4047 	if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
4048 	    !ns_capable(user_ns, CAP_SYS_CHROOT) ||
4049 	    !ns_capable(user_ns, CAP_SYS_ADMIN))
4050 		return -EPERM;
4051 
4052 	if (is_anon_ns(mnt_ns))
4053 		return -EINVAL;
4054 
4055 	if (fs->users != 1)
4056 		return -EINVAL;
4057 
4058 	get_mnt_ns(mnt_ns);
4059 	old_mnt_ns = nsproxy->mnt_ns;
4060 	nsproxy->mnt_ns = mnt_ns;
4061 
4062 	/* Find the root */
4063 	err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
4064 				"/", LOOKUP_DOWN, &root);
4065 	if (err) {
4066 		/* revert to old namespace */
4067 		nsproxy->mnt_ns = old_mnt_ns;
4068 		put_mnt_ns(mnt_ns);
4069 		return err;
4070 	}
4071 
4072 	put_mnt_ns(old_mnt_ns);
4073 
4074 	/* Update the pwd and root */
4075 	set_fs_pwd(fs, &root);
4076 	set_fs_root(fs, &root);
4077 
4078 	path_put(&root);
4079 	return 0;
4080 }
4081 
4082 static struct user_namespace *mntns_owner(struct ns_common *ns)
4083 {
4084 	return to_mnt_ns(ns)->user_ns;
4085 }
4086 
4087 const struct proc_ns_operations mntns_operations = {
4088 	.name		= "mnt",
4089 	.type		= CLONE_NEWNS,
4090 	.get		= mntns_get,
4091 	.put		= mntns_put,
4092 	.install	= mntns_install,
4093 	.owner		= mntns_owner,
4094 };
4095