xref: /openbmc/linux/fs/namespace.c (revision 22246614)
1 /*
2  *  linux/fs/namespace.c
3  *
4  * (C) Copyright Al Viro 2000, 2001
5  *	Released under GPL v2.
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/slab.h>
13 #include <linux/sched.h>
14 #include <linux/smp_lock.h>
15 #include <linux/init.h>
16 #include <linux/kernel.h>
17 #include <linux/acct.h>
18 #include <linux/capability.h>
19 #include <linux/cpumask.h>
20 #include <linux/module.h>
21 #include <linux/sysfs.h>
22 #include <linux/seq_file.h>
23 #include <linux/mnt_namespace.h>
24 #include <linux/namei.h>
25 #include <linux/security.h>
26 #include <linux/mount.h>
27 #include <linux/ramfs.h>
28 #include <linux/log2.h>
29 #include <linux/idr.h>
30 #include <asm/uaccess.h>
31 #include <asm/unistd.h>
32 #include "pnode.h"
33 #include "internal.h"
34 
35 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
36 #define HASH_SIZE (1UL << HASH_SHIFT)
37 
38 /* spinlock for vfsmount related operations, inplace of dcache_lock */
39 __cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock);
40 
41 static int event;
42 static DEFINE_IDA(mnt_id_ida);
43 static DEFINE_IDA(mnt_group_ida);
44 
45 static struct list_head *mount_hashtable __read_mostly;
46 static struct kmem_cache *mnt_cache __read_mostly;
47 static struct rw_semaphore namespace_sem;
48 
49 /* /sys/fs */
50 struct kobject *fs_kobj;
51 EXPORT_SYMBOL_GPL(fs_kobj);
52 
53 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
54 {
55 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
56 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
57 	tmp = tmp + (tmp >> HASH_SHIFT);
58 	return tmp & (HASH_SIZE - 1);
59 }
60 
61 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
62 
63 /* allocation is serialized by namespace_sem */
64 static int mnt_alloc_id(struct vfsmount *mnt)
65 {
66 	int res;
67 
68 retry:
69 	ida_pre_get(&mnt_id_ida, GFP_KERNEL);
70 	spin_lock(&vfsmount_lock);
71 	res = ida_get_new(&mnt_id_ida, &mnt->mnt_id);
72 	spin_unlock(&vfsmount_lock);
73 	if (res == -EAGAIN)
74 		goto retry;
75 
76 	return res;
77 }
78 
79 static void mnt_free_id(struct vfsmount *mnt)
80 {
81 	spin_lock(&vfsmount_lock);
82 	ida_remove(&mnt_id_ida, mnt->mnt_id);
83 	spin_unlock(&vfsmount_lock);
84 }
85 
86 /*
87  * Allocate a new peer group ID
88  *
89  * mnt_group_ida is protected by namespace_sem
90  */
91 static int mnt_alloc_group_id(struct vfsmount *mnt)
92 {
93 	if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
94 		return -ENOMEM;
95 
96 	return ida_get_new_above(&mnt_group_ida, 1, &mnt->mnt_group_id);
97 }
98 
99 /*
100  * Release a peer group ID
101  */
102 void mnt_release_group_id(struct vfsmount *mnt)
103 {
104 	ida_remove(&mnt_group_ida, mnt->mnt_group_id);
105 	mnt->mnt_group_id = 0;
106 }
107 
108 struct vfsmount *alloc_vfsmnt(const char *name)
109 {
110 	struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
111 	if (mnt) {
112 		int err;
113 
114 		err = mnt_alloc_id(mnt);
115 		if (err) {
116 			kmem_cache_free(mnt_cache, mnt);
117 			return NULL;
118 		}
119 
120 		atomic_set(&mnt->mnt_count, 1);
121 		INIT_LIST_HEAD(&mnt->mnt_hash);
122 		INIT_LIST_HEAD(&mnt->mnt_child);
123 		INIT_LIST_HEAD(&mnt->mnt_mounts);
124 		INIT_LIST_HEAD(&mnt->mnt_list);
125 		INIT_LIST_HEAD(&mnt->mnt_expire);
126 		INIT_LIST_HEAD(&mnt->mnt_share);
127 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
128 		INIT_LIST_HEAD(&mnt->mnt_slave);
129 		atomic_set(&mnt->__mnt_writers, 0);
130 		if (name) {
131 			int size = strlen(name) + 1;
132 			char *newname = kmalloc(size, GFP_KERNEL);
133 			if (newname) {
134 				memcpy(newname, name, size);
135 				mnt->mnt_devname = newname;
136 			}
137 		}
138 	}
139 	return mnt;
140 }
141 
142 /*
143  * Most r/o checks on a fs are for operations that take
144  * discrete amounts of time, like a write() or unlink().
145  * We must keep track of when those operations start
146  * (for permission checks) and when they end, so that
147  * we can determine when writes are able to occur to
148  * a filesystem.
149  */
150 /*
151  * __mnt_is_readonly: check whether a mount is read-only
152  * @mnt: the mount to check for its write status
153  *
154  * This shouldn't be used directly ouside of the VFS.
155  * It does not guarantee that the filesystem will stay
156  * r/w, just that it is right *now*.  This can not and
157  * should not be used in place of IS_RDONLY(inode).
158  * mnt_want/drop_write() will _keep_ the filesystem
159  * r/w.
160  */
161 int __mnt_is_readonly(struct vfsmount *mnt)
162 {
163 	if (mnt->mnt_flags & MNT_READONLY)
164 		return 1;
165 	if (mnt->mnt_sb->s_flags & MS_RDONLY)
166 		return 1;
167 	return 0;
168 }
169 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
170 
171 struct mnt_writer {
172 	/*
173 	 * If holding multiple instances of this lock, they
174 	 * must be ordered by cpu number.
175 	 */
176 	spinlock_t lock;
177 	struct lock_class_key lock_class; /* compiles out with !lockdep */
178 	unsigned long count;
179 	struct vfsmount *mnt;
180 } ____cacheline_aligned_in_smp;
181 static DEFINE_PER_CPU(struct mnt_writer, mnt_writers);
182 
183 static int __init init_mnt_writers(void)
184 {
185 	int cpu;
186 	for_each_possible_cpu(cpu) {
187 		struct mnt_writer *writer = &per_cpu(mnt_writers, cpu);
188 		spin_lock_init(&writer->lock);
189 		lockdep_set_class(&writer->lock, &writer->lock_class);
190 		writer->count = 0;
191 	}
192 	return 0;
193 }
194 fs_initcall(init_mnt_writers);
195 
196 static void unlock_mnt_writers(void)
197 {
198 	int cpu;
199 	struct mnt_writer *cpu_writer;
200 
201 	for_each_possible_cpu(cpu) {
202 		cpu_writer = &per_cpu(mnt_writers, cpu);
203 		spin_unlock(&cpu_writer->lock);
204 	}
205 }
206 
207 static inline void __clear_mnt_count(struct mnt_writer *cpu_writer)
208 {
209 	if (!cpu_writer->mnt)
210 		return;
211 	/*
212 	 * This is in case anyone ever leaves an invalid,
213 	 * old ->mnt and a count of 0.
214 	 */
215 	if (!cpu_writer->count)
216 		return;
217 	atomic_add(cpu_writer->count, &cpu_writer->mnt->__mnt_writers);
218 	cpu_writer->count = 0;
219 }
220  /*
221  * must hold cpu_writer->lock
222  */
223 static inline void use_cpu_writer_for_mount(struct mnt_writer *cpu_writer,
224 					  struct vfsmount *mnt)
225 {
226 	if (cpu_writer->mnt == mnt)
227 		return;
228 	__clear_mnt_count(cpu_writer);
229 	cpu_writer->mnt = mnt;
230 }
231 
232 /*
233  * Most r/o checks on a fs are for operations that take
234  * discrete amounts of time, like a write() or unlink().
235  * We must keep track of when those operations start
236  * (for permission checks) and when they end, so that
237  * we can determine when writes are able to occur to
238  * a filesystem.
239  */
240 /**
241  * mnt_want_write - get write access to a mount
242  * @mnt: the mount on which to take a write
243  *
244  * This tells the low-level filesystem that a write is
245  * about to be performed to it, and makes sure that
246  * writes are allowed before returning success.  When
247  * the write operation is finished, mnt_drop_write()
248  * must be called.  This is effectively a refcount.
249  */
250 int mnt_want_write(struct vfsmount *mnt)
251 {
252 	int ret = 0;
253 	struct mnt_writer *cpu_writer;
254 
255 	cpu_writer = &get_cpu_var(mnt_writers);
256 	spin_lock(&cpu_writer->lock);
257 	if (__mnt_is_readonly(mnt)) {
258 		ret = -EROFS;
259 		goto out;
260 	}
261 	use_cpu_writer_for_mount(cpu_writer, mnt);
262 	cpu_writer->count++;
263 out:
264 	spin_unlock(&cpu_writer->lock);
265 	put_cpu_var(mnt_writers);
266 	return ret;
267 }
268 EXPORT_SYMBOL_GPL(mnt_want_write);
269 
270 static void lock_mnt_writers(void)
271 {
272 	int cpu;
273 	struct mnt_writer *cpu_writer;
274 
275 	for_each_possible_cpu(cpu) {
276 		cpu_writer = &per_cpu(mnt_writers, cpu);
277 		spin_lock(&cpu_writer->lock);
278 		__clear_mnt_count(cpu_writer);
279 		cpu_writer->mnt = NULL;
280 	}
281 }
282 
283 /*
284  * These per-cpu write counts are not guaranteed to have
285  * matched increments and decrements on any given cpu.
286  * A file open()ed for write on one cpu and close()d on
287  * another cpu will imbalance this count.  Make sure it
288  * does not get too far out of whack.
289  */
290 static void handle_write_count_underflow(struct vfsmount *mnt)
291 {
292 	if (atomic_read(&mnt->__mnt_writers) >=
293 	    MNT_WRITER_UNDERFLOW_LIMIT)
294 		return;
295 	/*
296 	 * It isn't necessary to hold all of the locks
297 	 * at the same time, but doing it this way makes
298 	 * us share a lot more code.
299 	 */
300 	lock_mnt_writers();
301 	/*
302 	 * vfsmount_lock is for mnt_flags.
303 	 */
304 	spin_lock(&vfsmount_lock);
305 	/*
306 	 * If coalescing the per-cpu writer counts did not
307 	 * get us back to a positive writer count, we have
308 	 * a bug.
309 	 */
310 	if ((atomic_read(&mnt->__mnt_writers) < 0) &&
311 	    !(mnt->mnt_flags & MNT_IMBALANCED_WRITE_COUNT)) {
312 		printk(KERN_DEBUG "leak detected on mount(%p) writers "
313 				"count: %d\n",
314 			mnt, atomic_read(&mnt->__mnt_writers));
315 		WARN_ON(1);
316 		/* use the flag to keep the dmesg spam down */
317 		mnt->mnt_flags |= MNT_IMBALANCED_WRITE_COUNT;
318 	}
319 	spin_unlock(&vfsmount_lock);
320 	unlock_mnt_writers();
321 }
322 
323 /**
324  * mnt_drop_write - give up write access to a mount
325  * @mnt: the mount on which to give up write access
326  *
327  * Tells the low-level filesystem that we are done
328  * performing writes to it.  Must be matched with
329  * mnt_want_write() call above.
330  */
331 void mnt_drop_write(struct vfsmount *mnt)
332 {
333 	int must_check_underflow = 0;
334 	struct mnt_writer *cpu_writer;
335 
336 	cpu_writer = &get_cpu_var(mnt_writers);
337 	spin_lock(&cpu_writer->lock);
338 
339 	use_cpu_writer_for_mount(cpu_writer, mnt);
340 	if (cpu_writer->count > 0) {
341 		cpu_writer->count--;
342 	} else {
343 		must_check_underflow = 1;
344 		atomic_dec(&mnt->__mnt_writers);
345 	}
346 
347 	spin_unlock(&cpu_writer->lock);
348 	/*
349 	 * Logically, we could call this each time,
350 	 * but the __mnt_writers cacheline tends to
351 	 * be cold, and makes this expensive.
352 	 */
353 	if (must_check_underflow)
354 		handle_write_count_underflow(mnt);
355 	/*
356 	 * This could be done right after the spinlock
357 	 * is taken because the spinlock keeps us on
358 	 * the cpu, and disables preemption.  However,
359 	 * putting it here bounds the amount that
360 	 * __mnt_writers can underflow.  Without it,
361 	 * we could theoretically wrap __mnt_writers.
362 	 */
363 	put_cpu_var(mnt_writers);
364 }
365 EXPORT_SYMBOL_GPL(mnt_drop_write);
366 
367 static int mnt_make_readonly(struct vfsmount *mnt)
368 {
369 	int ret = 0;
370 
371 	lock_mnt_writers();
372 	/*
373 	 * With all the locks held, this value is stable
374 	 */
375 	if (atomic_read(&mnt->__mnt_writers) > 0) {
376 		ret = -EBUSY;
377 		goto out;
378 	}
379 	/*
380 	 * nobody can do a successful mnt_want_write() with all
381 	 * of the counts in MNT_DENIED_WRITE and the locks held.
382 	 */
383 	spin_lock(&vfsmount_lock);
384 	if (!ret)
385 		mnt->mnt_flags |= MNT_READONLY;
386 	spin_unlock(&vfsmount_lock);
387 out:
388 	unlock_mnt_writers();
389 	return ret;
390 }
391 
392 static void __mnt_unmake_readonly(struct vfsmount *mnt)
393 {
394 	spin_lock(&vfsmount_lock);
395 	mnt->mnt_flags &= ~MNT_READONLY;
396 	spin_unlock(&vfsmount_lock);
397 }
398 
399 int simple_set_mnt(struct vfsmount *mnt, struct super_block *sb)
400 {
401 	mnt->mnt_sb = sb;
402 	mnt->mnt_root = dget(sb->s_root);
403 	return 0;
404 }
405 
406 EXPORT_SYMBOL(simple_set_mnt);
407 
408 void free_vfsmnt(struct vfsmount *mnt)
409 {
410 	kfree(mnt->mnt_devname);
411 	mnt_free_id(mnt);
412 	kmem_cache_free(mnt_cache, mnt);
413 }
414 
415 /*
416  * find the first or last mount at @dentry on vfsmount @mnt depending on
417  * @dir. If @dir is set return the first mount else return the last mount.
418  */
419 struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
420 			      int dir)
421 {
422 	struct list_head *head = mount_hashtable + hash(mnt, dentry);
423 	struct list_head *tmp = head;
424 	struct vfsmount *p, *found = NULL;
425 
426 	for (;;) {
427 		tmp = dir ? tmp->next : tmp->prev;
428 		p = NULL;
429 		if (tmp == head)
430 			break;
431 		p = list_entry(tmp, struct vfsmount, mnt_hash);
432 		if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
433 			found = p;
434 			break;
435 		}
436 	}
437 	return found;
438 }
439 
440 /*
441  * lookup_mnt increments the ref count before returning
442  * the vfsmount struct.
443  */
444 struct vfsmount *lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
445 {
446 	struct vfsmount *child_mnt;
447 	spin_lock(&vfsmount_lock);
448 	if ((child_mnt = __lookup_mnt(mnt, dentry, 1)))
449 		mntget(child_mnt);
450 	spin_unlock(&vfsmount_lock);
451 	return child_mnt;
452 }
453 
454 static inline int check_mnt(struct vfsmount *mnt)
455 {
456 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
457 }
458 
459 static void touch_mnt_namespace(struct mnt_namespace *ns)
460 {
461 	if (ns) {
462 		ns->event = ++event;
463 		wake_up_interruptible(&ns->poll);
464 	}
465 }
466 
467 static void __touch_mnt_namespace(struct mnt_namespace *ns)
468 {
469 	if (ns && ns->event != event) {
470 		ns->event = event;
471 		wake_up_interruptible(&ns->poll);
472 	}
473 }
474 
475 static void detach_mnt(struct vfsmount *mnt, struct path *old_path)
476 {
477 	old_path->dentry = mnt->mnt_mountpoint;
478 	old_path->mnt = mnt->mnt_parent;
479 	mnt->mnt_parent = mnt;
480 	mnt->mnt_mountpoint = mnt->mnt_root;
481 	list_del_init(&mnt->mnt_child);
482 	list_del_init(&mnt->mnt_hash);
483 	old_path->dentry->d_mounted--;
484 }
485 
486 void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
487 			struct vfsmount *child_mnt)
488 {
489 	child_mnt->mnt_parent = mntget(mnt);
490 	child_mnt->mnt_mountpoint = dget(dentry);
491 	dentry->d_mounted++;
492 }
493 
494 static void attach_mnt(struct vfsmount *mnt, struct path *path)
495 {
496 	mnt_set_mountpoint(path->mnt, path->dentry, mnt);
497 	list_add_tail(&mnt->mnt_hash, mount_hashtable +
498 			hash(path->mnt, path->dentry));
499 	list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts);
500 }
501 
502 /*
503  * the caller must hold vfsmount_lock
504  */
505 static void commit_tree(struct vfsmount *mnt)
506 {
507 	struct vfsmount *parent = mnt->mnt_parent;
508 	struct vfsmount *m;
509 	LIST_HEAD(head);
510 	struct mnt_namespace *n = parent->mnt_ns;
511 
512 	BUG_ON(parent == mnt);
513 
514 	list_add_tail(&head, &mnt->mnt_list);
515 	list_for_each_entry(m, &head, mnt_list)
516 		m->mnt_ns = n;
517 	list_splice(&head, n->list.prev);
518 
519 	list_add_tail(&mnt->mnt_hash, mount_hashtable +
520 				hash(parent, mnt->mnt_mountpoint));
521 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
522 	touch_mnt_namespace(n);
523 }
524 
525 static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
526 {
527 	struct list_head *next = p->mnt_mounts.next;
528 	if (next == &p->mnt_mounts) {
529 		while (1) {
530 			if (p == root)
531 				return NULL;
532 			next = p->mnt_child.next;
533 			if (next != &p->mnt_parent->mnt_mounts)
534 				break;
535 			p = p->mnt_parent;
536 		}
537 	}
538 	return list_entry(next, struct vfsmount, mnt_child);
539 }
540 
541 static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
542 {
543 	struct list_head *prev = p->mnt_mounts.prev;
544 	while (prev != &p->mnt_mounts) {
545 		p = list_entry(prev, struct vfsmount, mnt_child);
546 		prev = p->mnt_mounts.prev;
547 	}
548 	return p;
549 }
550 
551 static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
552 					int flag)
553 {
554 	struct super_block *sb = old->mnt_sb;
555 	struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
556 
557 	if (mnt) {
558 		if (flag & (CL_SLAVE | CL_PRIVATE))
559 			mnt->mnt_group_id = 0; /* not a peer of original */
560 		else
561 			mnt->mnt_group_id = old->mnt_group_id;
562 
563 		if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
564 			int err = mnt_alloc_group_id(mnt);
565 			if (err)
566 				goto out_free;
567 		}
568 
569 		mnt->mnt_flags = old->mnt_flags;
570 		atomic_inc(&sb->s_active);
571 		mnt->mnt_sb = sb;
572 		mnt->mnt_root = dget(root);
573 		mnt->mnt_mountpoint = mnt->mnt_root;
574 		mnt->mnt_parent = mnt;
575 
576 		if (flag & CL_SLAVE) {
577 			list_add(&mnt->mnt_slave, &old->mnt_slave_list);
578 			mnt->mnt_master = old;
579 			CLEAR_MNT_SHARED(mnt);
580 		} else if (!(flag & CL_PRIVATE)) {
581 			if ((flag & CL_PROPAGATION) || IS_MNT_SHARED(old))
582 				list_add(&mnt->mnt_share, &old->mnt_share);
583 			if (IS_MNT_SLAVE(old))
584 				list_add(&mnt->mnt_slave, &old->mnt_slave);
585 			mnt->mnt_master = old->mnt_master;
586 		}
587 		if (flag & CL_MAKE_SHARED)
588 			set_mnt_shared(mnt);
589 
590 		/* stick the duplicate mount on the same expiry list
591 		 * as the original if that was on one */
592 		if (flag & CL_EXPIRE) {
593 			if (!list_empty(&old->mnt_expire))
594 				list_add(&mnt->mnt_expire, &old->mnt_expire);
595 		}
596 	}
597 	return mnt;
598 
599  out_free:
600 	free_vfsmnt(mnt);
601 	return NULL;
602 }
603 
604 static inline void __mntput(struct vfsmount *mnt)
605 {
606 	int cpu;
607 	struct super_block *sb = mnt->mnt_sb;
608 	/*
609 	 * We don't have to hold all of the locks at the
610 	 * same time here because we know that we're the
611 	 * last reference to mnt and that no new writers
612 	 * can come in.
613 	 */
614 	for_each_possible_cpu(cpu) {
615 		struct mnt_writer *cpu_writer = &per_cpu(mnt_writers, cpu);
616 		if (cpu_writer->mnt != mnt)
617 			continue;
618 		spin_lock(&cpu_writer->lock);
619 		atomic_add(cpu_writer->count, &mnt->__mnt_writers);
620 		cpu_writer->count = 0;
621 		/*
622 		 * Might as well do this so that no one
623 		 * ever sees the pointer and expects
624 		 * it to be valid.
625 		 */
626 		cpu_writer->mnt = NULL;
627 		spin_unlock(&cpu_writer->lock);
628 	}
629 	/*
630 	 * This probably indicates that somebody messed
631 	 * up a mnt_want/drop_write() pair.  If this
632 	 * happens, the filesystem was probably unable
633 	 * to make r/w->r/o transitions.
634 	 */
635 	WARN_ON(atomic_read(&mnt->__mnt_writers));
636 	dput(mnt->mnt_root);
637 	free_vfsmnt(mnt);
638 	deactivate_super(sb);
639 }
640 
641 void mntput_no_expire(struct vfsmount *mnt)
642 {
643 repeat:
644 	if (atomic_dec_and_lock(&mnt->mnt_count, &vfsmount_lock)) {
645 		if (likely(!mnt->mnt_pinned)) {
646 			spin_unlock(&vfsmount_lock);
647 			__mntput(mnt);
648 			return;
649 		}
650 		atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count);
651 		mnt->mnt_pinned = 0;
652 		spin_unlock(&vfsmount_lock);
653 		acct_auto_close_mnt(mnt);
654 		security_sb_umount_close(mnt);
655 		goto repeat;
656 	}
657 }
658 
659 EXPORT_SYMBOL(mntput_no_expire);
660 
661 void mnt_pin(struct vfsmount *mnt)
662 {
663 	spin_lock(&vfsmount_lock);
664 	mnt->mnt_pinned++;
665 	spin_unlock(&vfsmount_lock);
666 }
667 
668 EXPORT_SYMBOL(mnt_pin);
669 
670 void mnt_unpin(struct vfsmount *mnt)
671 {
672 	spin_lock(&vfsmount_lock);
673 	if (mnt->mnt_pinned) {
674 		atomic_inc(&mnt->mnt_count);
675 		mnt->mnt_pinned--;
676 	}
677 	spin_unlock(&vfsmount_lock);
678 }
679 
680 EXPORT_SYMBOL(mnt_unpin);
681 
682 static inline void mangle(struct seq_file *m, const char *s)
683 {
684 	seq_escape(m, s, " \t\n\\");
685 }
686 
687 /*
688  * Simple .show_options callback for filesystems which don't want to
689  * implement more complex mount option showing.
690  *
691  * See also save_mount_options().
692  */
693 int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
694 {
695 	const char *options = mnt->mnt_sb->s_options;
696 
697 	if (options != NULL && options[0]) {
698 		seq_putc(m, ',');
699 		mangle(m, options);
700 	}
701 
702 	return 0;
703 }
704 EXPORT_SYMBOL(generic_show_options);
705 
706 /*
707  * If filesystem uses generic_show_options(), this function should be
708  * called from the fill_super() callback.
709  *
710  * The .remount_fs callback usually needs to be handled in a special
711  * way, to make sure, that previous options are not overwritten if the
712  * remount fails.
713  *
714  * Also note, that if the filesystem's .remount_fs function doesn't
715  * reset all options to their default value, but changes only newly
716  * given options, then the displayed options will not reflect reality
717  * any more.
718  */
719 void save_mount_options(struct super_block *sb, char *options)
720 {
721 	kfree(sb->s_options);
722 	sb->s_options = kstrdup(options, GFP_KERNEL);
723 }
724 EXPORT_SYMBOL(save_mount_options);
725 
726 #ifdef CONFIG_PROC_FS
727 /* iterator */
728 static void *m_start(struct seq_file *m, loff_t *pos)
729 {
730 	struct proc_mounts *p = m->private;
731 
732 	down_read(&namespace_sem);
733 	return seq_list_start(&p->ns->list, *pos);
734 }
735 
736 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
737 {
738 	struct proc_mounts *p = m->private;
739 
740 	return seq_list_next(v, &p->ns->list, pos);
741 }
742 
743 static void m_stop(struct seq_file *m, void *v)
744 {
745 	up_read(&namespace_sem);
746 }
747 
748 struct proc_fs_info {
749 	int flag;
750 	const char *str;
751 };
752 
753 static void show_sb_opts(struct seq_file *m, struct super_block *sb)
754 {
755 	static const struct proc_fs_info fs_info[] = {
756 		{ MS_SYNCHRONOUS, ",sync" },
757 		{ MS_DIRSYNC, ",dirsync" },
758 		{ MS_MANDLOCK, ",mand" },
759 		{ 0, NULL }
760 	};
761 	const struct proc_fs_info *fs_infop;
762 
763 	for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
764 		if (sb->s_flags & fs_infop->flag)
765 			seq_puts(m, fs_infop->str);
766 	}
767 }
768 
769 static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt)
770 {
771 	static const struct proc_fs_info mnt_info[] = {
772 		{ MNT_NOSUID, ",nosuid" },
773 		{ MNT_NODEV, ",nodev" },
774 		{ MNT_NOEXEC, ",noexec" },
775 		{ MNT_NOATIME, ",noatime" },
776 		{ MNT_NODIRATIME, ",nodiratime" },
777 		{ MNT_RELATIME, ",relatime" },
778 		{ 0, NULL }
779 	};
780 	const struct proc_fs_info *fs_infop;
781 
782 	for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
783 		if (mnt->mnt_flags & fs_infop->flag)
784 			seq_puts(m, fs_infop->str);
785 	}
786 }
787 
788 static void show_type(struct seq_file *m, struct super_block *sb)
789 {
790 	mangle(m, sb->s_type->name);
791 	if (sb->s_subtype && sb->s_subtype[0]) {
792 		seq_putc(m, '.');
793 		mangle(m, sb->s_subtype);
794 	}
795 }
796 
797 static int show_vfsmnt(struct seq_file *m, void *v)
798 {
799 	struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
800 	int err = 0;
801 	struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
802 
803 	mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
804 	seq_putc(m, ' ');
805 	seq_path(m, &mnt_path, " \t\n\\");
806 	seq_putc(m, ' ');
807 	show_type(m, mnt->mnt_sb);
808 	seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw");
809 	show_sb_opts(m, mnt->mnt_sb);
810 	show_mnt_opts(m, mnt);
811 	if (mnt->mnt_sb->s_op->show_options)
812 		err = mnt->mnt_sb->s_op->show_options(m, mnt);
813 	seq_puts(m, " 0 0\n");
814 	return err;
815 }
816 
817 const struct seq_operations mounts_op = {
818 	.start	= m_start,
819 	.next	= m_next,
820 	.stop	= m_stop,
821 	.show	= show_vfsmnt
822 };
823 
824 static int show_mountinfo(struct seq_file *m, void *v)
825 {
826 	struct proc_mounts *p = m->private;
827 	struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
828 	struct super_block *sb = mnt->mnt_sb;
829 	struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
830 	struct path root = p->root;
831 	int err = 0;
832 
833 	seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, mnt->mnt_parent->mnt_id,
834 		   MAJOR(sb->s_dev), MINOR(sb->s_dev));
835 	seq_dentry(m, mnt->mnt_root, " \t\n\\");
836 	seq_putc(m, ' ');
837 	seq_path_root(m, &mnt_path, &root, " \t\n\\");
838 	if (root.mnt != p->root.mnt || root.dentry != p->root.dentry) {
839 		/*
840 		 * Mountpoint is outside root, discard that one.  Ugly,
841 		 * but less so than trying to do that in iterator in a
842 		 * race-free way (due to renames).
843 		 */
844 		return SEQ_SKIP;
845 	}
846 	seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw");
847 	show_mnt_opts(m, mnt);
848 
849 	/* Tagged fields ("foo:X" or "bar") */
850 	if (IS_MNT_SHARED(mnt))
851 		seq_printf(m, " shared:%i", mnt->mnt_group_id);
852 	if (IS_MNT_SLAVE(mnt)) {
853 		int master = mnt->mnt_master->mnt_group_id;
854 		int dom = get_dominating_id(mnt, &p->root);
855 		seq_printf(m, " master:%i", master);
856 		if (dom && dom != master)
857 			seq_printf(m, " propagate_from:%i", dom);
858 	}
859 	if (IS_MNT_UNBINDABLE(mnt))
860 		seq_puts(m, " unbindable");
861 
862 	/* Filesystem specific data */
863 	seq_puts(m, " - ");
864 	show_type(m, sb);
865 	seq_putc(m, ' ');
866 	mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
867 	seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw");
868 	show_sb_opts(m, sb);
869 	if (sb->s_op->show_options)
870 		err = sb->s_op->show_options(m, mnt);
871 	seq_putc(m, '\n');
872 	return err;
873 }
874 
875 const struct seq_operations mountinfo_op = {
876 	.start	= m_start,
877 	.next	= m_next,
878 	.stop	= m_stop,
879 	.show	= show_mountinfo,
880 };
881 
882 static int show_vfsstat(struct seq_file *m, void *v)
883 {
884 	struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
885 	struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
886 	int err = 0;
887 
888 	/* device */
889 	if (mnt->mnt_devname) {
890 		seq_puts(m, "device ");
891 		mangle(m, mnt->mnt_devname);
892 	} else
893 		seq_puts(m, "no device");
894 
895 	/* mount point */
896 	seq_puts(m, " mounted on ");
897 	seq_path(m, &mnt_path, " \t\n\\");
898 	seq_putc(m, ' ');
899 
900 	/* file system type */
901 	seq_puts(m, "with fstype ");
902 	show_type(m, mnt->mnt_sb);
903 
904 	/* optional statistics */
905 	if (mnt->mnt_sb->s_op->show_stats) {
906 		seq_putc(m, ' ');
907 		err = mnt->mnt_sb->s_op->show_stats(m, mnt);
908 	}
909 
910 	seq_putc(m, '\n');
911 	return err;
912 }
913 
914 const struct seq_operations mountstats_op = {
915 	.start	= m_start,
916 	.next	= m_next,
917 	.stop	= m_stop,
918 	.show	= show_vfsstat,
919 };
920 #endif  /* CONFIG_PROC_FS */
921 
922 /**
923  * may_umount_tree - check if a mount tree is busy
924  * @mnt: root of mount tree
925  *
926  * This is called to check if a tree of mounts has any
927  * open files, pwds, chroots or sub mounts that are
928  * busy.
929  */
930 int may_umount_tree(struct vfsmount *mnt)
931 {
932 	int actual_refs = 0;
933 	int minimum_refs = 0;
934 	struct vfsmount *p;
935 
936 	spin_lock(&vfsmount_lock);
937 	for (p = mnt; p; p = next_mnt(p, mnt)) {
938 		actual_refs += atomic_read(&p->mnt_count);
939 		minimum_refs += 2;
940 	}
941 	spin_unlock(&vfsmount_lock);
942 
943 	if (actual_refs > minimum_refs)
944 		return 0;
945 
946 	return 1;
947 }
948 
949 EXPORT_SYMBOL(may_umount_tree);
950 
951 /**
952  * may_umount - check if a mount point is busy
953  * @mnt: root of mount
954  *
955  * This is called to check if a mount point has any
956  * open files, pwds, chroots or sub mounts. If the
957  * mount has sub mounts this will return busy
958  * regardless of whether the sub mounts are busy.
959  *
960  * Doesn't take quota and stuff into account. IOW, in some cases it will
961  * give false negatives. The main reason why it's here is that we need
962  * a non-destructive way to look for easily umountable filesystems.
963  */
964 int may_umount(struct vfsmount *mnt)
965 {
966 	int ret = 1;
967 	spin_lock(&vfsmount_lock);
968 	if (propagate_mount_busy(mnt, 2))
969 		ret = 0;
970 	spin_unlock(&vfsmount_lock);
971 	return ret;
972 }
973 
974 EXPORT_SYMBOL(may_umount);
975 
976 void release_mounts(struct list_head *head)
977 {
978 	struct vfsmount *mnt;
979 	while (!list_empty(head)) {
980 		mnt = list_first_entry(head, struct vfsmount, mnt_hash);
981 		list_del_init(&mnt->mnt_hash);
982 		if (mnt->mnt_parent != mnt) {
983 			struct dentry *dentry;
984 			struct vfsmount *m;
985 			spin_lock(&vfsmount_lock);
986 			dentry = mnt->mnt_mountpoint;
987 			m = mnt->mnt_parent;
988 			mnt->mnt_mountpoint = mnt->mnt_root;
989 			mnt->mnt_parent = mnt;
990 			m->mnt_ghosts--;
991 			spin_unlock(&vfsmount_lock);
992 			dput(dentry);
993 			mntput(m);
994 		}
995 		mntput(mnt);
996 	}
997 }
998 
999 void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
1000 {
1001 	struct vfsmount *p;
1002 
1003 	for (p = mnt; p; p = next_mnt(p, mnt))
1004 		list_move(&p->mnt_hash, kill);
1005 
1006 	if (propagate)
1007 		propagate_umount(kill);
1008 
1009 	list_for_each_entry(p, kill, mnt_hash) {
1010 		list_del_init(&p->mnt_expire);
1011 		list_del_init(&p->mnt_list);
1012 		__touch_mnt_namespace(p->mnt_ns);
1013 		p->mnt_ns = NULL;
1014 		list_del_init(&p->mnt_child);
1015 		if (p->mnt_parent != p) {
1016 			p->mnt_parent->mnt_ghosts++;
1017 			p->mnt_mountpoint->d_mounted--;
1018 		}
1019 		change_mnt_propagation(p, MS_PRIVATE);
1020 	}
1021 }
1022 
1023 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts);
1024 
1025 static int do_umount(struct vfsmount *mnt, int flags)
1026 {
1027 	struct super_block *sb = mnt->mnt_sb;
1028 	int retval;
1029 	LIST_HEAD(umount_list);
1030 
1031 	retval = security_sb_umount(mnt, flags);
1032 	if (retval)
1033 		return retval;
1034 
1035 	/*
1036 	 * Allow userspace to request a mountpoint be expired rather than
1037 	 * unmounting unconditionally. Unmount only happens if:
1038 	 *  (1) the mark is already set (the mark is cleared by mntput())
1039 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1040 	 */
1041 	if (flags & MNT_EXPIRE) {
1042 		if (mnt == current->fs->root.mnt ||
1043 		    flags & (MNT_FORCE | MNT_DETACH))
1044 			return -EINVAL;
1045 
1046 		if (atomic_read(&mnt->mnt_count) != 2)
1047 			return -EBUSY;
1048 
1049 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1050 			return -EAGAIN;
1051 	}
1052 
1053 	/*
1054 	 * If we may have to abort operations to get out of this
1055 	 * mount, and they will themselves hold resources we must
1056 	 * allow the fs to do things. In the Unix tradition of
1057 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1058 	 * might fail to complete on the first run through as other tasks
1059 	 * must return, and the like. Thats for the mount program to worry
1060 	 * about for the moment.
1061 	 */
1062 
1063 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1064 		lock_kernel();
1065 		sb->s_op->umount_begin(sb);
1066 		unlock_kernel();
1067 	}
1068 
1069 	/*
1070 	 * No sense to grab the lock for this test, but test itself looks
1071 	 * somewhat bogus. Suggestions for better replacement?
1072 	 * Ho-hum... In principle, we might treat that as umount + switch
1073 	 * to rootfs. GC would eventually take care of the old vfsmount.
1074 	 * Actually it makes sense, especially if rootfs would contain a
1075 	 * /reboot - static binary that would close all descriptors and
1076 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1077 	 */
1078 	if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1079 		/*
1080 		 * Special case for "unmounting" root ...
1081 		 * we just try to remount it readonly.
1082 		 */
1083 		down_write(&sb->s_umount);
1084 		if (!(sb->s_flags & MS_RDONLY)) {
1085 			lock_kernel();
1086 			retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1087 			unlock_kernel();
1088 		}
1089 		up_write(&sb->s_umount);
1090 		return retval;
1091 	}
1092 
1093 	down_write(&namespace_sem);
1094 	spin_lock(&vfsmount_lock);
1095 	event++;
1096 
1097 	if (!(flags & MNT_DETACH))
1098 		shrink_submounts(mnt, &umount_list);
1099 
1100 	retval = -EBUSY;
1101 	if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1102 		if (!list_empty(&mnt->mnt_list))
1103 			umount_tree(mnt, 1, &umount_list);
1104 		retval = 0;
1105 	}
1106 	spin_unlock(&vfsmount_lock);
1107 	if (retval)
1108 		security_sb_umount_busy(mnt);
1109 	up_write(&namespace_sem);
1110 	release_mounts(&umount_list);
1111 	return retval;
1112 }
1113 
1114 /*
1115  * Now umount can handle mount points as well as block devices.
1116  * This is important for filesystems which use unnamed block devices.
1117  *
1118  * We now support a flag for forced unmount like the other 'big iron'
1119  * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1120  */
1121 
1122 asmlinkage long sys_umount(char __user * name, int flags)
1123 {
1124 	struct nameidata nd;
1125 	int retval;
1126 
1127 	retval = __user_walk(name, LOOKUP_FOLLOW, &nd);
1128 	if (retval)
1129 		goto out;
1130 	retval = -EINVAL;
1131 	if (nd.path.dentry != nd.path.mnt->mnt_root)
1132 		goto dput_and_out;
1133 	if (!check_mnt(nd.path.mnt))
1134 		goto dput_and_out;
1135 
1136 	retval = -EPERM;
1137 	if (!capable(CAP_SYS_ADMIN))
1138 		goto dput_and_out;
1139 
1140 	retval = do_umount(nd.path.mnt, flags);
1141 dput_and_out:
1142 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
1143 	dput(nd.path.dentry);
1144 	mntput_no_expire(nd.path.mnt);
1145 out:
1146 	return retval;
1147 }
1148 
1149 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1150 
1151 /*
1152  *	The 2.0 compatible umount. No flags.
1153  */
1154 asmlinkage long sys_oldumount(char __user * name)
1155 {
1156 	return sys_umount(name, 0);
1157 }
1158 
1159 #endif
1160 
1161 static int mount_is_safe(struct nameidata *nd)
1162 {
1163 	if (capable(CAP_SYS_ADMIN))
1164 		return 0;
1165 	return -EPERM;
1166 #ifdef notyet
1167 	if (S_ISLNK(nd->path.dentry->d_inode->i_mode))
1168 		return -EPERM;
1169 	if (nd->path.dentry->d_inode->i_mode & S_ISVTX) {
1170 		if (current->uid != nd->path.dentry->d_inode->i_uid)
1171 			return -EPERM;
1172 	}
1173 	if (vfs_permission(nd, MAY_WRITE))
1174 		return -EPERM;
1175 	return 0;
1176 #endif
1177 }
1178 
1179 struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
1180 					int flag)
1181 {
1182 	struct vfsmount *res, *p, *q, *r, *s;
1183 	struct path path;
1184 
1185 	if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1186 		return NULL;
1187 
1188 	res = q = clone_mnt(mnt, dentry, flag);
1189 	if (!q)
1190 		goto Enomem;
1191 	q->mnt_mountpoint = mnt->mnt_mountpoint;
1192 
1193 	p = mnt;
1194 	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1195 		if (!is_subdir(r->mnt_mountpoint, dentry))
1196 			continue;
1197 
1198 		for (s = r; s; s = next_mnt(s, r)) {
1199 			if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
1200 				s = skip_mnt_tree(s);
1201 				continue;
1202 			}
1203 			while (p != s->mnt_parent) {
1204 				p = p->mnt_parent;
1205 				q = q->mnt_parent;
1206 			}
1207 			p = s;
1208 			path.mnt = q;
1209 			path.dentry = p->mnt_mountpoint;
1210 			q = clone_mnt(p, p->mnt_root, flag);
1211 			if (!q)
1212 				goto Enomem;
1213 			spin_lock(&vfsmount_lock);
1214 			list_add_tail(&q->mnt_list, &res->mnt_list);
1215 			attach_mnt(q, &path);
1216 			spin_unlock(&vfsmount_lock);
1217 		}
1218 	}
1219 	return res;
1220 Enomem:
1221 	if (res) {
1222 		LIST_HEAD(umount_list);
1223 		spin_lock(&vfsmount_lock);
1224 		umount_tree(res, 0, &umount_list);
1225 		spin_unlock(&vfsmount_lock);
1226 		release_mounts(&umount_list);
1227 	}
1228 	return NULL;
1229 }
1230 
1231 struct vfsmount *collect_mounts(struct vfsmount *mnt, struct dentry *dentry)
1232 {
1233 	struct vfsmount *tree;
1234 	down_write(&namespace_sem);
1235 	tree = copy_tree(mnt, dentry, CL_COPY_ALL | CL_PRIVATE);
1236 	up_write(&namespace_sem);
1237 	return tree;
1238 }
1239 
1240 void drop_collected_mounts(struct vfsmount *mnt)
1241 {
1242 	LIST_HEAD(umount_list);
1243 	down_write(&namespace_sem);
1244 	spin_lock(&vfsmount_lock);
1245 	umount_tree(mnt, 0, &umount_list);
1246 	spin_unlock(&vfsmount_lock);
1247 	up_write(&namespace_sem);
1248 	release_mounts(&umount_list);
1249 }
1250 
1251 static void cleanup_group_ids(struct vfsmount *mnt, struct vfsmount *end)
1252 {
1253 	struct vfsmount *p;
1254 
1255 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1256 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
1257 			mnt_release_group_id(p);
1258 	}
1259 }
1260 
1261 static int invent_group_ids(struct vfsmount *mnt, bool recurse)
1262 {
1263 	struct vfsmount *p;
1264 
1265 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1266 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1267 			int err = mnt_alloc_group_id(p);
1268 			if (err) {
1269 				cleanup_group_ids(mnt, p);
1270 				return err;
1271 			}
1272 		}
1273 	}
1274 
1275 	return 0;
1276 }
1277 
1278 /*
1279  *  @source_mnt : mount tree to be attached
1280  *  @nd         : place the mount tree @source_mnt is attached
1281  *  @parent_nd  : if non-null, detach the source_mnt from its parent and
1282  *  		   store the parent mount and mountpoint dentry.
1283  *  		   (done when source_mnt is moved)
1284  *
1285  *  NOTE: in the table below explains the semantics when a source mount
1286  *  of a given type is attached to a destination mount of a given type.
1287  * ---------------------------------------------------------------------------
1288  * |         BIND MOUNT OPERATION                                            |
1289  * |**************************************************************************
1290  * | source-->| shared        |       private  |       slave    | unbindable |
1291  * | dest     |               |                |                |            |
1292  * |   |      |               |                |                |            |
1293  * |   v      |               |                |                |            |
1294  * |**************************************************************************
1295  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
1296  * |          |               |                |                |            |
1297  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
1298  * ***************************************************************************
1299  * A bind operation clones the source mount and mounts the clone on the
1300  * destination mount.
1301  *
1302  * (++)  the cloned mount is propagated to all the mounts in the propagation
1303  * 	 tree of the destination mount and the cloned mount is added to
1304  * 	 the peer group of the source mount.
1305  * (+)   the cloned mount is created under the destination mount and is marked
1306  *       as shared. The cloned mount is added to the peer group of the source
1307  *       mount.
1308  * (+++) the mount is propagated to all the mounts in the propagation tree
1309  *       of the destination mount and the cloned mount is made slave
1310  *       of the same master as that of the source mount. The cloned mount
1311  *       is marked as 'shared and slave'.
1312  * (*)   the cloned mount is made a slave of the same master as that of the
1313  * 	 source mount.
1314  *
1315  * ---------------------------------------------------------------------------
1316  * |         		MOVE MOUNT OPERATION                                 |
1317  * |**************************************************************************
1318  * | source-->| shared        |       private  |       slave    | unbindable |
1319  * | dest     |               |                |                |            |
1320  * |   |      |               |                |                |            |
1321  * |   v      |               |                |                |            |
1322  * |**************************************************************************
1323  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
1324  * |          |               |                |                |            |
1325  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
1326  * ***************************************************************************
1327  *
1328  * (+)  the mount is moved to the destination. And is then propagated to
1329  * 	all the mounts in the propagation tree of the destination mount.
1330  * (+*)  the mount is moved to the destination.
1331  * (+++)  the mount is moved to the destination and is then propagated to
1332  * 	all the mounts belonging to the destination mount's propagation tree.
1333  * 	the mount is marked as 'shared and slave'.
1334  * (*)	the mount continues to be a slave at the new location.
1335  *
1336  * if the source mount is a tree, the operations explained above is
1337  * applied to each mount in the tree.
1338  * Must be called without spinlocks held, since this function can sleep
1339  * in allocations.
1340  */
1341 static int attach_recursive_mnt(struct vfsmount *source_mnt,
1342 			struct path *path, struct path *parent_path)
1343 {
1344 	LIST_HEAD(tree_list);
1345 	struct vfsmount *dest_mnt = path->mnt;
1346 	struct dentry *dest_dentry = path->dentry;
1347 	struct vfsmount *child, *p;
1348 	int err;
1349 
1350 	if (IS_MNT_SHARED(dest_mnt)) {
1351 		err = invent_group_ids(source_mnt, true);
1352 		if (err)
1353 			goto out;
1354 	}
1355 	err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
1356 	if (err)
1357 		goto out_cleanup_ids;
1358 
1359 	if (IS_MNT_SHARED(dest_mnt)) {
1360 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1361 			set_mnt_shared(p);
1362 	}
1363 
1364 	spin_lock(&vfsmount_lock);
1365 	if (parent_path) {
1366 		detach_mnt(source_mnt, parent_path);
1367 		attach_mnt(source_mnt, path);
1368 		touch_mnt_namespace(current->nsproxy->mnt_ns);
1369 	} else {
1370 		mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
1371 		commit_tree(source_mnt);
1372 	}
1373 
1374 	list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1375 		list_del_init(&child->mnt_hash);
1376 		commit_tree(child);
1377 	}
1378 	spin_unlock(&vfsmount_lock);
1379 	return 0;
1380 
1381  out_cleanup_ids:
1382 	if (IS_MNT_SHARED(dest_mnt))
1383 		cleanup_group_ids(source_mnt, NULL);
1384  out:
1385 	return err;
1386 }
1387 
1388 static int graft_tree(struct vfsmount *mnt, struct path *path)
1389 {
1390 	int err;
1391 	if (mnt->mnt_sb->s_flags & MS_NOUSER)
1392 		return -EINVAL;
1393 
1394 	if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1395 	      S_ISDIR(mnt->mnt_root->d_inode->i_mode))
1396 		return -ENOTDIR;
1397 
1398 	err = -ENOENT;
1399 	mutex_lock(&path->dentry->d_inode->i_mutex);
1400 	if (IS_DEADDIR(path->dentry->d_inode))
1401 		goto out_unlock;
1402 
1403 	err = security_sb_check_sb(mnt, path);
1404 	if (err)
1405 		goto out_unlock;
1406 
1407 	err = -ENOENT;
1408 	if (IS_ROOT(path->dentry) || !d_unhashed(path->dentry))
1409 		err = attach_recursive_mnt(mnt, path, NULL);
1410 out_unlock:
1411 	mutex_unlock(&path->dentry->d_inode->i_mutex);
1412 	if (!err)
1413 		security_sb_post_addmount(mnt, path);
1414 	return err;
1415 }
1416 
1417 /*
1418  * recursively change the type of the mountpoint.
1419  * noinline this do_mount helper to save do_mount stack space.
1420  */
1421 static noinline int do_change_type(struct nameidata *nd, int flag)
1422 {
1423 	struct vfsmount *m, *mnt = nd->path.mnt;
1424 	int recurse = flag & MS_REC;
1425 	int type = flag & ~MS_REC;
1426 	int err = 0;
1427 
1428 	if (!capable(CAP_SYS_ADMIN))
1429 		return -EPERM;
1430 
1431 	if (nd->path.dentry != nd->path.mnt->mnt_root)
1432 		return -EINVAL;
1433 
1434 	down_write(&namespace_sem);
1435 	if (type == MS_SHARED) {
1436 		err = invent_group_ids(mnt, recurse);
1437 		if (err)
1438 			goto out_unlock;
1439 	}
1440 
1441 	spin_lock(&vfsmount_lock);
1442 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1443 		change_mnt_propagation(m, type);
1444 	spin_unlock(&vfsmount_lock);
1445 
1446  out_unlock:
1447 	up_write(&namespace_sem);
1448 	return err;
1449 }
1450 
1451 /*
1452  * do loopback mount.
1453  * noinline this do_mount helper to save do_mount stack space.
1454  */
1455 static noinline int do_loopback(struct nameidata *nd, char *old_name,
1456 				int recurse)
1457 {
1458 	struct nameidata old_nd;
1459 	struct vfsmount *mnt = NULL;
1460 	int err = mount_is_safe(nd);
1461 	if (err)
1462 		return err;
1463 	if (!old_name || !*old_name)
1464 		return -EINVAL;
1465 	err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
1466 	if (err)
1467 		return err;
1468 
1469 	down_write(&namespace_sem);
1470 	err = -EINVAL;
1471 	if (IS_MNT_UNBINDABLE(old_nd.path.mnt))
1472 		goto out;
1473 
1474 	if (!check_mnt(nd->path.mnt) || !check_mnt(old_nd.path.mnt))
1475 		goto out;
1476 
1477 	err = -ENOMEM;
1478 	if (recurse)
1479 		mnt = copy_tree(old_nd.path.mnt, old_nd.path.dentry, 0);
1480 	else
1481 		mnt = clone_mnt(old_nd.path.mnt, old_nd.path.dentry, 0);
1482 
1483 	if (!mnt)
1484 		goto out;
1485 
1486 	err = graft_tree(mnt, &nd->path);
1487 	if (err) {
1488 		LIST_HEAD(umount_list);
1489 		spin_lock(&vfsmount_lock);
1490 		umount_tree(mnt, 0, &umount_list);
1491 		spin_unlock(&vfsmount_lock);
1492 		release_mounts(&umount_list);
1493 	}
1494 
1495 out:
1496 	up_write(&namespace_sem);
1497 	path_put(&old_nd.path);
1498 	return err;
1499 }
1500 
1501 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1502 {
1503 	int error = 0;
1504 	int readonly_request = 0;
1505 
1506 	if (ms_flags & MS_RDONLY)
1507 		readonly_request = 1;
1508 	if (readonly_request == __mnt_is_readonly(mnt))
1509 		return 0;
1510 
1511 	if (readonly_request)
1512 		error = mnt_make_readonly(mnt);
1513 	else
1514 		__mnt_unmake_readonly(mnt);
1515 	return error;
1516 }
1517 
1518 /*
1519  * change filesystem flags. dir should be a physical root of filesystem.
1520  * If you've mounted a non-root directory somewhere and want to do remount
1521  * on it - tough luck.
1522  * noinline this do_mount helper to save do_mount stack space.
1523  */
1524 static noinline int do_remount(struct nameidata *nd, int flags, int mnt_flags,
1525 		      void *data)
1526 {
1527 	int err;
1528 	struct super_block *sb = nd->path.mnt->mnt_sb;
1529 
1530 	if (!capable(CAP_SYS_ADMIN))
1531 		return -EPERM;
1532 
1533 	if (!check_mnt(nd->path.mnt))
1534 		return -EINVAL;
1535 
1536 	if (nd->path.dentry != nd->path.mnt->mnt_root)
1537 		return -EINVAL;
1538 
1539 	down_write(&sb->s_umount);
1540 	if (flags & MS_BIND)
1541 		err = change_mount_flags(nd->path.mnt, flags);
1542 	else
1543 		err = do_remount_sb(sb, flags, data, 0);
1544 	if (!err)
1545 		nd->path.mnt->mnt_flags = mnt_flags;
1546 	up_write(&sb->s_umount);
1547 	if (!err)
1548 		security_sb_post_remount(nd->path.mnt, flags, data);
1549 	return err;
1550 }
1551 
1552 static inline int tree_contains_unbindable(struct vfsmount *mnt)
1553 {
1554 	struct vfsmount *p;
1555 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1556 		if (IS_MNT_UNBINDABLE(p))
1557 			return 1;
1558 	}
1559 	return 0;
1560 }
1561 
1562 /*
1563  * noinline this do_mount helper to save do_mount stack space.
1564  */
1565 static noinline int do_move_mount(struct nameidata *nd, char *old_name)
1566 {
1567 	struct nameidata old_nd;
1568 	struct path parent_path;
1569 	struct vfsmount *p;
1570 	int err = 0;
1571 	if (!capable(CAP_SYS_ADMIN))
1572 		return -EPERM;
1573 	if (!old_name || !*old_name)
1574 		return -EINVAL;
1575 	err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
1576 	if (err)
1577 		return err;
1578 
1579 	down_write(&namespace_sem);
1580 	while (d_mountpoint(nd->path.dentry) &&
1581 	       follow_down(&nd->path.mnt, &nd->path.dentry))
1582 		;
1583 	err = -EINVAL;
1584 	if (!check_mnt(nd->path.mnt) || !check_mnt(old_nd.path.mnt))
1585 		goto out;
1586 
1587 	err = -ENOENT;
1588 	mutex_lock(&nd->path.dentry->d_inode->i_mutex);
1589 	if (IS_DEADDIR(nd->path.dentry->d_inode))
1590 		goto out1;
1591 
1592 	if (!IS_ROOT(nd->path.dentry) && d_unhashed(nd->path.dentry))
1593 		goto out1;
1594 
1595 	err = -EINVAL;
1596 	if (old_nd.path.dentry != old_nd.path.mnt->mnt_root)
1597 		goto out1;
1598 
1599 	if (old_nd.path.mnt == old_nd.path.mnt->mnt_parent)
1600 		goto out1;
1601 
1602 	if (S_ISDIR(nd->path.dentry->d_inode->i_mode) !=
1603 	      S_ISDIR(old_nd.path.dentry->d_inode->i_mode))
1604 		goto out1;
1605 	/*
1606 	 * Don't move a mount residing in a shared parent.
1607 	 */
1608 	if (old_nd.path.mnt->mnt_parent &&
1609 	    IS_MNT_SHARED(old_nd.path.mnt->mnt_parent))
1610 		goto out1;
1611 	/*
1612 	 * Don't move a mount tree containing unbindable mounts to a destination
1613 	 * mount which is shared.
1614 	 */
1615 	if (IS_MNT_SHARED(nd->path.mnt) &&
1616 	    tree_contains_unbindable(old_nd.path.mnt))
1617 		goto out1;
1618 	err = -ELOOP;
1619 	for (p = nd->path.mnt; p->mnt_parent != p; p = p->mnt_parent)
1620 		if (p == old_nd.path.mnt)
1621 			goto out1;
1622 
1623 	err = attach_recursive_mnt(old_nd.path.mnt, &nd->path, &parent_path);
1624 	if (err)
1625 		goto out1;
1626 
1627 	/* if the mount is moved, it should no longer be expire
1628 	 * automatically */
1629 	list_del_init(&old_nd.path.mnt->mnt_expire);
1630 out1:
1631 	mutex_unlock(&nd->path.dentry->d_inode->i_mutex);
1632 out:
1633 	up_write(&namespace_sem);
1634 	if (!err)
1635 		path_put(&parent_path);
1636 	path_put(&old_nd.path);
1637 	return err;
1638 }
1639 
1640 /*
1641  * create a new mount for userspace and request it to be added into the
1642  * namespace's tree
1643  * noinline this do_mount helper to save do_mount stack space.
1644  */
1645 static noinline int do_new_mount(struct nameidata *nd, char *type, int flags,
1646 			int mnt_flags, char *name, void *data)
1647 {
1648 	struct vfsmount *mnt;
1649 
1650 	if (!type || !memchr(type, 0, PAGE_SIZE))
1651 		return -EINVAL;
1652 
1653 	/* we need capabilities... */
1654 	if (!capable(CAP_SYS_ADMIN))
1655 		return -EPERM;
1656 
1657 	mnt = do_kern_mount(type, flags, name, data);
1658 	if (IS_ERR(mnt))
1659 		return PTR_ERR(mnt);
1660 
1661 	return do_add_mount(mnt, nd, mnt_flags, NULL);
1662 }
1663 
1664 /*
1665  * add a mount into a namespace's mount tree
1666  * - provide the option of adding the new mount to an expiration list
1667  */
1668 int do_add_mount(struct vfsmount *newmnt, struct nameidata *nd,
1669 		 int mnt_flags, struct list_head *fslist)
1670 {
1671 	int err;
1672 
1673 	down_write(&namespace_sem);
1674 	/* Something was mounted here while we slept */
1675 	while (d_mountpoint(nd->path.dentry) &&
1676 	       follow_down(&nd->path.mnt, &nd->path.dentry))
1677 		;
1678 	err = -EINVAL;
1679 	if (!check_mnt(nd->path.mnt))
1680 		goto unlock;
1681 
1682 	/* Refuse the same filesystem on the same mount point */
1683 	err = -EBUSY;
1684 	if (nd->path.mnt->mnt_sb == newmnt->mnt_sb &&
1685 	    nd->path.mnt->mnt_root == nd->path.dentry)
1686 		goto unlock;
1687 
1688 	err = -EINVAL;
1689 	if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
1690 		goto unlock;
1691 
1692 	newmnt->mnt_flags = mnt_flags;
1693 	if ((err = graft_tree(newmnt, &nd->path)))
1694 		goto unlock;
1695 
1696 	if (fslist) /* add to the specified expiration list */
1697 		list_add_tail(&newmnt->mnt_expire, fslist);
1698 
1699 	up_write(&namespace_sem);
1700 	return 0;
1701 
1702 unlock:
1703 	up_write(&namespace_sem);
1704 	mntput(newmnt);
1705 	return err;
1706 }
1707 
1708 EXPORT_SYMBOL_GPL(do_add_mount);
1709 
1710 /*
1711  * process a list of expirable mountpoints with the intent of discarding any
1712  * mountpoints that aren't in use and haven't been touched since last we came
1713  * here
1714  */
1715 void mark_mounts_for_expiry(struct list_head *mounts)
1716 {
1717 	struct vfsmount *mnt, *next;
1718 	LIST_HEAD(graveyard);
1719 	LIST_HEAD(umounts);
1720 
1721 	if (list_empty(mounts))
1722 		return;
1723 
1724 	down_write(&namespace_sem);
1725 	spin_lock(&vfsmount_lock);
1726 
1727 	/* extract from the expiration list every vfsmount that matches the
1728 	 * following criteria:
1729 	 * - only referenced by its parent vfsmount
1730 	 * - still marked for expiry (marked on the last call here; marks are
1731 	 *   cleared by mntput())
1732 	 */
1733 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
1734 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1735 			propagate_mount_busy(mnt, 1))
1736 			continue;
1737 		list_move(&mnt->mnt_expire, &graveyard);
1738 	}
1739 	while (!list_empty(&graveyard)) {
1740 		mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire);
1741 		touch_mnt_namespace(mnt->mnt_ns);
1742 		umount_tree(mnt, 1, &umounts);
1743 	}
1744 	spin_unlock(&vfsmount_lock);
1745 	up_write(&namespace_sem);
1746 
1747 	release_mounts(&umounts);
1748 }
1749 
1750 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
1751 
1752 /*
1753  * Ripoff of 'select_parent()'
1754  *
1755  * search the list of submounts for a given mountpoint, and move any
1756  * shrinkable submounts to the 'graveyard' list.
1757  */
1758 static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
1759 {
1760 	struct vfsmount *this_parent = parent;
1761 	struct list_head *next;
1762 	int found = 0;
1763 
1764 repeat:
1765 	next = this_parent->mnt_mounts.next;
1766 resume:
1767 	while (next != &this_parent->mnt_mounts) {
1768 		struct list_head *tmp = next;
1769 		struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
1770 
1771 		next = tmp->next;
1772 		if (!(mnt->mnt_flags & MNT_SHRINKABLE))
1773 			continue;
1774 		/*
1775 		 * Descend a level if the d_mounts list is non-empty.
1776 		 */
1777 		if (!list_empty(&mnt->mnt_mounts)) {
1778 			this_parent = mnt;
1779 			goto repeat;
1780 		}
1781 
1782 		if (!propagate_mount_busy(mnt, 1)) {
1783 			list_move_tail(&mnt->mnt_expire, graveyard);
1784 			found++;
1785 		}
1786 	}
1787 	/*
1788 	 * All done at this level ... ascend and resume the search
1789 	 */
1790 	if (this_parent != parent) {
1791 		next = this_parent->mnt_child.next;
1792 		this_parent = this_parent->mnt_parent;
1793 		goto resume;
1794 	}
1795 	return found;
1796 }
1797 
1798 /*
1799  * process a list of expirable mountpoints with the intent of discarding any
1800  * submounts of a specific parent mountpoint
1801  */
1802 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts)
1803 {
1804 	LIST_HEAD(graveyard);
1805 	struct vfsmount *m;
1806 
1807 	/* extract submounts of 'mountpoint' from the expiration list */
1808 	while (select_submounts(mnt, &graveyard)) {
1809 		while (!list_empty(&graveyard)) {
1810 			m = list_first_entry(&graveyard, struct vfsmount,
1811 						mnt_expire);
1812 			touch_mnt_namespace(mnt->mnt_ns);
1813 			umount_tree(mnt, 1, umounts);
1814 		}
1815 	}
1816 }
1817 
1818 /*
1819  * Some copy_from_user() implementations do not return the exact number of
1820  * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
1821  * Note that this function differs from copy_from_user() in that it will oops
1822  * on bad values of `to', rather than returning a short copy.
1823  */
1824 static long exact_copy_from_user(void *to, const void __user * from,
1825 				 unsigned long n)
1826 {
1827 	char *t = to;
1828 	const char __user *f = from;
1829 	char c;
1830 
1831 	if (!access_ok(VERIFY_READ, from, n))
1832 		return n;
1833 
1834 	while (n) {
1835 		if (__get_user(c, f)) {
1836 			memset(t, 0, n);
1837 			break;
1838 		}
1839 		*t++ = c;
1840 		f++;
1841 		n--;
1842 	}
1843 	return n;
1844 }
1845 
1846 int copy_mount_options(const void __user * data, unsigned long *where)
1847 {
1848 	int i;
1849 	unsigned long page;
1850 	unsigned long size;
1851 
1852 	*where = 0;
1853 	if (!data)
1854 		return 0;
1855 
1856 	if (!(page = __get_free_page(GFP_KERNEL)))
1857 		return -ENOMEM;
1858 
1859 	/* We only care that *some* data at the address the user
1860 	 * gave us is valid.  Just in case, we'll zero
1861 	 * the remainder of the page.
1862 	 */
1863 	/* copy_from_user cannot cross TASK_SIZE ! */
1864 	size = TASK_SIZE - (unsigned long)data;
1865 	if (size > PAGE_SIZE)
1866 		size = PAGE_SIZE;
1867 
1868 	i = size - exact_copy_from_user((void *)page, data, size);
1869 	if (!i) {
1870 		free_page(page);
1871 		return -EFAULT;
1872 	}
1873 	if (i != PAGE_SIZE)
1874 		memset((char *)page + i, 0, PAGE_SIZE - i);
1875 	*where = page;
1876 	return 0;
1877 }
1878 
1879 /*
1880  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
1881  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
1882  *
1883  * data is a (void *) that can point to any structure up to
1884  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
1885  * information (or be NULL).
1886  *
1887  * Pre-0.97 versions of mount() didn't have a flags word.
1888  * When the flags word was introduced its top half was required
1889  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
1890  * Therefore, if this magic number is present, it carries no information
1891  * and must be discarded.
1892  */
1893 long do_mount(char *dev_name, char *dir_name, char *type_page,
1894 		  unsigned long flags, void *data_page)
1895 {
1896 	struct nameidata nd;
1897 	int retval = 0;
1898 	int mnt_flags = 0;
1899 
1900 	/* Discard magic */
1901 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
1902 		flags &= ~MS_MGC_MSK;
1903 
1904 	/* Basic sanity checks */
1905 
1906 	if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
1907 		return -EINVAL;
1908 	if (dev_name && !memchr(dev_name, 0, PAGE_SIZE))
1909 		return -EINVAL;
1910 
1911 	if (data_page)
1912 		((char *)data_page)[PAGE_SIZE - 1] = 0;
1913 
1914 	/* Separate the per-mountpoint flags */
1915 	if (flags & MS_NOSUID)
1916 		mnt_flags |= MNT_NOSUID;
1917 	if (flags & MS_NODEV)
1918 		mnt_flags |= MNT_NODEV;
1919 	if (flags & MS_NOEXEC)
1920 		mnt_flags |= MNT_NOEXEC;
1921 	if (flags & MS_NOATIME)
1922 		mnt_flags |= MNT_NOATIME;
1923 	if (flags & MS_NODIRATIME)
1924 		mnt_flags |= MNT_NODIRATIME;
1925 	if (flags & MS_RELATIME)
1926 		mnt_flags |= MNT_RELATIME;
1927 	if (flags & MS_RDONLY)
1928 		mnt_flags |= MNT_READONLY;
1929 
1930 	flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE |
1931 		   MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT);
1932 
1933 	/* ... and get the mountpoint */
1934 	retval = path_lookup(dir_name, LOOKUP_FOLLOW, &nd);
1935 	if (retval)
1936 		return retval;
1937 
1938 	retval = security_sb_mount(dev_name, &nd.path,
1939 				   type_page, flags, data_page);
1940 	if (retval)
1941 		goto dput_out;
1942 
1943 	if (flags & MS_REMOUNT)
1944 		retval = do_remount(&nd, flags & ~MS_REMOUNT, mnt_flags,
1945 				    data_page);
1946 	else if (flags & MS_BIND)
1947 		retval = do_loopback(&nd, dev_name, flags & MS_REC);
1948 	else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1949 		retval = do_change_type(&nd, flags);
1950 	else if (flags & MS_MOVE)
1951 		retval = do_move_mount(&nd, dev_name);
1952 	else
1953 		retval = do_new_mount(&nd, type_page, flags, mnt_flags,
1954 				      dev_name, data_page);
1955 dput_out:
1956 	path_put(&nd.path);
1957 	return retval;
1958 }
1959 
1960 /*
1961  * Allocate a new namespace structure and populate it with contents
1962  * copied from the namespace of the passed in task structure.
1963  */
1964 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
1965 		struct fs_struct *fs)
1966 {
1967 	struct mnt_namespace *new_ns;
1968 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL, *altrootmnt = NULL;
1969 	struct vfsmount *p, *q;
1970 
1971 	new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
1972 	if (!new_ns)
1973 		return ERR_PTR(-ENOMEM);
1974 
1975 	atomic_set(&new_ns->count, 1);
1976 	INIT_LIST_HEAD(&new_ns->list);
1977 	init_waitqueue_head(&new_ns->poll);
1978 	new_ns->event = 0;
1979 
1980 	down_write(&namespace_sem);
1981 	/* First pass: copy the tree topology */
1982 	new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
1983 					CL_COPY_ALL | CL_EXPIRE);
1984 	if (!new_ns->root) {
1985 		up_write(&namespace_sem);
1986 		kfree(new_ns);
1987 		return ERR_PTR(-ENOMEM);;
1988 	}
1989 	spin_lock(&vfsmount_lock);
1990 	list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
1991 	spin_unlock(&vfsmount_lock);
1992 
1993 	/*
1994 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
1995 	 * as belonging to new namespace.  We have already acquired a private
1996 	 * fs_struct, so tsk->fs->lock is not needed.
1997 	 */
1998 	p = mnt_ns->root;
1999 	q = new_ns->root;
2000 	while (p) {
2001 		q->mnt_ns = new_ns;
2002 		if (fs) {
2003 			if (p == fs->root.mnt) {
2004 				rootmnt = p;
2005 				fs->root.mnt = mntget(q);
2006 			}
2007 			if (p == fs->pwd.mnt) {
2008 				pwdmnt = p;
2009 				fs->pwd.mnt = mntget(q);
2010 			}
2011 			if (p == fs->altroot.mnt) {
2012 				altrootmnt = p;
2013 				fs->altroot.mnt = mntget(q);
2014 			}
2015 		}
2016 		p = next_mnt(p, mnt_ns->root);
2017 		q = next_mnt(q, new_ns->root);
2018 	}
2019 	up_write(&namespace_sem);
2020 
2021 	if (rootmnt)
2022 		mntput(rootmnt);
2023 	if (pwdmnt)
2024 		mntput(pwdmnt);
2025 	if (altrootmnt)
2026 		mntput(altrootmnt);
2027 
2028 	return new_ns;
2029 }
2030 
2031 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2032 		struct fs_struct *new_fs)
2033 {
2034 	struct mnt_namespace *new_ns;
2035 
2036 	BUG_ON(!ns);
2037 	get_mnt_ns(ns);
2038 
2039 	if (!(flags & CLONE_NEWNS))
2040 		return ns;
2041 
2042 	new_ns = dup_mnt_ns(ns, new_fs);
2043 
2044 	put_mnt_ns(ns);
2045 	return new_ns;
2046 }
2047 
2048 asmlinkage long sys_mount(char __user * dev_name, char __user * dir_name,
2049 			  char __user * type, unsigned long flags,
2050 			  void __user * data)
2051 {
2052 	int retval;
2053 	unsigned long data_page;
2054 	unsigned long type_page;
2055 	unsigned long dev_page;
2056 	char *dir_page;
2057 
2058 	retval = copy_mount_options(type, &type_page);
2059 	if (retval < 0)
2060 		return retval;
2061 
2062 	dir_page = getname(dir_name);
2063 	retval = PTR_ERR(dir_page);
2064 	if (IS_ERR(dir_page))
2065 		goto out1;
2066 
2067 	retval = copy_mount_options(dev_name, &dev_page);
2068 	if (retval < 0)
2069 		goto out2;
2070 
2071 	retval = copy_mount_options(data, &data_page);
2072 	if (retval < 0)
2073 		goto out3;
2074 
2075 	lock_kernel();
2076 	retval = do_mount((char *)dev_page, dir_page, (char *)type_page,
2077 			  flags, (void *)data_page);
2078 	unlock_kernel();
2079 	free_page(data_page);
2080 
2081 out3:
2082 	free_page(dev_page);
2083 out2:
2084 	putname(dir_page);
2085 out1:
2086 	free_page(type_page);
2087 	return retval;
2088 }
2089 
2090 /*
2091  * Replace the fs->{rootmnt,root} with {mnt,dentry}. Put the old values.
2092  * It can block. Requires the big lock held.
2093  */
2094 void set_fs_root(struct fs_struct *fs, struct path *path)
2095 {
2096 	struct path old_root;
2097 
2098 	write_lock(&fs->lock);
2099 	old_root = fs->root;
2100 	fs->root = *path;
2101 	path_get(path);
2102 	write_unlock(&fs->lock);
2103 	if (old_root.dentry)
2104 		path_put(&old_root);
2105 }
2106 
2107 /*
2108  * Replace the fs->{pwdmnt,pwd} with {mnt,dentry}. Put the old values.
2109  * It can block. Requires the big lock held.
2110  */
2111 void set_fs_pwd(struct fs_struct *fs, struct path *path)
2112 {
2113 	struct path old_pwd;
2114 
2115 	write_lock(&fs->lock);
2116 	old_pwd = fs->pwd;
2117 	fs->pwd = *path;
2118 	path_get(path);
2119 	write_unlock(&fs->lock);
2120 
2121 	if (old_pwd.dentry)
2122 		path_put(&old_pwd);
2123 }
2124 
2125 static void chroot_fs_refs(struct path *old_root, struct path *new_root)
2126 {
2127 	struct task_struct *g, *p;
2128 	struct fs_struct *fs;
2129 
2130 	read_lock(&tasklist_lock);
2131 	do_each_thread(g, p) {
2132 		task_lock(p);
2133 		fs = p->fs;
2134 		if (fs) {
2135 			atomic_inc(&fs->count);
2136 			task_unlock(p);
2137 			if (fs->root.dentry == old_root->dentry
2138 			    && fs->root.mnt == old_root->mnt)
2139 				set_fs_root(fs, new_root);
2140 			if (fs->pwd.dentry == old_root->dentry
2141 			    && fs->pwd.mnt == old_root->mnt)
2142 				set_fs_pwd(fs, new_root);
2143 			put_fs_struct(fs);
2144 		} else
2145 			task_unlock(p);
2146 	} while_each_thread(g, p);
2147 	read_unlock(&tasklist_lock);
2148 }
2149 
2150 /*
2151  * pivot_root Semantics:
2152  * Moves the root file system of the current process to the directory put_old,
2153  * makes new_root as the new root file system of the current process, and sets
2154  * root/cwd of all processes which had them on the current root to new_root.
2155  *
2156  * Restrictions:
2157  * The new_root and put_old must be directories, and  must not be on the
2158  * same file  system as the current process root. The put_old  must  be
2159  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
2160  * pointed to by put_old must yield the same directory as new_root. No other
2161  * file system may be mounted on put_old. After all, new_root is a mountpoint.
2162  *
2163  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2164  * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2165  * in this situation.
2166  *
2167  * Notes:
2168  *  - we don't move root/cwd if they are not at the root (reason: if something
2169  *    cared enough to change them, it's probably wrong to force them elsewhere)
2170  *  - it's okay to pick a root that isn't the root of a file system, e.g.
2171  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2172  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2173  *    first.
2174  */
2175 asmlinkage long sys_pivot_root(const char __user * new_root,
2176 			       const char __user * put_old)
2177 {
2178 	struct vfsmount *tmp;
2179 	struct nameidata new_nd, old_nd;
2180 	struct path parent_path, root_parent, root;
2181 	int error;
2182 
2183 	if (!capable(CAP_SYS_ADMIN))
2184 		return -EPERM;
2185 
2186 	error = __user_walk(new_root, LOOKUP_FOLLOW | LOOKUP_DIRECTORY,
2187 			    &new_nd);
2188 	if (error)
2189 		goto out0;
2190 	error = -EINVAL;
2191 	if (!check_mnt(new_nd.path.mnt))
2192 		goto out1;
2193 
2194 	error = __user_walk(put_old, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old_nd);
2195 	if (error)
2196 		goto out1;
2197 
2198 	error = security_sb_pivotroot(&old_nd.path, &new_nd.path);
2199 	if (error) {
2200 		path_put(&old_nd.path);
2201 		goto out1;
2202 	}
2203 
2204 	read_lock(&current->fs->lock);
2205 	root = current->fs->root;
2206 	path_get(&current->fs->root);
2207 	read_unlock(&current->fs->lock);
2208 	down_write(&namespace_sem);
2209 	mutex_lock(&old_nd.path.dentry->d_inode->i_mutex);
2210 	error = -EINVAL;
2211 	if (IS_MNT_SHARED(old_nd.path.mnt) ||
2212 		IS_MNT_SHARED(new_nd.path.mnt->mnt_parent) ||
2213 		IS_MNT_SHARED(root.mnt->mnt_parent))
2214 		goto out2;
2215 	if (!check_mnt(root.mnt))
2216 		goto out2;
2217 	error = -ENOENT;
2218 	if (IS_DEADDIR(new_nd.path.dentry->d_inode))
2219 		goto out2;
2220 	if (d_unhashed(new_nd.path.dentry) && !IS_ROOT(new_nd.path.dentry))
2221 		goto out2;
2222 	if (d_unhashed(old_nd.path.dentry) && !IS_ROOT(old_nd.path.dentry))
2223 		goto out2;
2224 	error = -EBUSY;
2225 	if (new_nd.path.mnt == root.mnt ||
2226 	    old_nd.path.mnt == root.mnt)
2227 		goto out2; /* loop, on the same file system  */
2228 	error = -EINVAL;
2229 	if (root.mnt->mnt_root != root.dentry)
2230 		goto out2; /* not a mountpoint */
2231 	if (root.mnt->mnt_parent == root.mnt)
2232 		goto out2; /* not attached */
2233 	if (new_nd.path.mnt->mnt_root != new_nd.path.dentry)
2234 		goto out2; /* not a mountpoint */
2235 	if (new_nd.path.mnt->mnt_parent == new_nd.path.mnt)
2236 		goto out2; /* not attached */
2237 	/* make sure we can reach put_old from new_root */
2238 	tmp = old_nd.path.mnt;
2239 	spin_lock(&vfsmount_lock);
2240 	if (tmp != new_nd.path.mnt) {
2241 		for (;;) {
2242 			if (tmp->mnt_parent == tmp)
2243 				goto out3; /* already mounted on put_old */
2244 			if (tmp->mnt_parent == new_nd.path.mnt)
2245 				break;
2246 			tmp = tmp->mnt_parent;
2247 		}
2248 		if (!is_subdir(tmp->mnt_mountpoint, new_nd.path.dentry))
2249 			goto out3;
2250 	} else if (!is_subdir(old_nd.path.dentry, new_nd.path.dentry))
2251 		goto out3;
2252 	detach_mnt(new_nd.path.mnt, &parent_path);
2253 	detach_mnt(root.mnt, &root_parent);
2254 	/* mount old root on put_old */
2255 	attach_mnt(root.mnt, &old_nd.path);
2256 	/* mount new_root on / */
2257 	attach_mnt(new_nd.path.mnt, &root_parent);
2258 	touch_mnt_namespace(current->nsproxy->mnt_ns);
2259 	spin_unlock(&vfsmount_lock);
2260 	chroot_fs_refs(&root, &new_nd.path);
2261 	security_sb_post_pivotroot(&root, &new_nd.path);
2262 	error = 0;
2263 	path_put(&root_parent);
2264 	path_put(&parent_path);
2265 out2:
2266 	mutex_unlock(&old_nd.path.dentry->d_inode->i_mutex);
2267 	up_write(&namespace_sem);
2268 	path_put(&root);
2269 	path_put(&old_nd.path);
2270 out1:
2271 	path_put(&new_nd.path);
2272 out0:
2273 	return error;
2274 out3:
2275 	spin_unlock(&vfsmount_lock);
2276 	goto out2;
2277 }
2278 
2279 static void __init init_mount_tree(void)
2280 {
2281 	struct vfsmount *mnt;
2282 	struct mnt_namespace *ns;
2283 	struct path root;
2284 
2285 	mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2286 	if (IS_ERR(mnt))
2287 		panic("Can't create rootfs");
2288 	ns = kmalloc(sizeof(*ns), GFP_KERNEL);
2289 	if (!ns)
2290 		panic("Can't allocate initial namespace");
2291 	atomic_set(&ns->count, 1);
2292 	INIT_LIST_HEAD(&ns->list);
2293 	init_waitqueue_head(&ns->poll);
2294 	ns->event = 0;
2295 	list_add(&mnt->mnt_list, &ns->list);
2296 	ns->root = mnt;
2297 	mnt->mnt_ns = ns;
2298 
2299 	init_task.nsproxy->mnt_ns = ns;
2300 	get_mnt_ns(ns);
2301 
2302 	root.mnt = ns->root;
2303 	root.dentry = ns->root->mnt_root;
2304 
2305 	set_fs_pwd(current->fs, &root);
2306 	set_fs_root(current->fs, &root);
2307 }
2308 
2309 void __init mnt_init(void)
2310 {
2311 	unsigned u;
2312 	int err;
2313 
2314 	init_rwsem(&namespace_sem);
2315 
2316 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
2317 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2318 
2319 	mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2320 
2321 	if (!mount_hashtable)
2322 		panic("Failed to allocate mount hash table\n");
2323 
2324 	printk("Mount-cache hash table entries: %lu\n", HASH_SIZE);
2325 
2326 	for (u = 0; u < HASH_SIZE; u++)
2327 		INIT_LIST_HEAD(&mount_hashtable[u]);
2328 
2329 	err = sysfs_init();
2330 	if (err)
2331 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2332 			__func__, err);
2333 	fs_kobj = kobject_create_and_add("fs", NULL);
2334 	if (!fs_kobj)
2335 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
2336 	init_rootfs();
2337 	init_mount_tree();
2338 }
2339 
2340 void __put_mnt_ns(struct mnt_namespace *ns)
2341 {
2342 	struct vfsmount *root = ns->root;
2343 	LIST_HEAD(umount_list);
2344 	ns->root = NULL;
2345 	spin_unlock(&vfsmount_lock);
2346 	down_write(&namespace_sem);
2347 	spin_lock(&vfsmount_lock);
2348 	umount_tree(root, 0, &umount_list);
2349 	spin_unlock(&vfsmount_lock);
2350 	up_write(&namespace_sem);
2351 	release_mounts(&umount_list);
2352 	kfree(ns);
2353 }
2354