xref: /openbmc/linux/fs/namespace.c (revision 2127c01b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/namespace.c
4  *
5  * (C) Copyright Al Viro 2000, 2001
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h>		/* init_rootfs */
21 #include <linux/fs_struct.h>	/* get_fs_root et.al. */
22 #include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
23 #include <linux/file.h>
24 #include <linux/uaccess.h>
25 #include <linux/proc_ns.h>
26 #include <linux/magic.h>
27 #include <linux/memblock.h>
28 #include <linux/task_work.h>
29 #include <linux/sched/task.h>
30 #include <uapi/linux/mount.h>
31 #include <linux/fs_context.h>
32 #include <linux/shmem_fs.h>
33 
34 #include "pnode.h"
35 #include "internal.h"
36 
37 /* Maximum number of mounts in a mount namespace */
38 unsigned int sysctl_mount_max __read_mostly = 100000;
39 
40 static unsigned int m_hash_mask __read_mostly;
41 static unsigned int m_hash_shift __read_mostly;
42 static unsigned int mp_hash_mask __read_mostly;
43 static unsigned int mp_hash_shift __read_mostly;
44 
45 static __initdata unsigned long mhash_entries;
46 static int __init set_mhash_entries(char *str)
47 {
48 	if (!str)
49 		return 0;
50 	mhash_entries = simple_strtoul(str, &str, 0);
51 	return 1;
52 }
53 __setup("mhash_entries=", set_mhash_entries);
54 
55 static __initdata unsigned long mphash_entries;
56 static int __init set_mphash_entries(char *str)
57 {
58 	if (!str)
59 		return 0;
60 	mphash_entries = simple_strtoul(str, &str, 0);
61 	return 1;
62 }
63 __setup("mphash_entries=", set_mphash_entries);
64 
65 static u64 event;
66 static DEFINE_IDA(mnt_id_ida);
67 static DEFINE_IDA(mnt_group_ida);
68 
69 static struct hlist_head *mount_hashtable __read_mostly;
70 static struct hlist_head *mountpoint_hashtable __read_mostly;
71 static struct kmem_cache *mnt_cache __read_mostly;
72 static DECLARE_RWSEM(namespace_sem);
73 static HLIST_HEAD(unmounted);	/* protected by namespace_sem */
74 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
75 
76 /* /sys/fs */
77 struct kobject *fs_kobj;
78 EXPORT_SYMBOL_GPL(fs_kobj);
79 
80 /*
81  * vfsmount lock may be taken for read to prevent changes to the
82  * vfsmount hash, ie. during mountpoint lookups or walking back
83  * up the tree.
84  *
85  * It should be taken for write in all cases where the vfsmount
86  * tree or hash is modified or when a vfsmount structure is modified.
87  */
88 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
89 
90 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
91 {
92 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
93 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
94 	tmp = tmp + (tmp >> m_hash_shift);
95 	return &mount_hashtable[tmp & m_hash_mask];
96 }
97 
98 static inline struct hlist_head *mp_hash(struct dentry *dentry)
99 {
100 	unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
101 	tmp = tmp + (tmp >> mp_hash_shift);
102 	return &mountpoint_hashtable[tmp & mp_hash_mask];
103 }
104 
105 static int mnt_alloc_id(struct mount *mnt)
106 {
107 	int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
108 
109 	if (res < 0)
110 		return res;
111 	mnt->mnt_id = res;
112 	return 0;
113 }
114 
115 static void mnt_free_id(struct mount *mnt)
116 {
117 	ida_free(&mnt_id_ida, mnt->mnt_id);
118 }
119 
120 /*
121  * Allocate a new peer group ID
122  */
123 static int mnt_alloc_group_id(struct mount *mnt)
124 {
125 	int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
126 
127 	if (res < 0)
128 		return res;
129 	mnt->mnt_group_id = res;
130 	return 0;
131 }
132 
133 /*
134  * Release a peer group ID
135  */
136 void mnt_release_group_id(struct mount *mnt)
137 {
138 	ida_free(&mnt_group_ida, mnt->mnt_group_id);
139 	mnt->mnt_group_id = 0;
140 }
141 
142 /*
143  * vfsmount lock must be held for read
144  */
145 static inline void mnt_add_count(struct mount *mnt, int n)
146 {
147 #ifdef CONFIG_SMP
148 	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
149 #else
150 	preempt_disable();
151 	mnt->mnt_count += n;
152 	preempt_enable();
153 #endif
154 }
155 
156 /*
157  * vfsmount lock must be held for write
158  */
159 unsigned int mnt_get_count(struct mount *mnt)
160 {
161 #ifdef CONFIG_SMP
162 	unsigned int count = 0;
163 	int cpu;
164 
165 	for_each_possible_cpu(cpu) {
166 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
167 	}
168 
169 	return count;
170 #else
171 	return mnt->mnt_count;
172 #endif
173 }
174 
175 static struct mount *alloc_vfsmnt(const char *name)
176 {
177 	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
178 	if (mnt) {
179 		int err;
180 
181 		err = mnt_alloc_id(mnt);
182 		if (err)
183 			goto out_free_cache;
184 
185 		if (name) {
186 			mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
187 			if (!mnt->mnt_devname)
188 				goto out_free_id;
189 		}
190 
191 #ifdef CONFIG_SMP
192 		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
193 		if (!mnt->mnt_pcp)
194 			goto out_free_devname;
195 
196 		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
197 #else
198 		mnt->mnt_count = 1;
199 		mnt->mnt_writers = 0;
200 #endif
201 
202 		INIT_HLIST_NODE(&mnt->mnt_hash);
203 		INIT_LIST_HEAD(&mnt->mnt_child);
204 		INIT_LIST_HEAD(&mnt->mnt_mounts);
205 		INIT_LIST_HEAD(&mnt->mnt_list);
206 		INIT_LIST_HEAD(&mnt->mnt_expire);
207 		INIT_LIST_HEAD(&mnt->mnt_share);
208 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
209 		INIT_LIST_HEAD(&mnt->mnt_slave);
210 		INIT_HLIST_NODE(&mnt->mnt_mp_list);
211 		INIT_LIST_HEAD(&mnt->mnt_umounting);
212 		INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
213 	}
214 	return mnt;
215 
216 #ifdef CONFIG_SMP
217 out_free_devname:
218 	kfree_const(mnt->mnt_devname);
219 #endif
220 out_free_id:
221 	mnt_free_id(mnt);
222 out_free_cache:
223 	kmem_cache_free(mnt_cache, mnt);
224 	return NULL;
225 }
226 
227 /*
228  * Most r/o checks on a fs are for operations that take
229  * discrete amounts of time, like a write() or unlink().
230  * We must keep track of when those operations start
231  * (for permission checks) and when they end, so that
232  * we can determine when writes are able to occur to
233  * a filesystem.
234  */
235 /*
236  * __mnt_is_readonly: check whether a mount is read-only
237  * @mnt: the mount to check for its write status
238  *
239  * This shouldn't be used directly ouside of the VFS.
240  * It does not guarantee that the filesystem will stay
241  * r/w, just that it is right *now*.  This can not and
242  * should not be used in place of IS_RDONLY(inode).
243  * mnt_want/drop_write() will _keep_ the filesystem
244  * r/w.
245  */
246 bool __mnt_is_readonly(struct vfsmount *mnt)
247 {
248 	return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
249 }
250 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
251 
252 static inline void mnt_inc_writers(struct mount *mnt)
253 {
254 #ifdef CONFIG_SMP
255 	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
256 #else
257 	mnt->mnt_writers++;
258 #endif
259 }
260 
261 static inline void mnt_dec_writers(struct mount *mnt)
262 {
263 #ifdef CONFIG_SMP
264 	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
265 #else
266 	mnt->mnt_writers--;
267 #endif
268 }
269 
270 static unsigned int mnt_get_writers(struct mount *mnt)
271 {
272 #ifdef CONFIG_SMP
273 	unsigned int count = 0;
274 	int cpu;
275 
276 	for_each_possible_cpu(cpu) {
277 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
278 	}
279 
280 	return count;
281 #else
282 	return mnt->mnt_writers;
283 #endif
284 }
285 
286 static int mnt_is_readonly(struct vfsmount *mnt)
287 {
288 	if (mnt->mnt_sb->s_readonly_remount)
289 		return 1;
290 	/* Order wrt setting s_flags/s_readonly_remount in do_remount() */
291 	smp_rmb();
292 	return __mnt_is_readonly(mnt);
293 }
294 
295 /*
296  * Most r/o & frozen checks on a fs are for operations that take discrete
297  * amounts of time, like a write() or unlink().  We must keep track of when
298  * those operations start (for permission checks) and when they end, so that we
299  * can determine when writes are able to occur to a filesystem.
300  */
301 /**
302  * __mnt_want_write - get write access to a mount without freeze protection
303  * @m: the mount on which to take a write
304  *
305  * This tells the low-level filesystem that a write is about to be performed to
306  * it, and makes sure that writes are allowed (mnt it read-write) before
307  * returning success. This operation does not protect against filesystem being
308  * frozen. When the write operation is finished, __mnt_drop_write() must be
309  * called. This is effectively a refcount.
310  */
311 int __mnt_want_write(struct vfsmount *m)
312 {
313 	struct mount *mnt = real_mount(m);
314 	int ret = 0;
315 
316 	preempt_disable();
317 	mnt_inc_writers(mnt);
318 	/*
319 	 * The store to mnt_inc_writers must be visible before we pass
320 	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
321 	 * incremented count after it has set MNT_WRITE_HOLD.
322 	 */
323 	smp_mb();
324 	while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
325 		cpu_relax();
326 	/*
327 	 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
328 	 * be set to match its requirements. So we must not load that until
329 	 * MNT_WRITE_HOLD is cleared.
330 	 */
331 	smp_rmb();
332 	if (mnt_is_readonly(m)) {
333 		mnt_dec_writers(mnt);
334 		ret = -EROFS;
335 	}
336 	preempt_enable();
337 
338 	return ret;
339 }
340 
341 /**
342  * mnt_want_write - get write access to a mount
343  * @m: the mount on which to take a write
344  *
345  * This tells the low-level filesystem that a write is about to be performed to
346  * it, and makes sure that writes are allowed (mount is read-write, filesystem
347  * is not frozen) before returning success.  When the write operation is
348  * finished, mnt_drop_write() must be called.  This is effectively a refcount.
349  */
350 int mnt_want_write(struct vfsmount *m)
351 {
352 	int ret;
353 
354 	sb_start_write(m->mnt_sb);
355 	ret = __mnt_want_write(m);
356 	if (ret)
357 		sb_end_write(m->mnt_sb);
358 	return ret;
359 }
360 EXPORT_SYMBOL_GPL(mnt_want_write);
361 
362 /**
363  * mnt_clone_write - get write access to a mount
364  * @mnt: the mount on which to take a write
365  *
366  * This is effectively like mnt_want_write, except
367  * it must only be used to take an extra write reference
368  * on a mountpoint that we already know has a write reference
369  * on it. This allows some optimisation.
370  *
371  * After finished, mnt_drop_write must be called as usual to
372  * drop the reference.
373  */
374 int mnt_clone_write(struct vfsmount *mnt)
375 {
376 	/* superblock may be r/o */
377 	if (__mnt_is_readonly(mnt))
378 		return -EROFS;
379 	preempt_disable();
380 	mnt_inc_writers(real_mount(mnt));
381 	preempt_enable();
382 	return 0;
383 }
384 EXPORT_SYMBOL_GPL(mnt_clone_write);
385 
386 /**
387  * __mnt_want_write_file - get write access to a file's mount
388  * @file: the file who's mount on which to take a write
389  *
390  * This is like __mnt_want_write, but it takes a file and can
391  * do some optimisations if the file is open for write already
392  */
393 int __mnt_want_write_file(struct file *file)
394 {
395 	if (!(file->f_mode & FMODE_WRITER))
396 		return __mnt_want_write(file->f_path.mnt);
397 	else
398 		return mnt_clone_write(file->f_path.mnt);
399 }
400 
401 /**
402  * mnt_want_write_file - get write access to a file's mount
403  * @file: the file who's mount on which to take a write
404  *
405  * This is like mnt_want_write, but it takes a file and can
406  * do some optimisations if the file is open for write already
407  */
408 int mnt_want_write_file(struct file *file)
409 {
410 	int ret;
411 
412 	sb_start_write(file_inode(file)->i_sb);
413 	ret = __mnt_want_write_file(file);
414 	if (ret)
415 		sb_end_write(file_inode(file)->i_sb);
416 	return ret;
417 }
418 EXPORT_SYMBOL_GPL(mnt_want_write_file);
419 
420 /**
421  * __mnt_drop_write - give up write access to a mount
422  * @mnt: the mount on which to give up write access
423  *
424  * Tells the low-level filesystem that we are done
425  * performing writes to it.  Must be matched with
426  * __mnt_want_write() call above.
427  */
428 void __mnt_drop_write(struct vfsmount *mnt)
429 {
430 	preempt_disable();
431 	mnt_dec_writers(real_mount(mnt));
432 	preempt_enable();
433 }
434 
435 /**
436  * mnt_drop_write - give up write access to a mount
437  * @mnt: the mount on which to give up write access
438  *
439  * Tells the low-level filesystem that we are done performing writes to it and
440  * also allows filesystem to be frozen again.  Must be matched with
441  * mnt_want_write() call above.
442  */
443 void mnt_drop_write(struct vfsmount *mnt)
444 {
445 	__mnt_drop_write(mnt);
446 	sb_end_write(mnt->mnt_sb);
447 }
448 EXPORT_SYMBOL_GPL(mnt_drop_write);
449 
450 void __mnt_drop_write_file(struct file *file)
451 {
452 	__mnt_drop_write(file->f_path.mnt);
453 }
454 
455 void mnt_drop_write_file(struct file *file)
456 {
457 	__mnt_drop_write_file(file);
458 	sb_end_write(file_inode(file)->i_sb);
459 }
460 EXPORT_SYMBOL(mnt_drop_write_file);
461 
462 static int mnt_make_readonly(struct mount *mnt)
463 {
464 	int ret = 0;
465 
466 	lock_mount_hash();
467 	mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
468 	/*
469 	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
470 	 * should be visible before we do.
471 	 */
472 	smp_mb();
473 
474 	/*
475 	 * With writers on hold, if this value is zero, then there are
476 	 * definitely no active writers (although held writers may subsequently
477 	 * increment the count, they'll have to wait, and decrement it after
478 	 * seeing MNT_READONLY).
479 	 *
480 	 * It is OK to have counter incremented on one CPU and decremented on
481 	 * another: the sum will add up correctly. The danger would be when we
482 	 * sum up each counter, if we read a counter before it is incremented,
483 	 * but then read another CPU's count which it has been subsequently
484 	 * decremented from -- we would see more decrements than we should.
485 	 * MNT_WRITE_HOLD protects against this scenario, because
486 	 * mnt_want_write first increments count, then smp_mb, then spins on
487 	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
488 	 * we're counting up here.
489 	 */
490 	if (mnt_get_writers(mnt) > 0)
491 		ret = -EBUSY;
492 	else
493 		mnt->mnt.mnt_flags |= MNT_READONLY;
494 	/*
495 	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
496 	 * that become unheld will see MNT_READONLY.
497 	 */
498 	smp_wmb();
499 	mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
500 	unlock_mount_hash();
501 	return ret;
502 }
503 
504 static int __mnt_unmake_readonly(struct mount *mnt)
505 {
506 	lock_mount_hash();
507 	mnt->mnt.mnt_flags &= ~MNT_READONLY;
508 	unlock_mount_hash();
509 	return 0;
510 }
511 
512 int sb_prepare_remount_readonly(struct super_block *sb)
513 {
514 	struct mount *mnt;
515 	int err = 0;
516 
517 	/* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
518 	if (atomic_long_read(&sb->s_remove_count))
519 		return -EBUSY;
520 
521 	lock_mount_hash();
522 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
523 		if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
524 			mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
525 			smp_mb();
526 			if (mnt_get_writers(mnt) > 0) {
527 				err = -EBUSY;
528 				break;
529 			}
530 		}
531 	}
532 	if (!err && atomic_long_read(&sb->s_remove_count))
533 		err = -EBUSY;
534 
535 	if (!err) {
536 		sb->s_readonly_remount = 1;
537 		smp_wmb();
538 	}
539 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
540 		if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
541 			mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
542 	}
543 	unlock_mount_hash();
544 
545 	return err;
546 }
547 
548 static void free_vfsmnt(struct mount *mnt)
549 {
550 	kfree_const(mnt->mnt_devname);
551 #ifdef CONFIG_SMP
552 	free_percpu(mnt->mnt_pcp);
553 #endif
554 	kmem_cache_free(mnt_cache, mnt);
555 }
556 
557 static void delayed_free_vfsmnt(struct rcu_head *head)
558 {
559 	free_vfsmnt(container_of(head, struct mount, mnt_rcu));
560 }
561 
562 /* call under rcu_read_lock */
563 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
564 {
565 	struct mount *mnt;
566 	if (read_seqretry(&mount_lock, seq))
567 		return 1;
568 	if (bastard == NULL)
569 		return 0;
570 	mnt = real_mount(bastard);
571 	mnt_add_count(mnt, 1);
572 	smp_mb();			// see mntput_no_expire()
573 	if (likely(!read_seqretry(&mount_lock, seq)))
574 		return 0;
575 	if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
576 		mnt_add_count(mnt, -1);
577 		return 1;
578 	}
579 	lock_mount_hash();
580 	if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
581 		mnt_add_count(mnt, -1);
582 		unlock_mount_hash();
583 		return 1;
584 	}
585 	unlock_mount_hash();
586 	/* caller will mntput() */
587 	return -1;
588 }
589 
590 /* call under rcu_read_lock */
591 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
592 {
593 	int res = __legitimize_mnt(bastard, seq);
594 	if (likely(!res))
595 		return true;
596 	if (unlikely(res < 0)) {
597 		rcu_read_unlock();
598 		mntput(bastard);
599 		rcu_read_lock();
600 	}
601 	return false;
602 }
603 
604 /*
605  * find the first mount at @dentry on vfsmount @mnt.
606  * call under rcu_read_lock()
607  */
608 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
609 {
610 	struct hlist_head *head = m_hash(mnt, dentry);
611 	struct mount *p;
612 
613 	hlist_for_each_entry_rcu(p, head, mnt_hash)
614 		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
615 			return p;
616 	return NULL;
617 }
618 
619 /*
620  * lookup_mnt - Return the first child mount mounted at path
621  *
622  * "First" means first mounted chronologically.  If you create the
623  * following mounts:
624  *
625  * mount /dev/sda1 /mnt
626  * mount /dev/sda2 /mnt
627  * mount /dev/sda3 /mnt
628  *
629  * Then lookup_mnt() on the base /mnt dentry in the root mount will
630  * return successively the root dentry and vfsmount of /dev/sda1, then
631  * /dev/sda2, then /dev/sda3, then NULL.
632  *
633  * lookup_mnt takes a reference to the found vfsmount.
634  */
635 struct vfsmount *lookup_mnt(const struct path *path)
636 {
637 	struct mount *child_mnt;
638 	struct vfsmount *m;
639 	unsigned seq;
640 
641 	rcu_read_lock();
642 	do {
643 		seq = read_seqbegin(&mount_lock);
644 		child_mnt = __lookup_mnt(path->mnt, path->dentry);
645 		m = child_mnt ? &child_mnt->mnt : NULL;
646 	} while (!legitimize_mnt(m, seq));
647 	rcu_read_unlock();
648 	return m;
649 }
650 
651 /*
652  * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
653  *                         current mount namespace.
654  *
655  * The common case is dentries are not mountpoints at all and that
656  * test is handled inline.  For the slow case when we are actually
657  * dealing with a mountpoint of some kind, walk through all of the
658  * mounts in the current mount namespace and test to see if the dentry
659  * is a mountpoint.
660  *
661  * The mount_hashtable is not usable in the context because we
662  * need to identify all mounts that may be in the current mount
663  * namespace not just a mount that happens to have some specified
664  * parent mount.
665  */
666 bool __is_local_mountpoint(struct dentry *dentry)
667 {
668 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
669 	struct mount *mnt;
670 	bool is_covered = false;
671 
672 	if (!d_mountpoint(dentry))
673 		goto out;
674 
675 	down_read(&namespace_sem);
676 	list_for_each_entry(mnt, &ns->list, mnt_list) {
677 		is_covered = (mnt->mnt_mountpoint == dentry);
678 		if (is_covered)
679 			break;
680 	}
681 	up_read(&namespace_sem);
682 out:
683 	return is_covered;
684 }
685 
686 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
687 {
688 	struct hlist_head *chain = mp_hash(dentry);
689 	struct mountpoint *mp;
690 
691 	hlist_for_each_entry(mp, chain, m_hash) {
692 		if (mp->m_dentry == dentry) {
693 			mp->m_count++;
694 			return mp;
695 		}
696 	}
697 	return NULL;
698 }
699 
700 static struct mountpoint *get_mountpoint(struct dentry *dentry)
701 {
702 	struct mountpoint *mp, *new = NULL;
703 	int ret;
704 
705 	if (d_mountpoint(dentry)) {
706 		/* might be worth a WARN_ON() */
707 		if (d_unlinked(dentry))
708 			return ERR_PTR(-ENOENT);
709 mountpoint:
710 		read_seqlock_excl(&mount_lock);
711 		mp = lookup_mountpoint(dentry);
712 		read_sequnlock_excl(&mount_lock);
713 		if (mp)
714 			goto done;
715 	}
716 
717 	if (!new)
718 		new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
719 	if (!new)
720 		return ERR_PTR(-ENOMEM);
721 
722 
723 	/* Exactly one processes may set d_mounted */
724 	ret = d_set_mounted(dentry);
725 
726 	/* Someone else set d_mounted? */
727 	if (ret == -EBUSY)
728 		goto mountpoint;
729 
730 	/* The dentry is not available as a mountpoint? */
731 	mp = ERR_PTR(ret);
732 	if (ret)
733 		goto done;
734 
735 	/* Add the new mountpoint to the hash table */
736 	read_seqlock_excl(&mount_lock);
737 	new->m_dentry = dget(dentry);
738 	new->m_count = 1;
739 	hlist_add_head(&new->m_hash, mp_hash(dentry));
740 	INIT_HLIST_HEAD(&new->m_list);
741 	read_sequnlock_excl(&mount_lock);
742 
743 	mp = new;
744 	new = NULL;
745 done:
746 	kfree(new);
747 	return mp;
748 }
749 
750 /*
751  * vfsmount lock must be held.  Additionally, the caller is responsible
752  * for serializing calls for given disposal list.
753  */
754 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
755 {
756 	if (!--mp->m_count) {
757 		struct dentry *dentry = mp->m_dentry;
758 		BUG_ON(!hlist_empty(&mp->m_list));
759 		spin_lock(&dentry->d_lock);
760 		dentry->d_flags &= ~DCACHE_MOUNTED;
761 		spin_unlock(&dentry->d_lock);
762 		dput_to_list(dentry, list);
763 		hlist_del(&mp->m_hash);
764 		kfree(mp);
765 	}
766 }
767 
768 /* called with namespace_lock and vfsmount lock */
769 static void put_mountpoint(struct mountpoint *mp)
770 {
771 	__put_mountpoint(mp, &ex_mountpoints);
772 }
773 
774 static inline int check_mnt(struct mount *mnt)
775 {
776 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
777 }
778 
779 /*
780  * vfsmount lock must be held for write
781  */
782 static void touch_mnt_namespace(struct mnt_namespace *ns)
783 {
784 	if (ns) {
785 		ns->event = ++event;
786 		wake_up_interruptible(&ns->poll);
787 	}
788 }
789 
790 /*
791  * vfsmount lock must be held for write
792  */
793 static void __touch_mnt_namespace(struct mnt_namespace *ns)
794 {
795 	if (ns && ns->event != event) {
796 		ns->event = event;
797 		wake_up_interruptible(&ns->poll);
798 	}
799 }
800 
801 /*
802  * vfsmount lock must be held for write
803  */
804 static struct mountpoint *unhash_mnt(struct mount *mnt)
805 {
806 	struct mountpoint *mp;
807 	mnt->mnt_parent = mnt;
808 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
809 	list_del_init(&mnt->mnt_child);
810 	hlist_del_init_rcu(&mnt->mnt_hash);
811 	hlist_del_init(&mnt->mnt_mp_list);
812 	mp = mnt->mnt_mp;
813 	mnt->mnt_mp = NULL;
814 	return mp;
815 }
816 
817 /*
818  * vfsmount lock must be held for write
819  */
820 static void umount_mnt(struct mount *mnt)
821 {
822 	put_mountpoint(unhash_mnt(mnt));
823 }
824 
825 /*
826  * vfsmount lock must be held for write
827  */
828 void mnt_set_mountpoint(struct mount *mnt,
829 			struct mountpoint *mp,
830 			struct mount *child_mnt)
831 {
832 	mp->m_count++;
833 	mnt_add_count(mnt, 1);	/* essentially, that's mntget */
834 	child_mnt->mnt_mountpoint = mp->m_dentry;
835 	child_mnt->mnt_parent = mnt;
836 	child_mnt->mnt_mp = mp;
837 	hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
838 }
839 
840 static void __attach_mnt(struct mount *mnt, struct mount *parent)
841 {
842 	hlist_add_head_rcu(&mnt->mnt_hash,
843 			   m_hash(&parent->mnt, mnt->mnt_mountpoint));
844 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
845 }
846 
847 /*
848  * vfsmount lock must be held for write
849  */
850 static void attach_mnt(struct mount *mnt,
851 			struct mount *parent,
852 			struct mountpoint *mp)
853 {
854 	mnt_set_mountpoint(parent, mp, mnt);
855 	__attach_mnt(mnt, parent);
856 }
857 
858 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
859 {
860 	struct mountpoint *old_mp = mnt->mnt_mp;
861 	struct mount *old_parent = mnt->mnt_parent;
862 
863 	list_del_init(&mnt->mnt_child);
864 	hlist_del_init(&mnt->mnt_mp_list);
865 	hlist_del_init_rcu(&mnt->mnt_hash);
866 
867 	attach_mnt(mnt, parent, mp);
868 
869 	put_mountpoint(old_mp);
870 	mnt_add_count(old_parent, -1);
871 }
872 
873 /*
874  * vfsmount lock must be held for write
875  */
876 static void commit_tree(struct mount *mnt)
877 {
878 	struct mount *parent = mnt->mnt_parent;
879 	struct mount *m;
880 	LIST_HEAD(head);
881 	struct mnt_namespace *n = parent->mnt_ns;
882 
883 	BUG_ON(parent == mnt);
884 
885 	list_add_tail(&head, &mnt->mnt_list);
886 	list_for_each_entry(m, &head, mnt_list)
887 		m->mnt_ns = n;
888 
889 	list_splice(&head, n->list.prev);
890 
891 	n->mounts += n->pending_mounts;
892 	n->pending_mounts = 0;
893 
894 	__attach_mnt(mnt, parent);
895 	touch_mnt_namespace(n);
896 }
897 
898 static struct mount *next_mnt(struct mount *p, struct mount *root)
899 {
900 	struct list_head *next = p->mnt_mounts.next;
901 	if (next == &p->mnt_mounts) {
902 		while (1) {
903 			if (p == root)
904 				return NULL;
905 			next = p->mnt_child.next;
906 			if (next != &p->mnt_parent->mnt_mounts)
907 				break;
908 			p = p->mnt_parent;
909 		}
910 	}
911 	return list_entry(next, struct mount, mnt_child);
912 }
913 
914 static struct mount *skip_mnt_tree(struct mount *p)
915 {
916 	struct list_head *prev = p->mnt_mounts.prev;
917 	while (prev != &p->mnt_mounts) {
918 		p = list_entry(prev, struct mount, mnt_child);
919 		prev = p->mnt_mounts.prev;
920 	}
921 	return p;
922 }
923 
924 /**
925  * vfs_create_mount - Create a mount for a configured superblock
926  * @fc: The configuration context with the superblock attached
927  *
928  * Create a mount to an already configured superblock.  If necessary, the
929  * caller should invoke vfs_get_tree() before calling this.
930  *
931  * Note that this does not attach the mount to anything.
932  */
933 struct vfsmount *vfs_create_mount(struct fs_context *fc)
934 {
935 	struct mount *mnt;
936 
937 	if (!fc->root)
938 		return ERR_PTR(-EINVAL);
939 
940 	mnt = alloc_vfsmnt(fc->source ?: "none");
941 	if (!mnt)
942 		return ERR_PTR(-ENOMEM);
943 
944 	if (fc->sb_flags & SB_KERNMOUNT)
945 		mnt->mnt.mnt_flags = MNT_INTERNAL;
946 
947 	atomic_inc(&fc->root->d_sb->s_active);
948 	mnt->mnt.mnt_sb		= fc->root->d_sb;
949 	mnt->mnt.mnt_root	= dget(fc->root);
950 	mnt->mnt_mountpoint	= mnt->mnt.mnt_root;
951 	mnt->mnt_parent		= mnt;
952 
953 	lock_mount_hash();
954 	list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
955 	unlock_mount_hash();
956 	return &mnt->mnt;
957 }
958 EXPORT_SYMBOL(vfs_create_mount);
959 
960 struct vfsmount *fc_mount(struct fs_context *fc)
961 {
962 	int err = vfs_get_tree(fc);
963 	if (!err) {
964 		up_write(&fc->root->d_sb->s_umount);
965 		return vfs_create_mount(fc);
966 	}
967 	return ERR_PTR(err);
968 }
969 EXPORT_SYMBOL(fc_mount);
970 
971 struct vfsmount *vfs_kern_mount(struct file_system_type *type,
972 				int flags, const char *name,
973 				void *data)
974 {
975 	struct fs_context *fc;
976 	struct vfsmount *mnt;
977 	int ret = 0;
978 
979 	if (!type)
980 		return ERR_PTR(-EINVAL);
981 
982 	fc = fs_context_for_mount(type, flags);
983 	if (IS_ERR(fc))
984 		return ERR_CAST(fc);
985 
986 	if (name)
987 		ret = vfs_parse_fs_string(fc, "source",
988 					  name, strlen(name));
989 	if (!ret)
990 		ret = parse_monolithic_mount_data(fc, data);
991 	if (!ret)
992 		mnt = fc_mount(fc);
993 	else
994 		mnt = ERR_PTR(ret);
995 
996 	put_fs_context(fc);
997 	return mnt;
998 }
999 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1000 
1001 struct vfsmount *
1002 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1003 	     const char *name, void *data)
1004 {
1005 	/* Until it is worked out how to pass the user namespace
1006 	 * through from the parent mount to the submount don't support
1007 	 * unprivileged mounts with submounts.
1008 	 */
1009 	if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1010 		return ERR_PTR(-EPERM);
1011 
1012 	return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1013 }
1014 EXPORT_SYMBOL_GPL(vfs_submount);
1015 
1016 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1017 					int flag)
1018 {
1019 	struct super_block *sb = old->mnt.mnt_sb;
1020 	struct mount *mnt;
1021 	int err;
1022 
1023 	mnt = alloc_vfsmnt(old->mnt_devname);
1024 	if (!mnt)
1025 		return ERR_PTR(-ENOMEM);
1026 
1027 	if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1028 		mnt->mnt_group_id = 0; /* not a peer of original */
1029 	else
1030 		mnt->mnt_group_id = old->mnt_group_id;
1031 
1032 	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1033 		err = mnt_alloc_group_id(mnt);
1034 		if (err)
1035 			goto out_free;
1036 	}
1037 
1038 	mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1039 	mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1040 
1041 	atomic_inc(&sb->s_active);
1042 	mnt->mnt.mnt_sb = sb;
1043 	mnt->mnt.mnt_root = dget(root);
1044 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1045 	mnt->mnt_parent = mnt;
1046 	lock_mount_hash();
1047 	list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1048 	unlock_mount_hash();
1049 
1050 	if ((flag & CL_SLAVE) ||
1051 	    ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1052 		list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1053 		mnt->mnt_master = old;
1054 		CLEAR_MNT_SHARED(mnt);
1055 	} else if (!(flag & CL_PRIVATE)) {
1056 		if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1057 			list_add(&mnt->mnt_share, &old->mnt_share);
1058 		if (IS_MNT_SLAVE(old))
1059 			list_add(&mnt->mnt_slave, &old->mnt_slave);
1060 		mnt->mnt_master = old->mnt_master;
1061 	} else {
1062 		CLEAR_MNT_SHARED(mnt);
1063 	}
1064 	if (flag & CL_MAKE_SHARED)
1065 		set_mnt_shared(mnt);
1066 
1067 	/* stick the duplicate mount on the same expiry list
1068 	 * as the original if that was on one */
1069 	if (flag & CL_EXPIRE) {
1070 		if (!list_empty(&old->mnt_expire))
1071 			list_add(&mnt->mnt_expire, &old->mnt_expire);
1072 	}
1073 
1074 	return mnt;
1075 
1076  out_free:
1077 	mnt_free_id(mnt);
1078 	free_vfsmnt(mnt);
1079 	return ERR_PTR(err);
1080 }
1081 
1082 static void cleanup_mnt(struct mount *mnt)
1083 {
1084 	struct hlist_node *p;
1085 	struct mount *m;
1086 	/*
1087 	 * The warning here probably indicates that somebody messed
1088 	 * up a mnt_want/drop_write() pair.  If this happens, the
1089 	 * filesystem was probably unable to make r/w->r/o transitions.
1090 	 * The locking used to deal with mnt_count decrement provides barriers,
1091 	 * so mnt_get_writers() below is safe.
1092 	 */
1093 	WARN_ON(mnt_get_writers(mnt));
1094 	if (unlikely(mnt->mnt_pins.first))
1095 		mnt_pin_kill(mnt);
1096 	hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1097 		hlist_del(&m->mnt_umount);
1098 		mntput(&m->mnt);
1099 	}
1100 	fsnotify_vfsmount_delete(&mnt->mnt);
1101 	dput(mnt->mnt.mnt_root);
1102 	deactivate_super(mnt->mnt.mnt_sb);
1103 	mnt_free_id(mnt);
1104 	call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1105 }
1106 
1107 static void __cleanup_mnt(struct rcu_head *head)
1108 {
1109 	cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1110 }
1111 
1112 static LLIST_HEAD(delayed_mntput_list);
1113 static void delayed_mntput(struct work_struct *unused)
1114 {
1115 	struct llist_node *node = llist_del_all(&delayed_mntput_list);
1116 	struct mount *m, *t;
1117 
1118 	llist_for_each_entry_safe(m, t, node, mnt_llist)
1119 		cleanup_mnt(m);
1120 }
1121 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1122 
1123 static void mntput_no_expire(struct mount *mnt)
1124 {
1125 	LIST_HEAD(list);
1126 
1127 	rcu_read_lock();
1128 	if (likely(READ_ONCE(mnt->mnt_ns))) {
1129 		/*
1130 		 * Since we don't do lock_mount_hash() here,
1131 		 * ->mnt_ns can change under us.  However, if it's
1132 		 * non-NULL, then there's a reference that won't
1133 		 * be dropped until after an RCU delay done after
1134 		 * turning ->mnt_ns NULL.  So if we observe it
1135 		 * non-NULL under rcu_read_lock(), the reference
1136 		 * we are dropping is not the final one.
1137 		 */
1138 		mnt_add_count(mnt, -1);
1139 		rcu_read_unlock();
1140 		return;
1141 	}
1142 	lock_mount_hash();
1143 	/*
1144 	 * make sure that if __legitimize_mnt() has not seen us grab
1145 	 * mount_lock, we'll see their refcount increment here.
1146 	 */
1147 	smp_mb();
1148 	mnt_add_count(mnt, -1);
1149 	if (mnt_get_count(mnt)) {
1150 		rcu_read_unlock();
1151 		unlock_mount_hash();
1152 		return;
1153 	}
1154 	if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1155 		rcu_read_unlock();
1156 		unlock_mount_hash();
1157 		return;
1158 	}
1159 	mnt->mnt.mnt_flags |= MNT_DOOMED;
1160 	rcu_read_unlock();
1161 
1162 	list_del(&mnt->mnt_instance);
1163 
1164 	if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1165 		struct mount *p, *tmp;
1166 		list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts,  mnt_child) {
1167 			__put_mountpoint(unhash_mnt(p), &list);
1168 			hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
1169 		}
1170 	}
1171 	unlock_mount_hash();
1172 	shrink_dentry_list(&list);
1173 
1174 	if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1175 		struct task_struct *task = current;
1176 		if (likely(!(task->flags & PF_KTHREAD))) {
1177 			init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1178 			if (!task_work_add(task, &mnt->mnt_rcu, true))
1179 				return;
1180 		}
1181 		if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1182 			schedule_delayed_work(&delayed_mntput_work, 1);
1183 		return;
1184 	}
1185 	cleanup_mnt(mnt);
1186 }
1187 
1188 void mntput(struct vfsmount *mnt)
1189 {
1190 	if (mnt) {
1191 		struct mount *m = real_mount(mnt);
1192 		/* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1193 		if (unlikely(m->mnt_expiry_mark))
1194 			m->mnt_expiry_mark = 0;
1195 		mntput_no_expire(m);
1196 	}
1197 }
1198 EXPORT_SYMBOL(mntput);
1199 
1200 struct vfsmount *mntget(struct vfsmount *mnt)
1201 {
1202 	if (mnt)
1203 		mnt_add_count(real_mount(mnt), 1);
1204 	return mnt;
1205 }
1206 EXPORT_SYMBOL(mntget);
1207 
1208 /* path_is_mountpoint() - Check if path is a mount in the current
1209  *                          namespace.
1210  *
1211  *  d_mountpoint() can only be used reliably to establish if a dentry is
1212  *  not mounted in any namespace and that common case is handled inline.
1213  *  d_mountpoint() isn't aware of the possibility there may be multiple
1214  *  mounts using a given dentry in a different namespace. This function
1215  *  checks if the passed in path is a mountpoint rather than the dentry
1216  *  alone.
1217  */
1218 bool path_is_mountpoint(const struct path *path)
1219 {
1220 	unsigned seq;
1221 	bool res;
1222 
1223 	if (!d_mountpoint(path->dentry))
1224 		return false;
1225 
1226 	rcu_read_lock();
1227 	do {
1228 		seq = read_seqbegin(&mount_lock);
1229 		res = __path_is_mountpoint(path);
1230 	} while (read_seqretry(&mount_lock, seq));
1231 	rcu_read_unlock();
1232 
1233 	return res;
1234 }
1235 EXPORT_SYMBOL(path_is_mountpoint);
1236 
1237 struct vfsmount *mnt_clone_internal(const struct path *path)
1238 {
1239 	struct mount *p;
1240 	p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1241 	if (IS_ERR(p))
1242 		return ERR_CAST(p);
1243 	p->mnt.mnt_flags |= MNT_INTERNAL;
1244 	return &p->mnt;
1245 }
1246 
1247 #ifdef CONFIG_PROC_FS
1248 /* iterator; we want it to have access to namespace_sem, thus here... */
1249 static void *m_start(struct seq_file *m, loff_t *pos)
1250 {
1251 	struct proc_mounts *p = m->private;
1252 
1253 	down_read(&namespace_sem);
1254 	if (p->cached_event == p->ns->event) {
1255 		void *v = p->cached_mount;
1256 		if (*pos == p->cached_index)
1257 			return v;
1258 		if (*pos == p->cached_index + 1) {
1259 			v = seq_list_next(v, &p->ns->list, &p->cached_index);
1260 			return p->cached_mount = v;
1261 		}
1262 	}
1263 
1264 	p->cached_event = p->ns->event;
1265 	p->cached_mount = seq_list_start(&p->ns->list, *pos);
1266 	p->cached_index = *pos;
1267 	return p->cached_mount;
1268 }
1269 
1270 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1271 {
1272 	struct proc_mounts *p = m->private;
1273 
1274 	p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1275 	p->cached_index = *pos;
1276 	return p->cached_mount;
1277 }
1278 
1279 static void m_stop(struct seq_file *m, void *v)
1280 {
1281 	up_read(&namespace_sem);
1282 }
1283 
1284 static int m_show(struct seq_file *m, void *v)
1285 {
1286 	struct proc_mounts *p = m->private;
1287 	struct mount *r = list_entry(v, struct mount, mnt_list);
1288 	return p->show(m, &r->mnt);
1289 }
1290 
1291 const struct seq_operations mounts_op = {
1292 	.start	= m_start,
1293 	.next	= m_next,
1294 	.stop	= m_stop,
1295 	.show	= m_show,
1296 };
1297 #endif  /* CONFIG_PROC_FS */
1298 
1299 /**
1300  * may_umount_tree - check if a mount tree is busy
1301  * @mnt: root of mount tree
1302  *
1303  * This is called to check if a tree of mounts has any
1304  * open files, pwds, chroots or sub mounts that are
1305  * busy.
1306  */
1307 int may_umount_tree(struct vfsmount *m)
1308 {
1309 	struct mount *mnt = real_mount(m);
1310 	int actual_refs = 0;
1311 	int minimum_refs = 0;
1312 	struct mount *p;
1313 	BUG_ON(!m);
1314 
1315 	/* write lock needed for mnt_get_count */
1316 	lock_mount_hash();
1317 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1318 		actual_refs += mnt_get_count(p);
1319 		minimum_refs += 2;
1320 	}
1321 	unlock_mount_hash();
1322 
1323 	if (actual_refs > minimum_refs)
1324 		return 0;
1325 
1326 	return 1;
1327 }
1328 
1329 EXPORT_SYMBOL(may_umount_tree);
1330 
1331 /**
1332  * may_umount - check if a mount point is busy
1333  * @mnt: root of mount
1334  *
1335  * This is called to check if a mount point has any
1336  * open files, pwds, chroots or sub mounts. If the
1337  * mount has sub mounts this will return busy
1338  * regardless of whether the sub mounts are busy.
1339  *
1340  * Doesn't take quota and stuff into account. IOW, in some cases it will
1341  * give false negatives. The main reason why it's here is that we need
1342  * a non-destructive way to look for easily umountable filesystems.
1343  */
1344 int may_umount(struct vfsmount *mnt)
1345 {
1346 	int ret = 1;
1347 	down_read(&namespace_sem);
1348 	lock_mount_hash();
1349 	if (propagate_mount_busy(real_mount(mnt), 2))
1350 		ret = 0;
1351 	unlock_mount_hash();
1352 	up_read(&namespace_sem);
1353 	return ret;
1354 }
1355 
1356 EXPORT_SYMBOL(may_umount);
1357 
1358 static void namespace_unlock(void)
1359 {
1360 	struct hlist_head head;
1361 	struct hlist_node *p;
1362 	struct mount *m;
1363 	LIST_HEAD(list);
1364 
1365 	hlist_move_list(&unmounted, &head);
1366 	list_splice_init(&ex_mountpoints, &list);
1367 
1368 	up_write(&namespace_sem);
1369 
1370 	shrink_dentry_list(&list);
1371 
1372 	if (likely(hlist_empty(&head)))
1373 		return;
1374 
1375 	synchronize_rcu_expedited();
1376 
1377 	hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1378 		hlist_del(&m->mnt_umount);
1379 		mntput(&m->mnt);
1380 	}
1381 }
1382 
1383 static inline void namespace_lock(void)
1384 {
1385 	down_write(&namespace_sem);
1386 }
1387 
1388 enum umount_tree_flags {
1389 	UMOUNT_SYNC = 1,
1390 	UMOUNT_PROPAGATE = 2,
1391 	UMOUNT_CONNECTED = 4,
1392 };
1393 
1394 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1395 {
1396 	/* Leaving mounts connected is only valid for lazy umounts */
1397 	if (how & UMOUNT_SYNC)
1398 		return true;
1399 
1400 	/* A mount without a parent has nothing to be connected to */
1401 	if (!mnt_has_parent(mnt))
1402 		return true;
1403 
1404 	/* Because the reference counting rules change when mounts are
1405 	 * unmounted and connected, umounted mounts may not be
1406 	 * connected to mounted mounts.
1407 	 */
1408 	if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1409 		return true;
1410 
1411 	/* Has it been requested that the mount remain connected? */
1412 	if (how & UMOUNT_CONNECTED)
1413 		return false;
1414 
1415 	/* Is the mount locked such that it needs to remain connected? */
1416 	if (IS_MNT_LOCKED(mnt))
1417 		return false;
1418 
1419 	/* By default disconnect the mount */
1420 	return true;
1421 }
1422 
1423 /*
1424  * mount_lock must be held
1425  * namespace_sem must be held for write
1426  */
1427 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1428 {
1429 	LIST_HEAD(tmp_list);
1430 	struct mount *p;
1431 
1432 	if (how & UMOUNT_PROPAGATE)
1433 		propagate_mount_unlock(mnt);
1434 
1435 	/* Gather the mounts to umount */
1436 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1437 		p->mnt.mnt_flags |= MNT_UMOUNT;
1438 		list_move(&p->mnt_list, &tmp_list);
1439 	}
1440 
1441 	/* Hide the mounts from mnt_mounts */
1442 	list_for_each_entry(p, &tmp_list, mnt_list) {
1443 		list_del_init(&p->mnt_child);
1444 	}
1445 
1446 	/* Add propogated mounts to the tmp_list */
1447 	if (how & UMOUNT_PROPAGATE)
1448 		propagate_umount(&tmp_list);
1449 
1450 	while (!list_empty(&tmp_list)) {
1451 		struct mnt_namespace *ns;
1452 		bool disconnect;
1453 		p = list_first_entry(&tmp_list, struct mount, mnt_list);
1454 		list_del_init(&p->mnt_expire);
1455 		list_del_init(&p->mnt_list);
1456 		ns = p->mnt_ns;
1457 		if (ns) {
1458 			ns->mounts--;
1459 			__touch_mnt_namespace(ns);
1460 		}
1461 		p->mnt_ns = NULL;
1462 		if (how & UMOUNT_SYNC)
1463 			p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1464 
1465 		disconnect = disconnect_mount(p, how);
1466 
1467 		if (mnt_has_parent(p)) {
1468 			mnt_add_count(p->mnt_parent, -1);
1469 			if (!disconnect) {
1470 				/* Don't forget about p */
1471 				list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1472 			} else {
1473 				umount_mnt(p);
1474 				hlist_add_head(&p->mnt_umount, &unmounted);
1475 			}
1476 		}
1477 		change_mnt_propagation(p, MS_PRIVATE);
1478 	}
1479 }
1480 
1481 static void shrink_submounts(struct mount *mnt);
1482 
1483 static int do_umount_root(struct super_block *sb)
1484 {
1485 	int ret = 0;
1486 
1487 	down_write(&sb->s_umount);
1488 	if (!sb_rdonly(sb)) {
1489 		struct fs_context *fc;
1490 
1491 		fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1492 						SB_RDONLY);
1493 		if (IS_ERR(fc)) {
1494 			ret = PTR_ERR(fc);
1495 		} else {
1496 			ret = parse_monolithic_mount_data(fc, NULL);
1497 			if (!ret)
1498 				ret = reconfigure_super(fc);
1499 			put_fs_context(fc);
1500 		}
1501 	}
1502 	up_write(&sb->s_umount);
1503 	return ret;
1504 }
1505 
1506 static int do_umount(struct mount *mnt, int flags)
1507 {
1508 	struct super_block *sb = mnt->mnt.mnt_sb;
1509 	int retval;
1510 
1511 	retval = security_sb_umount(&mnt->mnt, flags);
1512 	if (retval)
1513 		return retval;
1514 
1515 	/*
1516 	 * Allow userspace to request a mountpoint be expired rather than
1517 	 * unmounting unconditionally. Unmount only happens if:
1518 	 *  (1) the mark is already set (the mark is cleared by mntput())
1519 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1520 	 */
1521 	if (flags & MNT_EXPIRE) {
1522 		if (&mnt->mnt == current->fs->root.mnt ||
1523 		    flags & (MNT_FORCE | MNT_DETACH))
1524 			return -EINVAL;
1525 
1526 		/*
1527 		 * probably don't strictly need the lock here if we examined
1528 		 * all race cases, but it's a slowpath.
1529 		 */
1530 		lock_mount_hash();
1531 		if (mnt_get_count(mnt) != 2) {
1532 			unlock_mount_hash();
1533 			return -EBUSY;
1534 		}
1535 		unlock_mount_hash();
1536 
1537 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1538 			return -EAGAIN;
1539 	}
1540 
1541 	/*
1542 	 * If we may have to abort operations to get out of this
1543 	 * mount, and they will themselves hold resources we must
1544 	 * allow the fs to do things. In the Unix tradition of
1545 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1546 	 * might fail to complete on the first run through as other tasks
1547 	 * must return, and the like. Thats for the mount program to worry
1548 	 * about for the moment.
1549 	 */
1550 
1551 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1552 		sb->s_op->umount_begin(sb);
1553 	}
1554 
1555 	/*
1556 	 * No sense to grab the lock for this test, but test itself looks
1557 	 * somewhat bogus. Suggestions for better replacement?
1558 	 * Ho-hum... In principle, we might treat that as umount + switch
1559 	 * to rootfs. GC would eventually take care of the old vfsmount.
1560 	 * Actually it makes sense, especially if rootfs would contain a
1561 	 * /reboot - static binary that would close all descriptors and
1562 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1563 	 */
1564 	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1565 		/*
1566 		 * Special case for "unmounting" root ...
1567 		 * we just try to remount it readonly.
1568 		 */
1569 		if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1570 			return -EPERM;
1571 		return do_umount_root(sb);
1572 	}
1573 
1574 	namespace_lock();
1575 	lock_mount_hash();
1576 
1577 	/* Recheck MNT_LOCKED with the locks held */
1578 	retval = -EINVAL;
1579 	if (mnt->mnt.mnt_flags & MNT_LOCKED)
1580 		goto out;
1581 
1582 	event++;
1583 	if (flags & MNT_DETACH) {
1584 		if (!list_empty(&mnt->mnt_list))
1585 			umount_tree(mnt, UMOUNT_PROPAGATE);
1586 		retval = 0;
1587 	} else {
1588 		shrink_submounts(mnt);
1589 		retval = -EBUSY;
1590 		if (!propagate_mount_busy(mnt, 2)) {
1591 			if (!list_empty(&mnt->mnt_list))
1592 				umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1593 			retval = 0;
1594 		}
1595 	}
1596 out:
1597 	unlock_mount_hash();
1598 	namespace_unlock();
1599 	return retval;
1600 }
1601 
1602 /*
1603  * __detach_mounts - lazily unmount all mounts on the specified dentry
1604  *
1605  * During unlink, rmdir, and d_drop it is possible to loose the path
1606  * to an existing mountpoint, and wind up leaking the mount.
1607  * detach_mounts allows lazily unmounting those mounts instead of
1608  * leaking them.
1609  *
1610  * The caller may hold dentry->d_inode->i_mutex.
1611  */
1612 void __detach_mounts(struct dentry *dentry)
1613 {
1614 	struct mountpoint *mp;
1615 	struct mount *mnt;
1616 
1617 	namespace_lock();
1618 	lock_mount_hash();
1619 	mp = lookup_mountpoint(dentry);
1620 	if (!mp)
1621 		goto out_unlock;
1622 
1623 	event++;
1624 	while (!hlist_empty(&mp->m_list)) {
1625 		mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1626 		if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1627 			umount_mnt(mnt);
1628 			hlist_add_head(&mnt->mnt_umount, &unmounted);
1629 		}
1630 		else umount_tree(mnt, UMOUNT_CONNECTED);
1631 	}
1632 	put_mountpoint(mp);
1633 out_unlock:
1634 	unlock_mount_hash();
1635 	namespace_unlock();
1636 }
1637 
1638 /*
1639  * Is the caller allowed to modify his namespace?
1640  */
1641 static inline bool may_mount(void)
1642 {
1643 	return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1644 }
1645 
1646 static inline bool may_mandlock(void)
1647 {
1648 #ifndef	CONFIG_MANDATORY_FILE_LOCKING
1649 	return false;
1650 #endif
1651 	return capable(CAP_SYS_ADMIN);
1652 }
1653 
1654 /*
1655  * Now umount can handle mount points as well as block devices.
1656  * This is important for filesystems which use unnamed block devices.
1657  *
1658  * We now support a flag for forced unmount like the other 'big iron'
1659  * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1660  */
1661 
1662 int ksys_umount(char __user *name, int flags)
1663 {
1664 	struct path path;
1665 	struct mount *mnt;
1666 	int retval;
1667 	int lookup_flags = 0;
1668 
1669 	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1670 		return -EINVAL;
1671 
1672 	if (!may_mount())
1673 		return -EPERM;
1674 
1675 	if (!(flags & UMOUNT_NOFOLLOW))
1676 		lookup_flags |= LOOKUP_FOLLOW;
1677 
1678 	lookup_flags |= LOOKUP_NO_EVAL;
1679 
1680 	retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1681 	if (retval)
1682 		goto out;
1683 	mnt = real_mount(path.mnt);
1684 	retval = -EINVAL;
1685 	if (path.dentry != path.mnt->mnt_root)
1686 		goto dput_and_out;
1687 	if (!check_mnt(mnt))
1688 		goto dput_and_out;
1689 	if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
1690 		goto dput_and_out;
1691 	retval = -EPERM;
1692 	if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1693 		goto dput_and_out;
1694 
1695 	retval = do_umount(mnt, flags);
1696 dput_and_out:
1697 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
1698 	dput(path.dentry);
1699 	mntput_no_expire(mnt);
1700 out:
1701 	return retval;
1702 }
1703 
1704 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1705 {
1706 	return ksys_umount(name, flags);
1707 }
1708 
1709 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1710 
1711 /*
1712  *	The 2.0 compatible umount. No flags.
1713  */
1714 SYSCALL_DEFINE1(oldumount, char __user *, name)
1715 {
1716 	return ksys_umount(name, 0);
1717 }
1718 
1719 #endif
1720 
1721 static bool is_mnt_ns_file(struct dentry *dentry)
1722 {
1723 	/* Is this a proxy for a mount namespace? */
1724 	return dentry->d_op == &ns_dentry_operations &&
1725 	       dentry->d_fsdata == &mntns_operations;
1726 }
1727 
1728 struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1729 {
1730 	return container_of(ns, struct mnt_namespace, ns);
1731 }
1732 
1733 static bool mnt_ns_loop(struct dentry *dentry)
1734 {
1735 	/* Could bind mounting the mount namespace inode cause a
1736 	 * mount namespace loop?
1737 	 */
1738 	struct mnt_namespace *mnt_ns;
1739 	if (!is_mnt_ns_file(dentry))
1740 		return false;
1741 
1742 	mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1743 	return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1744 }
1745 
1746 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1747 					int flag)
1748 {
1749 	struct mount *res, *p, *q, *r, *parent;
1750 
1751 	if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1752 		return ERR_PTR(-EINVAL);
1753 
1754 	if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1755 		return ERR_PTR(-EINVAL);
1756 
1757 	res = q = clone_mnt(mnt, dentry, flag);
1758 	if (IS_ERR(q))
1759 		return q;
1760 
1761 	q->mnt_mountpoint = mnt->mnt_mountpoint;
1762 
1763 	p = mnt;
1764 	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1765 		struct mount *s;
1766 		if (!is_subdir(r->mnt_mountpoint, dentry))
1767 			continue;
1768 
1769 		for (s = r; s; s = next_mnt(s, r)) {
1770 			if (!(flag & CL_COPY_UNBINDABLE) &&
1771 			    IS_MNT_UNBINDABLE(s)) {
1772 				if (s->mnt.mnt_flags & MNT_LOCKED) {
1773 					/* Both unbindable and locked. */
1774 					q = ERR_PTR(-EPERM);
1775 					goto out;
1776 				} else {
1777 					s = skip_mnt_tree(s);
1778 					continue;
1779 				}
1780 			}
1781 			if (!(flag & CL_COPY_MNT_NS_FILE) &&
1782 			    is_mnt_ns_file(s->mnt.mnt_root)) {
1783 				s = skip_mnt_tree(s);
1784 				continue;
1785 			}
1786 			while (p != s->mnt_parent) {
1787 				p = p->mnt_parent;
1788 				q = q->mnt_parent;
1789 			}
1790 			p = s;
1791 			parent = q;
1792 			q = clone_mnt(p, p->mnt.mnt_root, flag);
1793 			if (IS_ERR(q))
1794 				goto out;
1795 			lock_mount_hash();
1796 			list_add_tail(&q->mnt_list, &res->mnt_list);
1797 			attach_mnt(q, parent, p->mnt_mp);
1798 			unlock_mount_hash();
1799 		}
1800 	}
1801 	return res;
1802 out:
1803 	if (res) {
1804 		lock_mount_hash();
1805 		umount_tree(res, UMOUNT_SYNC);
1806 		unlock_mount_hash();
1807 	}
1808 	return q;
1809 }
1810 
1811 /* Caller should check returned pointer for errors */
1812 
1813 struct vfsmount *collect_mounts(const struct path *path)
1814 {
1815 	struct mount *tree;
1816 	namespace_lock();
1817 	if (!check_mnt(real_mount(path->mnt)))
1818 		tree = ERR_PTR(-EINVAL);
1819 	else
1820 		tree = copy_tree(real_mount(path->mnt), path->dentry,
1821 				 CL_COPY_ALL | CL_PRIVATE);
1822 	namespace_unlock();
1823 	if (IS_ERR(tree))
1824 		return ERR_CAST(tree);
1825 	return &tree->mnt;
1826 }
1827 
1828 static void free_mnt_ns(struct mnt_namespace *);
1829 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
1830 
1831 void dissolve_on_fput(struct vfsmount *mnt)
1832 {
1833 	struct mnt_namespace *ns;
1834 	namespace_lock();
1835 	lock_mount_hash();
1836 	ns = real_mount(mnt)->mnt_ns;
1837 	if (ns) {
1838 		if (is_anon_ns(ns))
1839 			umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
1840 		else
1841 			ns = NULL;
1842 	}
1843 	unlock_mount_hash();
1844 	namespace_unlock();
1845 	if (ns)
1846 		free_mnt_ns(ns);
1847 }
1848 
1849 void drop_collected_mounts(struct vfsmount *mnt)
1850 {
1851 	namespace_lock();
1852 	lock_mount_hash();
1853 	umount_tree(real_mount(mnt), 0);
1854 	unlock_mount_hash();
1855 	namespace_unlock();
1856 }
1857 
1858 /**
1859  * clone_private_mount - create a private clone of a path
1860  *
1861  * This creates a new vfsmount, which will be the clone of @path.  The new will
1862  * not be attached anywhere in the namespace and will be private (i.e. changes
1863  * to the originating mount won't be propagated into this).
1864  *
1865  * Release with mntput().
1866  */
1867 struct vfsmount *clone_private_mount(const struct path *path)
1868 {
1869 	struct mount *old_mnt = real_mount(path->mnt);
1870 	struct mount *new_mnt;
1871 
1872 	if (IS_MNT_UNBINDABLE(old_mnt))
1873 		return ERR_PTR(-EINVAL);
1874 
1875 	new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1876 	if (IS_ERR(new_mnt))
1877 		return ERR_CAST(new_mnt);
1878 
1879 	return &new_mnt->mnt;
1880 }
1881 EXPORT_SYMBOL_GPL(clone_private_mount);
1882 
1883 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1884 		   struct vfsmount *root)
1885 {
1886 	struct mount *mnt;
1887 	int res = f(root, arg);
1888 	if (res)
1889 		return res;
1890 	list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1891 		res = f(&mnt->mnt, arg);
1892 		if (res)
1893 			return res;
1894 	}
1895 	return 0;
1896 }
1897 
1898 static void lock_mnt_tree(struct mount *mnt)
1899 {
1900 	struct mount *p;
1901 
1902 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1903 		int flags = p->mnt.mnt_flags;
1904 		/* Don't allow unprivileged users to change mount flags */
1905 		flags |= MNT_LOCK_ATIME;
1906 
1907 		if (flags & MNT_READONLY)
1908 			flags |= MNT_LOCK_READONLY;
1909 
1910 		if (flags & MNT_NODEV)
1911 			flags |= MNT_LOCK_NODEV;
1912 
1913 		if (flags & MNT_NOSUID)
1914 			flags |= MNT_LOCK_NOSUID;
1915 
1916 		if (flags & MNT_NOEXEC)
1917 			flags |= MNT_LOCK_NOEXEC;
1918 		/* Don't allow unprivileged users to reveal what is under a mount */
1919 		if (list_empty(&p->mnt_expire))
1920 			flags |= MNT_LOCKED;
1921 		p->mnt.mnt_flags = flags;
1922 	}
1923 }
1924 
1925 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1926 {
1927 	struct mount *p;
1928 
1929 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1930 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
1931 			mnt_release_group_id(p);
1932 	}
1933 }
1934 
1935 static int invent_group_ids(struct mount *mnt, bool recurse)
1936 {
1937 	struct mount *p;
1938 
1939 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1940 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1941 			int err = mnt_alloc_group_id(p);
1942 			if (err) {
1943 				cleanup_group_ids(mnt, p);
1944 				return err;
1945 			}
1946 		}
1947 	}
1948 
1949 	return 0;
1950 }
1951 
1952 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1953 {
1954 	unsigned int max = READ_ONCE(sysctl_mount_max);
1955 	unsigned int mounts = 0, old, pending, sum;
1956 	struct mount *p;
1957 
1958 	for (p = mnt; p; p = next_mnt(p, mnt))
1959 		mounts++;
1960 
1961 	old = ns->mounts;
1962 	pending = ns->pending_mounts;
1963 	sum = old + pending;
1964 	if ((old > sum) ||
1965 	    (pending > sum) ||
1966 	    (max < sum) ||
1967 	    (mounts > (max - sum)))
1968 		return -ENOSPC;
1969 
1970 	ns->pending_mounts = pending + mounts;
1971 	return 0;
1972 }
1973 
1974 /*
1975  *  @source_mnt : mount tree to be attached
1976  *  @nd         : place the mount tree @source_mnt is attached
1977  *  @parent_nd  : if non-null, detach the source_mnt from its parent and
1978  *  		   store the parent mount and mountpoint dentry.
1979  *  		   (done when source_mnt is moved)
1980  *
1981  *  NOTE: in the table below explains the semantics when a source mount
1982  *  of a given type is attached to a destination mount of a given type.
1983  * ---------------------------------------------------------------------------
1984  * |         BIND MOUNT OPERATION                                            |
1985  * |**************************************************************************
1986  * | source-->| shared        |       private  |       slave    | unbindable |
1987  * | dest     |               |                |                |            |
1988  * |   |      |               |                |                |            |
1989  * |   v      |               |                |                |            |
1990  * |**************************************************************************
1991  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
1992  * |          |               |                |                |            |
1993  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
1994  * ***************************************************************************
1995  * A bind operation clones the source mount and mounts the clone on the
1996  * destination mount.
1997  *
1998  * (++)  the cloned mount is propagated to all the mounts in the propagation
1999  * 	 tree of the destination mount and the cloned mount is added to
2000  * 	 the peer group of the source mount.
2001  * (+)   the cloned mount is created under the destination mount and is marked
2002  *       as shared. The cloned mount is added to the peer group of the source
2003  *       mount.
2004  * (+++) the mount is propagated to all the mounts in the propagation tree
2005  *       of the destination mount and the cloned mount is made slave
2006  *       of the same master as that of the source mount. The cloned mount
2007  *       is marked as 'shared and slave'.
2008  * (*)   the cloned mount is made a slave of the same master as that of the
2009  * 	 source mount.
2010  *
2011  * ---------------------------------------------------------------------------
2012  * |         		MOVE MOUNT OPERATION                                 |
2013  * |**************************************************************************
2014  * | source-->| shared        |       private  |       slave    | unbindable |
2015  * | dest     |               |                |                |            |
2016  * |   |      |               |                |                |            |
2017  * |   v      |               |                |                |            |
2018  * |**************************************************************************
2019  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
2020  * |          |               |                |                |            |
2021  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
2022  * ***************************************************************************
2023  *
2024  * (+)  the mount is moved to the destination. And is then propagated to
2025  * 	all the mounts in the propagation tree of the destination mount.
2026  * (+*)  the mount is moved to the destination.
2027  * (+++)  the mount is moved to the destination and is then propagated to
2028  * 	all the mounts belonging to the destination mount's propagation tree.
2029  * 	the mount is marked as 'shared and slave'.
2030  * (*)	the mount continues to be a slave at the new location.
2031  *
2032  * if the source mount is a tree, the operations explained above is
2033  * applied to each mount in the tree.
2034  * Must be called without spinlocks held, since this function can sleep
2035  * in allocations.
2036  */
2037 static int attach_recursive_mnt(struct mount *source_mnt,
2038 			struct mount *dest_mnt,
2039 			struct mountpoint *dest_mp,
2040 			bool moving)
2041 {
2042 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2043 	HLIST_HEAD(tree_list);
2044 	struct mnt_namespace *ns = dest_mnt->mnt_ns;
2045 	struct mountpoint *smp;
2046 	struct mount *child, *p;
2047 	struct hlist_node *n;
2048 	int err;
2049 
2050 	/* Preallocate a mountpoint in case the new mounts need
2051 	 * to be tucked under other mounts.
2052 	 */
2053 	smp = get_mountpoint(source_mnt->mnt.mnt_root);
2054 	if (IS_ERR(smp))
2055 		return PTR_ERR(smp);
2056 
2057 	/* Is there space to add these mounts to the mount namespace? */
2058 	if (!moving) {
2059 		err = count_mounts(ns, source_mnt);
2060 		if (err)
2061 			goto out;
2062 	}
2063 
2064 	if (IS_MNT_SHARED(dest_mnt)) {
2065 		err = invent_group_ids(source_mnt, true);
2066 		if (err)
2067 			goto out;
2068 		err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2069 		lock_mount_hash();
2070 		if (err)
2071 			goto out_cleanup_ids;
2072 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2073 			set_mnt_shared(p);
2074 	} else {
2075 		lock_mount_hash();
2076 	}
2077 	if (moving) {
2078 		unhash_mnt(source_mnt);
2079 		attach_mnt(source_mnt, dest_mnt, dest_mp);
2080 		touch_mnt_namespace(source_mnt->mnt_ns);
2081 	} else {
2082 		if (source_mnt->mnt_ns) {
2083 			/* move from anon - the caller will destroy */
2084 			list_del_init(&source_mnt->mnt_ns->list);
2085 		}
2086 		mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2087 		commit_tree(source_mnt);
2088 	}
2089 
2090 	hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2091 		struct mount *q;
2092 		hlist_del_init(&child->mnt_hash);
2093 		q = __lookup_mnt(&child->mnt_parent->mnt,
2094 				 child->mnt_mountpoint);
2095 		if (q)
2096 			mnt_change_mountpoint(child, smp, q);
2097 		/* Notice when we are propagating across user namespaces */
2098 		if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2099 			lock_mnt_tree(child);
2100 		child->mnt.mnt_flags &= ~MNT_LOCKED;
2101 		commit_tree(child);
2102 	}
2103 	put_mountpoint(smp);
2104 	unlock_mount_hash();
2105 
2106 	return 0;
2107 
2108  out_cleanup_ids:
2109 	while (!hlist_empty(&tree_list)) {
2110 		child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2111 		child->mnt_parent->mnt_ns->pending_mounts = 0;
2112 		umount_tree(child, UMOUNT_SYNC);
2113 	}
2114 	unlock_mount_hash();
2115 	cleanup_group_ids(source_mnt, NULL);
2116  out:
2117 	ns->pending_mounts = 0;
2118 
2119 	read_seqlock_excl(&mount_lock);
2120 	put_mountpoint(smp);
2121 	read_sequnlock_excl(&mount_lock);
2122 
2123 	return err;
2124 }
2125 
2126 static struct mountpoint *lock_mount(struct path *path)
2127 {
2128 	struct vfsmount *mnt;
2129 	struct dentry *dentry = path->dentry;
2130 retry:
2131 	inode_lock(dentry->d_inode);
2132 	if (unlikely(cant_mount(dentry))) {
2133 		inode_unlock(dentry->d_inode);
2134 		return ERR_PTR(-ENOENT);
2135 	}
2136 	namespace_lock();
2137 	mnt = lookup_mnt(path);
2138 	if (likely(!mnt)) {
2139 		struct mountpoint *mp = get_mountpoint(dentry);
2140 		if (IS_ERR(mp)) {
2141 			namespace_unlock();
2142 			inode_unlock(dentry->d_inode);
2143 			return mp;
2144 		}
2145 		return mp;
2146 	}
2147 	namespace_unlock();
2148 	inode_unlock(path->dentry->d_inode);
2149 	path_put(path);
2150 	path->mnt = mnt;
2151 	dentry = path->dentry = dget(mnt->mnt_root);
2152 	goto retry;
2153 }
2154 
2155 static void unlock_mount(struct mountpoint *where)
2156 {
2157 	struct dentry *dentry = where->m_dentry;
2158 
2159 	read_seqlock_excl(&mount_lock);
2160 	put_mountpoint(where);
2161 	read_sequnlock_excl(&mount_lock);
2162 
2163 	namespace_unlock();
2164 	inode_unlock(dentry->d_inode);
2165 }
2166 
2167 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2168 {
2169 	if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2170 		return -EINVAL;
2171 
2172 	if (d_is_dir(mp->m_dentry) !=
2173 	      d_is_dir(mnt->mnt.mnt_root))
2174 		return -ENOTDIR;
2175 
2176 	return attach_recursive_mnt(mnt, p, mp, false);
2177 }
2178 
2179 /*
2180  * Sanity check the flags to change_mnt_propagation.
2181  */
2182 
2183 static int flags_to_propagation_type(int ms_flags)
2184 {
2185 	int type = ms_flags & ~(MS_REC | MS_SILENT);
2186 
2187 	/* Fail if any non-propagation flags are set */
2188 	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2189 		return 0;
2190 	/* Only one propagation flag should be set */
2191 	if (!is_power_of_2(type))
2192 		return 0;
2193 	return type;
2194 }
2195 
2196 /*
2197  * recursively change the type of the mountpoint.
2198  */
2199 static int do_change_type(struct path *path, int ms_flags)
2200 {
2201 	struct mount *m;
2202 	struct mount *mnt = real_mount(path->mnt);
2203 	int recurse = ms_flags & MS_REC;
2204 	int type;
2205 	int err = 0;
2206 
2207 	if (path->dentry != path->mnt->mnt_root)
2208 		return -EINVAL;
2209 
2210 	type = flags_to_propagation_type(ms_flags);
2211 	if (!type)
2212 		return -EINVAL;
2213 
2214 	namespace_lock();
2215 	if (type == MS_SHARED) {
2216 		err = invent_group_ids(mnt, recurse);
2217 		if (err)
2218 			goto out_unlock;
2219 	}
2220 
2221 	lock_mount_hash();
2222 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2223 		change_mnt_propagation(m, type);
2224 	unlock_mount_hash();
2225 
2226  out_unlock:
2227 	namespace_unlock();
2228 	return err;
2229 }
2230 
2231 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2232 {
2233 	struct mount *child;
2234 	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2235 		if (!is_subdir(child->mnt_mountpoint, dentry))
2236 			continue;
2237 
2238 		if (child->mnt.mnt_flags & MNT_LOCKED)
2239 			return true;
2240 	}
2241 	return false;
2242 }
2243 
2244 static struct mount *__do_loopback(struct path *old_path, int recurse)
2245 {
2246 	struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2247 
2248 	if (IS_MNT_UNBINDABLE(old))
2249 		return mnt;
2250 
2251 	if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
2252 		return mnt;
2253 
2254 	if (!recurse && has_locked_children(old, old_path->dentry))
2255 		return mnt;
2256 
2257 	if (recurse)
2258 		mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2259 	else
2260 		mnt = clone_mnt(old, old_path->dentry, 0);
2261 
2262 	if (!IS_ERR(mnt))
2263 		mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2264 
2265 	return mnt;
2266 }
2267 
2268 /*
2269  * do loopback mount.
2270  */
2271 static int do_loopback(struct path *path, const char *old_name,
2272 				int recurse)
2273 {
2274 	struct path old_path;
2275 	struct mount *mnt = NULL, *parent;
2276 	struct mountpoint *mp;
2277 	int err;
2278 	if (!old_name || !*old_name)
2279 		return -EINVAL;
2280 	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2281 	if (err)
2282 		return err;
2283 
2284 	err = -EINVAL;
2285 	if (mnt_ns_loop(old_path.dentry))
2286 		goto out;
2287 
2288 	mp = lock_mount(path);
2289 	if (IS_ERR(mp)) {
2290 		err = PTR_ERR(mp);
2291 		goto out;
2292 	}
2293 
2294 	parent = real_mount(path->mnt);
2295 	if (!check_mnt(parent))
2296 		goto out2;
2297 
2298 	mnt = __do_loopback(&old_path, recurse);
2299 	if (IS_ERR(mnt)) {
2300 		err = PTR_ERR(mnt);
2301 		goto out2;
2302 	}
2303 
2304 	err = graft_tree(mnt, parent, mp);
2305 	if (err) {
2306 		lock_mount_hash();
2307 		umount_tree(mnt, UMOUNT_SYNC);
2308 		unlock_mount_hash();
2309 	}
2310 out2:
2311 	unlock_mount(mp);
2312 out:
2313 	path_put(&old_path);
2314 	return err;
2315 }
2316 
2317 static struct file *open_detached_copy(struct path *path, bool recursive)
2318 {
2319 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2320 	struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2321 	struct mount *mnt, *p;
2322 	struct file *file;
2323 
2324 	if (IS_ERR(ns))
2325 		return ERR_CAST(ns);
2326 
2327 	namespace_lock();
2328 	mnt = __do_loopback(path, recursive);
2329 	if (IS_ERR(mnt)) {
2330 		namespace_unlock();
2331 		free_mnt_ns(ns);
2332 		return ERR_CAST(mnt);
2333 	}
2334 
2335 	lock_mount_hash();
2336 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2337 		p->mnt_ns = ns;
2338 		ns->mounts++;
2339 	}
2340 	ns->root = mnt;
2341 	list_add_tail(&ns->list, &mnt->mnt_list);
2342 	mntget(&mnt->mnt);
2343 	unlock_mount_hash();
2344 	namespace_unlock();
2345 
2346 	mntput(path->mnt);
2347 	path->mnt = &mnt->mnt;
2348 	file = dentry_open(path, O_PATH, current_cred());
2349 	if (IS_ERR(file))
2350 		dissolve_on_fput(path->mnt);
2351 	else
2352 		file->f_mode |= FMODE_NEED_UNMOUNT;
2353 	return file;
2354 }
2355 
2356 SYSCALL_DEFINE3(open_tree, int, dfd, const char *, filename, unsigned, flags)
2357 {
2358 	struct file *file;
2359 	struct path path;
2360 	int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2361 	bool detached = flags & OPEN_TREE_CLONE;
2362 	int error;
2363 	int fd;
2364 
2365 	BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2366 
2367 	if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2368 		      AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2369 		      OPEN_TREE_CLOEXEC))
2370 		return -EINVAL;
2371 
2372 	if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2373 		return -EINVAL;
2374 
2375 	if (flags & AT_NO_AUTOMOUNT)
2376 		lookup_flags &= ~LOOKUP_AUTOMOUNT;
2377 	if (flags & AT_SYMLINK_NOFOLLOW)
2378 		lookup_flags &= ~LOOKUP_FOLLOW;
2379 	if (flags & AT_EMPTY_PATH)
2380 		lookup_flags |= LOOKUP_EMPTY;
2381 
2382 	if (detached && !may_mount())
2383 		return -EPERM;
2384 
2385 	fd = get_unused_fd_flags(flags & O_CLOEXEC);
2386 	if (fd < 0)
2387 		return fd;
2388 
2389 	error = user_path_at(dfd, filename, lookup_flags, &path);
2390 	if (unlikely(error)) {
2391 		file = ERR_PTR(error);
2392 	} else {
2393 		if (detached)
2394 			file = open_detached_copy(&path, flags & AT_RECURSIVE);
2395 		else
2396 			file = dentry_open(&path, O_PATH, current_cred());
2397 		path_put(&path);
2398 	}
2399 	if (IS_ERR(file)) {
2400 		put_unused_fd(fd);
2401 		return PTR_ERR(file);
2402 	}
2403 	fd_install(fd, file);
2404 	return fd;
2405 }
2406 
2407 /*
2408  * Don't allow locked mount flags to be cleared.
2409  *
2410  * No locks need to be held here while testing the various MNT_LOCK
2411  * flags because those flags can never be cleared once they are set.
2412  */
2413 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2414 {
2415 	unsigned int fl = mnt->mnt.mnt_flags;
2416 
2417 	if ((fl & MNT_LOCK_READONLY) &&
2418 	    !(mnt_flags & MNT_READONLY))
2419 		return false;
2420 
2421 	if ((fl & MNT_LOCK_NODEV) &&
2422 	    !(mnt_flags & MNT_NODEV))
2423 		return false;
2424 
2425 	if ((fl & MNT_LOCK_NOSUID) &&
2426 	    !(mnt_flags & MNT_NOSUID))
2427 		return false;
2428 
2429 	if ((fl & MNT_LOCK_NOEXEC) &&
2430 	    !(mnt_flags & MNT_NOEXEC))
2431 		return false;
2432 
2433 	if ((fl & MNT_LOCK_ATIME) &&
2434 	    ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2435 		return false;
2436 
2437 	return true;
2438 }
2439 
2440 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2441 {
2442 	bool readonly_request = (mnt_flags & MNT_READONLY);
2443 
2444 	if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2445 		return 0;
2446 
2447 	if (readonly_request)
2448 		return mnt_make_readonly(mnt);
2449 
2450 	return __mnt_unmake_readonly(mnt);
2451 }
2452 
2453 /*
2454  * Update the user-settable attributes on a mount.  The caller must hold
2455  * sb->s_umount for writing.
2456  */
2457 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2458 {
2459 	lock_mount_hash();
2460 	mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2461 	mnt->mnt.mnt_flags = mnt_flags;
2462 	touch_mnt_namespace(mnt->mnt_ns);
2463 	unlock_mount_hash();
2464 }
2465 
2466 /*
2467  * Handle reconfiguration of the mountpoint only without alteration of the
2468  * superblock it refers to.  This is triggered by specifying MS_REMOUNT|MS_BIND
2469  * to mount(2).
2470  */
2471 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2472 {
2473 	struct super_block *sb = path->mnt->mnt_sb;
2474 	struct mount *mnt = real_mount(path->mnt);
2475 	int ret;
2476 
2477 	if (!check_mnt(mnt))
2478 		return -EINVAL;
2479 
2480 	if (path->dentry != mnt->mnt.mnt_root)
2481 		return -EINVAL;
2482 
2483 	if (!can_change_locked_flags(mnt, mnt_flags))
2484 		return -EPERM;
2485 
2486 	down_write(&sb->s_umount);
2487 	ret = change_mount_ro_state(mnt, mnt_flags);
2488 	if (ret == 0)
2489 		set_mount_attributes(mnt, mnt_flags);
2490 	up_write(&sb->s_umount);
2491 	return ret;
2492 }
2493 
2494 /*
2495  * change filesystem flags. dir should be a physical root of filesystem.
2496  * If you've mounted a non-root directory somewhere and want to do remount
2497  * on it - tough luck.
2498  */
2499 static int do_remount(struct path *path, int ms_flags, int sb_flags,
2500 		      int mnt_flags, void *data)
2501 {
2502 	int err;
2503 	struct super_block *sb = path->mnt->mnt_sb;
2504 	struct mount *mnt = real_mount(path->mnt);
2505 	struct fs_context *fc;
2506 
2507 	if (!check_mnt(mnt))
2508 		return -EINVAL;
2509 
2510 	if (path->dentry != path->mnt->mnt_root)
2511 		return -EINVAL;
2512 
2513 	if (!can_change_locked_flags(mnt, mnt_flags))
2514 		return -EPERM;
2515 
2516 	fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
2517 	if (IS_ERR(fc))
2518 		return PTR_ERR(fc);
2519 
2520 	err = parse_monolithic_mount_data(fc, data);
2521 	if (!err) {
2522 		down_write(&sb->s_umount);
2523 		err = -EPERM;
2524 		if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
2525 			err = reconfigure_super(fc);
2526 			if (!err)
2527 				set_mount_attributes(mnt, mnt_flags);
2528 		}
2529 		up_write(&sb->s_umount);
2530 	}
2531 	put_fs_context(fc);
2532 	return err;
2533 }
2534 
2535 static inline int tree_contains_unbindable(struct mount *mnt)
2536 {
2537 	struct mount *p;
2538 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2539 		if (IS_MNT_UNBINDABLE(p))
2540 			return 1;
2541 	}
2542 	return 0;
2543 }
2544 
2545 /*
2546  * Check that there aren't references to earlier/same mount namespaces in the
2547  * specified subtree.  Such references can act as pins for mount namespaces
2548  * that aren't checked by the mount-cycle checking code, thereby allowing
2549  * cycles to be made.
2550  */
2551 static bool check_for_nsfs_mounts(struct mount *subtree)
2552 {
2553 	struct mount *p;
2554 	bool ret = false;
2555 
2556 	lock_mount_hash();
2557 	for (p = subtree; p; p = next_mnt(p, subtree))
2558 		if (mnt_ns_loop(p->mnt.mnt_root))
2559 			goto out;
2560 
2561 	ret = true;
2562 out:
2563 	unlock_mount_hash();
2564 	return ret;
2565 }
2566 
2567 static int do_move_mount(struct path *old_path, struct path *new_path)
2568 {
2569 	struct mnt_namespace *ns;
2570 	struct mount *p;
2571 	struct mount *old;
2572 	struct mount *parent;
2573 	struct mountpoint *mp, *old_mp;
2574 	int err;
2575 	bool attached;
2576 
2577 	mp = lock_mount(new_path);
2578 	if (IS_ERR(mp))
2579 		return PTR_ERR(mp);
2580 
2581 	old = real_mount(old_path->mnt);
2582 	p = real_mount(new_path->mnt);
2583 	parent = old->mnt_parent;
2584 	attached = mnt_has_parent(old);
2585 	old_mp = old->mnt_mp;
2586 	ns = old->mnt_ns;
2587 
2588 	err = -EINVAL;
2589 	/* The mountpoint must be in our namespace. */
2590 	if (!check_mnt(p))
2591 		goto out;
2592 
2593 	/* The thing moved must be mounted... */
2594 	if (!is_mounted(&old->mnt))
2595 		goto out;
2596 
2597 	/* ... and either ours or the root of anon namespace */
2598 	if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
2599 		goto out;
2600 
2601 	if (old->mnt.mnt_flags & MNT_LOCKED)
2602 		goto out;
2603 
2604 	if (old_path->dentry != old_path->mnt->mnt_root)
2605 		goto out;
2606 
2607 	if (d_is_dir(new_path->dentry) !=
2608 	    d_is_dir(old_path->dentry))
2609 		goto out;
2610 	/*
2611 	 * Don't move a mount residing in a shared parent.
2612 	 */
2613 	if (attached && IS_MNT_SHARED(parent))
2614 		goto out;
2615 	/*
2616 	 * Don't move a mount tree containing unbindable mounts to a destination
2617 	 * mount which is shared.
2618 	 */
2619 	if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2620 		goto out;
2621 	err = -ELOOP;
2622 	if (!check_for_nsfs_mounts(old))
2623 		goto out;
2624 	for (; mnt_has_parent(p); p = p->mnt_parent)
2625 		if (p == old)
2626 			goto out;
2627 
2628 	err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp,
2629 				   attached);
2630 	if (err)
2631 		goto out;
2632 
2633 	/* if the mount is moved, it should no longer be expire
2634 	 * automatically */
2635 	list_del_init(&old->mnt_expire);
2636 	if (attached)
2637 		put_mountpoint(old_mp);
2638 out:
2639 	unlock_mount(mp);
2640 	if (!err) {
2641 		if (attached)
2642 			mntput_no_expire(parent);
2643 		else
2644 			free_mnt_ns(ns);
2645 	}
2646 	return err;
2647 }
2648 
2649 static int do_move_mount_old(struct path *path, const char *old_name)
2650 {
2651 	struct path old_path;
2652 	int err;
2653 
2654 	if (!old_name || !*old_name)
2655 		return -EINVAL;
2656 
2657 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2658 	if (err)
2659 		return err;
2660 
2661 	err = do_move_mount(&old_path, path);
2662 	path_put(&old_path);
2663 	return err;
2664 }
2665 
2666 /*
2667  * add a mount into a namespace's mount tree
2668  */
2669 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2670 {
2671 	struct mountpoint *mp;
2672 	struct mount *parent;
2673 	int err;
2674 
2675 	mnt_flags &= ~MNT_INTERNAL_FLAGS;
2676 
2677 	mp = lock_mount(path);
2678 	if (IS_ERR(mp))
2679 		return PTR_ERR(mp);
2680 
2681 	parent = real_mount(path->mnt);
2682 	err = -EINVAL;
2683 	if (unlikely(!check_mnt(parent))) {
2684 		/* that's acceptable only for automounts done in private ns */
2685 		if (!(mnt_flags & MNT_SHRINKABLE))
2686 			goto unlock;
2687 		/* ... and for those we'd better have mountpoint still alive */
2688 		if (!parent->mnt_ns)
2689 			goto unlock;
2690 	}
2691 
2692 	/* Refuse the same filesystem on the same mount point */
2693 	err = -EBUSY;
2694 	if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2695 	    path->mnt->mnt_root == path->dentry)
2696 		goto unlock;
2697 
2698 	err = -EINVAL;
2699 	if (d_is_symlink(newmnt->mnt.mnt_root))
2700 		goto unlock;
2701 
2702 	newmnt->mnt.mnt_flags = mnt_flags;
2703 	err = graft_tree(newmnt, parent, mp);
2704 
2705 unlock:
2706 	unlock_mount(mp);
2707 	return err;
2708 }
2709 
2710 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
2711 
2712 /*
2713  * Create a new mount using a superblock configuration and request it
2714  * be added to the namespace tree.
2715  */
2716 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
2717 			   unsigned int mnt_flags)
2718 {
2719 	struct vfsmount *mnt;
2720 	struct super_block *sb = fc->root->d_sb;
2721 	int error;
2722 
2723 	error = security_sb_kern_mount(sb);
2724 	if (!error && mount_too_revealing(sb, &mnt_flags))
2725 		error = -EPERM;
2726 
2727 	if (unlikely(error)) {
2728 		fc_drop_locked(fc);
2729 		return error;
2730 	}
2731 
2732 	up_write(&sb->s_umount);
2733 
2734 	mnt = vfs_create_mount(fc);
2735 	if (IS_ERR(mnt))
2736 		return PTR_ERR(mnt);
2737 
2738 	error = do_add_mount(real_mount(mnt), mountpoint, mnt_flags);
2739 	if (error < 0)
2740 		mntput(mnt);
2741 	return error;
2742 }
2743 
2744 /*
2745  * create a new mount for userspace and request it to be added into the
2746  * namespace's tree
2747  */
2748 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
2749 			int mnt_flags, const char *name, void *data)
2750 {
2751 	struct file_system_type *type;
2752 	struct fs_context *fc;
2753 	const char *subtype = NULL;
2754 	int err = 0;
2755 
2756 	if (!fstype)
2757 		return -EINVAL;
2758 
2759 	type = get_fs_type(fstype);
2760 	if (!type)
2761 		return -ENODEV;
2762 
2763 	if (type->fs_flags & FS_HAS_SUBTYPE) {
2764 		subtype = strchr(fstype, '.');
2765 		if (subtype) {
2766 			subtype++;
2767 			if (!*subtype) {
2768 				put_filesystem(type);
2769 				return -EINVAL;
2770 			}
2771 		} else {
2772 			subtype = "";
2773 		}
2774 	}
2775 
2776 	fc = fs_context_for_mount(type, sb_flags);
2777 	put_filesystem(type);
2778 	if (IS_ERR(fc))
2779 		return PTR_ERR(fc);
2780 
2781 	if (subtype)
2782 		err = vfs_parse_fs_string(fc, "subtype",
2783 					  subtype, strlen(subtype));
2784 	if (!err && name)
2785 		err = vfs_parse_fs_string(fc, "source", name, strlen(name));
2786 	if (!err)
2787 		err = parse_monolithic_mount_data(fc, data);
2788 	if (!err && !mount_capable(fc))
2789 		err = -EPERM;
2790 	if (!err)
2791 		err = vfs_get_tree(fc);
2792 	if (!err)
2793 		err = do_new_mount_fc(fc, path, mnt_flags);
2794 
2795 	put_fs_context(fc);
2796 	return err;
2797 }
2798 
2799 int finish_automount(struct vfsmount *m, struct path *path)
2800 {
2801 	struct mount *mnt = real_mount(m);
2802 	int err;
2803 	/* The new mount record should have at least 2 refs to prevent it being
2804 	 * expired before we get a chance to add it
2805 	 */
2806 	BUG_ON(mnt_get_count(mnt) < 2);
2807 
2808 	if (m->mnt_sb == path->mnt->mnt_sb &&
2809 	    m->mnt_root == path->dentry) {
2810 		err = -ELOOP;
2811 		goto fail;
2812 	}
2813 
2814 	err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2815 	if (!err)
2816 		return 0;
2817 fail:
2818 	/* remove m from any expiration list it may be on */
2819 	if (!list_empty(&mnt->mnt_expire)) {
2820 		namespace_lock();
2821 		list_del_init(&mnt->mnt_expire);
2822 		namespace_unlock();
2823 	}
2824 	mntput(m);
2825 	mntput(m);
2826 	return err;
2827 }
2828 
2829 /**
2830  * mnt_set_expiry - Put a mount on an expiration list
2831  * @mnt: The mount to list.
2832  * @expiry_list: The list to add the mount to.
2833  */
2834 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2835 {
2836 	namespace_lock();
2837 
2838 	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2839 
2840 	namespace_unlock();
2841 }
2842 EXPORT_SYMBOL(mnt_set_expiry);
2843 
2844 /*
2845  * process a list of expirable mountpoints with the intent of discarding any
2846  * mountpoints that aren't in use and haven't been touched since last we came
2847  * here
2848  */
2849 void mark_mounts_for_expiry(struct list_head *mounts)
2850 {
2851 	struct mount *mnt, *next;
2852 	LIST_HEAD(graveyard);
2853 
2854 	if (list_empty(mounts))
2855 		return;
2856 
2857 	namespace_lock();
2858 	lock_mount_hash();
2859 
2860 	/* extract from the expiration list every vfsmount that matches the
2861 	 * following criteria:
2862 	 * - only referenced by its parent vfsmount
2863 	 * - still marked for expiry (marked on the last call here; marks are
2864 	 *   cleared by mntput())
2865 	 */
2866 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2867 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2868 			propagate_mount_busy(mnt, 1))
2869 			continue;
2870 		list_move(&mnt->mnt_expire, &graveyard);
2871 	}
2872 	while (!list_empty(&graveyard)) {
2873 		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2874 		touch_mnt_namespace(mnt->mnt_ns);
2875 		umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2876 	}
2877 	unlock_mount_hash();
2878 	namespace_unlock();
2879 }
2880 
2881 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2882 
2883 /*
2884  * Ripoff of 'select_parent()'
2885  *
2886  * search the list of submounts for a given mountpoint, and move any
2887  * shrinkable submounts to the 'graveyard' list.
2888  */
2889 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2890 {
2891 	struct mount *this_parent = parent;
2892 	struct list_head *next;
2893 	int found = 0;
2894 
2895 repeat:
2896 	next = this_parent->mnt_mounts.next;
2897 resume:
2898 	while (next != &this_parent->mnt_mounts) {
2899 		struct list_head *tmp = next;
2900 		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2901 
2902 		next = tmp->next;
2903 		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2904 			continue;
2905 		/*
2906 		 * Descend a level if the d_mounts list is non-empty.
2907 		 */
2908 		if (!list_empty(&mnt->mnt_mounts)) {
2909 			this_parent = mnt;
2910 			goto repeat;
2911 		}
2912 
2913 		if (!propagate_mount_busy(mnt, 1)) {
2914 			list_move_tail(&mnt->mnt_expire, graveyard);
2915 			found++;
2916 		}
2917 	}
2918 	/*
2919 	 * All done at this level ... ascend and resume the search
2920 	 */
2921 	if (this_parent != parent) {
2922 		next = this_parent->mnt_child.next;
2923 		this_parent = this_parent->mnt_parent;
2924 		goto resume;
2925 	}
2926 	return found;
2927 }
2928 
2929 /*
2930  * process a list of expirable mountpoints with the intent of discarding any
2931  * submounts of a specific parent mountpoint
2932  *
2933  * mount_lock must be held for write
2934  */
2935 static void shrink_submounts(struct mount *mnt)
2936 {
2937 	LIST_HEAD(graveyard);
2938 	struct mount *m;
2939 
2940 	/* extract submounts of 'mountpoint' from the expiration list */
2941 	while (select_submounts(mnt, &graveyard)) {
2942 		while (!list_empty(&graveyard)) {
2943 			m = list_first_entry(&graveyard, struct mount,
2944 						mnt_expire);
2945 			touch_mnt_namespace(m->mnt_ns);
2946 			umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2947 		}
2948 	}
2949 }
2950 
2951 /*
2952  * Some copy_from_user() implementations do not return the exact number of
2953  * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
2954  * Note that this function differs from copy_from_user() in that it will oops
2955  * on bad values of `to', rather than returning a short copy.
2956  */
2957 static long exact_copy_from_user(void *to, const void __user * from,
2958 				 unsigned long n)
2959 {
2960 	char *t = to;
2961 	const char __user *f = from;
2962 	char c;
2963 
2964 	if (!access_ok(from, n))
2965 		return n;
2966 
2967 	while (n) {
2968 		if (__get_user(c, f)) {
2969 			memset(t, 0, n);
2970 			break;
2971 		}
2972 		*t++ = c;
2973 		f++;
2974 		n--;
2975 	}
2976 	return n;
2977 }
2978 
2979 void *copy_mount_options(const void __user * data)
2980 {
2981 	int i;
2982 	unsigned long size;
2983 	char *copy;
2984 
2985 	if (!data)
2986 		return NULL;
2987 
2988 	copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
2989 	if (!copy)
2990 		return ERR_PTR(-ENOMEM);
2991 
2992 	/* We only care that *some* data at the address the user
2993 	 * gave us is valid.  Just in case, we'll zero
2994 	 * the remainder of the page.
2995 	 */
2996 	/* copy_from_user cannot cross TASK_SIZE ! */
2997 	size = TASK_SIZE - (unsigned long)data;
2998 	if (size > PAGE_SIZE)
2999 		size = PAGE_SIZE;
3000 
3001 	i = size - exact_copy_from_user(copy, data, size);
3002 	if (!i) {
3003 		kfree(copy);
3004 		return ERR_PTR(-EFAULT);
3005 	}
3006 	if (i != PAGE_SIZE)
3007 		memset(copy + i, 0, PAGE_SIZE - i);
3008 	return copy;
3009 }
3010 
3011 char *copy_mount_string(const void __user *data)
3012 {
3013 	return data ? strndup_user(data, PATH_MAX) : NULL;
3014 }
3015 
3016 /*
3017  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3018  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3019  *
3020  * data is a (void *) that can point to any structure up to
3021  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3022  * information (or be NULL).
3023  *
3024  * Pre-0.97 versions of mount() didn't have a flags word.
3025  * When the flags word was introduced its top half was required
3026  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3027  * Therefore, if this magic number is present, it carries no information
3028  * and must be discarded.
3029  */
3030 long do_mount(const char *dev_name, const char __user *dir_name,
3031 		const char *type_page, unsigned long flags, void *data_page)
3032 {
3033 	struct path path;
3034 	unsigned int mnt_flags = 0, sb_flags;
3035 	int retval = 0;
3036 
3037 	/* Discard magic */
3038 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3039 		flags &= ~MS_MGC_MSK;
3040 
3041 	/* Basic sanity checks */
3042 	if (data_page)
3043 		((char *)data_page)[PAGE_SIZE - 1] = 0;
3044 
3045 	if (flags & MS_NOUSER)
3046 		return -EINVAL;
3047 
3048 	/* ... and get the mountpoint */
3049 	retval = user_path(dir_name, &path);
3050 	if (retval)
3051 		return retval;
3052 
3053 	retval = security_sb_mount(dev_name, &path,
3054 				   type_page, flags, data_page);
3055 	if (!retval && !may_mount())
3056 		retval = -EPERM;
3057 	if (!retval && (flags & SB_MANDLOCK) && !may_mandlock())
3058 		retval = -EPERM;
3059 	if (retval)
3060 		goto dput_out;
3061 
3062 	/* Default to relatime unless overriden */
3063 	if (!(flags & MS_NOATIME))
3064 		mnt_flags |= MNT_RELATIME;
3065 
3066 	/* Separate the per-mountpoint flags */
3067 	if (flags & MS_NOSUID)
3068 		mnt_flags |= MNT_NOSUID;
3069 	if (flags & MS_NODEV)
3070 		mnt_flags |= MNT_NODEV;
3071 	if (flags & MS_NOEXEC)
3072 		mnt_flags |= MNT_NOEXEC;
3073 	if (flags & MS_NOATIME)
3074 		mnt_flags |= MNT_NOATIME;
3075 	if (flags & MS_NODIRATIME)
3076 		mnt_flags |= MNT_NODIRATIME;
3077 	if (flags & MS_STRICTATIME)
3078 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
3079 	if (flags & MS_RDONLY)
3080 		mnt_flags |= MNT_READONLY;
3081 
3082 	/* The default atime for remount is preservation */
3083 	if ((flags & MS_REMOUNT) &&
3084 	    ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3085 		       MS_STRICTATIME)) == 0)) {
3086 		mnt_flags &= ~MNT_ATIME_MASK;
3087 		mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
3088 	}
3089 
3090 	sb_flags = flags & (SB_RDONLY |
3091 			    SB_SYNCHRONOUS |
3092 			    SB_MANDLOCK |
3093 			    SB_DIRSYNC |
3094 			    SB_SILENT |
3095 			    SB_POSIXACL |
3096 			    SB_LAZYTIME |
3097 			    SB_I_VERSION);
3098 
3099 	if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
3100 		retval = do_reconfigure_mnt(&path, mnt_flags);
3101 	else if (flags & MS_REMOUNT)
3102 		retval = do_remount(&path, flags, sb_flags, mnt_flags,
3103 				    data_page);
3104 	else if (flags & MS_BIND)
3105 		retval = do_loopback(&path, dev_name, flags & MS_REC);
3106 	else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
3107 		retval = do_change_type(&path, flags);
3108 	else if (flags & MS_MOVE)
3109 		retval = do_move_mount_old(&path, dev_name);
3110 	else
3111 		retval = do_new_mount(&path, type_page, sb_flags, mnt_flags,
3112 				      dev_name, data_page);
3113 dput_out:
3114 	path_put(&path);
3115 	return retval;
3116 }
3117 
3118 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3119 {
3120 	return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3121 }
3122 
3123 static void dec_mnt_namespaces(struct ucounts *ucounts)
3124 {
3125 	dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3126 }
3127 
3128 static void free_mnt_ns(struct mnt_namespace *ns)
3129 {
3130 	if (!is_anon_ns(ns))
3131 		ns_free_inum(&ns->ns);
3132 	dec_mnt_namespaces(ns->ucounts);
3133 	put_user_ns(ns->user_ns);
3134 	kfree(ns);
3135 }
3136 
3137 /*
3138  * Assign a sequence number so we can detect when we attempt to bind
3139  * mount a reference to an older mount namespace into the current
3140  * mount namespace, preventing reference counting loops.  A 64bit
3141  * number incrementing at 10Ghz will take 12,427 years to wrap which
3142  * is effectively never, so we can ignore the possibility.
3143  */
3144 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3145 
3146 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
3147 {
3148 	struct mnt_namespace *new_ns;
3149 	struct ucounts *ucounts;
3150 	int ret;
3151 
3152 	ucounts = inc_mnt_namespaces(user_ns);
3153 	if (!ucounts)
3154 		return ERR_PTR(-ENOSPC);
3155 
3156 	new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
3157 	if (!new_ns) {
3158 		dec_mnt_namespaces(ucounts);
3159 		return ERR_PTR(-ENOMEM);
3160 	}
3161 	if (!anon) {
3162 		ret = ns_alloc_inum(&new_ns->ns);
3163 		if (ret) {
3164 			kfree(new_ns);
3165 			dec_mnt_namespaces(ucounts);
3166 			return ERR_PTR(ret);
3167 		}
3168 	}
3169 	new_ns->ns.ops = &mntns_operations;
3170 	if (!anon)
3171 		new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
3172 	atomic_set(&new_ns->count, 1);
3173 	INIT_LIST_HEAD(&new_ns->list);
3174 	init_waitqueue_head(&new_ns->poll);
3175 	new_ns->user_ns = get_user_ns(user_ns);
3176 	new_ns->ucounts = ucounts;
3177 	return new_ns;
3178 }
3179 
3180 __latent_entropy
3181 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3182 		struct user_namespace *user_ns, struct fs_struct *new_fs)
3183 {
3184 	struct mnt_namespace *new_ns;
3185 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
3186 	struct mount *p, *q;
3187 	struct mount *old;
3188 	struct mount *new;
3189 	int copy_flags;
3190 
3191 	BUG_ON(!ns);
3192 
3193 	if (likely(!(flags & CLONE_NEWNS))) {
3194 		get_mnt_ns(ns);
3195 		return ns;
3196 	}
3197 
3198 	old = ns->root;
3199 
3200 	new_ns = alloc_mnt_ns(user_ns, false);
3201 	if (IS_ERR(new_ns))
3202 		return new_ns;
3203 
3204 	namespace_lock();
3205 	/* First pass: copy the tree topology */
3206 	copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
3207 	if (user_ns != ns->user_ns)
3208 		copy_flags |= CL_SHARED_TO_SLAVE;
3209 	new = copy_tree(old, old->mnt.mnt_root, copy_flags);
3210 	if (IS_ERR(new)) {
3211 		namespace_unlock();
3212 		free_mnt_ns(new_ns);
3213 		return ERR_CAST(new);
3214 	}
3215 	if (user_ns != ns->user_ns) {
3216 		lock_mount_hash();
3217 		lock_mnt_tree(new);
3218 		unlock_mount_hash();
3219 	}
3220 	new_ns->root = new;
3221 	list_add_tail(&new_ns->list, &new->mnt_list);
3222 
3223 	/*
3224 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3225 	 * as belonging to new namespace.  We have already acquired a private
3226 	 * fs_struct, so tsk->fs->lock is not needed.
3227 	 */
3228 	p = old;
3229 	q = new;
3230 	while (p) {
3231 		q->mnt_ns = new_ns;
3232 		new_ns->mounts++;
3233 		if (new_fs) {
3234 			if (&p->mnt == new_fs->root.mnt) {
3235 				new_fs->root.mnt = mntget(&q->mnt);
3236 				rootmnt = &p->mnt;
3237 			}
3238 			if (&p->mnt == new_fs->pwd.mnt) {
3239 				new_fs->pwd.mnt = mntget(&q->mnt);
3240 				pwdmnt = &p->mnt;
3241 			}
3242 		}
3243 		p = next_mnt(p, old);
3244 		q = next_mnt(q, new);
3245 		if (!q)
3246 			break;
3247 		while (p->mnt.mnt_root != q->mnt.mnt_root)
3248 			p = next_mnt(p, old);
3249 	}
3250 	namespace_unlock();
3251 
3252 	if (rootmnt)
3253 		mntput(rootmnt);
3254 	if (pwdmnt)
3255 		mntput(pwdmnt);
3256 
3257 	return new_ns;
3258 }
3259 
3260 struct dentry *mount_subtree(struct vfsmount *m, const char *name)
3261 {
3262 	struct mount *mnt = real_mount(m);
3263 	struct mnt_namespace *ns;
3264 	struct super_block *s;
3265 	struct path path;
3266 	int err;
3267 
3268 	ns = alloc_mnt_ns(&init_user_ns, true);
3269 	if (IS_ERR(ns)) {
3270 		mntput(m);
3271 		return ERR_CAST(ns);
3272 	}
3273 	mnt->mnt_ns = ns;
3274 	ns->root = mnt;
3275 	ns->mounts++;
3276 	list_add(&mnt->mnt_list, &ns->list);
3277 
3278 	err = vfs_path_lookup(m->mnt_root, m,
3279 			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3280 
3281 	put_mnt_ns(ns);
3282 
3283 	if (err)
3284 		return ERR_PTR(err);
3285 
3286 	/* trade a vfsmount reference for active sb one */
3287 	s = path.mnt->mnt_sb;
3288 	atomic_inc(&s->s_active);
3289 	mntput(path.mnt);
3290 	/* lock the sucker */
3291 	down_write(&s->s_umount);
3292 	/* ... and return the root of (sub)tree on it */
3293 	return path.dentry;
3294 }
3295 EXPORT_SYMBOL(mount_subtree);
3296 
3297 int ksys_mount(const char __user *dev_name, const char __user *dir_name,
3298 	       const char __user *type, unsigned long flags, void __user *data)
3299 {
3300 	int ret;
3301 	char *kernel_type;
3302 	char *kernel_dev;
3303 	void *options;
3304 
3305 	kernel_type = copy_mount_string(type);
3306 	ret = PTR_ERR(kernel_type);
3307 	if (IS_ERR(kernel_type))
3308 		goto out_type;
3309 
3310 	kernel_dev = copy_mount_string(dev_name);
3311 	ret = PTR_ERR(kernel_dev);
3312 	if (IS_ERR(kernel_dev))
3313 		goto out_dev;
3314 
3315 	options = copy_mount_options(data);
3316 	ret = PTR_ERR(options);
3317 	if (IS_ERR(options))
3318 		goto out_data;
3319 
3320 	ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3321 
3322 	kfree(options);
3323 out_data:
3324 	kfree(kernel_dev);
3325 out_dev:
3326 	kfree(kernel_type);
3327 out_type:
3328 	return ret;
3329 }
3330 
3331 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3332 		char __user *, type, unsigned long, flags, void __user *, data)
3333 {
3334 	return ksys_mount(dev_name, dir_name, type, flags, data);
3335 }
3336 
3337 /*
3338  * Create a kernel mount representation for a new, prepared superblock
3339  * (specified by fs_fd) and attach to an open_tree-like file descriptor.
3340  */
3341 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
3342 		unsigned int, attr_flags)
3343 {
3344 	struct mnt_namespace *ns;
3345 	struct fs_context *fc;
3346 	struct file *file;
3347 	struct path newmount;
3348 	struct mount *mnt;
3349 	struct fd f;
3350 	unsigned int mnt_flags = 0;
3351 	long ret;
3352 
3353 	if (!may_mount())
3354 		return -EPERM;
3355 
3356 	if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
3357 		return -EINVAL;
3358 
3359 	if (attr_flags & ~(MOUNT_ATTR_RDONLY |
3360 			   MOUNT_ATTR_NOSUID |
3361 			   MOUNT_ATTR_NODEV |
3362 			   MOUNT_ATTR_NOEXEC |
3363 			   MOUNT_ATTR__ATIME |
3364 			   MOUNT_ATTR_NODIRATIME))
3365 		return -EINVAL;
3366 
3367 	if (attr_flags & MOUNT_ATTR_RDONLY)
3368 		mnt_flags |= MNT_READONLY;
3369 	if (attr_flags & MOUNT_ATTR_NOSUID)
3370 		mnt_flags |= MNT_NOSUID;
3371 	if (attr_flags & MOUNT_ATTR_NODEV)
3372 		mnt_flags |= MNT_NODEV;
3373 	if (attr_flags & MOUNT_ATTR_NOEXEC)
3374 		mnt_flags |= MNT_NOEXEC;
3375 	if (attr_flags & MOUNT_ATTR_NODIRATIME)
3376 		mnt_flags |= MNT_NODIRATIME;
3377 
3378 	switch (attr_flags & MOUNT_ATTR__ATIME) {
3379 	case MOUNT_ATTR_STRICTATIME:
3380 		break;
3381 	case MOUNT_ATTR_NOATIME:
3382 		mnt_flags |= MNT_NOATIME;
3383 		break;
3384 	case MOUNT_ATTR_RELATIME:
3385 		mnt_flags |= MNT_RELATIME;
3386 		break;
3387 	default:
3388 		return -EINVAL;
3389 	}
3390 
3391 	f = fdget(fs_fd);
3392 	if (!f.file)
3393 		return -EBADF;
3394 
3395 	ret = -EINVAL;
3396 	if (f.file->f_op != &fscontext_fops)
3397 		goto err_fsfd;
3398 
3399 	fc = f.file->private_data;
3400 
3401 	ret = mutex_lock_interruptible(&fc->uapi_mutex);
3402 	if (ret < 0)
3403 		goto err_fsfd;
3404 
3405 	/* There must be a valid superblock or we can't mount it */
3406 	ret = -EINVAL;
3407 	if (!fc->root)
3408 		goto err_unlock;
3409 
3410 	ret = -EPERM;
3411 	if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
3412 		pr_warn("VFS: Mount too revealing\n");
3413 		goto err_unlock;
3414 	}
3415 
3416 	ret = -EBUSY;
3417 	if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
3418 		goto err_unlock;
3419 
3420 	ret = -EPERM;
3421 	if ((fc->sb_flags & SB_MANDLOCK) && !may_mandlock())
3422 		goto err_unlock;
3423 
3424 	newmount.mnt = vfs_create_mount(fc);
3425 	if (IS_ERR(newmount.mnt)) {
3426 		ret = PTR_ERR(newmount.mnt);
3427 		goto err_unlock;
3428 	}
3429 	newmount.dentry = dget(fc->root);
3430 	newmount.mnt->mnt_flags = mnt_flags;
3431 
3432 	/* We've done the mount bit - now move the file context into more or
3433 	 * less the same state as if we'd done an fspick().  We don't want to
3434 	 * do any memory allocation or anything like that at this point as we
3435 	 * don't want to have to handle any errors incurred.
3436 	 */
3437 	vfs_clean_context(fc);
3438 
3439 	ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
3440 	if (IS_ERR(ns)) {
3441 		ret = PTR_ERR(ns);
3442 		goto err_path;
3443 	}
3444 	mnt = real_mount(newmount.mnt);
3445 	mnt->mnt_ns = ns;
3446 	ns->root = mnt;
3447 	ns->mounts = 1;
3448 	list_add(&mnt->mnt_list, &ns->list);
3449 	mntget(newmount.mnt);
3450 
3451 	/* Attach to an apparent O_PATH fd with a note that we need to unmount
3452 	 * it, not just simply put it.
3453 	 */
3454 	file = dentry_open(&newmount, O_PATH, fc->cred);
3455 	if (IS_ERR(file)) {
3456 		dissolve_on_fput(newmount.mnt);
3457 		ret = PTR_ERR(file);
3458 		goto err_path;
3459 	}
3460 	file->f_mode |= FMODE_NEED_UNMOUNT;
3461 
3462 	ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
3463 	if (ret >= 0)
3464 		fd_install(ret, file);
3465 	else
3466 		fput(file);
3467 
3468 err_path:
3469 	path_put(&newmount);
3470 err_unlock:
3471 	mutex_unlock(&fc->uapi_mutex);
3472 err_fsfd:
3473 	fdput(f);
3474 	return ret;
3475 }
3476 
3477 /*
3478  * Move a mount from one place to another.  In combination with
3479  * fsopen()/fsmount() this is used to install a new mount and in combination
3480  * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
3481  * a mount subtree.
3482  *
3483  * Note the flags value is a combination of MOVE_MOUNT_* flags.
3484  */
3485 SYSCALL_DEFINE5(move_mount,
3486 		int, from_dfd, const char *, from_pathname,
3487 		int, to_dfd, const char *, to_pathname,
3488 		unsigned int, flags)
3489 {
3490 	struct path from_path, to_path;
3491 	unsigned int lflags;
3492 	int ret = 0;
3493 
3494 	if (!may_mount())
3495 		return -EPERM;
3496 
3497 	if (flags & ~MOVE_MOUNT__MASK)
3498 		return -EINVAL;
3499 
3500 	/* If someone gives a pathname, they aren't permitted to move
3501 	 * from an fd that requires unmount as we can't get at the flag
3502 	 * to clear it afterwards.
3503 	 */
3504 	lflags = 0;
3505 	if (flags & MOVE_MOUNT_F_SYMLINKS)	lflags |= LOOKUP_FOLLOW;
3506 	if (flags & MOVE_MOUNT_F_AUTOMOUNTS)	lflags |= LOOKUP_AUTOMOUNT;
3507 	if (flags & MOVE_MOUNT_F_EMPTY_PATH)	lflags |= LOOKUP_EMPTY;
3508 
3509 	ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
3510 	if (ret < 0)
3511 		return ret;
3512 
3513 	lflags = 0;
3514 	if (flags & MOVE_MOUNT_T_SYMLINKS)	lflags |= LOOKUP_FOLLOW;
3515 	if (flags & MOVE_MOUNT_T_AUTOMOUNTS)	lflags |= LOOKUP_AUTOMOUNT;
3516 	if (flags & MOVE_MOUNT_T_EMPTY_PATH)	lflags |= LOOKUP_EMPTY;
3517 
3518 	ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
3519 	if (ret < 0)
3520 		goto out_from;
3521 
3522 	ret = security_move_mount(&from_path, &to_path);
3523 	if (ret < 0)
3524 		goto out_to;
3525 
3526 	ret = do_move_mount(&from_path, &to_path);
3527 
3528 out_to:
3529 	path_put(&to_path);
3530 out_from:
3531 	path_put(&from_path);
3532 	return ret;
3533 }
3534 
3535 /*
3536  * Return true if path is reachable from root
3537  *
3538  * namespace_sem or mount_lock is held
3539  */
3540 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3541 			 const struct path *root)
3542 {
3543 	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3544 		dentry = mnt->mnt_mountpoint;
3545 		mnt = mnt->mnt_parent;
3546 	}
3547 	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3548 }
3549 
3550 bool path_is_under(const struct path *path1, const struct path *path2)
3551 {
3552 	bool res;
3553 	read_seqlock_excl(&mount_lock);
3554 	res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3555 	read_sequnlock_excl(&mount_lock);
3556 	return res;
3557 }
3558 EXPORT_SYMBOL(path_is_under);
3559 
3560 /*
3561  * pivot_root Semantics:
3562  * Moves the root file system of the current process to the directory put_old,
3563  * makes new_root as the new root file system of the current process, and sets
3564  * root/cwd of all processes which had them on the current root to new_root.
3565  *
3566  * Restrictions:
3567  * The new_root and put_old must be directories, and  must not be on the
3568  * same file  system as the current process root. The put_old  must  be
3569  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
3570  * pointed to by put_old must yield the same directory as new_root. No other
3571  * file system may be mounted on put_old. After all, new_root is a mountpoint.
3572  *
3573  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3574  * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3575  * in this situation.
3576  *
3577  * Notes:
3578  *  - we don't move root/cwd if they are not at the root (reason: if something
3579  *    cared enough to change them, it's probably wrong to force them elsewhere)
3580  *  - it's okay to pick a root that isn't the root of a file system, e.g.
3581  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3582  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3583  *    first.
3584  */
3585 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3586 		const char __user *, put_old)
3587 {
3588 	struct path new, old, root;
3589 	struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
3590 	struct mountpoint *old_mp, *root_mp;
3591 	int error;
3592 
3593 	if (!may_mount())
3594 		return -EPERM;
3595 
3596 	error = user_path_dir(new_root, &new);
3597 	if (error)
3598 		goto out0;
3599 
3600 	error = user_path_dir(put_old, &old);
3601 	if (error)
3602 		goto out1;
3603 
3604 	error = security_sb_pivotroot(&old, &new);
3605 	if (error)
3606 		goto out2;
3607 
3608 	get_fs_root(current->fs, &root);
3609 	old_mp = lock_mount(&old);
3610 	error = PTR_ERR(old_mp);
3611 	if (IS_ERR(old_mp))
3612 		goto out3;
3613 
3614 	error = -EINVAL;
3615 	new_mnt = real_mount(new.mnt);
3616 	root_mnt = real_mount(root.mnt);
3617 	old_mnt = real_mount(old.mnt);
3618 	ex_parent = new_mnt->mnt_parent;
3619 	root_parent = root_mnt->mnt_parent;
3620 	if (IS_MNT_SHARED(old_mnt) ||
3621 		IS_MNT_SHARED(ex_parent) ||
3622 		IS_MNT_SHARED(root_parent))
3623 		goto out4;
3624 	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3625 		goto out4;
3626 	if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3627 		goto out4;
3628 	error = -ENOENT;
3629 	if (d_unlinked(new.dentry))
3630 		goto out4;
3631 	error = -EBUSY;
3632 	if (new_mnt == root_mnt || old_mnt == root_mnt)
3633 		goto out4; /* loop, on the same file system  */
3634 	error = -EINVAL;
3635 	if (root.mnt->mnt_root != root.dentry)
3636 		goto out4; /* not a mountpoint */
3637 	if (!mnt_has_parent(root_mnt))
3638 		goto out4; /* not attached */
3639 	if (new.mnt->mnt_root != new.dentry)
3640 		goto out4; /* not a mountpoint */
3641 	if (!mnt_has_parent(new_mnt))
3642 		goto out4; /* not attached */
3643 	/* make sure we can reach put_old from new_root */
3644 	if (!is_path_reachable(old_mnt, old.dentry, &new))
3645 		goto out4;
3646 	/* make certain new is below the root */
3647 	if (!is_path_reachable(new_mnt, new.dentry, &root))
3648 		goto out4;
3649 	lock_mount_hash();
3650 	umount_mnt(new_mnt);
3651 	root_mp = unhash_mnt(root_mnt);  /* we'll need its mountpoint */
3652 	if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3653 		new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3654 		root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3655 	}
3656 	/* mount old root on put_old */
3657 	attach_mnt(root_mnt, old_mnt, old_mp);
3658 	/* mount new_root on / */
3659 	attach_mnt(new_mnt, root_parent, root_mp);
3660 	mnt_add_count(root_parent, -1);
3661 	touch_mnt_namespace(current->nsproxy->mnt_ns);
3662 	/* A moved mount should not expire automatically */
3663 	list_del_init(&new_mnt->mnt_expire);
3664 	put_mountpoint(root_mp);
3665 	unlock_mount_hash();
3666 	chroot_fs_refs(&root, &new);
3667 	error = 0;
3668 out4:
3669 	unlock_mount(old_mp);
3670 	if (!error)
3671 		mntput_no_expire(ex_parent);
3672 out3:
3673 	path_put(&root);
3674 out2:
3675 	path_put(&old);
3676 out1:
3677 	path_put(&new);
3678 out0:
3679 	return error;
3680 }
3681 
3682 static void __init init_mount_tree(void)
3683 {
3684 	struct vfsmount *mnt;
3685 	struct mount *m;
3686 	struct mnt_namespace *ns;
3687 	struct path root;
3688 
3689 	mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
3690 	if (IS_ERR(mnt))
3691 		panic("Can't create rootfs");
3692 
3693 	ns = alloc_mnt_ns(&init_user_ns, false);
3694 	if (IS_ERR(ns))
3695 		panic("Can't allocate initial namespace");
3696 	m = real_mount(mnt);
3697 	m->mnt_ns = ns;
3698 	ns->root = m;
3699 	ns->mounts = 1;
3700 	list_add(&m->mnt_list, &ns->list);
3701 	init_task.nsproxy->mnt_ns = ns;
3702 	get_mnt_ns(ns);
3703 
3704 	root.mnt = mnt;
3705 	root.dentry = mnt->mnt_root;
3706 	mnt->mnt_flags |= MNT_LOCKED;
3707 
3708 	set_fs_pwd(current->fs, &root);
3709 	set_fs_root(current->fs, &root);
3710 }
3711 
3712 void __init mnt_init(void)
3713 {
3714 	int err;
3715 
3716 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3717 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3718 
3719 	mount_hashtable = alloc_large_system_hash("Mount-cache",
3720 				sizeof(struct hlist_head),
3721 				mhash_entries, 19,
3722 				HASH_ZERO,
3723 				&m_hash_shift, &m_hash_mask, 0, 0);
3724 	mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3725 				sizeof(struct hlist_head),
3726 				mphash_entries, 19,
3727 				HASH_ZERO,
3728 				&mp_hash_shift, &mp_hash_mask, 0, 0);
3729 
3730 	if (!mount_hashtable || !mountpoint_hashtable)
3731 		panic("Failed to allocate mount hash table\n");
3732 
3733 	kernfs_init();
3734 
3735 	err = sysfs_init();
3736 	if (err)
3737 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3738 			__func__, err);
3739 	fs_kobj = kobject_create_and_add("fs", NULL);
3740 	if (!fs_kobj)
3741 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
3742 	shmem_init();
3743 	init_rootfs();
3744 	init_mount_tree();
3745 }
3746 
3747 void put_mnt_ns(struct mnt_namespace *ns)
3748 {
3749 	if (!atomic_dec_and_test(&ns->count))
3750 		return;
3751 	drop_collected_mounts(&ns->root->mnt);
3752 	free_mnt_ns(ns);
3753 }
3754 
3755 struct vfsmount *kern_mount(struct file_system_type *type)
3756 {
3757 	struct vfsmount *mnt;
3758 	mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
3759 	if (!IS_ERR(mnt)) {
3760 		/*
3761 		 * it is a longterm mount, don't release mnt until
3762 		 * we unmount before file sys is unregistered
3763 		*/
3764 		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3765 	}
3766 	return mnt;
3767 }
3768 EXPORT_SYMBOL_GPL(kern_mount);
3769 
3770 void kern_unmount(struct vfsmount *mnt)
3771 {
3772 	/* release long term mount so mount point can be released */
3773 	if (!IS_ERR_OR_NULL(mnt)) {
3774 		real_mount(mnt)->mnt_ns = NULL;
3775 		synchronize_rcu();	/* yecchhh... */
3776 		mntput(mnt);
3777 	}
3778 }
3779 EXPORT_SYMBOL(kern_unmount);
3780 
3781 bool our_mnt(struct vfsmount *mnt)
3782 {
3783 	return check_mnt(real_mount(mnt));
3784 }
3785 
3786 bool current_chrooted(void)
3787 {
3788 	/* Does the current process have a non-standard root */
3789 	struct path ns_root;
3790 	struct path fs_root;
3791 	bool chrooted;
3792 
3793 	/* Find the namespace root */
3794 	ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3795 	ns_root.dentry = ns_root.mnt->mnt_root;
3796 	path_get(&ns_root);
3797 	while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3798 		;
3799 
3800 	get_fs_root(current->fs, &fs_root);
3801 
3802 	chrooted = !path_equal(&fs_root, &ns_root);
3803 
3804 	path_put(&fs_root);
3805 	path_put(&ns_root);
3806 
3807 	return chrooted;
3808 }
3809 
3810 static bool mnt_already_visible(struct mnt_namespace *ns,
3811 				const struct super_block *sb,
3812 				int *new_mnt_flags)
3813 {
3814 	int new_flags = *new_mnt_flags;
3815 	struct mount *mnt;
3816 	bool visible = false;
3817 
3818 	down_read(&namespace_sem);
3819 	list_for_each_entry(mnt, &ns->list, mnt_list) {
3820 		struct mount *child;
3821 		int mnt_flags;
3822 
3823 		if (mnt->mnt.mnt_sb->s_type != sb->s_type)
3824 			continue;
3825 
3826 		/* This mount is not fully visible if it's root directory
3827 		 * is not the root directory of the filesystem.
3828 		 */
3829 		if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3830 			continue;
3831 
3832 		/* A local view of the mount flags */
3833 		mnt_flags = mnt->mnt.mnt_flags;
3834 
3835 		/* Don't miss readonly hidden in the superblock flags */
3836 		if (sb_rdonly(mnt->mnt.mnt_sb))
3837 			mnt_flags |= MNT_LOCK_READONLY;
3838 
3839 		/* Verify the mount flags are equal to or more permissive
3840 		 * than the proposed new mount.
3841 		 */
3842 		if ((mnt_flags & MNT_LOCK_READONLY) &&
3843 		    !(new_flags & MNT_READONLY))
3844 			continue;
3845 		if ((mnt_flags & MNT_LOCK_ATIME) &&
3846 		    ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3847 			continue;
3848 
3849 		/* This mount is not fully visible if there are any
3850 		 * locked child mounts that cover anything except for
3851 		 * empty directories.
3852 		 */
3853 		list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3854 			struct inode *inode = child->mnt_mountpoint->d_inode;
3855 			/* Only worry about locked mounts */
3856 			if (!(child->mnt.mnt_flags & MNT_LOCKED))
3857 				continue;
3858 			/* Is the directory permanetly empty? */
3859 			if (!is_empty_dir_inode(inode))
3860 				goto next;
3861 		}
3862 		/* Preserve the locked attributes */
3863 		*new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
3864 					       MNT_LOCK_ATIME);
3865 		visible = true;
3866 		goto found;
3867 	next:	;
3868 	}
3869 found:
3870 	up_read(&namespace_sem);
3871 	return visible;
3872 }
3873 
3874 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
3875 {
3876 	const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
3877 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3878 	unsigned long s_iflags;
3879 
3880 	if (ns->user_ns == &init_user_ns)
3881 		return false;
3882 
3883 	/* Can this filesystem be too revealing? */
3884 	s_iflags = sb->s_iflags;
3885 	if (!(s_iflags & SB_I_USERNS_VISIBLE))
3886 		return false;
3887 
3888 	if ((s_iflags & required_iflags) != required_iflags) {
3889 		WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3890 			  required_iflags);
3891 		return true;
3892 	}
3893 
3894 	return !mnt_already_visible(ns, sb, new_mnt_flags);
3895 }
3896 
3897 bool mnt_may_suid(struct vfsmount *mnt)
3898 {
3899 	/*
3900 	 * Foreign mounts (accessed via fchdir or through /proc
3901 	 * symlinks) are always treated as if they are nosuid.  This
3902 	 * prevents namespaces from trusting potentially unsafe
3903 	 * suid/sgid bits, file caps, or security labels that originate
3904 	 * in other namespaces.
3905 	 */
3906 	return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3907 	       current_in_userns(mnt->mnt_sb->s_user_ns);
3908 }
3909 
3910 static struct ns_common *mntns_get(struct task_struct *task)
3911 {
3912 	struct ns_common *ns = NULL;
3913 	struct nsproxy *nsproxy;
3914 
3915 	task_lock(task);
3916 	nsproxy = task->nsproxy;
3917 	if (nsproxy) {
3918 		ns = &nsproxy->mnt_ns->ns;
3919 		get_mnt_ns(to_mnt_ns(ns));
3920 	}
3921 	task_unlock(task);
3922 
3923 	return ns;
3924 }
3925 
3926 static void mntns_put(struct ns_common *ns)
3927 {
3928 	put_mnt_ns(to_mnt_ns(ns));
3929 }
3930 
3931 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
3932 {
3933 	struct fs_struct *fs = current->fs;
3934 	struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
3935 	struct path root;
3936 	int err;
3937 
3938 	if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3939 	    !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3940 	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3941 		return -EPERM;
3942 
3943 	if (is_anon_ns(mnt_ns))
3944 		return -EINVAL;
3945 
3946 	if (fs->users != 1)
3947 		return -EINVAL;
3948 
3949 	get_mnt_ns(mnt_ns);
3950 	old_mnt_ns = nsproxy->mnt_ns;
3951 	nsproxy->mnt_ns = mnt_ns;
3952 
3953 	/* Find the root */
3954 	err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
3955 				"/", LOOKUP_DOWN, &root);
3956 	if (err) {
3957 		/* revert to old namespace */
3958 		nsproxy->mnt_ns = old_mnt_ns;
3959 		put_mnt_ns(mnt_ns);
3960 		return err;
3961 	}
3962 
3963 	put_mnt_ns(old_mnt_ns);
3964 
3965 	/* Update the pwd and root */
3966 	set_fs_pwd(fs, &root);
3967 	set_fs_root(fs, &root);
3968 
3969 	path_put(&root);
3970 	return 0;
3971 }
3972 
3973 static struct user_namespace *mntns_owner(struct ns_common *ns)
3974 {
3975 	return to_mnt_ns(ns)->user_ns;
3976 }
3977 
3978 const struct proc_ns_operations mntns_operations = {
3979 	.name		= "mnt",
3980 	.type		= CLONE_NEWNS,
3981 	.get		= mntns_get,
3982 	.put		= mntns_put,
3983 	.install	= mntns_install,
3984 	.owner		= mntns_owner,
3985 };
3986