1 /* 2 * linux/fs/namespace.c 3 * 4 * (C) Copyright Al Viro 2000, 2001 5 * Released under GPL v2. 6 * 7 * Based on code from fs/super.c, copyright Linus Torvalds and others. 8 * Heavily rewritten. 9 */ 10 11 #include <linux/syscalls.h> 12 #include <linux/export.h> 13 #include <linux/capability.h> 14 #include <linux/mnt_namespace.h> 15 #include <linux/user_namespace.h> 16 #include <linux/namei.h> 17 #include <linux/security.h> 18 #include <linux/cred.h> 19 #include <linux/idr.h> 20 #include <linux/init.h> /* init_rootfs */ 21 #include <linux/fs_struct.h> /* get_fs_root et.al. */ 22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */ 23 #include <linux/uaccess.h> 24 #include <linux/proc_ns.h> 25 #include <linux/magic.h> 26 #include <linux/bootmem.h> 27 #include <linux/task_work.h> 28 #include "pnode.h" 29 #include "internal.h" 30 31 /* Maximum number of mounts in a mount namespace */ 32 unsigned int sysctl_mount_max __read_mostly = 100000; 33 34 static unsigned int m_hash_mask __read_mostly; 35 static unsigned int m_hash_shift __read_mostly; 36 static unsigned int mp_hash_mask __read_mostly; 37 static unsigned int mp_hash_shift __read_mostly; 38 39 static __initdata unsigned long mhash_entries; 40 static int __init set_mhash_entries(char *str) 41 { 42 if (!str) 43 return 0; 44 mhash_entries = simple_strtoul(str, &str, 0); 45 return 1; 46 } 47 __setup("mhash_entries=", set_mhash_entries); 48 49 static __initdata unsigned long mphash_entries; 50 static int __init set_mphash_entries(char *str) 51 { 52 if (!str) 53 return 0; 54 mphash_entries = simple_strtoul(str, &str, 0); 55 return 1; 56 } 57 __setup("mphash_entries=", set_mphash_entries); 58 59 static u64 event; 60 static DEFINE_IDA(mnt_id_ida); 61 static DEFINE_IDA(mnt_group_ida); 62 static DEFINE_SPINLOCK(mnt_id_lock); 63 static int mnt_id_start = 0; 64 static int mnt_group_start = 1; 65 66 static struct hlist_head *mount_hashtable __read_mostly; 67 static struct hlist_head *mountpoint_hashtable __read_mostly; 68 static struct kmem_cache *mnt_cache __read_mostly; 69 static DECLARE_RWSEM(namespace_sem); 70 71 /* /sys/fs */ 72 struct kobject *fs_kobj; 73 EXPORT_SYMBOL_GPL(fs_kobj); 74 75 /* 76 * vfsmount lock may be taken for read to prevent changes to the 77 * vfsmount hash, ie. during mountpoint lookups or walking back 78 * up the tree. 79 * 80 * It should be taken for write in all cases where the vfsmount 81 * tree or hash is modified or when a vfsmount structure is modified. 82 */ 83 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock); 84 85 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry) 86 { 87 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); 88 tmp += ((unsigned long)dentry / L1_CACHE_BYTES); 89 tmp = tmp + (tmp >> m_hash_shift); 90 return &mount_hashtable[tmp & m_hash_mask]; 91 } 92 93 static inline struct hlist_head *mp_hash(struct dentry *dentry) 94 { 95 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES); 96 tmp = tmp + (tmp >> mp_hash_shift); 97 return &mountpoint_hashtable[tmp & mp_hash_mask]; 98 } 99 100 static int mnt_alloc_id(struct mount *mnt) 101 { 102 int res; 103 104 retry: 105 ida_pre_get(&mnt_id_ida, GFP_KERNEL); 106 spin_lock(&mnt_id_lock); 107 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id); 108 if (!res) 109 mnt_id_start = mnt->mnt_id + 1; 110 spin_unlock(&mnt_id_lock); 111 if (res == -EAGAIN) 112 goto retry; 113 114 return res; 115 } 116 117 static void mnt_free_id(struct mount *mnt) 118 { 119 int id = mnt->mnt_id; 120 spin_lock(&mnt_id_lock); 121 ida_remove(&mnt_id_ida, id); 122 if (mnt_id_start > id) 123 mnt_id_start = id; 124 spin_unlock(&mnt_id_lock); 125 } 126 127 /* 128 * Allocate a new peer group ID 129 * 130 * mnt_group_ida is protected by namespace_sem 131 */ 132 static int mnt_alloc_group_id(struct mount *mnt) 133 { 134 int res; 135 136 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL)) 137 return -ENOMEM; 138 139 res = ida_get_new_above(&mnt_group_ida, 140 mnt_group_start, 141 &mnt->mnt_group_id); 142 if (!res) 143 mnt_group_start = mnt->mnt_group_id + 1; 144 145 return res; 146 } 147 148 /* 149 * Release a peer group ID 150 */ 151 void mnt_release_group_id(struct mount *mnt) 152 { 153 int id = mnt->mnt_group_id; 154 ida_remove(&mnt_group_ida, id); 155 if (mnt_group_start > id) 156 mnt_group_start = id; 157 mnt->mnt_group_id = 0; 158 } 159 160 /* 161 * vfsmount lock must be held for read 162 */ 163 static inline void mnt_add_count(struct mount *mnt, int n) 164 { 165 #ifdef CONFIG_SMP 166 this_cpu_add(mnt->mnt_pcp->mnt_count, n); 167 #else 168 preempt_disable(); 169 mnt->mnt_count += n; 170 preempt_enable(); 171 #endif 172 } 173 174 /* 175 * vfsmount lock must be held for write 176 */ 177 unsigned int mnt_get_count(struct mount *mnt) 178 { 179 #ifdef CONFIG_SMP 180 unsigned int count = 0; 181 int cpu; 182 183 for_each_possible_cpu(cpu) { 184 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count; 185 } 186 187 return count; 188 #else 189 return mnt->mnt_count; 190 #endif 191 } 192 193 static void drop_mountpoint(struct fs_pin *p) 194 { 195 struct mount *m = container_of(p, struct mount, mnt_umount); 196 dput(m->mnt_ex_mountpoint); 197 pin_remove(p); 198 mntput(&m->mnt); 199 } 200 201 static struct mount *alloc_vfsmnt(const char *name) 202 { 203 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); 204 if (mnt) { 205 int err; 206 207 err = mnt_alloc_id(mnt); 208 if (err) 209 goto out_free_cache; 210 211 if (name) { 212 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL); 213 if (!mnt->mnt_devname) 214 goto out_free_id; 215 } 216 217 #ifdef CONFIG_SMP 218 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp); 219 if (!mnt->mnt_pcp) 220 goto out_free_devname; 221 222 this_cpu_add(mnt->mnt_pcp->mnt_count, 1); 223 #else 224 mnt->mnt_count = 1; 225 mnt->mnt_writers = 0; 226 #endif 227 228 INIT_HLIST_NODE(&mnt->mnt_hash); 229 INIT_LIST_HEAD(&mnt->mnt_child); 230 INIT_LIST_HEAD(&mnt->mnt_mounts); 231 INIT_LIST_HEAD(&mnt->mnt_list); 232 INIT_LIST_HEAD(&mnt->mnt_expire); 233 INIT_LIST_HEAD(&mnt->mnt_share); 234 INIT_LIST_HEAD(&mnt->mnt_slave_list); 235 INIT_LIST_HEAD(&mnt->mnt_slave); 236 INIT_HLIST_NODE(&mnt->mnt_mp_list); 237 #ifdef CONFIG_FSNOTIFY 238 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks); 239 #endif 240 init_fs_pin(&mnt->mnt_umount, drop_mountpoint); 241 } 242 return mnt; 243 244 #ifdef CONFIG_SMP 245 out_free_devname: 246 kfree_const(mnt->mnt_devname); 247 #endif 248 out_free_id: 249 mnt_free_id(mnt); 250 out_free_cache: 251 kmem_cache_free(mnt_cache, mnt); 252 return NULL; 253 } 254 255 /* 256 * Most r/o checks on a fs are for operations that take 257 * discrete amounts of time, like a write() or unlink(). 258 * We must keep track of when those operations start 259 * (for permission checks) and when they end, so that 260 * we can determine when writes are able to occur to 261 * a filesystem. 262 */ 263 /* 264 * __mnt_is_readonly: check whether a mount is read-only 265 * @mnt: the mount to check for its write status 266 * 267 * This shouldn't be used directly ouside of the VFS. 268 * It does not guarantee that the filesystem will stay 269 * r/w, just that it is right *now*. This can not and 270 * should not be used in place of IS_RDONLY(inode). 271 * mnt_want/drop_write() will _keep_ the filesystem 272 * r/w. 273 */ 274 int __mnt_is_readonly(struct vfsmount *mnt) 275 { 276 if (mnt->mnt_flags & MNT_READONLY) 277 return 1; 278 if (mnt->mnt_sb->s_flags & MS_RDONLY) 279 return 1; 280 return 0; 281 } 282 EXPORT_SYMBOL_GPL(__mnt_is_readonly); 283 284 static inline void mnt_inc_writers(struct mount *mnt) 285 { 286 #ifdef CONFIG_SMP 287 this_cpu_inc(mnt->mnt_pcp->mnt_writers); 288 #else 289 mnt->mnt_writers++; 290 #endif 291 } 292 293 static inline void mnt_dec_writers(struct mount *mnt) 294 { 295 #ifdef CONFIG_SMP 296 this_cpu_dec(mnt->mnt_pcp->mnt_writers); 297 #else 298 mnt->mnt_writers--; 299 #endif 300 } 301 302 static unsigned int mnt_get_writers(struct mount *mnt) 303 { 304 #ifdef CONFIG_SMP 305 unsigned int count = 0; 306 int cpu; 307 308 for_each_possible_cpu(cpu) { 309 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers; 310 } 311 312 return count; 313 #else 314 return mnt->mnt_writers; 315 #endif 316 } 317 318 static int mnt_is_readonly(struct vfsmount *mnt) 319 { 320 if (mnt->mnt_sb->s_readonly_remount) 321 return 1; 322 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */ 323 smp_rmb(); 324 return __mnt_is_readonly(mnt); 325 } 326 327 /* 328 * Most r/o & frozen checks on a fs are for operations that take discrete 329 * amounts of time, like a write() or unlink(). We must keep track of when 330 * those operations start (for permission checks) and when they end, so that we 331 * can determine when writes are able to occur to a filesystem. 332 */ 333 /** 334 * __mnt_want_write - get write access to a mount without freeze protection 335 * @m: the mount on which to take a write 336 * 337 * This tells the low-level filesystem that a write is about to be performed to 338 * it, and makes sure that writes are allowed (mnt it read-write) before 339 * returning success. This operation does not protect against filesystem being 340 * frozen. When the write operation is finished, __mnt_drop_write() must be 341 * called. This is effectively a refcount. 342 */ 343 int __mnt_want_write(struct vfsmount *m) 344 { 345 struct mount *mnt = real_mount(m); 346 int ret = 0; 347 348 preempt_disable(); 349 mnt_inc_writers(mnt); 350 /* 351 * The store to mnt_inc_writers must be visible before we pass 352 * MNT_WRITE_HOLD loop below, so that the slowpath can see our 353 * incremented count after it has set MNT_WRITE_HOLD. 354 */ 355 smp_mb(); 356 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) 357 cpu_relax(); 358 /* 359 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will 360 * be set to match its requirements. So we must not load that until 361 * MNT_WRITE_HOLD is cleared. 362 */ 363 smp_rmb(); 364 if (mnt_is_readonly(m)) { 365 mnt_dec_writers(mnt); 366 ret = -EROFS; 367 } 368 preempt_enable(); 369 370 return ret; 371 } 372 373 /** 374 * mnt_want_write - get write access to a mount 375 * @m: the mount on which to take a write 376 * 377 * This tells the low-level filesystem that a write is about to be performed to 378 * it, and makes sure that writes are allowed (mount is read-write, filesystem 379 * is not frozen) before returning success. When the write operation is 380 * finished, mnt_drop_write() must be called. This is effectively a refcount. 381 */ 382 int mnt_want_write(struct vfsmount *m) 383 { 384 int ret; 385 386 sb_start_write(m->mnt_sb); 387 ret = __mnt_want_write(m); 388 if (ret) 389 sb_end_write(m->mnt_sb); 390 return ret; 391 } 392 EXPORT_SYMBOL_GPL(mnt_want_write); 393 394 /** 395 * mnt_clone_write - get write access to a mount 396 * @mnt: the mount on which to take a write 397 * 398 * This is effectively like mnt_want_write, except 399 * it must only be used to take an extra write reference 400 * on a mountpoint that we already know has a write reference 401 * on it. This allows some optimisation. 402 * 403 * After finished, mnt_drop_write must be called as usual to 404 * drop the reference. 405 */ 406 int mnt_clone_write(struct vfsmount *mnt) 407 { 408 /* superblock may be r/o */ 409 if (__mnt_is_readonly(mnt)) 410 return -EROFS; 411 preempt_disable(); 412 mnt_inc_writers(real_mount(mnt)); 413 preempt_enable(); 414 return 0; 415 } 416 EXPORT_SYMBOL_GPL(mnt_clone_write); 417 418 /** 419 * __mnt_want_write_file - get write access to a file's mount 420 * @file: the file who's mount on which to take a write 421 * 422 * This is like __mnt_want_write, but it takes a file and can 423 * do some optimisations if the file is open for write already 424 */ 425 int __mnt_want_write_file(struct file *file) 426 { 427 if (!(file->f_mode & FMODE_WRITER)) 428 return __mnt_want_write(file->f_path.mnt); 429 else 430 return mnt_clone_write(file->f_path.mnt); 431 } 432 433 /** 434 * mnt_want_write_file - get write access to a file's mount 435 * @file: the file who's mount on which to take a write 436 * 437 * This is like mnt_want_write, but it takes a file and can 438 * do some optimisations if the file is open for write already 439 */ 440 int mnt_want_write_file(struct file *file) 441 { 442 int ret; 443 444 sb_start_write(file->f_path.mnt->mnt_sb); 445 ret = __mnt_want_write_file(file); 446 if (ret) 447 sb_end_write(file->f_path.mnt->mnt_sb); 448 return ret; 449 } 450 EXPORT_SYMBOL_GPL(mnt_want_write_file); 451 452 /** 453 * __mnt_drop_write - give up write access to a mount 454 * @mnt: the mount on which to give up write access 455 * 456 * Tells the low-level filesystem that we are done 457 * performing writes to it. Must be matched with 458 * __mnt_want_write() call above. 459 */ 460 void __mnt_drop_write(struct vfsmount *mnt) 461 { 462 preempt_disable(); 463 mnt_dec_writers(real_mount(mnt)); 464 preempt_enable(); 465 } 466 467 /** 468 * mnt_drop_write - give up write access to a mount 469 * @mnt: the mount on which to give up write access 470 * 471 * Tells the low-level filesystem that we are done performing writes to it and 472 * also allows filesystem to be frozen again. Must be matched with 473 * mnt_want_write() call above. 474 */ 475 void mnt_drop_write(struct vfsmount *mnt) 476 { 477 __mnt_drop_write(mnt); 478 sb_end_write(mnt->mnt_sb); 479 } 480 EXPORT_SYMBOL_GPL(mnt_drop_write); 481 482 void __mnt_drop_write_file(struct file *file) 483 { 484 __mnt_drop_write(file->f_path.mnt); 485 } 486 487 void mnt_drop_write_file(struct file *file) 488 { 489 mnt_drop_write(file->f_path.mnt); 490 } 491 EXPORT_SYMBOL(mnt_drop_write_file); 492 493 static int mnt_make_readonly(struct mount *mnt) 494 { 495 int ret = 0; 496 497 lock_mount_hash(); 498 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 499 /* 500 * After storing MNT_WRITE_HOLD, we'll read the counters. This store 501 * should be visible before we do. 502 */ 503 smp_mb(); 504 505 /* 506 * With writers on hold, if this value is zero, then there are 507 * definitely no active writers (although held writers may subsequently 508 * increment the count, they'll have to wait, and decrement it after 509 * seeing MNT_READONLY). 510 * 511 * It is OK to have counter incremented on one CPU and decremented on 512 * another: the sum will add up correctly. The danger would be when we 513 * sum up each counter, if we read a counter before it is incremented, 514 * but then read another CPU's count which it has been subsequently 515 * decremented from -- we would see more decrements than we should. 516 * MNT_WRITE_HOLD protects against this scenario, because 517 * mnt_want_write first increments count, then smp_mb, then spins on 518 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while 519 * we're counting up here. 520 */ 521 if (mnt_get_writers(mnt) > 0) 522 ret = -EBUSY; 523 else 524 mnt->mnt.mnt_flags |= MNT_READONLY; 525 /* 526 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers 527 * that become unheld will see MNT_READONLY. 528 */ 529 smp_wmb(); 530 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 531 unlock_mount_hash(); 532 return ret; 533 } 534 535 static void __mnt_unmake_readonly(struct mount *mnt) 536 { 537 lock_mount_hash(); 538 mnt->mnt.mnt_flags &= ~MNT_READONLY; 539 unlock_mount_hash(); 540 } 541 542 int sb_prepare_remount_readonly(struct super_block *sb) 543 { 544 struct mount *mnt; 545 int err = 0; 546 547 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */ 548 if (atomic_long_read(&sb->s_remove_count)) 549 return -EBUSY; 550 551 lock_mount_hash(); 552 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 553 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) { 554 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 555 smp_mb(); 556 if (mnt_get_writers(mnt) > 0) { 557 err = -EBUSY; 558 break; 559 } 560 } 561 } 562 if (!err && atomic_long_read(&sb->s_remove_count)) 563 err = -EBUSY; 564 565 if (!err) { 566 sb->s_readonly_remount = 1; 567 smp_wmb(); 568 } 569 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 570 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD) 571 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 572 } 573 unlock_mount_hash(); 574 575 return err; 576 } 577 578 static void free_vfsmnt(struct mount *mnt) 579 { 580 kfree_const(mnt->mnt_devname); 581 #ifdef CONFIG_SMP 582 free_percpu(mnt->mnt_pcp); 583 #endif 584 kmem_cache_free(mnt_cache, mnt); 585 } 586 587 static void delayed_free_vfsmnt(struct rcu_head *head) 588 { 589 free_vfsmnt(container_of(head, struct mount, mnt_rcu)); 590 } 591 592 /* call under rcu_read_lock */ 593 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq) 594 { 595 struct mount *mnt; 596 if (read_seqretry(&mount_lock, seq)) 597 return 1; 598 if (bastard == NULL) 599 return 0; 600 mnt = real_mount(bastard); 601 mnt_add_count(mnt, 1); 602 if (likely(!read_seqretry(&mount_lock, seq))) 603 return 0; 604 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) { 605 mnt_add_count(mnt, -1); 606 return 1; 607 } 608 return -1; 609 } 610 611 /* call under rcu_read_lock */ 612 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq) 613 { 614 int res = __legitimize_mnt(bastard, seq); 615 if (likely(!res)) 616 return true; 617 if (unlikely(res < 0)) { 618 rcu_read_unlock(); 619 mntput(bastard); 620 rcu_read_lock(); 621 } 622 return false; 623 } 624 625 /* 626 * find the first mount at @dentry on vfsmount @mnt. 627 * call under rcu_read_lock() 628 */ 629 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry) 630 { 631 struct hlist_head *head = m_hash(mnt, dentry); 632 struct mount *p; 633 634 hlist_for_each_entry_rcu(p, head, mnt_hash) 635 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) 636 return p; 637 return NULL; 638 } 639 640 /* 641 * lookup_mnt - Return the first child mount mounted at path 642 * 643 * "First" means first mounted chronologically. If you create the 644 * following mounts: 645 * 646 * mount /dev/sda1 /mnt 647 * mount /dev/sda2 /mnt 648 * mount /dev/sda3 /mnt 649 * 650 * Then lookup_mnt() on the base /mnt dentry in the root mount will 651 * return successively the root dentry and vfsmount of /dev/sda1, then 652 * /dev/sda2, then /dev/sda3, then NULL. 653 * 654 * lookup_mnt takes a reference to the found vfsmount. 655 */ 656 struct vfsmount *lookup_mnt(const struct path *path) 657 { 658 struct mount *child_mnt; 659 struct vfsmount *m; 660 unsigned seq; 661 662 rcu_read_lock(); 663 do { 664 seq = read_seqbegin(&mount_lock); 665 child_mnt = __lookup_mnt(path->mnt, path->dentry); 666 m = child_mnt ? &child_mnt->mnt : NULL; 667 } while (!legitimize_mnt(m, seq)); 668 rcu_read_unlock(); 669 return m; 670 } 671 672 /* 673 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the 674 * current mount namespace. 675 * 676 * The common case is dentries are not mountpoints at all and that 677 * test is handled inline. For the slow case when we are actually 678 * dealing with a mountpoint of some kind, walk through all of the 679 * mounts in the current mount namespace and test to see if the dentry 680 * is a mountpoint. 681 * 682 * The mount_hashtable is not usable in the context because we 683 * need to identify all mounts that may be in the current mount 684 * namespace not just a mount that happens to have some specified 685 * parent mount. 686 */ 687 bool __is_local_mountpoint(struct dentry *dentry) 688 { 689 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 690 struct mount *mnt; 691 bool is_covered = false; 692 693 if (!d_mountpoint(dentry)) 694 goto out; 695 696 down_read(&namespace_sem); 697 list_for_each_entry(mnt, &ns->list, mnt_list) { 698 is_covered = (mnt->mnt_mountpoint == dentry); 699 if (is_covered) 700 break; 701 } 702 up_read(&namespace_sem); 703 out: 704 return is_covered; 705 } 706 707 static struct mountpoint *lookup_mountpoint(struct dentry *dentry) 708 { 709 struct hlist_head *chain = mp_hash(dentry); 710 struct mountpoint *mp; 711 712 hlist_for_each_entry(mp, chain, m_hash) { 713 if (mp->m_dentry == dentry) { 714 /* might be worth a WARN_ON() */ 715 if (d_unlinked(dentry)) 716 return ERR_PTR(-ENOENT); 717 mp->m_count++; 718 return mp; 719 } 720 } 721 return NULL; 722 } 723 724 static struct mountpoint *get_mountpoint(struct dentry *dentry) 725 { 726 struct mountpoint *mp, *new = NULL; 727 int ret; 728 729 if (d_mountpoint(dentry)) { 730 mountpoint: 731 read_seqlock_excl(&mount_lock); 732 mp = lookup_mountpoint(dentry); 733 read_sequnlock_excl(&mount_lock); 734 if (mp) 735 goto done; 736 } 737 738 if (!new) 739 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL); 740 if (!new) 741 return ERR_PTR(-ENOMEM); 742 743 744 /* Exactly one processes may set d_mounted */ 745 ret = d_set_mounted(dentry); 746 747 /* Someone else set d_mounted? */ 748 if (ret == -EBUSY) 749 goto mountpoint; 750 751 /* The dentry is not available as a mountpoint? */ 752 mp = ERR_PTR(ret); 753 if (ret) 754 goto done; 755 756 /* Add the new mountpoint to the hash table */ 757 read_seqlock_excl(&mount_lock); 758 new->m_dentry = dentry; 759 new->m_count = 1; 760 hlist_add_head(&new->m_hash, mp_hash(dentry)); 761 INIT_HLIST_HEAD(&new->m_list); 762 read_sequnlock_excl(&mount_lock); 763 764 mp = new; 765 new = NULL; 766 done: 767 kfree(new); 768 return mp; 769 } 770 771 static void put_mountpoint(struct mountpoint *mp) 772 { 773 if (!--mp->m_count) { 774 struct dentry *dentry = mp->m_dentry; 775 BUG_ON(!hlist_empty(&mp->m_list)); 776 spin_lock(&dentry->d_lock); 777 dentry->d_flags &= ~DCACHE_MOUNTED; 778 spin_unlock(&dentry->d_lock); 779 hlist_del(&mp->m_hash); 780 kfree(mp); 781 } 782 } 783 784 static inline int check_mnt(struct mount *mnt) 785 { 786 return mnt->mnt_ns == current->nsproxy->mnt_ns; 787 } 788 789 /* 790 * vfsmount lock must be held for write 791 */ 792 static void touch_mnt_namespace(struct mnt_namespace *ns) 793 { 794 if (ns) { 795 ns->event = ++event; 796 wake_up_interruptible(&ns->poll); 797 } 798 } 799 800 /* 801 * vfsmount lock must be held for write 802 */ 803 static void __touch_mnt_namespace(struct mnt_namespace *ns) 804 { 805 if (ns && ns->event != event) { 806 ns->event = event; 807 wake_up_interruptible(&ns->poll); 808 } 809 } 810 811 /* 812 * vfsmount lock must be held for write 813 */ 814 static void unhash_mnt(struct mount *mnt) 815 { 816 mnt->mnt_parent = mnt; 817 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 818 list_del_init(&mnt->mnt_child); 819 hlist_del_init_rcu(&mnt->mnt_hash); 820 hlist_del_init(&mnt->mnt_mp_list); 821 put_mountpoint(mnt->mnt_mp); 822 mnt->mnt_mp = NULL; 823 } 824 825 /* 826 * vfsmount lock must be held for write 827 */ 828 static void detach_mnt(struct mount *mnt, struct path *old_path) 829 { 830 old_path->dentry = mnt->mnt_mountpoint; 831 old_path->mnt = &mnt->mnt_parent->mnt; 832 unhash_mnt(mnt); 833 } 834 835 /* 836 * vfsmount lock must be held for write 837 */ 838 static void umount_mnt(struct mount *mnt) 839 { 840 /* old mountpoint will be dropped when we can do that */ 841 mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint; 842 unhash_mnt(mnt); 843 } 844 845 /* 846 * vfsmount lock must be held for write 847 */ 848 void mnt_set_mountpoint(struct mount *mnt, 849 struct mountpoint *mp, 850 struct mount *child_mnt) 851 { 852 mp->m_count++; 853 mnt_add_count(mnt, 1); /* essentially, that's mntget */ 854 child_mnt->mnt_mountpoint = dget(mp->m_dentry); 855 child_mnt->mnt_parent = mnt; 856 child_mnt->mnt_mp = mp; 857 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list); 858 } 859 860 static void __attach_mnt(struct mount *mnt, struct mount *parent) 861 { 862 hlist_add_head_rcu(&mnt->mnt_hash, 863 m_hash(&parent->mnt, mnt->mnt_mountpoint)); 864 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 865 } 866 867 /* 868 * vfsmount lock must be held for write 869 */ 870 static void attach_mnt(struct mount *mnt, 871 struct mount *parent, 872 struct mountpoint *mp) 873 { 874 mnt_set_mountpoint(parent, mp, mnt); 875 __attach_mnt(mnt, parent); 876 } 877 878 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt) 879 { 880 struct mountpoint *old_mp = mnt->mnt_mp; 881 struct dentry *old_mountpoint = mnt->mnt_mountpoint; 882 struct mount *old_parent = mnt->mnt_parent; 883 884 list_del_init(&mnt->mnt_child); 885 hlist_del_init(&mnt->mnt_mp_list); 886 hlist_del_init_rcu(&mnt->mnt_hash); 887 888 attach_mnt(mnt, parent, mp); 889 890 put_mountpoint(old_mp); 891 892 /* 893 * Safely avoid even the suggestion this code might sleep or 894 * lock the mount hash by taking advantage of the knowledge that 895 * mnt_change_mountpoint will not release the final reference 896 * to a mountpoint. 897 * 898 * During mounting, the mount passed in as the parent mount will 899 * continue to use the old mountpoint and during unmounting, the 900 * old mountpoint will continue to exist until namespace_unlock, 901 * which happens well after mnt_change_mountpoint. 902 */ 903 spin_lock(&old_mountpoint->d_lock); 904 old_mountpoint->d_lockref.count--; 905 spin_unlock(&old_mountpoint->d_lock); 906 907 mnt_add_count(old_parent, -1); 908 } 909 910 /* 911 * vfsmount lock must be held for write 912 */ 913 static void commit_tree(struct mount *mnt) 914 { 915 struct mount *parent = mnt->mnt_parent; 916 struct mount *m; 917 LIST_HEAD(head); 918 struct mnt_namespace *n = parent->mnt_ns; 919 920 BUG_ON(parent == mnt); 921 922 list_add_tail(&head, &mnt->mnt_list); 923 list_for_each_entry(m, &head, mnt_list) 924 m->mnt_ns = n; 925 926 list_splice(&head, n->list.prev); 927 928 n->mounts += n->pending_mounts; 929 n->pending_mounts = 0; 930 931 __attach_mnt(mnt, parent); 932 touch_mnt_namespace(n); 933 } 934 935 static struct mount *next_mnt(struct mount *p, struct mount *root) 936 { 937 struct list_head *next = p->mnt_mounts.next; 938 if (next == &p->mnt_mounts) { 939 while (1) { 940 if (p == root) 941 return NULL; 942 next = p->mnt_child.next; 943 if (next != &p->mnt_parent->mnt_mounts) 944 break; 945 p = p->mnt_parent; 946 } 947 } 948 return list_entry(next, struct mount, mnt_child); 949 } 950 951 static struct mount *skip_mnt_tree(struct mount *p) 952 { 953 struct list_head *prev = p->mnt_mounts.prev; 954 while (prev != &p->mnt_mounts) { 955 p = list_entry(prev, struct mount, mnt_child); 956 prev = p->mnt_mounts.prev; 957 } 958 return p; 959 } 960 961 struct vfsmount * 962 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data) 963 { 964 struct mount *mnt; 965 struct dentry *root; 966 967 if (!type) 968 return ERR_PTR(-ENODEV); 969 970 mnt = alloc_vfsmnt(name); 971 if (!mnt) 972 return ERR_PTR(-ENOMEM); 973 974 if (flags & MS_KERNMOUNT) 975 mnt->mnt.mnt_flags = MNT_INTERNAL; 976 977 root = mount_fs(type, flags, name, data); 978 if (IS_ERR(root)) { 979 mnt_free_id(mnt); 980 free_vfsmnt(mnt); 981 return ERR_CAST(root); 982 } 983 984 mnt->mnt.mnt_root = root; 985 mnt->mnt.mnt_sb = root->d_sb; 986 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 987 mnt->mnt_parent = mnt; 988 lock_mount_hash(); 989 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts); 990 unlock_mount_hash(); 991 return &mnt->mnt; 992 } 993 EXPORT_SYMBOL_GPL(vfs_kern_mount); 994 995 struct vfsmount * 996 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type, 997 const char *name, void *data) 998 { 999 /* Until it is worked out how to pass the user namespace 1000 * through from the parent mount to the submount don't support 1001 * unprivileged mounts with submounts. 1002 */ 1003 if (mountpoint->d_sb->s_user_ns != &init_user_ns) 1004 return ERR_PTR(-EPERM); 1005 1006 return vfs_kern_mount(type, MS_SUBMOUNT, name, data); 1007 } 1008 EXPORT_SYMBOL_GPL(vfs_submount); 1009 1010 static struct mount *clone_mnt(struct mount *old, struct dentry *root, 1011 int flag) 1012 { 1013 struct super_block *sb = old->mnt.mnt_sb; 1014 struct mount *mnt; 1015 int err; 1016 1017 mnt = alloc_vfsmnt(old->mnt_devname); 1018 if (!mnt) 1019 return ERR_PTR(-ENOMEM); 1020 1021 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE)) 1022 mnt->mnt_group_id = 0; /* not a peer of original */ 1023 else 1024 mnt->mnt_group_id = old->mnt_group_id; 1025 1026 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) { 1027 err = mnt_alloc_group_id(mnt); 1028 if (err) 1029 goto out_free; 1030 } 1031 1032 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED); 1033 /* Don't allow unprivileged users to change mount flags */ 1034 if (flag & CL_UNPRIVILEGED) { 1035 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME; 1036 1037 if (mnt->mnt.mnt_flags & MNT_READONLY) 1038 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY; 1039 1040 if (mnt->mnt.mnt_flags & MNT_NODEV) 1041 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV; 1042 1043 if (mnt->mnt.mnt_flags & MNT_NOSUID) 1044 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID; 1045 1046 if (mnt->mnt.mnt_flags & MNT_NOEXEC) 1047 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC; 1048 } 1049 1050 /* Don't allow unprivileged users to reveal what is under a mount */ 1051 if ((flag & CL_UNPRIVILEGED) && 1052 (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire))) 1053 mnt->mnt.mnt_flags |= MNT_LOCKED; 1054 1055 atomic_inc(&sb->s_active); 1056 mnt->mnt.mnt_sb = sb; 1057 mnt->mnt.mnt_root = dget(root); 1058 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 1059 mnt->mnt_parent = mnt; 1060 lock_mount_hash(); 1061 list_add_tail(&mnt->mnt_instance, &sb->s_mounts); 1062 unlock_mount_hash(); 1063 1064 if ((flag & CL_SLAVE) || 1065 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) { 1066 list_add(&mnt->mnt_slave, &old->mnt_slave_list); 1067 mnt->mnt_master = old; 1068 CLEAR_MNT_SHARED(mnt); 1069 } else if (!(flag & CL_PRIVATE)) { 1070 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old)) 1071 list_add(&mnt->mnt_share, &old->mnt_share); 1072 if (IS_MNT_SLAVE(old)) 1073 list_add(&mnt->mnt_slave, &old->mnt_slave); 1074 mnt->mnt_master = old->mnt_master; 1075 } else { 1076 CLEAR_MNT_SHARED(mnt); 1077 } 1078 if (flag & CL_MAKE_SHARED) 1079 set_mnt_shared(mnt); 1080 1081 /* stick the duplicate mount on the same expiry list 1082 * as the original if that was on one */ 1083 if (flag & CL_EXPIRE) { 1084 if (!list_empty(&old->mnt_expire)) 1085 list_add(&mnt->mnt_expire, &old->mnt_expire); 1086 } 1087 1088 return mnt; 1089 1090 out_free: 1091 mnt_free_id(mnt); 1092 free_vfsmnt(mnt); 1093 return ERR_PTR(err); 1094 } 1095 1096 static void cleanup_mnt(struct mount *mnt) 1097 { 1098 /* 1099 * This probably indicates that somebody messed 1100 * up a mnt_want/drop_write() pair. If this 1101 * happens, the filesystem was probably unable 1102 * to make r/w->r/o transitions. 1103 */ 1104 /* 1105 * The locking used to deal with mnt_count decrement provides barriers, 1106 * so mnt_get_writers() below is safe. 1107 */ 1108 WARN_ON(mnt_get_writers(mnt)); 1109 if (unlikely(mnt->mnt_pins.first)) 1110 mnt_pin_kill(mnt); 1111 fsnotify_vfsmount_delete(&mnt->mnt); 1112 dput(mnt->mnt.mnt_root); 1113 deactivate_super(mnt->mnt.mnt_sb); 1114 mnt_free_id(mnt); 1115 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt); 1116 } 1117 1118 static void __cleanup_mnt(struct rcu_head *head) 1119 { 1120 cleanup_mnt(container_of(head, struct mount, mnt_rcu)); 1121 } 1122 1123 static LLIST_HEAD(delayed_mntput_list); 1124 static void delayed_mntput(struct work_struct *unused) 1125 { 1126 struct llist_node *node = llist_del_all(&delayed_mntput_list); 1127 struct llist_node *next; 1128 1129 for (; node; node = next) { 1130 next = llist_next(node); 1131 cleanup_mnt(llist_entry(node, struct mount, mnt_llist)); 1132 } 1133 } 1134 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput); 1135 1136 static void mntput_no_expire(struct mount *mnt) 1137 { 1138 rcu_read_lock(); 1139 mnt_add_count(mnt, -1); 1140 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */ 1141 rcu_read_unlock(); 1142 return; 1143 } 1144 lock_mount_hash(); 1145 if (mnt_get_count(mnt)) { 1146 rcu_read_unlock(); 1147 unlock_mount_hash(); 1148 return; 1149 } 1150 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) { 1151 rcu_read_unlock(); 1152 unlock_mount_hash(); 1153 return; 1154 } 1155 mnt->mnt.mnt_flags |= MNT_DOOMED; 1156 rcu_read_unlock(); 1157 1158 list_del(&mnt->mnt_instance); 1159 1160 if (unlikely(!list_empty(&mnt->mnt_mounts))) { 1161 struct mount *p, *tmp; 1162 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) { 1163 umount_mnt(p); 1164 } 1165 } 1166 unlock_mount_hash(); 1167 1168 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) { 1169 struct task_struct *task = current; 1170 if (likely(!(task->flags & PF_KTHREAD))) { 1171 init_task_work(&mnt->mnt_rcu, __cleanup_mnt); 1172 if (!task_work_add(task, &mnt->mnt_rcu, true)) 1173 return; 1174 } 1175 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list)) 1176 schedule_delayed_work(&delayed_mntput_work, 1); 1177 return; 1178 } 1179 cleanup_mnt(mnt); 1180 } 1181 1182 void mntput(struct vfsmount *mnt) 1183 { 1184 if (mnt) { 1185 struct mount *m = real_mount(mnt); 1186 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */ 1187 if (unlikely(m->mnt_expiry_mark)) 1188 m->mnt_expiry_mark = 0; 1189 mntput_no_expire(m); 1190 } 1191 } 1192 EXPORT_SYMBOL(mntput); 1193 1194 struct vfsmount *mntget(struct vfsmount *mnt) 1195 { 1196 if (mnt) 1197 mnt_add_count(real_mount(mnt), 1); 1198 return mnt; 1199 } 1200 EXPORT_SYMBOL(mntget); 1201 1202 /* path_is_mountpoint() - Check if path is a mount in the current 1203 * namespace. 1204 * 1205 * d_mountpoint() can only be used reliably to establish if a dentry is 1206 * not mounted in any namespace and that common case is handled inline. 1207 * d_mountpoint() isn't aware of the possibility there may be multiple 1208 * mounts using a given dentry in a different namespace. This function 1209 * checks if the passed in path is a mountpoint rather than the dentry 1210 * alone. 1211 */ 1212 bool path_is_mountpoint(const struct path *path) 1213 { 1214 unsigned seq; 1215 bool res; 1216 1217 if (!d_mountpoint(path->dentry)) 1218 return false; 1219 1220 rcu_read_lock(); 1221 do { 1222 seq = read_seqbegin(&mount_lock); 1223 res = __path_is_mountpoint(path); 1224 } while (read_seqretry(&mount_lock, seq)); 1225 rcu_read_unlock(); 1226 1227 return res; 1228 } 1229 EXPORT_SYMBOL(path_is_mountpoint); 1230 1231 struct vfsmount *mnt_clone_internal(const struct path *path) 1232 { 1233 struct mount *p; 1234 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE); 1235 if (IS_ERR(p)) 1236 return ERR_CAST(p); 1237 p->mnt.mnt_flags |= MNT_INTERNAL; 1238 return &p->mnt; 1239 } 1240 1241 static inline void mangle(struct seq_file *m, const char *s) 1242 { 1243 seq_escape(m, s, " \t\n\\"); 1244 } 1245 1246 /* 1247 * Simple .show_options callback for filesystems which don't want to 1248 * implement more complex mount option showing. 1249 * 1250 * See also save_mount_options(). 1251 */ 1252 int generic_show_options(struct seq_file *m, struct dentry *root) 1253 { 1254 const char *options; 1255 1256 rcu_read_lock(); 1257 options = rcu_dereference(root->d_sb->s_options); 1258 1259 if (options != NULL && options[0]) { 1260 seq_putc(m, ','); 1261 mangle(m, options); 1262 } 1263 rcu_read_unlock(); 1264 1265 return 0; 1266 } 1267 EXPORT_SYMBOL(generic_show_options); 1268 1269 /* 1270 * If filesystem uses generic_show_options(), this function should be 1271 * called from the fill_super() callback. 1272 * 1273 * The .remount_fs callback usually needs to be handled in a special 1274 * way, to make sure, that previous options are not overwritten if the 1275 * remount fails. 1276 * 1277 * Also note, that if the filesystem's .remount_fs function doesn't 1278 * reset all options to their default value, but changes only newly 1279 * given options, then the displayed options will not reflect reality 1280 * any more. 1281 */ 1282 void save_mount_options(struct super_block *sb, char *options) 1283 { 1284 BUG_ON(sb->s_options); 1285 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL)); 1286 } 1287 EXPORT_SYMBOL(save_mount_options); 1288 1289 void replace_mount_options(struct super_block *sb, char *options) 1290 { 1291 char *old = sb->s_options; 1292 rcu_assign_pointer(sb->s_options, options); 1293 if (old) { 1294 synchronize_rcu(); 1295 kfree(old); 1296 } 1297 } 1298 EXPORT_SYMBOL(replace_mount_options); 1299 1300 #ifdef CONFIG_PROC_FS 1301 /* iterator; we want it to have access to namespace_sem, thus here... */ 1302 static void *m_start(struct seq_file *m, loff_t *pos) 1303 { 1304 struct proc_mounts *p = m->private; 1305 1306 down_read(&namespace_sem); 1307 if (p->cached_event == p->ns->event) { 1308 void *v = p->cached_mount; 1309 if (*pos == p->cached_index) 1310 return v; 1311 if (*pos == p->cached_index + 1) { 1312 v = seq_list_next(v, &p->ns->list, &p->cached_index); 1313 return p->cached_mount = v; 1314 } 1315 } 1316 1317 p->cached_event = p->ns->event; 1318 p->cached_mount = seq_list_start(&p->ns->list, *pos); 1319 p->cached_index = *pos; 1320 return p->cached_mount; 1321 } 1322 1323 static void *m_next(struct seq_file *m, void *v, loff_t *pos) 1324 { 1325 struct proc_mounts *p = m->private; 1326 1327 p->cached_mount = seq_list_next(v, &p->ns->list, pos); 1328 p->cached_index = *pos; 1329 return p->cached_mount; 1330 } 1331 1332 static void m_stop(struct seq_file *m, void *v) 1333 { 1334 up_read(&namespace_sem); 1335 } 1336 1337 static int m_show(struct seq_file *m, void *v) 1338 { 1339 struct proc_mounts *p = m->private; 1340 struct mount *r = list_entry(v, struct mount, mnt_list); 1341 return p->show(m, &r->mnt); 1342 } 1343 1344 const struct seq_operations mounts_op = { 1345 .start = m_start, 1346 .next = m_next, 1347 .stop = m_stop, 1348 .show = m_show, 1349 }; 1350 #endif /* CONFIG_PROC_FS */ 1351 1352 /** 1353 * may_umount_tree - check if a mount tree is busy 1354 * @mnt: root of mount tree 1355 * 1356 * This is called to check if a tree of mounts has any 1357 * open files, pwds, chroots or sub mounts that are 1358 * busy. 1359 */ 1360 int may_umount_tree(struct vfsmount *m) 1361 { 1362 struct mount *mnt = real_mount(m); 1363 int actual_refs = 0; 1364 int minimum_refs = 0; 1365 struct mount *p; 1366 BUG_ON(!m); 1367 1368 /* write lock needed for mnt_get_count */ 1369 lock_mount_hash(); 1370 for (p = mnt; p; p = next_mnt(p, mnt)) { 1371 actual_refs += mnt_get_count(p); 1372 minimum_refs += 2; 1373 } 1374 unlock_mount_hash(); 1375 1376 if (actual_refs > minimum_refs) 1377 return 0; 1378 1379 return 1; 1380 } 1381 1382 EXPORT_SYMBOL(may_umount_tree); 1383 1384 /** 1385 * may_umount - check if a mount point is busy 1386 * @mnt: root of mount 1387 * 1388 * This is called to check if a mount point has any 1389 * open files, pwds, chroots or sub mounts. If the 1390 * mount has sub mounts this will return busy 1391 * regardless of whether the sub mounts are busy. 1392 * 1393 * Doesn't take quota and stuff into account. IOW, in some cases it will 1394 * give false negatives. The main reason why it's here is that we need 1395 * a non-destructive way to look for easily umountable filesystems. 1396 */ 1397 int may_umount(struct vfsmount *mnt) 1398 { 1399 int ret = 1; 1400 down_read(&namespace_sem); 1401 lock_mount_hash(); 1402 if (propagate_mount_busy(real_mount(mnt), 2)) 1403 ret = 0; 1404 unlock_mount_hash(); 1405 up_read(&namespace_sem); 1406 return ret; 1407 } 1408 1409 EXPORT_SYMBOL(may_umount); 1410 1411 static HLIST_HEAD(unmounted); /* protected by namespace_sem */ 1412 1413 static void namespace_unlock(void) 1414 { 1415 struct hlist_head head; 1416 1417 hlist_move_list(&unmounted, &head); 1418 1419 up_write(&namespace_sem); 1420 1421 if (likely(hlist_empty(&head))) 1422 return; 1423 1424 synchronize_rcu(); 1425 1426 group_pin_kill(&head); 1427 } 1428 1429 static inline void namespace_lock(void) 1430 { 1431 down_write(&namespace_sem); 1432 } 1433 1434 enum umount_tree_flags { 1435 UMOUNT_SYNC = 1, 1436 UMOUNT_PROPAGATE = 2, 1437 UMOUNT_CONNECTED = 4, 1438 }; 1439 1440 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how) 1441 { 1442 /* Leaving mounts connected is only valid for lazy umounts */ 1443 if (how & UMOUNT_SYNC) 1444 return true; 1445 1446 /* A mount without a parent has nothing to be connected to */ 1447 if (!mnt_has_parent(mnt)) 1448 return true; 1449 1450 /* Because the reference counting rules change when mounts are 1451 * unmounted and connected, umounted mounts may not be 1452 * connected to mounted mounts. 1453 */ 1454 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT)) 1455 return true; 1456 1457 /* Has it been requested that the mount remain connected? */ 1458 if (how & UMOUNT_CONNECTED) 1459 return false; 1460 1461 /* Is the mount locked such that it needs to remain connected? */ 1462 if (IS_MNT_LOCKED(mnt)) 1463 return false; 1464 1465 /* By default disconnect the mount */ 1466 return true; 1467 } 1468 1469 /* 1470 * mount_lock must be held 1471 * namespace_sem must be held for write 1472 */ 1473 static void umount_tree(struct mount *mnt, enum umount_tree_flags how) 1474 { 1475 LIST_HEAD(tmp_list); 1476 struct mount *p; 1477 1478 if (how & UMOUNT_PROPAGATE) 1479 propagate_mount_unlock(mnt); 1480 1481 /* Gather the mounts to umount */ 1482 for (p = mnt; p; p = next_mnt(p, mnt)) { 1483 p->mnt.mnt_flags |= MNT_UMOUNT; 1484 list_move(&p->mnt_list, &tmp_list); 1485 } 1486 1487 /* Hide the mounts from mnt_mounts */ 1488 list_for_each_entry(p, &tmp_list, mnt_list) { 1489 list_del_init(&p->mnt_child); 1490 } 1491 1492 /* Add propogated mounts to the tmp_list */ 1493 if (how & UMOUNT_PROPAGATE) 1494 propagate_umount(&tmp_list); 1495 1496 while (!list_empty(&tmp_list)) { 1497 struct mnt_namespace *ns; 1498 bool disconnect; 1499 p = list_first_entry(&tmp_list, struct mount, mnt_list); 1500 list_del_init(&p->mnt_expire); 1501 list_del_init(&p->mnt_list); 1502 ns = p->mnt_ns; 1503 if (ns) { 1504 ns->mounts--; 1505 __touch_mnt_namespace(ns); 1506 } 1507 p->mnt_ns = NULL; 1508 if (how & UMOUNT_SYNC) 1509 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT; 1510 1511 disconnect = disconnect_mount(p, how); 1512 1513 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt, 1514 disconnect ? &unmounted : NULL); 1515 if (mnt_has_parent(p)) { 1516 mnt_add_count(p->mnt_parent, -1); 1517 if (!disconnect) { 1518 /* Don't forget about p */ 1519 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts); 1520 } else { 1521 umount_mnt(p); 1522 } 1523 } 1524 change_mnt_propagation(p, MS_PRIVATE); 1525 } 1526 } 1527 1528 static void shrink_submounts(struct mount *mnt); 1529 1530 static int do_umount(struct mount *mnt, int flags) 1531 { 1532 struct super_block *sb = mnt->mnt.mnt_sb; 1533 int retval; 1534 1535 retval = security_sb_umount(&mnt->mnt, flags); 1536 if (retval) 1537 return retval; 1538 1539 /* 1540 * Allow userspace to request a mountpoint be expired rather than 1541 * unmounting unconditionally. Unmount only happens if: 1542 * (1) the mark is already set (the mark is cleared by mntput()) 1543 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] 1544 */ 1545 if (flags & MNT_EXPIRE) { 1546 if (&mnt->mnt == current->fs->root.mnt || 1547 flags & (MNT_FORCE | MNT_DETACH)) 1548 return -EINVAL; 1549 1550 /* 1551 * probably don't strictly need the lock here if we examined 1552 * all race cases, but it's a slowpath. 1553 */ 1554 lock_mount_hash(); 1555 if (mnt_get_count(mnt) != 2) { 1556 unlock_mount_hash(); 1557 return -EBUSY; 1558 } 1559 unlock_mount_hash(); 1560 1561 if (!xchg(&mnt->mnt_expiry_mark, 1)) 1562 return -EAGAIN; 1563 } 1564 1565 /* 1566 * If we may have to abort operations to get out of this 1567 * mount, and they will themselves hold resources we must 1568 * allow the fs to do things. In the Unix tradition of 1569 * 'Gee thats tricky lets do it in userspace' the umount_begin 1570 * might fail to complete on the first run through as other tasks 1571 * must return, and the like. Thats for the mount program to worry 1572 * about for the moment. 1573 */ 1574 1575 if (flags & MNT_FORCE && sb->s_op->umount_begin) { 1576 sb->s_op->umount_begin(sb); 1577 } 1578 1579 /* 1580 * No sense to grab the lock for this test, but test itself looks 1581 * somewhat bogus. Suggestions for better replacement? 1582 * Ho-hum... In principle, we might treat that as umount + switch 1583 * to rootfs. GC would eventually take care of the old vfsmount. 1584 * Actually it makes sense, especially if rootfs would contain a 1585 * /reboot - static binary that would close all descriptors and 1586 * call reboot(9). Then init(8) could umount root and exec /reboot. 1587 */ 1588 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) { 1589 /* 1590 * Special case for "unmounting" root ... 1591 * we just try to remount it readonly. 1592 */ 1593 if (!capable(CAP_SYS_ADMIN)) 1594 return -EPERM; 1595 down_write(&sb->s_umount); 1596 if (!(sb->s_flags & MS_RDONLY)) 1597 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0); 1598 up_write(&sb->s_umount); 1599 return retval; 1600 } 1601 1602 namespace_lock(); 1603 lock_mount_hash(); 1604 event++; 1605 1606 if (flags & MNT_DETACH) { 1607 if (!list_empty(&mnt->mnt_list)) 1608 umount_tree(mnt, UMOUNT_PROPAGATE); 1609 retval = 0; 1610 } else { 1611 shrink_submounts(mnt); 1612 retval = -EBUSY; 1613 if (!propagate_mount_busy(mnt, 2)) { 1614 if (!list_empty(&mnt->mnt_list)) 1615 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 1616 retval = 0; 1617 } 1618 } 1619 unlock_mount_hash(); 1620 namespace_unlock(); 1621 return retval; 1622 } 1623 1624 /* 1625 * __detach_mounts - lazily unmount all mounts on the specified dentry 1626 * 1627 * During unlink, rmdir, and d_drop it is possible to loose the path 1628 * to an existing mountpoint, and wind up leaking the mount. 1629 * detach_mounts allows lazily unmounting those mounts instead of 1630 * leaking them. 1631 * 1632 * The caller may hold dentry->d_inode->i_mutex. 1633 */ 1634 void __detach_mounts(struct dentry *dentry) 1635 { 1636 struct mountpoint *mp; 1637 struct mount *mnt; 1638 1639 namespace_lock(); 1640 lock_mount_hash(); 1641 mp = lookup_mountpoint(dentry); 1642 if (IS_ERR_OR_NULL(mp)) 1643 goto out_unlock; 1644 1645 event++; 1646 while (!hlist_empty(&mp->m_list)) { 1647 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list); 1648 if (mnt->mnt.mnt_flags & MNT_UMOUNT) { 1649 hlist_add_head(&mnt->mnt_umount.s_list, &unmounted); 1650 umount_mnt(mnt); 1651 } 1652 else umount_tree(mnt, UMOUNT_CONNECTED); 1653 } 1654 put_mountpoint(mp); 1655 out_unlock: 1656 unlock_mount_hash(); 1657 namespace_unlock(); 1658 } 1659 1660 /* 1661 * Is the caller allowed to modify his namespace? 1662 */ 1663 static inline bool may_mount(void) 1664 { 1665 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN); 1666 } 1667 1668 static inline bool may_mandlock(void) 1669 { 1670 #ifndef CONFIG_MANDATORY_FILE_LOCKING 1671 return false; 1672 #endif 1673 return capable(CAP_SYS_ADMIN); 1674 } 1675 1676 /* 1677 * Now umount can handle mount points as well as block devices. 1678 * This is important for filesystems which use unnamed block devices. 1679 * 1680 * We now support a flag for forced unmount like the other 'big iron' 1681 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD 1682 */ 1683 1684 SYSCALL_DEFINE2(umount, char __user *, name, int, flags) 1685 { 1686 struct path path; 1687 struct mount *mnt; 1688 int retval; 1689 int lookup_flags = 0; 1690 1691 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW)) 1692 return -EINVAL; 1693 1694 if (!may_mount()) 1695 return -EPERM; 1696 1697 if (!(flags & UMOUNT_NOFOLLOW)) 1698 lookup_flags |= LOOKUP_FOLLOW; 1699 1700 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path); 1701 if (retval) 1702 goto out; 1703 mnt = real_mount(path.mnt); 1704 retval = -EINVAL; 1705 if (path.dentry != path.mnt->mnt_root) 1706 goto dput_and_out; 1707 if (!check_mnt(mnt)) 1708 goto dput_and_out; 1709 if (mnt->mnt.mnt_flags & MNT_LOCKED) 1710 goto dput_and_out; 1711 retval = -EPERM; 1712 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN)) 1713 goto dput_and_out; 1714 1715 retval = do_umount(mnt, flags); 1716 dput_and_out: 1717 /* we mustn't call path_put() as that would clear mnt_expiry_mark */ 1718 dput(path.dentry); 1719 mntput_no_expire(mnt); 1720 out: 1721 return retval; 1722 } 1723 1724 #ifdef __ARCH_WANT_SYS_OLDUMOUNT 1725 1726 /* 1727 * The 2.0 compatible umount. No flags. 1728 */ 1729 SYSCALL_DEFINE1(oldumount, char __user *, name) 1730 { 1731 return sys_umount(name, 0); 1732 } 1733 1734 #endif 1735 1736 static bool is_mnt_ns_file(struct dentry *dentry) 1737 { 1738 /* Is this a proxy for a mount namespace? */ 1739 return dentry->d_op == &ns_dentry_operations && 1740 dentry->d_fsdata == &mntns_operations; 1741 } 1742 1743 struct mnt_namespace *to_mnt_ns(struct ns_common *ns) 1744 { 1745 return container_of(ns, struct mnt_namespace, ns); 1746 } 1747 1748 static bool mnt_ns_loop(struct dentry *dentry) 1749 { 1750 /* Could bind mounting the mount namespace inode cause a 1751 * mount namespace loop? 1752 */ 1753 struct mnt_namespace *mnt_ns; 1754 if (!is_mnt_ns_file(dentry)) 1755 return false; 1756 1757 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode)); 1758 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq; 1759 } 1760 1761 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry, 1762 int flag) 1763 { 1764 struct mount *res, *p, *q, *r, *parent; 1765 1766 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt)) 1767 return ERR_PTR(-EINVAL); 1768 1769 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry)) 1770 return ERR_PTR(-EINVAL); 1771 1772 res = q = clone_mnt(mnt, dentry, flag); 1773 if (IS_ERR(q)) 1774 return q; 1775 1776 q->mnt_mountpoint = mnt->mnt_mountpoint; 1777 1778 p = mnt; 1779 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) { 1780 struct mount *s; 1781 if (!is_subdir(r->mnt_mountpoint, dentry)) 1782 continue; 1783 1784 for (s = r; s; s = next_mnt(s, r)) { 1785 if (!(flag & CL_COPY_UNBINDABLE) && 1786 IS_MNT_UNBINDABLE(s)) { 1787 s = skip_mnt_tree(s); 1788 continue; 1789 } 1790 if (!(flag & CL_COPY_MNT_NS_FILE) && 1791 is_mnt_ns_file(s->mnt.mnt_root)) { 1792 s = skip_mnt_tree(s); 1793 continue; 1794 } 1795 while (p != s->mnt_parent) { 1796 p = p->mnt_parent; 1797 q = q->mnt_parent; 1798 } 1799 p = s; 1800 parent = q; 1801 q = clone_mnt(p, p->mnt.mnt_root, flag); 1802 if (IS_ERR(q)) 1803 goto out; 1804 lock_mount_hash(); 1805 list_add_tail(&q->mnt_list, &res->mnt_list); 1806 attach_mnt(q, parent, p->mnt_mp); 1807 unlock_mount_hash(); 1808 } 1809 } 1810 return res; 1811 out: 1812 if (res) { 1813 lock_mount_hash(); 1814 umount_tree(res, UMOUNT_SYNC); 1815 unlock_mount_hash(); 1816 } 1817 return q; 1818 } 1819 1820 /* Caller should check returned pointer for errors */ 1821 1822 struct vfsmount *collect_mounts(const struct path *path) 1823 { 1824 struct mount *tree; 1825 namespace_lock(); 1826 if (!check_mnt(real_mount(path->mnt))) 1827 tree = ERR_PTR(-EINVAL); 1828 else 1829 tree = copy_tree(real_mount(path->mnt), path->dentry, 1830 CL_COPY_ALL | CL_PRIVATE); 1831 namespace_unlock(); 1832 if (IS_ERR(tree)) 1833 return ERR_CAST(tree); 1834 return &tree->mnt; 1835 } 1836 1837 void drop_collected_mounts(struct vfsmount *mnt) 1838 { 1839 namespace_lock(); 1840 lock_mount_hash(); 1841 umount_tree(real_mount(mnt), UMOUNT_SYNC); 1842 unlock_mount_hash(); 1843 namespace_unlock(); 1844 } 1845 1846 /** 1847 * clone_private_mount - create a private clone of a path 1848 * 1849 * This creates a new vfsmount, which will be the clone of @path. The new will 1850 * not be attached anywhere in the namespace and will be private (i.e. changes 1851 * to the originating mount won't be propagated into this). 1852 * 1853 * Release with mntput(). 1854 */ 1855 struct vfsmount *clone_private_mount(const struct path *path) 1856 { 1857 struct mount *old_mnt = real_mount(path->mnt); 1858 struct mount *new_mnt; 1859 1860 if (IS_MNT_UNBINDABLE(old_mnt)) 1861 return ERR_PTR(-EINVAL); 1862 1863 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE); 1864 if (IS_ERR(new_mnt)) 1865 return ERR_CAST(new_mnt); 1866 1867 return &new_mnt->mnt; 1868 } 1869 EXPORT_SYMBOL_GPL(clone_private_mount); 1870 1871 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg, 1872 struct vfsmount *root) 1873 { 1874 struct mount *mnt; 1875 int res = f(root, arg); 1876 if (res) 1877 return res; 1878 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) { 1879 res = f(&mnt->mnt, arg); 1880 if (res) 1881 return res; 1882 } 1883 return 0; 1884 } 1885 1886 static void cleanup_group_ids(struct mount *mnt, struct mount *end) 1887 { 1888 struct mount *p; 1889 1890 for (p = mnt; p != end; p = next_mnt(p, mnt)) { 1891 if (p->mnt_group_id && !IS_MNT_SHARED(p)) 1892 mnt_release_group_id(p); 1893 } 1894 } 1895 1896 static int invent_group_ids(struct mount *mnt, bool recurse) 1897 { 1898 struct mount *p; 1899 1900 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) { 1901 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) { 1902 int err = mnt_alloc_group_id(p); 1903 if (err) { 1904 cleanup_group_ids(mnt, p); 1905 return err; 1906 } 1907 } 1908 } 1909 1910 return 0; 1911 } 1912 1913 int count_mounts(struct mnt_namespace *ns, struct mount *mnt) 1914 { 1915 unsigned int max = READ_ONCE(sysctl_mount_max); 1916 unsigned int mounts = 0, old, pending, sum; 1917 struct mount *p; 1918 1919 for (p = mnt; p; p = next_mnt(p, mnt)) 1920 mounts++; 1921 1922 old = ns->mounts; 1923 pending = ns->pending_mounts; 1924 sum = old + pending; 1925 if ((old > sum) || 1926 (pending > sum) || 1927 (max < sum) || 1928 (mounts > (max - sum))) 1929 return -ENOSPC; 1930 1931 ns->pending_mounts = pending + mounts; 1932 return 0; 1933 } 1934 1935 /* 1936 * @source_mnt : mount tree to be attached 1937 * @nd : place the mount tree @source_mnt is attached 1938 * @parent_nd : if non-null, detach the source_mnt from its parent and 1939 * store the parent mount and mountpoint dentry. 1940 * (done when source_mnt is moved) 1941 * 1942 * NOTE: in the table below explains the semantics when a source mount 1943 * of a given type is attached to a destination mount of a given type. 1944 * --------------------------------------------------------------------------- 1945 * | BIND MOUNT OPERATION | 1946 * |************************************************************************** 1947 * | source-->| shared | private | slave | unbindable | 1948 * | dest | | | | | 1949 * | | | | | | | 1950 * | v | | | | | 1951 * |************************************************************************** 1952 * | shared | shared (++) | shared (+) | shared(+++)| invalid | 1953 * | | | | | | 1954 * |non-shared| shared (+) | private | slave (*) | invalid | 1955 * *************************************************************************** 1956 * A bind operation clones the source mount and mounts the clone on the 1957 * destination mount. 1958 * 1959 * (++) the cloned mount is propagated to all the mounts in the propagation 1960 * tree of the destination mount and the cloned mount is added to 1961 * the peer group of the source mount. 1962 * (+) the cloned mount is created under the destination mount and is marked 1963 * as shared. The cloned mount is added to the peer group of the source 1964 * mount. 1965 * (+++) the mount is propagated to all the mounts in the propagation tree 1966 * of the destination mount and the cloned mount is made slave 1967 * of the same master as that of the source mount. The cloned mount 1968 * is marked as 'shared and slave'. 1969 * (*) the cloned mount is made a slave of the same master as that of the 1970 * source mount. 1971 * 1972 * --------------------------------------------------------------------------- 1973 * | MOVE MOUNT OPERATION | 1974 * |************************************************************************** 1975 * | source-->| shared | private | slave | unbindable | 1976 * | dest | | | | | 1977 * | | | | | | | 1978 * | v | | | | | 1979 * |************************************************************************** 1980 * | shared | shared (+) | shared (+) | shared(+++) | invalid | 1981 * | | | | | | 1982 * |non-shared| shared (+*) | private | slave (*) | unbindable | 1983 * *************************************************************************** 1984 * 1985 * (+) the mount is moved to the destination. And is then propagated to 1986 * all the mounts in the propagation tree of the destination mount. 1987 * (+*) the mount is moved to the destination. 1988 * (+++) the mount is moved to the destination and is then propagated to 1989 * all the mounts belonging to the destination mount's propagation tree. 1990 * the mount is marked as 'shared and slave'. 1991 * (*) the mount continues to be a slave at the new location. 1992 * 1993 * if the source mount is a tree, the operations explained above is 1994 * applied to each mount in the tree. 1995 * Must be called without spinlocks held, since this function can sleep 1996 * in allocations. 1997 */ 1998 static int attach_recursive_mnt(struct mount *source_mnt, 1999 struct mount *dest_mnt, 2000 struct mountpoint *dest_mp, 2001 struct path *parent_path) 2002 { 2003 HLIST_HEAD(tree_list); 2004 struct mnt_namespace *ns = dest_mnt->mnt_ns; 2005 struct mountpoint *smp; 2006 struct mount *child, *p; 2007 struct hlist_node *n; 2008 int err; 2009 2010 /* Preallocate a mountpoint in case the new mounts need 2011 * to be tucked under other mounts. 2012 */ 2013 smp = get_mountpoint(source_mnt->mnt.mnt_root); 2014 if (IS_ERR(smp)) 2015 return PTR_ERR(smp); 2016 2017 /* Is there space to add these mounts to the mount namespace? */ 2018 if (!parent_path) { 2019 err = count_mounts(ns, source_mnt); 2020 if (err) 2021 goto out; 2022 } 2023 2024 if (IS_MNT_SHARED(dest_mnt)) { 2025 err = invent_group_ids(source_mnt, true); 2026 if (err) 2027 goto out; 2028 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list); 2029 lock_mount_hash(); 2030 if (err) 2031 goto out_cleanup_ids; 2032 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 2033 set_mnt_shared(p); 2034 } else { 2035 lock_mount_hash(); 2036 } 2037 if (parent_path) { 2038 detach_mnt(source_mnt, parent_path); 2039 attach_mnt(source_mnt, dest_mnt, dest_mp); 2040 touch_mnt_namespace(source_mnt->mnt_ns); 2041 } else { 2042 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt); 2043 commit_tree(source_mnt); 2044 } 2045 2046 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) { 2047 struct mount *q; 2048 hlist_del_init(&child->mnt_hash); 2049 q = __lookup_mnt(&child->mnt_parent->mnt, 2050 child->mnt_mountpoint); 2051 if (q) 2052 mnt_change_mountpoint(child, smp, q); 2053 commit_tree(child); 2054 } 2055 put_mountpoint(smp); 2056 unlock_mount_hash(); 2057 2058 return 0; 2059 2060 out_cleanup_ids: 2061 while (!hlist_empty(&tree_list)) { 2062 child = hlist_entry(tree_list.first, struct mount, mnt_hash); 2063 child->mnt_parent->mnt_ns->pending_mounts = 0; 2064 umount_tree(child, UMOUNT_SYNC); 2065 } 2066 unlock_mount_hash(); 2067 cleanup_group_ids(source_mnt, NULL); 2068 out: 2069 ns->pending_mounts = 0; 2070 2071 read_seqlock_excl(&mount_lock); 2072 put_mountpoint(smp); 2073 read_sequnlock_excl(&mount_lock); 2074 2075 return err; 2076 } 2077 2078 static struct mountpoint *lock_mount(struct path *path) 2079 { 2080 struct vfsmount *mnt; 2081 struct dentry *dentry = path->dentry; 2082 retry: 2083 inode_lock(dentry->d_inode); 2084 if (unlikely(cant_mount(dentry))) { 2085 inode_unlock(dentry->d_inode); 2086 return ERR_PTR(-ENOENT); 2087 } 2088 namespace_lock(); 2089 mnt = lookup_mnt(path); 2090 if (likely(!mnt)) { 2091 struct mountpoint *mp = get_mountpoint(dentry); 2092 if (IS_ERR(mp)) { 2093 namespace_unlock(); 2094 inode_unlock(dentry->d_inode); 2095 return mp; 2096 } 2097 return mp; 2098 } 2099 namespace_unlock(); 2100 inode_unlock(path->dentry->d_inode); 2101 path_put(path); 2102 path->mnt = mnt; 2103 dentry = path->dentry = dget(mnt->mnt_root); 2104 goto retry; 2105 } 2106 2107 static void unlock_mount(struct mountpoint *where) 2108 { 2109 struct dentry *dentry = where->m_dentry; 2110 2111 read_seqlock_excl(&mount_lock); 2112 put_mountpoint(where); 2113 read_sequnlock_excl(&mount_lock); 2114 2115 namespace_unlock(); 2116 inode_unlock(dentry->d_inode); 2117 } 2118 2119 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp) 2120 { 2121 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER) 2122 return -EINVAL; 2123 2124 if (d_is_dir(mp->m_dentry) != 2125 d_is_dir(mnt->mnt.mnt_root)) 2126 return -ENOTDIR; 2127 2128 return attach_recursive_mnt(mnt, p, mp, NULL); 2129 } 2130 2131 /* 2132 * Sanity check the flags to change_mnt_propagation. 2133 */ 2134 2135 static int flags_to_propagation_type(int flags) 2136 { 2137 int type = flags & ~(MS_REC | MS_SILENT); 2138 2139 /* Fail if any non-propagation flags are set */ 2140 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 2141 return 0; 2142 /* Only one propagation flag should be set */ 2143 if (!is_power_of_2(type)) 2144 return 0; 2145 return type; 2146 } 2147 2148 /* 2149 * recursively change the type of the mountpoint. 2150 */ 2151 static int do_change_type(struct path *path, int flag) 2152 { 2153 struct mount *m; 2154 struct mount *mnt = real_mount(path->mnt); 2155 int recurse = flag & MS_REC; 2156 int type; 2157 int err = 0; 2158 2159 if (path->dentry != path->mnt->mnt_root) 2160 return -EINVAL; 2161 2162 type = flags_to_propagation_type(flag); 2163 if (!type) 2164 return -EINVAL; 2165 2166 namespace_lock(); 2167 if (type == MS_SHARED) { 2168 err = invent_group_ids(mnt, recurse); 2169 if (err) 2170 goto out_unlock; 2171 } 2172 2173 lock_mount_hash(); 2174 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) 2175 change_mnt_propagation(m, type); 2176 unlock_mount_hash(); 2177 2178 out_unlock: 2179 namespace_unlock(); 2180 return err; 2181 } 2182 2183 static bool has_locked_children(struct mount *mnt, struct dentry *dentry) 2184 { 2185 struct mount *child; 2186 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 2187 if (!is_subdir(child->mnt_mountpoint, dentry)) 2188 continue; 2189 2190 if (child->mnt.mnt_flags & MNT_LOCKED) 2191 return true; 2192 } 2193 return false; 2194 } 2195 2196 /* 2197 * do loopback mount. 2198 */ 2199 static int do_loopback(struct path *path, const char *old_name, 2200 int recurse) 2201 { 2202 struct path old_path; 2203 struct mount *mnt = NULL, *old, *parent; 2204 struct mountpoint *mp; 2205 int err; 2206 if (!old_name || !*old_name) 2207 return -EINVAL; 2208 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path); 2209 if (err) 2210 return err; 2211 2212 err = -EINVAL; 2213 if (mnt_ns_loop(old_path.dentry)) 2214 goto out; 2215 2216 mp = lock_mount(path); 2217 err = PTR_ERR(mp); 2218 if (IS_ERR(mp)) 2219 goto out; 2220 2221 old = real_mount(old_path.mnt); 2222 parent = real_mount(path->mnt); 2223 2224 err = -EINVAL; 2225 if (IS_MNT_UNBINDABLE(old)) 2226 goto out2; 2227 2228 if (!check_mnt(parent)) 2229 goto out2; 2230 2231 if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations) 2232 goto out2; 2233 2234 if (!recurse && has_locked_children(old, old_path.dentry)) 2235 goto out2; 2236 2237 if (recurse) 2238 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE); 2239 else 2240 mnt = clone_mnt(old, old_path.dentry, 0); 2241 2242 if (IS_ERR(mnt)) { 2243 err = PTR_ERR(mnt); 2244 goto out2; 2245 } 2246 2247 mnt->mnt.mnt_flags &= ~MNT_LOCKED; 2248 2249 err = graft_tree(mnt, parent, mp); 2250 if (err) { 2251 lock_mount_hash(); 2252 umount_tree(mnt, UMOUNT_SYNC); 2253 unlock_mount_hash(); 2254 } 2255 out2: 2256 unlock_mount(mp); 2257 out: 2258 path_put(&old_path); 2259 return err; 2260 } 2261 2262 static int change_mount_flags(struct vfsmount *mnt, int ms_flags) 2263 { 2264 int error = 0; 2265 int readonly_request = 0; 2266 2267 if (ms_flags & MS_RDONLY) 2268 readonly_request = 1; 2269 if (readonly_request == __mnt_is_readonly(mnt)) 2270 return 0; 2271 2272 if (readonly_request) 2273 error = mnt_make_readonly(real_mount(mnt)); 2274 else 2275 __mnt_unmake_readonly(real_mount(mnt)); 2276 return error; 2277 } 2278 2279 /* 2280 * change filesystem flags. dir should be a physical root of filesystem. 2281 * If you've mounted a non-root directory somewhere and want to do remount 2282 * on it - tough luck. 2283 */ 2284 static int do_remount(struct path *path, int flags, int mnt_flags, 2285 void *data) 2286 { 2287 int err; 2288 struct super_block *sb = path->mnt->mnt_sb; 2289 struct mount *mnt = real_mount(path->mnt); 2290 2291 if (!check_mnt(mnt)) 2292 return -EINVAL; 2293 2294 if (path->dentry != path->mnt->mnt_root) 2295 return -EINVAL; 2296 2297 /* Don't allow changing of locked mnt flags. 2298 * 2299 * No locks need to be held here while testing the various 2300 * MNT_LOCK flags because those flags can never be cleared 2301 * once they are set. 2302 */ 2303 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) && 2304 !(mnt_flags & MNT_READONLY)) { 2305 return -EPERM; 2306 } 2307 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) && 2308 !(mnt_flags & MNT_NODEV)) { 2309 return -EPERM; 2310 } 2311 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) && 2312 !(mnt_flags & MNT_NOSUID)) { 2313 return -EPERM; 2314 } 2315 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) && 2316 !(mnt_flags & MNT_NOEXEC)) { 2317 return -EPERM; 2318 } 2319 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) && 2320 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) { 2321 return -EPERM; 2322 } 2323 2324 err = security_sb_remount(sb, data); 2325 if (err) 2326 return err; 2327 2328 down_write(&sb->s_umount); 2329 if (flags & MS_BIND) 2330 err = change_mount_flags(path->mnt, flags); 2331 else if (!capable(CAP_SYS_ADMIN)) 2332 err = -EPERM; 2333 else 2334 err = do_remount_sb(sb, flags, data, 0); 2335 if (!err) { 2336 lock_mount_hash(); 2337 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK; 2338 mnt->mnt.mnt_flags = mnt_flags; 2339 touch_mnt_namespace(mnt->mnt_ns); 2340 unlock_mount_hash(); 2341 } 2342 up_write(&sb->s_umount); 2343 return err; 2344 } 2345 2346 static inline int tree_contains_unbindable(struct mount *mnt) 2347 { 2348 struct mount *p; 2349 for (p = mnt; p; p = next_mnt(p, mnt)) { 2350 if (IS_MNT_UNBINDABLE(p)) 2351 return 1; 2352 } 2353 return 0; 2354 } 2355 2356 static int do_move_mount(struct path *path, const char *old_name) 2357 { 2358 struct path old_path, parent_path; 2359 struct mount *p; 2360 struct mount *old; 2361 struct mountpoint *mp; 2362 int err; 2363 if (!old_name || !*old_name) 2364 return -EINVAL; 2365 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); 2366 if (err) 2367 return err; 2368 2369 mp = lock_mount(path); 2370 err = PTR_ERR(mp); 2371 if (IS_ERR(mp)) 2372 goto out; 2373 2374 old = real_mount(old_path.mnt); 2375 p = real_mount(path->mnt); 2376 2377 err = -EINVAL; 2378 if (!check_mnt(p) || !check_mnt(old)) 2379 goto out1; 2380 2381 if (old->mnt.mnt_flags & MNT_LOCKED) 2382 goto out1; 2383 2384 err = -EINVAL; 2385 if (old_path.dentry != old_path.mnt->mnt_root) 2386 goto out1; 2387 2388 if (!mnt_has_parent(old)) 2389 goto out1; 2390 2391 if (d_is_dir(path->dentry) != 2392 d_is_dir(old_path.dentry)) 2393 goto out1; 2394 /* 2395 * Don't move a mount residing in a shared parent. 2396 */ 2397 if (IS_MNT_SHARED(old->mnt_parent)) 2398 goto out1; 2399 /* 2400 * Don't move a mount tree containing unbindable mounts to a destination 2401 * mount which is shared. 2402 */ 2403 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old)) 2404 goto out1; 2405 err = -ELOOP; 2406 for (; mnt_has_parent(p); p = p->mnt_parent) 2407 if (p == old) 2408 goto out1; 2409 2410 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path); 2411 if (err) 2412 goto out1; 2413 2414 /* if the mount is moved, it should no longer be expire 2415 * automatically */ 2416 list_del_init(&old->mnt_expire); 2417 out1: 2418 unlock_mount(mp); 2419 out: 2420 if (!err) 2421 path_put(&parent_path); 2422 path_put(&old_path); 2423 return err; 2424 } 2425 2426 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype) 2427 { 2428 int err; 2429 const char *subtype = strchr(fstype, '.'); 2430 if (subtype) { 2431 subtype++; 2432 err = -EINVAL; 2433 if (!subtype[0]) 2434 goto err; 2435 } else 2436 subtype = ""; 2437 2438 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL); 2439 err = -ENOMEM; 2440 if (!mnt->mnt_sb->s_subtype) 2441 goto err; 2442 return mnt; 2443 2444 err: 2445 mntput(mnt); 2446 return ERR_PTR(err); 2447 } 2448 2449 /* 2450 * add a mount into a namespace's mount tree 2451 */ 2452 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags) 2453 { 2454 struct mountpoint *mp; 2455 struct mount *parent; 2456 int err; 2457 2458 mnt_flags &= ~MNT_INTERNAL_FLAGS; 2459 2460 mp = lock_mount(path); 2461 if (IS_ERR(mp)) 2462 return PTR_ERR(mp); 2463 2464 parent = real_mount(path->mnt); 2465 err = -EINVAL; 2466 if (unlikely(!check_mnt(parent))) { 2467 /* that's acceptable only for automounts done in private ns */ 2468 if (!(mnt_flags & MNT_SHRINKABLE)) 2469 goto unlock; 2470 /* ... and for those we'd better have mountpoint still alive */ 2471 if (!parent->mnt_ns) 2472 goto unlock; 2473 } 2474 2475 /* Refuse the same filesystem on the same mount point */ 2476 err = -EBUSY; 2477 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && 2478 path->mnt->mnt_root == path->dentry) 2479 goto unlock; 2480 2481 err = -EINVAL; 2482 if (d_is_symlink(newmnt->mnt.mnt_root)) 2483 goto unlock; 2484 2485 newmnt->mnt.mnt_flags = mnt_flags; 2486 err = graft_tree(newmnt, parent, mp); 2487 2488 unlock: 2489 unlock_mount(mp); 2490 return err; 2491 } 2492 2493 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags); 2494 2495 /* 2496 * create a new mount for userspace and request it to be added into the 2497 * namespace's tree 2498 */ 2499 static int do_new_mount(struct path *path, const char *fstype, int flags, 2500 int mnt_flags, const char *name, void *data) 2501 { 2502 struct file_system_type *type; 2503 struct vfsmount *mnt; 2504 int err; 2505 2506 if (!fstype) 2507 return -EINVAL; 2508 2509 type = get_fs_type(fstype); 2510 if (!type) 2511 return -ENODEV; 2512 2513 mnt = vfs_kern_mount(type, flags, name, data); 2514 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) && 2515 !mnt->mnt_sb->s_subtype) 2516 mnt = fs_set_subtype(mnt, fstype); 2517 2518 put_filesystem(type); 2519 if (IS_ERR(mnt)) 2520 return PTR_ERR(mnt); 2521 2522 if (mount_too_revealing(mnt, &mnt_flags)) { 2523 mntput(mnt); 2524 return -EPERM; 2525 } 2526 2527 err = do_add_mount(real_mount(mnt), path, mnt_flags); 2528 if (err) 2529 mntput(mnt); 2530 return err; 2531 } 2532 2533 int finish_automount(struct vfsmount *m, struct path *path) 2534 { 2535 struct mount *mnt = real_mount(m); 2536 int err; 2537 /* The new mount record should have at least 2 refs to prevent it being 2538 * expired before we get a chance to add it 2539 */ 2540 BUG_ON(mnt_get_count(mnt) < 2); 2541 2542 if (m->mnt_sb == path->mnt->mnt_sb && 2543 m->mnt_root == path->dentry) { 2544 err = -ELOOP; 2545 goto fail; 2546 } 2547 2548 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE); 2549 if (!err) 2550 return 0; 2551 fail: 2552 /* remove m from any expiration list it may be on */ 2553 if (!list_empty(&mnt->mnt_expire)) { 2554 namespace_lock(); 2555 list_del_init(&mnt->mnt_expire); 2556 namespace_unlock(); 2557 } 2558 mntput(m); 2559 mntput(m); 2560 return err; 2561 } 2562 2563 /** 2564 * mnt_set_expiry - Put a mount on an expiration list 2565 * @mnt: The mount to list. 2566 * @expiry_list: The list to add the mount to. 2567 */ 2568 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list) 2569 { 2570 namespace_lock(); 2571 2572 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list); 2573 2574 namespace_unlock(); 2575 } 2576 EXPORT_SYMBOL(mnt_set_expiry); 2577 2578 /* 2579 * process a list of expirable mountpoints with the intent of discarding any 2580 * mountpoints that aren't in use and haven't been touched since last we came 2581 * here 2582 */ 2583 void mark_mounts_for_expiry(struct list_head *mounts) 2584 { 2585 struct mount *mnt, *next; 2586 LIST_HEAD(graveyard); 2587 2588 if (list_empty(mounts)) 2589 return; 2590 2591 namespace_lock(); 2592 lock_mount_hash(); 2593 2594 /* extract from the expiration list every vfsmount that matches the 2595 * following criteria: 2596 * - only referenced by its parent vfsmount 2597 * - still marked for expiry (marked on the last call here; marks are 2598 * cleared by mntput()) 2599 */ 2600 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { 2601 if (!xchg(&mnt->mnt_expiry_mark, 1) || 2602 propagate_mount_busy(mnt, 1)) 2603 continue; 2604 list_move(&mnt->mnt_expire, &graveyard); 2605 } 2606 while (!list_empty(&graveyard)) { 2607 mnt = list_first_entry(&graveyard, struct mount, mnt_expire); 2608 touch_mnt_namespace(mnt->mnt_ns); 2609 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 2610 } 2611 unlock_mount_hash(); 2612 namespace_unlock(); 2613 } 2614 2615 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); 2616 2617 /* 2618 * Ripoff of 'select_parent()' 2619 * 2620 * search the list of submounts for a given mountpoint, and move any 2621 * shrinkable submounts to the 'graveyard' list. 2622 */ 2623 static int select_submounts(struct mount *parent, struct list_head *graveyard) 2624 { 2625 struct mount *this_parent = parent; 2626 struct list_head *next; 2627 int found = 0; 2628 2629 repeat: 2630 next = this_parent->mnt_mounts.next; 2631 resume: 2632 while (next != &this_parent->mnt_mounts) { 2633 struct list_head *tmp = next; 2634 struct mount *mnt = list_entry(tmp, struct mount, mnt_child); 2635 2636 next = tmp->next; 2637 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE)) 2638 continue; 2639 /* 2640 * Descend a level if the d_mounts list is non-empty. 2641 */ 2642 if (!list_empty(&mnt->mnt_mounts)) { 2643 this_parent = mnt; 2644 goto repeat; 2645 } 2646 2647 if (!propagate_mount_busy(mnt, 1)) { 2648 list_move_tail(&mnt->mnt_expire, graveyard); 2649 found++; 2650 } 2651 } 2652 /* 2653 * All done at this level ... ascend and resume the search 2654 */ 2655 if (this_parent != parent) { 2656 next = this_parent->mnt_child.next; 2657 this_parent = this_parent->mnt_parent; 2658 goto resume; 2659 } 2660 return found; 2661 } 2662 2663 /* 2664 * process a list of expirable mountpoints with the intent of discarding any 2665 * submounts of a specific parent mountpoint 2666 * 2667 * mount_lock must be held for write 2668 */ 2669 static void shrink_submounts(struct mount *mnt) 2670 { 2671 LIST_HEAD(graveyard); 2672 struct mount *m; 2673 2674 /* extract submounts of 'mountpoint' from the expiration list */ 2675 while (select_submounts(mnt, &graveyard)) { 2676 while (!list_empty(&graveyard)) { 2677 m = list_first_entry(&graveyard, struct mount, 2678 mnt_expire); 2679 touch_mnt_namespace(m->mnt_ns); 2680 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC); 2681 } 2682 } 2683 } 2684 2685 /* 2686 * Some copy_from_user() implementations do not return the exact number of 2687 * bytes remaining to copy on a fault. But copy_mount_options() requires that. 2688 * Note that this function differs from copy_from_user() in that it will oops 2689 * on bad values of `to', rather than returning a short copy. 2690 */ 2691 static long exact_copy_from_user(void *to, const void __user * from, 2692 unsigned long n) 2693 { 2694 char *t = to; 2695 const char __user *f = from; 2696 char c; 2697 2698 if (!access_ok(VERIFY_READ, from, n)) 2699 return n; 2700 2701 while (n) { 2702 if (__get_user(c, f)) { 2703 memset(t, 0, n); 2704 break; 2705 } 2706 *t++ = c; 2707 f++; 2708 n--; 2709 } 2710 return n; 2711 } 2712 2713 void *copy_mount_options(const void __user * data) 2714 { 2715 int i; 2716 unsigned long size; 2717 char *copy; 2718 2719 if (!data) 2720 return NULL; 2721 2722 copy = kmalloc(PAGE_SIZE, GFP_KERNEL); 2723 if (!copy) 2724 return ERR_PTR(-ENOMEM); 2725 2726 /* We only care that *some* data at the address the user 2727 * gave us is valid. Just in case, we'll zero 2728 * the remainder of the page. 2729 */ 2730 /* copy_from_user cannot cross TASK_SIZE ! */ 2731 size = TASK_SIZE - (unsigned long)data; 2732 if (size > PAGE_SIZE) 2733 size = PAGE_SIZE; 2734 2735 i = size - exact_copy_from_user(copy, data, size); 2736 if (!i) { 2737 kfree(copy); 2738 return ERR_PTR(-EFAULT); 2739 } 2740 if (i != PAGE_SIZE) 2741 memset(copy + i, 0, PAGE_SIZE - i); 2742 return copy; 2743 } 2744 2745 char *copy_mount_string(const void __user *data) 2746 { 2747 return data ? strndup_user(data, PAGE_SIZE) : NULL; 2748 } 2749 2750 /* 2751 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to 2752 * be given to the mount() call (ie: read-only, no-dev, no-suid etc). 2753 * 2754 * data is a (void *) that can point to any structure up to 2755 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent 2756 * information (or be NULL). 2757 * 2758 * Pre-0.97 versions of mount() didn't have a flags word. 2759 * When the flags word was introduced its top half was required 2760 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. 2761 * Therefore, if this magic number is present, it carries no information 2762 * and must be discarded. 2763 */ 2764 long do_mount(const char *dev_name, const char __user *dir_name, 2765 const char *type_page, unsigned long flags, void *data_page) 2766 { 2767 struct path path; 2768 int retval = 0; 2769 int mnt_flags = 0; 2770 2771 /* Discard magic */ 2772 if ((flags & MS_MGC_MSK) == MS_MGC_VAL) 2773 flags &= ~MS_MGC_MSK; 2774 2775 /* Basic sanity checks */ 2776 if (data_page) 2777 ((char *)data_page)[PAGE_SIZE - 1] = 0; 2778 2779 /* ... and get the mountpoint */ 2780 retval = user_path(dir_name, &path); 2781 if (retval) 2782 return retval; 2783 2784 retval = security_sb_mount(dev_name, &path, 2785 type_page, flags, data_page); 2786 if (!retval && !may_mount()) 2787 retval = -EPERM; 2788 if (!retval && (flags & MS_MANDLOCK) && !may_mandlock()) 2789 retval = -EPERM; 2790 if (retval) 2791 goto dput_out; 2792 2793 /* Default to relatime unless overriden */ 2794 if (!(flags & MS_NOATIME)) 2795 mnt_flags |= MNT_RELATIME; 2796 2797 /* Separate the per-mountpoint flags */ 2798 if (flags & MS_NOSUID) 2799 mnt_flags |= MNT_NOSUID; 2800 if (flags & MS_NODEV) 2801 mnt_flags |= MNT_NODEV; 2802 if (flags & MS_NOEXEC) 2803 mnt_flags |= MNT_NOEXEC; 2804 if (flags & MS_NOATIME) 2805 mnt_flags |= MNT_NOATIME; 2806 if (flags & MS_NODIRATIME) 2807 mnt_flags |= MNT_NODIRATIME; 2808 if (flags & MS_STRICTATIME) 2809 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME); 2810 if (flags & MS_RDONLY) 2811 mnt_flags |= MNT_READONLY; 2812 2813 /* The default atime for remount is preservation */ 2814 if ((flags & MS_REMOUNT) && 2815 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME | 2816 MS_STRICTATIME)) == 0)) { 2817 mnt_flags &= ~MNT_ATIME_MASK; 2818 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK; 2819 } 2820 2821 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN | 2822 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT | 2823 MS_STRICTATIME | MS_NOREMOTELOCK | MS_SUBMOUNT); 2824 2825 if (flags & MS_REMOUNT) 2826 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags, 2827 data_page); 2828 else if (flags & MS_BIND) 2829 retval = do_loopback(&path, dev_name, flags & MS_REC); 2830 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 2831 retval = do_change_type(&path, flags); 2832 else if (flags & MS_MOVE) 2833 retval = do_move_mount(&path, dev_name); 2834 else 2835 retval = do_new_mount(&path, type_page, flags, mnt_flags, 2836 dev_name, data_page); 2837 dput_out: 2838 path_put(&path); 2839 return retval; 2840 } 2841 2842 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns) 2843 { 2844 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES); 2845 } 2846 2847 static void dec_mnt_namespaces(struct ucounts *ucounts) 2848 { 2849 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES); 2850 } 2851 2852 static void free_mnt_ns(struct mnt_namespace *ns) 2853 { 2854 ns_free_inum(&ns->ns); 2855 dec_mnt_namespaces(ns->ucounts); 2856 put_user_ns(ns->user_ns); 2857 kfree(ns); 2858 } 2859 2860 /* 2861 * Assign a sequence number so we can detect when we attempt to bind 2862 * mount a reference to an older mount namespace into the current 2863 * mount namespace, preventing reference counting loops. A 64bit 2864 * number incrementing at 10Ghz will take 12,427 years to wrap which 2865 * is effectively never, so we can ignore the possibility. 2866 */ 2867 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1); 2868 2869 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns) 2870 { 2871 struct mnt_namespace *new_ns; 2872 struct ucounts *ucounts; 2873 int ret; 2874 2875 ucounts = inc_mnt_namespaces(user_ns); 2876 if (!ucounts) 2877 return ERR_PTR(-ENOSPC); 2878 2879 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL); 2880 if (!new_ns) { 2881 dec_mnt_namespaces(ucounts); 2882 return ERR_PTR(-ENOMEM); 2883 } 2884 ret = ns_alloc_inum(&new_ns->ns); 2885 if (ret) { 2886 kfree(new_ns); 2887 dec_mnt_namespaces(ucounts); 2888 return ERR_PTR(ret); 2889 } 2890 new_ns->ns.ops = &mntns_operations; 2891 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq); 2892 atomic_set(&new_ns->count, 1); 2893 new_ns->root = NULL; 2894 INIT_LIST_HEAD(&new_ns->list); 2895 init_waitqueue_head(&new_ns->poll); 2896 new_ns->event = 0; 2897 new_ns->user_ns = get_user_ns(user_ns); 2898 new_ns->ucounts = ucounts; 2899 new_ns->mounts = 0; 2900 new_ns->pending_mounts = 0; 2901 return new_ns; 2902 } 2903 2904 __latent_entropy 2905 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns, 2906 struct user_namespace *user_ns, struct fs_struct *new_fs) 2907 { 2908 struct mnt_namespace *new_ns; 2909 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL; 2910 struct mount *p, *q; 2911 struct mount *old; 2912 struct mount *new; 2913 int copy_flags; 2914 2915 BUG_ON(!ns); 2916 2917 if (likely(!(flags & CLONE_NEWNS))) { 2918 get_mnt_ns(ns); 2919 return ns; 2920 } 2921 2922 old = ns->root; 2923 2924 new_ns = alloc_mnt_ns(user_ns); 2925 if (IS_ERR(new_ns)) 2926 return new_ns; 2927 2928 namespace_lock(); 2929 /* First pass: copy the tree topology */ 2930 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE; 2931 if (user_ns != ns->user_ns) 2932 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED; 2933 new = copy_tree(old, old->mnt.mnt_root, copy_flags); 2934 if (IS_ERR(new)) { 2935 namespace_unlock(); 2936 free_mnt_ns(new_ns); 2937 return ERR_CAST(new); 2938 } 2939 new_ns->root = new; 2940 list_add_tail(&new_ns->list, &new->mnt_list); 2941 2942 /* 2943 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts 2944 * as belonging to new namespace. We have already acquired a private 2945 * fs_struct, so tsk->fs->lock is not needed. 2946 */ 2947 p = old; 2948 q = new; 2949 while (p) { 2950 q->mnt_ns = new_ns; 2951 new_ns->mounts++; 2952 if (new_fs) { 2953 if (&p->mnt == new_fs->root.mnt) { 2954 new_fs->root.mnt = mntget(&q->mnt); 2955 rootmnt = &p->mnt; 2956 } 2957 if (&p->mnt == new_fs->pwd.mnt) { 2958 new_fs->pwd.mnt = mntget(&q->mnt); 2959 pwdmnt = &p->mnt; 2960 } 2961 } 2962 p = next_mnt(p, old); 2963 q = next_mnt(q, new); 2964 if (!q) 2965 break; 2966 while (p->mnt.mnt_root != q->mnt.mnt_root) 2967 p = next_mnt(p, old); 2968 } 2969 namespace_unlock(); 2970 2971 if (rootmnt) 2972 mntput(rootmnt); 2973 if (pwdmnt) 2974 mntput(pwdmnt); 2975 2976 return new_ns; 2977 } 2978 2979 /** 2980 * create_mnt_ns - creates a private namespace and adds a root filesystem 2981 * @mnt: pointer to the new root filesystem mountpoint 2982 */ 2983 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m) 2984 { 2985 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns); 2986 if (!IS_ERR(new_ns)) { 2987 struct mount *mnt = real_mount(m); 2988 mnt->mnt_ns = new_ns; 2989 new_ns->root = mnt; 2990 new_ns->mounts++; 2991 list_add(&mnt->mnt_list, &new_ns->list); 2992 } else { 2993 mntput(m); 2994 } 2995 return new_ns; 2996 } 2997 2998 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name) 2999 { 3000 struct mnt_namespace *ns; 3001 struct super_block *s; 3002 struct path path; 3003 int err; 3004 3005 ns = create_mnt_ns(mnt); 3006 if (IS_ERR(ns)) 3007 return ERR_CAST(ns); 3008 3009 err = vfs_path_lookup(mnt->mnt_root, mnt, 3010 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path); 3011 3012 put_mnt_ns(ns); 3013 3014 if (err) 3015 return ERR_PTR(err); 3016 3017 /* trade a vfsmount reference for active sb one */ 3018 s = path.mnt->mnt_sb; 3019 atomic_inc(&s->s_active); 3020 mntput(path.mnt); 3021 /* lock the sucker */ 3022 down_write(&s->s_umount); 3023 /* ... and return the root of (sub)tree on it */ 3024 return path.dentry; 3025 } 3026 EXPORT_SYMBOL(mount_subtree); 3027 3028 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name, 3029 char __user *, type, unsigned long, flags, void __user *, data) 3030 { 3031 int ret; 3032 char *kernel_type; 3033 char *kernel_dev; 3034 void *options; 3035 3036 kernel_type = copy_mount_string(type); 3037 ret = PTR_ERR(kernel_type); 3038 if (IS_ERR(kernel_type)) 3039 goto out_type; 3040 3041 kernel_dev = copy_mount_string(dev_name); 3042 ret = PTR_ERR(kernel_dev); 3043 if (IS_ERR(kernel_dev)) 3044 goto out_dev; 3045 3046 options = copy_mount_options(data); 3047 ret = PTR_ERR(options); 3048 if (IS_ERR(options)) 3049 goto out_data; 3050 3051 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options); 3052 3053 kfree(options); 3054 out_data: 3055 kfree(kernel_dev); 3056 out_dev: 3057 kfree(kernel_type); 3058 out_type: 3059 return ret; 3060 } 3061 3062 /* 3063 * Return true if path is reachable from root 3064 * 3065 * namespace_sem or mount_lock is held 3066 */ 3067 bool is_path_reachable(struct mount *mnt, struct dentry *dentry, 3068 const struct path *root) 3069 { 3070 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) { 3071 dentry = mnt->mnt_mountpoint; 3072 mnt = mnt->mnt_parent; 3073 } 3074 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry); 3075 } 3076 3077 bool path_is_under(const struct path *path1, const struct path *path2) 3078 { 3079 bool res; 3080 read_seqlock_excl(&mount_lock); 3081 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2); 3082 read_sequnlock_excl(&mount_lock); 3083 return res; 3084 } 3085 EXPORT_SYMBOL(path_is_under); 3086 3087 /* 3088 * pivot_root Semantics: 3089 * Moves the root file system of the current process to the directory put_old, 3090 * makes new_root as the new root file system of the current process, and sets 3091 * root/cwd of all processes which had them on the current root to new_root. 3092 * 3093 * Restrictions: 3094 * The new_root and put_old must be directories, and must not be on the 3095 * same file system as the current process root. The put_old must be 3096 * underneath new_root, i.e. adding a non-zero number of /.. to the string 3097 * pointed to by put_old must yield the same directory as new_root. No other 3098 * file system may be mounted on put_old. After all, new_root is a mountpoint. 3099 * 3100 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. 3101 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives 3102 * in this situation. 3103 * 3104 * Notes: 3105 * - we don't move root/cwd if they are not at the root (reason: if something 3106 * cared enough to change them, it's probably wrong to force them elsewhere) 3107 * - it's okay to pick a root that isn't the root of a file system, e.g. 3108 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, 3109 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root 3110 * first. 3111 */ 3112 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root, 3113 const char __user *, put_old) 3114 { 3115 struct path new, old, parent_path, root_parent, root; 3116 struct mount *new_mnt, *root_mnt, *old_mnt; 3117 struct mountpoint *old_mp, *root_mp; 3118 int error; 3119 3120 if (!may_mount()) 3121 return -EPERM; 3122 3123 error = user_path_dir(new_root, &new); 3124 if (error) 3125 goto out0; 3126 3127 error = user_path_dir(put_old, &old); 3128 if (error) 3129 goto out1; 3130 3131 error = security_sb_pivotroot(&old, &new); 3132 if (error) 3133 goto out2; 3134 3135 get_fs_root(current->fs, &root); 3136 old_mp = lock_mount(&old); 3137 error = PTR_ERR(old_mp); 3138 if (IS_ERR(old_mp)) 3139 goto out3; 3140 3141 error = -EINVAL; 3142 new_mnt = real_mount(new.mnt); 3143 root_mnt = real_mount(root.mnt); 3144 old_mnt = real_mount(old.mnt); 3145 if (IS_MNT_SHARED(old_mnt) || 3146 IS_MNT_SHARED(new_mnt->mnt_parent) || 3147 IS_MNT_SHARED(root_mnt->mnt_parent)) 3148 goto out4; 3149 if (!check_mnt(root_mnt) || !check_mnt(new_mnt)) 3150 goto out4; 3151 if (new_mnt->mnt.mnt_flags & MNT_LOCKED) 3152 goto out4; 3153 error = -ENOENT; 3154 if (d_unlinked(new.dentry)) 3155 goto out4; 3156 error = -EBUSY; 3157 if (new_mnt == root_mnt || old_mnt == root_mnt) 3158 goto out4; /* loop, on the same file system */ 3159 error = -EINVAL; 3160 if (root.mnt->mnt_root != root.dentry) 3161 goto out4; /* not a mountpoint */ 3162 if (!mnt_has_parent(root_mnt)) 3163 goto out4; /* not attached */ 3164 root_mp = root_mnt->mnt_mp; 3165 if (new.mnt->mnt_root != new.dentry) 3166 goto out4; /* not a mountpoint */ 3167 if (!mnt_has_parent(new_mnt)) 3168 goto out4; /* not attached */ 3169 /* make sure we can reach put_old from new_root */ 3170 if (!is_path_reachable(old_mnt, old.dentry, &new)) 3171 goto out4; 3172 /* make certain new is below the root */ 3173 if (!is_path_reachable(new_mnt, new.dentry, &root)) 3174 goto out4; 3175 root_mp->m_count++; /* pin it so it won't go away */ 3176 lock_mount_hash(); 3177 detach_mnt(new_mnt, &parent_path); 3178 detach_mnt(root_mnt, &root_parent); 3179 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) { 3180 new_mnt->mnt.mnt_flags |= MNT_LOCKED; 3181 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED; 3182 } 3183 /* mount old root on put_old */ 3184 attach_mnt(root_mnt, old_mnt, old_mp); 3185 /* mount new_root on / */ 3186 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp); 3187 touch_mnt_namespace(current->nsproxy->mnt_ns); 3188 /* A moved mount should not expire automatically */ 3189 list_del_init(&new_mnt->mnt_expire); 3190 put_mountpoint(root_mp); 3191 unlock_mount_hash(); 3192 chroot_fs_refs(&root, &new); 3193 error = 0; 3194 out4: 3195 unlock_mount(old_mp); 3196 if (!error) { 3197 path_put(&root_parent); 3198 path_put(&parent_path); 3199 } 3200 out3: 3201 path_put(&root); 3202 out2: 3203 path_put(&old); 3204 out1: 3205 path_put(&new); 3206 out0: 3207 return error; 3208 } 3209 3210 static void __init init_mount_tree(void) 3211 { 3212 struct vfsmount *mnt; 3213 struct mnt_namespace *ns; 3214 struct path root; 3215 struct file_system_type *type; 3216 3217 type = get_fs_type("rootfs"); 3218 if (!type) 3219 panic("Can't find rootfs type"); 3220 mnt = vfs_kern_mount(type, 0, "rootfs", NULL); 3221 put_filesystem(type); 3222 if (IS_ERR(mnt)) 3223 panic("Can't create rootfs"); 3224 3225 ns = create_mnt_ns(mnt); 3226 if (IS_ERR(ns)) 3227 panic("Can't allocate initial namespace"); 3228 3229 init_task.nsproxy->mnt_ns = ns; 3230 get_mnt_ns(ns); 3231 3232 root.mnt = mnt; 3233 root.dentry = mnt->mnt_root; 3234 mnt->mnt_flags |= MNT_LOCKED; 3235 3236 set_fs_pwd(current->fs, &root); 3237 set_fs_root(current->fs, &root); 3238 } 3239 3240 void __init mnt_init(void) 3241 { 3242 unsigned u; 3243 int err; 3244 3245 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount), 3246 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 3247 3248 mount_hashtable = alloc_large_system_hash("Mount-cache", 3249 sizeof(struct hlist_head), 3250 mhash_entries, 19, 3251 0, 3252 &m_hash_shift, &m_hash_mask, 0, 0); 3253 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache", 3254 sizeof(struct hlist_head), 3255 mphash_entries, 19, 3256 0, 3257 &mp_hash_shift, &mp_hash_mask, 0, 0); 3258 3259 if (!mount_hashtable || !mountpoint_hashtable) 3260 panic("Failed to allocate mount hash table\n"); 3261 3262 for (u = 0; u <= m_hash_mask; u++) 3263 INIT_HLIST_HEAD(&mount_hashtable[u]); 3264 for (u = 0; u <= mp_hash_mask; u++) 3265 INIT_HLIST_HEAD(&mountpoint_hashtable[u]); 3266 3267 kernfs_init(); 3268 3269 err = sysfs_init(); 3270 if (err) 3271 printk(KERN_WARNING "%s: sysfs_init error: %d\n", 3272 __func__, err); 3273 fs_kobj = kobject_create_and_add("fs", NULL); 3274 if (!fs_kobj) 3275 printk(KERN_WARNING "%s: kobj create error\n", __func__); 3276 init_rootfs(); 3277 init_mount_tree(); 3278 } 3279 3280 void put_mnt_ns(struct mnt_namespace *ns) 3281 { 3282 if (!atomic_dec_and_test(&ns->count)) 3283 return; 3284 drop_collected_mounts(&ns->root->mnt); 3285 free_mnt_ns(ns); 3286 } 3287 3288 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data) 3289 { 3290 struct vfsmount *mnt; 3291 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data); 3292 if (!IS_ERR(mnt)) { 3293 /* 3294 * it is a longterm mount, don't release mnt until 3295 * we unmount before file sys is unregistered 3296 */ 3297 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL; 3298 } 3299 return mnt; 3300 } 3301 EXPORT_SYMBOL_GPL(kern_mount_data); 3302 3303 void kern_unmount(struct vfsmount *mnt) 3304 { 3305 /* release long term mount so mount point can be released */ 3306 if (!IS_ERR_OR_NULL(mnt)) { 3307 real_mount(mnt)->mnt_ns = NULL; 3308 synchronize_rcu(); /* yecchhh... */ 3309 mntput(mnt); 3310 } 3311 } 3312 EXPORT_SYMBOL(kern_unmount); 3313 3314 bool our_mnt(struct vfsmount *mnt) 3315 { 3316 return check_mnt(real_mount(mnt)); 3317 } 3318 3319 bool current_chrooted(void) 3320 { 3321 /* Does the current process have a non-standard root */ 3322 struct path ns_root; 3323 struct path fs_root; 3324 bool chrooted; 3325 3326 /* Find the namespace root */ 3327 ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt; 3328 ns_root.dentry = ns_root.mnt->mnt_root; 3329 path_get(&ns_root); 3330 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root)) 3331 ; 3332 3333 get_fs_root(current->fs, &fs_root); 3334 3335 chrooted = !path_equal(&fs_root, &ns_root); 3336 3337 path_put(&fs_root); 3338 path_put(&ns_root); 3339 3340 return chrooted; 3341 } 3342 3343 static bool mnt_already_visible(struct mnt_namespace *ns, struct vfsmount *new, 3344 int *new_mnt_flags) 3345 { 3346 int new_flags = *new_mnt_flags; 3347 struct mount *mnt; 3348 bool visible = false; 3349 3350 down_read(&namespace_sem); 3351 list_for_each_entry(mnt, &ns->list, mnt_list) { 3352 struct mount *child; 3353 int mnt_flags; 3354 3355 if (mnt->mnt.mnt_sb->s_type != new->mnt_sb->s_type) 3356 continue; 3357 3358 /* This mount is not fully visible if it's root directory 3359 * is not the root directory of the filesystem. 3360 */ 3361 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root) 3362 continue; 3363 3364 /* A local view of the mount flags */ 3365 mnt_flags = mnt->mnt.mnt_flags; 3366 3367 /* Don't miss readonly hidden in the superblock flags */ 3368 if (mnt->mnt.mnt_sb->s_flags & MS_RDONLY) 3369 mnt_flags |= MNT_LOCK_READONLY; 3370 3371 /* Verify the mount flags are equal to or more permissive 3372 * than the proposed new mount. 3373 */ 3374 if ((mnt_flags & MNT_LOCK_READONLY) && 3375 !(new_flags & MNT_READONLY)) 3376 continue; 3377 if ((mnt_flags & MNT_LOCK_ATIME) && 3378 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK))) 3379 continue; 3380 3381 /* This mount is not fully visible if there are any 3382 * locked child mounts that cover anything except for 3383 * empty directories. 3384 */ 3385 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 3386 struct inode *inode = child->mnt_mountpoint->d_inode; 3387 /* Only worry about locked mounts */ 3388 if (!(child->mnt.mnt_flags & MNT_LOCKED)) 3389 continue; 3390 /* Is the directory permanetly empty? */ 3391 if (!is_empty_dir_inode(inode)) 3392 goto next; 3393 } 3394 /* Preserve the locked attributes */ 3395 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \ 3396 MNT_LOCK_ATIME); 3397 visible = true; 3398 goto found; 3399 next: ; 3400 } 3401 found: 3402 up_read(&namespace_sem); 3403 return visible; 3404 } 3405 3406 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags) 3407 { 3408 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV; 3409 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 3410 unsigned long s_iflags; 3411 3412 if (ns->user_ns == &init_user_ns) 3413 return false; 3414 3415 /* Can this filesystem be too revealing? */ 3416 s_iflags = mnt->mnt_sb->s_iflags; 3417 if (!(s_iflags & SB_I_USERNS_VISIBLE)) 3418 return false; 3419 3420 if ((s_iflags & required_iflags) != required_iflags) { 3421 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n", 3422 required_iflags); 3423 return true; 3424 } 3425 3426 return !mnt_already_visible(ns, mnt, new_mnt_flags); 3427 } 3428 3429 bool mnt_may_suid(struct vfsmount *mnt) 3430 { 3431 /* 3432 * Foreign mounts (accessed via fchdir or through /proc 3433 * symlinks) are always treated as if they are nosuid. This 3434 * prevents namespaces from trusting potentially unsafe 3435 * suid/sgid bits, file caps, or security labels that originate 3436 * in other namespaces. 3437 */ 3438 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) && 3439 current_in_userns(mnt->mnt_sb->s_user_ns); 3440 } 3441 3442 static struct ns_common *mntns_get(struct task_struct *task) 3443 { 3444 struct ns_common *ns = NULL; 3445 struct nsproxy *nsproxy; 3446 3447 task_lock(task); 3448 nsproxy = task->nsproxy; 3449 if (nsproxy) { 3450 ns = &nsproxy->mnt_ns->ns; 3451 get_mnt_ns(to_mnt_ns(ns)); 3452 } 3453 task_unlock(task); 3454 3455 return ns; 3456 } 3457 3458 static void mntns_put(struct ns_common *ns) 3459 { 3460 put_mnt_ns(to_mnt_ns(ns)); 3461 } 3462 3463 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns) 3464 { 3465 struct fs_struct *fs = current->fs; 3466 struct mnt_namespace *mnt_ns = to_mnt_ns(ns); 3467 struct path root; 3468 3469 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) || 3470 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) || 3471 !ns_capable(current_user_ns(), CAP_SYS_ADMIN)) 3472 return -EPERM; 3473 3474 if (fs->users != 1) 3475 return -EINVAL; 3476 3477 get_mnt_ns(mnt_ns); 3478 put_mnt_ns(nsproxy->mnt_ns); 3479 nsproxy->mnt_ns = mnt_ns; 3480 3481 /* Find the root */ 3482 root.mnt = &mnt_ns->root->mnt; 3483 root.dentry = mnt_ns->root->mnt.mnt_root; 3484 path_get(&root); 3485 while(d_mountpoint(root.dentry) && follow_down_one(&root)) 3486 ; 3487 3488 /* Update the pwd and root */ 3489 set_fs_pwd(fs, &root); 3490 set_fs_root(fs, &root); 3491 3492 path_put(&root); 3493 return 0; 3494 } 3495 3496 static struct user_namespace *mntns_owner(struct ns_common *ns) 3497 { 3498 return to_mnt_ns(ns)->user_ns; 3499 } 3500 3501 const struct proc_ns_operations mntns_operations = { 3502 .name = "mnt", 3503 .type = CLONE_NEWNS, 3504 .get = mntns_get, 3505 .put = mntns_put, 3506 .install = mntns_install, 3507 .owner = mntns_owner, 3508 }; 3509