xref: /openbmc/linux/fs/namespace.c (revision 174cd4b1)
1 /*
2  *  linux/fs/namespace.c
3  *
4  * (C) Copyright Al Viro 2000, 2001
5  *	Released under GPL v2.
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h>		/* init_rootfs */
21 #include <linux/fs_struct.h>	/* get_fs_root et.al. */
22 #include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
23 #include <linux/uaccess.h>
24 #include <linux/proc_ns.h>
25 #include <linux/magic.h>
26 #include <linux/bootmem.h>
27 #include <linux/task_work.h>
28 #include "pnode.h"
29 #include "internal.h"
30 
31 /* Maximum number of mounts in a mount namespace */
32 unsigned int sysctl_mount_max __read_mostly = 100000;
33 
34 static unsigned int m_hash_mask __read_mostly;
35 static unsigned int m_hash_shift __read_mostly;
36 static unsigned int mp_hash_mask __read_mostly;
37 static unsigned int mp_hash_shift __read_mostly;
38 
39 static __initdata unsigned long mhash_entries;
40 static int __init set_mhash_entries(char *str)
41 {
42 	if (!str)
43 		return 0;
44 	mhash_entries = simple_strtoul(str, &str, 0);
45 	return 1;
46 }
47 __setup("mhash_entries=", set_mhash_entries);
48 
49 static __initdata unsigned long mphash_entries;
50 static int __init set_mphash_entries(char *str)
51 {
52 	if (!str)
53 		return 0;
54 	mphash_entries = simple_strtoul(str, &str, 0);
55 	return 1;
56 }
57 __setup("mphash_entries=", set_mphash_entries);
58 
59 static u64 event;
60 static DEFINE_IDA(mnt_id_ida);
61 static DEFINE_IDA(mnt_group_ida);
62 static DEFINE_SPINLOCK(mnt_id_lock);
63 static int mnt_id_start = 0;
64 static int mnt_group_start = 1;
65 
66 static struct hlist_head *mount_hashtable __read_mostly;
67 static struct hlist_head *mountpoint_hashtable __read_mostly;
68 static struct kmem_cache *mnt_cache __read_mostly;
69 static DECLARE_RWSEM(namespace_sem);
70 
71 /* /sys/fs */
72 struct kobject *fs_kobj;
73 EXPORT_SYMBOL_GPL(fs_kobj);
74 
75 /*
76  * vfsmount lock may be taken for read to prevent changes to the
77  * vfsmount hash, ie. during mountpoint lookups or walking back
78  * up the tree.
79  *
80  * It should be taken for write in all cases where the vfsmount
81  * tree or hash is modified or when a vfsmount structure is modified.
82  */
83 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
84 
85 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
86 {
87 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
88 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
89 	tmp = tmp + (tmp >> m_hash_shift);
90 	return &mount_hashtable[tmp & m_hash_mask];
91 }
92 
93 static inline struct hlist_head *mp_hash(struct dentry *dentry)
94 {
95 	unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
96 	tmp = tmp + (tmp >> mp_hash_shift);
97 	return &mountpoint_hashtable[tmp & mp_hash_mask];
98 }
99 
100 static int mnt_alloc_id(struct mount *mnt)
101 {
102 	int res;
103 
104 retry:
105 	ida_pre_get(&mnt_id_ida, GFP_KERNEL);
106 	spin_lock(&mnt_id_lock);
107 	res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
108 	if (!res)
109 		mnt_id_start = mnt->mnt_id + 1;
110 	spin_unlock(&mnt_id_lock);
111 	if (res == -EAGAIN)
112 		goto retry;
113 
114 	return res;
115 }
116 
117 static void mnt_free_id(struct mount *mnt)
118 {
119 	int id = mnt->mnt_id;
120 	spin_lock(&mnt_id_lock);
121 	ida_remove(&mnt_id_ida, id);
122 	if (mnt_id_start > id)
123 		mnt_id_start = id;
124 	spin_unlock(&mnt_id_lock);
125 }
126 
127 /*
128  * Allocate a new peer group ID
129  *
130  * mnt_group_ida is protected by namespace_sem
131  */
132 static int mnt_alloc_group_id(struct mount *mnt)
133 {
134 	int res;
135 
136 	if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
137 		return -ENOMEM;
138 
139 	res = ida_get_new_above(&mnt_group_ida,
140 				mnt_group_start,
141 				&mnt->mnt_group_id);
142 	if (!res)
143 		mnt_group_start = mnt->mnt_group_id + 1;
144 
145 	return res;
146 }
147 
148 /*
149  * Release a peer group ID
150  */
151 void mnt_release_group_id(struct mount *mnt)
152 {
153 	int id = mnt->mnt_group_id;
154 	ida_remove(&mnt_group_ida, id);
155 	if (mnt_group_start > id)
156 		mnt_group_start = id;
157 	mnt->mnt_group_id = 0;
158 }
159 
160 /*
161  * vfsmount lock must be held for read
162  */
163 static inline void mnt_add_count(struct mount *mnt, int n)
164 {
165 #ifdef CONFIG_SMP
166 	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
167 #else
168 	preempt_disable();
169 	mnt->mnt_count += n;
170 	preempt_enable();
171 #endif
172 }
173 
174 /*
175  * vfsmount lock must be held for write
176  */
177 unsigned int mnt_get_count(struct mount *mnt)
178 {
179 #ifdef CONFIG_SMP
180 	unsigned int count = 0;
181 	int cpu;
182 
183 	for_each_possible_cpu(cpu) {
184 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
185 	}
186 
187 	return count;
188 #else
189 	return mnt->mnt_count;
190 #endif
191 }
192 
193 static void drop_mountpoint(struct fs_pin *p)
194 {
195 	struct mount *m = container_of(p, struct mount, mnt_umount);
196 	dput(m->mnt_ex_mountpoint);
197 	pin_remove(p);
198 	mntput(&m->mnt);
199 }
200 
201 static struct mount *alloc_vfsmnt(const char *name)
202 {
203 	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
204 	if (mnt) {
205 		int err;
206 
207 		err = mnt_alloc_id(mnt);
208 		if (err)
209 			goto out_free_cache;
210 
211 		if (name) {
212 			mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
213 			if (!mnt->mnt_devname)
214 				goto out_free_id;
215 		}
216 
217 #ifdef CONFIG_SMP
218 		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
219 		if (!mnt->mnt_pcp)
220 			goto out_free_devname;
221 
222 		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
223 #else
224 		mnt->mnt_count = 1;
225 		mnt->mnt_writers = 0;
226 #endif
227 
228 		INIT_HLIST_NODE(&mnt->mnt_hash);
229 		INIT_LIST_HEAD(&mnt->mnt_child);
230 		INIT_LIST_HEAD(&mnt->mnt_mounts);
231 		INIT_LIST_HEAD(&mnt->mnt_list);
232 		INIT_LIST_HEAD(&mnt->mnt_expire);
233 		INIT_LIST_HEAD(&mnt->mnt_share);
234 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
235 		INIT_LIST_HEAD(&mnt->mnt_slave);
236 		INIT_HLIST_NODE(&mnt->mnt_mp_list);
237 #ifdef CONFIG_FSNOTIFY
238 		INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
239 #endif
240 		init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
241 	}
242 	return mnt;
243 
244 #ifdef CONFIG_SMP
245 out_free_devname:
246 	kfree_const(mnt->mnt_devname);
247 #endif
248 out_free_id:
249 	mnt_free_id(mnt);
250 out_free_cache:
251 	kmem_cache_free(mnt_cache, mnt);
252 	return NULL;
253 }
254 
255 /*
256  * Most r/o checks on a fs are for operations that take
257  * discrete amounts of time, like a write() or unlink().
258  * We must keep track of when those operations start
259  * (for permission checks) and when they end, so that
260  * we can determine when writes are able to occur to
261  * a filesystem.
262  */
263 /*
264  * __mnt_is_readonly: check whether a mount is read-only
265  * @mnt: the mount to check for its write status
266  *
267  * This shouldn't be used directly ouside of the VFS.
268  * It does not guarantee that the filesystem will stay
269  * r/w, just that it is right *now*.  This can not and
270  * should not be used in place of IS_RDONLY(inode).
271  * mnt_want/drop_write() will _keep_ the filesystem
272  * r/w.
273  */
274 int __mnt_is_readonly(struct vfsmount *mnt)
275 {
276 	if (mnt->mnt_flags & MNT_READONLY)
277 		return 1;
278 	if (mnt->mnt_sb->s_flags & MS_RDONLY)
279 		return 1;
280 	return 0;
281 }
282 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
283 
284 static inline void mnt_inc_writers(struct mount *mnt)
285 {
286 #ifdef CONFIG_SMP
287 	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
288 #else
289 	mnt->mnt_writers++;
290 #endif
291 }
292 
293 static inline void mnt_dec_writers(struct mount *mnt)
294 {
295 #ifdef CONFIG_SMP
296 	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
297 #else
298 	mnt->mnt_writers--;
299 #endif
300 }
301 
302 static unsigned int mnt_get_writers(struct mount *mnt)
303 {
304 #ifdef CONFIG_SMP
305 	unsigned int count = 0;
306 	int cpu;
307 
308 	for_each_possible_cpu(cpu) {
309 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
310 	}
311 
312 	return count;
313 #else
314 	return mnt->mnt_writers;
315 #endif
316 }
317 
318 static int mnt_is_readonly(struct vfsmount *mnt)
319 {
320 	if (mnt->mnt_sb->s_readonly_remount)
321 		return 1;
322 	/* Order wrt setting s_flags/s_readonly_remount in do_remount() */
323 	smp_rmb();
324 	return __mnt_is_readonly(mnt);
325 }
326 
327 /*
328  * Most r/o & frozen checks on a fs are for operations that take discrete
329  * amounts of time, like a write() or unlink().  We must keep track of when
330  * those operations start (for permission checks) and when they end, so that we
331  * can determine when writes are able to occur to a filesystem.
332  */
333 /**
334  * __mnt_want_write - get write access to a mount without freeze protection
335  * @m: the mount on which to take a write
336  *
337  * This tells the low-level filesystem that a write is about to be performed to
338  * it, and makes sure that writes are allowed (mnt it read-write) before
339  * returning success. This operation does not protect against filesystem being
340  * frozen. When the write operation is finished, __mnt_drop_write() must be
341  * called. This is effectively a refcount.
342  */
343 int __mnt_want_write(struct vfsmount *m)
344 {
345 	struct mount *mnt = real_mount(m);
346 	int ret = 0;
347 
348 	preempt_disable();
349 	mnt_inc_writers(mnt);
350 	/*
351 	 * The store to mnt_inc_writers must be visible before we pass
352 	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
353 	 * incremented count after it has set MNT_WRITE_HOLD.
354 	 */
355 	smp_mb();
356 	while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
357 		cpu_relax();
358 	/*
359 	 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
360 	 * be set to match its requirements. So we must not load that until
361 	 * MNT_WRITE_HOLD is cleared.
362 	 */
363 	smp_rmb();
364 	if (mnt_is_readonly(m)) {
365 		mnt_dec_writers(mnt);
366 		ret = -EROFS;
367 	}
368 	preempt_enable();
369 
370 	return ret;
371 }
372 
373 /**
374  * mnt_want_write - get write access to a mount
375  * @m: the mount on which to take a write
376  *
377  * This tells the low-level filesystem that a write is about to be performed to
378  * it, and makes sure that writes are allowed (mount is read-write, filesystem
379  * is not frozen) before returning success.  When the write operation is
380  * finished, mnt_drop_write() must be called.  This is effectively a refcount.
381  */
382 int mnt_want_write(struct vfsmount *m)
383 {
384 	int ret;
385 
386 	sb_start_write(m->mnt_sb);
387 	ret = __mnt_want_write(m);
388 	if (ret)
389 		sb_end_write(m->mnt_sb);
390 	return ret;
391 }
392 EXPORT_SYMBOL_GPL(mnt_want_write);
393 
394 /**
395  * mnt_clone_write - get write access to a mount
396  * @mnt: the mount on which to take a write
397  *
398  * This is effectively like mnt_want_write, except
399  * it must only be used to take an extra write reference
400  * on a mountpoint that we already know has a write reference
401  * on it. This allows some optimisation.
402  *
403  * After finished, mnt_drop_write must be called as usual to
404  * drop the reference.
405  */
406 int mnt_clone_write(struct vfsmount *mnt)
407 {
408 	/* superblock may be r/o */
409 	if (__mnt_is_readonly(mnt))
410 		return -EROFS;
411 	preempt_disable();
412 	mnt_inc_writers(real_mount(mnt));
413 	preempt_enable();
414 	return 0;
415 }
416 EXPORT_SYMBOL_GPL(mnt_clone_write);
417 
418 /**
419  * __mnt_want_write_file - get write access to a file's mount
420  * @file: the file who's mount on which to take a write
421  *
422  * This is like __mnt_want_write, but it takes a file and can
423  * do some optimisations if the file is open for write already
424  */
425 int __mnt_want_write_file(struct file *file)
426 {
427 	if (!(file->f_mode & FMODE_WRITER))
428 		return __mnt_want_write(file->f_path.mnt);
429 	else
430 		return mnt_clone_write(file->f_path.mnt);
431 }
432 
433 /**
434  * mnt_want_write_file - get write access to a file's mount
435  * @file: the file who's mount on which to take a write
436  *
437  * This is like mnt_want_write, but it takes a file and can
438  * do some optimisations if the file is open for write already
439  */
440 int mnt_want_write_file(struct file *file)
441 {
442 	int ret;
443 
444 	sb_start_write(file->f_path.mnt->mnt_sb);
445 	ret = __mnt_want_write_file(file);
446 	if (ret)
447 		sb_end_write(file->f_path.mnt->mnt_sb);
448 	return ret;
449 }
450 EXPORT_SYMBOL_GPL(mnt_want_write_file);
451 
452 /**
453  * __mnt_drop_write - give up write access to a mount
454  * @mnt: the mount on which to give up write access
455  *
456  * Tells the low-level filesystem that we are done
457  * performing writes to it.  Must be matched with
458  * __mnt_want_write() call above.
459  */
460 void __mnt_drop_write(struct vfsmount *mnt)
461 {
462 	preempt_disable();
463 	mnt_dec_writers(real_mount(mnt));
464 	preempt_enable();
465 }
466 
467 /**
468  * mnt_drop_write - give up write access to a mount
469  * @mnt: the mount on which to give up write access
470  *
471  * Tells the low-level filesystem that we are done performing writes to it and
472  * also allows filesystem to be frozen again.  Must be matched with
473  * mnt_want_write() call above.
474  */
475 void mnt_drop_write(struct vfsmount *mnt)
476 {
477 	__mnt_drop_write(mnt);
478 	sb_end_write(mnt->mnt_sb);
479 }
480 EXPORT_SYMBOL_GPL(mnt_drop_write);
481 
482 void __mnt_drop_write_file(struct file *file)
483 {
484 	__mnt_drop_write(file->f_path.mnt);
485 }
486 
487 void mnt_drop_write_file(struct file *file)
488 {
489 	mnt_drop_write(file->f_path.mnt);
490 }
491 EXPORT_SYMBOL(mnt_drop_write_file);
492 
493 static int mnt_make_readonly(struct mount *mnt)
494 {
495 	int ret = 0;
496 
497 	lock_mount_hash();
498 	mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
499 	/*
500 	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
501 	 * should be visible before we do.
502 	 */
503 	smp_mb();
504 
505 	/*
506 	 * With writers on hold, if this value is zero, then there are
507 	 * definitely no active writers (although held writers may subsequently
508 	 * increment the count, they'll have to wait, and decrement it after
509 	 * seeing MNT_READONLY).
510 	 *
511 	 * It is OK to have counter incremented on one CPU and decremented on
512 	 * another: the sum will add up correctly. The danger would be when we
513 	 * sum up each counter, if we read a counter before it is incremented,
514 	 * but then read another CPU's count which it has been subsequently
515 	 * decremented from -- we would see more decrements than we should.
516 	 * MNT_WRITE_HOLD protects against this scenario, because
517 	 * mnt_want_write first increments count, then smp_mb, then spins on
518 	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
519 	 * we're counting up here.
520 	 */
521 	if (mnt_get_writers(mnt) > 0)
522 		ret = -EBUSY;
523 	else
524 		mnt->mnt.mnt_flags |= MNT_READONLY;
525 	/*
526 	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
527 	 * that become unheld will see MNT_READONLY.
528 	 */
529 	smp_wmb();
530 	mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
531 	unlock_mount_hash();
532 	return ret;
533 }
534 
535 static void __mnt_unmake_readonly(struct mount *mnt)
536 {
537 	lock_mount_hash();
538 	mnt->mnt.mnt_flags &= ~MNT_READONLY;
539 	unlock_mount_hash();
540 }
541 
542 int sb_prepare_remount_readonly(struct super_block *sb)
543 {
544 	struct mount *mnt;
545 	int err = 0;
546 
547 	/* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
548 	if (atomic_long_read(&sb->s_remove_count))
549 		return -EBUSY;
550 
551 	lock_mount_hash();
552 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
553 		if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
554 			mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
555 			smp_mb();
556 			if (mnt_get_writers(mnt) > 0) {
557 				err = -EBUSY;
558 				break;
559 			}
560 		}
561 	}
562 	if (!err && atomic_long_read(&sb->s_remove_count))
563 		err = -EBUSY;
564 
565 	if (!err) {
566 		sb->s_readonly_remount = 1;
567 		smp_wmb();
568 	}
569 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
570 		if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
571 			mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
572 	}
573 	unlock_mount_hash();
574 
575 	return err;
576 }
577 
578 static void free_vfsmnt(struct mount *mnt)
579 {
580 	kfree_const(mnt->mnt_devname);
581 #ifdef CONFIG_SMP
582 	free_percpu(mnt->mnt_pcp);
583 #endif
584 	kmem_cache_free(mnt_cache, mnt);
585 }
586 
587 static void delayed_free_vfsmnt(struct rcu_head *head)
588 {
589 	free_vfsmnt(container_of(head, struct mount, mnt_rcu));
590 }
591 
592 /* call under rcu_read_lock */
593 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
594 {
595 	struct mount *mnt;
596 	if (read_seqretry(&mount_lock, seq))
597 		return 1;
598 	if (bastard == NULL)
599 		return 0;
600 	mnt = real_mount(bastard);
601 	mnt_add_count(mnt, 1);
602 	if (likely(!read_seqretry(&mount_lock, seq)))
603 		return 0;
604 	if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
605 		mnt_add_count(mnt, -1);
606 		return 1;
607 	}
608 	return -1;
609 }
610 
611 /* call under rcu_read_lock */
612 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
613 {
614 	int res = __legitimize_mnt(bastard, seq);
615 	if (likely(!res))
616 		return true;
617 	if (unlikely(res < 0)) {
618 		rcu_read_unlock();
619 		mntput(bastard);
620 		rcu_read_lock();
621 	}
622 	return false;
623 }
624 
625 /*
626  * find the first mount at @dentry on vfsmount @mnt.
627  * call under rcu_read_lock()
628  */
629 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
630 {
631 	struct hlist_head *head = m_hash(mnt, dentry);
632 	struct mount *p;
633 
634 	hlist_for_each_entry_rcu(p, head, mnt_hash)
635 		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
636 			return p;
637 	return NULL;
638 }
639 
640 /*
641  * lookup_mnt - Return the first child mount mounted at path
642  *
643  * "First" means first mounted chronologically.  If you create the
644  * following mounts:
645  *
646  * mount /dev/sda1 /mnt
647  * mount /dev/sda2 /mnt
648  * mount /dev/sda3 /mnt
649  *
650  * Then lookup_mnt() on the base /mnt dentry in the root mount will
651  * return successively the root dentry and vfsmount of /dev/sda1, then
652  * /dev/sda2, then /dev/sda3, then NULL.
653  *
654  * lookup_mnt takes a reference to the found vfsmount.
655  */
656 struct vfsmount *lookup_mnt(const struct path *path)
657 {
658 	struct mount *child_mnt;
659 	struct vfsmount *m;
660 	unsigned seq;
661 
662 	rcu_read_lock();
663 	do {
664 		seq = read_seqbegin(&mount_lock);
665 		child_mnt = __lookup_mnt(path->mnt, path->dentry);
666 		m = child_mnt ? &child_mnt->mnt : NULL;
667 	} while (!legitimize_mnt(m, seq));
668 	rcu_read_unlock();
669 	return m;
670 }
671 
672 /*
673  * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
674  *                         current mount namespace.
675  *
676  * The common case is dentries are not mountpoints at all and that
677  * test is handled inline.  For the slow case when we are actually
678  * dealing with a mountpoint of some kind, walk through all of the
679  * mounts in the current mount namespace and test to see if the dentry
680  * is a mountpoint.
681  *
682  * The mount_hashtable is not usable in the context because we
683  * need to identify all mounts that may be in the current mount
684  * namespace not just a mount that happens to have some specified
685  * parent mount.
686  */
687 bool __is_local_mountpoint(struct dentry *dentry)
688 {
689 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
690 	struct mount *mnt;
691 	bool is_covered = false;
692 
693 	if (!d_mountpoint(dentry))
694 		goto out;
695 
696 	down_read(&namespace_sem);
697 	list_for_each_entry(mnt, &ns->list, mnt_list) {
698 		is_covered = (mnt->mnt_mountpoint == dentry);
699 		if (is_covered)
700 			break;
701 	}
702 	up_read(&namespace_sem);
703 out:
704 	return is_covered;
705 }
706 
707 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
708 {
709 	struct hlist_head *chain = mp_hash(dentry);
710 	struct mountpoint *mp;
711 
712 	hlist_for_each_entry(mp, chain, m_hash) {
713 		if (mp->m_dentry == dentry) {
714 			/* might be worth a WARN_ON() */
715 			if (d_unlinked(dentry))
716 				return ERR_PTR(-ENOENT);
717 			mp->m_count++;
718 			return mp;
719 		}
720 	}
721 	return NULL;
722 }
723 
724 static struct mountpoint *get_mountpoint(struct dentry *dentry)
725 {
726 	struct mountpoint *mp, *new = NULL;
727 	int ret;
728 
729 	if (d_mountpoint(dentry)) {
730 mountpoint:
731 		read_seqlock_excl(&mount_lock);
732 		mp = lookup_mountpoint(dentry);
733 		read_sequnlock_excl(&mount_lock);
734 		if (mp)
735 			goto done;
736 	}
737 
738 	if (!new)
739 		new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
740 	if (!new)
741 		return ERR_PTR(-ENOMEM);
742 
743 
744 	/* Exactly one processes may set d_mounted */
745 	ret = d_set_mounted(dentry);
746 
747 	/* Someone else set d_mounted? */
748 	if (ret == -EBUSY)
749 		goto mountpoint;
750 
751 	/* The dentry is not available as a mountpoint? */
752 	mp = ERR_PTR(ret);
753 	if (ret)
754 		goto done;
755 
756 	/* Add the new mountpoint to the hash table */
757 	read_seqlock_excl(&mount_lock);
758 	new->m_dentry = dentry;
759 	new->m_count = 1;
760 	hlist_add_head(&new->m_hash, mp_hash(dentry));
761 	INIT_HLIST_HEAD(&new->m_list);
762 	read_sequnlock_excl(&mount_lock);
763 
764 	mp = new;
765 	new = NULL;
766 done:
767 	kfree(new);
768 	return mp;
769 }
770 
771 static void put_mountpoint(struct mountpoint *mp)
772 {
773 	if (!--mp->m_count) {
774 		struct dentry *dentry = mp->m_dentry;
775 		BUG_ON(!hlist_empty(&mp->m_list));
776 		spin_lock(&dentry->d_lock);
777 		dentry->d_flags &= ~DCACHE_MOUNTED;
778 		spin_unlock(&dentry->d_lock);
779 		hlist_del(&mp->m_hash);
780 		kfree(mp);
781 	}
782 }
783 
784 static inline int check_mnt(struct mount *mnt)
785 {
786 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
787 }
788 
789 /*
790  * vfsmount lock must be held for write
791  */
792 static void touch_mnt_namespace(struct mnt_namespace *ns)
793 {
794 	if (ns) {
795 		ns->event = ++event;
796 		wake_up_interruptible(&ns->poll);
797 	}
798 }
799 
800 /*
801  * vfsmount lock must be held for write
802  */
803 static void __touch_mnt_namespace(struct mnt_namespace *ns)
804 {
805 	if (ns && ns->event != event) {
806 		ns->event = event;
807 		wake_up_interruptible(&ns->poll);
808 	}
809 }
810 
811 /*
812  * vfsmount lock must be held for write
813  */
814 static void unhash_mnt(struct mount *mnt)
815 {
816 	mnt->mnt_parent = mnt;
817 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
818 	list_del_init(&mnt->mnt_child);
819 	hlist_del_init_rcu(&mnt->mnt_hash);
820 	hlist_del_init(&mnt->mnt_mp_list);
821 	put_mountpoint(mnt->mnt_mp);
822 	mnt->mnt_mp = NULL;
823 }
824 
825 /*
826  * vfsmount lock must be held for write
827  */
828 static void detach_mnt(struct mount *mnt, struct path *old_path)
829 {
830 	old_path->dentry = mnt->mnt_mountpoint;
831 	old_path->mnt = &mnt->mnt_parent->mnt;
832 	unhash_mnt(mnt);
833 }
834 
835 /*
836  * vfsmount lock must be held for write
837  */
838 static void umount_mnt(struct mount *mnt)
839 {
840 	/* old mountpoint will be dropped when we can do that */
841 	mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
842 	unhash_mnt(mnt);
843 }
844 
845 /*
846  * vfsmount lock must be held for write
847  */
848 void mnt_set_mountpoint(struct mount *mnt,
849 			struct mountpoint *mp,
850 			struct mount *child_mnt)
851 {
852 	mp->m_count++;
853 	mnt_add_count(mnt, 1);	/* essentially, that's mntget */
854 	child_mnt->mnt_mountpoint = dget(mp->m_dentry);
855 	child_mnt->mnt_parent = mnt;
856 	child_mnt->mnt_mp = mp;
857 	hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
858 }
859 
860 static void __attach_mnt(struct mount *mnt, struct mount *parent)
861 {
862 	hlist_add_head_rcu(&mnt->mnt_hash,
863 			   m_hash(&parent->mnt, mnt->mnt_mountpoint));
864 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
865 }
866 
867 /*
868  * vfsmount lock must be held for write
869  */
870 static void attach_mnt(struct mount *mnt,
871 			struct mount *parent,
872 			struct mountpoint *mp)
873 {
874 	mnt_set_mountpoint(parent, mp, mnt);
875 	__attach_mnt(mnt, parent);
876 }
877 
878 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
879 {
880 	struct mountpoint *old_mp = mnt->mnt_mp;
881 	struct dentry *old_mountpoint = mnt->mnt_mountpoint;
882 	struct mount *old_parent = mnt->mnt_parent;
883 
884 	list_del_init(&mnt->mnt_child);
885 	hlist_del_init(&mnt->mnt_mp_list);
886 	hlist_del_init_rcu(&mnt->mnt_hash);
887 
888 	attach_mnt(mnt, parent, mp);
889 
890 	put_mountpoint(old_mp);
891 
892 	/*
893 	 * Safely avoid even the suggestion this code might sleep or
894 	 * lock the mount hash by taking advantage of the knowledge that
895 	 * mnt_change_mountpoint will not release the final reference
896 	 * to a mountpoint.
897 	 *
898 	 * During mounting, the mount passed in as the parent mount will
899 	 * continue to use the old mountpoint and during unmounting, the
900 	 * old mountpoint will continue to exist until namespace_unlock,
901 	 * which happens well after mnt_change_mountpoint.
902 	 */
903 	spin_lock(&old_mountpoint->d_lock);
904 	old_mountpoint->d_lockref.count--;
905 	spin_unlock(&old_mountpoint->d_lock);
906 
907 	mnt_add_count(old_parent, -1);
908 }
909 
910 /*
911  * vfsmount lock must be held for write
912  */
913 static void commit_tree(struct mount *mnt)
914 {
915 	struct mount *parent = mnt->mnt_parent;
916 	struct mount *m;
917 	LIST_HEAD(head);
918 	struct mnt_namespace *n = parent->mnt_ns;
919 
920 	BUG_ON(parent == mnt);
921 
922 	list_add_tail(&head, &mnt->mnt_list);
923 	list_for_each_entry(m, &head, mnt_list)
924 		m->mnt_ns = n;
925 
926 	list_splice(&head, n->list.prev);
927 
928 	n->mounts += n->pending_mounts;
929 	n->pending_mounts = 0;
930 
931 	__attach_mnt(mnt, parent);
932 	touch_mnt_namespace(n);
933 }
934 
935 static struct mount *next_mnt(struct mount *p, struct mount *root)
936 {
937 	struct list_head *next = p->mnt_mounts.next;
938 	if (next == &p->mnt_mounts) {
939 		while (1) {
940 			if (p == root)
941 				return NULL;
942 			next = p->mnt_child.next;
943 			if (next != &p->mnt_parent->mnt_mounts)
944 				break;
945 			p = p->mnt_parent;
946 		}
947 	}
948 	return list_entry(next, struct mount, mnt_child);
949 }
950 
951 static struct mount *skip_mnt_tree(struct mount *p)
952 {
953 	struct list_head *prev = p->mnt_mounts.prev;
954 	while (prev != &p->mnt_mounts) {
955 		p = list_entry(prev, struct mount, mnt_child);
956 		prev = p->mnt_mounts.prev;
957 	}
958 	return p;
959 }
960 
961 struct vfsmount *
962 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
963 {
964 	struct mount *mnt;
965 	struct dentry *root;
966 
967 	if (!type)
968 		return ERR_PTR(-ENODEV);
969 
970 	mnt = alloc_vfsmnt(name);
971 	if (!mnt)
972 		return ERR_PTR(-ENOMEM);
973 
974 	if (flags & MS_KERNMOUNT)
975 		mnt->mnt.mnt_flags = MNT_INTERNAL;
976 
977 	root = mount_fs(type, flags, name, data);
978 	if (IS_ERR(root)) {
979 		mnt_free_id(mnt);
980 		free_vfsmnt(mnt);
981 		return ERR_CAST(root);
982 	}
983 
984 	mnt->mnt.mnt_root = root;
985 	mnt->mnt.mnt_sb = root->d_sb;
986 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
987 	mnt->mnt_parent = mnt;
988 	lock_mount_hash();
989 	list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
990 	unlock_mount_hash();
991 	return &mnt->mnt;
992 }
993 EXPORT_SYMBOL_GPL(vfs_kern_mount);
994 
995 struct vfsmount *
996 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
997 	     const char *name, void *data)
998 {
999 	/* Until it is worked out how to pass the user namespace
1000 	 * through from the parent mount to the submount don't support
1001 	 * unprivileged mounts with submounts.
1002 	 */
1003 	if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1004 		return ERR_PTR(-EPERM);
1005 
1006 	return vfs_kern_mount(type, MS_SUBMOUNT, name, data);
1007 }
1008 EXPORT_SYMBOL_GPL(vfs_submount);
1009 
1010 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1011 					int flag)
1012 {
1013 	struct super_block *sb = old->mnt.mnt_sb;
1014 	struct mount *mnt;
1015 	int err;
1016 
1017 	mnt = alloc_vfsmnt(old->mnt_devname);
1018 	if (!mnt)
1019 		return ERR_PTR(-ENOMEM);
1020 
1021 	if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1022 		mnt->mnt_group_id = 0; /* not a peer of original */
1023 	else
1024 		mnt->mnt_group_id = old->mnt_group_id;
1025 
1026 	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1027 		err = mnt_alloc_group_id(mnt);
1028 		if (err)
1029 			goto out_free;
1030 	}
1031 
1032 	mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
1033 	/* Don't allow unprivileged users to change mount flags */
1034 	if (flag & CL_UNPRIVILEGED) {
1035 		mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
1036 
1037 		if (mnt->mnt.mnt_flags & MNT_READONLY)
1038 			mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
1039 
1040 		if (mnt->mnt.mnt_flags & MNT_NODEV)
1041 			mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
1042 
1043 		if (mnt->mnt.mnt_flags & MNT_NOSUID)
1044 			mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
1045 
1046 		if (mnt->mnt.mnt_flags & MNT_NOEXEC)
1047 			mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
1048 	}
1049 
1050 	/* Don't allow unprivileged users to reveal what is under a mount */
1051 	if ((flag & CL_UNPRIVILEGED) &&
1052 	    (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
1053 		mnt->mnt.mnt_flags |= MNT_LOCKED;
1054 
1055 	atomic_inc(&sb->s_active);
1056 	mnt->mnt.mnt_sb = sb;
1057 	mnt->mnt.mnt_root = dget(root);
1058 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1059 	mnt->mnt_parent = mnt;
1060 	lock_mount_hash();
1061 	list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1062 	unlock_mount_hash();
1063 
1064 	if ((flag & CL_SLAVE) ||
1065 	    ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1066 		list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1067 		mnt->mnt_master = old;
1068 		CLEAR_MNT_SHARED(mnt);
1069 	} else if (!(flag & CL_PRIVATE)) {
1070 		if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1071 			list_add(&mnt->mnt_share, &old->mnt_share);
1072 		if (IS_MNT_SLAVE(old))
1073 			list_add(&mnt->mnt_slave, &old->mnt_slave);
1074 		mnt->mnt_master = old->mnt_master;
1075 	} else {
1076 		CLEAR_MNT_SHARED(mnt);
1077 	}
1078 	if (flag & CL_MAKE_SHARED)
1079 		set_mnt_shared(mnt);
1080 
1081 	/* stick the duplicate mount on the same expiry list
1082 	 * as the original if that was on one */
1083 	if (flag & CL_EXPIRE) {
1084 		if (!list_empty(&old->mnt_expire))
1085 			list_add(&mnt->mnt_expire, &old->mnt_expire);
1086 	}
1087 
1088 	return mnt;
1089 
1090  out_free:
1091 	mnt_free_id(mnt);
1092 	free_vfsmnt(mnt);
1093 	return ERR_PTR(err);
1094 }
1095 
1096 static void cleanup_mnt(struct mount *mnt)
1097 {
1098 	/*
1099 	 * This probably indicates that somebody messed
1100 	 * up a mnt_want/drop_write() pair.  If this
1101 	 * happens, the filesystem was probably unable
1102 	 * to make r/w->r/o transitions.
1103 	 */
1104 	/*
1105 	 * The locking used to deal with mnt_count decrement provides barriers,
1106 	 * so mnt_get_writers() below is safe.
1107 	 */
1108 	WARN_ON(mnt_get_writers(mnt));
1109 	if (unlikely(mnt->mnt_pins.first))
1110 		mnt_pin_kill(mnt);
1111 	fsnotify_vfsmount_delete(&mnt->mnt);
1112 	dput(mnt->mnt.mnt_root);
1113 	deactivate_super(mnt->mnt.mnt_sb);
1114 	mnt_free_id(mnt);
1115 	call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1116 }
1117 
1118 static void __cleanup_mnt(struct rcu_head *head)
1119 {
1120 	cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1121 }
1122 
1123 static LLIST_HEAD(delayed_mntput_list);
1124 static void delayed_mntput(struct work_struct *unused)
1125 {
1126 	struct llist_node *node = llist_del_all(&delayed_mntput_list);
1127 	struct llist_node *next;
1128 
1129 	for (; node; node = next) {
1130 		next = llist_next(node);
1131 		cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
1132 	}
1133 }
1134 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1135 
1136 static void mntput_no_expire(struct mount *mnt)
1137 {
1138 	rcu_read_lock();
1139 	mnt_add_count(mnt, -1);
1140 	if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
1141 		rcu_read_unlock();
1142 		return;
1143 	}
1144 	lock_mount_hash();
1145 	if (mnt_get_count(mnt)) {
1146 		rcu_read_unlock();
1147 		unlock_mount_hash();
1148 		return;
1149 	}
1150 	if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1151 		rcu_read_unlock();
1152 		unlock_mount_hash();
1153 		return;
1154 	}
1155 	mnt->mnt.mnt_flags |= MNT_DOOMED;
1156 	rcu_read_unlock();
1157 
1158 	list_del(&mnt->mnt_instance);
1159 
1160 	if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1161 		struct mount *p, *tmp;
1162 		list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts,  mnt_child) {
1163 			umount_mnt(p);
1164 		}
1165 	}
1166 	unlock_mount_hash();
1167 
1168 	if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1169 		struct task_struct *task = current;
1170 		if (likely(!(task->flags & PF_KTHREAD))) {
1171 			init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1172 			if (!task_work_add(task, &mnt->mnt_rcu, true))
1173 				return;
1174 		}
1175 		if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1176 			schedule_delayed_work(&delayed_mntput_work, 1);
1177 		return;
1178 	}
1179 	cleanup_mnt(mnt);
1180 }
1181 
1182 void mntput(struct vfsmount *mnt)
1183 {
1184 	if (mnt) {
1185 		struct mount *m = real_mount(mnt);
1186 		/* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1187 		if (unlikely(m->mnt_expiry_mark))
1188 			m->mnt_expiry_mark = 0;
1189 		mntput_no_expire(m);
1190 	}
1191 }
1192 EXPORT_SYMBOL(mntput);
1193 
1194 struct vfsmount *mntget(struct vfsmount *mnt)
1195 {
1196 	if (mnt)
1197 		mnt_add_count(real_mount(mnt), 1);
1198 	return mnt;
1199 }
1200 EXPORT_SYMBOL(mntget);
1201 
1202 /* path_is_mountpoint() - Check if path is a mount in the current
1203  *                          namespace.
1204  *
1205  *  d_mountpoint() can only be used reliably to establish if a dentry is
1206  *  not mounted in any namespace and that common case is handled inline.
1207  *  d_mountpoint() isn't aware of the possibility there may be multiple
1208  *  mounts using a given dentry in a different namespace. This function
1209  *  checks if the passed in path is a mountpoint rather than the dentry
1210  *  alone.
1211  */
1212 bool path_is_mountpoint(const struct path *path)
1213 {
1214 	unsigned seq;
1215 	bool res;
1216 
1217 	if (!d_mountpoint(path->dentry))
1218 		return false;
1219 
1220 	rcu_read_lock();
1221 	do {
1222 		seq = read_seqbegin(&mount_lock);
1223 		res = __path_is_mountpoint(path);
1224 	} while (read_seqretry(&mount_lock, seq));
1225 	rcu_read_unlock();
1226 
1227 	return res;
1228 }
1229 EXPORT_SYMBOL(path_is_mountpoint);
1230 
1231 struct vfsmount *mnt_clone_internal(const struct path *path)
1232 {
1233 	struct mount *p;
1234 	p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1235 	if (IS_ERR(p))
1236 		return ERR_CAST(p);
1237 	p->mnt.mnt_flags |= MNT_INTERNAL;
1238 	return &p->mnt;
1239 }
1240 
1241 static inline void mangle(struct seq_file *m, const char *s)
1242 {
1243 	seq_escape(m, s, " \t\n\\");
1244 }
1245 
1246 /*
1247  * Simple .show_options callback for filesystems which don't want to
1248  * implement more complex mount option showing.
1249  *
1250  * See also save_mount_options().
1251  */
1252 int generic_show_options(struct seq_file *m, struct dentry *root)
1253 {
1254 	const char *options;
1255 
1256 	rcu_read_lock();
1257 	options = rcu_dereference(root->d_sb->s_options);
1258 
1259 	if (options != NULL && options[0]) {
1260 		seq_putc(m, ',');
1261 		mangle(m, options);
1262 	}
1263 	rcu_read_unlock();
1264 
1265 	return 0;
1266 }
1267 EXPORT_SYMBOL(generic_show_options);
1268 
1269 /*
1270  * If filesystem uses generic_show_options(), this function should be
1271  * called from the fill_super() callback.
1272  *
1273  * The .remount_fs callback usually needs to be handled in a special
1274  * way, to make sure, that previous options are not overwritten if the
1275  * remount fails.
1276  *
1277  * Also note, that if the filesystem's .remount_fs function doesn't
1278  * reset all options to their default value, but changes only newly
1279  * given options, then the displayed options will not reflect reality
1280  * any more.
1281  */
1282 void save_mount_options(struct super_block *sb, char *options)
1283 {
1284 	BUG_ON(sb->s_options);
1285 	rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
1286 }
1287 EXPORT_SYMBOL(save_mount_options);
1288 
1289 void replace_mount_options(struct super_block *sb, char *options)
1290 {
1291 	char *old = sb->s_options;
1292 	rcu_assign_pointer(sb->s_options, options);
1293 	if (old) {
1294 		synchronize_rcu();
1295 		kfree(old);
1296 	}
1297 }
1298 EXPORT_SYMBOL(replace_mount_options);
1299 
1300 #ifdef CONFIG_PROC_FS
1301 /* iterator; we want it to have access to namespace_sem, thus here... */
1302 static void *m_start(struct seq_file *m, loff_t *pos)
1303 {
1304 	struct proc_mounts *p = m->private;
1305 
1306 	down_read(&namespace_sem);
1307 	if (p->cached_event == p->ns->event) {
1308 		void *v = p->cached_mount;
1309 		if (*pos == p->cached_index)
1310 			return v;
1311 		if (*pos == p->cached_index + 1) {
1312 			v = seq_list_next(v, &p->ns->list, &p->cached_index);
1313 			return p->cached_mount = v;
1314 		}
1315 	}
1316 
1317 	p->cached_event = p->ns->event;
1318 	p->cached_mount = seq_list_start(&p->ns->list, *pos);
1319 	p->cached_index = *pos;
1320 	return p->cached_mount;
1321 }
1322 
1323 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1324 {
1325 	struct proc_mounts *p = m->private;
1326 
1327 	p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1328 	p->cached_index = *pos;
1329 	return p->cached_mount;
1330 }
1331 
1332 static void m_stop(struct seq_file *m, void *v)
1333 {
1334 	up_read(&namespace_sem);
1335 }
1336 
1337 static int m_show(struct seq_file *m, void *v)
1338 {
1339 	struct proc_mounts *p = m->private;
1340 	struct mount *r = list_entry(v, struct mount, mnt_list);
1341 	return p->show(m, &r->mnt);
1342 }
1343 
1344 const struct seq_operations mounts_op = {
1345 	.start	= m_start,
1346 	.next	= m_next,
1347 	.stop	= m_stop,
1348 	.show	= m_show,
1349 };
1350 #endif  /* CONFIG_PROC_FS */
1351 
1352 /**
1353  * may_umount_tree - check if a mount tree is busy
1354  * @mnt: root of mount tree
1355  *
1356  * This is called to check if a tree of mounts has any
1357  * open files, pwds, chroots or sub mounts that are
1358  * busy.
1359  */
1360 int may_umount_tree(struct vfsmount *m)
1361 {
1362 	struct mount *mnt = real_mount(m);
1363 	int actual_refs = 0;
1364 	int minimum_refs = 0;
1365 	struct mount *p;
1366 	BUG_ON(!m);
1367 
1368 	/* write lock needed for mnt_get_count */
1369 	lock_mount_hash();
1370 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1371 		actual_refs += mnt_get_count(p);
1372 		minimum_refs += 2;
1373 	}
1374 	unlock_mount_hash();
1375 
1376 	if (actual_refs > minimum_refs)
1377 		return 0;
1378 
1379 	return 1;
1380 }
1381 
1382 EXPORT_SYMBOL(may_umount_tree);
1383 
1384 /**
1385  * may_umount - check if a mount point is busy
1386  * @mnt: root of mount
1387  *
1388  * This is called to check if a mount point has any
1389  * open files, pwds, chroots or sub mounts. If the
1390  * mount has sub mounts this will return busy
1391  * regardless of whether the sub mounts are busy.
1392  *
1393  * Doesn't take quota and stuff into account. IOW, in some cases it will
1394  * give false negatives. The main reason why it's here is that we need
1395  * a non-destructive way to look for easily umountable filesystems.
1396  */
1397 int may_umount(struct vfsmount *mnt)
1398 {
1399 	int ret = 1;
1400 	down_read(&namespace_sem);
1401 	lock_mount_hash();
1402 	if (propagate_mount_busy(real_mount(mnt), 2))
1403 		ret = 0;
1404 	unlock_mount_hash();
1405 	up_read(&namespace_sem);
1406 	return ret;
1407 }
1408 
1409 EXPORT_SYMBOL(may_umount);
1410 
1411 static HLIST_HEAD(unmounted);	/* protected by namespace_sem */
1412 
1413 static void namespace_unlock(void)
1414 {
1415 	struct hlist_head head;
1416 
1417 	hlist_move_list(&unmounted, &head);
1418 
1419 	up_write(&namespace_sem);
1420 
1421 	if (likely(hlist_empty(&head)))
1422 		return;
1423 
1424 	synchronize_rcu();
1425 
1426 	group_pin_kill(&head);
1427 }
1428 
1429 static inline void namespace_lock(void)
1430 {
1431 	down_write(&namespace_sem);
1432 }
1433 
1434 enum umount_tree_flags {
1435 	UMOUNT_SYNC = 1,
1436 	UMOUNT_PROPAGATE = 2,
1437 	UMOUNT_CONNECTED = 4,
1438 };
1439 
1440 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1441 {
1442 	/* Leaving mounts connected is only valid for lazy umounts */
1443 	if (how & UMOUNT_SYNC)
1444 		return true;
1445 
1446 	/* A mount without a parent has nothing to be connected to */
1447 	if (!mnt_has_parent(mnt))
1448 		return true;
1449 
1450 	/* Because the reference counting rules change when mounts are
1451 	 * unmounted and connected, umounted mounts may not be
1452 	 * connected to mounted mounts.
1453 	 */
1454 	if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1455 		return true;
1456 
1457 	/* Has it been requested that the mount remain connected? */
1458 	if (how & UMOUNT_CONNECTED)
1459 		return false;
1460 
1461 	/* Is the mount locked such that it needs to remain connected? */
1462 	if (IS_MNT_LOCKED(mnt))
1463 		return false;
1464 
1465 	/* By default disconnect the mount */
1466 	return true;
1467 }
1468 
1469 /*
1470  * mount_lock must be held
1471  * namespace_sem must be held for write
1472  */
1473 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1474 {
1475 	LIST_HEAD(tmp_list);
1476 	struct mount *p;
1477 
1478 	if (how & UMOUNT_PROPAGATE)
1479 		propagate_mount_unlock(mnt);
1480 
1481 	/* Gather the mounts to umount */
1482 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1483 		p->mnt.mnt_flags |= MNT_UMOUNT;
1484 		list_move(&p->mnt_list, &tmp_list);
1485 	}
1486 
1487 	/* Hide the mounts from mnt_mounts */
1488 	list_for_each_entry(p, &tmp_list, mnt_list) {
1489 		list_del_init(&p->mnt_child);
1490 	}
1491 
1492 	/* Add propogated mounts to the tmp_list */
1493 	if (how & UMOUNT_PROPAGATE)
1494 		propagate_umount(&tmp_list);
1495 
1496 	while (!list_empty(&tmp_list)) {
1497 		struct mnt_namespace *ns;
1498 		bool disconnect;
1499 		p = list_first_entry(&tmp_list, struct mount, mnt_list);
1500 		list_del_init(&p->mnt_expire);
1501 		list_del_init(&p->mnt_list);
1502 		ns = p->mnt_ns;
1503 		if (ns) {
1504 			ns->mounts--;
1505 			__touch_mnt_namespace(ns);
1506 		}
1507 		p->mnt_ns = NULL;
1508 		if (how & UMOUNT_SYNC)
1509 			p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1510 
1511 		disconnect = disconnect_mount(p, how);
1512 
1513 		pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1514 				 disconnect ? &unmounted : NULL);
1515 		if (mnt_has_parent(p)) {
1516 			mnt_add_count(p->mnt_parent, -1);
1517 			if (!disconnect) {
1518 				/* Don't forget about p */
1519 				list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1520 			} else {
1521 				umount_mnt(p);
1522 			}
1523 		}
1524 		change_mnt_propagation(p, MS_PRIVATE);
1525 	}
1526 }
1527 
1528 static void shrink_submounts(struct mount *mnt);
1529 
1530 static int do_umount(struct mount *mnt, int flags)
1531 {
1532 	struct super_block *sb = mnt->mnt.mnt_sb;
1533 	int retval;
1534 
1535 	retval = security_sb_umount(&mnt->mnt, flags);
1536 	if (retval)
1537 		return retval;
1538 
1539 	/*
1540 	 * Allow userspace to request a mountpoint be expired rather than
1541 	 * unmounting unconditionally. Unmount only happens if:
1542 	 *  (1) the mark is already set (the mark is cleared by mntput())
1543 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1544 	 */
1545 	if (flags & MNT_EXPIRE) {
1546 		if (&mnt->mnt == current->fs->root.mnt ||
1547 		    flags & (MNT_FORCE | MNT_DETACH))
1548 			return -EINVAL;
1549 
1550 		/*
1551 		 * probably don't strictly need the lock here if we examined
1552 		 * all race cases, but it's a slowpath.
1553 		 */
1554 		lock_mount_hash();
1555 		if (mnt_get_count(mnt) != 2) {
1556 			unlock_mount_hash();
1557 			return -EBUSY;
1558 		}
1559 		unlock_mount_hash();
1560 
1561 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1562 			return -EAGAIN;
1563 	}
1564 
1565 	/*
1566 	 * If we may have to abort operations to get out of this
1567 	 * mount, and they will themselves hold resources we must
1568 	 * allow the fs to do things. In the Unix tradition of
1569 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1570 	 * might fail to complete on the first run through as other tasks
1571 	 * must return, and the like. Thats for the mount program to worry
1572 	 * about for the moment.
1573 	 */
1574 
1575 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1576 		sb->s_op->umount_begin(sb);
1577 	}
1578 
1579 	/*
1580 	 * No sense to grab the lock for this test, but test itself looks
1581 	 * somewhat bogus. Suggestions for better replacement?
1582 	 * Ho-hum... In principle, we might treat that as umount + switch
1583 	 * to rootfs. GC would eventually take care of the old vfsmount.
1584 	 * Actually it makes sense, especially if rootfs would contain a
1585 	 * /reboot - static binary that would close all descriptors and
1586 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1587 	 */
1588 	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1589 		/*
1590 		 * Special case for "unmounting" root ...
1591 		 * we just try to remount it readonly.
1592 		 */
1593 		if (!capable(CAP_SYS_ADMIN))
1594 			return -EPERM;
1595 		down_write(&sb->s_umount);
1596 		if (!(sb->s_flags & MS_RDONLY))
1597 			retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1598 		up_write(&sb->s_umount);
1599 		return retval;
1600 	}
1601 
1602 	namespace_lock();
1603 	lock_mount_hash();
1604 	event++;
1605 
1606 	if (flags & MNT_DETACH) {
1607 		if (!list_empty(&mnt->mnt_list))
1608 			umount_tree(mnt, UMOUNT_PROPAGATE);
1609 		retval = 0;
1610 	} else {
1611 		shrink_submounts(mnt);
1612 		retval = -EBUSY;
1613 		if (!propagate_mount_busy(mnt, 2)) {
1614 			if (!list_empty(&mnt->mnt_list))
1615 				umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1616 			retval = 0;
1617 		}
1618 	}
1619 	unlock_mount_hash();
1620 	namespace_unlock();
1621 	return retval;
1622 }
1623 
1624 /*
1625  * __detach_mounts - lazily unmount all mounts on the specified dentry
1626  *
1627  * During unlink, rmdir, and d_drop it is possible to loose the path
1628  * to an existing mountpoint, and wind up leaking the mount.
1629  * detach_mounts allows lazily unmounting those mounts instead of
1630  * leaking them.
1631  *
1632  * The caller may hold dentry->d_inode->i_mutex.
1633  */
1634 void __detach_mounts(struct dentry *dentry)
1635 {
1636 	struct mountpoint *mp;
1637 	struct mount *mnt;
1638 
1639 	namespace_lock();
1640 	lock_mount_hash();
1641 	mp = lookup_mountpoint(dentry);
1642 	if (IS_ERR_OR_NULL(mp))
1643 		goto out_unlock;
1644 
1645 	event++;
1646 	while (!hlist_empty(&mp->m_list)) {
1647 		mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1648 		if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1649 			hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1650 			umount_mnt(mnt);
1651 		}
1652 		else umount_tree(mnt, UMOUNT_CONNECTED);
1653 	}
1654 	put_mountpoint(mp);
1655 out_unlock:
1656 	unlock_mount_hash();
1657 	namespace_unlock();
1658 }
1659 
1660 /*
1661  * Is the caller allowed to modify his namespace?
1662  */
1663 static inline bool may_mount(void)
1664 {
1665 	return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1666 }
1667 
1668 static inline bool may_mandlock(void)
1669 {
1670 #ifndef	CONFIG_MANDATORY_FILE_LOCKING
1671 	return false;
1672 #endif
1673 	return capable(CAP_SYS_ADMIN);
1674 }
1675 
1676 /*
1677  * Now umount can handle mount points as well as block devices.
1678  * This is important for filesystems which use unnamed block devices.
1679  *
1680  * We now support a flag for forced unmount like the other 'big iron'
1681  * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1682  */
1683 
1684 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1685 {
1686 	struct path path;
1687 	struct mount *mnt;
1688 	int retval;
1689 	int lookup_flags = 0;
1690 
1691 	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1692 		return -EINVAL;
1693 
1694 	if (!may_mount())
1695 		return -EPERM;
1696 
1697 	if (!(flags & UMOUNT_NOFOLLOW))
1698 		lookup_flags |= LOOKUP_FOLLOW;
1699 
1700 	retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1701 	if (retval)
1702 		goto out;
1703 	mnt = real_mount(path.mnt);
1704 	retval = -EINVAL;
1705 	if (path.dentry != path.mnt->mnt_root)
1706 		goto dput_and_out;
1707 	if (!check_mnt(mnt))
1708 		goto dput_and_out;
1709 	if (mnt->mnt.mnt_flags & MNT_LOCKED)
1710 		goto dput_and_out;
1711 	retval = -EPERM;
1712 	if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1713 		goto dput_and_out;
1714 
1715 	retval = do_umount(mnt, flags);
1716 dput_and_out:
1717 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
1718 	dput(path.dentry);
1719 	mntput_no_expire(mnt);
1720 out:
1721 	return retval;
1722 }
1723 
1724 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1725 
1726 /*
1727  *	The 2.0 compatible umount. No flags.
1728  */
1729 SYSCALL_DEFINE1(oldumount, char __user *, name)
1730 {
1731 	return sys_umount(name, 0);
1732 }
1733 
1734 #endif
1735 
1736 static bool is_mnt_ns_file(struct dentry *dentry)
1737 {
1738 	/* Is this a proxy for a mount namespace? */
1739 	return dentry->d_op == &ns_dentry_operations &&
1740 	       dentry->d_fsdata == &mntns_operations;
1741 }
1742 
1743 struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1744 {
1745 	return container_of(ns, struct mnt_namespace, ns);
1746 }
1747 
1748 static bool mnt_ns_loop(struct dentry *dentry)
1749 {
1750 	/* Could bind mounting the mount namespace inode cause a
1751 	 * mount namespace loop?
1752 	 */
1753 	struct mnt_namespace *mnt_ns;
1754 	if (!is_mnt_ns_file(dentry))
1755 		return false;
1756 
1757 	mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1758 	return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1759 }
1760 
1761 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1762 					int flag)
1763 {
1764 	struct mount *res, *p, *q, *r, *parent;
1765 
1766 	if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1767 		return ERR_PTR(-EINVAL);
1768 
1769 	if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1770 		return ERR_PTR(-EINVAL);
1771 
1772 	res = q = clone_mnt(mnt, dentry, flag);
1773 	if (IS_ERR(q))
1774 		return q;
1775 
1776 	q->mnt_mountpoint = mnt->mnt_mountpoint;
1777 
1778 	p = mnt;
1779 	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1780 		struct mount *s;
1781 		if (!is_subdir(r->mnt_mountpoint, dentry))
1782 			continue;
1783 
1784 		for (s = r; s; s = next_mnt(s, r)) {
1785 			if (!(flag & CL_COPY_UNBINDABLE) &&
1786 			    IS_MNT_UNBINDABLE(s)) {
1787 				s = skip_mnt_tree(s);
1788 				continue;
1789 			}
1790 			if (!(flag & CL_COPY_MNT_NS_FILE) &&
1791 			    is_mnt_ns_file(s->mnt.mnt_root)) {
1792 				s = skip_mnt_tree(s);
1793 				continue;
1794 			}
1795 			while (p != s->mnt_parent) {
1796 				p = p->mnt_parent;
1797 				q = q->mnt_parent;
1798 			}
1799 			p = s;
1800 			parent = q;
1801 			q = clone_mnt(p, p->mnt.mnt_root, flag);
1802 			if (IS_ERR(q))
1803 				goto out;
1804 			lock_mount_hash();
1805 			list_add_tail(&q->mnt_list, &res->mnt_list);
1806 			attach_mnt(q, parent, p->mnt_mp);
1807 			unlock_mount_hash();
1808 		}
1809 	}
1810 	return res;
1811 out:
1812 	if (res) {
1813 		lock_mount_hash();
1814 		umount_tree(res, UMOUNT_SYNC);
1815 		unlock_mount_hash();
1816 	}
1817 	return q;
1818 }
1819 
1820 /* Caller should check returned pointer for errors */
1821 
1822 struct vfsmount *collect_mounts(const struct path *path)
1823 {
1824 	struct mount *tree;
1825 	namespace_lock();
1826 	if (!check_mnt(real_mount(path->mnt)))
1827 		tree = ERR_PTR(-EINVAL);
1828 	else
1829 		tree = copy_tree(real_mount(path->mnt), path->dentry,
1830 				 CL_COPY_ALL | CL_PRIVATE);
1831 	namespace_unlock();
1832 	if (IS_ERR(tree))
1833 		return ERR_CAST(tree);
1834 	return &tree->mnt;
1835 }
1836 
1837 void drop_collected_mounts(struct vfsmount *mnt)
1838 {
1839 	namespace_lock();
1840 	lock_mount_hash();
1841 	umount_tree(real_mount(mnt), UMOUNT_SYNC);
1842 	unlock_mount_hash();
1843 	namespace_unlock();
1844 }
1845 
1846 /**
1847  * clone_private_mount - create a private clone of a path
1848  *
1849  * This creates a new vfsmount, which will be the clone of @path.  The new will
1850  * not be attached anywhere in the namespace and will be private (i.e. changes
1851  * to the originating mount won't be propagated into this).
1852  *
1853  * Release with mntput().
1854  */
1855 struct vfsmount *clone_private_mount(const struct path *path)
1856 {
1857 	struct mount *old_mnt = real_mount(path->mnt);
1858 	struct mount *new_mnt;
1859 
1860 	if (IS_MNT_UNBINDABLE(old_mnt))
1861 		return ERR_PTR(-EINVAL);
1862 
1863 	new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1864 	if (IS_ERR(new_mnt))
1865 		return ERR_CAST(new_mnt);
1866 
1867 	return &new_mnt->mnt;
1868 }
1869 EXPORT_SYMBOL_GPL(clone_private_mount);
1870 
1871 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1872 		   struct vfsmount *root)
1873 {
1874 	struct mount *mnt;
1875 	int res = f(root, arg);
1876 	if (res)
1877 		return res;
1878 	list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1879 		res = f(&mnt->mnt, arg);
1880 		if (res)
1881 			return res;
1882 	}
1883 	return 0;
1884 }
1885 
1886 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1887 {
1888 	struct mount *p;
1889 
1890 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1891 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
1892 			mnt_release_group_id(p);
1893 	}
1894 }
1895 
1896 static int invent_group_ids(struct mount *mnt, bool recurse)
1897 {
1898 	struct mount *p;
1899 
1900 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1901 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1902 			int err = mnt_alloc_group_id(p);
1903 			if (err) {
1904 				cleanup_group_ids(mnt, p);
1905 				return err;
1906 			}
1907 		}
1908 	}
1909 
1910 	return 0;
1911 }
1912 
1913 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1914 {
1915 	unsigned int max = READ_ONCE(sysctl_mount_max);
1916 	unsigned int mounts = 0, old, pending, sum;
1917 	struct mount *p;
1918 
1919 	for (p = mnt; p; p = next_mnt(p, mnt))
1920 		mounts++;
1921 
1922 	old = ns->mounts;
1923 	pending = ns->pending_mounts;
1924 	sum = old + pending;
1925 	if ((old > sum) ||
1926 	    (pending > sum) ||
1927 	    (max < sum) ||
1928 	    (mounts > (max - sum)))
1929 		return -ENOSPC;
1930 
1931 	ns->pending_mounts = pending + mounts;
1932 	return 0;
1933 }
1934 
1935 /*
1936  *  @source_mnt : mount tree to be attached
1937  *  @nd         : place the mount tree @source_mnt is attached
1938  *  @parent_nd  : if non-null, detach the source_mnt from its parent and
1939  *  		   store the parent mount and mountpoint dentry.
1940  *  		   (done when source_mnt is moved)
1941  *
1942  *  NOTE: in the table below explains the semantics when a source mount
1943  *  of a given type is attached to a destination mount of a given type.
1944  * ---------------------------------------------------------------------------
1945  * |         BIND MOUNT OPERATION                                            |
1946  * |**************************************************************************
1947  * | source-->| shared        |       private  |       slave    | unbindable |
1948  * | dest     |               |                |                |            |
1949  * |   |      |               |                |                |            |
1950  * |   v      |               |                |                |            |
1951  * |**************************************************************************
1952  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
1953  * |          |               |                |                |            |
1954  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
1955  * ***************************************************************************
1956  * A bind operation clones the source mount and mounts the clone on the
1957  * destination mount.
1958  *
1959  * (++)  the cloned mount is propagated to all the mounts in the propagation
1960  * 	 tree of the destination mount and the cloned mount is added to
1961  * 	 the peer group of the source mount.
1962  * (+)   the cloned mount is created under the destination mount and is marked
1963  *       as shared. The cloned mount is added to the peer group of the source
1964  *       mount.
1965  * (+++) the mount is propagated to all the mounts in the propagation tree
1966  *       of the destination mount and the cloned mount is made slave
1967  *       of the same master as that of the source mount. The cloned mount
1968  *       is marked as 'shared and slave'.
1969  * (*)   the cloned mount is made a slave of the same master as that of the
1970  * 	 source mount.
1971  *
1972  * ---------------------------------------------------------------------------
1973  * |         		MOVE MOUNT OPERATION                                 |
1974  * |**************************************************************************
1975  * | source-->| shared        |       private  |       slave    | unbindable |
1976  * | dest     |               |                |                |            |
1977  * |   |      |               |                |                |            |
1978  * |   v      |               |                |                |            |
1979  * |**************************************************************************
1980  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
1981  * |          |               |                |                |            |
1982  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
1983  * ***************************************************************************
1984  *
1985  * (+)  the mount is moved to the destination. And is then propagated to
1986  * 	all the mounts in the propagation tree of the destination mount.
1987  * (+*)  the mount is moved to the destination.
1988  * (+++)  the mount is moved to the destination and is then propagated to
1989  * 	all the mounts belonging to the destination mount's propagation tree.
1990  * 	the mount is marked as 'shared and slave'.
1991  * (*)	the mount continues to be a slave at the new location.
1992  *
1993  * if the source mount is a tree, the operations explained above is
1994  * applied to each mount in the tree.
1995  * Must be called without spinlocks held, since this function can sleep
1996  * in allocations.
1997  */
1998 static int attach_recursive_mnt(struct mount *source_mnt,
1999 			struct mount *dest_mnt,
2000 			struct mountpoint *dest_mp,
2001 			struct path *parent_path)
2002 {
2003 	HLIST_HEAD(tree_list);
2004 	struct mnt_namespace *ns = dest_mnt->mnt_ns;
2005 	struct mountpoint *smp;
2006 	struct mount *child, *p;
2007 	struct hlist_node *n;
2008 	int err;
2009 
2010 	/* Preallocate a mountpoint in case the new mounts need
2011 	 * to be tucked under other mounts.
2012 	 */
2013 	smp = get_mountpoint(source_mnt->mnt.mnt_root);
2014 	if (IS_ERR(smp))
2015 		return PTR_ERR(smp);
2016 
2017 	/* Is there space to add these mounts to the mount namespace? */
2018 	if (!parent_path) {
2019 		err = count_mounts(ns, source_mnt);
2020 		if (err)
2021 			goto out;
2022 	}
2023 
2024 	if (IS_MNT_SHARED(dest_mnt)) {
2025 		err = invent_group_ids(source_mnt, true);
2026 		if (err)
2027 			goto out;
2028 		err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2029 		lock_mount_hash();
2030 		if (err)
2031 			goto out_cleanup_ids;
2032 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2033 			set_mnt_shared(p);
2034 	} else {
2035 		lock_mount_hash();
2036 	}
2037 	if (parent_path) {
2038 		detach_mnt(source_mnt, parent_path);
2039 		attach_mnt(source_mnt, dest_mnt, dest_mp);
2040 		touch_mnt_namespace(source_mnt->mnt_ns);
2041 	} else {
2042 		mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2043 		commit_tree(source_mnt);
2044 	}
2045 
2046 	hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2047 		struct mount *q;
2048 		hlist_del_init(&child->mnt_hash);
2049 		q = __lookup_mnt(&child->mnt_parent->mnt,
2050 				 child->mnt_mountpoint);
2051 		if (q)
2052 			mnt_change_mountpoint(child, smp, q);
2053 		commit_tree(child);
2054 	}
2055 	put_mountpoint(smp);
2056 	unlock_mount_hash();
2057 
2058 	return 0;
2059 
2060  out_cleanup_ids:
2061 	while (!hlist_empty(&tree_list)) {
2062 		child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2063 		child->mnt_parent->mnt_ns->pending_mounts = 0;
2064 		umount_tree(child, UMOUNT_SYNC);
2065 	}
2066 	unlock_mount_hash();
2067 	cleanup_group_ids(source_mnt, NULL);
2068  out:
2069 	ns->pending_mounts = 0;
2070 
2071 	read_seqlock_excl(&mount_lock);
2072 	put_mountpoint(smp);
2073 	read_sequnlock_excl(&mount_lock);
2074 
2075 	return err;
2076 }
2077 
2078 static struct mountpoint *lock_mount(struct path *path)
2079 {
2080 	struct vfsmount *mnt;
2081 	struct dentry *dentry = path->dentry;
2082 retry:
2083 	inode_lock(dentry->d_inode);
2084 	if (unlikely(cant_mount(dentry))) {
2085 		inode_unlock(dentry->d_inode);
2086 		return ERR_PTR(-ENOENT);
2087 	}
2088 	namespace_lock();
2089 	mnt = lookup_mnt(path);
2090 	if (likely(!mnt)) {
2091 		struct mountpoint *mp = get_mountpoint(dentry);
2092 		if (IS_ERR(mp)) {
2093 			namespace_unlock();
2094 			inode_unlock(dentry->d_inode);
2095 			return mp;
2096 		}
2097 		return mp;
2098 	}
2099 	namespace_unlock();
2100 	inode_unlock(path->dentry->d_inode);
2101 	path_put(path);
2102 	path->mnt = mnt;
2103 	dentry = path->dentry = dget(mnt->mnt_root);
2104 	goto retry;
2105 }
2106 
2107 static void unlock_mount(struct mountpoint *where)
2108 {
2109 	struct dentry *dentry = where->m_dentry;
2110 
2111 	read_seqlock_excl(&mount_lock);
2112 	put_mountpoint(where);
2113 	read_sequnlock_excl(&mount_lock);
2114 
2115 	namespace_unlock();
2116 	inode_unlock(dentry->d_inode);
2117 }
2118 
2119 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2120 {
2121 	if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
2122 		return -EINVAL;
2123 
2124 	if (d_is_dir(mp->m_dentry) !=
2125 	      d_is_dir(mnt->mnt.mnt_root))
2126 		return -ENOTDIR;
2127 
2128 	return attach_recursive_mnt(mnt, p, mp, NULL);
2129 }
2130 
2131 /*
2132  * Sanity check the flags to change_mnt_propagation.
2133  */
2134 
2135 static int flags_to_propagation_type(int flags)
2136 {
2137 	int type = flags & ~(MS_REC | MS_SILENT);
2138 
2139 	/* Fail if any non-propagation flags are set */
2140 	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2141 		return 0;
2142 	/* Only one propagation flag should be set */
2143 	if (!is_power_of_2(type))
2144 		return 0;
2145 	return type;
2146 }
2147 
2148 /*
2149  * recursively change the type of the mountpoint.
2150  */
2151 static int do_change_type(struct path *path, int flag)
2152 {
2153 	struct mount *m;
2154 	struct mount *mnt = real_mount(path->mnt);
2155 	int recurse = flag & MS_REC;
2156 	int type;
2157 	int err = 0;
2158 
2159 	if (path->dentry != path->mnt->mnt_root)
2160 		return -EINVAL;
2161 
2162 	type = flags_to_propagation_type(flag);
2163 	if (!type)
2164 		return -EINVAL;
2165 
2166 	namespace_lock();
2167 	if (type == MS_SHARED) {
2168 		err = invent_group_ids(mnt, recurse);
2169 		if (err)
2170 			goto out_unlock;
2171 	}
2172 
2173 	lock_mount_hash();
2174 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2175 		change_mnt_propagation(m, type);
2176 	unlock_mount_hash();
2177 
2178  out_unlock:
2179 	namespace_unlock();
2180 	return err;
2181 }
2182 
2183 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2184 {
2185 	struct mount *child;
2186 	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2187 		if (!is_subdir(child->mnt_mountpoint, dentry))
2188 			continue;
2189 
2190 		if (child->mnt.mnt_flags & MNT_LOCKED)
2191 			return true;
2192 	}
2193 	return false;
2194 }
2195 
2196 /*
2197  * do loopback mount.
2198  */
2199 static int do_loopback(struct path *path, const char *old_name,
2200 				int recurse)
2201 {
2202 	struct path old_path;
2203 	struct mount *mnt = NULL, *old, *parent;
2204 	struct mountpoint *mp;
2205 	int err;
2206 	if (!old_name || !*old_name)
2207 		return -EINVAL;
2208 	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2209 	if (err)
2210 		return err;
2211 
2212 	err = -EINVAL;
2213 	if (mnt_ns_loop(old_path.dentry))
2214 		goto out;
2215 
2216 	mp = lock_mount(path);
2217 	err = PTR_ERR(mp);
2218 	if (IS_ERR(mp))
2219 		goto out;
2220 
2221 	old = real_mount(old_path.mnt);
2222 	parent = real_mount(path->mnt);
2223 
2224 	err = -EINVAL;
2225 	if (IS_MNT_UNBINDABLE(old))
2226 		goto out2;
2227 
2228 	if (!check_mnt(parent))
2229 		goto out2;
2230 
2231 	if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
2232 		goto out2;
2233 
2234 	if (!recurse && has_locked_children(old, old_path.dentry))
2235 		goto out2;
2236 
2237 	if (recurse)
2238 		mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
2239 	else
2240 		mnt = clone_mnt(old, old_path.dentry, 0);
2241 
2242 	if (IS_ERR(mnt)) {
2243 		err = PTR_ERR(mnt);
2244 		goto out2;
2245 	}
2246 
2247 	mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2248 
2249 	err = graft_tree(mnt, parent, mp);
2250 	if (err) {
2251 		lock_mount_hash();
2252 		umount_tree(mnt, UMOUNT_SYNC);
2253 		unlock_mount_hash();
2254 	}
2255 out2:
2256 	unlock_mount(mp);
2257 out:
2258 	path_put(&old_path);
2259 	return err;
2260 }
2261 
2262 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2263 {
2264 	int error = 0;
2265 	int readonly_request = 0;
2266 
2267 	if (ms_flags & MS_RDONLY)
2268 		readonly_request = 1;
2269 	if (readonly_request == __mnt_is_readonly(mnt))
2270 		return 0;
2271 
2272 	if (readonly_request)
2273 		error = mnt_make_readonly(real_mount(mnt));
2274 	else
2275 		__mnt_unmake_readonly(real_mount(mnt));
2276 	return error;
2277 }
2278 
2279 /*
2280  * change filesystem flags. dir should be a physical root of filesystem.
2281  * If you've mounted a non-root directory somewhere and want to do remount
2282  * on it - tough luck.
2283  */
2284 static int do_remount(struct path *path, int flags, int mnt_flags,
2285 		      void *data)
2286 {
2287 	int err;
2288 	struct super_block *sb = path->mnt->mnt_sb;
2289 	struct mount *mnt = real_mount(path->mnt);
2290 
2291 	if (!check_mnt(mnt))
2292 		return -EINVAL;
2293 
2294 	if (path->dentry != path->mnt->mnt_root)
2295 		return -EINVAL;
2296 
2297 	/* Don't allow changing of locked mnt flags.
2298 	 *
2299 	 * No locks need to be held here while testing the various
2300 	 * MNT_LOCK flags because those flags can never be cleared
2301 	 * once they are set.
2302 	 */
2303 	if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2304 	    !(mnt_flags & MNT_READONLY)) {
2305 		return -EPERM;
2306 	}
2307 	if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2308 	    !(mnt_flags & MNT_NODEV)) {
2309 		return -EPERM;
2310 	}
2311 	if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2312 	    !(mnt_flags & MNT_NOSUID)) {
2313 		return -EPERM;
2314 	}
2315 	if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2316 	    !(mnt_flags & MNT_NOEXEC)) {
2317 		return -EPERM;
2318 	}
2319 	if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2320 	    ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2321 		return -EPERM;
2322 	}
2323 
2324 	err = security_sb_remount(sb, data);
2325 	if (err)
2326 		return err;
2327 
2328 	down_write(&sb->s_umount);
2329 	if (flags & MS_BIND)
2330 		err = change_mount_flags(path->mnt, flags);
2331 	else if (!capable(CAP_SYS_ADMIN))
2332 		err = -EPERM;
2333 	else
2334 		err = do_remount_sb(sb, flags, data, 0);
2335 	if (!err) {
2336 		lock_mount_hash();
2337 		mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2338 		mnt->mnt.mnt_flags = mnt_flags;
2339 		touch_mnt_namespace(mnt->mnt_ns);
2340 		unlock_mount_hash();
2341 	}
2342 	up_write(&sb->s_umount);
2343 	return err;
2344 }
2345 
2346 static inline int tree_contains_unbindable(struct mount *mnt)
2347 {
2348 	struct mount *p;
2349 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2350 		if (IS_MNT_UNBINDABLE(p))
2351 			return 1;
2352 	}
2353 	return 0;
2354 }
2355 
2356 static int do_move_mount(struct path *path, const char *old_name)
2357 {
2358 	struct path old_path, parent_path;
2359 	struct mount *p;
2360 	struct mount *old;
2361 	struct mountpoint *mp;
2362 	int err;
2363 	if (!old_name || !*old_name)
2364 		return -EINVAL;
2365 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2366 	if (err)
2367 		return err;
2368 
2369 	mp = lock_mount(path);
2370 	err = PTR_ERR(mp);
2371 	if (IS_ERR(mp))
2372 		goto out;
2373 
2374 	old = real_mount(old_path.mnt);
2375 	p = real_mount(path->mnt);
2376 
2377 	err = -EINVAL;
2378 	if (!check_mnt(p) || !check_mnt(old))
2379 		goto out1;
2380 
2381 	if (old->mnt.mnt_flags & MNT_LOCKED)
2382 		goto out1;
2383 
2384 	err = -EINVAL;
2385 	if (old_path.dentry != old_path.mnt->mnt_root)
2386 		goto out1;
2387 
2388 	if (!mnt_has_parent(old))
2389 		goto out1;
2390 
2391 	if (d_is_dir(path->dentry) !=
2392 	      d_is_dir(old_path.dentry))
2393 		goto out1;
2394 	/*
2395 	 * Don't move a mount residing in a shared parent.
2396 	 */
2397 	if (IS_MNT_SHARED(old->mnt_parent))
2398 		goto out1;
2399 	/*
2400 	 * Don't move a mount tree containing unbindable mounts to a destination
2401 	 * mount which is shared.
2402 	 */
2403 	if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2404 		goto out1;
2405 	err = -ELOOP;
2406 	for (; mnt_has_parent(p); p = p->mnt_parent)
2407 		if (p == old)
2408 			goto out1;
2409 
2410 	err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2411 	if (err)
2412 		goto out1;
2413 
2414 	/* if the mount is moved, it should no longer be expire
2415 	 * automatically */
2416 	list_del_init(&old->mnt_expire);
2417 out1:
2418 	unlock_mount(mp);
2419 out:
2420 	if (!err)
2421 		path_put(&parent_path);
2422 	path_put(&old_path);
2423 	return err;
2424 }
2425 
2426 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2427 {
2428 	int err;
2429 	const char *subtype = strchr(fstype, '.');
2430 	if (subtype) {
2431 		subtype++;
2432 		err = -EINVAL;
2433 		if (!subtype[0])
2434 			goto err;
2435 	} else
2436 		subtype = "";
2437 
2438 	mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2439 	err = -ENOMEM;
2440 	if (!mnt->mnt_sb->s_subtype)
2441 		goto err;
2442 	return mnt;
2443 
2444  err:
2445 	mntput(mnt);
2446 	return ERR_PTR(err);
2447 }
2448 
2449 /*
2450  * add a mount into a namespace's mount tree
2451  */
2452 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2453 {
2454 	struct mountpoint *mp;
2455 	struct mount *parent;
2456 	int err;
2457 
2458 	mnt_flags &= ~MNT_INTERNAL_FLAGS;
2459 
2460 	mp = lock_mount(path);
2461 	if (IS_ERR(mp))
2462 		return PTR_ERR(mp);
2463 
2464 	parent = real_mount(path->mnt);
2465 	err = -EINVAL;
2466 	if (unlikely(!check_mnt(parent))) {
2467 		/* that's acceptable only for automounts done in private ns */
2468 		if (!(mnt_flags & MNT_SHRINKABLE))
2469 			goto unlock;
2470 		/* ... and for those we'd better have mountpoint still alive */
2471 		if (!parent->mnt_ns)
2472 			goto unlock;
2473 	}
2474 
2475 	/* Refuse the same filesystem on the same mount point */
2476 	err = -EBUSY;
2477 	if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2478 	    path->mnt->mnt_root == path->dentry)
2479 		goto unlock;
2480 
2481 	err = -EINVAL;
2482 	if (d_is_symlink(newmnt->mnt.mnt_root))
2483 		goto unlock;
2484 
2485 	newmnt->mnt.mnt_flags = mnt_flags;
2486 	err = graft_tree(newmnt, parent, mp);
2487 
2488 unlock:
2489 	unlock_mount(mp);
2490 	return err;
2491 }
2492 
2493 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags);
2494 
2495 /*
2496  * create a new mount for userspace and request it to be added into the
2497  * namespace's tree
2498  */
2499 static int do_new_mount(struct path *path, const char *fstype, int flags,
2500 			int mnt_flags, const char *name, void *data)
2501 {
2502 	struct file_system_type *type;
2503 	struct vfsmount *mnt;
2504 	int err;
2505 
2506 	if (!fstype)
2507 		return -EINVAL;
2508 
2509 	type = get_fs_type(fstype);
2510 	if (!type)
2511 		return -ENODEV;
2512 
2513 	mnt = vfs_kern_mount(type, flags, name, data);
2514 	if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2515 	    !mnt->mnt_sb->s_subtype)
2516 		mnt = fs_set_subtype(mnt, fstype);
2517 
2518 	put_filesystem(type);
2519 	if (IS_ERR(mnt))
2520 		return PTR_ERR(mnt);
2521 
2522 	if (mount_too_revealing(mnt, &mnt_flags)) {
2523 		mntput(mnt);
2524 		return -EPERM;
2525 	}
2526 
2527 	err = do_add_mount(real_mount(mnt), path, mnt_flags);
2528 	if (err)
2529 		mntput(mnt);
2530 	return err;
2531 }
2532 
2533 int finish_automount(struct vfsmount *m, struct path *path)
2534 {
2535 	struct mount *mnt = real_mount(m);
2536 	int err;
2537 	/* The new mount record should have at least 2 refs to prevent it being
2538 	 * expired before we get a chance to add it
2539 	 */
2540 	BUG_ON(mnt_get_count(mnt) < 2);
2541 
2542 	if (m->mnt_sb == path->mnt->mnt_sb &&
2543 	    m->mnt_root == path->dentry) {
2544 		err = -ELOOP;
2545 		goto fail;
2546 	}
2547 
2548 	err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2549 	if (!err)
2550 		return 0;
2551 fail:
2552 	/* remove m from any expiration list it may be on */
2553 	if (!list_empty(&mnt->mnt_expire)) {
2554 		namespace_lock();
2555 		list_del_init(&mnt->mnt_expire);
2556 		namespace_unlock();
2557 	}
2558 	mntput(m);
2559 	mntput(m);
2560 	return err;
2561 }
2562 
2563 /**
2564  * mnt_set_expiry - Put a mount on an expiration list
2565  * @mnt: The mount to list.
2566  * @expiry_list: The list to add the mount to.
2567  */
2568 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2569 {
2570 	namespace_lock();
2571 
2572 	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2573 
2574 	namespace_unlock();
2575 }
2576 EXPORT_SYMBOL(mnt_set_expiry);
2577 
2578 /*
2579  * process a list of expirable mountpoints with the intent of discarding any
2580  * mountpoints that aren't in use and haven't been touched since last we came
2581  * here
2582  */
2583 void mark_mounts_for_expiry(struct list_head *mounts)
2584 {
2585 	struct mount *mnt, *next;
2586 	LIST_HEAD(graveyard);
2587 
2588 	if (list_empty(mounts))
2589 		return;
2590 
2591 	namespace_lock();
2592 	lock_mount_hash();
2593 
2594 	/* extract from the expiration list every vfsmount that matches the
2595 	 * following criteria:
2596 	 * - only referenced by its parent vfsmount
2597 	 * - still marked for expiry (marked on the last call here; marks are
2598 	 *   cleared by mntput())
2599 	 */
2600 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2601 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2602 			propagate_mount_busy(mnt, 1))
2603 			continue;
2604 		list_move(&mnt->mnt_expire, &graveyard);
2605 	}
2606 	while (!list_empty(&graveyard)) {
2607 		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2608 		touch_mnt_namespace(mnt->mnt_ns);
2609 		umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2610 	}
2611 	unlock_mount_hash();
2612 	namespace_unlock();
2613 }
2614 
2615 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2616 
2617 /*
2618  * Ripoff of 'select_parent()'
2619  *
2620  * search the list of submounts for a given mountpoint, and move any
2621  * shrinkable submounts to the 'graveyard' list.
2622  */
2623 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2624 {
2625 	struct mount *this_parent = parent;
2626 	struct list_head *next;
2627 	int found = 0;
2628 
2629 repeat:
2630 	next = this_parent->mnt_mounts.next;
2631 resume:
2632 	while (next != &this_parent->mnt_mounts) {
2633 		struct list_head *tmp = next;
2634 		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2635 
2636 		next = tmp->next;
2637 		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2638 			continue;
2639 		/*
2640 		 * Descend a level if the d_mounts list is non-empty.
2641 		 */
2642 		if (!list_empty(&mnt->mnt_mounts)) {
2643 			this_parent = mnt;
2644 			goto repeat;
2645 		}
2646 
2647 		if (!propagate_mount_busy(mnt, 1)) {
2648 			list_move_tail(&mnt->mnt_expire, graveyard);
2649 			found++;
2650 		}
2651 	}
2652 	/*
2653 	 * All done at this level ... ascend and resume the search
2654 	 */
2655 	if (this_parent != parent) {
2656 		next = this_parent->mnt_child.next;
2657 		this_parent = this_parent->mnt_parent;
2658 		goto resume;
2659 	}
2660 	return found;
2661 }
2662 
2663 /*
2664  * process a list of expirable mountpoints with the intent of discarding any
2665  * submounts of a specific parent mountpoint
2666  *
2667  * mount_lock must be held for write
2668  */
2669 static void shrink_submounts(struct mount *mnt)
2670 {
2671 	LIST_HEAD(graveyard);
2672 	struct mount *m;
2673 
2674 	/* extract submounts of 'mountpoint' from the expiration list */
2675 	while (select_submounts(mnt, &graveyard)) {
2676 		while (!list_empty(&graveyard)) {
2677 			m = list_first_entry(&graveyard, struct mount,
2678 						mnt_expire);
2679 			touch_mnt_namespace(m->mnt_ns);
2680 			umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2681 		}
2682 	}
2683 }
2684 
2685 /*
2686  * Some copy_from_user() implementations do not return the exact number of
2687  * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
2688  * Note that this function differs from copy_from_user() in that it will oops
2689  * on bad values of `to', rather than returning a short copy.
2690  */
2691 static long exact_copy_from_user(void *to, const void __user * from,
2692 				 unsigned long n)
2693 {
2694 	char *t = to;
2695 	const char __user *f = from;
2696 	char c;
2697 
2698 	if (!access_ok(VERIFY_READ, from, n))
2699 		return n;
2700 
2701 	while (n) {
2702 		if (__get_user(c, f)) {
2703 			memset(t, 0, n);
2704 			break;
2705 		}
2706 		*t++ = c;
2707 		f++;
2708 		n--;
2709 	}
2710 	return n;
2711 }
2712 
2713 void *copy_mount_options(const void __user * data)
2714 {
2715 	int i;
2716 	unsigned long size;
2717 	char *copy;
2718 
2719 	if (!data)
2720 		return NULL;
2721 
2722 	copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
2723 	if (!copy)
2724 		return ERR_PTR(-ENOMEM);
2725 
2726 	/* We only care that *some* data at the address the user
2727 	 * gave us is valid.  Just in case, we'll zero
2728 	 * the remainder of the page.
2729 	 */
2730 	/* copy_from_user cannot cross TASK_SIZE ! */
2731 	size = TASK_SIZE - (unsigned long)data;
2732 	if (size > PAGE_SIZE)
2733 		size = PAGE_SIZE;
2734 
2735 	i = size - exact_copy_from_user(copy, data, size);
2736 	if (!i) {
2737 		kfree(copy);
2738 		return ERR_PTR(-EFAULT);
2739 	}
2740 	if (i != PAGE_SIZE)
2741 		memset(copy + i, 0, PAGE_SIZE - i);
2742 	return copy;
2743 }
2744 
2745 char *copy_mount_string(const void __user *data)
2746 {
2747 	return data ? strndup_user(data, PAGE_SIZE) : NULL;
2748 }
2749 
2750 /*
2751  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2752  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2753  *
2754  * data is a (void *) that can point to any structure up to
2755  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2756  * information (or be NULL).
2757  *
2758  * Pre-0.97 versions of mount() didn't have a flags word.
2759  * When the flags word was introduced its top half was required
2760  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2761  * Therefore, if this magic number is present, it carries no information
2762  * and must be discarded.
2763  */
2764 long do_mount(const char *dev_name, const char __user *dir_name,
2765 		const char *type_page, unsigned long flags, void *data_page)
2766 {
2767 	struct path path;
2768 	int retval = 0;
2769 	int mnt_flags = 0;
2770 
2771 	/* Discard magic */
2772 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2773 		flags &= ~MS_MGC_MSK;
2774 
2775 	/* Basic sanity checks */
2776 	if (data_page)
2777 		((char *)data_page)[PAGE_SIZE - 1] = 0;
2778 
2779 	/* ... and get the mountpoint */
2780 	retval = user_path(dir_name, &path);
2781 	if (retval)
2782 		return retval;
2783 
2784 	retval = security_sb_mount(dev_name, &path,
2785 				   type_page, flags, data_page);
2786 	if (!retval && !may_mount())
2787 		retval = -EPERM;
2788 	if (!retval && (flags & MS_MANDLOCK) && !may_mandlock())
2789 		retval = -EPERM;
2790 	if (retval)
2791 		goto dput_out;
2792 
2793 	/* Default to relatime unless overriden */
2794 	if (!(flags & MS_NOATIME))
2795 		mnt_flags |= MNT_RELATIME;
2796 
2797 	/* Separate the per-mountpoint flags */
2798 	if (flags & MS_NOSUID)
2799 		mnt_flags |= MNT_NOSUID;
2800 	if (flags & MS_NODEV)
2801 		mnt_flags |= MNT_NODEV;
2802 	if (flags & MS_NOEXEC)
2803 		mnt_flags |= MNT_NOEXEC;
2804 	if (flags & MS_NOATIME)
2805 		mnt_flags |= MNT_NOATIME;
2806 	if (flags & MS_NODIRATIME)
2807 		mnt_flags |= MNT_NODIRATIME;
2808 	if (flags & MS_STRICTATIME)
2809 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2810 	if (flags & MS_RDONLY)
2811 		mnt_flags |= MNT_READONLY;
2812 
2813 	/* The default atime for remount is preservation */
2814 	if ((flags & MS_REMOUNT) &&
2815 	    ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2816 		       MS_STRICTATIME)) == 0)) {
2817 		mnt_flags &= ~MNT_ATIME_MASK;
2818 		mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2819 	}
2820 
2821 	flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2822 		   MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2823 		   MS_STRICTATIME | MS_NOREMOTELOCK | MS_SUBMOUNT);
2824 
2825 	if (flags & MS_REMOUNT)
2826 		retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2827 				    data_page);
2828 	else if (flags & MS_BIND)
2829 		retval = do_loopback(&path, dev_name, flags & MS_REC);
2830 	else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2831 		retval = do_change_type(&path, flags);
2832 	else if (flags & MS_MOVE)
2833 		retval = do_move_mount(&path, dev_name);
2834 	else
2835 		retval = do_new_mount(&path, type_page, flags, mnt_flags,
2836 				      dev_name, data_page);
2837 dput_out:
2838 	path_put(&path);
2839 	return retval;
2840 }
2841 
2842 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
2843 {
2844 	return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
2845 }
2846 
2847 static void dec_mnt_namespaces(struct ucounts *ucounts)
2848 {
2849 	dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
2850 }
2851 
2852 static void free_mnt_ns(struct mnt_namespace *ns)
2853 {
2854 	ns_free_inum(&ns->ns);
2855 	dec_mnt_namespaces(ns->ucounts);
2856 	put_user_ns(ns->user_ns);
2857 	kfree(ns);
2858 }
2859 
2860 /*
2861  * Assign a sequence number so we can detect when we attempt to bind
2862  * mount a reference to an older mount namespace into the current
2863  * mount namespace, preventing reference counting loops.  A 64bit
2864  * number incrementing at 10Ghz will take 12,427 years to wrap which
2865  * is effectively never, so we can ignore the possibility.
2866  */
2867 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2868 
2869 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2870 {
2871 	struct mnt_namespace *new_ns;
2872 	struct ucounts *ucounts;
2873 	int ret;
2874 
2875 	ucounts = inc_mnt_namespaces(user_ns);
2876 	if (!ucounts)
2877 		return ERR_PTR(-ENOSPC);
2878 
2879 	new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2880 	if (!new_ns) {
2881 		dec_mnt_namespaces(ucounts);
2882 		return ERR_PTR(-ENOMEM);
2883 	}
2884 	ret = ns_alloc_inum(&new_ns->ns);
2885 	if (ret) {
2886 		kfree(new_ns);
2887 		dec_mnt_namespaces(ucounts);
2888 		return ERR_PTR(ret);
2889 	}
2890 	new_ns->ns.ops = &mntns_operations;
2891 	new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2892 	atomic_set(&new_ns->count, 1);
2893 	new_ns->root = NULL;
2894 	INIT_LIST_HEAD(&new_ns->list);
2895 	init_waitqueue_head(&new_ns->poll);
2896 	new_ns->event = 0;
2897 	new_ns->user_ns = get_user_ns(user_ns);
2898 	new_ns->ucounts = ucounts;
2899 	new_ns->mounts = 0;
2900 	new_ns->pending_mounts = 0;
2901 	return new_ns;
2902 }
2903 
2904 __latent_entropy
2905 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2906 		struct user_namespace *user_ns, struct fs_struct *new_fs)
2907 {
2908 	struct mnt_namespace *new_ns;
2909 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2910 	struct mount *p, *q;
2911 	struct mount *old;
2912 	struct mount *new;
2913 	int copy_flags;
2914 
2915 	BUG_ON(!ns);
2916 
2917 	if (likely(!(flags & CLONE_NEWNS))) {
2918 		get_mnt_ns(ns);
2919 		return ns;
2920 	}
2921 
2922 	old = ns->root;
2923 
2924 	new_ns = alloc_mnt_ns(user_ns);
2925 	if (IS_ERR(new_ns))
2926 		return new_ns;
2927 
2928 	namespace_lock();
2929 	/* First pass: copy the tree topology */
2930 	copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2931 	if (user_ns != ns->user_ns)
2932 		copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2933 	new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2934 	if (IS_ERR(new)) {
2935 		namespace_unlock();
2936 		free_mnt_ns(new_ns);
2937 		return ERR_CAST(new);
2938 	}
2939 	new_ns->root = new;
2940 	list_add_tail(&new_ns->list, &new->mnt_list);
2941 
2942 	/*
2943 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2944 	 * as belonging to new namespace.  We have already acquired a private
2945 	 * fs_struct, so tsk->fs->lock is not needed.
2946 	 */
2947 	p = old;
2948 	q = new;
2949 	while (p) {
2950 		q->mnt_ns = new_ns;
2951 		new_ns->mounts++;
2952 		if (new_fs) {
2953 			if (&p->mnt == new_fs->root.mnt) {
2954 				new_fs->root.mnt = mntget(&q->mnt);
2955 				rootmnt = &p->mnt;
2956 			}
2957 			if (&p->mnt == new_fs->pwd.mnt) {
2958 				new_fs->pwd.mnt = mntget(&q->mnt);
2959 				pwdmnt = &p->mnt;
2960 			}
2961 		}
2962 		p = next_mnt(p, old);
2963 		q = next_mnt(q, new);
2964 		if (!q)
2965 			break;
2966 		while (p->mnt.mnt_root != q->mnt.mnt_root)
2967 			p = next_mnt(p, old);
2968 	}
2969 	namespace_unlock();
2970 
2971 	if (rootmnt)
2972 		mntput(rootmnt);
2973 	if (pwdmnt)
2974 		mntput(pwdmnt);
2975 
2976 	return new_ns;
2977 }
2978 
2979 /**
2980  * create_mnt_ns - creates a private namespace and adds a root filesystem
2981  * @mnt: pointer to the new root filesystem mountpoint
2982  */
2983 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2984 {
2985 	struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2986 	if (!IS_ERR(new_ns)) {
2987 		struct mount *mnt = real_mount(m);
2988 		mnt->mnt_ns = new_ns;
2989 		new_ns->root = mnt;
2990 		new_ns->mounts++;
2991 		list_add(&mnt->mnt_list, &new_ns->list);
2992 	} else {
2993 		mntput(m);
2994 	}
2995 	return new_ns;
2996 }
2997 
2998 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2999 {
3000 	struct mnt_namespace *ns;
3001 	struct super_block *s;
3002 	struct path path;
3003 	int err;
3004 
3005 	ns = create_mnt_ns(mnt);
3006 	if (IS_ERR(ns))
3007 		return ERR_CAST(ns);
3008 
3009 	err = vfs_path_lookup(mnt->mnt_root, mnt,
3010 			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3011 
3012 	put_mnt_ns(ns);
3013 
3014 	if (err)
3015 		return ERR_PTR(err);
3016 
3017 	/* trade a vfsmount reference for active sb one */
3018 	s = path.mnt->mnt_sb;
3019 	atomic_inc(&s->s_active);
3020 	mntput(path.mnt);
3021 	/* lock the sucker */
3022 	down_write(&s->s_umount);
3023 	/* ... and return the root of (sub)tree on it */
3024 	return path.dentry;
3025 }
3026 EXPORT_SYMBOL(mount_subtree);
3027 
3028 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3029 		char __user *, type, unsigned long, flags, void __user *, data)
3030 {
3031 	int ret;
3032 	char *kernel_type;
3033 	char *kernel_dev;
3034 	void *options;
3035 
3036 	kernel_type = copy_mount_string(type);
3037 	ret = PTR_ERR(kernel_type);
3038 	if (IS_ERR(kernel_type))
3039 		goto out_type;
3040 
3041 	kernel_dev = copy_mount_string(dev_name);
3042 	ret = PTR_ERR(kernel_dev);
3043 	if (IS_ERR(kernel_dev))
3044 		goto out_dev;
3045 
3046 	options = copy_mount_options(data);
3047 	ret = PTR_ERR(options);
3048 	if (IS_ERR(options))
3049 		goto out_data;
3050 
3051 	ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3052 
3053 	kfree(options);
3054 out_data:
3055 	kfree(kernel_dev);
3056 out_dev:
3057 	kfree(kernel_type);
3058 out_type:
3059 	return ret;
3060 }
3061 
3062 /*
3063  * Return true if path is reachable from root
3064  *
3065  * namespace_sem or mount_lock is held
3066  */
3067 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3068 			 const struct path *root)
3069 {
3070 	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3071 		dentry = mnt->mnt_mountpoint;
3072 		mnt = mnt->mnt_parent;
3073 	}
3074 	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3075 }
3076 
3077 bool path_is_under(const struct path *path1, const struct path *path2)
3078 {
3079 	bool res;
3080 	read_seqlock_excl(&mount_lock);
3081 	res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3082 	read_sequnlock_excl(&mount_lock);
3083 	return res;
3084 }
3085 EXPORT_SYMBOL(path_is_under);
3086 
3087 /*
3088  * pivot_root Semantics:
3089  * Moves the root file system of the current process to the directory put_old,
3090  * makes new_root as the new root file system of the current process, and sets
3091  * root/cwd of all processes which had them on the current root to new_root.
3092  *
3093  * Restrictions:
3094  * The new_root and put_old must be directories, and  must not be on the
3095  * same file  system as the current process root. The put_old  must  be
3096  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
3097  * pointed to by put_old must yield the same directory as new_root. No other
3098  * file system may be mounted on put_old. After all, new_root is a mountpoint.
3099  *
3100  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3101  * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3102  * in this situation.
3103  *
3104  * Notes:
3105  *  - we don't move root/cwd if they are not at the root (reason: if something
3106  *    cared enough to change them, it's probably wrong to force them elsewhere)
3107  *  - it's okay to pick a root that isn't the root of a file system, e.g.
3108  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3109  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3110  *    first.
3111  */
3112 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3113 		const char __user *, put_old)
3114 {
3115 	struct path new, old, parent_path, root_parent, root;
3116 	struct mount *new_mnt, *root_mnt, *old_mnt;
3117 	struct mountpoint *old_mp, *root_mp;
3118 	int error;
3119 
3120 	if (!may_mount())
3121 		return -EPERM;
3122 
3123 	error = user_path_dir(new_root, &new);
3124 	if (error)
3125 		goto out0;
3126 
3127 	error = user_path_dir(put_old, &old);
3128 	if (error)
3129 		goto out1;
3130 
3131 	error = security_sb_pivotroot(&old, &new);
3132 	if (error)
3133 		goto out2;
3134 
3135 	get_fs_root(current->fs, &root);
3136 	old_mp = lock_mount(&old);
3137 	error = PTR_ERR(old_mp);
3138 	if (IS_ERR(old_mp))
3139 		goto out3;
3140 
3141 	error = -EINVAL;
3142 	new_mnt = real_mount(new.mnt);
3143 	root_mnt = real_mount(root.mnt);
3144 	old_mnt = real_mount(old.mnt);
3145 	if (IS_MNT_SHARED(old_mnt) ||
3146 		IS_MNT_SHARED(new_mnt->mnt_parent) ||
3147 		IS_MNT_SHARED(root_mnt->mnt_parent))
3148 		goto out4;
3149 	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3150 		goto out4;
3151 	if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3152 		goto out4;
3153 	error = -ENOENT;
3154 	if (d_unlinked(new.dentry))
3155 		goto out4;
3156 	error = -EBUSY;
3157 	if (new_mnt == root_mnt || old_mnt == root_mnt)
3158 		goto out4; /* loop, on the same file system  */
3159 	error = -EINVAL;
3160 	if (root.mnt->mnt_root != root.dentry)
3161 		goto out4; /* not a mountpoint */
3162 	if (!mnt_has_parent(root_mnt))
3163 		goto out4; /* not attached */
3164 	root_mp = root_mnt->mnt_mp;
3165 	if (new.mnt->mnt_root != new.dentry)
3166 		goto out4; /* not a mountpoint */
3167 	if (!mnt_has_parent(new_mnt))
3168 		goto out4; /* not attached */
3169 	/* make sure we can reach put_old from new_root */
3170 	if (!is_path_reachable(old_mnt, old.dentry, &new))
3171 		goto out4;
3172 	/* make certain new is below the root */
3173 	if (!is_path_reachable(new_mnt, new.dentry, &root))
3174 		goto out4;
3175 	root_mp->m_count++; /* pin it so it won't go away */
3176 	lock_mount_hash();
3177 	detach_mnt(new_mnt, &parent_path);
3178 	detach_mnt(root_mnt, &root_parent);
3179 	if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3180 		new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3181 		root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3182 	}
3183 	/* mount old root on put_old */
3184 	attach_mnt(root_mnt, old_mnt, old_mp);
3185 	/* mount new_root on / */
3186 	attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
3187 	touch_mnt_namespace(current->nsproxy->mnt_ns);
3188 	/* A moved mount should not expire automatically */
3189 	list_del_init(&new_mnt->mnt_expire);
3190 	put_mountpoint(root_mp);
3191 	unlock_mount_hash();
3192 	chroot_fs_refs(&root, &new);
3193 	error = 0;
3194 out4:
3195 	unlock_mount(old_mp);
3196 	if (!error) {
3197 		path_put(&root_parent);
3198 		path_put(&parent_path);
3199 	}
3200 out3:
3201 	path_put(&root);
3202 out2:
3203 	path_put(&old);
3204 out1:
3205 	path_put(&new);
3206 out0:
3207 	return error;
3208 }
3209 
3210 static void __init init_mount_tree(void)
3211 {
3212 	struct vfsmount *mnt;
3213 	struct mnt_namespace *ns;
3214 	struct path root;
3215 	struct file_system_type *type;
3216 
3217 	type = get_fs_type("rootfs");
3218 	if (!type)
3219 		panic("Can't find rootfs type");
3220 	mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3221 	put_filesystem(type);
3222 	if (IS_ERR(mnt))
3223 		panic("Can't create rootfs");
3224 
3225 	ns = create_mnt_ns(mnt);
3226 	if (IS_ERR(ns))
3227 		panic("Can't allocate initial namespace");
3228 
3229 	init_task.nsproxy->mnt_ns = ns;
3230 	get_mnt_ns(ns);
3231 
3232 	root.mnt = mnt;
3233 	root.dentry = mnt->mnt_root;
3234 	mnt->mnt_flags |= MNT_LOCKED;
3235 
3236 	set_fs_pwd(current->fs, &root);
3237 	set_fs_root(current->fs, &root);
3238 }
3239 
3240 void __init mnt_init(void)
3241 {
3242 	unsigned u;
3243 	int err;
3244 
3245 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3246 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3247 
3248 	mount_hashtable = alloc_large_system_hash("Mount-cache",
3249 				sizeof(struct hlist_head),
3250 				mhash_entries, 19,
3251 				0,
3252 				&m_hash_shift, &m_hash_mask, 0, 0);
3253 	mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3254 				sizeof(struct hlist_head),
3255 				mphash_entries, 19,
3256 				0,
3257 				&mp_hash_shift, &mp_hash_mask, 0, 0);
3258 
3259 	if (!mount_hashtable || !mountpoint_hashtable)
3260 		panic("Failed to allocate mount hash table\n");
3261 
3262 	for (u = 0; u <= m_hash_mask; u++)
3263 		INIT_HLIST_HEAD(&mount_hashtable[u]);
3264 	for (u = 0; u <= mp_hash_mask; u++)
3265 		INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
3266 
3267 	kernfs_init();
3268 
3269 	err = sysfs_init();
3270 	if (err)
3271 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3272 			__func__, err);
3273 	fs_kobj = kobject_create_and_add("fs", NULL);
3274 	if (!fs_kobj)
3275 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
3276 	init_rootfs();
3277 	init_mount_tree();
3278 }
3279 
3280 void put_mnt_ns(struct mnt_namespace *ns)
3281 {
3282 	if (!atomic_dec_and_test(&ns->count))
3283 		return;
3284 	drop_collected_mounts(&ns->root->mnt);
3285 	free_mnt_ns(ns);
3286 }
3287 
3288 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3289 {
3290 	struct vfsmount *mnt;
3291 	mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
3292 	if (!IS_ERR(mnt)) {
3293 		/*
3294 		 * it is a longterm mount, don't release mnt until
3295 		 * we unmount before file sys is unregistered
3296 		*/
3297 		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3298 	}
3299 	return mnt;
3300 }
3301 EXPORT_SYMBOL_GPL(kern_mount_data);
3302 
3303 void kern_unmount(struct vfsmount *mnt)
3304 {
3305 	/* release long term mount so mount point can be released */
3306 	if (!IS_ERR_OR_NULL(mnt)) {
3307 		real_mount(mnt)->mnt_ns = NULL;
3308 		synchronize_rcu();	/* yecchhh... */
3309 		mntput(mnt);
3310 	}
3311 }
3312 EXPORT_SYMBOL(kern_unmount);
3313 
3314 bool our_mnt(struct vfsmount *mnt)
3315 {
3316 	return check_mnt(real_mount(mnt));
3317 }
3318 
3319 bool current_chrooted(void)
3320 {
3321 	/* Does the current process have a non-standard root */
3322 	struct path ns_root;
3323 	struct path fs_root;
3324 	bool chrooted;
3325 
3326 	/* Find the namespace root */
3327 	ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3328 	ns_root.dentry = ns_root.mnt->mnt_root;
3329 	path_get(&ns_root);
3330 	while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3331 		;
3332 
3333 	get_fs_root(current->fs, &fs_root);
3334 
3335 	chrooted = !path_equal(&fs_root, &ns_root);
3336 
3337 	path_put(&fs_root);
3338 	path_put(&ns_root);
3339 
3340 	return chrooted;
3341 }
3342 
3343 static bool mnt_already_visible(struct mnt_namespace *ns, struct vfsmount *new,
3344 				int *new_mnt_flags)
3345 {
3346 	int new_flags = *new_mnt_flags;
3347 	struct mount *mnt;
3348 	bool visible = false;
3349 
3350 	down_read(&namespace_sem);
3351 	list_for_each_entry(mnt, &ns->list, mnt_list) {
3352 		struct mount *child;
3353 		int mnt_flags;
3354 
3355 		if (mnt->mnt.mnt_sb->s_type != new->mnt_sb->s_type)
3356 			continue;
3357 
3358 		/* This mount is not fully visible if it's root directory
3359 		 * is not the root directory of the filesystem.
3360 		 */
3361 		if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3362 			continue;
3363 
3364 		/* A local view of the mount flags */
3365 		mnt_flags = mnt->mnt.mnt_flags;
3366 
3367 		/* Don't miss readonly hidden in the superblock flags */
3368 		if (mnt->mnt.mnt_sb->s_flags & MS_RDONLY)
3369 			mnt_flags |= MNT_LOCK_READONLY;
3370 
3371 		/* Verify the mount flags are equal to or more permissive
3372 		 * than the proposed new mount.
3373 		 */
3374 		if ((mnt_flags & MNT_LOCK_READONLY) &&
3375 		    !(new_flags & MNT_READONLY))
3376 			continue;
3377 		if ((mnt_flags & MNT_LOCK_ATIME) &&
3378 		    ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3379 			continue;
3380 
3381 		/* This mount is not fully visible if there are any
3382 		 * locked child mounts that cover anything except for
3383 		 * empty directories.
3384 		 */
3385 		list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3386 			struct inode *inode = child->mnt_mountpoint->d_inode;
3387 			/* Only worry about locked mounts */
3388 			if (!(child->mnt.mnt_flags & MNT_LOCKED))
3389 				continue;
3390 			/* Is the directory permanetly empty? */
3391 			if (!is_empty_dir_inode(inode))
3392 				goto next;
3393 		}
3394 		/* Preserve the locked attributes */
3395 		*new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
3396 					       MNT_LOCK_ATIME);
3397 		visible = true;
3398 		goto found;
3399 	next:	;
3400 	}
3401 found:
3402 	up_read(&namespace_sem);
3403 	return visible;
3404 }
3405 
3406 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags)
3407 {
3408 	const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
3409 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3410 	unsigned long s_iflags;
3411 
3412 	if (ns->user_ns == &init_user_ns)
3413 		return false;
3414 
3415 	/* Can this filesystem be too revealing? */
3416 	s_iflags = mnt->mnt_sb->s_iflags;
3417 	if (!(s_iflags & SB_I_USERNS_VISIBLE))
3418 		return false;
3419 
3420 	if ((s_iflags & required_iflags) != required_iflags) {
3421 		WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3422 			  required_iflags);
3423 		return true;
3424 	}
3425 
3426 	return !mnt_already_visible(ns, mnt, new_mnt_flags);
3427 }
3428 
3429 bool mnt_may_suid(struct vfsmount *mnt)
3430 {
3431 	/*
3432 	 * Foreign mounts (accessed via fchdir or through /proc
3433 	 * symlinks) are always treated as if they are nosuid.  This
3434 	 * prevents namespaces from trusting potentially unsafe
3435 	 * suid/sgid bits, file caps, or security labels that originate
3436 	 * in other namespaces.
3437 	 */
3438 	return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3439 	       current_in_userns(mnt->mnt_sb->s_user_ns);
3440 }
3441 
3442 static struct ns_common *mntns_get(struct task_struct *task)
3443 {
3444 	struct ns_common *ns = NULL;
3445 	struct nsproxy *nsproxy;
3446 
3447 	task_lock(task);
3448 	nsproxy = task->nsproxy;
3449 	if (nsproxy) {
3450 		ns = &nsproxy->mnt_ns->ns;
3451 		get_mnt_ns(to_mnt_ns(ns));
3452 	}
3453 	task_unlock(task);
3454 
3455 	return ns;
3456 }
3457 
3458 static void mntns_put(struct ns_common *ns)
3459 {
3460 	put_mnt_ns(to_mnt_ns(ns));
3461 }
3462 
3463 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
3464 {
3465 	struct fs_struct *fs = current->fs;
3466 	struct mnt_namespace *mnt_ns = to_mnt_ns(ns);
3467 	struct path root;
3468 
3469 	if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3470 	    !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3471 	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3472 		return -EPERM;
3473 
3474 	if (fs->users != 1)
3475 		return -EINVAL;
3476 
3477 	get_mnt_ns(mnt_ns);
3478 	put_mnt_ns(nsproxy->mnt_ns);
3479 	nsproxy->mnt_ns = mnt_ns;
3480 
3481 	/* Find the root */
3482 	root.mnt    = &mnt_ns->root->mnt;
3483 	root.dentry = mnt_ns->root->mnt.mnt_root;
3484 	path_get(&root);
3485 	while(d_mountpoint(root.dentry) && follow_down_one(&root))
3486 		;
3487 
3488 	/* Update the pwd and root */
3489 	set_fs_pwd(fs, &root);
3490 	set_fs_root(fs, &root);
3491 
3492 	path_put(&root);
3493 	return 0;
3494 }
3495 
3496 static struct user_namespace *mntns_owner(struct ns_common *ns)
3497 {
3498 	return to_mnt_ns(ns)->user_ns;
3499 }
3500 
3501 const struct proc_ns_operations mntns_operations = {
3502 	.name		= "mnt",
3503 	.type		= CLONE_NEWNS,
3504 	.get		= mntns_get,
3505 	.put		= mntns_put,
3506 	.install	= mntns_install,
3507 	.owner		= mntns_owner,
3508 };
3509