xref: /openbmc/linux/fs/namespace.c (revision 0d456bad)
1 /*
2  *  linux/fs/namespace.c
3  *
4  * (C) Copyright Al Viro 2000, 2001
5  *	Released under GPL v2.
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/idr.h>
19 #include <linux/acct.h>		/* acct_auto_close_mnt */
20 #include <linux/ramfs.h>	/* init_rootfs */
21 #include <linux/fs_struct.h>	/* get_fs_root et.al. */
22 #include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
23 #include <linux/uaccess.h>
24 #include <linux/proc_fs.h>
25 #include "pnode.h"
26 #include "internal.h"
27 
28 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
29 #define HASH_SIZE (1UL << HASH_SHIFT)
30 
31 static int event;
32 static DEFINE_IDA(mnt_id_ida);
33 static DEFINE_IDA(mnt_group_ida);
34 static DEFINE_SPINLOCK(mnt_id_lock);
35 static int mnt_id_start = 0;
36 static int mnt_group_start = 1;
37 
38 static struct list_head *mount_hashtable __read_mostly;
39 static struct kmem_cache *mnt_cache __read_mostly;
40 static struct rw_semaphore namespace_sem;
41 
42 /* /sys/fs */
43 struct kobject *fs_kobj;
44 EXPORT_SYMBOL_GPL(fs_kobj);
45 
46 /*
47  * vfsmount lock may be taken for read to prevent changes to the
48  * vfsmount hash, ie. during mountpoint lookups or walking back
49  * up the tree.
50  *
51  * It should be taken for write in all cases where the vfsmount
52  * tree or hash is modified or when a vfsmount structure is modified.
53  */
54 DEFINE_BRLOCK(vfsmount_lock);
55 
56 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
57 {
58 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
59 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
60 	tmp = tmp + (tmp >> HASH_SHIFT);
61 	return tmp & (HASH_SIZE - 1);
62 }
63 
64 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
65 
66 /*
67  * allocation is serialized by namespace_sem, but we need the spinlock to
68  * serialize with freeing.
69  */
70 static int mnt_alloc_id(struct mount *mnt)
71 {
72 	int res;
73 
74 retry:
75 	ida_pre_get(&mnt_id_ida, GFP_KERNEL);
76 	spin_lock(&mnt_id_lock);
77 	res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
78 	if (!res)
79 		mnt_id_start = mnt->mnt_id + 1;
80 	spin_unlock(&mnt_id_lock);
81 	if (res == -EAGAIN)
82 		goto retry;
83 
84 	return res;
85 }
86 
87 static void mnt_free_id(struct mount *mnt)
88 {
89 	int id = mnt->mnt_id;
90 	spin_lock(&mnt_id_lock);
91 	ida_remove(&mnt_id_ida, id);
92 	if (mnt_id_start > id)
93 		mnt_id_start = id;
94 	spin_unlock(&mnt_id_lock);
95 }
96 
97 /*
98  * Allocate a new peer group ID
99  *
100  * mnt_group_ida is protected by namespace_sem
101  */
102 static int mnt_alloc_group_id(struct mount *mnt)
103 {
104 	int res;
105 
106 	if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
107 		return -ENOMEM;
108 
109 	res = ida_get_new_above(&mnt_group_ida,
110 				mnt_group_start,
111 				&mnt->mnt_group_id);
112 	if (!res)
113 		mnt_group_start = mnt->mnt_group_id + 1;
114 
115 	return res;
116 }
117 
118 /*
119  * Release a peer group ID
120  */
121 void mnt_release_group_id(struct mount *mnt)
122 {
123 	int id = mnt->mnt_group_id;
124 	ida_remove(&mnt_group_ida, id);
125 	if (mnt_group_start > id)
126 		mnt_group_start = id;
127 	mnt->mnt_group_id = 0;
128 }
129 
130 /*
131  * vfsmount lock must be held for read
132  */
133 static inline void mnt_add_count(struct mount *mnt, int n)
134 {
135 #ifdef CONFIG_SMP
136 	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
137 #else
138 	preempt_disable();
139 	mnt->mnt_count += n;
140 	preempt_enable();
141 #endif
142 }
143 
144 /*
145  * vfsmount lock must be held for write
146  */
147 unsigned int mnt_get_count(struct mount *mnt)
148 {
149 #ifdef CONFIG_SMP
150 	unsigned int count = 0;
151 	int cpu;
152 
153 	for_each_possible_cpu(cpu) {
154 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
155 	}
156 
157 	return count;
158 #else
159 	return mnt->mnt_count;
160 #endif
161 }
162 
163 static struct mount *alloc_vfsmnt(const char *name)
164 {
165 	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
166 	if (mnt) {
167 		int err;
168 
169 		err = mnt_alloc_id(mnt);
170 		if (err)
171 			goto out_free_cache;
172 
173 		if (name) {
174 			mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
175 			if (!mnt->mnt_devname)
176 				goto out_free_id;
177 		}
178 
179 #ifdef CONFIG_SMP
180 		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
181 		if (!mnt->mnt_pcp)
182 			goto out_free_devname;
183 
184 		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
185 #else
186 		mnt->mnt_count = 1;
187 		mnt->mnt_writers = 0;
188 #endif
189 
190 		INIT_LIST_HEAD(&mnt->mnt_hash);
191 		INIT_LIST_HEAD(&mnt->mnt_child);
192 		INIT_LIST_HEAD(&mnt->mnt_mounts);
193 		INIT_LIST_HEAD(&mnt->mnt_list);
194 		INIT_LIST_HEAD(&mnt->mnt_expire);
195 		INIT_LIST_HEAD(&mnt->mnt_share);
196 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
197 		INIT_LIST_HEAD(&mnt->mnt_slave);
198 #ifdef CONFIG_FSNOTIFY
199 		INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
200 #endif
201 	}
202 	return mnt;
203 
204 #ifdef CONFIG_SMP
205 out_free_devname:
206 	kfree(mnt->mnt_devname);
207 #endif
208 out_free_id:
209 	mnt_free_id(mnt);
210 out_free_cache:
211 	kmem_cache_free(mnt_cache, mnt);
212 	return NULL;
213 }
214 
215 /*
216  * Most r/o checks on a fs are for operations that take
217  * discrete amounts of time, like a write() or unlink().
218  * We must keep track of when those operations start
219  * (for permission checks) and when they end, so that
220  * we can determine when writes are able to occur to
221  * a filesystem.
222  */
223 /*
224  * __mnt_is_readonly: check whether a mount is read-only
225  * @mnt: the mount to check for its write status
226  *
227  * This shouldn't be used directly ouside of the VFS.
228  * It does not guarantee that the filesystem will stay
229  * r/w, just that it is right *now*.  This can not and
230  * should not be used in place of IS_RDONLY(inode).
231  * mnt_want/drop_write() will _keep_ the filesystem
232  * r/w.
233  */
234 int __mnt_is_readonly(struct vfsmount *mnt)
235 {
236 	if (mnt->mnt_flags & MNT_READONLY)
237 		return 1;
238 	if (mnt->mnt_sb->s_flags & MS_RDONLY)
239 		return 1;
240 	return 0;
241 }
242 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
243 
244 static inline void mnt_inc_writers(struct mount *mnt)
245 {
246 #ifdef CONFIG_SMP
247 	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
248 #else
249 	mnt->mnt_writers++;
250 #endif
251 }
252 
253 static inline void mnt_dec_writers(struct mount *mnt)
254 {
255 #ifdef CONFIG_SMP
256 	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
257 #else
258 	mnt->mnt_writers--;
259 #endif
260 }
261 
262 static unsigned int mnt_get_writers(struct mount *mnt)
263 {
264 #ifdef CONFIG_SMP
265 	unsigned int count = 0;
266 	int cpu;
267 
268 	for_each_possible_cpu(cpu) {
269 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
270 	}
271 
272 	return count;
273 #else
274 	return mnt->mnt_writers;
275 #endif
276 }
277 
278 static int mnt_is_readonly(struct vfsmount *mnt)
279 {
280 	if (mnt->mnt_sb->s_readonly_remount)
281 		return 1;
282 	/* Order wrt setting s_flags/s_readonly_remount in do_remount() */
283 	smp_rmb();
284 	return __mnt_is_readonly(mnt);
285 }
286 
287 /*
288  * Most r/o & frozen checks on a fs are for operations that take discrete
289  * amounts of time, like a write() or unlink().  We must keep track of when
290  * those operations start (for permission checks) and when they end, so that we
291  * can determine when writes are able to occur to a filesystem.
292  */
293 /**
294  * __mnt_want_write - get write access to a mount without freeze protection
295  * @m: the mount on which to take a write
296  *
297  * This tells the low-level filesystem that a write is about to be performed to
298  * it, and makes sure that writes are allowed (mnt it read-write) before
299  * returning success. This operation does not protect against filesystem being
300  * frozen. When the write operation is finished, __mnt_drop_write() must be
301  * called. This is effectively a refcount.
302  */
303 int __mnt_want_write(struct vfsmount *m)
304 {
305 	struct mount *mnt = real_mount(m);
306 	int ret = 0;
307 
308 	preempt_disable();
309 	mnt_inc_writers(mnt);
310 	/*
311 	 * The store to mnt_inc_writers must be visible before we pass
312 	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
313 	 * incremented count after it has set MNT_WRITE_HOLD.
314 	 */
315 	smp_mb();
316 	while (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
317 		cpu_relax();
318 	/*
319 	 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
320 	 * be set to match its requirements. So we must not load that until
321 	 * MNT_WRITE_HOLD is cleared.
322 	 */
323 	smp_rmb();
324 	if (mnt_is_readonly(m)) {
325 		mnt_dec_writers(mnt);
326 		ret = -EROFS;
327 	}
328 	preempt_enable();
329 
330 	return ret;
331 }
332 
333 /**
334  * mnt_want_write - get write access to a mount
335  * @m: the mount on which to take a write
336  *
337  * This tells the low-level filesystem that a write is about to be performed to
338  * it, and makes sure that writes are allowed (mount is read-write, filesystem
339  * is not frozen) before returning success.  When the write operation is
340  * finished, mnt_drop_write() must be called.  This is effectively a refcount.
341  */
342 int mnt_want_write(struct vfsmount *m)
343 {
344 	int ret;
345 
346 	sb_start_write(m->mnt_sb);
347 	ret = __mnt_want_write(m);
348 	if (ret)
349 		sb_end_write(m->mnt_sb);
350 	return ret;
351 }
352 EXPORT_SYMBOL_GPL(mnt_want_write);
353 
354 /**
355  * mnt_clone_write - get write access to a mount
356  * @mnt: the mount on which to take a write
357  *
358  * This is effectively like mnt_want_write, except
359  * it must only be used to take an extra write reference
360  * on a mountpoint that we already know has a write reference
361  * on it. This allows some optimisation.
362  *
363  * After finished, mnt_drop_write must be called as usual to
364  * drop the reference.
365  */
366 int mnt_clone_write(struct vfsmount *mnt)
367 {
368 	/* superblock may be r/o */
369 	if (__mnt_is_readonly(mnt))
370 		return -EROFS;
371 	preempt_disable();
372 	mnt_inc_writers(real_mount(mnt));
373 	preempt_enable();
374 	return 0;
375 }
376 EXPORT_SYMBOL_GPL(mnt_clone_write);
377 
378 /**
379  * __mnt_want_write_file - get write access to a file's mount
380  * @file: the file who's mount on which to take a write
381  *
382  * This is like __mnt_want_write, but it takes a file and can
383  * do some optimisations if the file is open for write already
384  */
385 int __mnt_want_write_file(struct file *file)
386 {
387 	struct inode *inode = file->f_dentry->d_inode;
388 
389 	if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
390 		return __mnt_want_write(file->f_path.mnt);
391 	else
392 		return mnt_clone_write(file->f_path.mnt);
393 }
394 
395 /**
396  * mnt_want_write_file - get write access to a file's mount
397  * @file: the file who's mount on which to take a write
398  *
399  * This is like mnt_want_write, but it takes a file and can
400  * do some optimisations if the file is open for write already
401  */
402 int mnt_want_write_file(struct file *file)
403 {
404 	int ret;
405 
406 	sb_start_write(file->f_path.mnt->mnt_sb);
407 	ret = __mnt_want_write_file(file);
408 	if (ret)
409 		sb_end_write(file->f_path.mnt->mnt_sb);
410 	return ret;
411 }
412 EXPORT_SYMBOL_GPL(mnt_want_write_file);
413 
414 /**
415  * __mnt_drop_write - give up write access to a mount
416  * @mnt: the mount on which to give up write access
417  *
418  * Tells the low-level filesystem that we are done
419  * performing writes to it.  Must be matched with
420  * __mnt_want_write() call above.
421  */
422 void __mnt_drop_write(struct vfsmount *mnt)
423 {
424 	preempt_disable();
425 	mnt_dec_writers(real_mount(mnt));
426 	preempt_enable();
427 }
428 
429 /**
430  * mnt_drop_write - give up write access to a mount
431  * @mnt: the mount on which to give up write access
432  *
433  * Tells the low-level filesystem that we are done performing writes to it and
434  * also allows filesystem to be frozen again.  Must be matched with
435  * mnt_want_write() call above.
436  */
437 void mnt_drop_write(struct vfsmount *mnt)
438 {
439 	__mnt_drop_write(mnt);
440 	sb_end_write(mnt->mnt_sb);
441 }
442 EXPORT_SYMBOL_GPL(mnt_drop_write);
443 
444 void __mnt_drop_write_file(struct file *file)
445 {
446 	__mnt_drop_write(file->f_path.mnt);
447 }
448 
449 void mnt_drop_write_file(struct file *file)
450 {
451 	mnt_drop_write(file->f_path.mnt);
452 }
453 EXPORT_SYMBOL(mnt_drop_write_file);
454 
455 static int mnt_make_readonly(struct mount *mnt)
456 {
457 	int ret = 0;
458 
459 	br_write_lock(&vfsmount_lock);
460 	mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
461 	/*
462 	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
463 	 * should be visible before we do.
464 	 */
465 	smp_mb();
466 
467 	/*
468 	 * With writers on hold, if this value is zero, then there are
469 	 * definitely no active writers (although held writers may subsequently
470 	 * increment the count, they'll have to wait, and decrement it after
471 	 * seeing MNT_READONLY).
472 	 *
473 	 * It is OK to have counter incremented on one CPU and decremented on
474 	 * another: the sum will add up correctly. The danger would be when we
475 	 * sum up each counter, if we read a counter before it is incremented,
476 	 * but then read another CPU's count which it has been subsequently
477 	 * decremented from -- we would see more decrements than we should.
478 	 * MNT_WRITE_HOLD protects against this scenario, because
479 	 * mnt_want_write first increments count, then smp_mb, then spins on
480 	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
481 	 * we're counting up here.
482 	 */
483 	if (mnt_get_writers(mnt) > 0)
484 		ret = -EBUSY;
485 	else
486 		mnt->mnt.mnt_flags |= MNT_READONLY;
487 	/*
488 	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
489 	 * that become unheld will see MNT_READONLY.
490 	 */
491 	smp_wmb();
492 	mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
493 	br_write_unlock(&vfsmount_lock);
494 	return ret;
495 }
496 
497 static void __mnt_unmake_readonly(struct mount *mnt)
498 {
499 	br_write_lock(&vfsmount_lock);
500 	mnt->mnt.mnt_flags &= ~MNT_READONLY;
501 	br_write_unlock(&vfsmount_lock);
502 }
503 
504 int sb_prepare_remount_readonly(struct super_block *sb)
505 {
506 	struct mount *mnt;
507 	int err = 0;
508 
509 	/* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
510 	if (atomic_long_read(&sb->s_remove_count))
511 		return -EBUSY;
512 
513 	br_write_lock(&vfsmount_lock);
514 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
515 		if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
516 			mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
517 			smp_mb();
518 			if (mnt_get_writers(mnt) > 0) {
519 				err = -EBUSY;
520 				break;
521 			}
522 		}
523 	}
524 	if (!err && atomic_long_read(&sb->s_remove_count))
525 		err = -EBUSY;
526 
527 	if (!err) {
528 		sb->s_readonly_remount = 1;
529 		smp_wmb();
530 	}
531 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
532 		if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
533 			mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
534 	}
535 	br_write_unlock(&vfsmount_lock);
536 
537 	return err;
538 }
539 
540 static void free_vfsmnt(struct mount *mnt)
541 {
542 	kfree(mnt->mnt_devname);
543 	mnt_free_id(mnt);
544 #ifdef CONFIG_SMP
545 	free_percpu(mnt->mnt_pcp);
546 #endif
547 	kmem_cache_free(mnt_cache, mnt);
548 }
549 
550 /*
551  * find the first or last mount at @dentry on vfsmount @mnt depending on
552  * @dir. If @dir is set return the first mount else return the last mount.
553  * vfsmount_lock must be held for read or write.
554  */
555 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
556 			      int dir)
557 {
558 	struct list_head *head = mount_hashtable + hash(mnt, dentry);
559 	struct list_head *tmp = head;
560 	struct mount *p, *found = NULL;
561 
562 	for (;;) {
563 		tmp = dir ? tmp->next : tmp->prev;
564 		p = NULL;
565 		if (tmp == head)
566 			break;
567 		p = list_entry(tmp, struct mount, mnt_hash);
568 		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) {
569 			found = p;
570 			break;
571 		}
572 	}
573 	return found;
574 }
575 
576 /*
577  * lookup_mnt - Return the first child mount mounted at path
578  *
579  * "First" means first mounted chronologically.  If you create the
580  * following mounts:
581  *
582  * mount /dev/sda1 /mnt
583  * mount /dev/sda2 /mnt
584  * mount /dev/sda3 /mnt
585  *
586  * Then lookup_mnt() on the base /mnt dentry in the root mount will
587  * return successively the root dentry and vfsmount of /dev/sda1, then
588  * /dev/sda2, then /dev/sda3, then NULL.
589  *
590  * lookup_mnt takes a reference to the found vfsmount.
591  */
592 struct vfsmount *lookup_mnt(struct path *path)
593 {
594 	struct mount *child_mnt;
595 
596 	br_read_lock(&vfsmount_lock);
597 	child_mnt = __lookup_mnt(path->mnt, path->dentry, 1);
598 	if (child_mnt) {
599 		mnt_add_count(child_mnt, 1);
600 		br_read_unlock(&vfsmount_lock);
601 		return &child_mnt->mnt;
602 	} else {
603 		br_read_unlock(&vfsmount_lock);
604 		return NULL;
605 	}
606 }
607 
608 static inline int check_mnt(struct mount *mnt)
609 {
610 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
611 }
612 
613 /*
614  * vfsmount lock must be held for write
615  */
616 static void touch_mnt_namespace(struct mnt_namespace *ns)
617 {
618 	if (ns) {
619 		ns->event = ++event;
620 		wake_up_interruptible(&ns->poll);
621 	}
622 }
623 
624 /*
625  * vfsmount lock must be held for write
626  */
627 static void __touch_mnt_namespace(struct mnt_namespace *ns)
628 {
629 	if (ns && ns->event != event) {
630 		ns->event = event;
631 		wake_up_interruptible(&ns->poll);
632 	}
633 }
634 
635 /*
636  * Clear dentry's mounted state if it has no remaining mounts.
637  * vfsmount_lock must be held for write.
638  */
639 static void dentry_reset_mounted(struct dentry *dentry)
640 {
641 	unsigned u;
642 
643 	for (u = 0; u < HASH_SIZE; u++) {
644 		struct mount *p;
645 
646 		list_for_each_entry(p, &mount_hashtable[u], mnt_hash) {
647 			if (p->mnt_mountpoint == dentry)
648 				return;
649 		}
650 	}
651 	spin_lock(&dentry->d_lock);
652 	dentry->d_flags &= ~DCACHE_MOUNTED;
653 	spin_unlock(&dentry->d_lock);
654 }
655 
656 /*
657  * vfsmount lock must be held for write
658  */
659 static void detach_mnt(struct mount *mnt, struct path *old_path)
660 {
661 	old_path->dentry = mnt->mnt_mountpoint;
662 	old_path->mnt = &mnt->mnt_parent->mnt;
663 	mnt->mnt_parent = mnt;
664 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
665 	list_del_init(&mnt->mnt_child);
666 	list_del_init(&mnt->mnt_hash);
667 	dentry_reset_mounted(old_path->dentry);
668 }
669 
670 /*
671  * vfsmount lock must be held for write
672  */
673 void mnt_set_mountpoint(struct mount *mnt, struct dentry *dentry,
674 			struct mount *child_mnt)
675 {
676 	mnt_add_count(mnt, 1);	/* essentially, that's mntget */
677 	child_mnt->mnt_mountpoint = dget(dentry);
678 	child_mnt->mnt_parent = mnt;
679 	spin_lock(&dentry->d_lock);
680 	dentry->d_flags |= DCACHE_MOUNTED;
681 	spin_unlock(&dentry->d_lock);
682 }
683 
684 /*
685  * vfsmount lock must be held for write
686  */
687 static void attach_mnt(struct mount *mnt, struct path *path)
688 {
689 	mnt_set_mountpoint(real_mount(path->mnt), path->dentry, mnt);
690 	list_add_tail(&mnt->mnt_hash, mount_hashtable +
691 			hash(path->mnt, path->dentry));
692 	list_add_tail(&mnt->mnt_child, &real_mount(path->mnt)->mnt_mounts);
693 }
694 
695 /*
696  * vfsmount lock must be held for write
697  */
698 static void commit_tree(struct mount *mnt)
699 {
700 	struct mount *parent = mnt->mnt_parent;
701 	struct mount *m;
702 	LIST_HEAD(head);
703 	struct mnt_namespace *n = parent->mnt_ns;
704 
705 	BUG_ON(parent == mnt);
706 
707 	list_add_tail(&head, &mnt->mnt_list);
708 	list_for_each_entry(m, &head, mnt_list)
709 		m->mnt_ns = n;
710 
711 	list_splice(&head, n->list.prev);
712 
713 	list_add_tail(&mnt->mnt_hash, mount_hashtable +
714 				hash(&parent->mnt, mnt->mnt_mountpoint));
715 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
716 	touch_mnt_namespace(n);
717 }
718 
719 static struct mount *next_mnt(struct mount *p, struct mount *root)
720 {
721 	struct list_head *next = p->mnt_mounts.next;
722 	if (next == &p->mnt_mounts) {
723 		while (1) {
724 			if (p == root)
725 				return NULL;
726 			next = p->mnt_child.next;
727 			if (next != &p->mnt_parent->mnt_mounts)
728 				break;
729 			p = p->mnt_parent;
730 		}
731 	}
732 	return list_entry(next, struct mount, mnt_child);
733 }
734 
735 static struct mount *skip_mnt_tree(struct mount *p)
736 {
737 	struct list_head *prev = p->mnt_mounts.prev;
738 	while (prev != &p->mnt_mounts) {
739 		p = list_entry(prev, struct mount, mnt_child);
740 		prev = p->mnt_mounts.prev;
741 	}
742 	return p;
743 }
744 
745 struct vfsmount *
746 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
747 {
748 	struct mount *mnt;
749 	struct dentry *root;
750 
751 	if (!type)
752 		return ERR_PTR(-ENODEV);
753 
754 	mnt = alloc_vfsmnt(name);
755 	if (!mnt)
756 		return ERR_PTR(-ENOMEM);
757 
758 	if (flags & MS_KERNMOUNT)
759 		mnt->mnt.mnt_flags = MNT_INTERNAL;
760 
761 	root = mount_fs(type, flags, name, data);
762 	if (IS_ERR(root)) {
763 		free_vfsmnt(mnt);
764 		return ERR_CAST(root);
765 	}
766 
767 	mnt->mnt.mnt_root = root;
768 	mnt->mnt.mnt_sb = root->d_sb;
769 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
770 	mnt->mnt_parent = mnt;
771 	br_write_lock(&vfsmount_lock);
772 	list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
773 	br_write_unlock(&vfsmount_lock);
774 	return &mnt->mnt;
775 }
776 EXPORT_SYMBOL_GPL(vfs_kern_mount);
777 
778 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
779 					int flag)
780 {
781 	struct super_block *sb = old->mnt.mnt_sb;
782 	struct mount *mnt;
783 	int err;
784 
785 	mnt = alloc_vfsmnt(old->mnt_devname);
786 	if (!mnt)
787 		return ERR_PTR(-ENOMEM);
788 
789 	if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
790 		mnt->mnt_group_id = 0; /* not a peer of original */
791 	else
792 		mnt->mnt_group_id = old->mnt_group_id;
793 
794 	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
795 		err = mnt_alloc_group_id(mnt);
796 		if (err)
797 			goto out_free;
798 	}
799 
800 	mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD;
801 	atomic_inc(&sb->s_active);
802 	mnt->mnt.mnt_sb = sb;
803 	mnt->mnt.mnt_root = dget(root);
804 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
805 	mnt->mnt_parent = mnt;
806 	br_write_lock(&vfsmount_lock);
807 	list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
808 	br_write_unlock(&vfsmount_lock);
809 
810 	if ((flag & CL_SLAVE) ||
811 	    ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
812 		list_add(&mnt->mnt_slave, &old->mnt_slave_list);
813 		mnt->mnt_master = old;
814 		CLEAR_MNT_SHARED(mnt);
815 	} else if (!(flag & CL_PRIVATE)) {
816 		if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
817 			list_add(&mnt->mnt_share, &old->mnt_share);
818 		if (IS_MNT_SLAVE(old))
819 			list_add(&mnt->mnt_slave, &old->mnt_slave);
820 		mnt->mnt_master = old->mnt_master;
821 	}
822 	if (flag & CL_MAKE_SHARED)
823 		set_mnt_shared(mnt);
824 
825 	/* stick the duplicate mount on the same expiry list
826 	 * as the original if that was on one */
827 	if (flag & CL_EXPIRE) {
828 		if (!list_empty(&old->mnt_expire))
829 			list_add(&mnt->mnt_expire, &old->mnt_expire);
830 	}
831 
832 	return mnt;
833 
834  out_free:
835 	free_vfsmnt(mnt);
836 	return ERR_PTR(err);
837 }
838 
839 static inline void mntfree(struct mount *mnt)
840 {
841 	struct vfsmount *m = &mnt->mnt;
842 	struct super_block *sb = m->mnt_sb;
843 
844 	/*
845 	 * This probably indicates that somebody messed
846 	 * up a mnt_want/drop_write() pair.  If this
847 	 * happens, the filesystem was probably unable
848 	 * to make r/w->r/o transitions.
849 	 */
850 	/*
851 	 * The locking used to deal with mnt_count decrement provides barriers,
852 	 * so mnt_get_writers() below is safe.
853 	 */
854 	WARN_ON(mnt_get_writers(mnt));
855 	fsnotify_vfsmount_delete(m);
856 	dput(m->mnt_root);
857 	free_vfsmnt(mnt);
858 	deactivate_super(sb);
859 }
860 
861 static void mntput_no_expire(struct mount *mnt)
862 {
863 put_again:
864 #ifdef CONFIG_SMP
865 	br_read_lock(&vfsmount_lock);
866 	if (likely(mnt->mnt_ns)) {
867 		/* shouldn't be the last one */
868 		mnt_add_count(mnt, -1);
869 		br_read_unlock(&vfsmount_lock);
870 		return;
871 	}
872 	br_read_unlock(&vfsmount_lock);
873 
874 	br_write_lock(&vfsmount_lock);
875 	mnt_add_count(mnt, -1);
876 	if (mnt_get_count(mnt)) {
877 		br_write_unlock(&vfsmount_lock);
878 		return;
879 	}
880 #else
881 	mnt_add_count(mnt, -1);
882 	if (likely(mnt_get_count(mnt)))
883 		return;
884 	br_write_lock(&vfsmount_lock);
885 #endif
886 	if (unlikely(mnt->mnt_pinned)) {
887 		mnt_add_count(mnt, mnt->mnt_pinned + 1);
888 		mnt->mnt_pinned = 0;
889 		br_write_unlock(&vfsmount_lock);
890 		acct_auto_close_mnt(&mnt->mnt);
891 		goto put_again;
892 	}
893 
894 	list_del(&mnt->mnt_instance);
895 	br_write_unlock(&vfsmount_lock);
896 	mntfree(mnt);
897 }
898 
899 void mntput(struct vfsmount *mnt)
900 {
901 	if (mnt) {
902 		struct mount *m = real_mount(mnt);
903 		/* avoid cacheline pingpong, hope gcc doesn't get "smart" */
904 		if (unlikely(m->mnt_expiry_mark))
905 			m->mnt_expiry_mark = 0;
906 		mntput_no_expire(m);
907 	}
908 }
909 EXPORT_SYMBOL(mntput);
910 
911 struct vfsmount *mntget(struct vfsmount *mnt)
912 {
913 	if (mnt)
914 		mnt_add_count(real_mount(mnt), 1);
915 	return mnt;
916 }
917 EXPORT_SYMBOL(mntget);
918 
919 void mnt_pin(struct vfsmount *mnt)
920 {
921 	br_write_lock(&vfsmount_lock);
922 	real_mount(mnt)->mnt_pinned++;
923 	br_write_unlock(&vfsmount_lock);
924 }
925 EXPORT_SYMBOL(mnt_pin);
926 
927 void mnt_unpin(struct vfsmount *m)
928 {
929 	struct mount *mnt = real_mount(m);
930 	br_write_lock(&vfsmount_lock);
931 	if (mnt->mnt_pinned) {
932 		mnt_add_count(mnt, 1);
933 		mnt->mnt_pinned--;
934 	}
935 	br_write_unlock(&vfsmount_lock);
936 }
937 EXPORT_SYMBOL(mnt_unpin);
938 
939 static inline void mangle(struct seq_file *m, const char *s)
940 {
941 	seq_escape(m, s, " \t\n\\");
942 }
943 
944 /*
945  * Simple .show_options callback for filesystems which don't want to
946  * implement more complex mount option showing.
947  *
948  * See also save_mount_options().
949  */
950 int generic_show_options(struct seq_file *m, struct dentry *root)
951 {
952 	const char *options;
953 
954 	rcu_read_lock();
955 	options = rcu_dereference(root->d_sb->s_options);
956 
957 	if (options != NULL && options[0]) {
958 		seq_putc(m, ',');
959 		mangle(m, options);
960 	}
961 	rcu_read_unlock();
962 
963 	return 0;
964 }
965 EXPORT_SYMBOL(generic_show_options);
966 
967 /*
968  * If filesystem uses generic_show_options(), this function should be
969  * called from the fill_super() callback.
970  *
971  * The .remount_fs callback usually needs to be handled in a special
972  * way, to make sure, that previous options are not overwritten if the
973  * remount fails.
974  *
975  * Also note, that if the filesystem's .remount_fs function doesn't
976  * reset all options to their default value, but changes only newly
977  * given options, then the displayed options will not reflect reality
978  * any more.
979  */
980 void save_mount_options(struct super_block *sb, char *options)
981 {
982 	BUG_ON(sb->s_options);
983 	rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
984 }
985 EXPORT_SYMBOL(save_mount_options);
986 
987 void replace_mount_options(struct super_block *sb, char *options)
988 {
989 	char *old = sb->s_options;
990 	rcu_assign_pointer(sb->s_options, options);
991 	if (old) {
992 		synchronize_rcu();
993 		kfree(old);
994 	}
995 }
996 EXPORT_SYMBOL(replace_mount_options);
997 
998 #ifdef CONFIG_PROC_FS
999 /* iterator; we want it to have access to namespace_sem, thus here... */
1000 static void *m_start(struct seq_file *m, loff_t *pos)
1001 {
1002 	struct proc_mounts *p = proc_mounts(m);
1003 
1004 	down_read(&namespace_sem);
1005 	return seq_list_start(&p->ns->list, *pos);
1006 }
1007 
1008 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1009 {
1010 	struct proc_mounts *p = proc_mounts(m);
1011 
1012 	return seq_list_next(v, &p->ns->list, pos);
1013 }
1014 
1015 static void m_stop(struct seq_file *m, void *v)
1016 {
1017 	up_read(&namespace_sem);
1018 }
1019 
1020 static int m_show(struct seq_file *m, void *v)
1021 {
1022 	struct proc_mounts *p = proc_mounts(m);
1023 	struct mount *r = list_entry(v, struct mount, mnt_list);
1024 	return p->show(m, &r->mnt);
1025 }
1026 
1027 const struct seq_operations mounts_op = {
1028 	.start	= m_start,
1029 	.next	= m_next,
1030 	.stop	= m_stop,
1031 	.show	= m_show,
1032 };
1033 #endif  /* CONFIG_PROC_FS */
1034 
1035 /**
1036  * may_umount_tree - check if a mount tree is busy
1037  * @mnt: root of mount tree
1038  *
1039  * This is called to check if a tree of mounts has any
1040  * open files, pwds, chroots or sub mounts that are
1041  * busy.
1042  */
1043 int may_umount_tree(struct vfsmount *m)
1044 {
1045 	struct mount *mnt = real_mount(m);
1046 	int actual_refs = 0;
1047 	int minimum_refs = 0;
1048 	struct mount *p;
1049 	BUG_ON(!m);
1050 
1051 	/* write lock needed for mnt_get_count */
1052 	br_write_lock(&vfsmount_lock);
1053 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1054 		actual_refs += mnt_get_count(p);
1055 		minimum_refs += 2;
1056 	}
1057 	br_write_unlock(&vfsmount_lock);
1058 
1059 	if (actual_refs > minimum_refs)
1060 		return 0;
1061 
1062 	return 1;
1063 }
1064 
1065 EXPORT_SYMBOL(may_umount_tree);
1066 
1067 /**
1068  * may_umount - check if a mount point is busy
1069  * @mnt: root of mount
1070  *
1071  * This is called to check if a mount point has any
1072  * open files, pwds, chroots or sub mounts. If the
1073  * mount has sub mounts this will return busy
1074  * regardless of whether the sub mounts are busy.
1075  *
1076  * Doesn't take quota and stuff into account. IOW, in some cases it will
1077  * give false negatives. The main reason why it's here is that we need
1078  * a non-destructive way to look for easily umountable filesystems.
1079  */
1080 int may_umount(struct vfsmount *mnt)
1081 {
1082 	int ret = 1;
1083 	down_read(&namespace_sem);
1084 	br_write_lock(&vfsmount_lock);
1085 	if (propagate_mount_busy(real_mount(mnt), 2))
1086 		ret = 0;
1087 	br_write_unlock(&vfsmount_lock);
1088 	up_read(&namespace_sem);
1089 	return ret;
1090 }
1091 
1092 EXPORT_SYMBOL(may_umount);
1093 
1094 void release_mounts(struct list_head *head)
1095 {
1096 	struct mount *mnt;
1097 	while (!list_empty(head)) {
1098 		mnt = list_first_entry(head, struct mount, mnt_hash);
1099 		list_del_init(&mnt->mnt_hash);
1100 		if (mnt_has_parent(mnt)) {
1101 			struct dentry *dentry;
1102 			struct mount *m;
1103 
1104 			br_write_lock(&vfsmount_lock);
1105 			dentry = mnt->mnt_mountpoint;
1106 			m = mnt->mnt_parent;
1107 			mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1108 			mnt->mnt_parent = mnt;
1109 			m->mnt_ghosts--;
1110 			br_write_unlock(&vfsmount_lock);
1111 			dput(dentry);
1112 			mntput(&m->mnt);
1113 		}
1114 		mntput(&mnt->mnt);
1115 	}
1116 }
1117 
1118 /*
1119  * vfsmount lock must be held for write
1120  * namespace_sem must be held for write
1121  */
1122 void umount_tree(struct mount *mnt, int propagate, struct list_head *kill)
1123 {
1124 	LIST_HEAD(tmp_list);
1125 	struct mount *p;
1126 
1127 	for (p = mnt; p; p = next_mnt(p, mnt))
1128 		list_move(&p->mnt_hash, &tmp_list);
1129 
1130 	if (propagate)
1131 		propagate_umount(&tmp_list);
1132 
1133 	list_for_each_entry(p, &tmp_list, mnt_hash) {
1134 		list_del_init(&p->mnt_expire);
1135 		list_del_init(&p->mnt_list);
1136 		__touch_mnt_namespace(p->mnt_ns);
1137 		p->mnt_ns = NULL;
1138 		list_del_init(&p->mnt_child);
1139 		if (mnt_has_parent(p)) {
1140 			p->mnt_parent->mnt_ghosts++;
1141 			dentry_reset_mounted(p->mnt_mountpoint);
1142 		}
1143 		change_mnt_propagation(p, MS_PRIVATE);
1144 	}
1145 	list_splice(&tmp_list, kill);
1146 }
1147 
1148 static void shrink_submounts(struct mount *mnt, struct list_head *umounts);
1149 
1150 static int do_umount(struct mount *mnt, int flags)
1151 {
1152 	struct super_block *sb = mnt->mnt.mnt_sb;
1153 	int retval;
1154 	LIST_HEAD(umount_list);
1155 
1156 	retval = security_sb_umount(&mnt->mnt, flags);
1157 	if (retval)
1158 		return retval;
1159 
1160 	/*
1161 	 * Allow userspace to request a mountpoint be expired rather than
1162 	 * unmounting unconditionally. Unmount only happens if:
1163 	 *  (1) the mark is already set (the mark is cleared by mntput())
1164 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1165 	 */
1166 	if (flags & MNT_EXPIRE) {
1167 		if (&mnt->mnt == current->fs->root.mnt ||
1168 		    flags & (MNT_FORCE | MNT_DETACH))
1169 			return -EINVAL;
1170 
1171 		/*
1172 		 * probably don't strictly need the lock here if we examined
1173 		 * all race cases, but it's a slowpath.
1174 		 */
1175 		br_write_lock(&vfsmount_lock);
1176 		if (mnt_get_count(mnt) != 2) {
1177 			br_write_unlock(&vfsmount_lock);
1178 			return -EBUSY;
1179 		}
1180 		br_write_unlock(&vfsmount_lock);
1181 
1182 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1183 			return -EAGAIN;
1184 	}
1185 
1186 	/*
1187 	 * If we may have to abort operations to get out of this
1188 	 * mount, and they will themselves hold resources we must
1189 	 * allow the fs to do things. In the Unix tradition of
1190 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1191 	 * might fail to complete on the first run through as other tasks
1192 	 * must return, and the like. Thats for the mount program to worry
1193 	 * about for the moment.
1194 	 */
1195 
1196 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1197 		sb->s_op->umount_begin(sb);
1198 	}
1199 
1200 	/*
1201 	 * No sense to grab the lock for this test, but test itself looks
1202 	 * somewhat bogus. Suggestions for better replacement?
1203 	 * Ho-hum... In principle, we might treat that as umount + switch
1204 	 * to rootfs. GC would eventually take care of the old vfsmount.
1205 	 * Actually it makes sense, especially if rootfs would contain a
1206 	 * /reboot - static binary that would close all descriptors and
1207 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1208 	 */
1209 	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1210 		/*
1211 		 * Special case for "unmounting" root ...
1212 		 * we just try to remount it readonly.
1213 		 */
1214 		down_write(&sb->s_umount);
1215 		if (!(sb->s_flags & MS_RDONLY))
1216 			retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1217 		up_write(&sb->s_umount);
1218 		return retval;
1219 	}
1220 
1221 	down_write(&namespace_sem);
1222 	br_write_lock(&vfsmount_lock);
1223 	event++;
1224 
1225 	if (!(flags & MNT_DETACH))
1226 		shrink_submounts(mnt, &umount_list);
1227 
1228 	retval = -EBUSY;
1229 	if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1230 		if (!list_empty(&mnt->mnt_list))
1231 			umount_tree(mnt, 1, &umount_list);
1232 		retval = 0;
1233 	}
1234 	br_write_unlock(&vfsmount_lock);
1235 	up_write(&namespace_sem);
1236 	release_mounts(&umount_list);
1237 	return retval;
1238 }
1239 
1240 /*
1241  * Now umount can handle mount points as well as block devices.
1242  * This is important for filesystems which use unnamed block devices.
1243  *
1244  * We now support a flag for forced unmount like the other 'big iron'
1245  * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1246  */
1247 
1248 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1249 {
1250 	struct path path;
1251 	struct mount *mnt;
1252 	int retval;
1253 	int lookup_flags = 0;
1254 
1255 	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1256 		return -EINVAL;
1257 
1258 	if (!(flags & UMOUNT_NOFOLLOW))
1259 		lookup_flags |= LOOKUP_FOLLOW;
1260 
1261 	retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1262 	if (retval)
1263 		goto out;
1264 	mnt = real_mount(path.mnt);
1265 	retval = -EINVAL;
1266 	if (path.dentry != path.mnt->mnt_root)
1267 		goto dput_and_out;
1268 	if (!check_mnt(mnt))
1269 		goto dput_and_out;
1270 
1271 	retval = -EPERM;
1272 	if (!ns_capable(mnt->mnt_ns->user_ns, CAP_SYS_ADMIN))
1273 		goto dput_and_out;
1274 
1275 	retval = do_umount(mnt, flags);
1276 dput_and_out:
1277 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
1278 	dput(path.dentry);
1279 	mntput_no_expire(mnt);
1280 out:
1281 	return retval;
1282 }
1283 
1284 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1285 
1286 /*
1287  *	The 2.0 compatible umount. No flags.
1288  */
1289 SYSCALL_DEFINE1(oldumount, char __user *, name)
1290 {
1291 	return sys_umount(name, 0);
1292 }
1293 
1294 #endif
1295 
1296 static int mount_is_safe(struct path *path)
1297 {
1298 	if (ns_capable(real_mount(path->mnt)->mnt_ns->user_ns, CAP_SYS_ADMIN))
1299 		return 0;
1300 	return -EPERM;
1301 #ifdef notyet
1302 	if (S_ISLNK(path->dentry->d_inode->i_mode))
1303 		return -EPERM;
1304 	if (path->dentry->d_inode->i_mode & S_ISVTX) {
1305 		if (current_uid() != path->dentry->d_inode->i_uid)
1306 			return -EPERM;
1307 	}
1308 	if (inode_permission(path->dentry->d_inode, MAY_WRITE))
1309 		return -EPERM;
1310 	return 0;
1311 #endif
1312 }
1313 
1314 static bool mnt_ns_loop(struct path *path)
1315 {
1316 	/* Could bind mounting the mount namespace inode cause a
1317 	 * mount namespace loop?
1318 	 */
1319 	struct inode *inode = path->dentry->d_inode;
1320 	struct proc_inode *ei;
1321 	struct mnt_namespace *mnt_ns;
1322 
1323 	if (!proc_ns_inode(inode))
1324 		return false;
1325 
1326 	ei = PROC_I(inode);
1327 	if (ei->ns_ops != &mntns_operations)
1328 		return false;
1329 
1330 	mnt_ns = ei->ns;
1331 	return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1332 }
1333 
1334 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1335 					int flag)
1336 {
1337 	struct mount *res, *p, *q, *r;
1338 	struct path path;
1339 
1340 	if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1341 		return ERR_PTR(-EINVAL);
1342 
1343 	res = q = clone_mnt(mnt, dentry, flag);
1344 	if (IS_ERR(q))
1345 		return q;
1346 
1347 	q->mnt_mountpoint = mnt->mnt_mountpoint;
1348 
1349 	p = mnt;
1350 	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1351 		struct mount *s;
1352 		if (!is_subdir(r->mnt_mountpoint, dentry))
1353 			continue;
1354 
1355 		for (s = r; s; s = next_mnt(s, r)) {
1356 			if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
1357 				s = skip_mnt_tree(s);
1358 				continue;
1359 			}
1360 			while (p != s->mnt_parent) {
1361 				p = p->mnt_parent;
1362 				q = q->mnt_parent;
1363 			}
1364 			p = s;
1365 			path.mnt = &q->mnt;
1366 			path.dentry = p->mnt_mountpoint;
1367 			q = clone_mnt(p, p->mnt.mnt_root, flag);
1368 			if (IS_ERR(q))
1369 				goto out;
1370 			br_write_lock(&vfsmount_lock);
1371 			list_add_tail(&q->mnt_list, &res->mnt_list);
1372 			attach_mnt(q, &path);
1373 			br_write_unlock(&vfsmount_lock);
1374 		}
1375 	}
1376 	return res;
1377 out:
1378 	if (res) {
1379 		LIST_HEAD(umount_list);
1380 		br_write_lock(&vfsmount_lock);
1381 		umount_tree(res, 0, &umount_list);
1382 		br_write_unlock(&vfsmount_lock);
1383 		release_mounts(&umount_list);
1384 	}
1385 	return q;
1386 }
1387 
1388 /* Caller should check returned pointer for errors */
1389 
1390 struct vfsmount *collect_mounts(struct path *path)
1391 {
1392 	struct mount *tree;
1393 	down_write(&namespace_sem);
1394 	tree = copy_tree(real_mount(path->mnt), path->dentry,
1395 			 CL_COPY_ALL | CL_PRIVATE);
1396 	up_write(&namespace_sem);
1397 	if (IS_ERR(tree))
1398 		return NULL;
1399 	return &tree->mnt;
1400 }
1401 
1402 void drop_collected_mounts(struct vfsmount *mnt)
1403 {
1404 	LIST_HEAD(umount_list);
1405 	down_write(&namespace_sem);
1406 	br_write_lock(&vfsmount_lock);
1407 	umount_tree(real_mount(mnt), 0, &umount_list);
1408 	br_write_unlock(&vfsmount_lock);
1409 	up_write(&namespace_sem);
1410 	release_mounts(&umount_list);
1411 }
1412 
1413 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1414 		   struct vfsmount *root)
1415 {
1416 	struct mount *mnt;
1417 	int res = f(root, arg);
1418 	if (res)
1419 		return res;
1420 	list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1421 		res = f(&mnt->mnt, arg);
1422 		if (res)
1423 			return res;
1424 	}
1425 	return 0;
1426 }
1427 
1428 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1429 {
1430 	struct mount *p;
1431 
1432 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1433 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
1434 			mnt_release_group_id(p);
1435 	}
1436 }
1437 
1438 static int invent_group_ids(struct mount *mnt, bool recurse)
1439 {
1440 	struct mount *p;
1441 
1442 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1443 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1444 			int err = mnt_alloc_group_id(p);
1445 			if (err) {
1446 				cleanup_group_ids(mnt, p);
1447 				return err;
1448 			}
1449 		}
1450 	}
1451 
1452 	return 0;
1453 }
1454 
1455 /*
1456  *  @source_mnt : mount tree to be attached
1457  *  @nd         : place the mount tree @source_mnt is attached
1458  *  @parent_nd  : if non-null, detach the source_mnt from its parent and
1459  *  		   store the parent mount and mountpoint dentry.
1460  *  		   (done when source_mnt is moved)
1461  *
1462  *  NOTE: in the table below explains the semantics when a source mount
1463  *  of a given type is attached to a destination mount of a given type.
1464  * ---------------------------------------------------------------------------
1465  * |         BIND MOUNT OPERATION                                            |
1466  * |**************************************************************************
1467  * | source-->| shared        |       private  |       slave    | unbindable |
1468  * | dest     |               |                |                |            |
1469  * |   |      |               |                |                |            |
1470  * |   v      |               |                |                |            |
1471  * |**************************************************************************
1472  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
1473  * |          |               |                |                |            |
1474  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
1475  * ***************************************************************************
1476  * A bind operation clones the source mount and mounts the clone on the
1477  * destination mount.
1478  *
1479  * (++)  the cloned mount is propagated to all the mounts in the propagation
1480  * 	 tree of the destination mount and the cloned mount is added to
1481  * 	 the peer group of the source mount.
1482  * (+)   the cloned mount is created under the destination mount and is marked
1483  *       as shared. The cloned mount is added to the peer group of the source
1484  *       mount.
1485  * (+++) the mount is propagated to all the mounts in the propagation tree
1486  *       of the destination mount and the cloned mount is made slave
1487  *       of the same master as that of the source mount. The cloned mount
1488  *       is marked as 'shared and slave'.
1489  * (*)   the cloned mount is made a slave of the same master as that of the
1490  * 	 source mount.
1491  *
1492  * ---------------------------------------------------------------------------
1493  * |         		MOVE MOUNT OPERATION                                 |
1494  * |**************************************************************************
1495  * | source-->| shared        |       private  |       slave    | unbindable |
1496  * | dest     |               |                |                |            |
1497  * |   |      |               |                |                |            |
1498  * |   v      |               |                |                |            |
1499  * |**************************************************************************
1500  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
1501  * |          |               |                |                |            |
1502  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
1503  * ***************************************************************************
1504  *
1505  * (+)  the mount is moved to the destination. And is then propagated to
1506  * 	all the mounts in the propagation tree of the destination mount.
1507  * (+*)  the mount is moved to the destination.
1508  * (+++)  the mount is moved to the destination and is then propagated to
1509  * 	all the mounts belonging to the destination mount's propagation tree.
1510  * 	the mount is marked as 'shared and slave'.
1511  * (*)	the mount continues to be a slave at the new location.
1512  *
1513  * if the source mount is a tree, the operations explained above is
1514  * applied to each mount in the tree.
1515  * Must be called without spinlocks held, since this function can sleep
1516  * in allocations.
1517  */
1518 static int attach_recursive_mnt(struct mount *source_mnt,
1519 			struct path *path, struct path *parent_path)
1520 {
1521 	LIST_HEAD(tree_list);
1522 	struct mount *dest_mnt = real_mount(path->mnt);
1523 	struct dentry *dest_dentry = path->dentry;
1524 	struct mount *child, *p;
1525 	int err;
1526 
1527 	if (IS_MNT_SHARED(dest_mnt)) {
1528 		err = invent_group_ids(source_mnt, true);
1529 		if (err)
1530 			goto out;
1531 	}
1532 	err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
1533 	if (err)
1534 		goto out_cleanup_ids;
1535 
1536 	br_write_lock(&vfsmount_lock);
1537 
1538 	if (IS_MNT_SHARED(dest_mnt)) {
1539 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1540 			set_mnt_shared(p);
1541 	}
1542 	if (parent_path) {
1543 		detach_mnt(source_mnt, parent_path);
1544 		attach_mnt(source_mnt, path);
1545 		touch_mnt_namespace(source_mnt->mnt_ns);
1546 	} else {
1547 		mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
1548 		commit_tree(source_mnt);
1549 	}
1550 
1551 	list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1552 		list_del_init(&child->mnt_hash);
1553 		commit_tree(child);
1554 	}
1555 	br_write_unlock(&vfsmount_lock);
1556 
1557 	return 0;
1558 
1559  out_cleanup_ids:
1560 	if (IS_MNT_SHARED(dest_mnt))
1561 		cleanup_group_ids(source_mnt, NULL);
1562  out:
1563 	return err;
1564 }
1565 
1566 static int lock_mount(struct path *path)
1567 {
1568 	struct vfsmount *mnt;
1569 retry:
1570 	mutex_lock(&path->dentry->d_inode->i_mutex);
1571 	if (unlikely(cant_mount(path->dentry))) {
1572 		mutex_unlock(&path->dentry->d_inode->i_mutex);
1573 		return -ENOENT;
1574 	}
1575 	down_write(&namespace_sem);
1576 	mnt = lookup_mnt(path);
1577 	if (likely(!mnt))
1578 		return 0;
1579 	up_write(&namespace_sem);
1580 	mutex_unlock(&path->dentry->d_inode->i_mutex);
1581 	path_put(path);
1582 	path->mnt = mnt;
1583 	path->dentry = dget(mnt->mnt_root);
1584 	goto retry;
1585 }
1586 
1587 static void unlock_mount(struct path *path)
1588 {
1589 	up_write(&namespace_sem);
1590 	mutex_unlock(&path->dentry->d_inode->i_mutex);
1591 }
1592 
1593 static int graft_tree(struct mount *mnt, struct path *path)
1594 {
1595 	if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1596 		return -EINVAL;
1597 
1598 	if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1599 	      S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1600 		return -ENOTDIR;
1601 
1602 	if (d_unlinked(path->dentry))
1603 		return -ENOENT;
1604 
1605 	return attach_recursive_mnt(mnt, path, NULL);
1606 }
1607 
1608 /*
1609  * Sanity check the flags to change_mnt_propagation.
1610  */
1611 
1612 static int flags_to_propagation_type(int flags)
1613 {
1614 	int type = flags & ~(MS_REC | MS_SILENT);
1615 
1616 	/* Fail if any non-propagation flags are set */
1617 	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1618 		return 0;
1619 	/* Only one propagation flag should be set */
1620 	if (!is_power_of_2(type))
1621 		return 0;
1622 	return type;
1623 }
1624 
1625 /*
1626  * recursively change the type of the mountpoint.
1627  */
1628 static int do_change_type(struct path *path, int flag)
1629 {
1630 	struct mount *m;
1631 	struct mount *mnt = real_mount(path->mnt);
1632 	int recurse = flag & MS_REC;
1633 	int type;
1634 	int err = 0;
1635 
1636 	if (!ns_capable(mnt->mnt_ns->user_ns, CAP_SYS_ADMIN))
1637 		return -EPERM;
1638 
1639 	if (path->dentry != path->mnt->mnt_root)
1640 		return -EINVAL;
1641 
1642 	type = flags_to_propagation_type(flag);
1643 	if (!type)
1644 		return -EINVAL;
1645 
1646 	down_write(&namespace_sem);
1647 	if (type == MS_SHARED) {
1648 		err = invent_group_ids(mnt, recurse);
1649 		if (err)
1650 			goto out_unlock;
1651 	}
1652 
1653 	br_write_lock(&vfsmount_lock);
1654 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1655 		change_mnt_propagation(m, type);
1656 	br_write_unlock(&vfsmount_lock);
1657 
1658  out_unlock:
1659 	up_write(&namespace_sem);
1660 	return err;
1661 }
1662 
1663 /*
1664  * do loopback mount.
1665  */
1666 static int do_loopback(struct path *path, const char *old_name,
1667 				int recurse)
1668 {
1669 	LIST_HEAD(umount_list);
1670 	struct path old_path;
1671 	struct mount *mnt = NULL, *old;
1672 	int err = mount_is_safe(path);
1673 	if (err)
1674 		return err;
1675 	if (!old_name || !*old_name)
1676 		return -EINVAL;
1677 	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1678 	if (err)
1679 		return err;
1680 
1681 	err = -EINVAL;
1682 	if (mnt_ns_loop(&old_path))
1683 		goto out;
1684 
1685 	err = lock_mount(path);
1686 	if (err)
1687 		goto out;
1688 
1689 	old = real_mount(old_path.mnt);
1690 
1691 	err = -EINVAL;
1692 	if (IS_MNT_UNBINDABLE(old))
1693 		goto out2;
1694 
1695 	if (!check_mnt(real_mount(path->mnt)) || !check_mnt(old))
1696 		goto out2;
1697 
1698 	if (recurse)
1699 		mnt = copy_tree(old, old_path.dentry, 0);
1700 	else
1701 		mnt = clone_mnt(old, old_path.dentry, 0);
1702 
1703 	if (IS_ERR(mnt)) {
1704 		err = PTR_ERR(mnt);
1705 		goto out;
1706 	}
1707 
1708 	err = graft_tree(mnt, path);
1709 	if (err) {
1710 		br_write_lock(&vfsmount_lock);
1711 		umount_tree(mnt, 0, &umount_list);
1712 		br_write_unlock(&vfsmount_lock);
1713 	}
1714 out2:
1715 	unlock_mount(path);
1716 	release_mounts(&umount_list);
1717 out:
1718 	path_put(&old_path);
1719 	return err;
1720 }
1721 
1722 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1723 {
1724 	int error = 0;
1725 	int readonly_request = 0;
1726 
1727 	if (ms_flags & MS_RDONLY)
1728 		readonly_request = 1;
1729 	if (readonly_request == __mnt_is_readonly(mnt))
1730 		return 0;
1731 
1732 	if (readonly_request)
1733 		error = mnt_make_readonly(real_mount(mnt));
1734 	else
1735 		__mnt_unmake_readonly(real_mount(mnt));
1736 	return error;
1737 }
1738 
1739 /*
1740  * change filesystem flags. dir should be a physical root of filesystem.
1741  * If you've mounted a non-root directory somewhere and want to do remount
1742  * on it - tough luck.
1743  */
1744 static int do_remount(struct path *path, int flags, int mnt_flags,
1745 		      void *data)
1746 {
1747 	int err;
1748 	struct super_block *sb = path->mnt->mnt_sb;
1749 	struct mount *mnt = real_mount(path->mnt);
1750 
1751 	if (!capable(CAP_SYS_ADMIN))
1752 		return -EPERM;
1753 
1754 	if (!check_mnt(mnt))
1755 		return -EINVAL;
1756 
1757 	if (path->dentry != path->mnt->mnt_root)
1758 		return -EINVAL;
1759 
1760 	err = security_sb_remount(sb, data);
1761 	if (err)
1762 		return err;
1763 
1764 	down_write(&sb->s_umount);
1765 	if (flags & MS_BIND)
1766 		err = change_mount_flags(path->mnt, flags);
1767 	else
1768 		err = do_remount_sb(sb, flags, data, 0);
1769 	if (!err) {
1770 		br_write_lock(&vfsmount_lock);
1771 		mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK;
1772 		mnt->mnt.mnt_flags = mnt_flags;
1773 		br_write_unlock(&vfsmount_lock);
1774 	}
1775 	up_write(&sb->s_umount);
1776 	if (!err) {
1777 		br_write_lock(&vfsmount_lock);
1778 		touch_mnt_namespace(mnt->mnt_ns);
1779 		br_write_unlock(&vfsmount_lock);
1780 	}
1781 	return err;
1782 }
1783 
1784 static inline int tree_contains_unbindable(struct mount *mnt)
1785 {
1786 	struct mount *p;
1787 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1788 		if (IS_MNT_UNBINDABLE(p))
1789 			return 1;
1790 	}
1791 	return 0;
1792 }
1793 
1794 static int do_move_mount(struct path *path, const char *old_name)
1795 {
1796 	struct path old_path, parent_path;
1797 	struct mount *p;
1798 	struct mount *old;
1799 	int err = 0;
1800 	if (!ns_capable(real_mount(path->mnt)->mnt_ns->user_ns, CAP_SYS_ADMIN))
1801 		return -EPERM;
1802 	if (!old_name || !*old_name)
1803 		return -EINVAL;
1804 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1805 	if (err)
1806 		return err;
1807 
1808 	err = lock_mount(path);
1809 	if (err < 0)
1810 		goto out;
1811 
1812 	old = real_mount(old_path.mnt);
1813 	p = real_mount(path->mnt);
1814 
1815 	err = -EINVAL;
1816 	if (!check_mnt(p) || !check_mnt(old))
1817 		goto out1;
1818 
1819 	if (d_unlinked(path->dentry))
1820 		goto out1;
1821 
1822 	err = -EINVAL;
1823 	if (old_path.dentry != old_path.mnt->mnt_root)
1824 		goto out1;
1825 
1826 	if (!mnt_has_parent(old))
1827 		goto out1;
1828 
1829 	if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1830 	      S_ISDIR(old_path.dentry->d_inode->i_mode))
1831 		goto out1;
1832 	/*
1833 	 * Don't move a mount residing in a shared parent.
1834 	 */
1835 	if (IS_MNT_SHARED(old->mnt_parent))
1836 		goto out1;
1837 	/*
1838 	 * Don't move a mount tree containing unbindable mounts to a destination
1839 	 * mount which is shared.
1840 	 */
1841 	if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
1842 		goto out1;
1843 	err = -ELOOP;
1844 	for (; mnt_has_parent(p); p = p->mnt_parent)
1845 		if (p == old)
1846 			goto out1;
1847 
1848 	err = attach_recursive_mnt(old, path, &parent_path);
1849 	if (err)
1850 		goto out1;
1851 
1852 	/* if the mount is moved, it should no longer be expire
1853 	 * automatically */
1854 	list_del_init(&old->mnt_expire);
1855 out1:
1856 	unlock_mount(path);
1857 out:
1858 	if (!err)
1859 		path_put(&parent_path);
1860 	path_put(&old_path);
1861 	return err;
1862 }
1863 
1864 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1865 {
1866 	int err;
1867 	const char *subtype = strchr(fstype, '.');
1868 	if (subtype) {
1869 		subtype++;
1870 		err = -EINVAL;
1871 		if (!subtype[0])
1872 			goto err;
1873 	} else
1874 		subtype = "";
1875 
1876 	mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1877 	err = -ENOMEM;
1878 	if (!mnt->mnt_sb->s_subtype)
1879 		goto err;
1880 	return mnt;
1881 
1882  err:
1883 	mntput(mnt);
1884 	return ERR_PTR(err);
1885 }
1886 
1887 /*
1888  * add a mount into a namespace's mount tree
1889  */
1890 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
1891 {
1892 	int err;
1893 
1894 	mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
1895 
1896 	err = lock_mount(path);
1897 	if (err)
1898 		return err;
1899 
1900 	err = -EINVAL;
1901 	if (unlikely(!check_mnt(real_mount(path->mnt)))) {
1902 		/* that's acceptable only for automounts done in private ns */
1903 		if (!(mnt_flags & MNT_SHRINKABLE))
1904 			goto unlock;
1905 		/* ... and for those we'd better have mountpoint still alive */
1906 		if (!real_mount(path->mnt)->mnt_ns)
1907 			goto unlock;
1908 	}
1909 
1910 	/* Refuse the same filesystem on the same mount point */
1911 	err = -EBUSY;
1912 	if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
1913 	    path->mnt->mnt_root == path->dentry)
1914 		goto unlock;
1915 
1916 	err = -EINVAL;
1917 	if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
1918 		goto unlock;
1919 
1920 	newmnt->mnt.mnt_flags = mnt_flags;
1921 	err = graft_tree(newmnt, path);
1922 
1923 unlock:
1924 	unlock_mount(path);
1925 	return err;
1926 }
1927 
1928 /*
1929  * create a new mount for userspace and request it to be added into the
1930  * namespace's tree
1931  */
1932 static int do_new_mount(struct path *path, const char *fstype, int flags,
1933 			int mnt_flags, const char *name, void *data)
1934 {
1935 	struct file_system_type *type;
1936 	struct user_namespace *user_ns;
1937 	struct vfsmount *mnt;
1938 	int err;
1939 
1940 	if (!fstype)
1941 		return -EINVAL;
1942 
1943 	/* we need capabilities... */
1944 	user_ns = real_mount(path->mnt)->mnt_ns->user_ns;
1945 	if (!ns_capable(user_ns, CAP_SYS_ADMIN))
1946 		return -EPERM;
1947 
1948 	type = get_fs_type(fstype);
1949 	if (!type)
1950 		return -ENODEV;
1951 
1952 	if (user_ns != &init_user_ns) {
1953 		if (!(type->fs_flags & FS_USERNS_MOUNT)) {
1954 			put_filesystem(type);
1955 			return -EPERM;
1956 		}
1957 		/* Only in special cases allow devices from mounts
1958 		 * created outside the initial user namespace.
1959 		 */
1960 		if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
1961 			flags |= MS_NODEV;
1962 			mnt_flags |= MNT_NODEV;
1963 		}
1964 	}
1965 
1966 	mnt = vfs_kern_mount(type, flags, name, data);
1967 	if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
1968 	    !mnt->mnt_sb->s_subtype)
1969 		mnt = fs_set_subtype(mnt, fstype);
1970 
1971 	put_filesystem(type);
1972 	if (IS_ERR(mnt))
1973 		return PTR_ERR(mnt);
1974 
1975 	err = do_add_mount(real_mount(mnt), path, mnt_flags);
1976 	if (err)
1977 		mntput(mnt);
1978 	return err;
1979 }
1980 
1981 int finish_automount(struct vfsmount *m, struct path *path)
1982 {
1983 	struct mount *mnt = real_mount(m);
1984 	int err;
1985 	/* The new mount record should have at least 2 refs to prevent it being
1986 	 * expired before we get a chance to add it
1987 	 */
1988 	BUG_ON(mnt_get_count(mnt) < 2);
1989 
1990 	if (m->mnt_sb == path->mnt->mnt_sb &&
1991 	    m->mnt_root == path->dentry) {
1992 		err = -ELOOP;
1993 		goto fail;
1994 	}
1995 
1996 	err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
1997 	if (!err)
1998 		return 0;
1999 fail:
2000 	/* remove m from any expiration list it may be on */
2001 	if (!list_empty(&mnt->mnt_expire)) {
2002 		down_write(&namespace_sem);
2003 		br_write_lock(&vfsmount_lock);
2004 		list_del_init(&mnt->mnt_expire);
2005 		br_write_unlock(&vfsmount_lock);
2006 		up_write(&namespace_sem);
2007 	}
2008 	mntput(m);
2009 	mntput(m);
2010 	return err;
2011 }
2012 
2013 /**
2014  * mnt_set_expiry - Put a mount on an expiration list
2015  * @mnt: The mount to list.
2016  * @expiry_list: The list to add the mount to.
2017  */
2018 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2019 {
2020 	down_write(&namespace_sem);
2021 	br_write_lock(&vfsmount_lock);
2022 
2023 	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2024 
2025 	br_write_unlock(&vfsmount_lock);
2026 	up_write(&namespace_sem);
2027 }
2028 EXPORT_SYMBOL(mnt_set_expiry);
2029 
2030 /*
2031  * process a list of expirable mountpoints with the intent of discarding any
2032  * mountpoints that aren't in use and haven't been touched since last we came
2033  * here
2034  */
2035 void mark_mounts_for_expiry(struct list_head *mounts)
2036 {
2037 	struct mount *mnt, *next;
2038 	LIST_HEAD(graveyard);
2039 	LIST_HEAD(umounts);
2040 
2041 	if (list_empty(mounts))
2042 		return;
2043 
2044 	down_write(&namespace_sem);
2045 	br_write_lock(&vfsmount_lock);
2046 
2047 	/* extract from the expiration list every vfsmount that matches the
2048 	 * following criteria:
2049 	 * - only referenced by its parent vfsmount
2050 	 * - still marked for expiry (marked on the last call here; marks are
2051 	 *   cleared by mntput())
2052 	 */
2053 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2054 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2055 			propagate_mount_busy(mnt, 1))
2056 			continue;
2057 		list_move(&mnt->mnt_expire, &graveyard);
2058 	}
2059 	while (!list_empty(&graveyard)) {
2060 		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2061 		touch_mnt_namespace(mnt->mnt_ns);
2062 		umount_tree(mnt, 1, &umounts);
2063 	}
2064 	br_write_unlock(&vfsmount_lock);
2065 	up_write(&namespace_sem);
2066 
2067 	release_mounts(&umounts);
2068 }
2069 
2070 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2071 
2072 /*
2073  * Ripoff of 'select_parent()'
2074  *
2075  * search the list of submounts for a given mountpoint, and move any
2076  * shrinkable submounts to the 'graveyard' list.
2077  */
2078 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2079 {
2080 	struct mount *this_parent = parent;
2081 	struct list_head *next;
2082 	int found = 0;
2083 
2084 repeat:
2085 	next = this_parent->mnt_mounts.next;
2086 resume:
2087 	while (next != &this_parent->mnt_mounts) {
2088 		struct list_head *tmp = next;
2089 		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2090 
2091 		next = tmp->next;
2092 		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2093 			continue;
2094 		/*
2095 		 * Descend a level if the d_mounts list is non-empty.
2096 		 */
2097 		if (!list_empty(&mnt->mnt_mounts)) {
2098 			this_parent = mnt;
2099 			goto repeat;
2100 		}
2101 
2102 		if (!propagate_mount_busy(mnt, 1)) {
2103 			list_move_tail(&mnt->mnt_expire, graveyard);
2104 			found++;
2105 		}
2106 	}
2107 	/*
2108 	 * All done at this level ... ascend and resume the search
2109 	 */
2110 	if (this_parent != parent) {
2111 		next = this_parent->mnt_child.next;
2112 		this_parent = this_parent->mnt_parent;
2113 		goto resume;
2114 	}
2115 	return found;
2116 }
2117 
2118 /*
2119  * process a list of expirable mountpoints with the intent of discarding any
2120  * submounts of a specific parent mountpoint
2121  *
2122  * vfsmount_lock must be held for write
2123  */
2124 static void shrink_submounts(struct mount *mnt, struct list_head *umounts)
2125 {
2126 	LIST_HEAD(graveyard);
2127 	struct mount *m;
2128 
2129 	/* extract submounts of 'mountpoint' from the expiration list */
2130 	while (select_submounts(mnt, &graveyard)) {
2131 		while (!list_empty(&graveyard)) {
2132 			m = list_first_entry(&graveyard, struct mount,
2133 						mnt_expire);
2134 			touch_mnt_namespace(m->mnt_ns);
2135 			umount_tree(m, 1, umounts);
2136 		}
2137 	}
2138 }
2139 
2140 /*
2141  * Some copy_from_user() implementations do not return the exact number of
2142  * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
2143  * Note that this function differs from copy_from_user() in that it will oops
2144  * on bad values of `to', rather than returning a short copy.
2145  */
2146 static long exact_copy_from_user(void *to, const void __user * from,
2147 				 unsigned long n)
2148 {
2149 	char *t = to;
2150 	const char __user *f = from;
2151 	char c;
2152 
2153 	if (!access_ok(VERIFY_READ, from, n))
2154 		return n;
2155 
2156 	while (n) {
2157 		if (__get_user(c, f)) {
2158 			memset(t, 0, n);
2159 			break;
2160 		}
2161 		*t++ = c;
2162 		f++;
2163 		n--;
2164 	}
2165 	return n;
2166 }
2167 
2168 int copy_mount_options(const void __user * data, unsigned long *where)
2169 {
2170 	int i;
2171 	unsigned long page;
2172 	unsigned long size;
2173 
2174 	*where = 0;
2175 	if (!data)
2176 		return 0;
2177 
2178 	if (!(page = __get_free_page(GFP_KERNEL)))
2179 		return -ENOMEM;
2180 
2181 	/* We only care that *some* data at the address the user
2182 	 * gave us is valid.  Just in case, we'll zero
2183 	 * the remainder of the page.
2184 	 */
2185 	/* copy_from_user cannot cross TASK_SIZE ! */
2186 	size = TASK_SIZE - (unsigned long)data;
2187 	if (size > PAGE_SIZE)
2188 		size = PAGE_SIZE;
2189 
2190 	i = size - exact_copy_from_user((void *)page, data, size);
2191 	if (!i) {
2192 		free_page(page);
2193 		return -EFAULT;
2194 	}
2195 	if (i != PAGE_SIZE)
2196 		memset((char *)page + i, 0, PAGE_SIZE - i);
2197 	*where = page;
2198 	return 0;
2199 }
2200 
2201 int copy_mount_string(const void __user *data, char **where)
2202 {
2203 	char *tmp;
2204 
2205 	if (!data) {
2206 		*where = NULL;
2207 		return 0;
2208 	}
2209 
2210 	tmp = strndup_user(data, PAGE_SIZE);
2211 	if (IS_ERR(tmp))
2212 		return PTR_ERR(tmp);
2213 
2214 	*where = tmp;
2215 	return 0;
2216 }
2217 
2218 /*
2219  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2220  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2221  *
2222  * data is a (void *) that can point to any structure up to
2223  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2224  * information (or be NULL).
2225  *
2226  * Pre-0.97 versions of mount() didn't have a flags word.
2227  * When the flags word was introduced its top half was required
2228  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2229  * Therefore, if this magic number is present, it carries no information
2230  * and must be discarded.
2231  */
2232 long do_mount(const char *dev_name, const char *dir_name,
2233 		const char *type_page, unsigned long flags, void *data_page)
2234 {
2235 	struct path path;
2236 	int retval = 0;
2237 	int mnt_flags = 0;
2238 
2239 	/* Discard magic */
2240 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2241 		flags &= ~MS_MGC_MSK;
2242 
2243 	/* Basic sanity checks */
2244 
2245 	if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2246 		return -EINVAL;
2247 
2248 	if (data_page)
2249 		((char *)data_page)[PAGE_SIZE - 1] = 0;
2250 
2251 	/* ... and get the mountpoint */
2252 	retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2253 	if (retval)
2254 		return retval;
2255 
2256 	retval = security_sb_mount(dev_name, &path,
2257 				   type_page, flags, data_page);
2258 	if (retval)
2259 		goto dput_out;
2260 
2261 	/* Default to relatime unless overriden */
2262 	if (!(flags & MS_NOATIME))
2263 		mnt_flags |= MNT_RELATIME;
2264 
2265 	/* Separate the per-mountpoint flags */
2266 	if (flags & MS_NOSUID)
2267 		mnt_flags |= MNT_NOSUID;
2268 	if (flags & MS_NODEV)
2269 		mnt_flags |= MNT_NODEV;
2270 	if (flags & MS_NOEXEC)
2271 		mnt_flags |= MNT_NOEXEC;
2272 	if (flags & MS_NOATIME)
2273 		mnt_flags |= MNT_NOATIME;
2274 	if (flags & MS_NODIRATIME)
2275 		mnt_flags |= MNT_NODIRATIME;
2276 	if (flags & MS_STRICTATIME)
2277 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2278 	if (flags & MS_RDONLY)
2279 		mnt_flags |= MNT_READONLY;
2280 
2281 	flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2282 		   MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2283 		   MS_STRICTATIME);
2284 
2285 	if (flags & MS_REMOUNT)
2286 		retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2287 				    data_page);
2288 	else if (flags & MS_BIND)
2289 		retval = do_loopback(&path, dev_name, flags & MS_REC);
2290 	else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2291 		retval = do_change_type(&path, flags);
2292 	else if (flags & MS_MOVE)
2293 		retval = do_move_mount(&path, dev_name);
2294 	else
2295 		retval = do_new_mount(&path, type_page, flags, mnt_flags,
2296 				      dev_name, data_page);
2297 dput_out:
2298 	path_put(&path);
2299 	return retval;
2300 }
2301 
2302 static void free_mnt_ns(struct mnt_namespace *ns)
2303 {
2304 	proc_free_inum(ns->proc_inum);
2305 	put_user_ns(ns->user_ns);
2306 	kfree(ns);
2307 }
2308 
2309 /*
2310  * Assign a sequence number so we can detect when we attempt to bind
2311  * mount a reference to an older mount namespace into the current
2312  * mount namespace, preventing reference counting loops.  A 64bit
2313  * number incrementing at 10Ghz will take 12,427 years to wrap which
2314  * is effectively never, so we can ignore the possibility.
2315  */
2316 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2317 
2318 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2319 {
2320 	struct mnt_namespace *new_ns;
2321 	int ret;
2322 
2323 	new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2324 	if (!new_ns)
2325 		return ERR_PTR(-ENOMEM);
2326 	ret = proc_alloc_inum(&new_ns->proc_inum);
2327 	if (ret) {
2328 		kfree(new_ns);
2329 		return ERR_PTR(ret);
2330 	}
2331 	new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2332 	atomic_set(&new_ns->count, 1);
2333 	new_ns->root = NULL;
2334 	INIT_LIST_HEAD(&new_ns->list);
2335 	init_waitqueue_head(&new_ns->poll);
2336 	new_ns->event = 0;
2337 	new_ns->user_ns = get_user_ns(user_ns);
2338 	return new_ns;
2339 }
2340 
2341 /*
2342  * Allocate a new namespace structure and populate it with contents
2343  * copied from the namespace of the passed in task structure.
2344  */
2345 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
2346 		struct user_namespace *user_ns, struct fs_struct *fs)
2347 {
2348 	struct mnt_namespace *new_ns;
2349 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2350 	struct mount *p, *q;
2351 	struct mount *old = mnt_ns->root;
2352 	struct mount *new;
2353 	int copy_flags;
2354 
2355 	new_ns = alloc_mnt_ns(user_ns);
2356 	if (IS_ERR(new_ns))
2357 		return new_ns;
2358 
2359 	down_write(&namespace_sem);
2360 	/* First pass: copy the tree topology */
2361 	copy_flags = CL_COPY_ALL | CL_EXPIRE;
2362 	if (user_ns != mnt_ns->user_ns)
2363 		copy_flags |= CL_SHARED_TO_SLAVE;
2364 	new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2365 	if (IS_ERR(new)) {
2366 		up_write(&namespace_sem);
2367 		free_mnt_ns(new_ns);
2368 		return ERR_CAST(new);
2369 	}
2370 	new_ns->root = new;
2371 	br_write_lock(&vfsmount_lock);
2372 	list_add_tail(&new_ns->list, &new->mnt_list);
2373 	br_write_unlock(&vfsmount_lock);
2374 
2375 	/*
2376 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2377 	 * as belonging to new namespace.  We have already acquired a private
2378 	 * fs_struct, so tsk->fs->lock is not needed.
2379 	 */
2380 	p = old;
2381 	q = new;
2382 	while (p) {
2383 		q->mnt_ns = new_ns;
2384 		if (fs) {
2385 			if (&p->mnt == fs->root.mnt) {
2386 				fs->root.mnt = mntget(&q->mnt);
2387 				rootmnt = &p->mnt;
2388 			}
2389 			if (&p->mnt == fs->pwd.mnt) {
2390 				fs->pwd.mnt = mntget(&q->mnt);
2391 				pwdmnt = &p->mnt;
2392 			}
2393 		}
2394 		p = next_mnt(p, old);
2395 		q = next_mnt(q, new);
2396 	}
2397 	up_write(&namespace_sem);
2398 
2399 	if (rootmnt)
2400 		mntput(rootmnt);
2401 	if (pwdmnt)
2402 		mntput(pwdmnt);
2403 
2404 	return new_ns;
2405 }
2406 
2407 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2408 		struct user_namespace *user_ns, struct fs_struct *new_fs)
2409 {
2410 	struct mnt_namespace *new_ns;
2411 
2412 	BUG_ON(!ns);
2413 	get_mnt_ns(ns);
2414 
2415 	if (!(flags & CLONE_NEWNS))
2416 		return ns;
2417 
2418 	new_ns = dup_mnt_ns(ns, user_ns, new_fs);
2419 
2420 	put_mnt_ns(ns);
2421 	return new_ns;
2422 }
2423 
2424 /**
2425  * create_mnt_ns - creates a private namespace and adds a root filesystem
2426  * @mnt: pointer to the new root filesystem mountpoint
2427  */
2428 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2429 {
2430 	struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2431 	if (!IS_ERR(new_ns)) {
2432 		struct mount *mnt = real_mount(m);
2433 		mnt->mnt_ns = new_ns;
2434 		new_ns->root = mnt;
2435 		list_add(&new_ns->list, &mnt->mnt_list);
2436 	} else {
2437 		mntput(m);
2438 	}
2439 	return new_ns;
2440 }
2441 
2442 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2443 {
2444 	struct mnt_namespace *ns;
2445 	struct super_block *s;
2446 	struct path path;
2447 	int err;
2448 
2449 	ns = create_mnt_ns(mnt);
2450 	if (IS_ERR(ns))
2451 		return ERR_CAST(ns);
2452 
2453 	err = vfs_path_lookup(mnt->mnt_root, mnt,
2454 			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2455 
2456 	put_mnt_ns(ns);
2457 
2458 	if (err)
2459 		return ERR_PTR(err);
2460 
2461 	/* trade a vfsmount reference for active sb one */
2462 	s = path.mnt->mnt_sb;
2463 	atomic_inc(&s->s_active);
2464 	mntput(path.mnt);
2465 	/* lock the sucker */
2466 	down_write(&s->s_umount);
2467 	/* ... and return the root of (sub)tree on it */
2468 	return path.dentry;
2469 }
2470 EXPORT_SYMBOL(mount_subtree);
2471 
2472 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2473 		char __user *, type, unsigned long, flags, void __user *, data)
2474 {
2475 	int ret;
2476 	char *kernel_type;
2477 	struct filename *kernel_dir;
2478 	char *kernel_dev;
2479 	unsigned long data_page;
2480 
2481 	ret = copy_mount_string(type, &kernel_type);
2482 	if (ret < 0)
2483 		goto out_type;
2484 
2485 	kernel_dir = getname(dir_name);
2486 	if (IS_ERR(kernel_dir)) {
2487 		ret = PTR_ERR(kernel_dir);
2488 		goto out_dir;
2489 	}
2490 
2491 	ret = copy_mount_string(dev_name, &kernel_dev);
2492 	if (ret < 0)
2493 		goto out_dev;
2494 
2495 	ret = copy_mount_options(data, &data_page);
2496 	if (ret < 0)
2497 		goto out_data;
2498 
2499 	ret = do_mount(kernel_dev, kernel_dir->name, kernel_type, flags,
2500 		(void *) data_page);
2501 
2502 	free_page(data_page);
2503 out_data:
2504 	kfree(kernel_dev);
2505 out_dev:
2506 	putname(kernel_dir);
2507 out_dir:
2508 	kfree(kernel_type);
2509 out_type:
2510 	return ret;
2511 }
2512 
2513 /*
2514  * Return true if path is reachable from root
2515  *
2516  * namespace_sem or vfsmount_lock is held
2517  */
2518 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
2519 			 const struct path *root)
2520 {
2521 	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
2522 		dentry = mnt->mnt_mountpoint;
2523 		mnt = mnt->mnt_parent;
2524 	}
2525 	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
2526 }
2527 
2528 int path_is_under(struct path *path1, struct path *path2)
2529 {
2530 	int res;
2531 	br_read_lock(&vfsmount_lock);
2532 	res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
2533 	br_read_unlock(&vfsmount_lock);
2534 	return res;
2535 }
2536 EXPORT_SYMBOL(path_is_under);
2537 
2538 /*
2539  * pivot_root Semantics:
2540  * Moves the root file system of the current process to the directory put_old,
2541  * makes new_root as the new root file system of the current process, and sets
2542  * root/cwd of all processes which had them on the current root to new_root.
2543  *
2544  * Restrictions:
2545  * The new_root and put_old must be directories, and  must not be on the
2546  * same file  system as the current process root. The put_old  must  be
2547  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
2548  * pointed to by put_old must yield the same directory as new_root. No other
2549  * file system may be mounted on put_old. After all, new_root is a mountpoint.
2550  *
2551  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2552  * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2553  * in this situation.
2554  *
2555  * Notes:
2556  *  - we don't move root/cwd if they are not at the root (reason: if something
2557  *    cared enough to change them, it's probably wrong to force them elsewhere)
2558  *  - it's okay to pick a root that isn't the root of a file system, e.g.
2559  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2560  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2561  *    first.
2562  */
2563 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2564 		const char __user *, put_old)
2565 {
2566 	struct path new, old, parent_path, root_parent, root;
2567 	struct mount *new_mnt, *root_mnt;
2568 	int error;
2569 
2570 	if (!ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN))
2571 		return -EPERM;
2572 
2573 	error = user_path_dir(new_root, &new);
2574 	if (error)
2575 		goto out0;
2576 
2577 	error = user_path_dir(put_old, &old);
2578 	if (error)
2579 		goto out1;
2580 
2581 	error = security_sb_pivotroot(&old, &new);
2582 	if (error)
2583 		goto out2;
2584 
2585 	get_fs_root(current->fs, &root);
2586 	error = lock_mount(&old);
2587 	if (error)
2588 		goto out3;
2589 
2590 	error = -EINVAL;
2591 	new_mnt = real_mount(new.mnt);
2592 	root_mnt = real_mount(root.mnt);
2593 	if (IS_MNT_SHARED(real_mount(old.mnt)) ||
2594 		IS_MNT_SHARED(new_mnt->mnt_parent) ||
2595 		IS_MNT_SHARED(root_mnt->mnt_parent))
2596 		goto out4;
2597 	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
2598 		goto out4;
2599 	error = -ENOENT;
2600 	if (d_unlinked(new.dentry))
2601 		goto out4;
2602 	if (d_unlinked(old.dentry))
2603 		goto out4;
2604 	error = -EBUSY;
2605 	if (new.mnt == root.mnt ||
2606 	    old.mnt == root.mnt)
2607 		goto out4; /* loop, on the same file system  */
2608 	error = -EINVAL;
2609 	if (root.mnt->mnt_root != root.dentry)
2610 		goto out4; /* not a mountpoint */
2611 	if (!mnt_has_parent(root_mnt))
2612 		goto out4; /* not attached */
2613 	if (new.mnt->mnt_root != new.dentry)
2614 		goto out4; /* not a mountpoint */
2615 	if (!mnt_has_parent(new_mnt))
2616 		goto out4; /* not attached */
2617 	/* make sure we can reach put_old from new_root */
2618 	if (!is_path_reachable(real_mount(old.mnt), old.dentry, &new))
2619 		goto out4;
2620 	br_write_lock(&vfsmount_lock);
2621 	detach_mnt(new_mnt, &parent_path);
2622 	detach_mnt(root_mnt, &root_parent);
2623 	/* mount old root on put_old */
2624 	attach_mnt(root_mnt, &old);
2625 	/* mount new_root on / */
2626 	attach_mnt(new_mnt, &root_parent);
2627 	touch_mnt_namespace(current->nsproxy->mnt_ns);
2628 	br_write_unlock(&vfsmount_lock);
2629 	chroot_fs_refs(&root, &new);
2630 	error = 0;
2631 out4:
2632 	unlock_mount(&old);
2633 	if (!error) {
2634 		path_put(&root_parent);
2635 		path_put(&parent_path);
2636 	}
2637 out3:
2638 	path_put(&root);
2639 out2:
2640 	path_put(&old);
2641 out1:
2642 	path_put(&new);
2643 out0:
2644 	return error;
2645 }
2646 
2647 static void __init init_mount_tree(void)
2648 {
2649 	struct vfsmount *mnt;
2650 	struct mnt_namespace *ns;
2651 	struct path root;
2652 	struct file_system_type *type;
2653 
2654 	type = get_fs_type("rootfs");
2655 	if (!type)
2656 		panic("Can't find rootfs type");
2657 	mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
2658 	put_filesystem(type);
2659 	if (IS_ERR(mnt))
2660 		panic("Can't create rootfs");
2661 
2662 	ns = create_mnt_ns(mnt);
2663 	if (IS_ERR(ns))
2664 		panic("Can't allocate initial namespace");
2665 
2666 	init_task.nsproxy->mnt_ns = ns;
2667 	get_mnt_ns(ns);
2668 
2669 	root.mnt = mnt;
2670 	root.dentry = mnt->mnt_root;
2671 
2672 	set_fs_pwd(current->fs, &root);
2673 	set_fs_root(current->fs, &root);
2674 }
2675 
2676 void __init mnt_init(void)
2677 {
2678 	unsigned u;
2679 	int err;
2680 
2681 	init_rwsem(&namespace_sem);
2682 
2683 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
2684 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2685 
2686 	mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2687 
2688 	if (!mount_hashtable)
2689 		panic("Failed to allocate mount hash table\n");
2690 
2691 	printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
2692 
2693 	for (u = 0; u < HASH_SIZE; u++)
2694 		INIT_LIST_HEAD(&mount_hashtable[u]);
2695 
2696 	br_lock_init(&vfsmount_lock);
2697 
2698 	err = sysfs_init();
2699 	if (err)
2700 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2701 			__func__, err);
2702 	fs_kobj = kobject_create_and_add("fs", NULL);
2703 	if (!fs_kobj)
2704 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
2705 	init_rootfs();
2706 	init_mount_tree();
2707 }
2708 
2709 void put_mnt_ns(struct mnt_namespace *ns)
2710 {
2711 	LIST_HEAD(umount_list);
2712 
2713 	if (!atomic_dec_and_test(&ns->count))
2714 		return;
2715 	down_write(&namespace_sem);
2716 	br_write_lock(&vfsmount_lock);
2717 	umount_tree(ns->root, 0, &umount_list);
2718 	br_write_unlock(&vfsmount_lock);
2719 	up_write(&namespace_sem);
2720 	release_mounts(&umount_list);
2721 	free_mnt_ns(ns);
2722 }
2723 
2724 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2725 {
2726 	struct vfsmount *mnt;
2727 	mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2728 	if (!IS_ERR(mnt)) {
2729 		/*
2730 		 * it is a longterm mount, don't release mnt until
2731 		 * we unmount before file sys is unregistered
2732 		*/
2733 		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
2734 	}
2735 	return mnt;
2736 }
2737 EXPORT_SYMBOL_GPL(kern_mount_data);
2738 
2739 void kern_unmount(struct vfsmount *mnt)
2740 {
2741 	/* release long term mount so mount point can be released */
2742 	if (!IS_ERR_OR_NULL(mnt)) {
2743 		br_write_lock(&vfsmount_lock);
2744 		real_mount(mnt)->mnt_ns = NULL;
2745 		br_write_unlock(&vfsmount_lock);
2746 		mntput(mnt);
2747 	}
2748 }
2749 EXPORT_SYMBOL(kern_unmount);
2750 
2751 bool our_mnt(struct vfsmount *mnt)
2752 {
2753 	return check_mnt(real_mount(mnt));
2754 }
2755 
2756 static void *mntns_get(struct task_struct *task)
2757 {
2758 	struct mnt_namespace *ns = NULL;
2759 	struct nsproxy *nsproxy;
2760 
2761 	rcu_read_lock();
2762 	nsproxy = task_nsproxy(task);
2763 	if (nsproxy) {
2764 		ns = nsproxy->mnt_ns;
2765 		get_mnt_ns(ns);
2766 	}
2767 	rcu_read_unlock();
2768 
2769 	return ns;
2770 }
2771 
2772 static void mntns_put(void *ns)
2773 {
2774 	put_mnt_ns(ns);
2775 }
2776 
2777 static int mntns_install(struct nsproxy *nsproxy, void *ns)
2778 {
2779 	struct fs_struct *fs = current->fs;
2780 	struct mnt_namespace *mnt_ns = ns;
2781 	struct path root;
2782 
2783 	if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
2784 	    !nsown_capable(CAP_SYS_CHROOT) ||
2785 	    !nsown_capable(CAP_SYS_ADMIN))
2786 		return -EPERM;
2787 
2788 	if (fs->users != 1)
2789 		return -EINVAL;
2790 
2791 	get_mnt_ns(mnt_ns);
2792 	put_mnt_ns(nsproxy->mnt_ns);
2793 	nsproxy->mnt_ns = mnt_ns;
2794 
2795 	/* Find the root */
2796 	root.mnt    = &mnt_ns->root->mnt;
2797 	root.dentry = mnt_ns->root->mnt.mnt_root;
2798 	path_get(&root);
2799 	while(d_mountpoint(root.dentry) && follow_down_one(&root))
2800 		;
2801 
2802 	/* Update the pwd and root */
2803 	set_fs_pwd(fs, &root);
2804 	set_fs_root(fs, &root);
2805 
2806 	path_put(&root);
2807 	return 0;
2808 }
2809 
2810 static unsigned int mntns_inum(void *ns)
2811 {
2812 	struct mnt_namespace *mnt_ns = ns;
2813 	return mnt_ns->proc_inum;
2814 }
2815 
2816 const struct proc_ns_operations mntns_operations = {
2817 	.name		= "mnt",
2818 	.type		= CLONE_NEWNS,
2819 	.get		= mntns_get,
2820 	.put		= mntns_put,
2821 	.install	= mntns_install,
2822 	.inum		= mntns_inum,
2823 };
2824