1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/namespace.c 4 * 5 * (C) Copyright Al Viro 2000, 2001 6 * 7 * Based on code from fs/super.c, copyright Linus Torvalds and others. 8 * Heavily rewritten. 9 */ 10 11 #include <linux/syscalls.h> 12 #include <linux/export.h> 13 #include <linux/capability.h> 14 #include <linux/mnt_namespace.h> 15 #include <linux/user_namespace.h> 16 #include <linux/namei.h> 17 #include <linux/security.h> 18 #include <linux/cred.h> 19 #include <linux/idr.h> 20 #include <linux/init.h> /* init_rootfs */ 21 #include <linux/fs_struct.h> /* get_fs_root et.al. */ 22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */ 23 #include <linux/file.h> 24 #include <linux/uaccess.h> 25 #include <linux/proc_ns.h> 26 #include <linux/magic.h> 27 #include <linux/memblock.h> 28 #include <linux/task_work.h> 29 #include <linux/sched/task.h> 30 #include <uapi/linux/mount.h> 31 #include <linux/fs_context.h> 32 #include <linux/shmem_fs.h> 33 34 #include "pnode.h" 35 #include "internal.h" 36 37 /* Maximum number of mounts in a mount namespace */ 38 unsigned int sysctl_mount_max __read_mostly = 100000; 39 40 static unsigned int m_hash_mask __read_mostly; 41 static unsigned int m_hash_shift __read_mostly; 42 static unsigned int mp_hash_mask __read_mostly; 43 static unsigned int mp_hash_shift __read_mostly; 44 45 static __initdata unsigned long mhash_entries; 46 static int __init set_mhash_entries(char *str) 47 { 48 if (!str) 49 return 0; 50 mhash_entries = simple_strtoul(str, &str, 0); 51 return 1; 52 } 53 __setup("mhash_entries=", set_mhash_entries); 54 55 static __initdata unsigned long mphash_entries; 56 static int __init set_mphash_entries(char *str) 57 { 58 if (!str) 59 return 0; 60 mphash_entries = simple_strtoul(str, &str, 0); 61 return 1; 62 } 63 __setup("mphash_entries=", set_mphash_entries); 64 65 static u64 event; 66 static DEFINE_IDA(mnt_id_ida); 67 static DEFINE_IDA(mnt_group_ida); 68 69 static struct hlist_head *mount_hashtable __read_mostly; 70 static struct hlist_head *mountpoint_hashtable __read_mostly; 71 static struct kmem_cache *mnt_cache __read_mostly; 72 static DECLARE_RWSEM(namespace_sem); 73 static HLIST_HEAD(unmounted); /* protected by namespace_sem */ 74 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */ 75 76 /* /sys/fs */ 77 struct kobject *fs_kobj; 78 EXPORT_SYMBOL_GPL(fs_kobj); 79 80 /* 81 * vfsmount lock may be taken for read to prevent changes to the 82 * vfsmount hash, ie. during mountpoint lookups or walking back 83 * up the tree. 84 * 85 * It should be taken for write in all cases where the vfsmount 86 * tree or hash is modified or when a vfsmount structure is modified. 87 */ 88 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock); 89 90 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry) 91 { 92 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); 93 tmp += ((unsigned long)dentry / L1_CACHE_BYTES); 94 tmp = tmp + (tmp >> m_hash_shift); 95 return &mount_hashtable[tmp & m_hash_mask]; 96 } 97 98 static inline struct hlist_head *mp_hash(struct dentry *dentry) 99 { 100 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES); 101 tmp = tmp + (tmp >> mp_hash_shift); 102 return &mountpoint_hashtable[tmp & mp_hash_mask]; 103 } 104 105 static int mnt_alloc_id(struct mount *mnt) 106 { 107 int res = ida_alloc(&mnt_id_ida, GFP_KERNEL); 108 109 if (res < 0) 110 return res; 111 mnt->mnt_id = res; 112 return 0; 113 } 114 115 static void mnt_free_id(struct mount *mnt) 116 { 117 ida_free(&mnt_id_ida, mnt->mnt_id); 118 } 119 120 /* 121 * Allocate a new peer group ID 122 */ 123 static int mnt_alloc_group_id(struct mount *mnt) 124 { 125 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL); 126 127 if (res < 0) 128 return res; 129 mnt->mnt_group_id = res; 130 return 0; 131 } 132 133 /* 134 * Release a peer group ID 135 */ 136 void mnt_release_group_id(struct mount *mnt) 137 { 138 ida_free(&mnt_group_ida, mnt->mnt_group_id); 139 mnt->mnt_group_id = 0; 140 } 141 142 /* 143 * vfsmount lock must be held for read 144 */ 145 static inline void mnt_add_count(struct mount *mnt, int n) 146 { 147 #ifdef CONFIG_SMP 148 this_cpu_add(mnt->mnt_pcp->mnt_count, n); 149 #else 150 preempt_disable(); 151 mnt->mnt_count += n; 152 preempt_enable(); 153 #endif 154 } 155 156 /* 157 * vfsmount lock must be held for write 158 */ 159 unsigned int mnt_get_count(struct mount *mnt) 160 { 161 #ifdef CONFIG_SMP 162 unsigned int count = 0; 163 int cpu; 164 165 for_each_possible_cpu(cpu) { 166 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count; 167 } 168 169 return count; 170 #else 171 return mnt->mnt_count; 172 #endif 173 } 174 175 static struct mount *alloc_vfsmnt(const char *name) 176 { 177 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); 178 if (mnt) { 179 int err; 180 181 err = mnt_alloc_id(mnt); 182 if (err) 183 goto out_free_cache; 184 185 if (name) { 186 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL); 187 if (!mnt->mnt_devname) 188 goto out_free_id; 189 } 190 191 #ifdef CONFIG_SMP 192 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp); 193 if (!mnt->mnt_pcp) 194 goto out_free_devname; 195 196 this_cpu_add(mnt->mnt_pcp->mnt_count, 1); 197 #else 198 mnt->mnt_count = 1; 199 mnt->mnt_writers = 0; 200 #endif 201 202 INIT_HLIST_NODE(&mnt->mnt_hash); 203 INIT_LIST_HEAD(&mnt->mnt_child); 204 INIT_LIST_HEAD(&mnt->mnt_mounts); 205 INIT_LIST_HEAD(&mnt->mnt_list); 206 INIT_LIST_HEAD(&mnt->mnt_expire); 207 INIT_LIST_HEAD(&mnt->mnt_share); 208 INIT_LIST_HEAD(&mnt->mnt_slave_list); 209 INIT_LIST_HEAD(&mnt->mnt_slave); 210 INIT_HLIST_NODE(&mnt->mnt_mp_list); 211 INIT_LIST_HEAD(&mnt->mnt_umounting); 212 INIT_HLIST_HEAD(&mnt->mnt_stuck_children); 213 } 214 return mnt; 215 216 #ifdef CONFIG_SMP 217 out_free_devname: 218 kfree_const(mnt->mnt_devname); 219 #endif 220 out_free_id: 221 mnt_free_id(mnt); 222 out_free_cache: 223 kmem_cache_free(mnt_cache, mnt); 224 return NULL; 225 } 226 227 /* 228 * Most r/o checks on a fs are for operations that take 229 * discrete amounts of time, like a write() or unlink(). 230 * We must keep track of when those operations start 231 * (for permission checks) and when they end, so that 232 * we can determine when writes are able to occur to 233 * a filesystem. 234 */ 235 /* 236 * __mnt_is_readonly: check whether a mount is read-only 237 * @mnt: the mount to check for its write status 238 * 239 * This shouldn't be used directly ouside of the VFS. 240 * It does not guarantee that the filesystem will stay 241 * r/w, just that it is right *now*. This can not and 242 * should not be used in place of IS_RDONLY(inode). 243 * mnt_want/drop_write() will _keep_ the filesystem 244 * r/w. 245 */ 246 bool __mnt_is_readonly(struct vfsmount *mnt) 247 { 248 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb); 249 } 250 EXPORT_SYMBOL_GPL(__mnt_is_readonly); 251 252 static inline void mnt_inc_writers(struct mount *mnt) 253 { 254 #ifdef CONFIG_SMP 255 this_cpu_inc(mnt->mnt_pcp->mnt_writers); 256 #else 257 mnt->mnt_writers++; 258 #endif 259 } 260 261 static inline void mnt_dec_writers(struct mount *mnt) 262 { 263 #ifdef CONFIG_SMP 264 this_cpu_dec(mnt->mnt_pcp->mnt_writers); 265 #else 266 mnt->mnt_writers--; 267 #endif 268 } 269 270 static unsigned int mnt_get_writers(struct mount *mnt) 271 { 272 #ifdef CONFIG_SMP 273 unsigned int count = 0; 274 int cpu; 275 276 for_each_possible_cpu(cpu) { 277 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers; 278 } 279 280 return count; 281 #else 282 return mnt->mnt_writers; 283 #endif 284 } 285 286 static int mnt_is_readonly(struct vfsmount *mnt) 287 { 288 if (mnt->mnt_sb->s_readonly_remount) 289 return 1; 290 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */ 291 smp_rmb(); 292 return __mnt_is_readonly(mnt); 293 } 294 295 /* 296 * Most r/o & frozen checks on a fs are for operations that take discrete 297 * amounts of time, like a write() or unlink(). We must keep track of when 298 * those operations start (for permission checks) and when they end, so that we 299 * can determine when writes are able to occur to a filesystem. 300 */ 301 /** 302 * __mnt_want_write - get write access to a mount without freeze protection 303 * @m: the mount on which to take a write 304 * 305 * This tells the low-level filesystem that a write is about to be performed to 306 * it, and makes sure that writes are allowed (mnt it read-write) before 307 * returning success. This operation does not protect against filesystem being 308 * frozen. When the write operation is finished, __mnt_drop_write() must be 309 * called. This is effectively a refcount. 310 */ 311 int __mnt_want_write(struct vfsmount *m) 312 { 313 struct mount *mnt = real_mount(m); 314 int ret = 0; 315 316 preempt_disable(); 317 mnt_inc_writers(mnt); 318 /* 319 * The store to mnt_inc_writers must be visible before we pass 320 * MNT_WRITE_HOLD loop below, so that the slowpath can see our 321 * incremented count after it has set MNT_WRITE_HOLD. 322 */ 323 smp_mb(); 324 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) 325 cpu_relax(); 326 /* 327 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will 328 * be set to match its requirements. So we must not load that until 329 * MNT_WRITE_HOLD is cleared. 330 */ 331 smp_rmb(); 332 if (mnt_is_readonly(m)) { 333 mnt_dec_writers(mnt); 334 ret = -EROFS; 335 } 336 preempt_enable(); 337 338 return ret; 339 } 340 341 /** 342 * mnt_want_write - get write access to a mount 343 * @m: the mount on which to take a write 344 * 345 * This tells the low-level filesystem that a write is about to be performed to 346 * it, and makes sure that writes are allowed (mount is read-write, filesystem 347 * is not frozen) before returning success. When the write operation is 348 * finished, mnt_drop_write() must be called. This is effectively a refcount. 349 */ 350 int mnt_want_write(struct vfsmount *m) 351 { 352 int ret; 353 354 sb_start_write(m->mnt_sb); 355 ret = __mnt_want_write(m); 356 if (ret) 357 sb_end_write(m->mnt_sb); 358 return ret; 359 } 360 EXPORT_SYMBOL_GPL(mnt_want_write); 361 362 /** 363 * mnt_clone_write - get write access to a mount 364 * @mnt: the mount on which to take a write 365 * 366 * This is effectively like mnt_want_write, except 367 * it must only be used to take an extra write reference 368 * on a mountpoint that we already know has a write reference 369 * on it. This allows some optimisation. 370 * 371 * After finished, mnt_drop_write must be called as usual to 372 * drop the reference. 373 */ 374 int mnt_clone_write(struct vfsmount *mnt) 375 { 376 /* superblock may be r/o */ 377 if (__mnt_is_readonly(mnt)) 378 return -EROFS; 379 preempt_disable(); 380 mnt_inc_writers(real_mount(mnt)); 381 preempt_enable(); 382 return 0; 383 } 384 EXPORT_SYMBOL_GPL(mnt_clone_write); 385 386 /** 387 * __mnt_want_write_file - get write access to a file's mount 388 * @file: the file who's mount on which to take a write 389 * 390 * This is like __mnt_want_write, but it takes a file and can 391 * do some optimisations if the file is open for write already 392 */ 393 int __mnt_want_write_file(struct file *file) 394 { 395 if (!(file->f_mode & FMODE_WRITER)) 396 return __mnt_want_write(file->f_path.mnt); 397 else 398 return mnt_clone_write(file->f_path.mnt); 399 } 400 401 /** 402 * mnt_want_write_file - get write access to a file's mount 403 * @file: the file who's mount on which to take a write 404 * 405 * This is like mnt_want_write, but it takes a file and can 406 * do some optimisations if the file is open for write already 407 */ 408 int mnt_want_write_file(struct file *file) 409 { 410 int ret; 411 412 sb_start_write(file_inode(file)->i_sb); 413 ret = __mnt_want_write_file(file); 414 if (ret) 415 sb_end_write(file_inode(file)->i_sb); 416 return ret; 417 } 418 EXPORT_SYMBOL_GPL(mnt_want_write_file); 419 420 /** 421 * __mnt_drop_write - give up write access to a mount 422 * @mnt: the mount on which to give up write access 423 * 424 * Tells the low-level filesystem that we are done 425 * performing writes to it. Must be matched with 426 * __mnt_want_write() call above. 427 */ 428 void __mnt_drop_write(struct vfsmount *mnt) 429 { 430 preempt_disable(); 431 mnt_dec_writers(real_mount(mnt)); 432 preempt_enable(); 433 } 434 435 /** 436 * mnt_drop_write - give up write access to a mount 437 * @mnt: the mount on which to give up write access 438 * 439 * Tells the low-level filesystem that we are done performing writes to it and 440 * also allows filesystem to be frozen again. Must be matched with 441 * mnt_want_write() call above. 442 */ 443 void mnt_drop_write(struct vfsmount *mnt) 444 { 445 __mnt_drop_write(mnt); 446 sb_end_write(mnt->mnt_sb); 447 } 448 EXPORT_SYMBOL_GPL(mnt_drop_write); 449 450 void __mnt_drop_write_file(struct file *file) 451 { 452 __mnt_drop_write(file->f_path.mnt); 453 } 454 455 void mnt_drop_write_file(struct file *file) 456 { 457 __mnt_drop_write_file(file); 458 sb_end_write(file_inode(file)->i_sb); 459 } 460 EXPORT_SYMBOL(mnt_drop_write_file); 461 462 static int mnt_make_readonly(struct mount *mnt) 463 { 464 int ret = 0; 465 466 lock_mount_hash(); 467 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 468 /* 469 * After storing MNT_WRITE_HOLD, we'll read the counters. This store 470 * should be visible before we do. 471 */ 472 smp_mb(); 473 474 /* 475 * With writers on hold, if this value is zero, then there are 476 * definitely no active writers (although held writers may subsequently 477 * increment the count, they'll have to wait, and decrement it after 478 * seeing MNT_READONLY). 479 * 480 * It is OK to have counter incremented on one CPU and decremented on 481 * another: the sum will add up correctly. The danger would be when we 482 * sum up each counter, if we read a counter before it is incremented, 483 * but then read another CPU's count which it has been subsequently 484 * decremented from -- we would see more decrements than we should. 485 * MNT_WRITE_HOLD protects against this scenario, because 486 * mnt_want_write first increments count, then smp_mb, then spins on 487 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while 488 * we're counting up here. 489 */ 490 if (mnt_get_writers(mnt) > 0) 491 ret = -EBUSY; 492 else 493 mnt->mnt.mnt_flags |= MNT_READONLY; 494 /* 495 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers 496 * that become unheld will see MNT_READONLY. 497 */ 498 smp_wmb(); 499 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 500 unlock_mount_hash(); 501 return ret; 502 } 503 504 static int __mnt_unmake_readonly(struct mount *mnt) 505 { 506 lock_mount_hash(); 507 mnt->mnt.mnt_flags &= ~MNT_READONLY; 508 unlock_mount_hash(); 509 return 0; 510 } 511 512 int sb_prepare_remount_readonly(struct super_block *sb) 513 { 514 struct mount *mnt; 515 int err = 0; 516 517 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */ 518 if (atomic_long_read(&sb->s_remove_count)) 519 return -EBUSY; 520 521 lock_mount_hash(); 522 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 523 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) { 524 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 525 smp_mb(); 526 if (mnt_get_writers(mnt) > 0) { 527 err = -EBUSY; 528 break; 529 } 530 } 531 } 532 if (!err && atomic_long_read(&sb->s_remove_count)) 533 err = -EBUSY; 534 535 if (!err) { 536 sb->s_readonly_remount = 1; 537 smp_wmb(); 538 } 539 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 540 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD) 541 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 542 } 543 unlock_mount_hash(); 544 545 return err; 546 } 547 548 static void free_vfsmnt(struct mount *mnt) 549 { 550 kfree_const(mnt->mnt_devname); 551 #ifdef CONFIG_SMP 552 free_percpu(mnt->mnt_pcp); 553 #endif 554 kmem_cache_free(mnt_cache, mnt); 555 } 556 557 static void delayed_free_vfsmnt(struct rcu_head *head) 558 { 559 free_vfsmnt(container_of(head, struct mount, mnt_rcu)); 560 } 561 562 /* call under rcu_read_lock */ 563 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq) 564 { 565 struct mount *mnt; 566 if (read_seqretry(&mount_lock, seq)) 567 return 1; 568 if (bastard == NULL) 569 return 0; 570 mnt = real_mount(bastard); 571 mnt_add_count(mnt, 1); 572 smp_mb(); // see mntput_no_expire() 573 if (likely(!read_seqretry(&mount_lock, seq))) 574 return 0; 575 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) { 576 mnt_add_count(mnt, -1); 577 return 1; 578 } 579 lock_mount_hash(); 580 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) { 581 mnt_add_count(mnt, -1); 582 unlock_mount_hash(); 583 return 1; 584 } 585 unlock_mount_hash(); 586 /* caller will mntput() */ 587 return -1; 588 } 589 590 /* call under rcu_read_lock */ 591 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq) 592 { 593 int res = __legitimize_mnt(bastard, seq); 594 if (likely(!res)) 595 return true; 596 if (unlikely(res < 0)) { 597 rcu_read_unlock(); 598 mntput(bastard); 599 rcu_read_lock(); 600 } 601 return false; 602 } 603 604 /* 605 * find the first mount at @dentry on vfsmount @mnt. 606 * call under rcu_read_lock() 607 */ 608 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry) 609 { 610 struct hlist_head *head = m_hash(mnt, dentry); 611 struct mount *p; 612 613 hlist_for_each_entry_rcu(p, head, mnt_hash) 614 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) 615 return p; 616 return NULL; 617 } 618 619 /* 620 * lookup_mnt - Return the first child mount mounted at path 621 * 622 * "First" means first mounted chronologically. If you create the 623 * following mounts: 624 * 625 * mount /dev/sda1 /mnt 626 * mount /dev/sda2 /mnt 627 * mount /dev/sda3 /mnt 628 * 629 * Then lookup_mnt() on the base /mnt dentry in the root mount will 630 * return successively the root dentry and vfsmount of /dev/sda1, then 631 * /dev/sda2, then /dev/sda3, then NULL. 632 * 633 * lookup_mnt takes a reference to the found vfsmount. 634 */ 635 struct vfsmount *lookup_mnt(const struct path *path) 636 { 637 struct mount *child_mnt; 638 struct vfsmount *m; 639 unsigned seq; 640 641 rcu_read_lock(); 642 do { 643 seq = read_seqbegin(&mount_lock); 644 child_mnt = __lookup_mnt(path->mnt, path->dentry); 645 m = child_mnt ? &child_mnt->mnt : NULL; 646 } while (!legitimize_mnt(m, seq)); 647 rcu_read_unlock(); 648 return m; 649 } 650 651 /* 652 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the 653 * current mount namespace. 654 * 655 * The common case is dentries are not mountpoints at all and that 656 * test is handled inline. For the slow case when we are actually 657 * dealing with a mountpoint of some kind, walk through all of the 658 * mounts in the current mount namespace and test to see if the dentry 659 * is a mountpoint. 660 * 661 * The mount_hashtable is not usable in the context because we 662 * need to identify all mounts that may be in the current mount 663 * namespace not just a mount that happens to have some specified 664 * parent mount. 665 */ 666 bool __is_local_mountpoint(struct dentry *dentry) 667 { 668 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 669 struct mount *mnt; 670 bool is_covered = false; 671 672 if (!d_mountpoint(dentry)) 673 goto out; 674 675 down_read(&namespace_sem); 676 list_for_each_entry(mnt, &ns->list, mnt_list) { 677 is_covered = (mnt->mnt_mountpoint == dentry); 678 if (is_covered) 679 break; 680 } 681 up_read(&namespace_sem); 682 out: 683 return is_covered; 684 } 685 686 static struct mountpoint *lookup_mountpoint(struct dentry *dentry) 687 { 688 struct hlist_head *chain = mp_hash(dentry); 689 struct mountpoint *mp; 690 691 hlist_for_each_entry(mp, chain, m_hash) { 692 if (mp->m_dentry == dentry) { 693 mp->m_count++; 694 return mp; 695 } 696 } 697 return NULL; 698 } 699 700 static struct mountpoint *get_mountpoint(struct dentry *dentry) 701 { 702 struct mountpoint *mp, *new = NULL; 703 int ret; 704 705 if (d_mountpoint(dentry)) { 706 /* might be worth a WARN_ON() */ 707 if (d_unlinked(dentry)) 708 return ERR_PTR(-ENOENT); 709 mountpoint: 710 read_seqlock_excl(&mount_lock); 711 mp = lookup_mountpoint(dentry); 712 read_sequnlock_excl(&mount_lock); 713 if (mp) 714 goto done; 715 } 716 717 if (!new) 718 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL); 719 if (!new) 720 return ERR_PTR(-ENOMEM); 721 722 723 /* Exactly one processes may set d_mounted */ 724 ret = d_set_mounted(dentry); 725 726 /* Someone else set d_mounted? */ 727 if (ret == -EBUSY) 728 goto mountpoint; 729 730 /* The dentry is not available as a mountpoint? */ 731 mp = ERR_PTR(ret); 732 if (ret) 733 goto done; 734 735 /* Add the new mountpoint to the hash table */ 736 read_seqlock_excl(&mount_lock); 737 new->m_dentry = dget(dentry); 738 new->m_count = 1; 739 hlist_add_head(&new->m_hash, mp_hash(dentry)); 740 INIT_HLIST_HEAD(&new->m_list); 741 read_sequnlock_excl(&mount_lock); 742 743 mp = new; 744 new = NULL; 745 done: 746 kfree(new); 747 return mp; 748 } 749 750 /* 751 * vfsmount lock must be held. Additionally, the caller is responsible 752 * for serializing calls for given disposal list. 753 */ 754 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list) 755 { 756 if (!--mp->m_count) { 757 struct dentry *dentry = mp->m_dentry; 758 BUG_ON(!hlist_empty(&mp->m_list)); 759 spin_lock(&dentry->d_lock); 760 dentry->d_flags &= ~DCACHE_MOUNTED; 761 spin_unlock(&dentry->d_lock); 762 dput_to_list(dentry, list); 763 hlist_del(&mp->m_hash); 764 kfree(mp); 765 } 766 } 767 768 /* called with namespace_lock and vfsmount lock */ 769 static void put_mountpoint(struct mountpoint *mp) 770 { 771 __put_mountpoint(mp, &ex_mountpoints); 772 } 773 774 static inline int check_mnt(struct mount *mnt) 775 { 776 return mnt->mnt_ns == current->nsproxy->mnt_ns; 777 } 778 779 /* 780 * vfsmount lock must be held for write 781 */ 782 static void touch_mnt_namespace(struct mnt_namespace *ns) 783 { 784 if (ns) { 785 ns->event = ++event; 786 wake_up_interruptible(&ns->poll); 787 } 788 } 789 790 /* 791 * vfsmount lock must be held for write 792 */ 793 static void __touch_mnt_namespace(struct mnt_namespace *ns) 794 { 795 if (ns && ns->event != event) { 796 ns->event = event; 797 wake_up_interruptible(&ns->poll); 798 } 799 } 800 801 /* 802 * vfsmount lock must be held for write 803 */ 804 static struct mountpoint *unhash_mnt(struct mount *mnt) 805 { 806 struct mountpoint *mp; 807 mnt->mnt_parent = mnt; 808 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 809 list_del_init(&mnt->mnt_child); 810 hlist_del_init_rcu(&mnt->mnt_hash); 811 hlist_del_init(&mnt->mnt_mp_list); 812 mp = mnt->mnt_mp; 813 mnt->mnt_mp = NULL; 814 return mp; 815 } 816 817 /* 818 * vfsmount lock must be held for write 819 */ 820 static void umount_mnt(struct mount *mnt) 821 { 822 put_mountpoint(unhash_mnt(mnt)); 823 } 824 825 /* 826 * vfsmount lock must be held for write 827 */ 828 void mnt_set_mountpoint(struct mount *mnt, 829 struct mountpoint *mp, 830 struct mount *child_mnt) 831 { 832 mp->m_count++; 833 mnt_add_count(mnt, 1); /* essentially, that's mntget */ 834 child_mnt->mnt_mountpoint = mp->m_dentry; 835 child_mnt->mnt_parent = mnt; 836 child_mnt->mnt_mp = mp; 837 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list); 838 } 839 840 static void __attach_mnt(struct mount *mnt, struct mount *parent) 841 { 842 hlist_add_head_rcu(&mnt->mnt_hash, 843 m_hash(&parent->mnt, mnt->mnt_mountpoint)); 844 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 845 } 846 847 /* 848 * vfsmount lock must be held for write 849 */ 850 static void attach_mnt(struct mount *mnt, 851 struct mount *parent, 852 struct mountpoint *mp) 853 { 854 mnt_set_mountpoint(parent, mp, mnt); 855 __attach_mnt(mnt, parent); 856 } 857 858 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt) 859 { 860 struct mountpoint *old_mp = mnt->mnt_mp; 861 struct mount *old_parent = mnt->mnt_parent; 862 863 list_del_init(&mnt->mnt_child); 864 hlist_del_init(&mnt->mnt_mp_list); 865 hlist_del_init_rcu(&mnt->mnt_hash); 866 867 attach_mnt(mnt, parent, mp); 868 869 put_mountpoint(old_mp); 870 mnt_add_count(old_parent, -1); 871 } 872 873 /* 874 * vfsmount lock must be held for write 875 */ 876 static void commit_tree(struct mount *mnt) 877 { 878 struct mount *parent = mnt->mnt_parent; 879 struct mount *m; 880 LIST_HEAD(head); 881 struct mnt_namespace *n = parent->mnt_ns; 882 883 BUG_ON(parent == mnt); 884 885 list_add_tail(&head, &mnt->mnt_list); 886 list_for_each_entry(m, &head, mnt_list) 887 m->mnt_ns = n; 888 889 list_splice(&head, n->list.prev); 890 891 n->mounts += n->pending_mounts; 892 n->pending_mounts = 0; 893 894 __attach_mnt(mnt, parent); 895 touch_mnt_namespace(n); 896 } 897 898 static struct mount *next_mnt(struct mount *p, struct mount *root) 899 { 900 struct list_head *next = p->mnt_mounts.next; 901 if (next == &p->mnt_mounts) { 902 while (1) { 903 if (p == root) 904 return NULL; 905 next = p->mnt_child.next; 906 if (next != &p->mnt_parent->mnt_mounts) 907 break; 908 p = p->mnt_parent; 909 } 910 } 911 return list_entry(next, struct mount, mnt_child); 912 } 913 914 static struct mount *skip_mnt_tree(struct mount *p) 915 { 916 struct list_head *prev = p->mnt_mounts.prev; 917 while (prev != &p->mnt_mounts) { 918 p = list_entry(prev, struct mount, mnt_child); 919 prev = p->mnt_mounts.prev; 920 } 921 return p; 922 } 923 924 /** 925 * vfs_create_mount - Create a mount for a configured superblock 926 * @fc: The configuration context with the superblock attached 927 * 928 * Create a mount to an already configured superblock. If necessary, the 929 * caller should invoke vfs_get_tree() before calling this. 930 * 931 * Note that this does not attach the mount to anything. 932 */ 933 struct vfsmount *vfs_create_mount(struct fs_context *fc) 934 { 935 struct mount *mnt; 936 937 if (!fc->root) 938 return ERR_PTR(-EINVAL); 939 940 mnt = alloc_vfsmnt(fc->source ?: "none"); 941 if (!mnt) 942 return ERR_PTR(-ENOMEM); 943 944 if (fc->sb_flags & SB_KERNMOUNT) 945 mnt->mnt.mnt_flags = MNT_INTERNAL; 946 947 atomic_inc(&fc->root->d_sb->s_active); 948 mnt->mnt.mnt_sb = fc->root->d_sb; 949 mnt->mnt.mnt_root = dget(fc->root); 950 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 951 mnt->mnt_parent = mnt; 952 953 lock_mount_hash(); 954 list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts); 955 unlock_mount_hash(); 956 return &mnt->mnt; 957 } 958 EXPORT_SYMBOL(vfs_create_mount); 959 960 struct vfsmount *fc_mount(struct fs_context *fc) 961 { 962 int err = vfs_get_tree(fc); 963 if (!err) { 964 up_write(&fc->root->d_sb->s_umount); 965 return vfs_create_mount(fc); 966 } 967 return ERR_PTR(err); 968 } 969 EXPORT_SYMBOL(fc_mount); 970 971 struct vfsmount *vfs_kern_mount(struct file_system_type *type, 972 int flags, const char *name, 973 void *data) 974 { 975 struct fs_context *fc; 976 struct vfsmount *mnt; 977 int ret = 0; 978 979 if (!type) 980 return ERR_PTR(-EINVAL); 981 982 fc = fs_context_for_mount(type, flags); 983 if (IS_ERR(fc)) 984 return ERR_CAST(fc); 985 986 if (name) 987 ret = vfs_parse_fs_string(fc, "source", 988 name, strlen(name)); 989 if (!ret) 990 ret = parse_monolithic_mount_data(fc, data); 991 if (!ret) 992 mnt = fc_mount(fc); 993 else 994 mnt = ERR_PTR(ret); 995 996 put_fs_context(fc); 997 return mnt; 998 } 999 EXPORT_SYMBOL_GPL(vfs_kern_mount); 1000 1001 struct vfsmount * 1002 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type, 1003 const char *name, void *data) 1004 { 1005 /* Until it is worked out how to pass the user namespace 1006 * through from the parent mount to the submount don't support 1007 * unprivileged mounts with submounts. 1008 */ 1009 if (mountpoint->d_sb->s_user_ns != &init_user_ns) 1010 return ERR_PTR(-EPERM); 1011 1012 return vfs_kern_mount(type, SB_SUBMOUNT, name, data); 1013 } 1014 EXPORT_SYMBOL_GPL(vfs_submount); 1015 1016 static struct mount *clone_mnt(struct mount *old, struct dentry *root, 1017 int flag) 1018 { 1019 struct super_block *sb = old->mnt.mnt_sb; 1020 struct mount *mnt; 1021 int err; 1022 1023 mnt = alloc_vfsmnt(old->mnt_devname); 1024 if (!mnt) 1025 return ERR_PTR(-ENOMEM); 1026 1027 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE)) 1028 mnt->mnt_group_id = 0; /* not a peer of original */ 1029 else 1030 mnt->mnt_group_id = old->mnt_group_id; 1031 1032 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) { 1033 err = mnt_alloc_group_id(mnt); 1034 if (err) 1035 goto out_free; 1036 } 1037 1038 mnt->mnt.mnt_flags = old->mnt.mnt_flags; 1039 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL); 1040 1041 atomic_inc(&sb->s_active); 1042 mnt->mnt.mnt_sb = sb; 1043 mnt->mnt.mnt_root = dget(root); 1044 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 1045 mnt->mnt_parent = mnt; 1046 lock_mount_hash(); 1047 list_add_tail(&mnt->mnt_instance, &sb->s_mounts); 1048 unlock_mount_hash(); 1049 1050 if ((flag & CL_SLAVE) || 1051 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) { 1052 list_add(&mnt->mnt_slave, &old->mnt_slave_list); 1053 mnt->mnt_master = old; 1054 CLEAR_MNT_SHARED(mnt); 1055 } else if (!(flag & CL_PRIVATE)) { 1056 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old)) 1057 list_add(&mnt->mnt_share, &old->mnt_share); 1058 if (IS_MNT_SLAVE(old)) 1059 list_add(&mnt->mnt_slave, &old->mnt_slave); 1060 mnt->mnt_master = old->mnt_master; 1061 } else { 1062 CLEAR_MNT_SHARED(mnt); 1063 } 1064 if (flag & CL_MAKE_SHARED) 1065 set_mnt_shared(mnt); 1066 1067 /* stick the duplicate mount on the same expiry list 1068 * as the original if that was on one */ 1069 if (flag & CL_EXPIRE) { 1070 if (!list_empty(&old->mnt_expire)) 1071 list_add(&mnt->mnt_expire, &old->mnt_expire); 1072 } 1073 1074 return mnt; 1075 1076 out_free: 1077 mnt_free_id(mnt); 1078 free_vfsmnt(mnt); 1079 return ERR_PTR(err); 1080 } 1081 1082 static void cleanup_mnt(struct mount *mnt) 1083 { 1084 struct hlist_node *p; 1085 struct mount *m; 1086 /* 1087 * The warning here probably indicates that somebody messed 1088 * up a mnt_want/drop_write() pair. If this happens, the 1089 * filesystem was probably unable to make r/w->r/o transitions. 1090 * The locking used to deal with mnt_count decrement provides barriers, 1091 * so mnt_get_writers() below is safe. 1092 */ 1093 WARN_ON(mnt_get_writers(mnt)); 1094 if (unlikely(mnt->mnt_pins.first)) 1095 mnt_pin_kill(mnt); 1096 hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) { 1097 hlist_del(&m->mnt_umount); 1098 mntput(&m->mnt); 1099 } 1100 fsnotify_vfsmount_delete(&mnt->mnt); 1101 dput(mnt->mnt.mnt_root); 1102 deactivate_super(mnt->mnt.mnt_sb); 1103 mnt_free_id(mnt); 1104 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt); 1105 } 1106 1107 static void __cleanup_mnt(struct rcu_head *head) 1108 { 1109 cleanup_mnt(container_of(head, struct mount, mnt_rcu)); 1110 } 1111 1112 static LLIST_HEAD(delayed_mntput_list); 1113 static void delayed_mntput(struct work_struct *unused) 1114 { 1115 struct llist_node *node = llist_del_all(&delayed_mntput_list); 1116 struct mount *m, *t; 1117 1118 llist_for_each_entry_safe(m, t, node, mnt_llist) 1119 cleanup_mnt(m); 1120 } 1121 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput); 1122 1123 static void mntput_no_expire(struct mount *mnt) 1124 { 1125 LIST_HEAD(list); 1126 1127 rcu_read_lock(); 1128 if (likely(READ_ONCE(mnt->mnt_ns))) { 1129 /* 1130 * Since we don't do lock_mount_hash() here, 1131 * ->mnt_ns can change under us. However, if it's 1132 * non-NULL, then there's a reference that won't 1133 * be dropped until after an RCU delay done after 1134 * turning ->mnt_ns NULL. So if we observe it 1135 * non-NULL under rcu_read_lock(), the reference 1136 * we are dropping is not the final one. 1137 */ 1138 mnt_add_count(mnt, -1); 1139 rcu_read_unlock(); 1140 return; 1141 } 1142 lock_mount_hash(); 1143 /* 1144 * make sure that if __legitimize_mnt() has not seen us grab 1145 * mount_lock, we'll see their refcount increment here. 1146 */ 1147 smp_mb(); 1148 mnt_add_count(mnt, -1); 1149 if (mnt_get_count(mnt)) { 1150 rcu_read_unlock(); 1151 unlock_mount_hash(); 1152 return; 1153 } 1154 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) { 1155 rcu_read_unlock(); 1156 unlock_mount_hash(); 1157 return; 1158 } 1159 mnt->mnt.mnt_flags |= MNT_DOOMED; 1160 rcu_read_unlock(); 1161 1162 list_del(&mnt->mnt_instance); 1163 1164 if (unlikely(!list_empty(&mnt->mnt_mounts))) { 1165 struct mount *p, *tmp; 1166 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) { 1167 __put_mountpoint(unhash_mnt(p), &list); 1168 hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children); 1169 } 1170 } 1171 unlock_mount_hash(); 1172 shrink_dentry_list(&list); 1173 1174 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) { 1175 struct task_struct *task = current; 1176 if (likely(!(task->flags & PF_KTHREAD))) { 1177 init_task_work(&mnt->mnt_rcu, __cleanup_mnt); 1178 if (!task_work_add(task, &mnt->mnt_rcu, true)) 1179 return; 1180 } 1181 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list)) 1182 schedule_delayed_work(&delayed_mntput_work, 1); 1183 return; 1184 } 1185 cleanup_mnt(mnt); 1186 } 1187 1188 void mntput(struct vfsmount *mnt) 1189 { 1190 if (mnt) { 1191 struct mount *m = real_mount(mnt); 1192 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */ 1193 if (unlikely(m->mnt_expiry_mark)) 1194 m->mnt_expiry_mark = 0; 1195 mntput_no_expire(m); 1196 } 1197 } 1198 EXPORT_SYMBOL(mntput); 1199 1200 struct vfsmount *mntget(struct vfsmount *mnt) 1201 { 1202 if (mnt) 1203 mnt_add_count(real_mount(mnt), 1); 1204 return mnt; 1205 } 1206 EXPORT_SYMBOL(mntget); 1207 1208 /* path_is_mountpoint() - Check if path is a mount in the current 1209 * namespace. 1210 * 1211 * d_mountpoint() can only be used reliably to establish if a dentry is 1212 * not mounted in any namespace and that common case is handled inline. 1213 * d_mountpoint() isn't aware of the possibility there may be multiple 1214 * mounts using a given dentry in a different namespace. This function 1215 * checks if the passed in path is a mountpoint rather than the dentry 1216 * alone. 1217 */ 1218 bool path_is_mountpoint(const struct path *path) 1219 { 1220 unsigned seq; 1221 bool res; 1222 1223 if (!d_mountpoint(path->dentry)) 1224 return false; 1225 1226 rcu_read_lock(); 1227 do { 1228 seq = read_seqbegin(&mount_lock); 1229 res = __path_is_mountpoint(path); 1230 } while (read_seqretry(&mount_lock, seq)); 1231 rcu_read_unlock(); 1232 1233 return res; 1234 } 1235 EXPORT_SYMBOL(path_is_mountpoint); 1236 1237 struct vfsmount *mnt_clone_internal(const struct path *path) 1238 { 1239 struct mount *p; 1240 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE); 1241 if (IS_ERR(p)) 1242 return ERR_CAST(p); 1243 p->mnt.mnt_flags |= MNT_INTERNAL; 1244 return &p->mnt; 1245 } 1246 1247 #ifdef CONFIG_PROC_FS 1248 /* iterator; we want it to have access to namespace_sem, thus here... */ 1249 static void *m_start(struct seq_file *m, loff_t *pos) 1250 { 1251 struct proc_mounts *p = m->private; 1252 1253 down_read(&namespace_sem); 1254 if (p->cached_event == p->ns->event) { 1255 void *v = p->cached_mount; 1256 if (*pos == p->cached_index) 1257 return v; 1258 if (*pos == p->cached_index + 1) { 1259 v = seq_list_next(v, &p->ns->list, &p->cached_index); 1260 return p->cached_mount = v; 1261 } 1262 } 1263 1264 p->cached_event = p->ns->event; 1265 p->cached_mount = seq_list_start(&p->ns->list, *pos); 1266 p->cached_index = *pos; 1267 return p->cached_mount; 1268 } 1269 1270 static void *m_next(struct seq_file *m, void *v, loff_t *pos) 1271 { 1272 struct proc_mounts *p = m->private; 1273 1274 p->cached_mount = seq_list_next(v, &p->ns->list, pos); 1275 p->cached_index = *pos; 1276 return p->cached_mount; 1277 } 1278 1279 static void m_stop(struct seq_file *m, void *v) 1280 { 1281 up_read(&namespace_sem); 1282 } 1283 1284 static int m_show(struct seq_file *m, void *v) 1285 { 1286 struct proc_mounts *p = m->private; 1287 struct mount *r = list_entry(v, struct mount, mnt_list); 1288 return p->show(m, &r->mnt); 1289 } 1290 1291 const struct seq_operations mounts_op = { 1292 .start = m_start, 1293 .next = m_next, 1294 .stop = m_stop, 1295 .show = m_show, 1296 }; 1297 #endif /* CONFIG_PROC_FS */ 1298 1299 /** 1300 * may_umount_tree - check if a mount tree is busy 1301 * @mnt: root of mount tree 1302 * 1303 * This is called to check if a tree of mounts has any 1304 * open files, pwds, chroots or sub mounts that are 1305 * busy. 1306 */ 1307 int may_umount_tree(struct vfsmount *m) 1308 { 1309 struct mount *mnt = real_mount(m); 1310 int actual_refs = 0; 1311 int minimum_refs = 0; 1312 struct mount *p; 1313 BUG_ON(!m); 1314 1315 /* write lock needed for mnt_get_count */ 1316 lock_mount_hash(); 1317 for (p = mnt; p; p = next_mnt(p, mnt)) { 1318 actual_refs += mnt_get_count(p); 1319 minimum_refs += 2; 1320 } 1321 unlock_mount_hash(); 1322 1323 if (actual_refs > minimum_refs) 1324 return 0; 1325 1326 return 1; 1327 } 1328 1329 EXPORT_SYMBOL(may_umount_tree); 1330 1331 /** 1332 * may_umount - check if a mount point is busy 1333 * @mnt: root of mount 1334 * 1335 * This is called to check if a mount point has any 1336 * open files, pwds, chroots or sub mounts. If the 1337 * mount has sub mounts this will return busy 1338 * regardless of whether the sub mounts are busy. 1339 * 1340 * Doesn't take quota and stuff into account. IOW, in some cases it will 1341 * give false negatives. The main reason why it's here is that we need 1342 * a non-destructive way to look for easily umountable filesystems. 1343 */ 1344 int may_umount(struct vfsmount *mnt) 1345 { 1346 int ret = 1; 1347 down_read(&namespace_sem); 1348 lock_mount_hash(); 1349 if (propagate_mount_busy(real_mount(mnt), 2)) 1350 ret = 0; 1351 unlock_mount_hash(); 1352 up_read(&namespace_sem); 1353 return ret; 1354 } 1355 1356 EXPORT_SYMBOL(may_umount); 1357 1358 static void namespace_unlock(void) 1359 { 1360 struct hlist_head head; 1361 struct hlist_node *p; 1362 struct mount *m; 1363 LIST_HEAD(list); 1364 1365 hlist_move_list(&unmounted, &head); 1366 list_splice_init(&ex_mountpoints, &list); 1367 1368 up_write(&namespace_sem); 1369 1370 shrink_dentry_list(&list); 1371 1372 if (likely(hlist_empty(&head))) 1373 return; 1374 1375 synchronize_rcu_expedited(); 1376 1377 hlist_for_each_entry_safe(m, p, &head, mnt_umount) { 1378 hlist_del(&m->mnt_umount); 1379 mntput(&m->mnt); 1380 } 1381 } 1382 1383 static inline void namespace_lock(void) 1384 { 1385 down_write(&namespace_sem); 1386 } 1387 1388 enum umount_tree_flags { 1389 UMOUNT_SYNC = 1, 1390 UMOUNT_PROPAGATE = 2, 1391 UMOUNT_CONNECTED = 4, 1392 }; 1393 1394 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how) 1395 { 1396 /* Leaving mounts connected is only valid for lazy umounts */ 1397 if (how & UMOUNT_SYNC) 1398 return true; 1399 1400 /* A mount without a parent has nothing to be connected to */ 1401 if (!mnt_has_parent(mnt)) 1402 return true; 1403 1404 /* Because the reference counting rules change when mounts are 1405 * unmounted and connected, umounted mounts may not be 1406 * connected to mounted mounts. 1407 */ 1408 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT)) 1409 return true; 1410 1411 /* Has it been requested that the mount remain connected? */ 1412 if (how & UMOUNT_CONNECTED) 1413 return false; 1414 1415 /* Is the mount locked such that it needs to remain connected? */ 1416 if (IS_MNT_LOCKED(mnt)) 1417 return false; 1418 1419 /* By default disconnect the mount */ 1420 return true; 1421 } 1422 1423 /* 1424 * mount_lock must be held 1425 * namespace_sem must be held for write 1426 */ 1427 static void umount_tree(struct mount *mnt, enum umount_tree_flags how) 1428 { 1429 LIST_HEAD(tmp_list); 1430 struct mount *p; 1431 1432 if (how & UMOUNT_PROPAGATE) 1433 propagate_mount_unlock(mnt); 1434 1435 /* Gather the mounts to umount */ 1436 for (p = mnt; p; p = next_mnt(p, mnt)) { 1437 p->mnt.mnt_flags |= MNT_UMOUNT; 1438 list_move(&p->mnt_list, &tmp_list); 1439 } 1440 1441 /* Hide the mounts from mnt_mounts */ 1442 list_for_each_entry(p, &tmp_list, mnt_list) { 1443 list_del_init(&p->mnt_child); 1444 } 1445 1446 /* Add propogated mounts to the tmp_list */ 1447 if (how & UMOUNT_PROPAGATE) 1448 propagate_umount(&tmp_list); 1449 1450 while (!list_empty(&tmp_list)) { 1451 struct mnt_namespace *ns; 1452 bool disconnect; 1453 p = list_first_entry(&tmp_list, struct mount, mnt_list); 1454 list_del_init(&p->mnt_expire); 1455 list_del_init(&p->mnt_list); 1456 ns = p->mnt_ns; 1457 if (ns) { 1458 ns->mounts--; 1459 __touch_mnt_namespace(ns); 1460 } 1461 p->mnt_ns = NULL; 1462 if (how & UMOUNT_SYNC) 1463 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT; 1464 1465 disconnect = disconnect_mount(p, how); 1466 if (mnt_has_parent(p)) { 1467 mnt_add_count(p->mnt_parent, -1); 1468 if (!disconnect) { 1469 /* Don't forget about p */ 1470 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts); 1471 } else { 1472 umount_mnt(p); 1473 } 1474 } 1475 change_mnt_propagation(p, MS_PRIVATE); 1476 if (disconnect) 1477 hlist_add_head(&p->mnt_umount, &unmounted); 1478 } 1479 } 1480 1481 static void shrink_submounts(struct mount *mnt); 1482 1483 static int do_umount_root(struct super_block *sb) 1484 { 1485 int ret = 0; 1486 1487 down_write(&sb->s_umount); 1488 if (!sb_rdonly(sb)) { 1489 struct fs_context *fc; 1490 1491 fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY, 1492 SB_RDONLY); 1493 if (IS_ERR(fc)) { 1494 ret = PTR_ERR(fc); 1495 } else { 1496 ret = parse_monolithic_mount_data(fc, NULL); 1497 if (!ret) 1498 ret = reconfigure_super(fc); 1499 put_fs_context(fc); 1500 } 1501 } 1502 up_write(&sb->s_umount); 1503 return ret; 1504 } 1505 1506 static int do_umount(struct mount *mnt, int flags) 1507 { 1508 struct super_block *sb = mnt->mnt.mnt_sb; 1509 int retval; 1510 1511 retval = security_sb_umount(&mnt->mnt, flags); 1512 if (retval) 1513 return retval; 1514 1515 /* 1516 * Allow userspace to request a mountpoint be expired rather than 1517 * unmounting unconditionally. Unmount only happens if: 1518 * (1) the mark is already set (the mark is cleared by mntput()) 1519 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] 1520 */ 1521 if (flags & MNT_EXPIRE) { 1522 if (&mnt->mnt == current->fs->root.mnt || 1523 flags & (MNT_FORCE | MNT_DETACH)) 1524 return -EINVAL; 1525 1526 /* 1527 * probably don't strictly need the lock here if we examined 1528 * all race cases, but it's a slowpath. 1529 */ 1530 lock_mount_hash(); 1531 if (mnt_get_count(mnt) != 2) { 1532 unlock_mount_hash(); 1533 return -EBUSY; 1534 } 1535 unlock_mount_hash(); 1536 1537 if (!xchg(&mnt->mnt_expiry_mark, 1)) 1538 return -EAGAIN; 1539 } 1540 1541 /* 1542 * If we may have to abort operations to get out of this 1543 * mount, and they will themselves hold resources we must 1544 * allow the fs to do things. In the Unix tradition of 1545 * 'Gee thats tricky lets do it in userspace' the umount_begin 1546 * might fail to complete on the first run through as other tasks 1547 * must return, and the like. Thats for the mount program to worry 1548 * about for the moment. 1549 */ 1550 1551 if (flags & MNT_FORCE && sb->s_op->umount_begin) { 1552 sb->s_op->umount_begin(sb); 1553 } 1554 1555 /* 1556 * No sense to grab the lock for this test, but test itself looks 1557 * somewhat bogus. Suggestions for better replacement? 1558 * Ho-hum... In principle, we might treat that as umount + switch 1559 * to rootfs. GC would eventually take care of the old vfsmount. 1560 * Actually it makes sense, especially if rootfs would contain a 1561 * /reboot - static binary that would close all descriptors and 1562 * call reboot(9). Then init(8) could umount root and exec /reboot. 1563 */ 1564 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) { 1565 /* 1566 * Special case for "unmounting" root ... 1567 * we just try to remount it readonly. 1568 */ 1569 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) 1570 return -EPERM; 1571 return do_umount_root(sb); 1572 } 1573 1574 namespace_lock(); 1575 lock_mount_hash(); 1576 1577 /* Recheck MNT_LOCKED with the locks held */ 1578 retval = -EINVAL; 1579 if (mnt->mnt.mnt_flags & MNT_LOCKED) 1580 goto out; 1581 1582 event++; 1583 if (flags & MNT_DETACH) { 1584 if (!list_empty(&mnt->mnt_list)) 1585 umount_tree(mnt, UMOUNT_PROPAGATE); 1586 retval = 0; 1587 } else { 1588 shrink_submounts(mnt); 1589 retval = -EBUSY; 1590 if (!propagate_mount_busy(mnt, 2)) { 1591 if (!list_empty(&mnt->mnt_list)) 1592 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 1593 retval = 0; 1594 } 1595 } 1596 out: 1597 unlock_mount_hash(); 1598 namespace_unlock(); 1599 return retval; 1600 } 1601 1602 /* 1603 * __detach_mounts - lazily unmount all mounts on the specified dentry 1604 * 1605 * During unlink, rmdir, and d_drop it is possible to loose the path 1606 * to an existing mountpoint, and wind up leaking the mount. 1607 * detach_mounts allows lazily unmounting those mounts instead of 1608 * leaking them. 1609 * 1610 * The caller may hold dentry->d_inode->i_mutex. 1611 */ 1612 void __detach_mounts(struct dentry *dentry) 1613 { 1614 struct mountpoint *mp; 1615 struct mount *mnt; 1616 1617 namespace_lock(); 1618 lock_mount_hash(); 1619 mp = lookup_mountpoint(dentry); 1620 if (!mp) 1621 goto out_unlock; 1622 1623 event++; 1624 while (!hlist_empty(&mp->m_list)) { 1625 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list); 1626 if (mnt->mnt.mnt_flags & MNT_UMOUNT) { 1627 umount_mnt(mnt); 1628 hlist_add_head(&mnt->mnt_umount, &unmounted); 1629 } 1630 else umount_tree(mnt, UMOUNT_CONNECTED); 1631 } 1632 put_mountpoint(mp); 1633 out_unlock: 1634 unlock_mount_hash(); 1635 namespace_unlock(); 1636 } 1637 1638 /* 1639 * Is the caller allowed to modify his namespace? 1640 */ 1641 static inline bool may_mount(void) 1642 { 1643 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN); 1644 } 1645 1646 #ifdef CONFIG_MANDATORY_FILE_LOCKING 1647 static inline bool may_mandlock(void) 1648 { 1649 return capable(CAP_SYS_ADMIN); 1650 } 1651 #else 1652 static inline bool may_mandlock(void) 1653 { 1654 pr_warn("VFS: \"mand\" mount option not supported"); 1655 return false; 1656 } 1657 #endif 1658 1659 /* 1660 * Now umount can handle mount points as well as block devices. 1661 * This is important for filesystems which use unnamed block devices. 1662 * 1663 * We now support a flag for forced unmount like the other 'big iron' 1664 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD 1665 */ 1666 1667 int ksys_umount(char __user *name, int flags) 1668 { 1669 struct path path; 1670 struct mount *mnt; 1671 int retval; 1672 int lookup_flags = 0; 1673 1674 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW)) 1675 return -EINVAL; 1676 1677 if (!may_mount()) 1678 return -EPERM; 1679 1680 if (!(flags & UMOUNT_NOFOLLOW)) 1681 lookup_flags |= LOOKUP_FOLLOW; 1682 1683 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path); 1684 if (retval) 1685 goto out; 1686 mnt = real_mount(path.mnt); 1687 retval = -EINVAL; 1688 if (path.dentry != path.mnt->mnt_root) 1689 goto dput_and_out; 1690 if (!check_mnt(mnt)) 1691 goto dput_and_out; 1692 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */ 1693 goto dput_and_out; 1694 retval = -EPERM; 1695 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN)) 1696 goto dput_and_out; 1697 1698 retval = do_umount(mnt, flags); 1699 dput_and_out: 1700 /* we mustn't call path_put() as that would clear mnt_expiry_mark */ 1701 dput(path.dentry); 1702 mntput_no_expire(mnt); 1703 out: 1704 return retval; 1705 } 1706 1707 SYSCALL_DEFINE2(umount, char __user *, name, int, flags) 1708 { 1709 return ksys_umount(name, flags); 1710 } 1711 1712 #ifdef __ARCH_WANT_SYS_OLDUMOUNT 1713 1714 /* 1715 * The 2.0 compatible umount. No flags. 1716 */ 1717 SYSCALL_DEFINE1(oldumount, char __user *, name) 1718 { 1719 return ksys_umount(name, 0); 1720 } 1721 1722 #endif 1723 1724 static bool is_mnt_ns_file(struct dentry *dentry) 1725 { 1726 /* Is this a proxy for a mount namespace? */ 1727 return dentry->d_op == &ns_dentry_operations && 1728 dentry->d_fsdata == &mntns_operations; 1729 } 1730 1731 struct mnt_namespace *to_mnt_ns(struct ns_common *ns) 1732 { 1733 return container_of(ns, struct mnt_namespace, ns); 1734 } 1735 1736 static bool mnt_ns_loop(struct dentry *dentry) 1737 { 1738 /* Could bind mounting the mount namespace inode cause a 1739 * mount namespace loop? 1740 */ 1741 struct mnt_namespace *mnt_ns; 1742 if (!is_mnt_ns_file(dentry)) 1743 return false; 1744 1745 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode)); 1746 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq; 1747 } 1748 1749 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry, 1750 int flag) 1751 { 1752 struct mount *res, *p, *q, *r, *parent; 1753 1754 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt)) 1755 return ERR_PTR(-EINVAL); 1756 1757 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry)) 1758 return ERR_PTR(-EINVAL); 1759 1760 res = q = clone_mnt(mnt, dentry, flag); 1761 if (IS_ERR(q)) 1762 return q; 1763 1764 q->mnt_mountpoint = mnt->mnt_mountpoint; 1765 1766 p = mnt; 1767 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) { 1768 struct mount *s; 1769 if (!is_subdir(r->mnt_mountpoint, dentry)) 1770 continue; 1771 1772 for (s = r; s; s = next_mnt(s, r)) { 1773 if (!(flag & CL_COPY_UNBINDABLE) && 1774 IS_MNT_UNBINDABLE(s)) { 1775 if (s->mnt.mnt_flags & MNT_LOCKED) { 1776 /* Both unbindable and locked. */ 1777 q = ERR_PTR(-EPERM); 1778 goto out; 1779 } else { 1780 s = skip_mnt_tree(s); 1781 continue; 1782 } 1783 } 1784 if (!(flag & CL_COPY_MNT_NS_FILE) && 1785 is_mnt_ns_file(s->mnt.mnt_root)) { 1786 s = skip_mnt_tree(s); 1787 continue; 1788 } 1789 while (p != s->mnt_parent) { 1790 p = p->mnt_parent; 1791 q = q->mnt_parent; 1792 } 1793 p = s; 1794 parent = q; 1795 q = clone_mnt(p, p->mnt.mnt_root, flag); 1796 if (IS_ERR(q)) 1797 goto out; 1798 lock_mount_hash(); 1799 list_add_tail(&q->mnt_list, &res->mnt_list); 1800 attach_mnt(q, parent, p->mnt_mp); 1801 unlock_mount_hash(); 1802 } 1803 } 1804 return res; 1805 out: 1806 if (res) { 1807 lock_mount_hash(); 1808 umount_tree(res, UMOUNT_SYNC); 1809 unlock_mount_hash(); 1810 } 1811 return q; 1812 } 1813 1814 /* Caller should check returned pointer for errors */ 1815 1816 struct vfsmount *collect_mounts(const struct path *path) 1817 { 1818 struct mount *tree; 1819 namespace_lock(); 1820 if (!check_mnt(real_mount(path->mnt))) 1821 tree = ERR_PTR(-EINVAL); 1822 else 1823 tree = copy_tree(real_mount(path->mnt), path->dentry, 1824 CL_COPY_ALL | CL_PRIVATE); 1825 namespace_unlock(); 1826 if (IS_ERR(tree)) 1827 return ERR_CAST(tree); 1828 return &tree->mnt; 1829 } 1830 1831 static void free_mnt_ns(struct mnt_namespace *); 1832 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool); 1833 1834 void dissolve_on_fput(struct vfsmount *mnt) 1835 { 1836 struct mnt_namespace *ns; 1837 namespace_lock(); 1838 lock_mount_hash(); 1839 ns = real_mount(mnt)->mnt_ns; 1840 if (ns) { 1841 if (is_anon_ns(ns)) 1842 umount_tree(real_mount(mnt), UMOUNT_CONNECTED); 1843 else 1844 ns = NULL; 1845 } 1846 unlock_mount_hash(); 1847 namespace_unlock(); 1848 if (ns) 1849 free_mnt_ns(ns); 1850 } 1851 1852 void drop_collected_mounts(struct vfsmount *mnt) 1853 { 1854 namespace_lock(); 1855 lock_mount_hash(); 1856 umount_tree(real_mount(mnt), 0); 1857 unlock_mount_hash(); 1858 namespace_unlock(); 1859 } 1860 1861 /** 1862 * clone_private_mount - create a private clone of a path 1863 * 1864 * This creates a new vfsmount, which will be the clone of @path. The new will 1865 * not be attached anywhere in the namespace and will be private (i.e. changes 1866 * to the originating mount won't be propagated into this). 1867 * 1868 * Release with mntput(). 1869 */ 1870 struct vfsmount *clone_private_mount(const struct path *path) 1871 { 1872 struct mount *old_mnt = real_mount(path->mnt); 1873 struct mount *new_mnt; 1874 1875 if (IS_MNT_UNBINDABLE(old_mnt)) 1876 return ERR_PTR(-EINVAL); 1877 1878 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE); 1879 if (IS_ERR(new_mnt)) 1880 return ERR_CAST(new_mnt); 1881 1882 return &new_mnt->mnt; 1883 } 1884 EXPORT_SYMBOL_GPL(clone_private_mount); 1885 1886 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg, 1887 struct vfsmount *root) 1888 { 1889 struct mount *mnt; 1890 int res = f(root, arg); 1891 if (res) 1892 return res; 1893 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) { 1894 res = f(&mnt->mnt, arg); 1895 if (res) 1896 return res; 1897 } 1898 return 0; 1899 } 1900 1901 static void lock_mnt_tree(struct mount *mnt) 1902 { 1903 struct mount *p; 1904 1905 for (p = mnt; p; p = next_mnt(p, mnt)) { 1906 int flags = p->mnt.mnt_flags; 1907 /* Don't allow unprivileged users to change mount flags */ 1908 flags |= MNT_LOCK_ATIME; 1909 1910 if (flags & MNT_READONLY) 1911 flags |= MNT_LOCK_READONLY; 1912 1913 if (flags & MNT_NODEV) 1914 flags |= MNT_LOCK_NODEV; 1915 1916 if (flags & MNT_NOSUID) 1917 flags |= MNT_LOCK_NOSUID; 1918 1919 if (flags & MNT_NOEXEC) 1920 flags |= MNT_LOCK_NOEXEC; 1921 /* Don't allow unprivileged users to reveal what is under a mount */ 1922 if (list_empty(&p->mnt_expire)) 1923 flags |= MNT_LOCKED; 1924 p->mnt.mnt_flags = flags; 1925 } 1926 } 1927 1928 static void cleanup_group_ids(struct mount *mnt, struct mount *end) 1929 { 1930 struct mount *p; 1931 1932 for (p = mnt; p != end; p = next_mnt(p, mnt)) { 1933 if (p->mnt_group_id && !IS_MNT_SHARED(p)) 1934 mnt_release_group_id(p); 1935 } 1936 } 1937 1938 static int invent_group_ids(struct mount *mnt, bool recurse) 1939 { 1940 struct mount *p; 1941 1942 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) { 1943 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) { 1944 int err = mnt_alloc_group_id(p); 1945 if (err) { 1946 cleanup_group_ids(mnt, p); 1947 return err; 1948 } 1949 } 1950 } 1951 1952 return 0; 1953 } 1954 1955 int count_mounts(struct mnt_namespace *ns, struct mount *mnt) 1956 { 1957 unsigned int max = READ_ONCE(sysctl_mount_max); 1958 unsigned int mounts = 0, old, pending, sum; 1959 struct mount *p; 1960 1961 for (p = mnt; p; p = next_mnt(p, mnt)) 1962 mounts++; 1963 1964 old = ns->mounts; 1965 pending = ns->pending_mounts; 1966 sum = old + pending; 1967 if ((old > sum) || 1968 (pending > sum) || 1969 (max < sum) || 1970 (mounts > (max - sum))) 1971 return -ENOSPC; 1972 1973 ns->pending_mounts = pending + mounts; 1974 return 0; 1975 } 1976 1977 /* 1978 * @source_mnt : mount tree to be attached 1979 * @nd : place the mount tree @source_mnt is attached 1980 * @parent_nd : if non-null, detach the source_mnt from its parent and 1981 * store the parent mount and mountpoint dentry. 1982 * (done when source_mnt is moved) 1983 * 1984 * NOTE: in the table below explains the semantics when a source mount 1985 * of a given type is attached to a destination mount of a given type. 1986 * --------------------------------------------------------------------------- 1987 * | BIND MOUNT OPERATION | 1988 * |************************************************************************** 1989 * | source-->| shared | private | slave | unbindable | 1990 * | dest | | | | | 1991 * | | | | | | | 1992 * | v | | | | | 1993 * |************************************************************************** 1994 * | shared | shared (++) | shared (+) | shared(+++)| invalid | 1995 * | | | | | | 1996 * |non-shared| shared (+) | private | slave (*) | invalid | 1997 * *************************************************************************** 1998 * A bind operation clones the source mount and mounts the clone on the 1999 * destination mount. 2000 * 2001 * (++) the cloned mount is propagated to all the mounts in the propagation 2002 * tree of the destination mount and the cloned mount is added to 2003 * the peer group of the source mount. 2004 * (+) the cloned mount is created under the destination mount and is marked 2005 * as shared. The cloned mount is added to the peer group of the source 2006 * mount. 2007 * (+++) the mount is propagated to all the mounts in the propagation tree 2008 * of the destination mount and the cloned mount is made slave 2009 * of the same master as that of the source mount. The cloned mount 2010 * is marked as 'shared and slave'. 2011 * (*) the cloned mount is made a slave of the same master as that of the 2012 * source mount. 2013 * 2014 * --------------------------------------------------------------------------- 2015 * | MOVE MOUNT OPERATION | 2016 * |************************************************************************** 2017 * | source-->| shared | private | slave | unbindable | 2018 * | dest | | | | | 2019 * | | | | | | | 2020 * | v | | | | | 2021 * |************************************************************************** 2022 * | shared | shared (+) | shared (+) | shared(+++) | invalid | 2023 * | | | | | | 2024 * |non-shared| shared (+*) | private | slave (*) | unbindable | 2025 * *************************************************************************** 2026 * 2027 * (+) the mount is moved to the destination. And is then propagated to 2028 * all the mounts in the propagation tree of the destination mount. 2029 * (+*) the mount is moved to the destination. 2030 * (+++) the mount is moved to the destination and is then propagated to 2031 * all the mounts belonging to the destination mount's propagation tree. 2032 * the mount is marked as 'shared and slave'. 2033 * (*) the mount continues to be a slave at the new location. 2034 * 2035 * if the source mount is a tree, the operations explained above is 2036 * applied to each mount in the tree. 2037 * Must be called without spinlocks held, since this function can sleep 2038 * in allocations. 2039 */ 2040 static int attach_recursive_mnt(struct mount *source_mnt, 2041 struct mount *dest_mnt, 2042 struct mountpoint *dest_mp, 2043 bool moving) 2044 { 2045 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; 2046 HLIST_HEAD(tree_list); 2047 struct mnt_namespace *ns = dest_mnt->mnt_ns; 2048 struct mountpoint *smp; 2049 struct mount *child, *p; 2050 struct hlist_node *n; 2051 int err; 2052 2053 /* Preallocate a mountpoint in case the new mounts need 2054 * to be tucked under other mounts. 2055 */ 2056 smp = get_mountpoint(source_mnt->mnt.mnt_root); 2057 if (IS_ERR(smp)) 2058 return PTR_ERR(smp); 2059 2060 /* Is there space to add these mounts to the mount namespace? */ 2061 if (!moving) { 2062 err = count_mounts(ns, source_mnt); 2063 if (err) 2064 goto out; 2065 } 2066 2067 if (IS_MNT_SHARED(dest_mnt)) { 2068 err = invent_group_ids(source_mnt, true); 2069 if (err) 2070 goto out; 2071 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list); 2072 lock_mount_hash(); 2073 if (err) 2074 goto out_cleanup_ids; 2075 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 2076 set_mnt_shared(p); 2077 } else { 2078 lock_mount_hash(); 2079 } 2080 if (moving) { 2081 unhash_mnt(source_mnt); 2082 attach_mnt(source_mnt, dest_mnt, dest_mp); 2083 touch_mnt_namespace(source_mnt->mnt_ns); 2084 } else { 2085 if (source_mnt->mnt_ns) { 2086 /* move from anon - the caller will destroy */ 2087 list_del_init(&source_mnt->mnt_ns->list); 2088 } 2089 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt); 2090 commit_tree(source_mnt); 2091 } 2092 2093 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) { 2094 struct mount *q; 2095 hlist_del_init(&child->mnt_hash); 2096 q = __lookup_mnt(&child->mnt_parent->mnt, 2097 child->mnt_mountpoint); 2098 if (q) 2099 mnt_change_mountpoint(child, smp, q); 2100 /* Notice when we are propagating across user namespaces */ 2101 if (child->mnt_parent->mnt_ns->user_ns != user_ns) 2102 lock_mnt_tree(child); 2103 child->mnt.mnt_flags &= ~MNT_LOCKED; 2104 commit_tree(child); 2105 } 2106 put_mountpoint(smp); 2107 unlock_mount_hash(); 2108 2109 return 0; 2110 2111 out_cleanup_ids: 2112 while (!hlist_empty(&tree_list)) { 2113 child = hlist_entry(tree_list.first, struct mount, mnt_hash); 2114 child->mnt_parent->mnt_ns->pending_mounts = 0; 2115 umount_tree(child, UMOUNT_SYNC); 2116 } 2117 unlock_mount_hash(); 2118 cleanup_group_ids(source_mnt, NULL); 2119 out: 2120 ns->pending_mounts = 0; 2121 2122 read_seqlock_excl(&mount_lock); 2123 put_mountpoint(smp); 2124 read_sequnlock_excl(&mount_lock); 2125 2126 return err; 2127 } 2128 2129 static struct mountpoint *lock_mount(struct path *path) 2130 { 2131 struct vfsmount *mnt; 2132 struct dentry *dentry = path->dentry; 2133 retry: 2134 inode_lock(dentry->d_inode); 2135 if (unlikely(cant_mount(dentry))) { 2136 inode_unlock(dentry->d_inode); 2137 return ERR_PTR(-ENOENT); 2138 } 2139 namespace_lock(); 2140 mnt = lookup_mnt(path); 2141 if (likely(!mnt)) { 2142 struct mountpoint *mp = get_mountpoint(dentry); 2143 if (IS_ERR(mp)) { 2144 namespace_unlock(); 2145 inode_unlock(dentry->d_inode); 2146 return mp; 2147 } 2148 return mp; 2149 } 2150 namespace_unlock(); 2151 inode_unlock(path->dentry->d_inode); 2152 path_put(path); 2153 path->mnt = mnt; 2154 dentry = path->dentry = dget(mnt->mnt_root); 2155 goto retry; 2156 } 2157 2158 static void unlock_mount(struct mountpoint *where) 2159 { 2160 struct dentry *dentry = where->m_dentry; 2161 2162 read_seqlock_excl(&mount_lock); 2163 put_mountpoint(where); 2164 read_sequnlock_excl(&mount_lock); 2165 2166 namespace_unlock(); 2167 inode_unlock(dentry->d_inode); 2168 } 2169 2170 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp) 2171 { 2172 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER) 2173 return -EINVAL; 2174 2175 if (d_is_dir(mp->m_dentry) != 2176 d_is_dir(mnt->mnt.mnt_root)) 2177 return -ENOTDIR; 2178 2179 return attach_recursive_mnt(mnt, p, mp, false); 2180 } 2181 2182 /* 2183 * Sanity check the flags to change_mnt_propagation. 2184 */ 2185 2186 static int flags_to_propagation_type(int ms_flags) 2187 { 2188 int type = ms_flags & ~(MS_REC | MS_SILENT); 2189 2190 /* Fail if any non-propagation flags are set */ 2191 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 2192 return 0; 2193 /* Only one propagation flag should be set */ 2194 if (!is_power_of_2(type)) 2195 return 0; 2196 return type; 2197 } 2198 2199 /* 2200 * recursively change the type of the mountpoint. 2201 */ 2202 static int do_change_type(struct path *path, int ms_flags) 2203 { 2204 struct mount *m; 2205 struct mount *mnt = real_mount(path->mnt); 2206 int recurse = ms_flags & MS_REC; 2207 int type; 2208 int err = 0; 2209 2210 if (path->dentry != path->mnt->mnt_root) 2211 return -EINVAL; 2212 2213 type = flags_to_propagation_type(ms_flags); 2214 if (!type) 2215 return -EINVAL; 2216 2217 namespace_lock(); 2218 if (type == MS_SHARED) { 2219 err = invent_group_ids(mnt, recurse); 2220 if (err) 2221 goto out_unlock; 2222 } 2223 2224 lock_mount_hash(); 2225 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) 2226 change_mnt_propagation(m, type); 2227 unlock_mount_hash(); 2228 2229 out_unlock: 2230 namespace_unlock(); 2231 return err; 2232 } 2233 2234 static bool has_locked_children(struct mount *mnt, struct dentry *dentry) 2235 { 2236 struct mount *child; 2237 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 2238 if (!is_subdir(child->mnt_mountpoint, dentry)) 2239 continue; 2240 2241 if (child->mnt.mnt_flags & MNT_LOCKED) 2242 return true; 2243 } 2244 return false; 2245 } 2246 2247 static struct mount *__do_loopback(struct path *old_path, int recurse) 2248 { 2249 struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt); 2250 2251 if (IS_MNT_UNBINDABLE(old)) 2252 return mnt; 2253 2254 if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations) 2255 return mnt; 2256 2257 if (!recurse && has_locked_children(old, old_path->dentry)) 2258 return mnt; 2259 2260 if (recurse) 2261 mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE); 2262 else 2263 mnt = clone_mnt(old, old_path->dentry, 0); 2264 2265 if (!IS_ERR(mnt)) 2266 mnt->mnt.mnt_flags &= ~MNT_LOCKED; 2267 2268 return mnt; 2269 } 2270 2271 /* 2272 * do loopback mount. 2273 */ 2274 static int do_loopback(struct path *path, const char *old_name, 2275 int recurse) 2276 { 2277 struct path old_path; 2278 struct mount *mnt = NULL, *parent; 2279 struct mountpoint *mp; 2280 int err; 2281 if (!old_name || !*old_name) 2282 return -EINVAL; 2283 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path); 2284 if (err) 2285 return err; 2286 2287 err = -EINVAL; 2288 if (mnt_ns_loop(old_path.dentry)) 2289 goto out; 2290 2291 mp = lock_mount(path); 2292 if (IS_ERR(mp)) { 2293 err = PTR_ERR(mp); 2294 goto out; 2295 } 2296 2297 parent = real_mount(path->mnt); 2298 if (!check_mnt(parent)) 2299 goto out2; 2300 2301 mnt = __do_loopback(&old_path, recurse); 2302 if (IS_ERR(mnt)) { 2303 err = PTR_ERR(mnt); 2304 goto out2; 2305 } 2306 2307 err = graft_tree(mnt, parent, mp); 2308 if (err) { 2309 lock_mount_hash(); 2310 umount_tree(mnt, UMOUNT_SYNC); 2311 unlock_mount_hash(); 2312 } 2313 out2: 2314 unlock_mount(mp); 2315 out: 2316 path_put(&old_path); 2317 return err; 2318 } 2319 2320 static struct file *open_detached_copy(struct path *path, bool recursive) 2321 { 2322 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; 2323 struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true); 2324 struct mount *mnt, *p; 2325 struct file *file; 2326 2327 if (IS_ERR(ns)) 2328 return ERR_CAST(ns); 2329 2330 namespace_lock(); 2331 mnt = __do_loopback(path, recursive); 2332 if (IS_ERR(mnt)) { 2333 namespace_unlock(); 2334 free_mnt_ns(ns); 2335 return ERR_CAST(mnt); 2336 } 2337 2338 lock_mount_hash(); 2339 for (p = mnt; p; p = next_mnt(p, mnt)) { 2340 p->mnt_ns = ns; 2341 ns->mounts++; 2342 } 2343 ns->root = mnt; 2344 list_add_tail(&ns->list, &mnt->mnt_list); 2345 mntget(&mnt->mnt); 2346 unlock_mount_hash(); 2347 namespace_unlock(); 2348 2349 mntput(path->mnt); 2350 path->mnt = &mnt->mnt; 2351 file = dentry_open(path, O_PATH, current_cred()); 2352 if (IS_ERR(file)) 2353 dissolve_on_fput(path->mnt); 2354 else 2355 file->f_mode |= FMODE_NEED_UNMOUNT; 2356 return file; 2357 } 2358 2359 SYSCALL_DEFINE3(open_tree, int, dfd, const char *, filename, unsigned, flags) 2360 { 2361 struct file *file; 2362 struct path path; 2363 int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW; 2364 bool detached = flags & OPEN_TREE_CLONE; 2365 int error; 2366 int fd; 2367 2368 BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC); 2369 2370 if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE | 2371 AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE | 2372 OPEN_TREE_CLOEXEC)) 2373 return -EINVAL; 2374 2375 if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE) 2376 return -EINVAL; 2377 2378 if (flags & AT_NO_AUTOMOUNT) 2379 lookup_flags &= ~LOOKUP_AUTOMOUNT; 2380 if (flags & AT_SYMLINK_NOFOLLOW) 2381 lookup_flags &= ~LOOKUP_FOLLOW; 2382 if (flags & AT_EMPTY_PATH) 2383 lookup_flags |= LOOKUP_EMPTY; 2384 2385 if (detached && !may_mount()) 2386 return -EPERM; 2387 2388 fd = get_unused_fd_flags(flags & O_CLOEXEC); 2389 if (fd < 0) 2390 return fd; 2391 2392 error = user_path_at(dfd, filename, lookup_flags, &path); 2393 if (unlikely(error)) { 2394 file = ERR_PTR(error); 2395 } else { 2396 if (detached) 2397 file = open_detached_copy(&path, flags & AT_RECURSIVE); 2398 else 2399 file = dentry_open(&path, O_PATH, current_cred()); 2400 path_put(&path); 2401 } 2402 if (IS_ERR(file)) { 2403 put_unused_fd(fd); 2404 return PTR_ERR(file); 2405 } 2406 fd_install(fd, file); 2407 return fd; 2408 } 2409 2410 /* 2411 * Don't allow locked mount flags to be cleared. 2412 * 2413 * No locks need to be held here while testing the various MNT_LOCK 2414 * flags because those flags can never be cleared once they are set. 2415 */ 2416 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags) 2417 { 2418 unsigned int fl = mnt->mnt.mnt_flags; 2419 2420 if ((fl & MNT_LOCK_READONLY) && 2421 !(mnt_flags & MNT_READONLY)) 2422 return false; 2423 2424 if ((fl & MNT_LOCK_NODEV) && 2425 !(mnt_flags & MNT_NODEV)) 2426 return false; 2427 2428 if ((fl & MNT_LOCK_NOSUID) && 2429 !(mnt_flags & MNT_NOSUID)) 2430 return false; 2431 2432 if ((fl & MNT_LOCK_NOEXEC) && 2433 !(mnt_flags & MNT_NOEXEC)) 2434 return false; 2435 2436 if ((fl & MNT_LOCK_ATIME) && 2437 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) 2438 return false; 2439 2440 return true; 2441 } 2442 2443 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags) 2444 { 2445 bool readonly_request = (mnt_flags & MNT_READONLY); 2446 2447 if (readonly_request == __mnt_is_readonly(&mnt->mnt)) 2448 return 0; 2449 2450 if (readonly_request) 2451 return mnt_make_readonly(mnt); 2452 2453 return __mnt_unmake_readonly(mnt); 2454 } 2455 2456 /* 2457 * Update the user-settable attributes on a mount. The caller must hold 2458 * sb->s_umount for writing. 2459 */ 2460 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags) 2461 { 2462 lock_mount_hash(); 2463 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK; 2464 mnt->mnt.mnt_flags = mnt_flags; 2465 touch_mnt_namespace(mnt->mnt_ns); 2466 unlock_mount_hash(); 2467 } 2468 2469 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt) 2470 { 2471 struct super_block *sb = mnt->mnt_sb; 2472 2473 if (!__mnt_is_readonly(mnt) && 2474 (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) { 2475 char *buf = (char *)__get_free_page(GFP_KERNEL); 2476 char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM); 2477 struct tm tm; 2478 2479 time64_to_tm(sb->s_time_max, 0, &tm); 2480 2481 pr_warn("Mounted %s file system at %s supports timestamps until %04ld (0x%llx)\n", 2482 sb->s_type->name, mntpath, 2483 tm.tm_year+1900, (unsigned long long)sb->s_time_max); 2484 2485 free_page((unsigned long)buf); 2486 } 2487 } 2488 2489 /* 2490 * Handle reconfiguration of the mountpoint only without alteration of the 2491 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND 2492 * to mount(2). 2493 */ 2494 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags) 2495 { 2496 struct super_block *sb = path->mnt->mnt_sb; 2497 struct mount *mnt = real_mount(path->mnt); 2498 int ret; 2499 2500 if (!check_mnt(mnt)) 2501 return -EINVAL; 2502 2503 if (path->dentry != mnt->mnt.mnt_root) 2504 return -EINVAL; 2505 2506 if (!can_change_locked_flags(mnt, mnt_flags)) 2507 return -EPERM; 2508 2509 down_write(&sb->s_umount); 2510 ret = change_mount_ro_state(mnt, mnt_flags); 2511 if (ret == 0) 2512 set_mount_attributes(mnt, mnt_flags); 2513 up_write(&sb->s_umount); 2514 2515 mnt_warn_timestamp_expiry(path, &mnt->mnt); 2516 2517 return ret; 2518 } 2519 2520 /* 2521 * change filesystem flags. dir should be a physical root of filesystem. 2522 * If you've mounted a non-root directory somewhere and want to do remount 2523 * on it - tough luck. 2524 */ 2525 static int do_remount(struct path *path, int ms_flags, int sb_flags, 2526 int mnt_flags, void *data) 2527 { 2528 int err; 2529 struct super_block *sb = path->mnt->mnt_sb; 2530 struct mount *mnt = real_mount(path->mnt); 2531 struct fs_context *fc; 2532 2533 if (!check_mnt(mnt)) 2534 return -EINVAL; 2535 2536 if (path->dentry != path->mnt->mnt_root) 2537 return -EINVAL; 2538 2539 if (!can_change_locked_flags(mnt, mnt_flags)) 2540 return -EPERM; 2541 2542 fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK); 2543 if (IS_ERR(fc)) 2544 return PTR_ERR(fc); 2545 2546 err = parse_monolithic_mount_data(fc, data); 2547 if (!err) { 2548 down_write(&sb->s_umount); 2549 err = -EPERM; 2550 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) { 2551 err = reconfigure_super(fc); 2552 if (!err) 2553 set_mount_attributes(mnt, mnt_flags); 2554 } 2555 up_write(&sb->s_umount); 2556 } 2557 2558 mnt_warn_timestamp_expiry(path, &mnt->mnt); 2559 2560 put_fs_context(fc); 2561 return err; 2562 } 2563 2564 static inline int tree_contains_unbindable(struct mount *mnt) 2565 { 2566 struct mount *p; 2567 for (p = mnt; p; p = next_mnt(p, mnt)) { 2568 if (IS_MNT_UNBINDABLE(p)) 2569 return 1; 2570 } 2571 return 0; 2572 } 2573 2574 /* 2575 * Check that there aren't references to earlier/same mount namespaces in the 2576 * specified subtree. Such references can act as pins for mount namespaces 2577 * that aren't checked by the mount-cycle checking code, thereby allowing 2578 * cycles to be made. 2579 */ 2580 static bool check_for_nsfs_mounts(struct mount *subtree) 2581 { 2582 struct mount *p; 2583 bool ret = false; 2584 2585 lock_mount_hash(); 2586 for (p = subtree; p; p = next_mnt(p, subtree)) 2587 if (mnt_ns_loop(p->mnt.mnt_root)) 2588 goto out; 2589 2590 ret = true; 2591 out: 2592 unlock_mount_hash(); 2593 return ret; 2594 } 2595 2596 static int do_move_mount(struct path *old_path, struct path *new_path) 2597 { 2598 struct mnt_namespace *ns; 2599 struct mount *p; 2600 struct mount *old; 2601 struct mount *parent; 2602 struct mountpoint *mp, *old_mp; 2603 int err; 2604 bool attached; 2605 2606 mp = lock_mount(new_path); 2607 if (IS_ERR(mp)) 2608 return PTR_ERR(mp); 2609 2610 old = real_mount(old_path->mnt); 2611 p = real_mount(new_path->mnt); 2612 parent = old->mnt_parent; 2613 attached = mnt_has_parent(old); 2614 old_mp = old->mnt_mp; 2615 ns = old->mnt_ns; 2616 2617 err = -EINVAL; 2618 /* The mountpoint must be in our namespace. */ 2619 if (!check_mnt(p)) 2620 goto out; 2621 2622 /* The thing moved must be mounted... */ 2623 if (!is_mounted(&old->mnt)) 2624 goto out; 2625 2626 /* ... and either ours or the root of anon namespace */ 2627 if (!(attached ? check_mnt(old) : is_anon_ns(ns))) 2628 goto out; 2629 2630 if (old->mnt.mnt_flags & MNT_LOCKED) 2631 goto out; 2632 2633 if (old_path->dentry != old_path->mnt->mnt_root) 2634 goto out; 2635 2636 if (d_is_dir(new_path->dentry) != 2637 d_is_dir(old_path->dentry)) 2638 goto out; 2639 /* 2640 * Don't move a mount residing in a shared parent. 2641 */ 2642 if (attached && IS_MNT_SHARED(parent)) 2643 goto out; 2644 /* 2645 * Don't move a mount tree containing unbindable mounts to a destination 2646 * mount which is shared. 2647 */ 2648 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old)) 2649 goto out; 2650 err = -ELOOP; 2651 if (!check_for_nsfs_mounts(old)) 2652 goto out; 2653 for (; mnt_has_parent(p); p = p->mnt_parent) 2654 if (p == old) 2655 goto out; 2656 2657 err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp, 2658 attached); 2659 if (err) 2660 goto out; 2661 2662 /* if the mount is moved, it should no longer be expire 2663 * automatically */ 2664 list_del_init(&old->mnt_expire); 2665 if (attached) 2666 put_mountpoint(old_mp); 2667 out: 2668 unlock_mount(mp); 2669 if (!err) { 2670 if (attached) 2671 mntput_no_expire(parent); 2672 else 2673 free_mnt_ns(ns); 2674 } 2675 return err; 2676 } 2677 2678 static int do_move_mount_old(struct path *path, const char *old_name) 2679 { 2680 struct path old_path; 2681 int err; 2682 2683 if (!old_name || !*old_name) 2684 return -EINVAL; 2685 2686 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); 2687 if (err) 2688 return err; 2689 2690 err = do_move_mount(&old_path, path); 2691 path_put(&old_path); 2692 return err; 2693 } 2694 2695 /* 2696 * add a mount into a namespace's mount tree 2697 */ 2698 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags) 2699 { 2700 struct mountpoint *mp; 2701 struct mount *parent; 2702 int err; 2703 2704 mnt_flags &= ~MNT_INTERNAL_FLAGS; 2705 2706 mp = lock_mount(path); 2707 if (IS_ERR(mp)) 2708 return PTR_ERR(mp); 2709 2710 parent = real_mount(path->mnt); 2711 err = -EINVAL; 2712 if (unlikely(!check_mnt(parent))) { 2713 /* that's acceptable only for automounts done in private ns */ 2714 if (!(mnt_flags & MNT_SHRINKABLE)) 2715 goto unlock; 2716 /* ... and for those we'd better have mountpoint still alive */ 2717 if (!parent->mnt_ns) 2718 goto unlock; 2719 } 2720 2721 /* Refuse the same filesystem on the same mount point */ 2722 err = -EBUSY; 2723 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && 2724 path->mnt->mnt_root == path->dentry) 2725 goto unlock; 2726 2727 err = -EINVAL; 2728 if (d_is_symlink(newmnt->mnt.mnt_root)) 2729 goto unlock; 2730 2731 newmnt->mnt.mnt_flags = mnt_flags; 2732 err = graft_tree(newmnt, parent, mp); 2733 2734 unlock: 2735 unlock_mount(mp); 2736 return err; 2737 } 2738 2739 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags); 2740 2741 /* 2742 * Create a new mount using a superblock configuration and request it 2743 * be added to the namespace tree. 2744 */ 2745 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint, 2746 unsigned int mnt_flags) 2747 { 2748 struct vfsmount *mnt; 2749 struct super_block *sb = fc->root->d_sb; 2750 int error; 2751 2752 error = security_sb_kern_mount(sb); 2753 if (!error && mount_too_revealing(sb, &mnt_flags)) 2754 error = -EPERM; 2755 2756 if (unlikely(error)) { 2757 fc_drop_locked(fc); 2758 return error; 2759 } 2760 2761 up_write(&sb->s_umount); 2762 2763 mnt = vfs_create_mount(fc); 2764 if (IS_ERR(mnt)) 2765 return PTR_ERR(mnt); 2766 2767 error = do_add_mount(real_mount(mnt), mountpoint, mnt_flags); 2768 if (error < 0) { 2769 mntput(mnt); 2770 return error; 2771 } 2772 2773 mnt_warn_timestamp_expiry(mountpoint, mnt); 2774 2775 return error; 2776 } 2777 2778 /* 2779 * create a new mount for userspace and request it to be added into the 2780 * namespace's tree 2781 */ 2782 static int do_new_mount(struct path *path, const char *fstype, int sb_flags, 2783 int mnt_flags, const char *name, void *data) 2784 { 2785 struct file_system_type *type; 2786 struct fs_context *fc; 2787 const char *subtype = NULL; 2788 int err = 0; 2789 2790 if (!fstype) 2791 return -EINVAL; 2792 2793 type = get_fs_type(fstype); 2794 if (!type) 2795 return -ENODEV; 2796 2797 if (type->fs_flags & FS_HAS_SUBTYPE) { 2798 subtype = strchr(fstype, '.'); 2799 if (subtype) { 2800 subtype++; 2801 if (!*subtype) { 2802 put_filesystem(type); 2803 return -EINVAL; 2804 } 2805 } 2806 } 2807 2808 fc = fs_context_for_mount(type, sb_flags); 2809 put_filesystem(type); 2810 if (IS_ERR(fc)) 2811 return PTR_ERR(fc); 2812 2813 if (subtype) 2814 err = vfs_parse_fs_string(fc, "subtype", 2815 subtype, strlen(subtype)); 2816 if (!err && name) 2817 err = vfs_parse_fs_string(fc, "source", name, strlen(name)); 2818 if (!err) 2819 err = parse_monolithic_mount_data(fc, data); 2820 if (!err && !mount_capable(fc)) 2821 err = -EPERM; 2822 if (!err) 2823 err = vfs_get_tree(fc); 2824 if (!err) 2825 err = do_new_mount_fc(fc, path, mnt_flags); 2826 2827 put_fs_context(fc); 2828 return err; 2829 } 2830 2831 int finish_automount(struct vfsmount *m, struct path *path) 2832 { 2833 struct mount *mnt = real_mount(m); 2834 int err; 2835 /* The new mount record should have at least 2 refs to prevent it being 2836 * expired before we get a chance to add it 2837 */ 2838 BUG_ON(mnt_get_count(mnt) < 2); 2839 2840 if (m->mnt_sb == path->mnt->mnt_sb && 2841 m->mnt_root == path->dentry) { 2842 err = -ELOOP; 2843 goto fail; 2844 } 2845 2846 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE); 2847 if (!err) 2848 return 0; 2849 fail: 2850 /* remove m from any expiration list it may be on */ 2851 if (!list_empty(&mnt->mnt_expire)) { 2852 namespace_lock(); 2853 list_del_init(&mnt->mnt_expire); 2854 namespace_unlock(); 2855 } 2856 mntput(m); 2857 mntput(m); 2858 return err; 2859 } 2860 2861 /** 2862 * mnt_set_expiry - Put a mount on an expiration list 2863 * @mnt: The mount to list. 2864 * @expiry_list: The list to add the mount to. 2865 */ 2866 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list) 2867 { 2868 namespace_lock(); 2869 2870 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list); 2871 2872 namespace_unlock(); 2873 } 2874 EXPORT_SYMBOL(mnt_set_expiry); 2875 2876 /* 2877 * process a list of expirable mountpoints with the intent of discarding any 2878 * mountpoints that aren't in use and haven't been touched since last we came 2879 * here 2880 */ 2881 void mark_mounts_for_expiry(struct list_head *mounts) 2882 { 2883 struct mount *mnt, *next; 2884 LIST_HEAD(graveyard); 2885 2886 if (list_empty(mounts)) 2887 return; 2888 2889 namespace_lock(); 2890 lock_mount_hash(); 2891 2892 /* extract from the expiration list every vfsmount that matches the 2893 * following criteria: 2894 * - only referenced by its parent vfsmount 2895 * - still marked for expiry (marked on the last call here; marks are 2896 * cleared by mntput()) 2897 */ 2898 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { 2899 if (!xchg(&mnt->mnt_expiry_mark, 1) || 2900 propagate_mount_busy(mnt, 1)) 2901 continue; 2902 list_move(&mnt->mnt_expire, &graveyard); 2903 } 2904 while (!list_empty(&graveyard)) { 2905 mnt = list_first_entry(&graveyard, struct mount, mnt_expire); 2906 touch_mnt_namespace(mnt->mnt_ns); 2907 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 2908 } 2909 unlock_mount_hash(); 2910 namespace_unlock(); 2911 } 2912 2913 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); 2914 2915 /* 2916 * Ripoff of 'select_parent()' 2917 * 2918 * search the list of submounts for a given mountpoint, and move any 2919 * shrinkable submounts to the 'graveyard' list. 2920 */ 2921 static int select_submounts(struct mount *parent, struct list_head *graveyard) 2922 { 2923 struct mount *this_parent = parent; 2924 struct list_head *next; 2925 int found = 0; 2926 2927 repeat: 2928 next = this_parent->mnt_mounts.next; 2929 resume: 2930 while (next != &this_parent->mnt_mounts) { 2931 struct list_head *tmp = next; 2932 struct mount *mnt = list_entry(tmp, struct mount, mnt_child); 2933 2934 next = tmp->next; 2935 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE)) 2936 continue; 2937 /* 2938 * Descend a level if the d_mounts list is non-empty. 2939 */ 2940 if (!list_empty(&mnt->mnt_mounts)) { 2941 this_parent = mnt; 2942 goto repeat; 2943 } 2944 2945 if (!propagate_mount_busy(mnt, 1)) { 2946 list_move_tail(&mnt->mnt_expire, graveyard); 2947 found++; 2948 } 2949 } 2950 /* 2951 * All done at this level ... ascend and resume the search 2952 */ 2953 if (this_parent != parent) { 2954 next = this_parent->mnt_child.next; 2955 this_parent = this_parent->mnt_parent; 2956 goto resume; 2957 } 2958 return found; 2959 } 2960 2961 /* 2962 * process a list of expirable mountpoints with the intent of discarding any 2963 * submounts of a specific parent mountpoint 2964 * 2965 * mount_lock must be held for write 2966 */ 2967 static void shrink_submounts(struct mount *mnt) 2968 { 2969 LIST_HEAD(graveyard); 2970 struct mount *m; 2971 2972 /* extract submounts of 'mountpoint' from the expiration list */ 2973 while (select_submounts(mnt, &graveyard)) { 2974 while (!list_empty(&graveyard)) { 2975 m = list_first_entry(&graveyard, struct mount, 2976 mnt_expire); 2977 touch_mnt_namespace(m->mnt_ns); 2978 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC); 2979 } 2980 } 2981 } 2982 2983 /* 2984 * Some copy_from_user() implementations do not return the exact number of 2985 * bytes remaining to copy on a fault. But copy_mount_options() requires that. 2986 * Note that this function differs from copy_from_user() in that it will oops 2987 * on bad values of `to', rather than returning a short copy. 2988 */ 2989 static long exact_copy_from_user(void *to, const void __user * from, 2990 unsigned long n) 2991 { 2992 char *t = to; 2993 const char __user *f = from; 2994 char c; 2995 2996 if (!access_ok(from, n)) 2997 return n; 2998 2999 while (n) { 3000 if (__get_user(c, f)) { 3001 memset(t, 0, n); 3002 break; 3003 } 3004 *t++ = c; 3005 f++; 3006 n--; 3007 } 3008 return n; 3009 } 3010 3011 void *copy_mount_options(const void __user * data) 3012 { 3013 int i; 3014 unsigned long size; 3015 char *copy; 3016 3017 if (!data) 3018 return NULL; 3019 3020 copy = kmalloc(PAGE_SIZE, GFP_KERNEL); 3021 if (!copy) 3022 return ERR_PTR(-ENOMEM); 3023 3024 /* We only care that *some* data at the address the user 3025 * gave us is valid. Just in case, we'll zero 3026 * the remainder of the page. 3027 */ 3028 /* copy_from_user cannot cross TASK_SIZE ! */ 3029 size = TASK_SIZE - (unsigned long)untagged_addr(data); 3030 if (size > PAGE_SIZE) 3031 size = PAGE_SIZE; 3032 3033 i = size - exact_copy_from_user(copy, data, size); 3034 if (!i) { 3035 kfree(copy); 3036 return ERR_PTR(-EFAULT); 3037 } 3038 if (i != PAGE_SIZE) 3039 memset(copy + i, 0, PAGE_SIZE - i); 3040 return copy; 3041 } 3042 3043 char *copy_mount_string(const void __user *data) 3044 { 3045 return data ? strndup_user(data, PATH_MAX) : NULL; 3046 } 3047 3048 /* 3049 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to 3050 * be given to the mount() call (ie: read-only, no-dev, no-suid etc). 3051 * 3052 * data is a (void *) that can point to any structure up to 3053 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent 3054 * information (or be NULL). 3055 * 3056 * Pre-0.97 versions of mount() didn't have a flags word. 3057 * When the flags word was introduced its top half was required 3058 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. 3059 * Therefore, if this magic number is present, it carries no information 3060 * and must be discarded. 3061 */ 3062 long do_mount(const char *dev_name, const char __user *dir_name, 3063 const char *type_page, unsigned long flags, void *data_page) 3064 { 3065 struct path path; 3066 unsigned int mnt_flags = 0, sb_flags; 3067 int retval = 0; 3068 3069 /* Discard magic */ 3070 if ((flags & MS_MGC_MSK) == MS_MGC_VAL) 3071 flags &= ~MS_MGC_MSK; 3072 3073 /* Basic sanity checks */ 3074 if (data_page) 3075 ((char *)data_page)[PAGE_SIZE - 1] = 0; 3076 3077 if (flags & MS_NOUSER) 3078 return -EINVAL; 3079 3080 /* ... and get the mountpoint */ 3081 retval = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path); 3082 if (retval) 3083 return retval; 3084 3085 retval = security_sb_mount(dev_name, &path, 3086 type_page, flags, data_page); 3087 if (!retval && !may_mount()) 3088 retval = -EPERM; 3089 if (!retval && (flags & SB_MANDLOCK) && !may_mandlock()) 3090 retval = -EPERM; 3091 if (retval) 3092 goto dput_out; 3093 3094 /* Default to relatime unless overriden */ 3095 if (!(flags & MS_NOATIME)) 3096 mnt_flags |= MNT_RELATIME; 3097 3098 /* Separate the per-mountpoint flags */ 3099 if (flags & MS_NOSUID) 3100 mnt_flags |= MNT_NOSUID; 3101 if (flags & MS_NODEV) 3102 mnt_flags |= MNT_NODEV; 3103 if (flags & MS_NOEXEC) 3104 mnt_flags |= MNT_NOEXEC; 3105 if (flags & MS_NOATIME) 3106 mnt_flags |= MNT_NOATIME; 3107 if (flags & MS_NODIRATIME) 3108 mnt_flags |= MNT_NODIRATIME; 3109 if (flags & MS_STRICTATIME) 3110 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME); 3111 if (flags & MS_RDONLY) 3112 mnt_flags |= MNT_READONLY; 3113 3114 /* The default atime for remount is preservation */ 3115 if ((flags & MS_REMOUNT) && 3116 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME | 3117 MS_STRICTATIME)) == 0)) { 3118 mnt_flags &= ~MNT_ATIME_MASK; 3119 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK; 3120 } 3121 3122 sb_flags = flags & (SB_RDONLY | 3123 SB_SYNCHRONOUS | 3124 SB_MANDLOCK | 3125 SB_DIRSYNC | 3126 SB_SILENT | 3127 SB_POSIXACL | 3128 SB_LAZYTIME | 3129 SB_I_VERSION); 3130 3131 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND)) 3132 retval = do_reconfigure_mnt(&path, mnt_flags); 3133 else if (flags & MS_REMOUNT) 3134 retval = do_remount(&path, flags, sb_flags, mnt_flags, 3135 data_page); 3136 else if (flags & MS_BIND) 3137 retval = do_loopback(&path, dev_name, flags & MS_REC); 3138 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 3139 retval = do_change_type(&path, flags); 3140 else if (flags & MS_MOVE) 3141 retval = do_move_mount_old(&path, dev_name); 3142 else 3143 retval = do_new_mount(&path, type_page, sb_flags, mnt_flags, 3144 dev_name, data_page); 3145 dput_out: 3146 path_put(&path); 3147 return retval; 3148 } 3149 3150 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns) 3151 { 3152 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES); 3153 } 3154 3155 static void dec_mnt_namespaces(struct ucounts *ucounts) 3156 { 3157 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES); 3158 } 3159 3160 static void free_mnt_ns(struct mnt_namespace *ns) 3161 { 3162 if (!is_anon_ns(ns)) 3163 ns_free_inum(&ns->ns); 3164 dec_mnt_namespaces(ns->ucounts); 3165 put_user_ns(ns->user_ns); 3166 kfree(ns); 3167 } 3168 3169 /* 3170 * Assign a sequence number so we can detect when we attempt to bind 3171 * mount a reference to an older mount namespace into the current 3172 * mount namespace, preventing reference counting loops. A 64bit 3173 * number incrementing at 10Ghz will take 12,427 years to wrap which 3174 * is effectively never, so we can ignore the possibility. 3175 */ 3176 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1); 3177 3178 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon) 3179 { 3180 struct mnt_namespace *new_ns; 3181 struct ucounts *ucounts; 3182 int ret; 3183 3184 ucounts = inc_mnt_namespaces(user_ns); 3185 if (!ucounts) 3186 return ERR_PTR(-ENOSPC); 3187 3188 new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL); 3189 if (!new_ns) { 3190 dec_mnt_namespaces(ucounts); 3191 return ERR_PTR(-ENOMEM); 3192 } 3193 if (!anon) { 3194 ret = ns_alloc_inum(&new_ns->ns); 3195 if (ret) { 3196 kfree(new_ns); 3197 dec_mnt_namespaces(ucounts); 3198 return ERR_PTR(ret); 3199 } 3200 } 3201 new_ns->ns.ops = &mntns_operations; 3202 if (!anon) 3203 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq); 3204 atomic_set(&new_ns->count, 1); 3205 INIT_LIST_HEAD(&new_ns->list); 3206 init_waitqueue_head(&new_ns->poll); 3207 new_ns->user_ns = get_user_ns(user_ns); 3208 new_ns->ucounts = ucounts; 3209 return new_ns; 3210 } 3211 3212 __latent_entropy 3213 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns, 3214 struct user_namespace *user_ns, struct fs_struct *new_fs) 3215 { 3216 struct mnt_namespace *new_ns; 3217 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL; 3218 struct mount *p, *q; 3219 struct mount *old; 3220 struct mount *new; 3221 int copy_flags; 3222 3223 BUG_ON(!ns); 3224 3225 if (likely(!(flags & CLONE_NEWNS))) { 3226 get_mnt_ns(ns); 3227 return ns; 3228 } 3229 3230 old = ns->root; 3231 3232 new_ns = alloc_mnt_ns(user_ns, false); 3233 if (IS_ERR(new_ns)) 3234 return new_ns; 3235 3236 namespace_lock(); 3237 /* First pass: copy the tree topology */ 3238 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE; 3239 if (user_ns != ns->user_ns) 3240 copy_flags |= CL_SHARED_TO_SLAVE; 3241 new = copy_tree(old, old->mnt.mnt_root, copy_flags); 3242 if (IS_ERR(new)) { 3243 namespace_unlock(); 3244 free_mnt_ns(new_ns); 3245 return ERR_CAST(new); 3246 } 3247 if (user_ns != ns->user_ns) { 3248 lock_mount_hash(); 3249 lock_mnt_tree(new); 3250 unlock_mount_hash(); 3251 } 3252 new_ns->root = new; 3253 list_add_tail(&new_ns->list, &new->mnt_list); 3254 3255 /* 3256 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts 3257 * as belonging to new namespace. We have already acquired a private 3258 * fs_struct, so tsk->fs->lock is not needed. 3259 */ 3260 p = old; 3261 q = new; 3262 while (p) { 3263 q->mnt_ns = new_ns; 3264 new_ns->mounts++; 3265 if (new_fs) { 3266 if (&p->mnt == new_fs->root.mnt) { 3267 new_fs->root.mnt = mntget(&q->mnt); 3268 rootmnt = &p->mnt; 3269 } 3270 if (&p->mnt == new_fs->pwd.mnt) { 3271 new_fs->pwd.mnt = mntget(&q->mnt); 3272 pwdmnt = &p->mnt; 3273 } 3274 } 3275 p = next_mnt(p, old); 3276 q = next_mnt(q, new); 3277 if (!q) 3278 break; 3279 while (p->mnt.mnt_root != q->mnt.mnt_root) 3280 p = next_mnt(p, old); 3281 } 3282 namespace_unlock(); 3283 3284 if (rootmnt) 3285 mntput(rootmnt); 3286 if (pwdmnt) 3287 mntput(pwdmnt); 3288 3289 return new_ns; 3290 } 3291 3292 struct dentry *mount_subtree(struct vfsmount *m, const char *name) 3293 { 3294 struct mount *mnt = real_mount(m); 3295 struct mnt_namespace *ns; 3296 struct super_block *s; 3297 struct path path; 3298 int err; 3299 3300 ns = alloc_mnt_ns(&init_user_ns, true); 3301 if (IS_ERR(ns)) { 3302 mntput(m); 3303 return ERR_CAST(ns); 3304 } 3305 mnt->mnt_ns = ns; 3306 ns->root = mnt; 3307 ns->mounts++; 3308 list_add(&mnt->mnt_list, &ns->list); 3309 3310 err = vfs_path_lookup(m->mnt_root, m, 3311 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path); 3312 3313 put_mnt_ns(ns); 3314 3315 if (err) 3316 return ERR_PTR(err); 3317 3318 /* trade a vfsmount reference for active sb one */ 3319 s = path.mnt->mnt_sb; 3320 atomic_inc(&s->s_active); 3321 mntput(path.mnt); 3322 /* lock the sucker */ 3323 down_write(&s->s_umount); 3324 /* ... and return the root of (sub)tree on it */ 3325 return path.dentry; 3326 } 3327 EXPORT_SYMBOL(mount_subtree); 3328 3329 int ksys_mount(const char __user *dev_name, const char __user *dir_name, 3330 const char __user *type, unsigned long flags, void __user *data) 3331 { 3332 int ret; 3333 char *kernel_type; 3334 char *kernel_dev; 3335 void *options; 3336 3337 kernel_type = copy_mount_string(type); 3338 ret = PTR_ERR(kernel_type); 3339 if (IS_ERR(kernel_type)) 3340 goto out_type; 3341 3342 kernel_dev = copy_mount_string(dev_name); 3343 ret = PTR_ERR(kernel_dev); 3344 if (IS_ERR(kernel_dev)) 3345 goto out_dev; 3346 3347 options = copy_mount_options(data); 3348 ret = PTR_ERR(options); 3349 if (IS_ERR(options)) 3350 goto out_data; 3351 3352 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options); 3353 3354 kfree(options); 3355 out_data: 3356 kfree(kernel_dev); 3357 out_dev: 3358 kfree(kernel_type); 3359 out_type: 3360 return ret; 3361 } 3362 3363 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name, 3364 char __user *, type, unsigned long, flags, void __user *, data) 3365 { 3366 return ksys_mount(dev_name, dir_name, type, flags, data); 3367 } 3368 3369 /* 3370 * Create a kernel mount representation for a new, prepared superblock 3371 * (specified by fs_fd) and attach to an open_tree-like file descriptor. 3372 */ 3373 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags, 3374 unsigned int, attr_flags) 3375 { 3376 struct mnt_namespace *ns; 3377 struct fs_context *fc; 3378 struct file *file; 3379 struct path newmount; 3380 struct mount *mnt; 3381 struct fd f; 3382 unsigned int mnt_flags = 0; 3383 long ret; 3384 3385 if (!may_mount()) 3386 return -EPERM; 3387 3388 if ((flags & ~(FSMOUNT_CLOEXEC)) != 0) 3389 return -EINVAL; 3390 3391 if (attr_flags & ~(MOUNT_ATTR_RDONLY | 3392 MOUNT_ATTR_NOSUID | 3393 MOUNT_ATTR_NODEV | 3394 MOUNT_ATTR_NOEXEC | 3395 MOUNT_ATTR__ATIME | 3396 MOUNT_ATTR_NODIRATIME)) 3397 return -EINVAL; 3398 3399 if (attr_flags & MOUNT_ATTR_RDONLY) 3400 mnt_flags |= MNT_READONLY; 3401 if (attr_flags & MOUNT_ATTR_NOSUID) 3402 mnt_flags |= MNT_NOSUID; 3403 if (attr_flags & MOUNT_ATTR_NODEV) 3404 mnt_flags |= MNT_NODEV; 3405 if (attr_flags & MOUNT_ATTR_NOEXEC) 3406 mnt_flags |= MNT_NOEXEC; 3407 if (attr_flags & MOUNT_ATTR_NODIRATIME) 3408 mnt_flags |= MNT_NODIRATIME; 3409 3410 switch (attr_flags & MOUNT_ATTR__ATIME) { 3411 case MOUNT_ATTR_STRICTATIME: 3412 break; 3413 case MOUNT_ATTR_NOATIME: 3414 mnt_flags |= MNT_NOATIME; 3415 break; 3416 case MOUNT_ATTR_RELATIME: 3417 mnt_flags |= MNT_RELATIME; 3418 break; 3419 default: 3420 return -EINVAL; 3421 } 3422 3423 f = fdget(fs_fd); 3424 if (!f.file) 3425 return -EBADF; 3426 3427 ret = -EINVAL; 3428 if (f.file->f_op != &fscontext_fops) 3429 goto err_fsfd; 3430 3431 fc = f.file->private_data; 3432 3433 ret = mutex_lock_interruptible(&fc->uapi_mutex); 3434 if (ret < 0) 3435 goto err_fsfd; 3436 3437 /* There must be a valid superblock or we can't mount it */ 3438 ret = -EINVAL; 3439 if (!fc->root) 3440 goto err_unlock; 3441 3442 ret = -EPERM; 3443 if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) { 3444 pr_warn("VFS: Mount too revealing\n"); 3445 goto err_unlock; 3446 } 3447 3448 ret = -EBUSY; 3449 if (fc->phase != FS_CONTEXT_AWAITING_MOUNT) 3450 goto err_unlock; 3451 3452 ret = -EPERM; 3453 if ((fc->sb_flags & SB_MANDLOCK) && !may_mandlock()) 3454 goto err_unlock; 3455 3456 newmount.mnt = vfs_create_mount(fc); 3457 if (IS_ERR(newmount.mnt)) { 3458 ret = PTR_ERR(newmount.mnt); 3459 goto err_unlock; 3460 } 3461 newmount.dentry = dget(fc->root); 3462 newmount.mnt->mnt_flags = mnt_flags; 3463 3464 /* We've done the mount bit - now move the file context into more or 3465 * less the same state as if we'd done an fspick(). We don't want to 3466 * do any memory allocation or anything like that at this point as we 3467 * don't want to have to handle any errors incurred. 3468 */ 3469 vfs_clean_context(fc); 3470 3471 ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true); 3472 if (IS_ERR(ns)) { 3473 ret = PTR_ERR(ns); 3474 goto err_path; 3475 } 3476 mnt = real_mount(newmount.mnt); 3477 mnt->mnt_ns = ns; 3478 ns->root = mnt; 3479 ns->mounts = 1; 3480 list_add(&mnt->mnt_list, &ns->list); 3481 mntget(newmount.mnt); 3482 3483 /* Attach to an apparent O_PATH fd with a note that we need to unmount 3484 * it, not just simply put it. 3485 */ 3486 file = dentry_open(&newmount, O_PATH, fc->cred); 3487 if (IS_ERR(file)) { 3488 dissolve_on_fput(newmount.mnt); 3489 ret = PTR_ERR(file); 3490 goto err_path; 3491 } 3492 file->f_mode |= FMODE_NEED_UNMOUNT; 3493 3494 ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0); 3495 if (ret >= 0) 3496 fd_install(ret, file); 3497 else 3498 fput(file); 3499 3500 err_path: 3501 path_put(&newmount); 3502 err_unlock: 3503 mutex_unlock(&fc->uapi_mutex); 3504 err_fsfd: 3505 fdput(f); 3506 return ret; 3507 } 3508 3509 /* 3510 * Move a mount from one place to another. In combination with 3511 * fsopen()/fsmount() this is used to install a new mount and in combination 3512 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy 3513 * a mount subtree. 3514 * 3515 * Note the flags value is a combination of MOVE_MOUNT_* flags. 3516 */ 3517 SYSCALL_DEFINE5(move_mount, 3518 int, from_dfd, const char *, from_pathname, 3519 int, to_dfd, const char *, to_pathname, 3520 unsigned int, flags) 3521 { 3522 struct path from_path, to_path; 3523 unsigned int lflags; 3524 int ret = 0; 3525 3526 if (!may_mount()) 3527 return -EPERM; 3528 3529 if (flags & ~MOVE_MOUNT__MASK) 3530 return -EINVAL; 3531 3532 /* If someone gives a pathname, they aren't permitted to move 3533 * from an fd that requires unmount as we can't get at the flag 3534 * to clear it afterwards. 3535 */ 3536 lflags = 0; 3537 if (flags & MOVE_MOUNT_F_SYMLINKS) lflags |= LOOKUP_FOLLOW; 3538 if (flags & MOVE_MOUNT_F_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT; 3539 if (flags & MOVE_MOUNT_F_EMPTY_PATH) lflags |= LOOKUP_EMPTY; 3540 3541 ret = user_path_at(from_dfd, from_pathname, lflags, &from_path); 3542 if (ret < 0) 3543 return ret; 3544 3545 lflags = 0; 3546 if (flags & MOVE_MOUNT_T_SYMLINKS) lflags |= LOOKUP_FOLLOW; 3547 if (flags & MOVE_MOUNT_T_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT; 3548 if (flags & MOVE_MOUNT_T_EMPTY_PATH) lflags |= LOOKUP_EMPTY; 3549 3550 ret = user_path_at(to_dfd, to_pathname, lflags, &to_path); 3551 if (ret < 0) 3552 goto out_from; 3553 3554 ret = security_move_mount(&from_path, &to_path); 3555 if (ret < 0) 3556 goto out_to; 3557 3558 ret = do_move_mount(&from_path, &to_path); 3559 3560 out_to: 3561 path_put(&to_path); 3562 out_from: 3563 path_put(&from_path); 3564 return ret; 3565 } 3566 3567 /* 3568 * Return true if path is reachable from root 3569 * 3570 * namespace_sem or mount_lock is held 3571 */ 3572 bool is_path_reachable(struct mount *mnt, struct dentry *dentry, 3573 const struct path *root) 3574 { 3575 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) { 3576 dentry = mnt->mnt_mountpoint; 3577 mnt = mnt->mnt_parent; 3578 } 3579 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry); 3580 } 3581 3582 bool path_is_under(const struct path *path1, const struct path *path2) 3583 { 3584 bool res; 3585 read_seqlock_excl(&mount_lock); 3586 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2); 3587 read_sequnlock_excl(&mount_lock); 3588 return res; 3589 } 3590 EXPORT_SYMBOL(path_is_under); 3591 3592 /* 3593 * pivot_root Semantics: 3594 * Moves the root file system of the current process to the directory put_old, 3595 * makes new_root as the new root file system of the current process, and sets 3596 * root/cwd of all processes which had them on the current root to new_root. 3597 * 3598 * Restrictions: 3599 * The new_root and put_old must be directories, and must not be on the 3600 * same file system as the current process root. The put_old must be 3601 * underneath new_root, i.e. adding a non-zero number of /.. to the string 3602 * pointed to by put_old must yield the same directory as new_root. No other 3603 * file system may be mounted on put_old. After all, new_root is a mountpoint. 3604 * 3605 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. 3606 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives 3607 * in this situation. 3608 * 3609 * Notes: 3610 * - we don't move root/cwd if they are not at the root (reason: if something 3611 * cared enough to change them, it's probably wrong to force them elsewhere) 3612 * - it's okay to pick a root that isn't the root of a file system, e.g. 3613 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, 3614 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root 3615 * first. 3616 */ 3617 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root, 3618 const char __user *, put_old) 3619 { 3620 struct path new, old, root; 3621 struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent; 3622 struct mountpoint *old_mp, *root_mp; 3623 int error; 3624 3625 if (!may_mount()) 3626 return -EPERM; 3627 3628 error = user_path_at(AT_FDCWD, new_root, 3629 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new); 3630 if (error) 3631 goto out0; 3632 3633 error = user_path_at(AT_FDCWD, put_old, 3634 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old); 3635 if (error) 3636 goto out1; 3637 3638 error = security_sb_pivotroot(&old, &new); 3639 if (error) 3640 goto out2; 3641 3642 get_fs_root(current->fs, &root); 3643 old_mp = lock_mount(&old); 3644 error = PTR_ERR(old_mp); 3645 if (IS_ERR(old_mp)) 3646 goto out3; 3647 3648 error = -EINVAL; 3649 new_mnt = real_mount(new.mnt); 3650 root_mnt = real_mount(root.mnt); 3651 old_mnt = real_mount(old.mnt); 3652 ex_parent = new_mnt->mnt_parent; 3653 root_parent = root_mnt->mnt_parent; 3654 if (IS_MNT_SHARED(old_mnt) || 3655 IS_MNT_SHARED(ex_parent) || 3656 IS_MNT_SHARED(root_parent)) 3657 goto out4; 3658 if (!check_mnt(root_mnt) || !check_mnt(new_mnt)) 3659 goto out4; 3660 if (new_mnt->mnt.mnt_flags & MNT_LOCKED) 3661 goto out4; 3662 error = -ENOENT; 3663 if (d_unlinked(new.dentry)) 3664 goto out4; 3665 error = -EBUSY; 3666 if (new_mnt == root_mnt || old_mnt == root_mnt) 3667 goto out4; /* loop, on the same file system */ 3668 error = -EINVAL; 3669 if (root.mnt->mnt_root != root.dentry) 3670 goto out4; /* not a mountpoint */ 3671 if (!mnt_has_parent(root_mnt)) 3672 goto out4; /* not attached */ 3673 if (new.mnt->mnt_root != new.dentry) 3674 goto out4; /* not a mountpoint */ 3675 if (!mnt_has_parent(new_mnt)) 3676 goto out4; /* not attached */ 3677 /* make sure we can reach put_old from new_root */ 3678 if (!is_path_reachable(old_mnt, old.dentry, &new)) 3679 goto out4; 3680 /* make certain new is below the root */ 3681 if (!is_path_reachable(new_mnt, new.dentry, &root)) 3682 goto out4; 3683 lock_mount_hash(); 3684 umount_mnt(new_mnt); 3685 root_mp = unhash_mnt(root_mnt); /* we'll need its mountpoint */ 3686 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) { 3687 new_mnt->mnt.mnt_flags |= MNT_LOCKED; 3688 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED; 3689 } 3690 /* mount old root on put_old */ 3691 attach_mnt(root_mnt, old_mnt, old_mp); 3692 /* mount new_root on / */ 3693 attach_mnt(new_mnt, root_parent, root_mp); 3694 mnt_add_count(root_parent, -1); 3695 touch_mnt_namespace(current->nsproxy->mnt_ns); 3696 /* A moved mount should not expire automatically */ 3697 list_del_init(&new_mnt->mnt_expire); 3698 put_mountpoint(root_mp); 3699 unlock_mount_hash(); 3700 chroot_fs_refs(&root, &new); 3701 error = 0; 3702 out4: 3703 unlock_mount(old_mp); 3704 if (!error) 3705 mntput_no_expire(ex_parent); 3706 out3: 3707 path_put(&root); 3708 out2: 3709 path_put(&old); 3710 out1: 3711 path_put(&new); 3712 out0: 3713 return error; 3714 } 3715 3716 static void __init init_mount_tree(void) 3717 { 3718 struct vfsmount *mnt; 3719 struct mount *m; 3720 struct mnt_namespace *ns; 3721 struct path root; 3722 3723 mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL); 3724 if (IS_ERR(mnt)) 3725 panic("Can't create rootfs"); 3726 3727 ns = alloc_mnt_ns(&init_user_ns, false); 3728 if (IS_ERR(ns)) 3729 panic("Can't allocate initial namespace"); 3730 m = real_mount(mnt); 3731 m->mnt_ns = ns; 3732 ns->root = m; 3733 ns->mounts = 1; 3734 list_add(&m->mnt_list, &ns->list); 3735 init_task.nsproxy->mnt_ns = ns; 3736 get_mnt_ns(ns); 3737 3738 root.mnt = mnt; 3739 root.dentry = mnt->mnt_root; 3740 mnt->mnt_flags |= MNT_LOCKED; 3741 3742 set_fs_pwd(current->fs, &root); 3743 set_fs_root(current->fs, &root); 3744 } 3745 3746 void __init mnt_init(void) 3747 { 3748 int err; 3749 3750 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount), 3751 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 3752 3753 mount_hashtable = alloc_large_system_hash("Mount-cache", 3754 sizeof(struct hlist_head), 3755 mhash_entries, 19, 3756 HASH_ZERO, 3757 &m_hash_shift, &m_hash_mask, 0, 0); 3758 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache", 3759 sizeof(struct hlist_head), 3760 mphash_entries, 19, 3761 HASH_ZERO, 3762 &mp_hash_shift, &mp_hash_mask, 0, 0); 3763 3764 if (!mount_hashtable || !mountpoint_hashtable) 3765 panic("Failed to allocate mount hash table\n"); 3766 3767 kernfs_init(); 3768 3769 err = sysfs_init(); 3770 if (err) 3771 printk(KERN_WARNING "%s: sysfs_init error: %d\n", 3772 __func__, err); 3773 fs_kobj = kobject_create_and_add("fs", NULL); 3774 if (!fs_kobj) 3775 printk(KERN_WARNING "%s: kobj create error\n", __func__); 3776 shmem_init(); 3777 init_rootfs(); 3778 init_mount_tree(); 3779 } 3780 3781 void put_mnt_ns(struct mnt_namespace *ns) 3782 { 3783 if (!atomic_dec_and_test(&ns->count)) 3784 return; 3785 drop_collected_mounts(&ns->root->mnt); 3786 free_mnt_ns(ns); 3787 } 3788 3789 struct vfsmount *kern_mount(struct file_system_type *type) 3790 { 3791 struct vfsmount *mnt; 3792 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL); 3793 if (!IS_ERR(mnt)) { 3794 /* 3795 * it is a longterm mount, don't release mnt until 3796 * we unmount before file sys is unregistered 3797 */ 3798 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL; 3799 } 3800 return mnt; 3801 } 3802 EXPORT_SYMBOL_GPL(kern_mount); 3803 3804 void kern_unmount(struct vfsmount *mnt) 3805 { 3806 /* release long term mount so mount point can be released */ 3807 if (!IS_ERR_OR_NULL(mnt)) { 3808 real_mount(mnt)->mnt_ns = NULL; 3809 synchronize_rcu(); /* yecchhh... */ 3810 mntput(mnt); 3811 } 3812 } 3813 EXPORT_SYMBOL(kern_unmount); 3814 3815 bool our_mnt(struct vfsmount *mnt) 3816 { 3817 return check_mnt(real_mount(mnt)); 3818 } 3819 3820 bool current_chrooted(void) 3821 { 3822 /* Does the current process have a non-standard root */ 3823 struct path ns_root; 3824 struct path fs_root; 3825 bool chrooted; 3826 3827 /* Find the namespace root */ 3828 ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt; 3829 ns_root.dentry = ns_root.mnt->mnt_root; 3830 path_get(&ns_root); 3831 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root)) 3832 ; 3833 3834 get_fs_root(current->fs, &fs_root); 3835 3836 chrooted = !path_equal(&fs_root, &ns_root); 3837 3838 path_put(&fs_root); 3839 path_put(&ns_root); 3840 3841 return chrooted; 3842 } 3843 3844 static bool mnt_already_visible(struct mnt_namespace *ns, 3845 const struct super_block *sb, 3846 int *new_mnt_flags) 3847 { 3848 int new_flags = *new_mnt_flags; 3849 struct mount *mnt; 3850 bool visible = false; 3851 3852 down_read(&namespace_sem); 3853 list_for_each_entry(mnt, &ns->list, mnt_list) { 3854 struct mount *child; 3855 int mnt_flags; 3856 3857 if (mnt->mnt.mnt_sb->s_type != sb->s_type) 3858 continue; 3859 3860 /* This mount is not fully visible if it's root directory 3861 * is not the root directory of the filesystem. 3862 */ 3863 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root) 3864 continue; 3865 3866 /* A local view of the mount flags */ 3867 mnt_flags = mnt->mnt.mnt_flags; 3868 3869 /* Don't miss readonly hidden in the superblock flags */ 3870 if (sb_rdonly(mnt->mnt.mnt_sb)) 3871 mnt_flags |= MNT_LOCK_READONLY; 3872 3873 /* Verify the mount flags are equal to or more permissive 3874 * than the proposed new mount. 3875 */ 3876 if ((mnt_flags & MNT_LOCK_READONLY) && 3877 !(new_flags & MNT_READONLY)) 3878 continue; 3879 if ((mnt_flags & MNT_LOCK_ATIME) && 3880 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK))) 3881 continue; 3882 3883 /* This mount is not fully visible if there are any 3884 * locked child mounts that cover anything except for 3885 * empty directories. 3886 */ 3887 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 3888 struct inode *inode = child->mnt_mountpoint->d_inode; 3889 /* Only worry about locked mounts */ 3890 if (!(child->mnt.mnt_flags & MNT_LOCKED)) 3891 continue; 3892 /* Is the directory permanetly empty? */ 3893 if (!is_empty_dir_inode(inode)) 3894 goto next; 3895 } 3896 /* Preserve the locked attributes */ 3897 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \ 3898 MNT_LOCK_ATIME); 3899 visible = true; 3900 goto found; 3901 next: ; 3902 } 3903 found: 3904 up_read(&namespace_sem); 3905 return visible; 3906 } 3907 3908 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags) 3909 { 3910 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV; 3911 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 3912 unsigned long s_iflags; 3913 3914 if (ns->user_ns == &init_user_ns) 3915 return false; 3916 3917 /* Can this filesystem be too revealing? */ 3918 s_iflags = sb->s_iflags; 3919 if (!(s_iflags & SB_I_USERNS_VISIBLE)) 3920 return false; 3921 3922 if ((s_iflags & required_iflags) != required_iflags) { 3923 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n", 3924 required_iflags); 3925 return true; 3926 } 3927 3928 return !mnt_already_visible(ns, sb, new_mnt_flags); 3929 } 3930 3931 bool mnt_may_suid(struct vfsmount *mnt) 3932 { 3933 /* 3934 * Foreign mounts (accessed via fchdir or through /proc 3935 * symlinks) are always treated as if they are nosuid. This 3936 * prevents namespaces from trusting potentially unsafe 3937 * suid/sgid bits, file caps, or security labels that originate 3938 * in other namespaces. 3939 */ 3940 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) && 3941 current_in_userns(mnt->mnt_sb->s_user_ns); 3942 } 3943 3944 static struct ns_common *mntns_get(struct task_struct *task) 3945 { 3946 struct ns_common *ns = NULL; 3947 struct nsproxy *nsproxy; 3948 3949 task_lock(task); 3950 nsproxy = task->nsproxy; 3951 if (nsproxy) { 3952 ns = &nsproxy->mnt_ns->ns; 3953 get_mnt_ns(to_mnt_ns(ns)); 3954 } 3955 task_unlock(task); 3956 3957 return ns; 3958 } 3959 3960 static void mntns_put(struct ns_common *ns) 3961 { 3962 put_mnt_ns(to_mnt_ns(ns)); 3963 } 3964 3965 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns) 3966 { 3967 struct fs_struct *fs = current->fs; 3968 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns; 3969 struct path root; 3970 int err; 3971 3972 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) || 3973 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) || 3974 !ns_capable(current_user_ns(), CAP_SYS_ADMIN)) 3975 return -EPERM; 3976 3977 if (is_anon_ns(mnt_ns)) 3978 return -EINVAL; 3979 3980 if (fs->users != 1) 3981 return -EINVAL; 3982 3983 get_mnt_ns(mnt_ns); 3984 old_mnt_ns = nsproxy->mnt_ns; 3985 nsproxy->mnt_ns = mnt_ns; 3986 3987 /* Find the root */ 3988 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt, 3989 "/", LOOKUP_DOWN, &root); 3990 if (err) { 3991 /* revert to old namespace */ 3992 nsproxy->mnt_ns = old_mnt_ns; 3993 put_mnt_ns(mnt_ns); 3994 return err; 3995 } 3996 3997 put_mnt_ns(old_mnt_ns); 3998 3999 /* Update the pwd and root */ 4000 set_fs_pwd(fs, &root); 4001 set_fs_root(fs, &root); 4002 4003 path_put(&root); 4004 return 0; 4005 } 4006 4007 static struct user_namespace *mntns_owner(struct ns_common *ns) 4008 { 4009 return to_mnt_ns(ns)->user_ns; 4010 } 4011 4012 const struct proc_ns_operations mntns_operations = { 4013 .name = "mnt", 4014 .type = CLONE_NEWNS, 4015 .get = mntns_get, 4016 .put = mntns_put, 4017 .install = mntns_install, 4018 .owner = mntns_owner, 4019 }; 4020