1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/namespace.c 4 * 5 * (C) Copyright Al Viro 2000, 2001 6 * 7 * Based on code from fs/super.c, copyright Linus Torvalds and others. 8 * Heavily rewritten. 9 */ 10 11 #include <linux/syscalls.h> 12 #include <linux/export.h> 13 #include <linux/capability.h> 14 #include <linux/mnt_namespace.h> 15 #include <linux/user_namespace.h> 16 #include <linux/namei.h> 17 #include <linux/security.h> 18 #include <linux/cred.h> 19 #include <linux/idr.h> 20 #include <linux/init.h> /* init_rootfs */ 21 #include <linux/fs_struct.h> /* get_fs_root et.al. */ 22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */ 23 #include <linux/file.h> 24 #include <linux/uaccess.h> 25 #include <linux/proc_ns.h> 26 #include <linux/magic.h> 27 #include <linux/memblock.h> 28 #include <linux/task_work.h> 29 #include <linux/sched/task.h> 30 #include <uapi/linux/mount.h> 31 #include <linux/fs_context.h> 32 #include <linux/shmem_fs.h> 33 34 #include "pnode.h" 35 #include "internal.h" 36 37 /* Maximum number of mounts in a mount namespace */ 38 unsigned int sysctl_mount_max __read_mostly = 100000; 39 40 static unsigned int m_hash_mask __read_mostly; 41 static unsigned int m_hash_shift __read_mostly; 42 static unsigned int mp_hash_mask __read_mostly; 43 static unsigned int mp_hash_shift __read_mostly; 44 45 static __initdata unsigned long mhash_entries; 46 static int __init set_mhash_entries(char *str) 47 { 48 if (!str) 49 return 0; 50 mhash_entries = simple_strtoul(str, &str, 0); 51 return 1; 52 } 53 __setup("mhash_entries=", set_mhash_entries); 54 55 static __initdata unsigned long mphash_entries; 56 static int __init set_mphash_entries(char *str) 57 { 58 if (!str) 59 return 0; 60 mphash_entries = simple_strtoul(str, &str, 0); 61 return 1; 62 } 63 __setup("mphash_entries=", set_mphash_entries); 64 65 static u64 event; 66 static DEFINE_IDA(mnt_id_ida); 67 static DEFINE_IDA(mnt_group_ida); 68 69 static struct hlist_head *mount_hashtable __read_mostly; 70 static struct hlist_head *mountpoint_hashtable __read_mostly; 71 static struct kmem_cache *mnt_cache __read_mostly; 72 static DECLARE_RWSEM(namespace_sem); 73 static HLIST_HEAD(unmounted); /* protected by namespace_sem */ 74 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */ 75 76 /* /sys/fs */ 77 struct kobject *fs_kobj; 78 EXPORT_SYMBOL_GPL(fs_kobj); 79 80 /* 81 * vfsmount lock may be taken for read to prevent changes to the 82 * vfsmount hash, ie. during mountpoint lookups or walking back 83 * up the tree. 84 * 85 * It should be taken for write in all cases where the vfsmount 86 * tree or hash is modified or when a vfsmount structure is modified. 87 */ 88 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock); 89 90 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry) 91 { 92 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); 93 tmp += ((unsigned long)dentry / L1_CACHE_BYTES); 94 tmp = tmp + (tmp >> m_hash_shift); 95 return &mount_hashtable[tmp & m_hash_mask]; 96 } 97 98 static inline struct hlist_head *mp_hash(struct dentry *dentry) 99 { 100 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES); 101 tmp = tmp + (tmp >> mp_hash_shift); 102 return &mountpoint_hashtable[tmp & mp_hash_mask]; 103 } 104 105 static int mnt_alloc_id(struct mount *mnt) 106 { 107 int res = ida_alloc(&mnt_id_ida, GFP_KERNEL); 108 109 if (res < 0) 110 return res; 111 mnt->mnt_id = res; 112 return 0; 113 } 114 115 static void mnt_free_id(struct mount *mnt) 116 { 117 ida_free(&mnt_id_ida, mnt->mnt_id); 118 } 119 120 /* 121 * Allocate a new peer group ID 122 */ 123 static int mnt_alloc_group_id(struct mount *mnt) 124 { 125 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL); 126 127 if (res < 0) 128 return res; 129 mnt->mnt_group_id = res; 130 return 0; 131 } 132 133 /* 134 * Release a peer group ID 135 */ 136 void mnt_release_group_id(struct mount *mnt) 137 { 138 ida_free(&mnt_group_ida, mnt->mnt_group_id); 139 mnt->mnt_group_id = 0; 140 } 141 142 /* 143 * vfsmount lock must be held for read 144 */ 145 static inline void mnt_add_count(struct mount *mnt, int n) 146 { 147 #ifdef CONFIG_SMP 148 this_cpu_add(mnt->mnt_pcp->mnt_count, n); 149 #else 150 preempt_disable(); 151 mnt->mnt_count += n; 152 preempt_enable(); 153 #endif 154 } 155 156 /* 157 * vfsmount lock must be held for write 158 */ 159 unsigned int mnt_get_count(struct mount *mnt) 160 { 161 #ifdef CONFIG_SMP 162 unsigned int count = 0; 163 int cpu; 164 165 for_each_possible_cpu(cpu) { 166 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count; 167 } 168 169 return count; 170 #else 171 return mnt->mnt_count; 172 #endif 173 } 174 175 static struct mount *alloc_vfsmnt(const char *name) 176 { 177 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); 178 if (mnt) { 179 int err; 180 181 err = mnt_alloc_id(mnt); 182 if (err) 183 goto out_free_cache; 184 185 if (name) { 186 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL); 187 if (!mnt->mnt_devname) 188 goto out_free_id; 189 } 190 191 #ifdef CONFIG_SMP 192 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp); 193 if (!mnt->mnt_pcp) 194 goto out_free_devname; 195 196 this_cpu_add(mnt->mnt_pcp->mnt_count, 1); 197 #else 198 mnt->mnt_count = 1; 199 mnt->mnt_writers = 0; 200 #endif 201 202 INIT_HLIST_NODE(&mnt->mnt_hash); 203 INIT_LIST_HEAD(&mnt->mnt_child); 204 INIT_LIST_HEAD(&mnt->mnt_mounts); 205 INIT_LIST_HEAD(&mnt->mnt_list); 206 INIT_LIST_HEAD(&mnt->mnt_expire); 207 INIT_LIST_HEAD(&mnt->mnt_share); 208 INIT_LIST_HEAD(&mnt->mnt_slave_list); 209 INIT_LIST_HEAD(&mnt->mnt_slave); 210 INIT_HLIST_NODE(&mnt->mnt_mp_list); 211 INIT_LIST_HEAD(&mnt->mnt_umounting); 212 INIT_HLIST_HEAD(&mnt->mnt_stuck_children); 213 } 214 return mnt; 215 216 #ifdef CONFIG_SMP 217 out_free_devname: 218 kfree_const(mnt->mnt_devname); 219 #endif 220 out_free_id: 221 mnt_free_id(mnt); 222 out_free_cache: 223 kmem_cache_free(mnt_cache, mnt); 224 return NULL; 225 } 226 227 /* 228 * Most r/o checks on a fs are for operations that take 229 * discrete amounts of time, like a write() or unlink(). 230 * We must keep track of when those operations start 231 * (for permission checks) and when they end, so that 232 * we can determine when writes are able to occur to 233 * a filesystem. 234 */ 235 /* 236 * __mnt_is_readonly: check whether a mount is read-only 237 * @mnt: the mount to check for its write status 238 * 239 * This shouldn't be used directly ouside of the VFS. 240 * It does not guarantee that the filesystem will stay 241 * r/w, just that it is right *now*. This can not and 242 * should not be used in place of IS_RDONLY(inode). 243 * mnt_want/drop_write() will _keep_ the filesystem 244 * r/w. 245 */ 246 bool __mnt_is_readonly(struct vfsmount *mnt) 247 { 248 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb); 249 } 250 EXPORT_SYMBOL_GPL(__mnt_is_readonly); 251 252 static inline void mnt_inc_writers(struct mount *mnt) 253 { 254 #ifdef CONFIG_SMP 255 this_cpu_inc(mnt->mnt_pcp->mnt_writers); 256 #else 257 mnt->mnt_writers++; 258 #endif 259 } 260 261 static inline void mnt_dec_writers(struct mount *mnt) 262 { 263 #ifdef CONFIG_SMP 264 this_cpu_dec(mnt->mnt_pcp->mnt_writers); 265 #else 266 mnt->mnt_writers--; 267 #endif 268 } 269 270 static unsigned int mnt_get_writers(struct mount *mnt) 271 { 272 #ifdef CONFIG_SMP 273 unsigned int count = 0; 274 int cpu; 275 276 for_each_possible_cpu(cpu) { 277 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers; 278 } 279 280 return count; 281 #else 282 return mnt->mnt_writers; 283 #endif 284 } 285 286 static int mnt_is_readonly(struct vfsmount *mnt) 287 { 288 if (mnt->mnt_sb->s_readonly_remount) 289 return 1; 290 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */ 291 smp_rmb(); 292 return __mnt_is_readonly(mnt); 293 } 294 295 /* 296 * Most r/o & frozen checks on a fs are for operations that take discrete 297 * amounts of time, like a write() or unlink(). We must keep track of when 298 * those operations start (for permission checks) and when they end, so that we 299 * can determine when writes are able to occur to a filesystem. 300 */ 301 /** 302 * __mnt_want_write - get write access to a mount without freeze protection 303 * @m: the mount on which to take a write 304 * 305 * This tells the low-level filesystem that a write is about to be performed to 306 * it, and makes sure that writes are allowed (mnt it read-write) before 307 * returning success. This operation does not protect against filesystem being 308 * frozen. When the write operation is finished, __mnt_drop_write() must be 309 * called. This is effectively a refcount. 310 */ 311 int __mnt_want_write(struct vfsmount *m) 312 { 313 struct mount *mnt = real_mount(m); 314 int ret = 0; 315 316 preempt_disable(); 317 mnt_inc_writers(mnt); 318 /* 319 * The store to mnt_inc_writers must be visible before we pass 320 * MNT_WRITE_HOLD loop below, so that the slowpath can see our 321 * incremented count after it has set MNT_WRITE_HOLD. 322 */ 323 smp_mb(); 324 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) 325 cpu_relax(); 326 /* 327 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will 328 * be set to match its requirements. So we must not load that until 329 * MNT_WRITE_HOLD is cleared. 330 */ 331 smp_rmb(); 332 if (mnt_is_readonly(m)) { 333 mnt_dec_writers(mnt); 334 ret = -EROFS; 335 } 336 preempt_enable(); 337 338 return ret; 339 } 340 341 /** 342 * mnt_want_write - get write access to a mount 343 * @m: the mount on which to take a write 344 * 345 * This tells the low-level filesystem that a write is about to be performed to 346 * it, and makes sure that writes are allowed (mount is read-write, filesystem 347 * is not frozen) before returning success. When the write operation is 348 * finished, mnt_drop_write() must be called. This is effectively a refcount. 349 */ 350 int mnt_want_write(struct vfsmount *m) 351 { 352 int ret; 353 354 sb_start_write(m->mnt_sb); 355 ret = __mnt_want_write(m); 356 if (ret) 357 sb_end_write(m->mnt_sb); 358 return ret; 359 } 360 EXPORT_SYMBOL_GPL(mnt_want_write); 361 362 /** 363 * mnt_clone_write - get write access to a mount 364 * @mnt: the mount on which to take a write 365 * 366 * This is effectively like mnt_want_write, except 367 * it must only be used to take an extra write reference 368 * on a mountpoint that we already know has a write reference 369 * on it. This allows some optimisation. 370 * 371 * After finished, mnt_drop_write must be called as usual to 372 * drop the reference. 373 */ 374 int mnt_clone_write(struct vfsmount *mnt) 375 { 376 /* superblock may be r/o */ 377 if (__mnt_is_readonly(mnt)) 378 return -EROFS; 379 preempt_disable(); 380 mnt_inc_writers(real_mount(mnt)); 381 preempt_enable(); 382 return 0; 383 } 384 EXPORT_SYMBOL_GPL(mnt_clone_write); 385 386 /** 387 * __mnt_want_write_file - get write access to a file's mount 388 * @file: the file who's mount on which to take a write 389 * 390 * This is like __mnt_want_write, but it takes a file and can 391 * do some optimisations if the file is open for write already 392 */ 393 int __mnt_want_write_file(struct file *file) 394 { 395 if (!(file->f_mode & FMODE_WRITER)) 396 return __mnt_want_write(file->f_path.mnt); 397 else 398 return mnt_clone_write(file->f_path.mnt); 399 } 400 401 /** 402 * mnt_want_write_file - get write access to a file's mount 403 * @file: the file who's mount on which to take a write 404 * 405 * This is like mnt_want_write, but it takes a file and can 406 * do some optimisations if the file is open for write already 407 */ 408 int mnt_want_write_file(struct file *file) 409 { 410 int ret; 411 412 sb_start_write(file_inode(file)->i_sb); 413 ret = __mnt_want_write_file(file); 414 if (ret) 415 sb_end_write(file_inode(file)->i_sb); 416 return ret; 417 } 418 EXPORT_SYMBOL_GPL(mnt_want_write_file); 419 420 /** 421 * __mnt_drop_write - give up write access to a mount 422 * @mnt: the mount on which to give up write access 423 * 424 * Tells the low-level filesystem that we are done 425 * performing writes to it. Must be matched with 426 * __mnt_want_write() call above. 427 */ 428 void __mnt_drop_write(struct vfsmount *mnt) 429 { 430 preempt_disable(); 431 mnt_dec_writers(real_mount(mnt)); 432 preempt_enable(); 433 } 434 435 /** 436 * mnt_drop_write - give up write access to a mount 437 * @mnt: the mount on which to give up write access 438 * 439 * Tells the low-level filesystem that we are done performing writes to it and 440 * also allows filesystem to be frozen again. Must be matched with 441 * mnt_want_write() call above. 442 */ 443 void mnt_drop_write(struct vfsmount *mnt) 444 { 445 __mnt_drop_write(mnt); 446 sb_end_write(mnt->mnt_sb); 447 } 448 EXPORT_SYMBOL_GPL(mnt_drop_write); 449 450 void __mnt_drop_write_file(struct file *file) 451 { 452 __mnt_drop_write(file->f_path.mnt); 453 } 454 455 void mnt_drop_write_file(struct file *file) 456 { 457 __mnt_drop_write_file(file); 458 sb_end_write(file_inode(file)->i_sb); 459 } 460 EXPORT_SYMBOL(mnt_drop_write_file); 461 462 static int mnt_make_readonly(struct mount *mnt) 463 { 464 int ret = 0; 465 466 lock_mount_hash(); 467 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 468 /* 469 * After storing MNT_WRITE_HOLD, we'll read the counters. This store 470 * should be visible before we do. 471 */ 472 smp_mb(); 473 474 /* 475 * With writers on hold, if this value is zero, then there are 476 * definitely no active writers (although held writers may subsequently 477 * increment the count, they'll have to wait, and decrement it after 478 * seeing MNT_READONLY). 479 * 480 * It is OK to have counter incremented on one CPU and decremented on 481 * another: the sum will add up correctly. The danger would be when we 482 * sum up each counter, if we read a counter before it is incremented, 483 * but then read another CPU's count which it has been subsequently 484 * decremented from -- we would see more decrements than we should. 485 * MNT_WRITE_HOLD protects against this scenario, because 486 * mnt_want_write first increments count, then smp_mb, then spins on 487 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while 488 * we're counting up here. 489 */ 490 if (mnt_get_writers(mnt) > 0) 491 ret = -EBUSY; 492 else 493 mnt->mnt.mnt_flags |= MNT_READONLY; 494 /* 495 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers 496 * that become unheld will see MNT_READONLY. 497 */ 498 smp_wmb(); 499 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 500 unlock_mount_hash(); 501 return ret; 502 } 503 504 static int __mnt_unmake_readonly(struct mount *mnt) 505 { 506 lock_mount_hash(); 507 mnt->mnt.mnt_flags &= ~MNT_READONLY; 508 unlock_mount_hash(); 509 return 0; 510 } 511 512 int sb_prepare_remount_readonly(struct super_block *sb) 513 { 514 struct mount *mnt; 515 int err = 0; 516 517 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */ 518 if (atomic_long_read(&sb->s_remove_count)) 519 return -EBUSY; 520 521 lock_mount_hash(); 522 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 523 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) { 524 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 525 smp_mb(); 526 if (mnt_get_writers(mnt) > 0) { 527 err = -EBUSY; 528 break; 529 } 530 } 531 } 532 if (!err && atomic_long_read(&sb->s_remove_count)) 533 err = -EBUSY; 534 535 if (!err) { 536 sb->s_readonly_remount = 1; 537 smp_wmb(); 538 } 539 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 540 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD) 541 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 542 } 543 unlock_mount_hash(); 544 545 return err; 546 } 547 548 static void free_vfsmnt(struct mount *mnt) 549 { 550 kfree_const(mnt->mnt_devname); 551 #ifdef CONFIG_SMP 552 free_percpu(mnt->mnt_pcp); 553 #endif 554 kmem_cache_free(mnt_cache, mnt); 555 } 556 557 static void delayed_free_vfsmnt(struct rcu_head *head) 558 { 559 free_vfsmnt(container_of(head, struct mount, mnt_rcu)); 560 } 561 562 /* call under rcu_read_lock */ 563 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq) 564 { 565 struct mount *mnt; 566 if (read_seqretry(&mount_lock, seq)) 567 return 1; 568 if (bastard == NULL) 569 return 0; 570 mnt = real_mount(bastard); 571 mnt_add_count(mnt, 1); 572 smp_mb(); // see mntput_no_expire() 573 if (likely(!read_seqretry(&mount_lock, seq))) 574 return 0; 575 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) { 576 mnt_add_count(mnt, -1); 577 return 1; 578 } 579 lock_mount_hash(); 580 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) { 581 mnt_add_count(mnt, -1); 582 unlock_mount_hash(); 583 return 1; 584 } 585 unlock_mount_hash(); 586 /* caller will mntput() */ 587 return -1; 588 } 589 590 /* call under rcu_read_lock */ 591 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq) 592 { 593 int res = __legitimize_mnt(bastard, seq); 594 if (likely(!res)) 595 return true; 596 if (unlikely(res < 0)) { 597 rcu_read_unlock(); 598 mntput(bastard); 599 rcu_read_lock(); 600 } 601 return false; 602 } 603 604 /* 605 * find the first mount at @dentry on vfsmount @mnt. 606 * call under rcu_read_lock() 607 */ 608 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry) 609 { 610 struct hlist_head *head = m_hash(mnt, dentry); 611 struct mount *p; 612 613 hlist_for_each_entry_rcu(p, head, mnt_hash) 614 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) 615 return p; 616 return NULL; 617 } 618 619 /* 620 * lookup_mnt - Return the first child mount mounted at path 621 * 622 * "First" means first mounted chronologically. If you create the 623 * following mounts: 624 * 625 * mount /dev/sda1 /mnt 626 * mount /dev/sda2 /mnt 627 * mount /dev/sda3 /mnt 628 * 629 * Then lookup_mnt() on the base /mnt dentry in the root mount will 630 * return successively the root dentry and vfsmount of /dev/sda1, then 631 * /dev/sda2, then /dev/sda3, then NULL. 632 * 633 * lookup_mnt takes a reference to the found vfsmount. 634 */ 635 struct vfsmount *lookup_mnt(const struct path *path) 636 { 637 struct mount *child_mnt; 638 struct vfsmount *m; 639 unsigned seq; 640 641 rcu_read_lock(); 642 do { 643 seq = read_seqbegin(&mount_lock); 644 child_mnt = __lookup_mnt(path->mnt, path->dentry); 645 m = child_mnt ? &child_mnt->mnt : NULL; 646 } while (!legitimize_mnt(m, seq)); 647 rcu_read_unlock(); 648 return m; 649 } 650 651 static inline void lock_ns_list(struct mnt_namespace *ns) 652 { 653 spin_lock(&ns->ns_lock); 654 } 655 656 static inline void unlock_ns_list(struct mnt_namespace *ns) 657 { 658 spin_unlock(&ns->ns_lock); 659 } 660 661 static inline bool mnt_is_cursor(struct mount *mnt) 662 { 663 return mnt->mnt.mnt_flags & MNT_CURSOR; 664 } 665 666 /* 667 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the 668 * current mount namespace. 669 * 670 * The common case is dentries are not mountpoints at all and that 671 * test is handled inline. For the slow case when we are actually 672 * dealing with a mountpoint of some kind, walk through all of the 673 * mounts in the current mount namespace and test to see if the dentry 674 * is a mountpoint. 675 * 676 * The mount_hashtable is not usable in the context because we 677 * need to identify all mounts that may be in the current mount 678 * namespace not just a mount that happens to have some specified 679 * parent mount. 680 */ 681 bool __is_local_mountpoint(struct dentry *dentry) 682 { 683 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 684 struct mount *mnt; 685 bool is_covered = false; 686 687 down_read(&namespace_sem); 688 lock_ns_list(ns); 689 list_for_each_entry(mnt, &ns->list, mnt_list) { 690 if (mnt_is_cursor(mnt)) 691 continue; 692 is_covered = (mnt->mnt_mountpoint == dentry); 693 if (is_covered) 694 break; 695 } 696 unlock_ns_list(ns); 697 up_read(&namespace_sem); 698 699 return is_covered; 700 } 701 702 static struct mountpoint *lookup_mountpoint(struct dentry *dentry) 703 { 704 struct hlist_head *chain = mp_hash(dentry); 705 struct mountpoint *mp; 706 707 hlist_for_each_entry(mp, chain, m_hash) { 708 if (mp->m_dentry == dentry) { 709 mp->m_count++; 710 return mp; 711 } 712 } 713 return NULL; 714 } 715 716 static struct mountpoint *get_mountpoint(struct dentry *dentry) 717 { 718 struct mountpoint *mp, *new = NULL; 719 int ret; 720 721 if (d_mountpoint(dentry)) { 722 /* might be worth a WARN_ON() */ 723 if (d_unlinked(dentry)) 724 return ERR_PTR(-ENOENT); 725 mountpoint: 726 read_seqlock_excl(&mount_lock); 727 mp = lookup_mountpoint(dentry); 728 read_sequnlock_excl(&mount_lock); 729 if (mp) 730 goto done; 731 } 732 733 if (!new) 734 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL); 735 if (!new) 736 return ERR_PTR(-ENOMEM); 737 738 739 /* Exactly one processes may set d_mounted */ 740 ret = d_set_mounted(dentry); 741 742 /* Someone else set d_mounted? */ 743 if (ret == -EBUSY) 744 goto mountpoint; 745 746 /* The dentry is not available as a mountpoint? */ 747 mp = ERR_PTR(ret); 748 if (ret) 749 goto done; 750 751 /* Add the new mountpoint to the hash table */ 752 read_seqlock_excl(&mount_lock); 753 new->m_dentry = dget(dentry); 754 new->m_count = 1; 755 hlist_add_head(&new->m_hash, mp_hash(dentry)); 756 INIT_HLIST_HEAD(&new->m_list); 757 read_sequnlock_excl(&mount_lock); 758 759 mp = new; 760 new = NULL; 761 done: 762 kfree(new); 763 return mp; 764 } 765 766 /* 767 * vfsmount lock must be held. Additionally, the caller is responsible 768 * for serializing calls for given disposal list. 769 */ 770 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list) 771 { 772 if (!--mp->m_count) { 773 struct dentry *dentry = mp->m_dentry; 774 BUG_ON(!hlist_empty(&mp->m_list)); 775 spin_lock(&dentry->d_lock); 776 dentry->d_flags &= ~DCACHE_MOUNTED; 777 spin_unlock(&dentry->d_lock); 778 dput_to_list(dentry, list); 779 hlist_del(&mp->m_hash); 780 kfree(mp); 781 } 782 } 783 784 /* called with namespace_lock and vfsmount lock */ 785 static void put_mountpoint(struct mountpoint *mp) 786 { 787 __put_mountpoint(mp, &ex_mountpoints); 788 } 789 790 static inline int check_mnt(struct mount *mnt) 791 { 792 return mnt->mnt_ns == current->nsproxy->mnt_ns; 793 } 794 795 /* 796 * vfsmount lock must be held for write 797 */ 798 static void touch_mnt_namespace(struct mnt_namespace *ns) 799 { 800 if (ns) { 801 ns->event = ++event; 802 wake_up_interruptible(&ns->poll); 803 } 804 } 805 806 /* 807 * vfsmount lock must be held for write 808 */ 809 static void __touch_mnt_namespace(struct mnt_namespace *ns) 810 { 811 if (ns && ns->event != event) { 812 ns->event = event; 813 wake_up_interruptible(&ns->poll); 814 } 815 } 816 817 /* 818 * vfsmount lock must be held for write 819 */ 820 static struct mountpoint *unhash_mnt(struct mount *mnt) 821 { 822 struct mountpoint *mp; 823 mnt->mnt_parent = mnt; 824 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 825 list_del_init(&mnt->mnt_child); 826 hlist_del_init_rcu(&mnt->mnt_hash); 827 hlist_del_init(&mnt->mnt_mp_list); 828 mp = mnt->mnt_mp; 829 mnt->mnt_mp = NULL; 830 return mp; 831 } 832 833 /* 834 * vfsmount lock must be held for write 835 */ 836 static void umount_mnt(struct mount *mnt) 837 { 838 put_mountpoint(unhash_mnt(mnt)); 839 } 840 841 /* 842 * vfsmount lock must be held for write 843 */ 844 void mnt_set_mountpoint(struct mount *mnt, 845 struct mountpoint *mp, 846 struct mount *child_mnt) 847 { 848 mp->m_count++; 849 mnt_add_count(mnt, 1); /* essentially, that's mntget */ 850 child_mnt->mnt_mountpoint = mp->m_dentry; 851 child_mnt->mnt_parent = mnt; 852 child_mnt->mnt_mp = mp; 853 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list); 854 } 855 856 static void __attach_mnt(struct mount *mnt, struct mount *parent) 857 { 858 hlist_add_head_rcu(&mnt->mnt_hash, 859 m_hash(&parent->mnt, mnt->mnt_mountpoint)); 860 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 861 } 862 863 /* 864 * vfsmount lock must be held for write 865 */ 866 static void attach_mnt(struct mount *mnt, 867 struct mount *parent, 868 struct mountpoint *mp) 869 { 870 mnt_set_mountpoint(parent, mp, mnt); 871 __attach_mnt(mnt, parent); 872 } 873 874 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt) 875 { 876 struct mountpoint *old_mp = mnt->mnt_mp; 877 struct mount *old_parent = mnt->mnt_parent; 878 879 list_del_init(&mnt->mnt_child); 880 hlist_del_init(&mnt->mnt_mp_list); 881 hlist_del_init_rcu(&mnt->mnt_hash); 882 883 attach_mnt(mnt, parent, mp); 884 885 put_mountpoint(old_mp); 886 mnt_add_count(old_parent, -1); 887 } 888 889 /* 890 * vfsmount lock must be held for write 891 */ 892 static void commit_tree(struct mount *mnt) 893 { 894 struct mount *parent = mnt->mnt_parent; 895 struct mount *m; 896 LIST_HEAD(head); 897 struct mnt_namespace *n = parent->mnt_ns; 898 899 BUG_ON(parent == mnt); 900 901 list_add_tail(&head, &mnt->mnt_list); 902 list_for_each_entry(m, &head, mnt_list) 903 m->mnt_ns = n; 904 905 list_splice(&head, n->list.prev); 906 907 n->mounts += n->pending_mounts; 908 n->pending_mounts = 0; 909 910 __attach_mnt(mnt, parent); 911 touch_mnt_namespace(n); 912 } 913 914 static struct mount *next_mnt(struct mount *p, struct mount *root) 915 { 916 struct list_head *next = p->mnt_mounts.next; 917 if (next == &p->mnt_mounts) { 918 while (1) { 919 if (p == root) 920 return NULL; 921 next = p->mnt_child.next; 922 if (next != &p->mnt_parent->mnt_mounts) 923 break; 924 p = p->mnt_parent; 925 } 926 } 927 return list_entry(next, struct mount, mnt_child); 928 } 929 930 static struct mount *skip_mnt_tree(struct mount *p) 931 { 932 struct list_head *prev = p->mnt_mounts.prev; 933 while (prev != &p->mnt_mounts) { 934 p = list_entry(prev, struct mount, mnt_child); 935 prev = p->mnt_mounts.prev; 936 } 937 return p; 938 } 939 940 /** 941 * vfs_create_mount - Create a mount for a configured superblock 942 * @fc: The configuration context with the superblock attached 943 * 944 * Create a mount to an already configured superblock. If necessary, the 945 * caller should invoke vfs_get_tree() before calling this. 946 * 947 * Note that this does not attach the mount to anything. 948 */ 949 struct vfsmount *vfs_create_mount(struct fs_context *fc) 950 { 951 struct mount *mnt; 952 953 if (!fc->root) 954 return ERR_PTR(-EINVAL); 955 956 mnt = alloc_vfsmnt(fc->source ?: "none"); 957 if (!mnt) 958 return ERR_PTR(-ENOMEM); 959 960 if (fc->sb_flags & SB_KERNMOUNT) 961 mnt->mnt.mnt_flags = MNT_INTERNAL; 962 963 atomic_inc(&fc->root->d_sb->s_active); 964 mnt->mnt.mnt_sb = fc->root->d_sb; 965 mnt->mnt.mnt_root = dget(fc->root); 966 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 967 mnt->mnt_parent = mnt; 968 969 lock_mount_hash(); 970 list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts); 971 unlock_mount_hash(); 972 return &mnt->mnt; 973 } 974 EXPORT_SYMBOL(vfs_create_mount); 975 976 struct vfsmount *fc_mount(struct fs_context *fc) 977 { 978 int err = vfs_get_tree(fc); 979 if (!err) { 980 up_write(&fc->root->d_sb->s_umount); 981 return vfs_create_mount(fc); 982 } 983 return ERR_PTR(err); 984 } 985 EXPORT_SYMBOL(fc_mount); 986 987 struct vfsmount *vfs_kern_mount(struct file_system_type *type, 988 int flags, const char *name, 989 void *data) 990 { 991 struct fs_context *fc; 992 struct vfsmount *mnt; 993 int ret = 0; 994 995 if (!type) 996 return ERR_PTR(-EINVAL); 997 998 fc = fs_context_for_mount(type, flags); 999 if (IS_ERR(fc)) 1000 return ERR_CAST(fc); 1001 1002 if (name) 1003 ret = vfs_parse_fs_string(fc, "source", 1004 name, strlen(name)); 1005 if (!ret) 1006 ret = parse_monolithic_mount_data(fc, data); 1007 if (!ret) 1008 mnt = fc_mount(fc); 1009 else 1010 mnt = ERR_PTR(ret); 1011 1012 put_fs_context(fc); 1013 return mnt; 1014 } 1015 EXPORT_SYMBOL_GPL(vfs_kern_mount); 1016 1017 struct vfsmount * 1018 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type, 1019 const char *name, void *data) 1020 { 1021 /* Until it is worked out how to pass the user namespace 1022 * through from the parent mount to the submount don't support 1023 * unprivileged mounts with submounts. 1024 */ 1025 if (mountpoint->d_sb->s_user_ns != &init_user_ns) 1026 return ERR_PTR(-EPERM); 1027 1028 return vfs_kern_mount(type, SB_SUBMOUNT, name, data); 1029 } 1030 EXPORT_SYMBOL_GPL(vfs_submount); 1031 1032 static struct mount *clone_mnt(struct mount *old, struct dentry *root, 1033 int flag) 1034 { 1035 struct super_block *sb = old->mnt.mnt_sb; 1036 struct mount *mnt; 1037 int err; 1038 1039 mnt = alloc_vfsmnt(old->mnt_devname); 1040 if (!mnt) 1041 return ERR_PTR(-ENOMEM); 1042 1043 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE)) 1044 mnt->mnt_group_id = 0; /* not a peer of original */ 1045 else 1046 mnt->mnt_group_id = old->mnt_group_id; 1047 1048 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) { 1049 err = mnt_alloc_group_id(mnt); 1050 if (err) 1051 goto out_free; 1052 } 1053 1054 mnt->mnt.mnt_flags = old->mnt.mnt_flags; 1055 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL); 1056 1057 atomic_inc(&sb->s_active); 1058 mnt->mnt.mnt_sb = sb; 1059 mnt->mnt.mnt_root = dget(root); 1060 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 1061 mnt->mnt_parent = mnt; 1062 lock_mount_hash(); 1063 list_add_tail(&mnt->mnt_instance, &sb->s_mounts); 1064 unlock_mount_hash(); 1065 1066 if ((flag & CL_SLAVE) || 1067 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) { 1068 list_add(&mnt->mnt_slave, &old->mnt_slave_list); 1069 mnt->mnt_master = old; 1070 CLEAR_MNT_SHARED(mnt); 1071 } else if (!(flag & CL_PRIVATE)) { 1072 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old)) 1073 list_add(&mnt->mnt_share, &old->mnt_share); 1074 if (IS_MNT_SLAVE(old)) 1075 list_add(&mnt->mnt_slave, &old->mnt_slave); 1076 mnt->mnt_master = old->mnt_master; 1077 } else { 1078 CLEAR_MNT_SHARED(mnt); 1079 } 1080 if (flag & CL_MAKE_SHARED) 1081 set_mnt_shared(mnt); 1082 1083 /* stick the duplicate mount on the same expiry list 1084 * as the original if that was on one */ 1085 if (flag & CL_EXPIRE) { 1086 if (!list_empty(&old->mnt_expire)) 1087 list_add(&mnt->mnt_expire, &old->mnt_expire); 1088 } 1089 1090 return mnt; 1091 1092 out_free: 1093 mnt_free_id(mnt); 1094 free_vfsmnt(mnt); 1095 return ERR_PTR(err); 1096 } 1097 1098 static void cleanup_mnt(struct mount *mnt) 1099 { 1100 struct hlist_node *p; 1101 struct mount *m; 1102 /* 1103 * The warning here probably indicates that somebody messed 1104 * up a mnt_want/drop_write() pair. If this happens, the 1105 * filesystem was probably unable to make r/w->r/o transitions. 1106 * The locking used to deal with mnt_count decrement provides barriers, 1107 * so mnt_get_writers() below is safe. 1108 */ 1109 WARN_ON(mnt_get_writers(mnt)); 1110 if (unlikely(mnt->mnt_pins.first)) 1111 mnt_pin_kill(mnt); 1112 hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) { 1113 hlist_del(&m->mnt_umount); 1114 mntput(&m->mnt); 1115 } 1116 fsnotify_vfsmount_delete(&mnt->mnt); 1117 dput(mnt->mnt.mnt_root); 1118 deactivate_super(mnt->mnt.mnt_sb); 1119 mnt_free_id(mnt); 1120 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt); 1121 } 1122 1123 static void __cleanup_mnt(struct rcu_head *head) 1124 { 1125 cleanup_mnt(container_of(head, struct mount, mnt_rcu)); 1126 } 1127 1128 static LLIST_HEAD(delayed_mntput_list); 1129 static void delayed_mntput(struct work_struct *unused) 1130 { 1131 struct llist_node *node = llist_del_all(&delayed_mntput_list); 1132 struct mount *m, *t; 1133 1134 llist_for_each_entry_safe(m, t, node, mnt_llist) 1135 cleanup_mnt(m); 1136 } 1137 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput); 1138 1139 static void mntput_no_expire(struct mount *mnt) 1140 { 1141 LIST_HEAD(list); 1142 1143 rcu_read_lock(); 1144 if (likely(READ_ONCE(mnt->mnt_ns))) { 1145 /* 1146 * Since we don't do lock_mount_hash() here, 1147 * ->mnt_ns can change under us. However, if it's 1148 * non-NULL, then there's a reference that won't 1149 * be dropped until after an RCU delay done after 1150 * turning ->mnt_ns NULL. So if we observe it 1151 * non-NULL under rcu_read_lock(), the reference 1152 * we are dropping is not the final one. 1153 */ 1154 mnt_add_count(mnt, -1); 1155 rcu_read_unlock(); 1156 return; 1157 } 1158 lock_mount_hash(); 1159 /* 1160 * make sure that if __legitimize_mnt() has not seen us grab 1161 * mount_lock, we'll see their refcount increment here. 1162 */ 1163 smp_mb(); 1164 mnt_add_count(mnt, -1); 1165 if (mnt_get_count(mnt)) { 1166 rcu_read_unlock(); 1167 unlock_mount_hash(); 1168 return; 1169 } 1170 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) { 1171 rcu_read_unlock(); 1172 unlock_mount_hash(); 1173 return; 1174 } 1175 mnt->mnt.mnt_flags |= MNT_DOOMED; 1176 rcu_read_unlock(); 1177 1178 list_del(&mnt->mnt_instance); 1179 1180 if (unlikely(!list_empty(&mnt->mnt_mounts))) { 1181 struct mount *p, *tmp; 1182 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) { 1183 __put_mountpoint(unhash_mnt(p), &list); 1184 hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children); 1185 } 1186 } 1187 unlock_mount_hash(); 1188 shrink_dentry_list(&list); 1189 1190 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) { 1191 struct task_struct *task = current; 1192 if (likely(!(task->flags & PF_KTHREAD))) { 1193 init_task_work(&mnt->mnt_rcu, __cleanup_mnt); 1194 if (!task_work_add(task, &mnt->mnt_rcu, true)) 1195 return; 1196 } 1197 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list)) 1198 schedule_delayed_work(&delayed_mntput_work, 1); 1199 return; 1200 } 1201 cleanup_mnt(mnt); 1202 } 1203 1204 void mntput(struct vfsmount *mnt) 1205 { 1206 if (mnt) { 1207 struct mount *m = real_mount(mnt); 1208 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */ 1209 if (unlikely(m->mnt_expiry_mark)) 1210 m->mnt_expiry_mark = 0; 1211 mntput_no_expire(m); 1212 } 1213 } 1214 EXPORT_SYMBOL(mntput); 1215 1216 struct vfsmount *mntget(struct vfsmount *mnt) 1217 { 1218 if (mnt) 1219 mnt_add_count(real_mount(mnt), 1); 1220 return mnt; 1221 } 1222 EXPORT_SYMBOL(mntget); 1223 1224 /* path_is_mountpoint() - Check if path is a mount in the current 1225 * namespace. 1226 * 1227 * d_mountpoint() can only be used reliably to establish if a dentry is 1228 * not mounted in any namespace and that common case is handled inline. 1229 * d_mountpoint() isn't aware of the possibility there may be multiple 1230 * mounts using a given dentry in a different namespace. This function 1231 * checks if the passed in path is a mountpoint rather than the dentry 1232 * alone. 1233 */ 1234 bool path_is_mountpoint(const struct path *path) 1235 { 1236 unsigned seq; 1237 bool res; 1238 1239 if (!d_mountpoint(path->dentry)) 1240 return false; 1241 1242 rcu_read_lock(); 1243 do { 1244 seq = read_seqbegin(&mount_lock); 1245 res = __path_is_mountpoint(path); 1246 } while (read_seqretry(&mount_lock, seq)); 1247 rcu_read_unlock(); 1248 1249 return res; 1250 } 1251 EXPORT_SYMBOL(path_is_mountpoint); 1252 1253 struct vfsmount *mnt_clone_internal(const struct path *path) 1254 { 1255 struct mount *p; 1256 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE); 1257 if (IS_ERR(p)) 1258 return ERR_CAST(p); 1259 p->mnt.mnt_flags |= MNT_INTERNAL; 1260 return &p->mnt; 1261 } 1262 1263 #ifdef CONFIG_PROC_FS 1264 static struct mount *mnt_list_next(struct mnt_namespace *ns, 1265 struct list_head *p) 1266 { 1267 struct mount *mnt, *ret = NULL; 1268 1269 lock_ns_list(ns); 1270 list_for_each_continue(p, &ns->list) { 1271 mnt = list_entry(p, typeof(*mnt), mnt_list); 1272 if (!mnt_is_cursor(mnt)) { 1273 ret = mnt; 1274 break; 1275 } 1276 } 1277 unlock_ns_list(ns); 1278 1279 return ret; 1280 } 1281 1282 /* iterator; we want it to have access to namespace_sem, thus here... */ 1283 static void *m_start(struct seq_file *m, loff_t *pos) 1284 { 1285 struct proc_mounts *p = m->private; 1286 struct list_head *prev; 1287 1288 down_read(&namespace_sem); 1289 if (!*pos) { 1290 prev = &p->ns->list; 1291 } else { 1292 prev = &p->cursor.mnt_list; 1293 1294 /* Read after we'd reached the end? */ 1295 if (list_empty(prev)) 1296 return NULL; 1297 } 1298 1299 return mnt_list_next(p->ns, prev); 1300 } 1301 1302 static void *m_next(struct seq_file *m, void *v, loff_t *pos) 1303 { 1304 struct proc_mounts *p = m->private; 1305 struct mount *mnt = v; 1306 1307 ++*pos; 1308 return mnt_list_next(p->ns, &mnt->mnt_list); 1309 } 1310 1311 static void m_stop(struct seq_file *m, void *v) 1312 { 1313 struct proc_mounts *p = m->private; 1314 struct mount *mnt = v; 1315 1316 lock_ns_list(p->ns); 1317 if (mnt) 1318 list_move_tail(&p->cursor.mnt_list, &mnt->mnt_list); 1319 else 1320 list_del_init(&p->cursor.mnt_list); 1321 unlock_ns_list(p->ns); 1322 up_read(&namespace_sem); 1323 } 1324 1325 static int m_show(struct seq_file *m, void *v) 1326 { 1327 struct proc_mounts *p = m->private; 1328 struct mount *r = v; 1329 return p->show(m, &r->mnt); 1330 } 1331 1332 const struct seq_operations mounts_op = { 1333 .start = m_start, 1334 .next = m_next, 1335 .stop = m_stop, 1336 .show = m_show, 1337 }; 1338 1339 void mnt_cursor_del(struct mnt_namespace *ns, struct mount *cursor) 1340 { 1341 down_read(&namespace_sem); 1342 lock_ns_list(ns); 1343 list_del(&cursor->mnt_list); 1344 unlock_ns_list(ns); 1345 up_read(&namespace_sem); 1346 } 1347 #endif /* CONFIG_PROC_FS */ 1348 1349 /** 1350 * may_umount_tree - check if a mount tree is busy 1351 * @mnt: root of mount tree 1352 * 1353 * This is called to check if a tree of mounts has any 1354 * open files, pwds, chroots or sub mounts that are 1355 * busy. 1356 */ 1357 int may_umount_tree(struct vfsmount *m) 1358 { 1359 struct mount *mnt = real_mount(m); 1360 int actual_refs = 0; 1361 int minimum_refs = 0; 1362 struct mount *p; 1363 BUG_ON(!m); 1364 1365 /* write lock needed for mnt_get_count */ 1366 lock_mount_hash(); 1367 for (p = mnt; p; p = next_mnt(p, mnt)) { 1368 actual_refs += mnt_get_count(p); 1369 minimum_refs += 2; 1370 } 1371 unlock_mount_hash(); 1372 1373 if (actual_refs > minimum_refs) 1374 return 0; 1375 1376 return 1; 1377 } 1378 1379 EXPORT_SYMBOL(may_umount_tree); 1380 1381 /** 1382 * may_umount - check if a mount point is busy 1383 * @mnt: root of mount 1384 * 1385 * This is called to check if a mount point has any 1386 * open files, pwds, chroots or sub mounts. If the 1387 * mount has sub mounts this will return busy 1388 * regardless of whether the sub mounts are busy. 1389 * 1390 * Doesn't take quota and stuff into account. IOW, in some cases it will 1391 * give false negatives. The main reason why it's here is that we need 1392 * a non-destructive way to look for easily umountable filesystems. 1393 */ 1394 int may_umount(struct vfsmount *mnt) 1395 { 1396 int ret = 1; 1397 down_read(&namespace_sem); 1398 lock_mount_hash(); 1399 if (propagate_mount_busy(real_mount(mnt), 2)) 1400 ret = 0; 1401 unlock_mount_hash(); 1402 up_read(&namespace_sem); 1403 return ret; 1404 } 1405 1406 EXPORT_SYMBOL(may_umount); 1407 1408 static void namespace_unlock(void) 1409 { 1410 struct hlist_head head; 1411 struct hlist_node *p; 1412 struct mount *m; 1413 LIST_HEAD(list); 1414 1415 hlist_move_list(&unmounted, &head); 1416 list_splice_init(&ex_mountpoints, &list); 1417 1418 up_write(&namespace_sem); 1419 1420 shrink_dentry_list(&list); 1421 1422 if (likely(hlist_empty(&head))) 1423 return; 1424 1425 synchronize_rcu_expedited(); 1426 1427 hlist_for_each_entry_safe(m, p, &head, mnt_umount) { 1428 hlist_del(&m->mnt_umount); 1429 mntput(&m->mnt); 1430 } 1431 } 1432 1433 static inline void namespace_lock(void) 1434 { 1435 down_write(&namespace_sem); 1436 } 1437 1438 enum umount_tree_flags { 1439 UMOUNT_SYNC = 1, 1440 UMOUNT_PROPAGATE = 2, 1441 UMOUNT_CONNECTED = 4, 1442 }; 1443 1444 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how) 1445 { 1446 /* Leaving mounts connected is only valid for lazy umounts */ 1447 if (how & UMOUNT_SYNC) 1448 return true; 1449 1450 /* A mount without a parent has nothing to be connected to */ 1451 if (!mnt_has_parent(mnt)) 1452 return true; 1453 1454 /* Because the reference counting rules change when mounts are 1455 * unmounted and connected, umounted mounts may not be 1456 * connected to mounted mounts. 1457 */ 1458 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT)) 1459 return true; 1460 1461 /* Has it been requested that the mount remain connected? */ 1462 if (how & UMOUNT_CONNECTED) 1463 return false; 1464 1465 /* Is the mount locked such that it needs to remain connected? */ 1466 if (IS_MNT_LOCKED(mnt)) 1467 return false; 1468 1469 /* By default disconnect the mount */ 1470 return true; 1471 } 1472 1473 /* 1474 * mount_lock must be held 1475 * namespace_sem must be held for write 1476 */ 1477 static void umount_tree(struct mount *mnt, enum umount_tree_flags how) 1478 { 1479 LIST_HEAD(tmp_list); 1480 struct mount *p; 1481 1482 if (how & UMOUNT_PROPAGATE) 1483 propagate_mount_unlock(mnt); 1484 1485 /* Gather the mounts to umount */ 1486 for (p = mnt; p; p = next_mnt(p, mnt)) { 1487 p->mnt.mnt_flags |= MNT_UMOUNT; 1488 list_move(&p->mnt_list, &tmp_list); 1489 } 1490 1491 /* Hide the mounts from mnt_mounts */ 1492 list_for_each_entry(p, &tmp_list, mnt_list) { 1493 list_del_init(&p->mnt_child); 1494 } 1495 1496 /* Add propogated mounts to the tmp_list */ 1497 if (how & UMOUNT_PROPAGATE) 1498 propagate_umount(&tmp_list); 1499 1500 while (!list_empty(&tmp_list)) { 1501 struct mnt_namespace *ns; 1502 bool disconnect; 1503 p = list_first_entry(&tmp_list, struct mount, mnt_list); 1504 list_del_init(&p->mnt_expire); 1505 list_del_init(&p->mnt_list); 1506 ns = p->mnt_ns; 1507 if (ns) { 1508 ns->mounts--; 1509 __touch_mnt_namespace(ns); 1510 } 1511 p->mnt_ns = NULL; 1512 if (how & UMOUNT_SYNC) 1513 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT; 1514 1515 disconnect = disconnect_mount(p, how); 1516 if (mnt_has_parent(p)) { 1517 mnt_add_count(p->mnt_parent, -1); 1518 if (!disconnect) { 1519 /* Don't forget about p */ 1520 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts); 1521 } else { 1522 umount_mnt(p); 1523 } 1524 } 1525 change_mnt_propagation(p, MS_PRIVATE); 1526 if (disconnect) 1527 hlist_add_head(&p->mnt_umount, &unmounted); 1528 } 1529 } 1530 1531 static void shrink_submounts(struct mount *mnt); 1532 1533 static int do_umount_root(struct super_block *sb) 1534 { 1535 int ret = 0; 1536 1537 down_write(&sb->s_umount); 1538 if (!sb_rdonly(sb)) { 1539 struct fs_context *fc; 1540 1541 fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY, 1542 SB_RDONLY); 1543 if (IS_ERR(fc)) { 1544 ret = PTR_ERR(fc); 1545 } else { 1546 ret = parse_monolithic_mount_data(fc, NULL); 1547 if (!ret) 1548 ret = reconfigure_super(fc); 1549 put_fs_context(fc); 1550 } 1551 } 1552 up_write(&sb->s_umount); 1553 return ret; 1554 } 1555 1556 static int do_umount(struct mount *mnt, int flags) 1557 { 1558 struct super_block *sb = mnt->mnt.mnt_sb; 1559 int retval; 1560 1561 retval = security_sb_umount(&mnt->mnt, flags); 1562 if (retval) 1563 return retval; 1564 1565 /* 1566 * Allow userspace to request a mountpoint be expired rather than 1567 * unmounting unconditionally. Unmount only happens if: 1568 * (1) the mark is already set (the mark is cleared by mntput()) 1569 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] 1570 */ 1571 if (flags & MNT_EXPIRE) { 1572 if (&mnt->mnt == current->fs->root.mnt || 1573 flags & (MNT_FORCE | MNT_DETACH)) 1574 return -EINVAL; 1575 1576 /* 1577 * probably don't strictly need the lock here if we examined 1578 * all race cases, but it's a slowpath. 1579 */ 1580 lock_mount_hash(); 1581 if (mnt_get_count(mnt) != 2) { 1582 unlock_mount_hash(); 1583 return -EBUSY; 1584 } 1585 unlock_mount_hash(); 1586 1587 if (!xchg(&mnt->mnt_expiry_mark, 1)) 1588 return -EAGAIN; 1589 } 1590 1591 /* 1592 * If we may have to abort operations to get out of this 1593 * mount, and they will themselves hold resources we must 1594 * allow the fs to do things. In the Unix tradition of 1595 * 'Gee thats tricky lets do it in userspace' the umount_begin 1596 * might fail to complete on the first run through as other tasks 1597 * must return, and the like. Thats for the mount program to worry 1598 * about for the moment. 1599 */ 1600 1601 if (flags & MNT_FORCE && sb->s_op->umount_begin) { 1602 sb->s_op->umount_begin(sb); 1603 } 1604 1605 /* 1606 * No sense to grab the lock for this test, but test itself looks 1607 * somewhat bogus. Suggestions for better replacement? 1608 * Ho-hum... In principle, we might treat that as umount + switch 1609 * to rootfs. GC would eventually take care of the old vfsmount. 1610 * Actually it makes sense, especially if rootfs would contain a 1611 * /reboot - static binary that would close all descriptors and 1612 * call reboot(9). Then init(8) could umount root and exec /reboot. 1613 */ 1614 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) { 1615 /* 1616 * Special case for "unmounting" root ... 1617 * we just try to remount it readonly. 1618 */ 1619 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) 1620 return -EPERM; 1621 return do_umount_root(sb); 1622 } 1623 1624 namespace_lock(); 1625 lock_mount_hash(); 1626 1627 /* Recheck MNT_LOCKED with the locks held */ 1628 retval = -EINVAL; 1629 if (mnt->mnt.mnt_flags & MNT_LOCKED) 1630 goto out; 1631 1632 event++; 1633 if (flags & MNT_DETACH) { 1634 if (!list_empty(&mnt->mnt_list)) 1635 umount_tree(mnt, UMOUNT_PROPAGATE); 1636 retval = 0; 1637 } else { 1638 shrink_submounts(mnt); 1639 retval = -EBUSY; 1640 if (!propagate_mount_busy(mnt, 2)) { 1641 if (!list_empty(&mnt->mnt_list)) 1642 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 1643 retval = 0; 1644 } 1645 } 1646 out: 1647 unlock_mount_hash(); 1648 namespace_unlock(); 1649 return retval; 1650 } 1651 1652 /* 1653 * __detach_mounts - lazily unmount all mounts on the specified dentry 1654 * 1655 * During unlink, rmdir, and d_drop it is possible to loose the path 1656 * to an existing mountpoint, and wind up leaking the mount. 1657 * detach_mounts allows lazily unmounting those mounts instead of 1658 * leaking them. 1659 * 1660 * The caller may hold dentry->d_inode->i_mutex. 1661 */ 1662 void __detach_mounts(struct dentry *dentry) 1663 { 1664 struct mountpoint *mp; 1665 struct mount *mnt; 1666 1667 namespace_lock(); 1668 lock_mount_hash(); 1669 mp = lookup_mountpoint(dentry); 1670 if (!mp) 1671 goto out_unlock; 1672 1673 event++; 1674 while (!hlist_empty(&mp->m_list)) { 1675 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list); 1676 if (mnt->mnt.mnt_flags & MNT_UMOUNT) { 1677 umount_mnt(mnt); 1678 hlist_add_head(&mnt->mnt_umount, &unmounted); 1679 } 1680 else umount_tree(mnt, UMOUNT_CONNECTED); 1681 } 1682 put_mountpoint(mp); 1683 out_unlock: 1684 unlock_mount_hash(); 1685 namespace_unlock(); 1686 } 1687 1688 /* 1689 * Is the caller allowed to modify his namespace? 1690 */ 1691 static inline bool may_mount(void) 1692 { 1693 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN); 1694 } 1695 1696 #ifdef CONFIG_MANDATORY_FILE_LOCKING 1697 static inline bool may_mandlock(void) 1698 { 1699 return capable(CAP_SYS_ADMIN); 1700 } 1701 #else 1702 static inline bool may_mandlock(void) 1703 { 1704 pr_warn("VFS: \"mand\" mount option not supported"); 1705 return false; 1706 } 1707 #endif 1708 1709 /* 1710 * Now umount can handle mount points as well as block devices. 1711 * This is important for filesystems which use unnamed block devices. 1712 * 1713 * We now support a flag for forced unmount like the other 'big iron' 1714 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD 1715 */ 1716 1717 int ksys_umount(char __user *name, int flags) 1718 { 1719 struct path path; 1720 struct mount *mnt; 1721 int retval; 1722 int lookup_flags = LOOKUP_MOUNTPOINT; 1723 1724 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW)) 1725 return -EINVAL; 1726 1727 if (!may_mount()) 1728 return -EPERM; 1729 1730 if (!(flags & UMOUNT_NOFOLLOW)) 1731 lookup_flags |= LOOKUP_FOLLOW; 1732 1733 retval = user_path_at(AT_FDCWD, name, lookup_flags, &path); 1734 if (retval) 1735 goto out; 1736 mnt = real_mount(path.mnt); 1737 retval = -EINVAL; 1738 if (path.dentry != path.mnt->mnt_root) 1739 goto dput_and_out; 1740 if (!check_mnt(mnt)) 1741 goto dput_and_out; 1742 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */ 1743 goto dput_and_out; 1744 retval = -EPERM; 1745 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN)) 1746 goto dput_and_out; 1747 1748 retval = do_umount(mnt, flags); 1749 dput_and_out: 1750 /* we mustn't call path_put() as that would clear mnt_expiry_mark */ 1751 dput(path.dentry); 1752 mntput_no_expire(mnt); 1753 out: 1754 return retval; 1755 } 1756 1757 SYSCALL_DEFINE2(umount, char __user *, name, int, flags) 1758 { 1759 return ksys_umount(name, flags); 1760 } 1761 1762 #ifdef __ARCH_WANT_SYS_OLDUMOUNT 1763 1764 /* 1765 * The 2.0 compatible umount. No flags. 1766 */ 1767 SYSCALL_DEFINE1(oldumount, char __user *, name) 1768 { 1769 return ksys_umount(name, 0); 1770 } 1771 1772 #endif 1773 1774 static bool is_mnt_ns_file(struct dentry *dentry) 1775 { 1776 /* Is this a proxy for a mount namespace? */ 1777 return dentry->d_op == &ns_dentry_operations && 1778 dentry->d_fsdata == &mntns_operations; 1779 } 1780 1781 static struct mnt_namespace *to_mnt_ns(struct ns_common *ns) 1782 { 1783 return container_of(ns, struct mnt_namespace, ns); 1784 } 1785 1786 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt) 1787 { 1788 return &mnt->ns; 1789 } 1790 1791 static bool mnt_ns_loop(struct dentry *dentry) 1792 { 1793 /* Could bind mounting the mount namespace inode cause a 1794 * mount namespace loop? 1795 */ 1796 struct mnt_namespace *mnt_ns; 1797 if (!is_mnt_ns_file(dentry)) 1798 return false; 1799 1800 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode)); 1801 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq; 1802 } 1803 1804 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry, 1805 int flag) 1806 { 1807 struct mount *res, *p, *q, *r, *parent; 1808 1809 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt)) 1810 return ERR_PTR(-EINVAL); 1811 1812 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry)) 1813 return ERR_PTR(-EINVAL); 1814 1815 res = q = clone_mnt(mnt, dentry, flag); 1816 if (IS_ERR(q)) 1817 return q; 1818 1819 q->mnt_mountpoint = mnt->mnt_mountpoint; 1820 1821 p = mnt; 1822 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) { 1823 struct mount *s; 1824 if (!is_subdir(r->mnt_mountpoint, dentry)) 1825 continue; 1826 1827 for (s = r; s; s = next_mnt(s, r)) { 1828 if (!(flag & CL_COPY_UNBINDABLE) && 1829 IS_MNT_UNBINDABLE(s)) { 1830 if (s->mnt.mnt_flags & MNT_LOCKED) { 1831 /* Both unbindable and locked. */ 1832 q = ERR_PTR(-EPERM); 1833 goto out; 1834 } else { 1835 s = skip_mnt_tree(s); 1836 continue; 1837 } 1838 } 1839 if (!(flag & CL_COPY_MNT_NS_FILE) && 1840 is_mnt_ns_file(s->mnt.mnt_root)) { 1841 s = skip_mnt_tree(s); 1842 continue; 1843 } 1844 while (p != s->mnt_parent) { 1845 p = p->mnt_parent; 1846 q = q->mnt_parent; 1847 } 1848 p = s; 1849 parent = q; 1850 q = clone_mnt(p, p->mnt.mnt_root, flag); 1851 if (IS_ERR(q)) 1852 goto out; 1853 lock_mount_hash(); 1854 list_add_tail(&q->mnt_list, &res->mnt_list); 1855 attach_mnt(q, parent, p->mnt_mp); 1856 unlock_mount_hash(); 1857 } 1858 } 1859 return res; 1860 out: 1861 if (res) { 1862 lock_mount_hash(); 1863 umount_tree(res, UMOUNT_SYNC); 1864 unlock_mount_hash(); 1865 } 1866 return q; 1867 } 1868 1869 /* Caller should check returned pointer for errors */ 1870 1871 struct vfsmount *collect_mounts(const struct path *path) 1872 { 1873 struct mount *tree; 1874 namespace_lock(); 1875 if (!check_mnt(real_mount(path->mnt))) 1876 tree = ERR_PTR(-EINVAL); 1877 else 1878 tree = copy_tree(real_mount(path->mnt), path->dentry, 1879 CL_COPY_ALL | CL_PRIVATE); 1880 namespace_unlock(); 1881 if (IS_ERR(tree)) 1882 return ERR_CAST(tree); 1883 return &tree->mnt; 1884 } 1885 1886 static void free_mnt_ns(struct mnt_namespace *); 1887 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool); 1888 1889 void dissolve_on_fput(struct vfsmount *mnt) 1890 { 1891 struct mnt_namespace *ns; 1892 namespace_lock(); 1893 lock_mount_hash(); 1894 ns = real_mount(mnt)->mnt_ns; 1895 if (ns) { 1896 if (is_anon_ns(ns)) 1897 umount_tree(real_mount(mnt), UMOUNT_CONNECTED); 1898 else 1899 ns = NULL; 1900 } 1901 unlock_mount_hash(); 1902 namespace_unlock(); 1903 if (ns) 1904 free_mnt_ns(ns); 1905 } 1906 1907 void drop_collected_mounts(struct vfsmount *mnt) 1908 { 1909 namespace_lock(); 1910 lock_mount_hash(); 1911 umount_tree(real_mount(mnt), 0); 1912 unlock_mount_hash(); 1913 namespace_unlock(); 1914 } 1915 1916 /** 1917 * clone_private_mount - create a private clone of a path 1918 * 1919 * This creates a new vfsmount, which will be the clone of @path. The new will 1920 * not be attached anywhere in the namespace and will be private (i.e. changes 1921 * to the originating mount won't be propagated into this). 1922 * 1923 * Release with mntput(). 1924 */ 1925 struct vfsmount *clone_private_mount(const struct path *path) 1926 { 1927 struct mount *old_mnt = real_mount(path->mnt); 1928 struct mount *new_mnt; 1929 1930 if (IS_MNT_UNBINDABLE(old_mnt)) 1931 return ERR_PTR(-EINVAL); 1932 1933 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE); 1934 if (IS_ERR(new_mnt)) 1935 return ERR_CAST(new_mnt); 1936 1937 /* Longterm mount to be removed by kern_unmount*() */ 1938 new_mnt->mnt_ns = MNT_NS_INTERNAL; 1939 1940 return &new_mnt->mnt; 1941 } 1942 EXPORT_SYMBOL_GPL(clone_private_mount); 1943 1944 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg, 1945 struct vfsmount *root) 1946 { 1947 struct mount *mnt; 1948 int res = f(root, arg); 1949 if (res) 1950 return res; 1951 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) { 1952 res = f(&mnt->mnt, arg); 1953 if (res) 1954 return res; 1955 } 1956 return 0; 1957 } 1958 1959 static void lock_mnt_tree(struct mount *mnt) 1960 { 1961 struct mount *p; 1962 1963 for (p = mnt; p; p = next_mnt(p, mnt)) { 1964 int flags = p->mnt.mnt_flags; 1965 /* Don't allow unprivileged users to change mount flags */ 1966 flags |= MNT_LOCK_ATIME; 1967 1968 if (flags & MNT_READONLY) 1969 flags |= MNT_LOCK_READONLY; 1970 1971 if (flags & MNT_NODEV) 1972 flags |= MNT_LOCK_NODEV; 1973 1974 if (flags & MNT_NOSUID) 1975 flags |= MNT_LOCK_NOSUID; 1976 1977 if (flags & MNT_NOEXEC) 1978 flags |= MNT_LOCK_NOEXEC; 1979 /* Don't allow unprivileged users to reveal what is under a mount */ 1980 if (list_empty(&p->mnt_expire)) 1981 flags |= MNT_LOCKED; 1982 p->mnt.mnt_flags = flags; 1983 } 1984 } 1985 1986 static void cleanup_group_ids(struct mount *mnt, struct mount *end) 1987 { 1988 struct mount *p; 1989 1990 for (p = mnt; p != end; p = next_mnt(p, mnt)) { 1991 if (p->mnt_group_id && !IS_MNT_SHARED(p)) 1992 mnt_release_group_id(p); 1993 } 1994 } 1995 1996 static int invent_group_ids(struct mount *mnt, bool recurse) 1997 { 1998 struct mount *p; 1999 2000 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) { 2001 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) { 2002 int err = mnt_alloc_group_id(p); 2003 if (err) { 2004 cleanup_group_ids(mnt, p); 2005 return err; 2006 } 2007 } 2008 } 2009 2010 return 0; 2011 } 2012 2013 int count_mounts(struct mnt_namespace *ns, struct mount *mnt) 2014 { 2015 unsigned int max = READ_ONCE(sysctl_mount_max); 2016 unsigned int mounts = 0, old, pending, sum; 2017 struct mount *p; 2018 2019 for (p = mnt; p; p = next_mnt(p, mnt)) 2020 mounts++; 2021 2022 old = ns->mounts; 2023 pending = ns->pending_mounts; 2024 sum = old + pending; 2025 if ((old > sum) || 2026 (pending > sum) || 2027 (max < sum) || 2028 (mounts > (max - sum))) 2029 return -ENOSPC; 2030 2031 ns->pending_mounts = pending + mounts; 2032 return 0; 2033 } 2034 2035 /* 2036 * @source_mnt : mount tree to be attached 2037 * @nd : place the mount tree @source_mnt is attached 2038 * @parent_nd : if non-null, detach the source_mnt from its parent and 2039 * store the parent mount and mountpoint dentry. 2040 * (done when source_mnt is moved) 2041 * 2042 * NOTE: in the table below explains the semantics when a source mount 2043 * of a given type is attached to a destination mount of a given type. 2044 * --------------------------------------------------------------------------- 2045 * | BIND MOUNT OPERATION | 2046 * |************************************************************************** 2047 * | source-->| shared | private | slave | unbindable | 2048 * | dest | | | | | 2049 * | | | | | | | 2050 * | v | | | | | 2051 * |************************************************************************** 2052 * | shared | shared (++) | shared (+) | shared(+++)| invalid | 2053 * | | | | | | 2054 * |non-shared| shared (+) | private | slave (*) | invalid | 2055 * *************************************************************************** 2056 * A bind operation clones the source mount and mounts the clone on the 2057 * destination mount. 2058 * 2059 * (++) the cloned mount is propagated to all the mounts in the propagation 2060 * tree of the destination mount and the cloned mount is added to 2061 * the peer group of the source mount. 2062 * (+) the cloned mount is created under the destination mount and is marked 2063 * as shared. The cloned mount is added to the peer group of the source 2064 * mount. 2065 * (+++) the mount is propagated to all the mounts in the propagation tree 2066 * of the destination mount and the cloned mount is made slave 2067 * of the same master as that of the source mount. The cloned mount 2068 * is marked as 'shared and slave'. 2069 * (*) the cloned mount is made a slave of the same master as that of the 2070 * source mount. 2071 * 2072 * --------------------------------------------------------------------------- 2073 * | MOVE MOUNT OPERATION | 2074 * |************************************************************************** 2075 * | source-->| shared | private | slave | unbindable | 2076 * | dest | | | | | 2077 * | | | | | | | 2078 * | v | | | | | 2079 * |************************************************************************** 2080 * | shared | shared (+) | shared (+) | shared(+++) | invalid | 2081 * | | | | | | 2082 * |non-shared| shared (+*) | private | slave (*) | unbindable | 2083 * *************************************************************************** 2084 * 2085 * (+) the mount is moved to the destination. And is then propagated to 2086 * all the mounts in the propagation tree of the destination mount. 2087 * (+*) the mount is moved to the destination. 2088 * (+++) the mount is moved to the destination and is then propagated to 2089 * all the mounts belonging to the destination mount's propagation tree. 2090 * the mount is marked as 'shared and slave'. 2091 * (*) the mount continues to be a slave at the new location. 2092 * 2093 * if the source mount is a tree, the operations explained above is 2094 * applied to each mount in the tree. 2095 * Must be called without spinlocks held, since this function can sleep 2096 * in allocations. 2097 */ 2098 static int attach_recursive_mnt(struct mount *source_mnt, 2099 struct mount *dest_mnt, 2100 struct mountpoint *dest_mp, 2101 bool moving) 2102 { 2103 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; 2104 HLIST_HEAD(tree_list); 2105 struct mnt_namespace *ns = dest_mnt->mnt_ns; 2106 struct mountpoint *smp; 2107 struct mount *child, *p; 2108 struct hlist_node *n; 2109 int err; 2110 2111 /* Preallocate a mountpoint in case the new mounts need 2112 * to be tucked under other mounts. 2113 */ 2114 smp = get_mountpoint(source_mnt->mnt.mnt_root); 2115 if (IS_ERR(smp)) 2116 return PTR_ERR(smp); 2117 2118 /* Is there space to add these mounts to the mount namespace? */ 2119 if (!moving) { 2120 err = count_mounts(ns, source_mnt); 2121 if (err) 2122 goto out; 2123 } 2124 2125 if (IS_MNT_SHARED(dest_mnt)) { 2126 err = invent_group_ids(source_mnt, true); 2127 if (err) 2128 goto out; 2129 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list); 2130 lock_mount_hash(); 2131 if (err) 2132 goto out_cleanup_ids; 2133 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 2134 set_mnt_shared(p); 2135 } else { 2136 lock_mount_hash(); 2137 } 2138 if (moving) { 2139 unhash_mnt(source_mnt); 2140 attach_mnt(source_mnt, dest_mnt, dest_mp); 2141 touch_mnt_namespace(source_mnt->mnt_ns); 2142 } else { 2143 if (source_mnt->mnt_ns) { 2144 /* move from anon - the caller will destroy */ 2145 list_del_init(&source_mnt->mnt_ns->list); 2146 } 2147 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt); 2148 commit_tree(source_mnt); 2149 } 2150 2151 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) { 2152 struct mount *q; 2153 hlist_del_init(&child->mnt_hash); 2154 q = __lookup_mnt(&child->mnt_parent->mnt, 2155 child->mnt_mountpoint); 2156 if (q) 2157 mnt_change_mountpoint(child, smp, q); 2158 /* Notice when we are propagating across user namespaces */ 2159 if (child->mnt_parent->mnt_ns->user_ns != user_ns) 2160 lock_mnt_tree(child); 2161 child->mnt.mnt_flags &= ~MNT_LOCKED; 2162 commit_tree(child); 2163 } 2164 put_mountpoint(smp); 2165 unlock_mount_hash(); 2166 2167 return 0; 2168 2169 out_cleanup_ids: 2170 while (!hlist_empty(&tree_list)) { 2171 child = hlist_entry(tree_list.first, struct mount, mnt_hash); 2172 child->mnt_parent->mnt_ns->pending_mounts = 0; 2173 umount_tree(child, UMOUNT_SYNC); 2174 } 2175 unlock_mount_hash(); 2176 cleanup_group_ids(source_mnt, NULL); 2177 out: 2178 ns->pending_mounts = 0; 2179 2180 read_seqlock_excl(&mount_lock); 2181 put_mountpoint(smp); 2182 read_sequnlock_excl(&mount_lock); 2183 2184 return err; 2185 } 2186 2187 static struct mountpoint *lock_mount(struct path *path) 2188 { 2189 struct vfsmount *mnt; 2190 struct dentry *dentry = path->dentry; 2191 retry: 2192 inode_lock(dentry->d_inode); 2193 if (unlikely(cant_mount(dentry))) { 2194 inode_unlock(dentry->d_inode); 2195 return ERR_PTR(-ENOENT); 2196 } 2197 namespace_lock(); 2198 mnt = lookup_mnt(path); 2199 if (likely(!mnt)) { 2200 struct mountpoint *mp = get_mountpoint(dentry); 2201 if (IS_ERR(mp)) { 2202 namespace_unlock(); 2203 inode_unlock(dentry->d_inode); 2204 return mp; 2205 } 2206 return mp; 2207 } 2208 namespace_unlock(); 2209 inode_unlock(path->dentry->d_inode); 2210 path_put(path); 2211 path->mnt = mnt; 2212 dentry = path->dentry = dget(mnt->mnt_root); 2213 goto retry; 2214 } 2215 2216 static void unlock_mount(struct mountpoint *where) 2217 { 2218 struct dentry *dentry = where->m_dentry; 2219 2220 read_seqlock_excl(&mount_lock); 2221 put_mountpoint(where); 2222 read_sequnlock_excl(&mount_lock); 2223 2224 namespace_unlock(); 2225 inode_unlock(dentry->d_inode); 2226 } 2227 2228 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp) 2229 { 2230 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER) 2231 return -EINVAL; 2232 2233 if (d_is_dir(mp->m_dentry) != 2234 d_is_dir(mnt->mnt.mnt_root)) 2235 return -ENOTDIR; 2236 2237 return attach_recursive_mnt(mnt, p, mp, false); 2238 } 2239 2240 /* 2241 * Sanity check the flags to change_mnt_propagation. 2242 */ 2243 2244 static int flags_to_propagation_type(int ms_flags) 2245 { 2246 int type = ms_flags & ~(MS_REC | MS_SILENT); 2247 2248 /* Fail if any non-propagation flags are set */ 2249 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 2250 return 0; 2251 /* Only one propagation flag should be set */ 2252 if (!is_power_of_2(type)) 2253 return 0; 2254 return type; 2255 } 2256 2257 /* 2258 * recursively change the type of the mountpoint. 2259 */ 2260 static int do_change_type(struct path *path, int ms_flags) 2261 { 2262 struct mount *m; 2263 struct mount *mnt = real_mount(path->mnt); 2264 int recurse = ms_flags & MS_REC; 2265 int type; 2266 int err = 0; 2267 2268 if (path->dentry != path->mnt->mnt_root) 2269 return -EINVAL; 2270 2271 type = flags_to_propagation_type(ms_flags); 2272 if (!type) 2273 return -EINVAL; 2274 2275 namespace_lock(); 2276 if (type == MS_SHARED) { 2277 err = invent_group_ids(mnt, recurse); 2278 if (err) 2279 goto out_unlock; 2280 } 2281 2282 lock_mount_hash(); 2283 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) 2284 change_mnt_propagation(m, type); 2285 unlock_mount_hash(); 2286 2287 out_unlock: 2288 namespace_unlock(); 2289 return err; 2290 } 2291 2292 static bool has_locked_children(struct mount *mnt, struct dentry *dentry) 2293 { 2294 struct mount *child; 2295 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 2296 if (!is_subdir(child->mnt_mountpoint, dentry)) 2297 continue; 2298 2299 if (child->mnt.mnt_flags & MNT_LOCKED) 2300 return true; 2301 } 2302 return false; 2303 } 2304 2305 static struct mount *__do_loopback(struct path *old_path, int recurse) 2306 { 2307 struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt); 2308 2309 if (IS_MNT_UNBINDABLE(old)) 2310 return mnt; 2311 2312 if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations) 2313 return mnt; 2314 2315 if (!recurse && has_locked_children(old, old_path->dentry)) 2316 return mnt; 2317 2318 if (recurse) 2319 mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE); 2320 else 2321 mnt = clone_mnt(old, old_path->dentry, 0); 2322 2323 if (!IS_ERR(mnt)) 2324 mnt->mnt.mnt_flags &= ~MNT_LOCKED; 2325 2326 return mnt; 2327 } 2328 2329 /* 2330 * do loopback mount. 2331 */ 2332 static int do_loopback(struct path *path, const char *old_name, 2333 int recurse) 2334 { 2335 struct path old_path; 2336 struct mount *mnt = NULL, *parent; 2337 struct mountpoint *mp; 2338 int err; 2339 if (!old_name || !*old_name) 2340 return -EINVAL; 2341 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path); 2342 if (err) 2343 return err; 2344 2345 err = -EINVAL; 2346 if (mnt_ns_loop(old_path.dentry)) 2347 goto out; 2348 2349 mp = lock_mount(path); 2350 if (IS_ERR(mp)) { 2351 err = PTR_ERR(mp); 2352 goto out; 2353 } 2354 2355 parent = real_mount(path->mnt); 2356 if (!check_mnt(parent)) 2357 goto out2; 2358 2359 mnt = __do_loopback(&old_path, recurse); 2360 if (IS_ERR(mnt)) { 2361 err = PTR_ERR(mnt); 2362 goto out2; 2363 } 2364 2365 err = graft_tree(mnt, parent, mp); 2366 if (err) { 2367 lock_mount_hash(); 2368 umount_tree(mnt, UMOUNT_SYNC); 2369 unlock_mount_hash(); 2370 } 2371 out2: 2372 unlock_mount(mp); 2373 out: 2374 path_put(&old_path); 2375 return err; 2376 } 2377 2378 static struct file *open_detached_copy(struct path *path, bool recursive) 2379 { 2380 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; 2381 struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true); 2382 struct mount *mnt, *p; 2383 struct file *file; 2384 2385 if (IS_ERR(ns)) 2386 return ERR_CAST(ns); 2387 2388 namespace_lock(); 2389 mnt = __do_loopback(path, recursive); 2390 if (IS_ERR(mnt)) { 2391 namespace_unlock(); 2392 free_mnt_ns(ns); 2393 return ERR_CAST(mnt); 2394 } 2395 2396 lock_mount_hash(); 2397 for (p = mnt; p; p = next_mnt(p, mnt)) { 2398 p->mnt_ns = ns; 2399 ns->mounts++; 2400 } 2401 ns->root = mnt; 2402 list_add_tail(&ns->list, &mnt->mnt_list); 2403 mntget(&mnt->mnt); 2404 unlock_mount_hash(); 2405 namespace_unlock(); 2406 2407 mntput(path->mnt); 2408 path->mnt = &mnt->mnt; 2409 file = dentry_open(path, O_PATH, current_cred()); 2410 if (IS_ERR(file)) 2411 dissolve_on_fput(path->mnt); 2412 else 2413 file->f_mode |= FMODE_NEED_UNMOUNT; 2414 return file; 2415 } 2416 2417 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags) 2418 { 2419 struct file *file; 2420 struct path path; 2421 int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW; 2422 bool detached = flags & OPEN_TREE_CLONE; 2423 int error; 2424 int fd; 2425 2426 BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC); 2427 2428 if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE | 2429 AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE | 2430 OPEN_TREE_CLOEXEC)) 2431 return -EINVAL; 2432 2433 if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE) 2434 return -EINVAL; 2435 2436 if (flags & AT_NO_AUTOMOUNT) 2437 lookup_flags &= ~LOOKUP_AUTOMOUNT; 2438 if (flags & AT_SYMLINK_NOFOLLOW) 2439 lookup_flags &= ~LOOKUP_FOLLOW; 2440 if (flags & AT_EMPTY_PATH) 2441 lookup_flags |= LOOKUP_EMPTY; 2442 2443 if (detached && !may_mount()) 2444 return -EPERM; 2445 2446 fd = get_unused_fd_flags(flags & O_CLOEXEC); 2447 if (fd < 0) 2448 return fd; 2449 2450 error = user_path_at(dfd, filename, lookup_flags, &path); 2451 if (unlikely(error)) { 2452 file = ERR_PTR(error); 2453 } else { 2454 if (detached) 2455 file = open_detached_copy(&path, flags & AT_RECURSIVE); 2456 else 2457 file = dentry_open(&path, O_PATH, current_cred()); 2458 path_put(&path); 2459 } 2460 if (IS_ERR(file)) { 2461 put_unused_fd(fd); 2462 return PTR_ERR(file); 2463 } 2464 fd_install(fd, file); 2465 return fd; 2466 } 2467 2468 /* 2469 * Don't allow locked mount flags to be cleared. 2470 * 2471 * No locks need to be held here while testing the various MNT_LOCK 2472 * flags because those flags can never be cleared once they are set. 2473 */ 2474 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags) 2475 { 2476 unsigned int fl = mnt->mnt.mnt_flags; 2477 2478 if ((fl & MNT_LOCK_READONLY) && 2479 !(mnt_flags & MNT_READONLY)) 2480 return false; 2481 2482 if ((fl & MNT_LOCK_NODEV) && 2483 !(mnt_flags & MNT_NODEV)) 2484 return false; 2485 2486 if ((fl & MNT_LOCK_NOSUID) && 2487 !(mnt_flags & MNT_NOSUID)) 2488 return false; 2489 2490 if ((fl & MNT_LOCK_NOEXEC) && 2491 !(mnt_flags & MNT_NOEXEC)) 2492 return false; 2493 2494 if ((fl & MNT_LOCK_ATIME) && 2495 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) 2496 return false; 2497 2498 return true; 2499 } 2500 2501 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags) 2502 { 2503 bool readonly_request = (mnt_flags & MNT_READONLY); 2504 2505 if (readonly_request == __mnt_is_readonly(&mnt->mnt)) 2506 return 0; 2507 2508 if (readonly_request) 2509 return mnt_make_readonly(mnt); 2510 2511 return __mnt_unmake_readonly(mnt); 2512 } 2513 2514 /* 2515 * Update the user-settable attributes on a mount. The caller must hold 2516 * sb->s_umount for writing. 2517 */ 2518 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags) 2519 { 2520 lock_mount_hash(); 2521 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK; 2522 mnt->mnt.mnt_flags = mnt_flags; 2523 touch_mnt_namespace(mnt->mnt_ns); 2524 unlock_mount_hash(); 2525 } 2526 2527 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt) 2528 { 2529 struct super_block *sb = mnt->mnt_sb; 2530 2531 if (!__mnt_is_readonly(mnt) && 2532 (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) { 2533 char *buf = (char *)__get_free_page(GFP_KERNEL); 2534 char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM); 2535 struct tm tm; 2536 2537 time64_to_tm(sb->s_time_max, 0, &tm); 2538 2539 pr_warn("%s filesystem being %s at %s supports timestamps until %04ld (0x%llx)\n", 2540 sb->s_type->name, 2541 is_mounted(mnt) ? "remounted" : "mounted", 2542 mntpath, 2543 tm.tm_year+1900, (unsigned long long)sb->s_time_max); 2544 2545 free_page((unsigned long)buf); 2546 } 2547 } 2548 2549 /* 2550 * Handle reconfiguration of the mountpoint only without alteration of the 2551 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND 2552 * to mount(2). 2553 */ 2554 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags) 2555 { 2556 struct super_block *sb = path->mnt->mnt_sb; 2557 struct mount *mnt = real_mount(path->mnt); 2558 int ret; 2559 2560 if (!check_mnt(mnt)) 2561 return -EINVAL; 2562 2563 if (path->dentry != mnt->mnt.mnt_root) 2564 return -EINVAL; 2565 2566 if (!can_change_locked_flags(mnt, mnt_flags)) 2567 return -EPERM; 2568 2569 down_write(&sb->s_umount); 2570 ret = change_mount_ro_state(mnt, mnt_flags); 2571 if (ret == 0) 2572 set_mount_attributes(mnt, mnt_flags); 2573 up_write(&sb->s_umount); 2574 2575 mnt_warn_timestamp_expiry(path, &mnt->mnt); 2576 2577 return ret; 2578 } 2579 2580 /* 2581 * change filesystem flags. dir should be a physical root of filesystem. 2582 * If you've mounted a non-root directory somewhere and want to do remount 2583 * on it - tough luck. 2584 */ 2585 static int do_remount(struct path *path, int ms_flags, int sb_flags, 2586 int mnt_flags, void *data) 2587 { 2588 int err; 2589 struct super_block *sb = path->mnt->mnt_sb; 2590 struct mount *mnt = real_mount(path->mnt); 2591 struct fs_context *fc; 2592 2593 if (!check_mnt(mnt)) 2594 return -EINVAL; 2595 2596 if (path->dentry != path->mnt->mnt_root) 2597 return -EINVAL; 2598 2599 if (!can_change_locked_flags(mnt, mnt_flags)) 2600 return -EPERM; 2601 2602 fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK); 2603 if (IS_ERR(fc)) 2604 return PTR_ERR(fc); 2605 2606 err = parse_monolithic_mount_data(fc, data); 2607 if (!err) { 2608 down_write(&sb->s_umount); 2609 err = -EPERM; 2610 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) { 2611 err = reconfigure_super(fc); 2612 if (!err) 2613 set_mount_attributes(mnt, mnt_flags); 2614 } 2615 up_write(&sb->s_umount); 2616 } 2617 2618 mnt_warn_timestamp_expiry(path, &mnt->mnt); 2619 2620 put_fs_context(fc); 2621 return err; 2622 } 2623 2624 static inline int tree_contains_unbindable(struct mount *mnt) 2625 { 2626 struct mount *p; 2627 for (p = mnt; p; p = next_mnt(p, mnt)) { 2628 if (IS_MNT_UNBINDABLE(p)) 2629 return 1; 2630 } 2631 return 0; 2632 } 2633 2634 /* 2635 * Check that there aren't references to earlier/same mount namespaces in the 2636 * specified subtree. Such references can act as pins for mount namespaces 2637 * that aren't checked by the mount-cycle checking code, thereby allowing 2638 * cycles to be made. 2639 */ 2640 static bool check_for_nsfs_mounts(struct mount *subtree) 2641 { 2642 struct mount *p; 2643 bool ret = false; 2644 2645 lock_mount_hash(); 2646 for (p = subtree; p; p = next_mnt(p, subtree)) 2647 if (mnt_ns_loop(p->mnt.mnt_root)) 2648 goto out; 2649 2650 ret = true; 2651 out: 2652 unlock_mount_hash(); 2653 return ret; 2654 } 2655 2656 static int do_move_mount(struct path *old_path, struct path *new_path) 2657 { 2658 struct mnt_namespace *ns; 2659 struct mount *p; 2660 struct mount *old; 2661 struct mount *parent; 2662 struct mountpoint *mp, *old_mp; 2663 int err; 2664 bool attached; 2665 2666 mp = lock_mount(new_path); 2667 if (IS_ERR(mp)) 2668 return PTR_ERR(mp); 2669 2670 old = real_mount(old_path->mnt); 2671 p = real_mount(new_path->mnt); 2672 parent = old->mnt_parent; 2673 attached = mnt_has_parent(old); 2674 old_mp = old->mnt_mp; 2675 ns = old->mnt_ns; 2676 2677 err = -EINVAL; 2678 /* The mountpoint must be in our namespace. */ 2679 if (!check_mnt(p)) 2680 goto out; 2681 2682 /* The thing moved must be mounted... */ 2683 if (!is_mounted(&old->mnt)) 2684 goto out; 2685 2686 /* ... and either ours or the root of anon namespace */ 2687 if (!(attached ? check_mnt(old) : is_anon_ns(ns))) 2688 goto out; 2689 2690 if (old->mnt.mnt_flags & MNT_LOCKED) 2691 goto out; 2692 2693 if (old_path->dentry != old_path->mnt->mnt_root) 2694 goto out; 2695 2696 if (d_is_dir(new_path->dentry) != 2697 d_is_dir(old_path->dentry)) 2698 goto out; 2699 /* 2700 * Don't move a mount residing in a shared parent. 2701 */ 2702 if (attached && IS_MNT_SHARED(parent)) 2703 goto out; 2704 /* 2705 * Don't move a mount tree containing unbindable mounts to a destination 2706 * mount which is shared. 2707 */ 2708 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old)) 2709 goto out; 2710 err = -ELOOP; 2711 if (!check_for_nsfs_mounts(old)) 2712 goto out; 2713 for (; mnt_has_parent(p); p = p->mnt_parent) 2714 if (p == old) 2715 goto out; 2716 2717 err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp, 2718 attached); 2719 if (err) 2720 goto out; 2721 2722 /* if the mount is moved, it should no longer be expire 2723 * automatically */ 2724 list_del_init(&old->mnt_expire); 2725 if (attached) 2726 put_mountpoint(old_mp); 2727 out: 2728 unlock_mount(mp); 2729 if (!err) { 2730 if (attached) 2731 mntput_no_expire(parent); 2732 else 2733 free_mnt_ns(ns); 2734 } 2735 return err; 2736 } 2737 2738 static int do_move_mount_old(struct path *path, const char *old_name) 2739 { 2740 struct path old_path; 2741 int err; 2742 2743 if (!old_name || !*old_name) 2744 return -EINVAL; 2745 2746 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); 2747 if (err) 2748 return err; 2749 2750 err = do_move_mount(&old_path, path); 2751 path_put(&old_path); 2752 return err; 2753 } 2754 2755 /* 2756 * add a mount into a namespace's mount tree 2757 */ 2758 static int do_add_mount(struct mount *newmnt, struct mountpoint *mp, 2759 struct path *path, int mnt_flags) 2760 { 2761 struct mount *parent = real_mount(path->mnt); 2762 2763 mnt_flags &= ~MNT_INTERNAL_FLAGS; 2764 2765 if (unlikely(!check_mnt(parent))) { 2766 /* that's acceptable only for automounts done in private ns */ 2767 if (!(mnt_flags & MNT_SHRINKABLE)) 2768 return -EINVAL; 2769 /* ... and for those we'd better have mountpoint still alive */ 2770 if (!parent->mnt_ns) 2771 return -EINVAL; 2772 } 2773 2774 /* Refuse the same filesystem on the same mount point */ 2775 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && 2776 path->mnt->mnt_root == path->dentry) 2777 return -EBUSY; 2778 2779 if (d_is_symlink(newmnt->mnt.mnt_root)) 2780 return -EINVAL; 2781 2782 newmnt->mnt.mnt_flags = mnt_flags; 2783 return graft_tree(newmnt, parent, mp); 2784 } 2785 2786 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags); 2787 2788 /* 2789 * Create a new mount using a superblock configuration and request it 2790 * be added to the namespace tree. 2791 */ 2792 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint, 2793 unsigned int mnt_flags) 2794 { 2795 struct vfsmount *mnt; 2796 struct mountpoint *mp; 2797 struct super_block *sb = fc->root->d_sb; 2798 int error; 2799 2800 error = security_sb_kern_mount(sb); 2801 if (!error && mount_too_revealing(sb, &mnt_flags)) 2802 error = -EPERM; 2803 2804 if (unlikely(error)) { 2805 fc_drop_locked(fc); 2806 return error; 2807 } 2808 2809 up_write(&sb->s_umount); 2810 2811 mnt = vfs_create_mount(fc); 2812 if (IS_ERR(mnt)) 2813 return PTR_ERR(mnt); 2814 2815 mnt_warn_timestamp_expiry(mountpoint, mnt); 2816 2817 mp = lock_mount(mountpoint); 2818 if (IS_ERR(mp)) { 2819 mntput(mnt); 2820 return PTR_ERR(mp); 2821 } 2822 error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags); 2823 unlock_mount(mp); 2824 if (error < 0) 2825 mntput(mnt); 2826 return error; 2827 } 2828 2829 /* 2830 * create a new mount for userspace and request it to be added into the 2831 * namespace's tree 2832 */ 2833 static int do_new_mount(struct path *path, const char *fstype, int sb_flags, 2834 int mnt_flags, const char *name, void *data) 2835 { 2836 struct file_system_type *type; 2837 struct fs_context *fc; 2838 const char *subtype = NULL; 2839 int err = 0; 2840 2841 if (!fstype) 2842 return -EINVAL; 2843 2844 type = get_fs_type(fstype); 2845 if (!type) 2846 return -ENODEV; 2847 2848 if (type->fs_flags & FS_HAS_SUBTYPE) { 2849 subtype = strchr(fstype, '.'); 2850 if (subtype) { 2851 subtype++; 2852 if (!*subtype) { 2853 put_filesystem(type); 2854 return -EINVAL; 2855 } 2856 } 2857 } 2858 2859 fc = fs_context_for_mount(type, sb_flags); 2860 put_filesystem(type); 2861 if (IS_ERR(fc)) 2862 return PTR_ERR(fc); 2863 2864 if (subtype) 2865 err = vfs_parse_fs_string(fc, "subtype", 2866 subtype, strlen(subtype)); 2867 if (!err && name) 2868 err = vfs_parse_fs_string(fc, "source", name, strlen(name)); 2869 if (!err) 2870 err = parse_monolithic_mount_data(fc, data); 2871 if (!err && !mount_capable(fc)) 2872 err = -EPERM; 2873 if (!err) 2874 err = vfs_get_tree(fc); 2875 if (!err) 2876 err = do_new_mount_fc(fc, path, mnt_flags); 2877 2878 put_fs_context(fc); 2879 return err; 2880 } 2881 2882 int finish_automount(struct vfsmount *m, struct path *path) 2883 { 2884 struct dentry *dentry = path->dentry; 2885 struct mountpoint *mp; 2886 struct mount *mnt; 2887 int err; 2888 2889 if (!m) 2890 return 0; 2891 if (IS_ERR(m)) 2892 return PTR_ERR(m); 2893 2894 mnt = real_mount(m); 2895 /* The new mount record should have at least 2 refs to prevent it being 2896 * expired before we get a chance to add it 2897 */ 2898 BUG_ON(mnt_get_count(mnt) < 2); 2899 2900 if (m->mnt_sb == path->mnt->mnt_sb && 2901 m->mnt_root == dentry) { 2902 err = -ELOOP; 2903 goto discard; 2904 } 2905 2906 /* 2907 * we don't want to use lock_mount() - in this case finding something 2908 * that overmounts our mountpoint to be means "quitely drop what we've 2909 * got", not "try to mount it on top". 2910 */ 2911 inode_lock(dentry->d_inode); 2912 namespace_lock(); 2913 if (unlikely(cant_mount(dentry))) { 2914 err = -ENOENT; 2915 goto discard_locked; 2916 } 2917 rcu_read_lock(); 2918 if (unlikely(__lookup_mnt(path->mnt, dentry))) { 2919 rcu_read_unlock(); 2920 err = 0; 2921 goto discard_locked; 2922 } 2923 rcu_read_unlock(); 2924 mp = get_mountpoint(dentry); 2925 if (IS_ERR(mp)) { 2926 err = PTR_ERR(mp); 2927 goto discard_locked; 2928 } 2929 2930 err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE); 2931 unlock_mount(mp); 2932 if (unlikely(err)) 2933 goto discard; 2934 mntput(m); 2935 return 0; 2936 2937 discard_locked: 2938 namespace_unlock(); 2939 inode_unlock(dentry->d_inode); 2940 discard: 2941 /* remove m from any expiration list it may be on */ 2942 if (!list_empty(&mnt->mnt_expire)) { 2943 namespace_lock(); 2944 list_del_init(&mnt->mnt_expire); 2945 namespace_unlock(); 2946 } 2947 mntput(m); 2948 mntput(m); 2949 return err; 2950 } 2951 2952 /** 2953 * mnt_set_expiry - Put a mount on an expiration list 2954 * @mnt: The mount to list. 2955 * @expiry_list: The list to add the mount to. 2956 */ 2957 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list) 2958 { 2959 namespace_lock(); 2960 2961 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list); 2962 2963 namespace_unlock(); 2964 } 2965 EXPORT_SYMBOL(mnt_set_expiry); 2966 2967 /* 2968 * process a list of expirable mountpoints with the intent of discarding any 2969 * mountpoints that aren't in use and haven't been touched since last we came 2970 * here 2971 */ 2972 void mark_mounts_for_expiry(struct list_head *mounts) 2973 { 2974 struct mount *mnt, *next; 2975 LIST_HEAD(graveyard); 2976 2977 if (list_empty(mounts)) 2978 return; 2979 2980 namespace_lock(); 2981 lock_mount_hash(); 2982 2983 /* extract from the expiration list every vfsmount that matches the 2984 * following criteria: 2985 * - only referenced by its parent vfsmount 2986 * - still marked for expiry (marked on the last call here; marks are 2987 * cleared by mntput()) 2988 */ 2989 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { 2990 if (!xchg(&mnt->mnt_expiry_mark, 1) || 2991 propagate_mount_busy(mnt, 1)) 2992 continue; 2993 list_move(&mnt->mnt_expire, &graveyard); 2994 } 2995 while (!list_empty(&graveyard)) { 2996 mnt = list_first_entry(&graveyard, struct mount, mnt_expire); 2997 touch_mnt_namespace(mnt->mnt_ns); 2998 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 2999 } 3000 unlock_mount_hash(); 3001 namespace_unlock(); 3002 } 3003 3004 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); 3005 3006 /* 3007 * Ripoff of 'select_parent()' 3008 * 3009 * search the list of submounts for a given mountpoint, and move any 3010 * shrinkable submounts to the 'graveyard' list. 3011 */ 3012 static int select_submounts(struct mount *parent, struct list_head *graveyard) 3013 { 3014 struct mount *this_parent = parent; 3015 struct list_head *next; 3016 int found = 0; 3017 3018 repeat: 3019 next = this_parent->mnt_mounts.next; 3020 resume: 3021 while (next != &this_parent->mnt_mounts) { 3022 struct list_head *tmp = next; 3023 struct mount *mnt = list_entry(tmp, struct mount, mnt_child); 3024 3025 next = tmp->next; 3026 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE)) 3027 continue; 3028 /* 3029 * Descend a level if the d_mounts list is non-empty. 3030 */ 3031 if (!list_empty(&mnt->mnt_mounts)) { 3032 this_parent = mnt; 3033 goto repeat; 3034 } 3035 3036 if (!propagate_mount_busy(mnt, 1)) { 3037 list_move_tail(&mnt->mnt_expire, graveyard); 3038 found++; 3039 } 3040 } 3041 /* 3042 * All done at this level ... ascend and resume the search 3043 */ 3044 if (this_parent != parent) { 3045 next = this_parent->mnt_child.next; 3046 this_parent = this_parent->mnt_parent; 3047 goto resume; 3048 } 3049 return found; 3050 } 3051 3052 /* 3053 * process a list of expirable mountpoints with the intent of discarding any 3054 * submounts of a specific parent mountpoint 3055 * 3056 * mount_lock must be held for write 3057 */ 3058 static void shrink_submounts(struct mount *mnt) 3059 { 3060 LIST_HEAD(graveyard); 3061 struct mount *m; 3062 3063 /* extract submounts of 'mountpoint' from the expiration list */ 3064 while (select_submounts(mnt, &graveyard)) { 3065 while (!list_empty(&graveyard)) { 3066 m = list_first_entry(&graveyard, struct mount, 3067 mnt_expire); 3068 touch_mnt_namespace(m->mnt_ns); 3069 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC); 3070 } 3071 } 3072 } 3073 3074 void *copy_mount_options(const void __user * data) 3075 { 3076 char *copy; 3077 unsigned size; 3078 3079 if (!data) 3080 return NULL; 3081 3082 copy = kmalloc(PAGE_SIZE, GFP_KERNEL); 3083 if (!copy) 3084 return ERR_PTR(-ENOMEM); 3085 3086 size = PAGE_SIZE - offset_in_page(data); 3087 3088 if (copy_from_user(copy, data, size)) { 3089 kfree(copy); 3090 return ERR_PTR(-EFAULT); 3091 } 3092 if (size != PAGE_SIZE) { 3093 if (copy_from_user(copy + size, data + size, PAGE_SIZE - size)) 3094 memset(copy + size, 0, PAGE_SIZE - size); 3095 } 3096 return copy; 3097 } 3098 3099 char *copy_mount_string(const void __user *data) 3100 { 3101 return data ? strndup_user(data, PATH_MAX) : NULL; 3102 } 3103 3104 /* 3105 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to 3106 * be given to the mount() call (ie: read-only, no-dev, no-suid etc). 3107 * 3108 * data is a (void *) that can point to any structure up to 3109 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent 3110 * information (or be NULL). 3111 * 3112 * Pre-0.97 versions of mount() didn't have a flags word. 3113 * When the flags word was introduced its top half was required 3114 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. 3115 * Therefore, if this magic number is present, it carries no information 3116 * and must be discarded. 3117 */ 3118 long do_mount(const char *dev_name, const char __user *dir_name, 3119 const char *type_page, unsigned long flags, void *data_page) 3120 { 3121 struct path path; 3122 unsigned int mnt_flags = 0, sb_flags; 3123 int retval = 0; 3124 3125 /* Discard magic */ 3126 if ((flags & MS_MGC_MSK) == MS_MGC_VAL) 3127 flags &= ~MS_MGC_MSK; 3128 3129 /* Basic sanity checks */ 3130 if (data_page) 3131 ((char *)data_page)[PAGE_SIZE - 1] = 0; 3132 3133 if (flags & MS_NOUSER) 3134 return -EINVAL; 3135 3136 /* ... and get the mountpoint */ 3137 retval = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path); 3138 if (retval) 3139 return retval; 3140 3141 retval = security_sb_mount(dev_name, &path, 3142 type_page, flags, data_page); 3143 if (!retval && !may_mount()) 3144 retval = -EPERM; 3145 if (!retval && (flags & SB_MANDLOCK) && !may_mandlock()) 3146 retval = -EPERM; 3147 if (retval) 3148 goto dput_out; 3149 3150 /* Default to relatime unless overriden */ 3151 if (!(flags & MS_NOATIME)) 3152 mnt_flags |= MNT_RELATIME; 3153 3154 /* Separate the per-mountpoint flags */ 3155 if (flags & MS_NOSUID) 3156 mnt_flags |= MNT_NOSUID; 3157 if (flags & MS_NODEV) 3158 mnt_flags |= MNT_NODEV; 3159 if (flags & MS_NOEXEC) 3160 mnt_flags |= MNT_NOEXEC; 3161 if (flags & MS_NOATIME) 3162 mnt_flags |= MNT_NOATIME; 3163 if (flags & MS_NODIRATIME) 3164 mnt_flags |= MNT_NODIRATIME; 3165 if (flags & MS_STRICTATIME) 3166 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME); 3167 if (flags & MS_RDONLY) 3168 mnt_flags |= MNT_READONLY; 3169 3170 /* The default atime for remount is preservation */ 3171 if ((flags & MS_REMOUNT) && 3172 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME | 3173 MS_STRICTATIME)) == 0)) { 3174 mnt_flags &= ~MNT_ATIME_MASK; 3175 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK; 3176 } 3177 3178 sb_flags = flags & (SB_RDONLY | 3179 SB_SYNCHRONOUS | 3180 SB_MANDLOCK | 3181 SB_DIRSYNC | 3182 SB_SILENT | 3183 SB_POSIXACL | 3184 SB_LAZYTIME | 3185 SB_I_VERSION); 3186 3187 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND)) 3188 retval = do_reconfigure_mnt(&path, mnt_flags); 3189 else if (flags & MS_REMOUNT) 3190 retval = do_remount(&path, flags, sb_flags, mnt_flags, 3191 data_page); 3192 else if (flags & MS_BIND) 3193 retval = do_loopback(&path, dev_name, flags & MS_REC); 3194 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 3195 retval = do_change_type(&path, flags); 3196 else if (flags & MS_MOVE) 3197 retval = do_move_mount_old(&path, dev_name); 3198 else 3199 retval = do_new_mount(&path, type_page, sb_flags, mnt_flags, 3200 dev_name, data_page); 3201 dput_out: 3202 path_put(&path); 3203 return retval; 3204 } 3205 3206 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns) 3207 { 3208 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES); 3209 } 3210 3211 static void dec_mnt_namespaces(struct ucounts *ucounts) 3212 { 3213 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES); 3214 } 3215 3216 static void free_mnt_ns(struct mnt_namespace *ns) 3217 { 3218 if (!is_anon_ns(ns)) 3219 ns_free_inum(&ns->ns); 3220 dec_mnt_namespaces(ns->ucounts); 3221 put_user_ns(ns->user_ns); 3222 kfree(ns); 3223 } 3224 3225 /* 3226 * Assign a sequence number so we can detect when we attempt to bind 3227 * mount a reference to an older mount namespace into the current 3228 * mount namespace, preventing reference counting loops. A 64bit 3229 * number incrementing at 10Ghz will take 12,427 years to wrap which 3230 * is effectively never, so we can ignore the possibility. 3231 */ 3232 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1); 3233 3234 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon) 3235 { 3236 struct mnt_namespace *new_ns; 3237 struct ucounts *ucounts; 3238 int ret; 3239 3240 ucounts = inc_mnt_namespaces(user_ns); 3241 if (!ucounts) 3242 return ERR_PTR(-ENOSPC); 3243 3244 new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL); 3245 if (!new_ns) { 3246 dec_mnt_namespaces(ucounts); 3247 return ERR_PTR(-ENOMEM); 3248 } 3249 if (!anon) { 3250 ret = ns_alloc_inum(&new_ns->ns); 3251 if (ret) { 3252 kfree(new_ns); 3253 dec_mnt_namespaces(ucounts); 3254 return ERR_PTR(ret); 3255 } 3256 } 3257 new_ns->ns.ops = &mntns_operations; 3258 if (!anon) 3259 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq); 3260 atomic_set(&new_ns->count, 1); 3261 INIT_LIST_HEAD(&new_ns->list); 3262 init_waitqueue_head(&new_ns->poll); 3263 spin_lock_init(&new_ns->ns_lock); 3264 new_ns->user_ns = get_user_ns(user_ns); 3265 new_ns->ucounts = ucounts; 3266 return new_ns; 3267 } 3268 3269 __latent_entropy 3270 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns, 3271 struct user_namespace *user_ns, struct fs_struct *new_fs) 3272 { 3273 struct mnt_namespace *new_ns; 3274 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL; 3275 struct mount *p, *q; 3276 struct mount *old; 3277 struct mount *new; 3278 int copy_flags; 3279 3280 BUG_ON(!ns); 3281 3282 if (likely(!(flags & CLONE_NEWNS))) { 3283 get_mnt_ns(ns); 3284 return ns; 3285 } 3286 3287 old = ns->root; 3288 3289 new_ns = alloc_mnt_ns(user_ns, false); 3290 if (IS_ERR(new_ns)) 3291 return new_ns; 3292 3293 namespace_lock(); 3294 /* First pass: copy the tree topology */ 3295 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE; 3296 if (user_ns != ns->user_ns) 3297 copy_flags |= CL_SHARED_TO_SLAVE; 3298 new = copy_tree(old, old->mnt.mnt_root, copy_flags); 3299 if (IS_ERR(new)) { 3300 namespace_unlock(); 3301 free_mnt_ns(new_ns); 3302 return ERR_CAST(new); 3303 } 3304 if (user_ns != ns->user_ns) { 3305 lock_mount_hash(); 3306 lock_mnt_tree(new); 3307 unlock_mount_hash(); 3308 } 3309 new_ns->root = new; 3310 list_add_tail(&new_ns->list, &new->mnt_list); 3311 3312 /* 3313 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts 3314 * as belonging to new namespace. We have already acquired a private 3315 * fs_struct, so tsk->fs->lock is not needed. 3316 */ 3317 p = old; 3318 q = new; 3319 while (p) { 3320 q->mnt_ns = new_ns; 3321 new_ns->mounts++; 3322 if (new_fs) { 3323 if (&p->mnt == new_fs->root.mnt) { 3324 new_fs->root.mnt = mntget(&q->mnt); 3325 rootmnt = &p->mnt; 3326 } 3327 if (&p->mnt == new_fs->pwd.mnt) { 3328 new_fs->pwd.mnt = mntget(&q->mnt); 3329 pwdmnt = &p->mnt; 3330 } 3331 } 3332 p = next_mnt(p, old); 3333 q = next_mnt(q, new); 3334 if (!q) 3335 break; 3336 while (p->mnt.mnt_root != q->mnt.mnt_root) 3337 p = next_mnt(p, old); 3338 } 3339 namespace_unlock(); 3340 3341 if (rootmnt) 3342 mntput(rootmnt); 3343 if (pwdmnt) 3344 mntput(pwdmnt); 3345 3346 return new_ns; 3347 } 3348 3349 struct dentry *mount_subtree(struct vfsmount *m, const char *name) 3350 { 3351 struct mount *mnt = real_mount(m); 3352 struct mnt_namespace *ns; 3353 struct super_block *s; 3354 struct path path; 3355 int err; 3356 3357 ns = alloc_mnt_ns(&init_user_ns, true); 3358 if (IS_ERR(ns)) { 3359 mntput(m); 3360 return ERR_CAST(ns); 3361 } 3362 mnt->mnt_ns = ns; 3363 ns->root = mnt; 3364 ns->mounts++; 3365 list_add(&mnt->mnt_list, &ns->list); 3366 3367 err = vfs_path_lookup(m->mnt_root, m, 3368 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path); 3369 3370 put_mnt_ns(ns); 3371 3372 if (err) 3373 return ERR_PTR(err); 3374 3375 /* trade a vfsmount reference for active sb one */ 3376 s = path.mnt->mnt_sb; 3377 atomic_inc(&s->s_active); 3378 mntput(path.mnt); 3379 /* lock the sucker */ 3380 down_write(&s->s_umount); 3381 /* ... and return the root of (sub)tree on it */ 3382 return path.dentry; 3383 } 3384 EXPORT_SYMBOL(mount_subtree); 3385 3386 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name, 3387 char __user *, type, unsigned long, flags, void __user *, data) 3388 { 3389 int ret; 3390 char *kernel_type; 3391 char *kernel_dev; 3392 void *options; 3393 3394 kernel_type = copy_mount_string(type); 3395 ret = PTR_ERR(kernel_type); 3396 if (IS_ERR(kernel_type)) 3397 goto out_type; 3398 3399 kernel_dev = copy_mount_string(dev_name); 3400 ret = PTR_ERR(kernel_dev); 3401 if (IS_ERR(kernel_dev)) 3402 goto out_dev; 3403 3404 options = copy_mount_options(data); 3405 ret = PTR_ERR(options); 3406 if (IS_ERR(options)) 3407 goto out_data; 3408 3409 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options); 3410 3411 kfree(options); 3412 out_data: 3413 kfree(kernel_dev); 3414 out_dev: 3415 kfree(kernel_type); 3416 out_type: 3417 return ret; 3418 } 3419 3420 /* 3421 * Create a kernel mount representation for a new, prepared superblock 3422 * (specified by fs_fd) and attach to an open_tree-like file descriptor. 3423 */ 3424 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags, 3425 unsigned int, attr_flags) 3426 { 3427 struct mnt_namespace *ns; 3428 struct fs_context *fc; 3429 struct file *file; 3430 struct path newmount; 3431 struct mount *mnt; 3432 struct fd f; 3433 unsigned int mnt_flags = 0; 3434 long ret; 3435 3436 if (!may_mount()) 3437 return -EPERM; 3438 3439 if ((flags & ~(FSMOUNT_CLOEXEC)) != 0) 3440 return -EINVAL; 3441 3442 if (attr_flags & ~(MOUNT_ATTR_RDONLY | 3443 MOUNT_ATTR_NOSUID | 3444 MOUNT_ATTR_NODEV | 3445 MOUNT_ATTR_NOEXEC | 3446 MOUNT_ATTR__ATIME | 3447 MOUNT_ATTR_NODIRATIME)) 3448 return -EINVAL; 3449 3450 if (attr_flags & MOUNT_ATTR_RDONLY) 3451 mnt_flags |= MNT_READONLY; 3452 if (attr_flags & MOUNT_ATTR_NOSUID) 3453 mnt_flags |= MNT_NOSUID; 3454 if (attr_flags & MOUNT_ATTR_NODEV) 3455 mnt_flags |= MNT_NODEV; 3456 if (attr_flags & MOUNT_ATTR_NOEXEC) 3457 mnt_flags |= MNT_NOEXEC; 3458 if (attr_flags & MOUNT_ATTR_NODIRATIME) 3459 mnt_flags |= MNT_NODIRATIME; 3460 3461 switch (attr_flags & MOUNT_ATTR__ATIME) { 3462 case MOUNT_ATTR_STRICTATIME: 3463 break; 3464 case MOUNT_ATTR_NOATIME: 3465 mnt_flags |= MNT_NOATIME; 3466 break; 3467 case MOUNT_ATTR_RELATIME: 3468 mnt_flags |= MNT_RELATIME; 3469 break; 3470 default: 3471 return -EINVAL; 3472 } 3473 3474 f = fdget(fs_fd); 3475 if (!f.file) 3476 return -EBADF; 3477 3478 ret = -EINVAL; 3479 if (f.file->f_op != &fscontext_fops) 3480 goto err_fsfd; 3481 3482 fc = f.file->private_data; 3483 3484 ret = mutex_lock_interruptible(&fc->uapi_mutex); 3485 if (ret < 0) 3486 goto err_fsfd; 3487 3488 /* There must be a valid superblock or we can't mount it */ 3489 ret = -EINVAL; 3490 if (!fc->root) 3491 goto err_unlock; 3492 3493 ret = -EPERM; 3494 if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) { 3495 pr_warn("VFS: Mount too revealing\n"); 3496 goto err_unlock; 3497 } 3498 3499 ret = -EBUSY; 3500 if (fc->phase != FS_CONTEXT_AWAITING_MOUNT) 3501 goto err_unlock; 3502 3503 ret = -EPERM; 3504 if ((fc->sb_flags & SB_MANDLOCK) && !may_mandlock()) 3505 goto err_unlock; 3506 3507 newmount.mnt = vfs_create_mount(fc); 3508 if (IS_ERR(newmount.mnt)) { 3509 ret = PTR_ERR(newmount.mnt); 3510 goto err_unlock; 3511 } 3512 newmount.dentry = dget(fc->root); 3513 newmount.mnt->mnt_flags = mnt_flags; 3514 3515 /* We've done the mount bit - now move the file context into more or 3516 * less the same state as if we'd done an fspick(). We don't want to 3517 * do any memory allocation or anything like that at this point as we 3518 * don't want to have to handle any errors incurred. 3519 */ 3520 vfs_clean_context(fc); 3521 3522 ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true); 3523 if (IS_ERR(ns)) { 3524 ret = PTR_ERR(ns); 3525 goto err_path; 3526 } 3527 mnt = real_mount(newmount.mnt); 3528 mnt->mnt_ns = ns; 3529 ns->root = mnt; 3530 ns->mounts = 1; 3531 list_add(&mnt->mnt_list, &ns->list); 3532 mntget(newmount.mnt); 3533 3534 /* Attach to an apparent O_PATH fd with a note that we need to unmount 3535 * it, not just simply put it. 3536 */ 3537 file = dentry_open(&newmount, O_PATH, fc->cred); 3538 if (IS_ERR(file)) { 3539 dissolve_on_fput(newmount.mnt); 3540 ret = PTR_ERR(file); 3541 goto err_path; 3542 } 3543 file->f_mode |= FMODE_NEED_UNMOUNT; 3544 3545 ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0); 3546 if (ret >= 0) 3547 fd_install(ret, file); 3548 else 3549 fput(file); 3550 3551 err_path: 3552 path_put(&newmount); 3553 err_unlock: 3554 mutex_unlock(&fc->uapi_mutex); 3555 err_fsfd: 3556 fdput(f); 3557 return ret; 3558 } 3559 3560 /* 3561 * Move a mount from one place to another. In combination with 3562 * fsopen()/fsmount() this is used to install a new mount and in combination 3563 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy 3564 * a mount subtree. 3565 * 3566 * Note the flags value is a combination of MOVE_MOUNT_* flags. 3567 */ 3568 SYSCALL_DEFINE5(move_mount, 3569 int, from_dfd, const char __user *, from_pathname, 3570 int, to_dfd, const char __user *, to_pathname, 3571 unsigned int, flags) 3572 { 3573 struct path from_path, to_path; 3574 unsigned int lflags; 3575 int ret = 0; 3576 3577 if (!may_mount()) 3578 return -EPERM; 3579 3580 if (flags & ~MOVE_MOUNT__MASK) 3581 return -EINVAL; 3582 3583 /* If someone gives a pathname, they aren't permitted to move 3584 * from an fd that requires unmount as we can't get at the flag 3585 * to clear it afterwards. 3586 */ 3587 lflags = 0; 3588 if (flags & MOVE_MOUNT_F_SYMLINKS) lflags |= LOOKUP_FOLLOW; 3589 if (flags & MOVE_MOUNT_F_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT; 3590 if (flags & MOVE_MOUNT_F_EMPTY_PATH) lflags |= LOOKUP_EMPTY; 3591 3592 ret = user_path_at(from_dfd, from_pathname, lflags, &from_path); 3593 if (ret < 0) 3594 return ret; 3595 3596 lflags = 0; 3597 if (flags & MOVE_MOUNT_T_SYMLINKS) lflags |= LOOKUP_FOLLOW; 3598 if (flags & MOVE_MOUNT_T_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT; 3599 if (flags & MOVE_MOUNT_T_EMPTY_PATH) lflags |= LOOKUP_EMPTY; 3600 3601 ret = user_path_at(to_dfd, to_pathname, lflags, &to_path); 3602 if (ret < 0) 3603 goto out_from; 3604 3605 ret = security_move_mount(&from_path, &to_path); 3606 if (ret < 0) 3607 goto out_to; 3608 3609 ret = do_move_mount(&from_path, &to_path); 3610 3611 out_to: 3612 path_put(&to_path); 3613 out_from: 3614 path_put(&from_path); 3615 return ret; 3616 } 3617 3618 /* 3619 * Return true if path is reachable from root 3620 * 3621 * namespace_sem or mount_lock is held 3622 */ 3623 bool is_path_reachable(struct mount *mnt, struct dentry *dentry, 3624 const struct path *root) 3625 { 3626 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) { 3627 dentry = mnt->mnt_mountpoint; 3628 mnt = mnt->mnt_parent; 3629 } 3630 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry); 3631 } 3632 3633 bool path_is_under(const struct path *path1, const struct path *path2) 3634 { 3635 bool res; 3636 read_seqlock_excl(&mount_lock); 3637 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2); 3638 read_sequnlock_excl(&mount_lock); 3639 return res; 3640 } 3641 EXPORT_SYMBOL(path_is_under); 3642 3643 /* 3644 * pivot_root Semantics: 3645 * Moves the root file system of the current process to the directory put_old, 3646 * makes new_root as the new root file system of the current process, and sets 3647 * root/cwd of all processes which had them on the current root to new_root. 3648 * 3649 * Restrictions: 3650 * The new_root and put_old must be directories, and must not be on the 3651 * same file system as the current process root. The put_old must be 3652 * underneath new_root, i.e. adding a non-zero number of /.. to the string 3653 * pointed to by put_old must yield the same directory as new_root. No other 3654 * file system may be mounted on put_old. After all, new_root is a mountpoint. 3655 * 3656 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. 3657 * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives 3658 * in this situation. 3659 * 3660 * Notes: 3661 * - we don't move root/cwd if they are not at the root (reason: if something 3662 * cared enough to change them, it's probably wrong to force them elsewhere) 3663 * - it's okay to pick a root that isn't the root of a file system, e.g. 3664 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, 3665 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root 3666 * first. 3667 */ 3668 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root, 3669 const char __user *, put_old) 3670 { 3671 struct path new, old, root; 3672 struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent; 3673 struct mountpoint *old_mp, *root_mp; 3674 int error; 3675 3676 if (!may_mount()) 3677 return -EPERM; 3678 3679 error = user_path_at(AT_FDCWD, new_root, 3680 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new); 3681 if (error) 3682 goto out0; 3683 3684 error = user_path_at(AT_FDCWD, put_old, 3685 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old); 3686 if (error) 3687 goto out1; 3688 3689 error = security_sb_pivotroot(&old, &new); 3690 if (error) 3691 goto out2; 3692 3693 get_fs_root(current->fs, &root); 3694 old_mp = lock_mount(&old); 3695 error = PTR_ERR(old_mp); 3696 if (IS_ERR(old_mp)) 3697 goto out3; 3698 3699 error = -EINVAL; 3700 new_mnt = real_mount(new.mnt); 3701 root_mnt = real_mount(root.mnt); 3702 old_mnt = real_mount(old.mnt); 3703 ex_parent = new_mnt->mnt_parent; 3704 root_parent = root_mnt->mnt_parent; 3705 if (IS_MNT_SHARED(old_mnt) || 3706 IS_MNT_SHARED(ex_parent) || 3707 IS_MNT_SHARED(root_parent)) 3708 goto out4; 3709 if (!check_mnt(root_mnt) || !check_mnt(new_mnt)) 3710 goto out4; 3711 if (new_mnt->mnt.mnt_flags & MNT_LOCKED) 3712 goto out4; 3713 error = -ENOENT; 3714 if (d_unlinked(new.dentry)) 3715 goto out4; 3716 error = -EBUSY; 3717 if (new_mnt == root_mnt || old_mnt == root_mnt) 3718 goto out4; /* loop, on the same file system */ 3719 error = -EINVAL; 3720 if (root.mnt->mnt_root != root.dentry) 3721 goto out4; /* not a mountpoint */ 3722 if (!mnt_has_parent(root_mnt)) 3723 goto out4; /* not attached */ 3724 if (new.mnt->mnt_root != new.dentry) 3725 goto out4; /* not a mountpoint */ 3726 if (!mnt_has_parent(new_mnt)) 3727 goto out4; /* not attached */ 3728 /* make sure we can reach put_old from new_root */ 3729 if (!is_path_reachable(old_mnt, old.dentry, &new)) 3730 goto out4; 3731 /* make certain new is below the root */ 3732 if (!is_path_reachable(new_mnt, new.dentry, &root)) 3733 goto out4; 3734 lock_mount_hash(); 3735 umount_mnt(new_mnt); 3736 root_mp = unhash_mnt(root_mnt); /* we'll need its mountpoint */ 3737 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) { 3738 new_mnt->mnt.mnt_flags |= MNT_LOCKED; 3739 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED; 3740 } 3741 /* mount old root on put_old */ 3742 attach_mnt(root_mnt, old_mnt, old_mp); 3743 /* mount new_root on / */ 3744 attach_mnt(new_mnt, root_parent, root_mp); 3745 mnt_add_count(root_parent, -1); 3746 touch_mnt_namespace(current->nsproxy->mnt_ns); 3747 /* A moved mount should not expire automatically */ 3748 list_del_init(&new_mnt->mnt_expire); 3749 put_mountpoint(root_mp); 3750 unlock_mount_hash(); 3751 chroot_fs_refs(&root, &new); 3752 error = 0; 3753 out4: 3754 unlock_mount(old_mp); 3755 if (!error) 3756 mntput_no_expire(ex_parent); 3757 out3: 3758 path_put(&root); 3759 out2: 3760 path_put(&old); 3761 out1: 3762 path_put(&new); 3763 out0: 3764 return error; 3765 } 3766 3767 static void __init init_mount_tree(void) 3768 { 3769 struct vfsmount *mnt; 3770 struct mount *m; 3771 struct mnt_namespace *ns; 3772 struct path root; 3773 3774 mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL); 3775 if (IS_ERR(mnt)) 3776 panic("Can't create rootfs"); 3777 3778 ns = alloc_mnt_ns(&init_user_ns, false); 3779 if (IS_ERR(ns)) 3780 panic("Can't allocate initial namespace"); 3781 m = real_mount(mnt); 3782 m->mnt_ns = ns; 3783 ns->root = m; 3784 ns->mounts = 1; 3785 list_add(&m->mnt_list, &ns->list); 3786 init_task.nsproxy->mnt_ns = ns; 3787 get_mnt_ns(ns); 3788 3789 root.mnt = mnt; 3790 root.dentry = mnt->mnt_root; 3791 mnt->mnt_flags |= MNT_LOCKED; 3792 3793 set_fs_pwd(current->fs, &root); 3794 set_fs_root(current->fs, &root); 3795 } 3796 3797 void __init mnt_init(void) 3798 { 3799 int err; 3800 3801 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount), 3802 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 3803 3804 mount_hashtable = alloc_large_system_hash("Mount-cache", 3805 sizeof(struct hlist_head), 3806 mhash_entries, 19, 3807 HASH_ZERO, 3808 &m_hash_shift, &m_hash_mask, 0, 0); 3809 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache", 3810 sizeof(struct hlist_head), 3811 mphash_entries, 19, 3812 HASH_ZERO, 3813 &mp_hash_shift, &mp_hash_mask, 0, 0); 3814 3815 if (!mount_hashtable || !mountpoint_hashtable) 3816 panic("Failed to allocate mount hash table\n"); 3817 3818 kernfs_init(); 3819 3820 err = sysfs_init(); 3821 if (err) 3822 printk(KERN_WARNING "%s: sysfs_init error: %d\n", 3823 __func__, err); 3824 fs_kobj = kobject_create_and_add("fs", NULL); 3825 if (!fs_kobj) 3826 printk(KERN_WARNING "%s: kobj create error\n", __func__); 3827 shmem_init(); 3828 init_rootfs(); 3829 init_mount_tree(); 3830 } 3831 3832 void put_mnt_ns(struct mnt_namespace *ns) 3833 { 3834 if (!atomic_dec_and_test(&ns->count)) 3835 return; 3836 drop_collected_mounts(&ns->root->mnt); 3837 free_mnt_ns(ns); 3838 } 3839 3840 struct vfsmount *kern_mount(struct file_system_type *type) 3841 { 3842 struct vfsmount *mnt; 3843 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL); 3844 if (!IS_ERR(mnt)) { 3845 /* 3846 * it is a longterm mount, don't release mnt until 3847 * we unmount before file sys is unregistered 3848 */ 3849 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL; 3850 } 3851 return mnt; 3852 } 3853 EXPORT_SYMBOL_GPL(kern_mount); 3854 3855 void kern_unmount(struct vfsmount *mnt) 3856 { 3857 /* release long term mount so mount point can be released */ 3858 if (!IS_ERR_OR_NULL(mnt)) { 3859 real_mount(mnt)->mnt_ns = NULL; 3860 synchronize_rcu(); /* yecchhh... */ 3861 mntput(mnt); 3862 } 3863 } 3864 EXPORT_SYMBOL(kern_unmount); 3865 3866 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num) 3867 { 3868 unsigned int i; 3869 3870 for (i = 0; i < num; i++) 3871 if (mnt[i]) 3872 real_mount(mnt[i])->mnt_ns = NULL; 3873 synchronize_rcu_expedited(); 3874 for (i = 0; i < num; i++) 3875 mntput(mnt[i]); 3876 } 3877 EXPORT_SYMBOL(kern_unmount_array); 3878 3879 bool our_mnt(struct vfsmount *mnt) 3880 { 3881 return check_mnt(real_mount(mnt)); 3882 } 3883 3884 bool current_chrooted(void) 3885 { 3886 /* Does the current process have a non-standard root */ 3887 struct path ns_root; 3888 struct path fs_root; 3889 bool chrooted; 3890 3891 /* Find the namespace root */ 3892 ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt; 3893 ns_root.dentry = ns_root.mnt->mnt_root; 3894 path_get(&ns_root); 3895 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root)) 3896 ; 3897 3898 get_fs_root(current->fs, &fs_root); 3899 3900 chrooted = !path_equal(&fs_root, &ns_root); 3901 3902 path_put(&fs_root); 3903 path_put(&ns_root); 3904 3905 return chrooted; 3906 } 3907 3908 static bool mnt_already_visible(struct mnt_namespace *ns, 3909 const struct super_block *sb, 3910 int *new_mnt_flags) 3911 { 3912 int new_flags = *new_mnt_flags; 3913 struct mount *mnt; 3914 bool visible = false; 3915 3916 down_read(&namespace_sem); 3917 lock_ns_list(ns); 3918 list_for_each_entry(mnt, &ns->list, mnt_list) { 3919 struct mount *child; 3920 int mnt_flags; 3921 3922 if (mnt_is_cursor(mnt)) 3923 continue; 3924 3925 if (mnt->mnt.mnt_sb->s_type != sb->s_type) 3926 continue; 3927 3928 /* This mount is not fully visible if it's root directory 3929 * is not the root directory of the filesystem. 3930 */ 3931 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root) 3932 continue; 3933 3934 /* A local view of the mount flags */ 3935 mnt_flags = mnt->mnt.mnt_flags; 3936 3937 /* Don't miss readonly hidden in the superblock flags */ 3938 if (sb_rdonly(mnt->mnt.mnt_sb)) 3939 mnt_flags |= MNT_LOCK_READONLY; 3940 3941 /* Verify the mount flags are equal to or more permissive 3942 * than the proposed new mount. 3943 */ 3944 if ((mnt_flags & MNT_LOCK_READONLY) && 3945 !(new_flags & MNT_READONLY)) 3946 continue; 3947 if ((mnt_flags & MNT_LOCK_ATIME) && 3948 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK))) 3949 continue; 3950 3951 /* This mount is not fully visible if there are any 3952 * locked child mounts that cover anything except for 3953 * empty directories. 3954 */ 3955 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 3956 struct inode *inode = child->mnt_mountpoint->d_inode; 3957 /* Only worry about locked mounts */ 3958 if (!(child->mnt.mnt_flags & MNT_LOCKED)) 3959 continue; 3960 /* Is the directory permanetly empty? */ 3961 if (!is_empty_dir_inode(inode)) 3962 goto next; 3963 } 3964 /* Preserve the locked attributes */ 3965 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \ 3966 MNT_LOCK_ATIME); 3967 visible = true; 3968 goto found; 3969 next: ; 3970 } 3971 found: 3972 unlock_ns_list(ns); 3973 up_read(&namespace_sem); 3974 return visible; 3975 } 3976 3977 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags) 3978 { 3979 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV; 3980 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 3981 unsigned long s_iflags; 3982 3983 if (ns->user_ns == &init_user_ns) 3984 return false; 3985 3986 /* Can this filesystem be too revealing? */ 3987 s_iflags = sb->s_iflags; 3988 if (!(s_iflags & SB_I_USERNS_VISIBLE)) 3989 return false; 3990 3991 if ((s_iflags & required_iflags) != required_iflags) { 3992 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n", 3993 required_iflags); 3994 return true; 3995 } 3996 3997 return !mnt_already_visible(ns, sb, new_mnt_flags); 3998 } 3999 4000 bool mnt_may_suid(struct vfsmount *mnt) 4001 { 4002 /* 4003 * Foreign mounts (accessed via fchdir or through /proc 4004 * symlinks) are always treated as if they are nosuid. This 4005 * prevents namespaces from trusting potentially unsafe 4006 * suid/sgid bits, file caps, or security labels that originate 4007 * in other namespaces. 4008 */ 4009 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) && 4010 current_in_userns(mnt->mnt_sb->s_user_ns); 4011 } 4012 4013 static struct ns_common *mntns_get(struct task_struct *task) 4014 { 4015 struct ns_common *ns = NULL; 4016 struct nsproxy *nsproxy; 4017 4018 task_lock(task); 4019 nsproxy = task->nsproxy; 4020 if (nsproxy) { 4021 ns = &nsproxy->mnt_ns->ns; 4022 get_mnt_ns(to_mnt_ns(ns)); 4023 } 4024 task_unlock(task); 4025 4026 return ns; 4027 } 4028 4029 static void mntns_put(struct ns_common *ns) 4030 { 4031 put_mnt_ns(to_mnt_ns(ns)); 4032 } 4033 4034 static int mntns_install(struct nsset *nsset, struct ns_common *ns) 4035 { 4036 struct nsproxy *nsproxy = nsset->nsproxy; 4037 struct fs_struct *fs = nsset->fs; 4038 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns; 4039 struct user_namespace *user_ns = nsset->cred->user_ns; 4040 struct path root; 4041 int err; 4042 4043 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) || 4044 !ns_capable(user_ns, CAP_SYS_CHROOT) || 4045 !ns_capable(user_ns, CAP_SYS_ADMIN)) 4046 return -EPERM; 4047 4048 if (is_anon_ns(mnt_ns)) 4049 return -EINVAL; 4050 4051 if (fs->users != 1) 4052 return -EINVAL; 4053 4054 get_mnt_ns(mnt_ns); 4055 old_mnt_ns = nsproxy->mnt_ns; 4056 nsproxy->mnt_ns = mnt_ns; 4057 4058 /* Find the root */ 4059 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt, 4060 "/", LOOKUP_DOWN, &root); 4061 if (err) { 4062 /* revert to old namespace */ 4063 nsproxy->mnt_ns = old_mnt_ns; 4064 put_mnt_ns(mnt_ns); 4065 return err; 4066 } 4067 4068 put_mnt_ns(old_mnt_ns); 4069 4070 /* Update the pwd and root */ 4071 set_fs_pwd(fs, &root); 4072 set_fs_root(fs, &root); 4073 4074 path_put(&root); 4075 return 0; 4076 } 4077 4078 static struct user_namespace *mntns_owner(struct ns_common *ns) 4079 { 4080 return to_mnt_ns(ns)->user_ns; 4081 } 4082 4083 const struct proc_ns_operations mntns_operations = { 4084 .name = "mnt", 4085 .type = CLONE_NEWNS, 4086 .get = mntns_get, 4087 .put = mntns_put, 4088 .install = mntns_install, 4089 .owner = mntns_owner, 4090 }; 4091