1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/namespace.c 4 * 5 * (C) Copyright Al Viro 2000, 2001 6 * 7 * Based on code from fs/super.c, copyright Linus Torvalds and others. 8 * Heavily rewritten. 9 */ 10 11 #include <linux/syscalls.h> 12 #include <linux/export.h> 13 #include <linux/capability.h> 14 #include <linux/mnt_namespace.h> 15 #include <linux/user_namespace.h> 16 #include <linux/namei.h> 17 #include <linux/security.h> 18 #include <linux/cred.h> 19 #include <linux/idr.h> 20 #include <linux/init.h> /* init_rootfs */ 21 #include <linux/fs_struct.h> /* get_fs_root et.al. */ 22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */ 23 #include <linux/file.h> 24 #include <linux/uaccess.h> 25 #include <linux/proc_ns.h> 26 #include <linux/magic.h> 27 #include <linux/memblock.h> 28 #include <linux/proc_fs.h> 29 #include <linux/task_work.h> 30 #include <linux/sched/task.h> 31 #include <uapi/linux/mount.h> 32 #include <linux/fs_context.h> 33 #include <linux/shmem_fs.h> 34 #include <linux/mnt_idmapping.h> 35 36 #include "pnode.h" 37 #include "internal.h" 38 39 /* Maximum number of mounts in a mount namespace */ 40 static unsigned int sysctl_mount_max __read_mostly = 100000; 41 42 static unsigned int m_hash_mask __read_mostly; 43 static unsigned int m_hash_shift __read_mostly; 44 static unsigned int mp_hash_mask __read_mostly; 45 static unsigned int mp_hash_shift __read_mostly; 46 47 static __initdata unsigned long mhash_entries; 48 static int __init set_mhash_entries(char *str) 49 { 50 if (!str) 51 return 0; 52 mhash_entries = simple_strtoul(str, &str, 0); 53 return 1; 54 } 55 __setup("mhash_entries=", set_mhash_entries); 56 57 static __initdata unsigned long mphash_entries; 58 static int __init set_mphash_entries(char *str) 59 { 60 if (!str) 61 return 0; 62 mphash_entries = simple_strtoul(str, &str, 0); 63 return 1; 64 } 65 __setup("mphash_entries=", set_mphash_entries); 66 67 static u64 event; 68 static DEFINE_IDA(mnt_id_ida); 69 static DEFINE_IDA(mnt_group_ida); 70 71 static struct hlist_head *mount_hashtable __read_mostly; 72 static struct hlist_head *mountpoint_hashtable __read_mostly; 73 static struct kmem_cache *mnt_cache __read_mostly; 74 static DECLARE_RWSEM(namespace_sem); 75 static HLIST_HEAD(unmounted); /* protected by namespace_sem */ 76 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */ 77 78 struct mount_kattr { 79 unsigned int attr_set; 80 unsigned int attr_clr; 81 unsigned int propagation; 82 unsigned int lookup_flags; 83 bool recurse; 84 struct user_namespace *mnt_userns; 85 struct mnt_idmap *mnt_idmap; 86 }; 87 88 /* /sys/fs */ 89 struct kobject *fs_kobj; 90 EXPORT_SYMBOL_GPL(fs_kobj); 91 92 /* 93 * vfsmount lock may be taken for read to prevent changes to the 94 * vfsmount hash, ie. during mountpoint lookups or walking back 95 * up the tree. 96 * 97 * It should be taken for write in all cases where the vfsmount 98 * tree or hash is modified or when a vfsmount structure is modified. 99 */ 100 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock); 101 102 static inline void lock_mount_hash(void) 103 { 104 write_seqlock(&mount_lock); 105 } 106 107 static inline void unlock_mount_hash(void) 108 { 109 write_sequnlock(&mount_lock); 110 } 111 112 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry) 113 { 114 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); 115 tmp += ((unsigned long)dentry / L1_CACHE_BYTES); 116 tmp = tmp + (tmp >> m_hash_shift); 117 return &mount_hashtable[tmp & m_hash_mask]; 118 } 119 120 static inline struct hlist_head *mp_hash(struct dentry *dentry) 121 { 122 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES); 123 tmp = tmp + (tmp >> mp_hash_shift); 124 return &mountpoint_hashtable[tmp & mp_hash_mask]; 125 } 126 127 static int mnt_alloc_id(struct mount *mnt) 128 { 129 int res = ida_alloc(&mnt_id_ida, GFP_KERNEL); 130 131 if (res < 0) 132 return res; 133 mnt->mnt_id = res; 134 return 0; 135 } 136 137 static void mnt_free_id(struct mount *mnt) 138 { 139 ida_free(&mnt_id_ida, mnt->mnt_id); 140 } 141 142 /* 143 * Allocate a new peer group ID 144 */ 145 static int mnt_alloc_group_id(struct mount *mnt) 146 { 147 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL); 148 149 if (res < 0) 150 return res; 151 mnt->mnt_group_id = res; 152 return 0; 153 } 154 155 /* 156 * Release a peer group ID 157 */ 158 void mnt_release_group_id(struct mount *mnt) 159 { 160 ida_free(&mnt_group_ida, mnt->mnt_group_id); 161 mnt->mnt_group_id = 0; 162 } 163 164 /* 165 * vfsmount lock must be held for read 166 */ 167 static inline void mnt_add_count(struct mount *mnt, int n) 168 { 169 #ifdef CONFIG_SMP 170 this_cpu_add(mnt->mnt_pcp->mnt_count, n); 171 #else 172 preempt_disable(); 173 mnt->mnt_count += n; 174 preempt_enable(); 175 #endif 176 } 177 178 /* 179 * vfsmount lock must be held for write 180 */ 181 int mnt_get_count(struct mount *mnt) 182 { 183 #ifdef CONFIG_SMP 184 int count = 0; 185 int cpu; 186 187 for_each_possible_cpu(cpu) { 188 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count; 189 } 190 191 return count; 192 #else 193 return mnt->mnt_count; 194 #endif 195 } 196 197 static struct mount *alloc_vfsmnt(const char *name) 198 { 199 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); 200 if (mnt) { 201 int err; 202 203 err = mnt_alloc_id(mnt); 204 if (err) 205 goto out_free_cache; 206 207 if (name) { 208 mnt->mnt_devname = kstrdup_const(name, 209 GFP_KERNEL_ACCOUNT); 210 if (!mnt->mnt_devname) 211 goto out_free_id; 212 } 213 214 #ifdef CONFIG_SMP 215 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp); 216 if (!mnt->mnt_pcp) 217 goto out_free_devname; 218 219 this_cpu_add(mnt->mnt_pcp->mnt_count, 1); 220 #else 221 mnt->mnt_count = 1; 222 mnt->mnt_writers = 0; 223 #endif 224 225 INIT_HLIST_NODE(&mnt->mnt_hash); 226 INIT_LIST_HEAD(&mnt->mnt_child); 227 INIT_LIST_HEAD(&mnt->mnt_mounts); 228 INIT_LIST_HEAD(&mnt->mnt_list); 229 INIT_LIST_HEAD(&mnt->mnt_expire); 230 INIT_LIST_HEAD(&mnt->mnt_share); 231 INIT_LIST_HEAD(&mnt->mnt_slave_list); 232 INIT_LIST_HEAD(&mnt->mnt_slave); 233 INIT_HLIST_NODE(&mnt->mnt_mp_list); 234 INIT_LIST_HEAD(&mnt->mnt_umounting); 235 INIT_HLIST_HEAD(&mnt->mnt_stuck_children); 236 mnt->mnt.mnt_idmap = &nop_mnt_idmap; 237 } 238 return mnt; 239 240 #ifdef CONFIG_SMP 241 out_free_devname: 242 kfree_const(mnt->mnt_devname); 243 #endif 244 out_free_id: 245 mnt_free_id(mnt); 246 out_free_cache: 247 kmem_cache_free(mnt_cache, mnt); 248 return NULL; 249 } 250 251 /* 252 * Most r/o checks on a fs are for operations that take 253 * discrete amounts of time, like a write() or unlink(). 254 * We must keep track of when those operations start 255 * (for permission checks) and when they end, so that 256 * we can determine when writes are able to occur to 257 * a filesystem. 258 */ 259 /* 260 * __mnt_is_readonly: check whether a mount is read-only 261 * @mnt: the mount to check for its write status 262 * 263 * This shouldn't be used directly ouside of the VFS. 264 * It does not guarantee that the filesystem will stay 265 * r/w, just that it is right *now*. This can not and 266 * should not be used in place of IS_RDONLY(inode). 267 * mnt_want/drop_write() will _keep_ the filesystem 268 * r/w. 269 */ 270 bool __mnt_is_readonly(struct vfsmount *mnt) 271 { 272 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb); 273 } 274 EXPORT_SYMBOL_GPL(__mnt_is_readonly); 275 276 static inline void mnt_inc_writers(struct mount *mnt) 277 { 278 #ifdef CONFIG_SMP 279 this_cpu_inc(mnt->mnt_pcp->mnt_writers); 280 #else 281 mnt->mnt_writers++; 282 #endif 283 } 284 285 static inline void mnt_dec_writers(struct mount *mnt) 286 { 287 #ifdef CONFIG_SMP 288 this_cpu_dec(mnt->mnt_pcp->mnt_writers); 289 #else 290 mnt->mnt_writers--; 291 #endif 292 } 293 294 static unsigned int mnt_get_writers(struct mount *mnt) 295 { 296 #ifdef CONFIG_SMP 297 unsigned int count = 0; 298 int cpu; 299 300 for_each_possible_cpu(cpu) { 301 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers; 302 } 303 304 return count; 305 #else 306 return mnt->mnt_writers; 307 #endif 308 } 309 310 static int mnt_is_readonly(struct vfsmount *mnt) 311 { 312 if (READ_ONCE(mnt->mnt_sb->s_readonly_remount)) 313 return 1; 314 /* 315 * The barrier pairs with the barrier in sb_start_ro_state_change() 316 * making sure if we don't see s_readonly_remount set yet, we also will 317 * not see any superblock / mount flag changes done by remount. 318 * It also pairs with the barrier in sb_end_ro_state_change() 319 * assuring that if we see s_readonly_remount already cleared, we will 320 * see the values of superblock / mount flags updated by remount. 321 */ 322 smp_rmb(); 323 return __mnt_is_readonly(mnt); 324 } 325 326 /* 327 * Most r/o & frozen checks on a fs are for operations that take discrete 328 * amounts of time, like a write() or unlink(). We must keep track of when 329 * those operations start (for permission checks) and when they end, so that we 330 * can determine when writes are able to occur to a filesystem. 331 */ 332 /** 333 * __mnt_want_write - get write access to a mount without freeze protection 334 * @m: the mount on which to take a write 335 * 336 * This tells the low-level filesystem that a write is about to be performed to 337 * it, and makes sure that writes are allowed (mnt it read-write) before 338 * returning success. This operation does not protect against filesystem being 339 * frozen. When the write operation is finished, __mnt_drop_write() must be 340 * called. This is effectively a refcount. 341 */ 342 int __mnt_want_write(struct vfsmount *m) 343 { 344 struct mount *mnt = real_mount(m); 345 int ret = 0; 346 347 preempt_disable(); 348 mnt_inc_writers(mnt); 349 /* 350 * The store to mnt_inc_writers must be visible before we pass 351 * MNT_WRITE_HOLD loop below, so that the slowpath can see our 352 * incremented count after it has set MNT_WRITE_HOLD. 353 */ 354 smp_mb(); 355 might_lock(&mount_lock.lock); 356 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) { 357 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) { 358 cpu_relax(); 359 } else { 360 /* 361 * This prevents priority inversion, if the task 362 * setting MNT_WRITE_HOLD got preempted on a remote 363 * CPU, and it prevents life lock if the task setting 364 * MNT_WRITE_HOLD has a lower priority and is bound to 365 * the same CPU as the task that is spinning here. 366 */ 367 preempt_enable(); 368 lock_mount_hash(); 369 unlock_mount_hash(); 370 preempt_disable(); 371 } 372 } 373 /* 374 * The barrier pairs with the barrier sb_start_ro_state_change() making 375 * sure that if we see MNT_WRITE_HOLD cleared, we will also see 376 * s_readonly_remount set (or even SB_RDONLY / MNT_READONLY flags) in 377 * mnt_is_readonly() and bail in case we are racing with remount 378 * read-only. 379 */ 380 smp_rmb(); 381 if (mnt_is_readonly(m)) { 382 mnt_dec_writers(mnt); 383 ret = -EROFS; 384 } 385 preempt_enable(); 386 387 return ret; 388 } 389 390 /** 391 * mnt_want_write - get write access to a mount 392 * @m: the mount on which to take a write 393 * 394 * This tells the low-level filesystem that a write is about to be performed to 395 * it, and makes sure that writes are allowed (mount is read-write, filesystem 396 * is not frozen) before returning success. When the write operation is 397 * finished, mnt_drop_write() must be called. This is effectively a refcount. 398 */ 399 int mnt_want_write(struct vfsmount *m) 400 { 401 int ret; 402 403 sb_start_write(m->mnt_sb); 404 ret = __mnt_want_write(m); 405 if (ret) 406 sb_end_write(m->mnt_sb); 407 return ret; 408 } 409 EXPORT_SYMBOL_GPL(mnt_want_write); 410 411 /** 412 * __mnt_want_write_file - get write access to a file's mount 413 * @file: the file who's mount on which to take a write 414 * 415 * This is like __mnt_want_write, but if the file is already open for writing it 416 * skips incrementing mnt_writers (since the open file already has a reference) 417 * and instead only does the check for emergency r/o remounts. This must be 418 * paired with __mnt_drop_write_file. 419 */ 420 int __mnt_want_write_file(struct file *file) 421 { 422 if (file->f_mode & FMODE_WRITER) { 423 /* 424 * Superblock may have become readonly while there are still 425 * writable fd's, e.g. due to a fs error with errors=remount-ro 426 */ 427 if (__mnt_is_readonly(file->f_path.mnt)) 428 return -EROFS; 429 return 0; 430 } 431 return __mnt_want_write(file->f_path.mnt); 432 } 433 434 /** 435 * mnt_want_write_file - get write access to a file's mount 436 * @file: the file who's mount on which to take a write 437 * 438 * This is like mnt_want_write, but if the file is already open for writing it 439 * skips incrementing mnt_writers (since the open file already has a reference) 440 * and instead only does the freeze protection and the check for emergency r/o 441 * remounts. This must be paired with mnt_drop_write_file. 442 */ 443 int mnt_want_write_file(struct file *file) 444 { 445 int ret; 446 447 sb_start_write(file_inode(file)->i_sb); 448 ret = __mnt_want_write_file(file); 449 if (ret) 450 sb_end_write(file_inode(file)->i_sb); 451 return ret; 452 } 453 EXPORT_SYMBOL_GPL(mnt_want_write_file); 454 455 /** 456 * __mnt_drop_write - give up write access to a mount 457 * @mnt: the mount on which to give up write access 458 * 459 * Tells the low-level filesystem that we are done 460 * performing writes to it. Must be matched with 461 * __mnt_want_write() call above. 462 */ 463 void __mnt_drop_write(struct vfsmount *mnt) 464 { 465 preempt_disable(); 466 mnt_dec_writers(real_mount(mnt)); 467 preempt_enable(); 468 } 469 470 /** 471 * mnt_drop_write - give up write access to a mount 472 * @mnt: the mount on which to give up write access 473 * 474 * Tells the low-level filesystem that we are done performing writes to it and 475 * also allows filesystem to be frozen again. Must be matched with 476 * mnt_want_write() call above. 477 */ 478 void mnt_drop_write(struct vfsmount *mnt) 479 { 480 __mnt_drop_write(mnt); 481 sb_end_write(mnt->mnt_sb); 482 } 483 EXPORT_SYMBOL_GPL(mnt_drop_write); 484 485 void __mnt_drop_write_file(struct file *file) 486 { 487 if (!(file->f_mode & FMODE_WRITER)) 488 __mnt_drop_write(file->f_path.mnt); 489 } 490 491 void mnt_drop_write_file(struct file *file) 492 { 493 __mnt_drop_write_file(file); 494 sb_end_write(file_inode(file)->i_sb); 495 } 496 EXPORT_SYMBOL(mnt_drop_write_file); 497 498 /** 499 * mnt_hold_writers - prevent write access to the given mount 500 * @mnt: mnt to prevent write access to 501 * 502 * Prevents write access to @mnt if there are no active writers for @mnt. 503 * This function needs to be called and return successfully before changing 504 * properties of @mnt that need to remain stable for callers with write access 505 * to @mnt. 506 * 507 * After this functions has been called successfully callers must pair it with 508 * a call to mnt_unhold_writers() in order to stop preventing write access to 509 * @mnt. 510 * 511 * Context: This function expects lock_mount_hash() to be held serializing 512 * setting MNT_WRITE_HOLD. 513 * Return: On success 0 is returned. 514 * On error, -EBUSY is returned. 515 */ 516 static inline int mnt_hold_writers(struct mount *mnt) 517 { 518 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 519 /* 520 * After storing MNT_WRITE_HOLD, we'll read the counters. This store 521 * should be visible before we do. 522 */ 523 smp_mb(); 524 525 /* 526 * With writers on hold, if this value is zero, then there are 527 * definitely no active writers (although held writers may subsequently 528 * increment the count, they'll have to wait, and decrement it after 529 * seeing MNT_READONLY). 530 * 531 * It is OK to have counter incremented on one CPU and decremented on 532 * another: the sum will add up correctly. The danger would be when we 533 * sum up each counter, if we read a counter before it is incremented, 534 * but then read another CPU's count which it has been subsequently 535 * decremented from -- we would see more decrements than we should. 536 * MNT_WRITE_HOLD protects against this scenario, because 537 * mnt_want_write first increments count, then smp_mb, then spins on 538 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while 539 * we're counting up here. 540 */ 541 if (mnt_get_writers(mnt) > 0) 542 return -EBUSY; 543 544 return 0; 545 } 546 547 /** 548 * mnt_unhold_writers - stop preventing write access to the given mount 549 * @mnt: mnt to stop preventing write access to 550 * 551 * Stop preventing write access to @mnt allowing callers to gain write access 552 * to @mnt again. 553 * 554 * This function can only be called after a successful call to 555 * mnt_hold_writers(). 556 * 557 * Context: This function expects lock_mount_hash() to be held. 558 */ 559 static inline void mnt_unhold_writers(struct mount *mnt) 560 { 561 /* 562 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers 563 * that become unheld will see MNT_READONLY. 564 */ 565 smp_wmb(); 566 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 567 } 568 569 static int mnt_make_readonly(struct mount *mnt) 570 { 571 int ret; 572 573 ret = mnt_hold_writers(mnt); 574 if (!ret) 575 mnt->mnt.mnt_flags |= MNT_READONLY; 576 mnt_unhold_writers(mnt); 577 return ret; 578 } 579 580 int sb_prepare_remount_readonly(struct super_block *sb) 581 { 582 struct mount *mnt; 583 int err = 0; 584 585 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */ 586 if (atomic_long_read(&sb->s_remove_count)) 587 return -EBUSY; 588 589 lock_mount_hash(); 590 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 591 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) { 592 err = mnt_hold_writers(mnt); 593 if (err) 594 break; 595 } 596 } 597 if (!err && atomic_long_read(&sb->s_remove_count)) 598 err = -EBUSY; 599 600 if (!err) 601 sb_start_ro_state_change(sb); 602 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 603 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD) 604 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 605 } 606 unlock_mount_hash(); 607 608 return err; 609 } 610 611 static void free_vfsmnt(struct mount *mnt) 612 { 613 mnt_idmap_put(mnt_idmap(&mnt->mnt)); 614 kfree_const(mnt->mnt_devname); 615 #ifdef CONFIG_SMP 616 free_percpu(mnt->mnt_pcp); 617 #endif 618 kmem_cache_free(mnt_cache, mnt); 619 } 620 621 static void delayed_free_vfsmnt(struct rcu_head *head) 622 { 623 free_vfsmnt(container_of(head, struct mount, mnt_rcu)); 624 } 625 626 /* call under rcu_read_lock */ 627 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq) 628 { 629 struct mount *mnt; 630 if (read_seqretry(&mount_lock, seq)) 631 return 1; 632 if (bastard == NULL) 633 return 0; 634 mnt = real_mount(bastard); 635 mnt_add_count(mnt, 1); 636 smp_mb(); // see mntput_no_expire() and do_umount() 637 if (likely(!read_seqretry(&mount_lock, seq))) 638 return 0; 639 lock_mount_hash(); 640 if (unlikely(bastard->mnt_flags & (MNT_SYNC_UMOUNT | MNT_DOOMED))) { 641 mnt_add_count(mnt, -1); 642 unlock_mount_hash(); 643 return 1; 644 } 645 unlock_mount_hash(); 646 /* caller will mntput() */ 647 return -1; 648 } 649 650 /* call under rcu_read_lock */ 651 static bool legitimize_mnt(struct vfsmount *bastard, unsigned seq) 652 { 653 int res = __legitimize_mnt(bastard, seq); 654 if (likely(!res)) 655 return true; 656 if (unlikely(res < 0)) { 657 rcu_read_unlock(); 658 mntput(bastard); 659 rcu_read_lock(); 660 } 661 return false; 662 } 663 664 /** 665 * __lookup_mnt - find first child mount 666 * @mnt: parent mount 667 * @dentry: mountpoint 668 * 669 * If @mnt has a child mount @c mounted @dentry find and return it. 670 * 671 * Note that the child mount @c need not be unique. There are cases 672 * where shadow mounts are created. For example, during mount 673 * propagation when a source mount @mnt whose root got overmounted by a 674 * mount @o after path lookup but before @namespace_sem could be 675 * acquired gets copied and propagated. So @mnt gets copied including 676 * @o. When @mnt is propagated to a destination mount @d that already 677 * has another mount @n mounted at the same mountpoint then the source 678 * mount @mnt will be tucked beneath @n, i.e., @n will be mounted on 679 * @mnt and @mnt mounted on @d. Now both @n and @o are mounted at @mnt 680 * on @dentry. 681 * 682 * Return: The first child of @mnt mounted @dentry or NULL. 683 */ 684 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry) 685 { 686 struct hlist_head *head = m_hash(mnt, dentry); 687 struct mount *p; 688 689 hlist_for_each_entry_rcu(p, head, mnt_hash) 690 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) 691 return p; 692 return NULL; 693 } 694 695 /* 696 * lookup_mnt - Return the first child mount mounted at path 697 * 698 * "First" means first mounted chronologically. If you create the 699 * following mounts: 700 * 701 * mount /dev/sda1 /mnt 702 * mount /dev/sda2 /mnt 703 * mount /dev/sda3 /mnt 704 * 705 * Then lookup_mnt() on the base /mnt dentry in the root mount will 706 * return successively the root dentry and vfsmount of /dev/sda1, then 707 * /dev/sda2, then /dev/sda3, then NULL. 708 * 709 * lookup_mnt takes a reference to the found vfsmount. 710 */ 711 struct vfsmount *lookup_mnt(const struct path *path) 712 { 713 struct mount *child_mnt; 714 struct vfsmount *m; 715 unsigned seq; 716 717 rcu_read_lock(); 718 do { 719 seq = read_seqbegin(&mount_lock); 720 child_mnt = __lookup_mnt(path->mnt, path->dentry); 721 m = child_mnt ? &child_mnt->mnt : NULL; 722 } while (!legitimize_mnt(m, seq)); 723 rcu_read_unlock(); 724 return m; 725 } 726 727 static inline void lock_ns_list(struct mnt_namespace *ns) 728 { 729 spin_lock(&ns->ns_lock); 730 } 731 732 static inline void unlock_ns_list(struct mnt_namespace *ns) 733 { 734 spin_unlock(&ns->ns_lock); 735 } 736 737 static inline bool mnt_is_cursor(struct mount *mnt) 738 { 739 return mnt->mnt.mnt_flags & MNT_CURSOR; 740 } 741 742 /* 743 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the 744 * current mount namespace. 745 * 746 * The common case is dentries are not mountpoints at all and that 747 * test is handled inline. For the slow case when we are actually 748 * dealing with a mountpoint of some kind, walk through all of the 749 * mounts in the current mount namespace and test to see if the dentry 750 * is a mountpoint. 751 * 752 * The mount_hashtable is not usable in the context because we 753 * need to identify all mounts that may be in the current mount 754 * namespace not just a mount that happens to have some specified 755 * parent mount. 756 */ 757 bool __is_local_mountpoint(struct dentry *dentry) 758 { 759 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 760 struct mount *mnt; 761 bool is_covered = false; 762 763 down_read(&namespace_sem); 764 lock_ns_list(ns); 765 list_for_each_entry(mnt, &ns->list, mnt_list) { 766 if (mnt_is_cursor(mnt)) 767 continue; 768 is_covered = (mnt->mnt_mountpoint == dentry); 769 if (is_covered) 770 break; 771 } 772 unlock_ns_list(ns); 773 up_read(&namespace_sem); 774 775 return is_covered; 776 } 777 778 static struct mountpoint *lookup_mountpoint(struct dentry *dentry) 779 { 780 struct hlist_head *chain = mp_hash(dentry); 781 struct mountpoint *mp; 782 783 hlist_for_each_entry(mp, chain, m_hash) { 784 if (mp->m_dentry == dentry) { 785 mp->m_count++; 786 return mp; 787 } 788 } 789 return NULL; 790 } 791 792 static struct mountpoint *get_mountpoint(struct dentry *dentry) 793 { 794 struct mountpoint *mp, *new = NULL; 795 int ret; 796 797 if (d_mountpoint(dentry)) { 798 /* might be worth a WARN_ON() */ 799 if (d_unlinked(dentry)) 800 return ERR_PTR(-ENOENT); 801 mountpoint: 802 read_seqlock_excl(&mount_lock); 803 mp = lookup_mountpoint(dentry); 804 read_sequnlock_excl(&mount_lock); 805 if (mp) 806 goto done; 807 } 808 809 if (!new) 810 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL); 811 if (!new) 812 return ERR_PTR(-ENOMEM); 813 814 815 /* Exactly one processes may set d_mounted */ 816 ret = d_set_mounted(dentry); 817 818 /* Someone else set d_mounted? */ 819 if (ret == -EBUSY) 820 goto mountpoint; 821 822 /* The dentry is not available as a mountpoint? */ 823 mp = ERR_PTR(ret); 824 if (ret) 825 goto done; 826 827 /* Add the new mountpoint to the hash table */ 828 read_seqlock_excl(&mount_lock); 829 new->m_dentry = dget(dentry); 830 new->m_count = 1; 831 hlist_add_head(&new->m_hash, mp_hash(dentry)); 832 INIT_HLIST_HEAD(&new->m_list); 833 read_sequnlock_excl(&mount_lock); 834 835 mp = new; 836 new = NULL; 837 done: 838 kfree(new); 839 return mp; 840 } 841 842 /* 843 * vfsmount lock must be held. Additionally, the caller is responsible 844 * for serializing calls for given disposal list. 845 */ 846 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list) 847 { 848 if (!--mp->m_count) { 849 struct dentry *dentry = mp->m_dentry; 850 BUG_ON(!hlist_empty(&mp->m_list)); 851 spin_lock(&dentry->d_lock); 852 dentry->d_flags &= ~DCACHE_MOUNTED; 853 spin_unlock(&dentry->d_lock); 854 dput_to_list(dentry, list); 855 hlist_del(&mp->m_hash); 856 kfree(mp); 857 } 858 } 859 860 /* called with namespace_lock and vfsmount lock */ 861 static void put_mountpoint(struct mountpoint *mp) 862 { 863 __put_mountpoint(mp, &ex_mountpoints); 864 } 865 866 static inline int check_mnt(struct mount *mnt) 867 { 868 return mnt->mnt_ns == current->nsproxy->mnt_ns; 869 } 870 871 /* 872 * vfsmount lock must be held for write 873 */ 874 static void touch_mnt_namespace(struct mnt_namespace *ns) 875 { 876 if (ns) { 877 ns->event = ++event; 878 wake_up_interruptible(&ns->poll); 879 } 880 } 881 882 /* 883 * vfsmount lock must be held for write 884 */ 885 static void __touch_mnt_namespace(struct mnt_namespace *ns) 886 { 887 if (ns && ns->event != event) { 888 ns->event = event; 889 wake_up_interruptible(&ns->poll); 890 } 891 } 892 893 /* 894 * vfsmount lock must be held for write 895 */ 896 static struct mountpoint *unhash_mnt(struct mount *mnt) 897 { 898 struct mountpoint *mp; 899 mnt->mnt_parent = mnt; 900 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 901 list_del_init(&mnt->mnt_child); 902 hlist_del_init_rcu(&mnt->mnt_hash); 903 hlist_del_init(&mnt->mnt_mp_list); 904 mp = mnt->mnt_mp; 905 mnt->mnt_mp = NULL; 906 return mp; 907 } 908 909 /* 910 * vfsmount lock must be held for write 911 */ 912 static void umount_mnt(struct mount *mnt) 913 { 914 put_mountpoint(unhash_mnt(mnt)); 915 } 916 917 /* 918 * vfsmount lock must be held for write 919 */ 920 void mnt_set_mountpoint(struct mount *mnt, 921 struct mountpoint *mp, 922 struct mount *child_mnt) 923 { 924 mp->m_count++; 925 mnt_add_count(mnt, 1); /* essentially, that's mntget */ 926 child_mnt->mnt_mountpoint = mp->m_dentry; 927 child_mnt->mnt_parent = mnt; 928 child_mnt->mnt_mp = mp; 929 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list); 930 } 931 932 /** 933 * mnt_set_mountpoint_beneath - mount a mount beneath another one 934 * 935 * @new_parent: the source mount 936 * @top_mnt: the mount beneath which @new_parent is mounted 937 * @new_mp: the new mountpoint of @top_mnt on @new_parent 938 * 939 * Remove @top_mnt from its current mountpoint @top_mnt->mnt_mp and 940 * parent @top_mnt->mnt_parent and mount it on top of @new_parent at 941 * @new_mp. And mount @new_parent on the old parent and old 942 * mountpoint of @top_mnt. 943 * 944 * Context: This function expects namespace_lock() and lock_mount_hash() 945 * to have been acquired in that order. 946 */ 947 static void mnt_set_mountpoint_beneath(struct mount *new_parent, 948 struct mount *top_mnt, 949 struct mountpoint *new_mp) 950 { 951 struct mount *old_top_parent = top_mnt->mnt_parent; 952 struct mountpoint *old_top_mp = top_mnt->mnt_mp; 953 954 mnt_set_mountpoint(old_top_parent, old_top_mp, new_parent); 955 mnt_change_mountpoint(new_parent, new_mp, top_mnt); 956 } 957 958 959 static void __attach_mnt(struct mount *mnt, struct mount *parent) 960 { 961 hlist_add_head_rcu(&mnt->mnt_hash, 962 m_hash(&parent->mnt, mnt->mnt_mountpoint)); 963 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 964 } 965 966 /** 967 * attach_mnt - mount a mount, attach to @mount_hashtable and parent's 968 * list of child mounts 969 * @parent: the parent 970 * @mnt: the new mount 971 * @mp: the new mountpoint 972 * @beneath: whether to mount @mnt beneath or on top of @parent 973 * 974 * If @beneath is false, mount @mnt at @mp on @parent. Then attach @mnt 975 * to @parent's child mount list and to @mount_hashtable. 976 * 977 * If @beneath is true, remove @mnt from its current parent and 978 * mountpoint and mount it on @mp on @parent, and mount @parent on the 979 * old parent and old mountpoint of @mnt. Finally, attach @parent to 980 * @mnt_hashtable and @parent->mnt_parent->mnt_mounts. 981 * 982 * Note, when __attach_mnt() is called @mnt->mnt_parent already points 983 * to the correct parent. 984 * 985 * Context: This function expects namespace_lock() and lock_mount_hash() 986 * to have been acquired in that order. 987 */ 988 static void attach_mnt(struct mount *mnt, struct mount *parent, 989 struct mountpoint *mp, bool beneath) 990 { 991 if (beneath) 992 mnt_set_mountpoint_beneath(mnt, parent, mp); 993 else 994 mnt_set_mountpoint(parent, mp, mnt); 995 /* 996 * Note, @mnt->mnt_parent has to be used. If @mnt was mounted 997 * beneath @parent then @mnt will need to be attached to 998 * @parent's old parent, not @parent. IOW, @mnt->mnt_parent 999 * isn't the same mount as @parent. 1000 */ 1001 __attach_mnt(mnt, mnt->mnt_parent); 1002 } 1003 1004 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt) 1005 { 1006 struct mountpoint *old_mp = mnt->mnt_mp; 1007 struct mount *old_parent = mnt->mnt_parent; 1008 1009 list_del_init(&mnt->mnt_child); 1010 hlist_del_init(&mnt->mnt_mp_list); 1011 hlist_del_init_rcu(&mnt->mnt_hash); 1012 1013 attach_mnt(mnt, parent, mp, false); 1014 1015 put_mountpoint(old_mp); 1016 mnt_add_count(old_parent, -1); 1017 } 1018 1019 /* 1020 * vfsmount lock must be held for write 1021 */ 1022 static void commit_tree(struct mount *mnt) 1023 { 1024 struct mount *parent = mnt->mnt_parent; 1025 struct mount *m; 1026 LIST_HEAD(head); 1027 struct mnt_namespace *n = parent->mnt_ns; 1028 1029 BUG_ON(parent == mnt); 1030 1031 list_add_tail(&head, &mnt->mnt_list); 1032 list_for_each_entry(m, &head, mnt_list) 1033 m->mnt_ns = n; 1034 1035 list_splice(&head, n->list.prev); 1036 1037 n->mounts += n->pending_mounts; 1038 n->pending_mounts = 0; 1039 1040 __attach_mnt(mnt, parent); 1041 touch_mnt_namespace(n); 1042 } 1043 1044 static struct mount *next_mnt(struct mount *p, struct mount *root) 1045 { 1046 struct list_head *next = p->mnt_mounts.next; 1047 if (next == &p->mnt_mounts) { 1048 while (1) { 1049 if (p == root) 1050 return NULL; 1051 next = p->mnt_child.next; 1052 if (next != &p->mnt_parent->mnt_mounts) 1053 break; 1054 p = p->mnt_parent; 1055 } 1056 } 1057 return list_entry(next, struct mount, mnt_child); 1058 } 1059 1060 static struct mount *skip_mnt_tree(struct mount *p) 1061 { 1062 struct list_head *prev = p->mnt_mounts.prev; 1063 while (prev != &p->mnt_mounts) { 1064 p = list_entry(prev, struct mount, mnt_child); 1065 prev = p->mnt_mounts.prev; 1066 } 1067 return p; 1068 } 1069 1070 /** 1071 * vfs_create_mount - Create a mount for a configured superblock 1072 * @fc: The configuration context with the superblock attached 1073 * 1074 * Create a mount to an already configured superblock. If necessary, the 1075 * caller should invoke vfs_get_tree() before calling this. 1076 * 1077 * Note that this does not attach the mount to anything. 1078 */ 1079 struct vfsmount *vfs_create_mount(struct fs_context *fc) 1080 { 1081 struct mount *mnt; 1082 1083 if (!fc->root) 1084 return ERR_PTR(-EINVAL); 1085 1086 mnt = alloc_vfsmnt(fc->source ?: "none"); 1087 if (!mnt) 1088 return ERR_PTR(-ENOMEM); 1089 1090 if (fc->sb_flags & SB_KERNMOUNT) 1091 mnt->mnt.mnt_flags = MNT_INTERNAL; 1092 1093 atomic_inc(&fc->root->d_sb->s_active); 1094 mnt->mnt.mnt_sb = fc->root->d_sb; 1095 mnt->mnt.mnt_root = dget(fc->root); 1096 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 1097 mnt->mnt_parent = mnt; 1098 1099 lock_mount_hash(); 1100 list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts); 1101 unlock_mount_hash(); 1102 return &mnt->mnt; 1103 } 1104 EXPORT_SYMBOL(vfs_create_mount); 1105 1106 struct vfsmount *fc_mount(struct fs_context *fc) 1107 { 1108 int err = vfs_get_tree(fc); 1109 if (!err) { 1110 up_write(&fc->root->d_sb->s_umount); 1111 return vfs_create_mount(fc); 1112 } 1113 return ERR_PTR(err); 1114 } 1115 EXPORT_SYMBOL(fc_mount); 1116 1117 struct vfsmount *vfs_kern_mount(struct file_system_type *type, 1118 int flags, const char *name, 1119 void *data) 1120 { 1121 struct fs_context *fc; 1122 struct vfsmount *mnt; 1123 int ret = 0; 1124 1125 if (!type) 1126 return ERR_PTR(-EINVAL); 1127 1128 fc = fs_context_for_mount(type, flags); 1129 if (IS_ERR(fc)) 1130 return ERR_CAST(fc); 1131 1132 if (name) 1133 ret = vfs_parse_fs_string(fc, "source", 1134 name, strlen(name)); 1135 if (!ret) 1136 ret = parse_monolithic_mount_data(fc, data); 1137 if (!ret) 1138 mnt = fc_mount(fc); 1139 else 1140 mnt = ERR_PTR(ret); 1141 1142 put_fs_context(fc); 1143 return mnt; 1144 } 1145 EXPORT_SYMBOL_GPL(vfs_kern_mount); 1146 1147 struct vfsmount * 1148 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type, 1149 const char *name, void *data) 1150 { 1151 /* Until it is worked out how to pass the user namespace 1152 * through from the parent mount to the submount don't support 1153 * unprivileged mounts with submounts. 1154 */ 1155 if (mountpoint->d_sb->s_user_ns != &init_user_ns) 1156 return ERR_PTR(-EPERM); 1157 1158 return vfs_kern_mount(type, SB_SUBMOUNT, name, data); 1159 } 1160 EXPORT_SYMBOL_GPL(vfs_submount); 1161 1162 static struct mount *clone_mnt(struct mount *old, struct dentry *root, 1163 int flag) 1164 { 1165 struct super_block *sb = old->mnt.mnt_sb; 1166 struct mount *mnt; 1167 int err; 1168 1169 mnt = alloc_vfsmnt(old->mnt_devname); 1170 if (!mnt) 1171 return ERR_PTR(-ENOMEM); 1172 1173 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE)) 1174 mnt->mnt_group_id = 0; /* not a peer of original */ 1175 else 1176 mnt->mnt_group_id = old->mnt_group_id; 1177 1178 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) { 1179 err = mnt_alloc_group_id(mnt); 1180 if (err) 1181 goto out_free; 1182 } 1183 1184 mnt->mnt.mnt_flags = old->mnt.mnt_flags; 1185 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL); 1186 1187 atomic_inc(&sb->s_active); 1188 mnt->mnt.mnt_idmap = mnt_idmap_get(mnt_idmap(&old->mnt)); 1189 1190 mnt->mnt.mnt_sb = sb; 1191 mnt->mnt.mnt_root = dget(root); 1192 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 1193 mnt->mnt_parent = mnt; 1194 lock_mount_hash(); 1195 list_add_tail(&mnt->mnt_instance, &sb->s_mounts); 1196 unlock_mount_hash(); 1197 1198 if ((flag & CL_SLAVE) || 1199 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) { 1200 list_add(&mnt->mnt_slave, &old->mnt_slave_list); 1201 mnt->mnt_master = old; 1202 CLEAR_MNT_SHARED(mnt); 1203 } else if (!(flag & CL_PRIVATE)) { 1204 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old)) 1205 list_add(&mnt->mnt_share, &old->mnt_share); 1206 if (IS_MNT_SLAVE(old)) 1207 list_add(&mnt->mnt_slave, &old->mnt_slave); 1208 mnt->mnt_master = old->mnt_master; 1209 } else { 1210 CLEAR_MNT_SHARED(mnt); 1211 } 1212 if (flag & CL_MAKE_SHARED) 1213 set_mnt_shared(mnt); 1214 1215 /* stick the duplicate mount on the same expiry list 1216 * as the original if that was on one */ 1217 if (flag & CL_EXPIRE) { 1218 if (!list_empty(&old->mnt_expire)) 1219 list_add(&mnt->mnt_expire, &old->mnt_expire); 1220 } 1221 1222 return mnt; 1223 1224 out_free: 1225 mnt_free_id(mnt); 1226 free_vfsmnt(mnt); 1227 return ERR_PTR(err); 1228 } 1229 1230 static void cleanup_mnt(struct mount *mnt) 1231 { 1232 struct hlist_node *p; 1233 struct mount *m; 1234 /* 1235 * The warning here probably indicates that somebody messed 1236 * up a mnt_want/drop_write() pair. If this happens, the 1237 * filesystem was probably unable to make r/w->r/o transitions. 1238 * The locking used to deal with mnt_count decrement provides barriers, 1239 * so mnt_get_writers() below is safe. 1240 */ 1241 WARN_ON(mnt_get_writers(mnt)); 1242 if (unlikely(mnt->mnt_pins.first)) 1243 mnt_pin_kill(mnt); 1244 hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) { 1245 hlist_del(&m->mnt_umount); 1246 mntput(&m->mnt); 1247 } 1248 fsnotify_vfsmount_delete(&mnt->mnt); 1249 dput(mnt->mnt.mnt_root); 1250 deactivate_super(mnt->mnt.mnt_sb); 1251 mnt_free_id(mnt); 1252 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt); 1253 } 1254 1255 static void __cleanup_mnt(struct rcu_head *head) 1256 { 1257 cleanup_mnt(container_of(head, struct mount, mnt_rcu)); 1258 } 1259 1260 static LLIST_HEAD(delayed_mntput_list); 1261 static void delayed_mntput(struct work_struct *unused) 1262 { 1263 struct llist_node *node = llist_del_all(&delayed_mntput_list); 1264 struct mount *m, *t; 1265 1266 llist_for_each_entry_safe(m, t, node, mnt_llist) 1267 cleanup_mnt(m); 1268 } 1269 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput); 1270 1271 static void mntput_no_expire(struct mount *mnt) 1272 { 1273 LIST_HEAD(list); 1274 int count; 1275 1276 rcu_read_lock(); 1277 if (likely(READ_ONCE(mnt->mnt_ns))) { 1278 /* 1279 * Since we don't do lock_mount_hash() here, 1280 * ->mnt_ns can change under us. However, if it's 1281 * non-NULL, then there's a reference that won't 1282 * be dropped until after an RCU delay done after 1283 * turning ->mnt_ns NULL. So if we observe it 1284 * non-NULL under rcu_read_lock(), the reference 1285 * we are dropping is not the final one. 1286 */ 1287 mnt_add_count(mnt, -1); 1288 rcu_read_unlock(); 1289 return; 1290 } 1291 lock_mount_hash(); 1292 /* 1293 * make sure that if __legitimize_mnt() has not seen us grab 1294 * mount_lock, we'll see their refcount increment here. 1295 */ 1296 smp_mb(); 1297 mnt_add_count(mnt, -1); 1298 count = mnt_get_count(mnt); 1299 if (count != 0) { 1300 WARN_ON(count < 0); 1301 rcu_read_unlock(); 1302 unlock_mount_hash(); 1303 return; 1304 } 1305 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) { 1306 rcu_read_unlock(); 1307 unlock_mount_hash(); 1308 return; 1309 } 1310 mnt->mnt.mnt_flags |= MNT_DOOMED; 1311 rcu_read_unlock(); 1312 1313 list_del(&mnt->mnt_instance); 1314 1315 if (unlikely(!list_empty(&mnt->mnt_mounts))) { 1316 struct mount *p, *tmp; 1317 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) { 1318 __put_mountpoint(unhash_mnt(p), &list); 1319 hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children); 1320 } 1321 } 1322 unlock_mount_hash(); 1323 shrink_dentry_list(&list); 1324 1325 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) { 1326 struct task_struct *task = current; 1327 if (likely(!(task->flags & PF_KTHREAD))) { 1328 init_task_work(&mnt->mnt_rcu, __cleanup_mnt); 1329 if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME)) 1330 return; 1331 } 1332 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list)) 1333 schedule_delayed_work(&delayed_mntput_work, 1); 1334 return; 1335 } 1336 cleanup_mnt(mnt); 1337 } 1338 1339 void mntput(struct vfsmount *mnt) 1340 { 1341 if (mnt) { 1342 struct mount *m = real_mount(mnt); 1343 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */ 1344 if (unlikely(m->mnt_expiry_mark)) 1345 m->mnt_expiry_mark = 0; 1346 mntput_no_expire(m); 1347 } 1348 } 1349 EXPORT_SYMBOL(mntput); 1350 1351 struct vfsmount *mntget(struct vfsmount *mnt) 1352 { 1353 if (mnt) 1354 mnt_add_count(real_mount(mnt), 1); 1355 return mnt; 1356 } 1357 EXPORT_SYMBOL(mntget); 1358 1359 /* 1360 * Make a mount point inaccessible to new lookups. 1361 * Because there may still be current users, the caller MUST WAIT 1362 * for an RCU grace period before destroying the mount point. 1363 */ 1364 void mnt_make_shortterm(struct vfsmount *mnt) 1365 { 1366 if (mnt) 1367 real_mount(mnt)->mnt_ns = NULL; 1368 } 1369 1370 /** 1371 * path_is_mountpoint() - Check if path is a mount in the current namespace. 1372 * @path: path to check 1373 * 1374 * d_mountpoint() can only be used reliably to establish if a dentry is 1375 * not mounted in any namespace and that common case is handled inline. 1376 * d_mountpoint() isn't aware of the possibility there may be multiple 1377 * mounts using a given dentry in a different namespace. This function 1378 * checks if the passed in path is a mountpoint rather than the dentry 1379 * alone. 1380 */ 1381 bool path_is_mountpoint(const struct path *path) 1382 { 1383 unsigned seq; 1384 bool res; 1385 1386 if (!d_mountpoint(path->dentry)) 1387 return false; 1388 1389 rcu_read_lock(); 1390 do { 1391 seq = read_seqbegin(&mount_lock); 1392 res = __path_is_mountpoint(path); 1393 } while (read_seqretry(&mount_lock, seq)); 1394 rcu_read_unlock(); 1395 1396 return res; 1397 } 1398 EXPORT_SYMBOL(path_is_mountpoint); 1399 1400 struct vfsmount *mnt_clone_internal(const struct path *path) 1401 { 1402 struct mount *p; 1403 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE); 1404 if (IS_ERR(p)) 1405 return ERR_CAST(p); 1406 p->mnt.mnt_flags |= MNT_INTERNAL; 1407 return &p->mnt; 1408 } 1409 1410 #ifdef CONFIG_PROC_FS 1411 static struct mount *mnt_list_next(struct mnt_namespace *ns, 1412 struct list_head *p) 1413 { 1414 struct mount *mnt, *ret = NULL; 1415 1416 lock_ns_list(ns); 1417 list_for_each_continue(p, &ns->list) { 1418 mnt = list_entry(p, typeof(*mnt), mnt_list); 1419 if (!mnt_is_cursor(mnt)) { 1420 ret = mnt; 1421 break; 1422 } 1423 } 1424 unlock_ns_list(ns); 1425 1426 return ret; 1427 } 1428 1429 /* iterator; we want it to have access to namespace_sem, thus here... */ 1430 static void *m_start(struct seq_file *m, loff_t *pos) 1431 { 1432 struct proc_mounts *p = m->private; 1433 struct list_head *prev; 1434 1435 down_read(&namespace_sem); 1436 if (!*pos) { 1437 prev = &p->ns->list; 1438 } else { 1439 prev = &p->cursor.mnt_list; 1440 1441 /* Read after we'd reached the end? */ 1442 if (list_empty(prev)) 1443 return NULL; 1444 } 1445 1446 return mnt_list_next(p->ns, prev); 1447 } 1448 1449 static void *m_next(struct seq_file *m, void *v, loff_t *pos) 1450 { 1451 struct proc_mounts *p = m->private; 1452 struct mount *mnt = v; 1453 1454 ++*pos; 1455 return mnt_list_next(p->ns, &mnt->mnt_list); 1456 } 1457 1458 static void m_stop(struct seq_file *m, void *v) 1459 { 1460 struct proc_mounts *p = m->private; 1461 struct mount *mnt = v; 1462 1463 lock_ns_list(p->ns); 1464 if (mnt) 1465 list_move_tail(&p->cursor.mnt_list, &mnt->mnt_list); 1466 else 1467 list_del_init(&p->cursor.mnt_list); 1468 unlock_ns_list(p->ns); 1469 up_read(&namespace_sem); 1470 } 1471 1472 static int m_show(struct seq_file *m, void *v) 1473 { 1474 struct proc_mounts *p = m->private; 1475 struct mount *r = v; 1476 return p->show(m, &r->mnt); 1477 } 1478 1479 const struct seq_operations mounts_op = { 1480 .start = m_start, 1481 .next = m_next, 1482 .stop = m_stop, 1483 .show = m_show, 1484 }; 1485 1486 void mnt_cursor_del(struct mnt_namespace *ns, struct mount *cursor) 1487 { 1488 down_read(&namespace_sem); 1489 lock_ns_list(ns); 1490 list_del(&cursor->mnt_list); 1491 unlock_ns_list(ns); 1492 up_read(&namespace_sem); 1493 } 1494 #endif /* CONFIG_PROC_FS */ 1495 1496 /** 1497 * may_umount_tree - check if a mount tree is busy 1498 * @m: root of mount tree 1499 * 1500 * This is called to check if a tree of mounts has any 1501 * open files, pwds, chroots or sub mounts that are 1502 * busy. 1503 */ 1504 int may_umount_tree(struct vfsmount *m) 1505 { 1506 struct mount *mnt = real_mount(m); 1507 int actual_refs = 0; 1508 int minimum_refs = 0; 1509 struct mount *p; 1510 BUG_ON(!m); 1511 1512 /* write lock needed for mnt_get_count */ 1513 lock_mount_hash(); 1514 for (p = mnt; p; p = next_mnt(p, mnt)) { 1515 actual_refs += mnt_get_count(p); 1516 minimum_refs += 2; 1517 } 1518 unlock_mount_hash(); 1519 1520 if (actual_refs > minimum_refs) 1521 return 0; 1522 1523 return 1; 1524 } 1525 1526 EXPORT_SYMBOL(may_umount_tree); 1527 1528 /** 1529 * may_umount - check if a mount point is busy 1530 * @mnt: root of mount 1531 * 1532 * This is called to check if a mount point has any 1533 * open files, pwds, chroots or sub mounts. If the 1534 * mount has sub mounts this will return busy 1535 * regardless of whether the sub mounts are busy. 1536 * 1537 * Doesn't take quota and stuff into account. IOW, in some cases it will 1538 * give false negatives. The main reason why it's here is that we need 1539 * a non-destructive way to look for easily umountable filesystems. 1540 */ 1541 int may_umount(struct vfsmount *mnt) 1542 { 1543 int ret = 1; 1544 down_read(&namespace_sem); 1545 lock_mount_hash(); 1546 if (propagate_mount_busy(real_mount(mnt), 2)) 1547 ret = 0; 1548 unlock_mount_hash(); 1549 up_read(&namespace_sem); 1550 return ret; 1551 } 1552 1553 EXPORT_SYMBOL(may_umount); 1554 1555 static void namespace_unlock(void) 1556 { 1557 struct hlist_head head; 1558 struct hlist_node *p; 1559 struct mount *m; 1560 LIST_HEAD(list); 1561 1562 hlist_move_list(&unmounted, &head); 1563 list_splice_init(&ex_mountpoints, &list); 1564 1565 up_write(&namespace_sem); 1566 1567 shrink_dentry_list(&list); 1568 1569 if (likely(hlist_empty(&head))) 1570 return; 1571 1572 synchronize_rcu_expedited(); 1573 1574 hlist_for_each_entry_safe(m, p, &head, mnt_umount) { 1575 hlist_del(&m->mnt_umount); 1576 mntput(&m->mnt); 1577 } 1578 } 1579 1580 static inline void namespace_lock(void) 1581 { 1582 down_write(&namespace_sem); 1583 } 1584 1585 enum umount_tree_flags { 1586 UMOUNT_SYNC = 1, 1587 UMOUNT_PROPAGATE = 2, 1588 UMOUNT_CONNECTED = 4, 1589 }; 1590 1591 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how) 1592 { 1593 /* Leaving mounts connected is only valid for lazy umounts */ 1594 if (how & UMOUNT_SYNC) 1595 return true; 1596 1597 /* A mount without a parent has nothing to be connected to */ 1598 if (!mnt_has_parent(mnt)) 1599 return true; 1600 1601 /* Because the reference counting rules change when mounts are 1602 * unmounted and connected, umounted mounts may not be 1603 * connected to mounted mounts. 1604 */ 1605 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT)) 1606 return true; 1607 1608 /* Has it been requested that the mount remain connected? */ 1609 if (how & UMOUNT_CONNECTED) 1610 return false; 1611 1612 /* Is the mount locked such that it needs to remain connected? */ 1613 if (IS_MNT_LOCKED(mnt)) 1614 return false; 1615 1616 /* By default disconnect the mount */ 1617 return true; 1618 } 1619 1620 /* 1621 * mount_lock must be held 1622 * namespace_sem must be held for write 1623 */ 1624 static void umount_tree(struct mount *mnt, enum umount_tree_flags how) 1625 { 1626 LIST_HEAD(tmp_list); 1627 struct mount *p; 1628 1629 if (how & UMOUNT_PROPAGATE) 1630 propagate_mount_unlock(mnt); 1631 1632 /* Gather the mounts to umount */ 1633 for (p = mnt; p; p = next_mnt(p, mnt)) { 1634 p->mnt.mnt_flags |= MNT_UMOUNT; 1635 list_move(&p->mnt_list, &tmp_list); 1636 } 1637 1638 /* Hide the mounts from mnt_mounts */ 1639 list_for_each_entry(p, &tmp_list, mnt_list) { 1640 list_del_init(&p->mnt_child); 1641 } 1642 1643 /* Add propogated mounts to the tmp_list */ 1644 if (how & UMOUNT_PROPAGATE) 1645 propagate_umount(&tmp_list); 1646 1647 while (!list_empty(&tmp_list)) { 1648 struct mnt_namespace *ns; 1649 bool disconnect; 1650 p = list_first_entry(&tmp_list, struct mount, mnt_list); 1651 list_del_init(&p->mnt_expire); 1652 list_del_init(&p->mnt_list); 1653 ns = p->mnt_ns; 1654 if (ns) { 1655 ns->mounts--; 1656 __touch_mnt_namespace(ns); 1657 } 1658 p->mnt_ns = NULL; 1659 if (how & UMOUNT_SYNC) 1660 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT; 1661 1662 disconnect = disconnect_mount(p, how); 1663 if (mnt_has_parent(p)) { 1664 mnt_add_count(p->mnt_parent, -1); 1665 if (!disconnect) { 1666 /* Don't forget about p */ 1667 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts); 1668 } else { 1669 umount_mnt(p); 1670 } 1671 } 1672 change_mnt_propagation(p, MS_PRIVATE); 1673 if (disconnect) 1674 hlist_add_head(&p->mnt_umount, &unmounted); 1675 } 1676 } 1677 1678 static void shrink_submounts(struct mount *mnt); 1679 1680 static int do_umount_root(struct super_block *sb) 1681 { 1682 int ret = 0; 1683 1684 down_write(&sb->s_umount); 1685 if (!sb_rdonly(sb)) { 1686 struct fs_context *fc; 1687 1688 fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY, 1689 SB_RDONLY); 1690 if (IS_ERR(fc)) { 1691 ret = PTR_ERR(fc); 1692 } else { 1693 ret = parse_monolithic_mount_data(fc, NULL); 1694 if (!ret) 1695 ret = reconfigure_super(fc); 1696 put_fs_context(fc); 1697 } 1698 } 1699 up_write(&sb->s_umount); 1700 return ret; 1701 } 1702 1703 static int do_umount(struct mount *mnt, int flags) 1704 { 1705 struct super_block *sb = mnt->mnt.mnt_sb; 1706 int retval; 1707 1708 retval = security_sb_umount(&mnt->mnt, flags); 1709 if (retval) 1710 return retval; 1711 1712 /* 1713 * Allow userspace to request a mountpoint be expired rather than 1714 * unmounting unconditionally. Unmount only happens if: 1715 * (1) the mark is already set (the mark is cleared by mntput()) 1716 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] 1717 */ 1718 if (flags & MNT_EXPIRE) { 1719 if (&mnt->mnt == current->fs->root.mnt || 1720 flags & (MNT_FORCE | MNT_DETACH)) 1721 return -EINVAL; 1722 1723 /* 1724 * probably don't strictly need the lock here if we examined 1725 * all race cases, but it's a slowpath. 1726 */ 1727 lock_mount_hash(); 1728 if (mnt_get_count(mnt) != 2) { 1729 unlock_mount_hash(); 1730 return -EBUSY; 1731 } 1732 unlock_mount_hash(); 1733 1734 if (!xchg(&mnt->mnt_expiry_mark, 1)) 1735 return -EAGAIN; 1736 } 1737 1738 /* 1739 * If we may have to abort operations to get out of this 1740 * mount, and they will themselves hold resources we must 1741 * allow the fs to do things. In the Unix tradition of 1742 * 'Gee thats tricky lets do it in userspace' the umount_begin 1743 * might fail to complete on the first run through as other tasks 1744 * must return, and the like. Thats for the mount program to worry 1745 * about for the moment. 1746 */ 1747 1748 if (flags & MNT_FORCE && sb->s_op->umount_begin) { 1749 sb->s_op->umount_begin(sb); 1750 } 1751 1752 /* 1753 * No sense to grab the lock for this test, but test itself looks 1754 * somewhat bogus. Suggestions for better replacement? 1755 * Ho-hum... In principle, we might treat that as umount + switch 1756 * to rootfs. GC would eventually take care of the old vfsmount. 1757 * Actually it makes sense, especially if rootfs would contain a 1758 * /reboot - static binary that would close all descriptors and 1759 * call reboot(9). Then init(8) could umount root and exec /reboot. 1760 */ 1761 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) { 1762 /* 1763 * Special case for "unmounting" root ... 1764 * we just try to remount it readonly. 1765 */ 1766 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) 1767 return -EPERM; 1768 return do_umount_root(sb); 1769 } 1770 1771 namespace_lock(); 1772 lock_mount_hash(); 1773 1774 /* Recheck MNT_LOCKED with the locks held */ 1775 retval = -EINVAL; 1776 if (mnt->mnt.mnt_flags & MNT_LOCKED) 1777 goto out; 1778 1779 event++; 1780 if (flags & MNT_DETACH) { 1781 if (!list_empty(&mnt->mnt_list)) 1782 umount_tree(mnt, UMOUNT_PROPAGATE); 1783 retval = 0; 1784 } else { 1785 smp_mb(); // paired with __legitimize_mnt() 1786 shrink_submounts(mnt); 1787 retval = -EBUSY; 1788 if (!propagate_mount_busy(mnt, 2)) { 1789 if (!list_empty(&mnt->mnt_list)) 1790 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 1791 retval = 0; 1792 } 1793 } 1794 out: 1795 unlock_mount_hash(); 1796 namespace_unlock(); 1797 return retval; 1798 } 1799 1800 /* 1801 * __detach_mounts - lazily unmount all mounts on the specified dentry 1802 * 1803 * During unlink, rmdir, and d_drop it is possible to loose the path 1804 * to an existing mountpoint, and wind up leaking the mount. 1805 * detach_mounts allows lazily unmounting those mounts instead of 1806 * leaking them. 1807 * 1808 * The caller may hold dentry->d_inode->i_mutex. 1809 */ 1810 void __detach_mounts(struct dentry *dentry) 1811 { 1812 struct mountpoint *mp; 1813 struct mount *mnt; 1814 1815 namespace_lock(); 1816 lock_mount_hash(); 1817 mp = lookup_mountpoint(dentry); 1818 if (!mp) 1819 goto out_unlock; 1820 1821 event++; 1822 while (!hlist_empty(&mp->m_list)) { 1823 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list); 1824 if (mnt->mnt.mnt_flags & MNT_UMOUNT) { 1825 umount_mnt(mnt); 1826 hlist_add_head(&mnt->mnt_umount, &unmounted); 1827 } 1828 else umount_tree(mnt, UMOUNT_CONNECTED); 1829 } 1830 put_mountpoint(mp); 1831 out_unlock: 1832 unlock_mount_hash(); 1833 namespace_unlock(); 1834 } 1835 1836 /* 1837 * Is the caller allowed to modify his namespace? 1838 */ 1839 bool may_mount(void) 1840 { 1841 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN); 1842 } 1843 1844 /** 1845 * path_mounted - check whether path is mounted 1846 * @path: path to check 1847 * 1848 * Determine whether @path refers to the root of a mount. 1849 * 1850 * Return: true if @path is the root of a mount, false if not. 1851 */ 1852 static inline bool path_mounted(const struct path *path) 1853 { 1854 return path->mnt->mnt_root == path->dentry; 1855 } 1856 1857 static void warn_mandlock(void) 1858 { 1859 pr_warn_once("=======================================================\n" 1860 "WARNING: The mand mount option has been deprecated and\n" 1861 " and is ignored by this kernel. Remove the mand\n" 1862 " option from the mount to silence this warning.\n" 1863 "=======================================================\n"); 1864 } 1865 1866 static int can_umount(const struct path *path, int flags) 1867 { 1868 struct mount *mnt = real_mount(path->mnt); 1869 struct super_block *sb = path->dentry->d_sb; 1870 1871 if (!may_mount()) 1872 return -EPERM; 1873 if (!path_mounted(path)) 1874 return -EINVAL; 1875 if (!check_mnt(mnt)) 1876 return -EINVAL; 1877 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */ 1878 return -EINVAL; 1879 if (flags & MNT_FORCE && !ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) 1880 return -EPERM; 1881 return 0; 1882 } 1883 1884 // caller is responsible for flags being sane 1885 int path_umount(struct path *path, int flags) 1886 { 1887 struct mount *mnt = real_mount(path->mnt); 1888 int ret; 1889 1890 ret = can_umount(path, flags); 1891 if (!ret) 1892 ret = do_umount(mnt, flags); 1893 1894 /* we mustn't call path_put() as that would clear mnt_expiry_mark */ 1895 dput(path->dentry); 1896 mntput_no_expire(mnt); 1897 return ret; 1898 } 1899 1900 static int ksys_umount(char __user *name, int flags) 1901 { 1902 int lookup_flags = LOOKUP_MOUNTPOINT; 1903 struct path path; 1904 int ret; 1905 1906 // basic validity checks done first 1907 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW)) 1908 return -EINVAL; 1909 1910 if (!(flags & UMOUNT_NOFOLLOW)) 1911 lookup_flags |= LOOKUP_FOLLOW; 1912 ret = user_path_at(AT_FDCWD, name, lookup_flags, &path); 1913 if (ret) 1914 return ret; 1915 return path_umount(&path, flags); 1916 } 1917 1918 SYSCALL_DEFINE2(umount, char __user *, name, int, flags) 1919 { 1920 return ksys_umount(name, flags); 1921 } 1922 1923 #ifdef __ARCH_WANT_SYS_OLDUMOUNT 1924 1925 /* 1926 * The 2.0 compatible umount. No flags. 1927 */ 1928 SYSCALL_DEFINE1(oldumount, char __user *, name) 1929 { 1930 return ksys_umount(name, 0); 1931 } 1932 1933 #endif 1934 1935 static bool is_mnt_ns_file(struct dentry *dentry) 1936 { 1937 /* Is this a proxy for a mount namespace? */ 1938 return dentry->d_op == &ns_dentry_operations && 1939 dentry->d_fsdata == &mntns_operations; 1940 } 1941 1942 static struct mnt_namespace *to_mnt_ns(struct ns_common *ns) 1943 { 1944 return container_of(ns, struct mnt_namespace, ns); 1945 } 1946 1947 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt) 1948 { 1949 return &mnt->ns; 1950 } 1951 1952 static bool mnt_ns_loop(struct dentry *dentry) 1953 { 1954 /* Could bind mounting the mount namespace inode cause a 1955 * mount namespace loop? 1956 */ 1957 struct mnt_namespace *mnt_ns; 1958 if (!is_mnt_ns_file(dentry)) 1959 return false; 1960 1961 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode)); 1962 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq; 1963 } 1964 1965 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry, 1966 int flag) 1967 { 1968 struct mount *res, *p, *q, *r, *parent; 1969 1970 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt)) 1971 return ERR_PTR(-EINVAL); 1972 1973 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry)) 1974 return ERR_PTR(-EINVAL); 1975 1976 res = q = clone_mnt(mnt, dentry, flag); 1977 if (IS_ERR(q)) 1978 return q; 1979 1980 q->mnt_mountpoint = mnt->mnt_mountpoint; 1981 1982 p = mnt; 1983 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) { 1984 struct mount *s; 1985 if (!is_subdir(r->mnt_mountpoint, dentry)) 1986 continue; 1987 1988 for (s = r; s; s = next_mnt(s, r)) { 1989 if (!(flag & CL_COPY_UNBINDABLE) && 1990 IS_MNT_UNBINDABLE(s)) { 1991 if (s->mnt.mnt_flags & MNT_LOCKED) { 1992 /* Both unbindable and locked. */ 1993 q = ERR_PTR(-EPERM); 1994 goto out; 1995 } else { 1996 s = skip_mnt_tree(s); 1997 continue; 1998 } 1999 } 2000 if (!(flag & CL_COPY_MNT_NS_FILE) && 2001 is_mnt_ns_file(s->mnt.mnt_root)) { 2002 s = skip_mnt_tree(s); 2003 continue; 2004 } 2005 while (p != s->mnt_parent) { 2006 p = p->mnt_parent; 2007 q = q->mnt_parent; 2008 } 2009 p = s; 2010 parent = q; 2011 q = clone_mnt(p, p->mnt.mnt_root, flag); 2012 if (IS_ERR(q)) 2013 goto out; 2014 lock_mount_hash(); 2015 list_add_tail(&q->mnt_list, &res->mnt_list); 2016 attach_mnt(q, parent, p->mnt_mp, false); 2017 unlock_mount_hash(); 2018 } 2019 } 2020 return res; 2021 out: 2022 if (res) { 2023 lock_mount_hash(); 2024 umount_tree(res, UMOUNT_SYNC); 2025 unlock_mount_hash(); 2026 } 2027 return q; 2028 } 2029 2030 /* Caller should check returned pointer for errors */ 2031 2032 struct vfsmount *collect_mounts(const struct path *path) 2033 { 2034 struct mount *tree; 2035 namespace_lock(); 2036 if (!check_mnt(real_mount(path->mnt))) 2037 tree = ERR_PTR(-EINVAL); 2038 else 2039 tree = copy_tree(real_mount(path->mnt), path->dentry, 2040 CL_COPY_ALL | CL_PRIVATE); 2041 namespace_unlock(); 2042 if (IS_ERR(tree)) 2043 return ERR_CAST(tree); 2044 return &tree->mnt; 2045 } 2046 2047 static void free_mnt_ns(struct mnt_namespace *); 2048 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool); 2049 2050 void dissolve_on_fput(struct vfsmount *mnt) 2051 { 2052 struct mnt_namespace *ns; 2053 namespace_lock(); 2054 lock_mount_hash(); 2055 ns = real_mount(mnt)->mnt_ns; 2056 if (ns) { 2057 if (is_anon_ns(ns)) 2058 umount_tree(real_mount(mnt), UMOUNT_CONNECTED); 2059 else 2060 ns = NULL; 2061 } 2062 unlock_mount_hash(); 2063 namespace_unlock(); 2064 if (ns) 2065 free_mnt_ns(ns); 2066 } 2067 2068 void drop_collected_mounts(struct vfsmount *mnt) 2069 { 2070 namespace_lock(); 2071 lock_mount_hash(); 2072 umount_tree(real_mount(mnt), 0); 2073 unlock_mount_hash(); 2074 namespace_unlock(); 2075 } 2076 2077 static bool has_locked_children(struct mount *mnt, struct dentry *dentry) 2078 { 2079 struct mount *child; 2080 2081 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 2082 if (!is_subdir(child->mnt_mountpoint, dentry)) 2083 continue; 2084 2085 if (child->mnt.mnt_flags & MNT_LOCKED) 2086 return true; 2087 } 2088 return false; 2089 } 2090 2091 /** 2092 * clone_private_mount - create a private clone of a path 2093 * @path: path to clone 2094 * 2095 * This creates a new vfsmount, which will be the clone of @path. The new mount 2096 * will not be attached anywhere in the namespace and will be private (i.e. 2097 * changes to the originating mount won't be propagated into this). 2098 * 2099 * Release with mntput(). 2100 */ 2101 struct vfsmount *clone_private_mount(const struct path *path) 2102 { 2103 struct mount *old_mnt = real_mount(path->mnt); 2104 struct mount *new_mnt; 2105 2106 down_read(&namespace_sem); 2107 if (IS_MNT_UNBINDABLE(old_mnt)) 2108 goto invalid; 2109 2110 if (!check_mnt(old_mnt)) 2111 goto invalid; 2112 2113 if (has_locked_children(old_mnt, path->dentry)) 2114 goto invalid; 2115 2116 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE); 2117 up_read(&namespace_sem); 2118 2119 if (IS_ERR(new_mnt)) 2120 return ERR_CAST(new_mnt); 2121 2122 /* Longterm mount to be removed by kern_unmount*() */ 2123 new_mnt->mnt_ns = MNT_NS_INTERNAL; 2124 2125 return &new_mnt->mnt; 2126 2127 invalid: 2128 up_read(&namespace_sem); 2129 return ERR_PTR(-EINVAL); 2130 } 2131 EXPORT_SYMBOL_GPL(clone_private_mount); 2132 2133 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg, 2134 struct vfsmount *root) 2135 { 2136 struct mount *mnt; 2137 int res = f(root, arg); 2138 if (res) 2139 return res; 2140 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) { 2141 res = f(&mnt->mnt, arg); 2142 if (res) 2143 return res; 2144 } 2145 return 0; 2146 } 2147 2148 static void lock_mnt_tree(struct mount *mnt) 2149 { 2150 struct mount *p; 2151 2152 for (p = mnt; p; p = next_mnt(p, mnt)) { 2153 int flags = p->mnt.mnt_flags; 2154 /* Don't allow unprivileged users to change mount flags */ 2155 flags |= MNT_LOCK_ATIME; 2156 2157 if (flags & MNT_READONLY) 2158 flags |= MNT_LOCK_READONLY; 2159 2160 if (flags & MNT_NODEV) 2161 flags |= MNT_LOCK_NODEV; 2162 2163 if (flags & MNT_NOSUID) 2164 flags |= MNT_LOCK_NOSUID; 2165 2166 if (flags & MNT_NOEXEC) 2167 flags |= MNT_LOCK_NOEXEC; 2168 /* Don't allow unprivileged users to reveal what is under a mount */ 2169 if (list_empty(&p->mnt_expire)) 2170 flags |= MNT_LOCKED; 2171 p->mnt.mnt_flags = flags; 2172 } 2173 } 2174 2175 static void cleanup_group_ids(struct mount *mnt, struct mount *end) 2176 { 2177 struct mount *p; 2178 2179 for (p = mnt; p != end; p = next_mnt(p, mnt)) { 2180 if (p->mnt_group_id && !IS_MNT_SHARED(p)) 2181 mnt_release_group_id(p); 2182 } 2183 } 2184 2185 static int invent_group_ids(struct mount *mnt, bool recurse) 2186 { 2187 struct mount *p; 2188 2189 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) { 2190 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) { 2191 int err = mnt_alloc_group_id(p); 2192 if (err) { 2193 cleanup_group_ids(mnt, p); 2194 return err; 2195 } 2196 } 2197 } 2198 2199 return 0; 2200 } 2201 2202 int count_mounts(struct mnt_namespace *ns, struct mount *mnt) 2203 { 2204 unsigned int max = READ_ONCE(sysctl_mount_max); 2205 unsigned int mounts = 0; 2206 struct mount *p; 2207 2208 if (ns->mounts >= max) 2209 return -ENOSPC; 2210 max -= ns->mounts; 2211 if (ns->pending_mounts >= max) 2212 return -ENOSPC; 2213 max -= ns->pending_mounts; 2214 2215 for (p = mnt; p; p = next_mnt(p, mnt)) 2216 mounts++; 2217 2218 if (mounts > max) 2219 return -ENOSPC; 2220 2221 ns->pending_mounts += mounts; 2222 return 0; 2223 } 2224 2225 enum mnt_tree_flags_t { 2226 MNT_TREE_MOVE = BIT(0), 2227 MNT_TREE_BENEATH = BIT(1), 2228 }; 2229 2230 /** 2231 * attach_recursive_mnt - attach a source mount tree 2232 * @source_mnt: mount tree to be attached 2233 * @top_mnt: mount that @source_mnt will be mounted on or mounted beneath 2234 * @dest_mp: the mountpoint @source_mnt will be mounted at 2235 * @flags: modify how @source_mnt is supposed to be attached 2236 * 2237 * NOTE: in the table below explains the semantics when a source mount 2238 * of a given type is attached to a destination mount of a given type. 2239 * --------------------------------------------------------------------------- 2240 * | BIND MOUNT OPERATION | 2241 * |************************************************************************** 2242 * | source-->| shared | private | slave | unbindable | 2243 * | dest | | | | | 2244 * | | | | | | | 2245 * | v | | | | | 2246 * |************************************************************************** 2247 * | shared | shared (++) | shared (+) | shared(+++)| invalid | 2248 * | | | | | | 2249 * |non-shared| shared (+) | private | slave (*) | invalid | 2250 * *************************************************************************** 2251 * A bind operation clones the source mount and mounts the clone on the 2252 * destination mount. 2253 * 2254 * (++) the cloned mount is propagated to all the mounts in the propagation 2255 * tree of the destination mount and the cloned mount is added to 2256 * the peer group of the source mount. 2257 * (+) the cloned mount is created under the destination mount and is marked 2258 * as shared. The cloned mount is added to the peer group of the source 2259 * mount. 2260 * (+++) the mount is propagated to all the mounts in the propagation tree 2261 * of the destination mount and the cloned mount is made slave 2262 * of the same master as that of the source mount. The cloned mount 2263 * is marked as 'shared and slave'. 2264 * (*) the cloned mount is made a slave of the same master as that of the 2265 * source mount. 2266 * 2267 * --------------------------------------------------------------------------- 2268 * | MOVE MOUNT OPERATION | 2269 * |************************************************************************** 2270 * | source-->| shared | private | slave | unbindable | 2271 * | dest | | | | | 2272 * | | | | | | | 2273 * | v | | | | | 2274 * |************************************************************************** 2275 * | shared | shared (+) | shared (+) | shared(+++) | invalid | 2276 * | | | | | | 2277 * |non-shared| shared (+*) | private | slave (*) | unbindable | 2278 * *************************************************************************** 2279 * 2280 * (+) the mount is moved to the destination. And is then propagated to 2281 * all the mounts in the propagation tree of the destination mount. 2282 * (+*) the mount is moved to the destination. 2283 * (+++) the mount is moved to the destination and is then propagated to 2284 * all the mounts belonging to the destination mount's propagation tree. 2285 * the mount is marked as 'shared and slave'. 2286 * (*) the mount continues to be a slave at the new location. 2287 * 2288 * if the source mount is a tree, the operations explained above is 2289 * applied to each mount in the tree. 2290 * Must be called without spinlocks held, since this function can sleep 2291 * in allocations. 2292 * 2293 * Context: The function expects namespace_lock() to be held. 2294 * Return: If @source_mnt was successfully attached 0 is returned. 2295 * Otherwise a negative error code is returned. 2296 */ 2297 static int attach_recursive_mnt(struct mount *source_mnt, 2298 struct mount *top_mnt, 2299 struct mountpoint *dest_mp, 2300 enum mnt_tree_flags_t flags) 2301 { 2302 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; 2303 HLIST_HEAD(tree_list); 2304 struct mnt_namespace *ns = top_mnt->mnt_ns; 2305 struct mountpoint *smp; 2306 struct mount *child, *dest_mnt, *p; 2307 struct hlist_node *n; 2308 int err = 0; 2309 bool moving = flags & MNT_TREE_MOVE, beneath = flags & MNT_TREE_BENEATH; 2310 2311 /* 2312 * Preallocate a mountpoint in case the new mounts need to be 2313 * mounted beneath mounts on the same mountpoint. 2314 */ 2315 smp = get_mountpoint(source_mnt->mnt.mnt_root); 2316 if (IS_ERR(smp)) 2317 return PTR_ERR(smp); 2318 2319 /* Is there space to add these mounts to the mount namespace? */ 2320 if (!moving) { 2321 err = count_mounts(ns, source_mnt); 2322 if (err) 2323 goto out; 2324 } 2325 2326 if (beneath) 2327 dest_mnt = top_mnt->mnt_parent; 2328 else 2329 dest_mnt = top_mnt; 2330 2331 if (IS_MNT_SHARED(dest_mnt)) { 2332 err = invent_group_ids(source_mnt, true); 2333 if (err) 2334 goto out; 2335 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list); 2336 } 2337 lock_mount_hash(); 2338 if (err) 2339 goto out_cleanup_ids; 2340 2341 if (IS_MNT_SHARED(dest_mnt)) { 2342 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 2343 set_mnt_shared(p); 2344 } 2345 2346 if (moving) { 2347 if (beneath) 2348 dest_mp = smp; 2349 unhash_mnt(source_mnt); 2350 attach_mnt(source_mnt, top_mnt, dest_mp, beneath); 2351 touch_mnt_namespace(source_mnt->mnt_ns); 2352 } else { 2353 if (source_mnt->mnt_ns) { 2354 /* move from anon - the caller will destroy */ 2355 list_del_init(&source_mnt->mnt_ns->list); 2356 } 2357 if (beneath) 2358 mnt_set_mountpoint_beneath(source_mnt, top_mnt, smp); 2359 else 2360 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt); 2361 commit_tree(source_mnt); 2362 } 2363 2364 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) { 2365 struct mount *q; 2366 hlist_del_init(&child->mnt_hash); 2367 q = __lookup_mnt(&child->mnt_parent->mnt, 2368 child->mnt_mountpoint); 2369 if (q) 2370 mnt_change_mountpoint(child, smp, q); 2371 /* Notice when we are propagating across user namespaces */ 2372 if (child->mnt_parent->mnt_ns->user_ns != user_ns) 2373 lock_mnt_tree(child); 2374 child->mnt.mnt_flags &= ~MNT_LOCKED; 2375 commit_tree(child); 2376 } 2377 put_mountpoint(smp); 2378 unlock_mount_hash(); 2379 2380 return 0; 2381 2382 out_cleanup_ids: 2383 while (!hlist_empty(&tree_list)) { 2384 child = hlist_entry(tree_list.first, struct mount, mnt_hash); 2385 child->mnt_parent->mnt_ns->pending_mounts = 0; 2386 umount_tree(child, UMOUNT_SYNC); 2387 } 2388 unlock_mount_hash(); 2389 cleanup_group_ids(source_mnt, NULL); 2390 out: 2391 ns->pending_mounts = 0; 2392 2393 read_seqlock_excl(&mount_lock); 2394 put_mountpoint(smp); 2395 read_sequnlock_excl(&mount_lock); 2396 2397 return err; 2398 } 2399 2400 /** 2401 * do_lock_mount - lock mount and mountpoint 2402 * @path: target path 2403 * @beneath: whether the intention is to mount beneath @path 2404 * 2405 * Follow the mount stack on @path until the top mount @mnt is found. If 2406 * the initial @path->{mnt,dentry} is a mountpoint lookup the first 2407 * mount stacked on top of it. Then simply follow @{mnt,mnt->mnt_root} 2408 * until nothing is stacked on top of it anymore. 2409 * 2410 * Acquire the inode_lock() on the top mount's ->mnt_root to protect 2411 * against concurrent removal of the new mountpoint from another mount 2412 * namespace. 2413 * 2414 * If @beneath is requested, acquire inode_lock() on @mnt's mountpoint 2415 * @mp on @mnt->mnt_parent must be acquired. This protects against a 2416 * concurrent unlink of @mp->mnt_dentry from another mount namespace 2417 * where @mnt doesn't have a child mount mounted @mp. A concurrent 2418 * removal of @mnt->mnt_root doesn't matter as nothing will be mounted 2419 * on top of it for @beneath. 2420 * 2421 * In addition, @beneath needs to make sure that @mnt hasn't been 2422 * unmounted or moved from its current mountpoint in between dropping 2423 * @mount_lock and acquiring @namespace_sem. For the !@beneath case @mnt 2424 * being unmounted would be detected later by e.g., calling 2425 * check_mnt(mnt) in the function it's called from. For the @beneath 2426 * case however, it's useful to detect it directly in do_lock_mount(). 2427 * If @mnt hasn't been unmounted then @mnt->mnt_mountpoint still points 2428 * to @mnt->mnt_mp->m_dentry. But if @mnt has been unmounted it will 2429 * point to @mnt->mnt_root and @mnt->mnt_mp will be NULL. 2430 * 2431 * Return: Either the target mountpoint on the top mount or the top 2432 * mount's mountpoint. 2433 */ 2434 static struct mountpoint *do_lock_mount(struct path *path, bool beneath) 2435 { 2436 struct vfsmount *mnt = path->mnt; 2437 struct dentry *dentry; 2438 struct mountpoint *mp = ERR_PTR(-ENOENT); 2439 struct path under = {}; 2440 2441 for (;;) { 2442 struct mount *m = real_mount(mnt); 2443 2444 if (beneath) { 2445 path_put(&under); 2446 read_seqlock_excl(&mount_lock); 2447 under.mnt = mntget(&m->mnt_parent->mnt); 2448 under.dentry = dget(m->mnt_mountpoint); 2449 read_sequnlock_excl(&mount_lock); 2450 dentry = under.dentry; 2451 } else { 2452 dentry = path->dentry; 2453 } 2454 2455 inode_lock(dentry->d_inode); 2456 namespace_lock(); 2457 2458 if (unlikely(cant_mount(dentry) || !is_mounted(mnt))) 2459 break; // not to be mounted on 2460 2461 if (beneath && unlikely(m->mnt_mountpoint != dentry || 2462 &m->mnt_parent->mnt != under.mnt)) { 2463 namespace_unlock(); 2464 inode_unlock(dentry->d_inode); 2465 continue; // got moved 2466 } 2467 2468 mnt = lookup_mnt(path); 2469 if (unlikely(mnt)) { 2470 namespace_unlock(); 2471 inode_unlock(dentry->d_inode); 2472 path_put(path); 2473 path->mnt = mnt; 2474 path->dentry = dget(mnt->mnt_root); 2475 continue; // got overmounted 2476 } 2477 mp = get_mountpoint(dentry); 2478 if (IS_ERR(mp)) 2479 break; 2480 if (beneath) { 2481 /* 2482 * @under duplicates the references that will stay 2483 * at least until namespace_unlock(), so the path_put() 2484 * below is safe (and OK to do under namespace_lock - 2485 * we are not dropping the final references here). 2486 */ 2487 path_put(&under); 2488 } 2489 return mp; 2490 } 2491 namespace_unlock(); 2492 inode_unlock(dentry->d_inode); 2493 if (beneath) 2494 path_put(&under); 2495 return mp; 2496 } 2497 2498 static inline struct mountpoint *lock_mount(struct path *path) 2499 { 2500 return do_lock_mount(path, false); 2501 } 2502 2503 static void unlock_mount(struct mountpoint *where) 2504 { 2505 inode_unlock(where->m_dentry->d_inode); 2506 read_seqlock_excl(&mount_lock); 2507 put_mountpoint(where); 2508 read_sequnlock_excl(&mount_lock); 2509 namespace_unlock(); 2510 } 2511 2512 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp) 2513 { 2514 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER) 2515 return -EINVAL; 2516 2517 if (d_is_dir(mp->m_dentry) != 2518 d_is_dir(mnt->mnt.mnt_root)) 2519 return -ENOTDIR; 2520 2521 return attach_recursive_mnt(mnt, p, mp, 0); 2522 } 2523 2524 /* 2525 * Sanity check the flags to change_mnt_propagation. 2526 */ 2527 2528 static int flags_to_propagation_type(int ms_flags) 2529 { 2530 int type = ms_flags & ~(MS_REC | MS_SILENT); 2531 2532 /* Fail if any non-propagation flags are set */ 2533 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 2534 return 0; 2535 /* Only one propagation flag should be set */ 2536 if (!is_power_of_2(type)) 2537 return 0; 2538 return type; 2539 } 2540 2541 /* 2542 * recursively change the type of the mountpoint. 2543 */ 2544 static int do_change_type(struct path *path, int ms_flags) 2545 { 2546 struct mount *m; 2547 struct mount *mnt = real_mount(path->mnt); 2548 int recurse = ms_flags & MS_REC; 2549 int type; 2550 int err = 0; 2551 2552 if (!path_mounted(path)) 2553 return -EINVAL; 2554 2555 type = flags_to_propagation_type(ms_flags); 2556 if (!type) 2557 return -EINVAL; 2558 2559 namespace_lock(); 2560 if (!check_mnt(mnt)) { 2561 err = -EINVAL; 2562 goto out_unlock; 2563 } 2564 if (type == MS_SHARED) { 2565 err = invent_group_ids(mnt, recurse); 2566 if (err) 2567 goto out_unlock; 2568 } 2569 2570 lock_mount_hash(); 2571 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) 2572 change_mnt_propagation(m, type); 2573 unlock_mount_hash(); 2574 2575 out_unlock: 2576 namespace_unlock(); 2577 return err; 2578 } 2579 2580 static struct mount *__do_loopback(struct path *old_path, int recurse) 2581 { 2582 struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt); 2583 2584 if (IS_MNT_UNBINDABLE(old)) 2585 return mnt; 2586 2587 if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations) 2588 return mnt; 2589 2590 if (!recurse && has_locked_children(old, old_path->dentry)) 2591 return mnt; 2592 2593 if (recurse) 2594 mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE); 2595 else 2596 mnt = clone_mnt(old, old_path->dentry, 0); 2597 2598 if (!IS_ERR(mnt)) 2599 mnt->mnt.mnt_flags &= ~MNT_LOCKED; 2600 2601 return mnt; 2602 } 2603 2604 /* 2605 * do loopback mount. 2606 */ 2607 static int do_loopback(struct path *path, const char *old_name, 2608 int recurse) 2609 { 2610 struct path old_path; 2611 struct mount *mnt = NULL, *parent; 2612 struct mountpoint *mp; 2613 int err; 2614 if (!old_name || !*old_name) 2615 return -EINVAL; 2616 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path); 2617 if (err) 2618 return err; 2619 2620 err = -EINVAL; 2621 if (mnt_ns_loop(old_path.dentry)) 2622 goto out; 2623 2624 mp = lock_mount(path); 2625 if (IS_ERR(mp)) { 2626 err = PTR_ERR(mp); 2627 goto out; 2628 } 2629 2630 parent = real_mount(path->mnt); 2631 if (!check_mnt(parent)) 2632 goto out2; 2633 2634 mnt = __do_loopback(&old_path, recurse); 2635 if (IS_ERR(mnt)) { 2636 err = PTR_ERR(mnt); 2637 goto out2; 2638 } 2639 2640 err = graft_tree(mnt, parent, mp); 2641 if (err) { 2642 lock_mount_hash(); 2643 umount_tree(mnt, UMOUNT_SYNC); 2644 unlock_mount_hash(); 2645 } 2646 out2: 2647 unlock_mount(mp); 2648 out: 2649 path_put(&old_path); 2650 return err; 2651 } 2652 2653 static struct file *open_detached_copy(struct path *path, bool recursive) 2654 { 2655 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; 2656 struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true); 2657 struct mount *mnt, *p; 2658 struct file *file; 2659 2660 if (IS_ERR(ns)) 2661 return ERR_CAST(ns); 2662 2663 namespace_lock(); 2664 mnt = __do_loopback(path, recursive); 2665 if (IS_ERR(mnt)) { 2666 namespace_unlock(); 2667 free_mnt_ns(ns); 2668 return ERR_CAST(mnt); 2669 } 2670 2671 lock_mount_hash(); 2672 for (p = mnt; p; p = next_mnt(p, mnt)) { 2673 p->mnt_ns = ns; 2674 ns->mounts++; 2675 } 2676 ns->root = mnt; 2677 list_add_tail(&ns->list, &mnt->mnt_list); 2678 mntget(&mnt->mnt); 2679 unlock_mount_hash(); 2680 namespace_unlock(); 2681 2682 mntput(path->mnt); 2683 path->mnt = &mnt->mnt; 2684 file = dentry_open(path, O_PATH, current_cred()); 2685 if (IS_ERR(file)) 2686 dissolve_on_fput(path->mnt); 2687 else 2688 file->f_mode |= FMODE_NEED_UNMOUNT; 2689 return file; 2690 } 2691 2692 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags) 2693 { 2694 struct file *file; 2695 struct path path; 2696 int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW; 2697 bool detached = flags & OPEN_TREE_CLONE; 2698 int error; 2699 int fd; 2700 2701 BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC); 2702 2703 if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE | 2704 AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE | 2705 OPEN_TREE_CLOEXEC)) 2706 return -EINVAL; 2707 2708 if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE) 2709 return -EINVAL; 2710 2711 if (flags & AT_NO_AUTOMOUNT) 2712 lookup_flags &= ~LOOKUP_AUTOMOUNT; 2713 if (flags & AT_SYMLINK_NOFOLLOW) 2714 lookup_flags &= ~LOOKUP_FOLLOW; 2715 if (flags & AT_EMPTY_PATH) 2716 lookup_flags |= LOOKUP_EMPTY; 2717 2718 if (detached && !may_mount()) 2719 return -EPERM; 2720 2721 fd = get_unused_fd_flags(flags & O_CLOEXEC); 2722 if (fd < 0) 2723 return fd; 2724 2725 error = user_path_at(dfd, filename, lookup_flags, &path); 2726 if (unlikely(error)) { 2727 file = ERR_PTR(error); 2728 } else { 2729 if (detached) 2730 file = open_detached_copy(&path, flags & AT_RECURSIVE); 2731 else 2732 file = dentry_open(&path, O_PATH, current_cred()); 2733 path_put(&path); 2734 } 2735 if (IS_ERR(file)) { 2736 put_unused_fd(fd); 2737 return PTR_ERR(file); 2738 } 2739 fd_install(fd, file); 2740 return fd; 2741 } 2742 2743 /* 2744 * Don't allow locked mount flags to be cleared. 2745 * 2746 * No locks need to be held here while testing the various MNT_LOCK 2747 * flags because those flags can never be cleared once they are set. 2748 */ 2749 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags) 2750 { 2751 unsigned int fl = mnt->mnt.mnt_flags; 2752 2753 if ((fl & MNT_LOCK_READONLY) && 2754 !(mnt_flags & MNT_READONLY)) 2755 return false; 2756 2757 if ((fl & MNT_LOCK_NODEV) && 2758 !(mnt_flags & MNT_NODEV)) 2759 return false; 2760 2761 if ((fl & MNT_LOCK_NOSUID) && 2762 !(mnt_flags & MNT_NOSUID)) 2763 return false; 2764 2765 if ((fl & MNT_LOCK_NOEXEC) && 2766 !(mnt_flags & MNT_NOEXEC)) 2767 return false; 2768 2769 if ((fl & MNT_LOCK_ATIME) && 2770 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) 2771 return false; 2772 2773 return true; 2774 } 2775 2776 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags) 2777 { 2778 bool readonly_request = (mnt_flags & MNT_READONLY); 2779 2780 if (readonly_request == __mnt_is_readonly(&mnt->mnt)) 2781 return 0; 2782 2783 if (readonly_request) 2784 return mnt_make_readonly(mnt); 2785 2786 mnt->mnt.mnt_flags &= ~MNT_READONLY; 2787 return 0; 2788 } 2789 2790 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags) 2791 { 2792 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK; 2793 mnt->mnt.mnt_flags = mnt_flags; 2794 touch_mnt_namespace(mnt->mnt_ns); 2795 } 2796 2797 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt) 2798 { 2799 struct super_block *sb = mnt->mnt_sb; 2800 2801 if (!__mnt_is_readonly(mnt) && 2802 (!(sb->s_iflags & SB_I_TS_EXPIRY_WARNED)) && 2803 (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) { 2804 char *buf, *mntpath; 2805 2806 buf = (char *)__get_free_page(GFP_KERNEL); 2807 if (buf) 2808 mntpath = d_path(mountpoint, buf, PAGE_SIZE); 2809 else 2810 mntpath = ERR_PTR(-ENOMEM); 2811 if (IS_ERR(mntpath)) 2812 mntpath = "(unknown)"; 2813 2814 pr_warn("%s filesystem being %s at %s supports timestamps until %ptTd (0x%llx)\n", 2815 sb->s_type->name, 2816 is_mounted(mnt) ? "remounted" : "mounted", 2817 mntpath, &sb->s_time_max, 2818 (unsigned long long)sb->s_time_max); 2819 2820 sb->s_iflags |= SB_I_TS_EXPIRY_WARNED; 2821 if (buf) 2822 free_page((unsigned long)buf); 2823 } 2824 } 2825 2826 /* 2827 * Handle reconfiguration of the mountpoint only without alteration of the 2828 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND 2829 * to mount(2). 2830 */ 2831 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags) 2832 { 2833 struct super_block *sb = path->mnt->mnt_sb; 2834 struct mount *mnt = real_mount(path->mnt); 2835 int ret; 2836 2837 if (!check_mnt(mnt)) 2838 return -EINVAL; 2839 2840 if (!path_mounted(path)) 2841 return -EINVAL; 2842 2843 if (!can_change_locked_flags(mnt, mnt_flags)) 2844 return -EPERM; 2845 2846 /* 2847 * We're only checking whether the superblock is read-only not 2848 * changing it, so only take down_read(&sb->s_umount). 2849 */ 2850 down_read(&sb->s_umount); 2851 lock_mount_hash(); 2852 ret = change_mount_ro_state(mnt, mnt_flags); 2853 if (ret == 0) 2854 set_mount_attributes(mnt, mnt_flags); 2855 unlock_mount_hash(); 2856 up_read(&sb->s_umount); 2857 2858 mnt_warn_timestamp_expiry(path, &mnt->mnt); 2859 2860 return ret; 2861 } 2862 2863 /* 2864 * change filesystem flags. dir should be a physical root of filesystem. 2865 * If you've mounted a non-root directory somewhere and want to do remount 2866 * on it - tough luck. 2867 */ 2868 static int do_remount(struct path *path, int ms_flags, int sb_flags, 2869 int mnt_flags, void *data) 2870 { 2871 int err; 2872 struct super_block *sb = path->mnt->mnt_sb; 2873 struct mount *mnt = real_mount(path->mnt); 2874 struct fs_context *fc; 2875 2876 if (!check_mnt(mnt)) 2877 return -EINVAL; 2878 2879 if (!path_mounted(path)) 2880 return -EINVAL; 2881 2882 if (!can_change_locked_flags(mnt, mnt_flags)) 2883 return -EPERM; 2884 2885 fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK); 2886 if (IS_ERR(fc)) 2887 return PTR_ERR(fc); 2888 2889 /* 2890 * Indicate to the filesystem that the remount request is coming 2891 * from the legacy mount system call. 2892 */ 2893 fc->oldapi = true; 2894 2895 err = parse_monolithic_mount_data(fc, data); 2896 if (!err) { 2897 down_write(&sb->s_umount); 2898 err = -EPERM; 2899 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) { 2900 err = reconfigure_super(fc); 2901 if (!err) { 2902 lock_mount_hash(); 2903 set_mount_attributes(mnt, mnt_flags); 2904 unlock_mount_hash(); 2905 } 2906 } 2907 up_write(&sb->s_umount); 2908 } 2909 2910 mnt_warn_timestamp_expiry(path, &mnt->mnt); 2911 2912 put_fs_context(fc); 2913 return err; 2914 } 2915 2916 static inline int tree_contains_unbindable(struct mount *mnt) 2917 { 2918 struct mount *p; 2919 for (p = mnt; p; p = next_mnt(p, mnt)) { 2920 if (IS_MNT_UNBINDABLE(p)) 2921 return 1; 2922 } 2923 return 0; 2924 } 2925 2926 /* 2927 * Check that there aren't references to earlier/same mount namespaces in the 2928 * specified subtree. Such references can act as pins for mount namespaces 2929 * that aren't checked by the mount-cycle checking code, thereby allowing 2930 * cycles to be made. 2931 */ 2932 static bool check_for_nsfs_mounts(struct mount *subtree) 2933 { 2934 struct mount *p; 2935 bool ret = false; 2936 2937 lock_mount_hash(); 2938 for (p = subtree; p; p = next_mnt(p, subtree)) 2939 if (mnt_ns_loop(p->mnt.mnt_root)) 2940 goto out; 2941 2942 ret = true; 2943 out: 2944 unlock_mount_hash(); 2945 return ret; 2946 } 2947 2948 static int do_set_group(struct path *from_path, struct path *to_path) 2949 { 2950 struct mount *from, *to; 2951 int err; 2952 2953 from = real_mount(from_path->mnt); 2954 to = real_mount(to_path->mnt); 2955 2956 namespace_lock(); 2957 2958 err = -EINVAL; 2959 /* To and From must be mounted */ 2960 if (!is_mounted(&from->mnt)) 2961 goto out; 2962 if (!is_mounted(&to->mnt)) 2963 goto out; 2964 2965 err = -EPERM; 2966 /* We should be allowed to modify mount namespaces of both mounts */ 2967 if (!ns_capable(from->mnt_ns->user_ns, CAP_SYS_ADMIN)) 2968 goto out; 2969 if (!ns_capable(to->mnt_ns->user_ns, CAP_SYS_ADMIN)) 2970 goto out; 2971 2972 err = -EINVAL; 2973 /* To and From paths should be mount roots */ 2974 if (!path_mounted(from_path)) 2975 goto out; 2976 if (!path_mounted(to_path)) 2977 goto out; 2978 2979 /* Setting sharing groups is only allowed across same superblock */ 2980 if (from->mnt.mnt_sb != to->mnt.mnt_sb) 2981 goto out; 2982 2983 /* From mount root should be wider than To mount root */ 2984 if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root)) 2985 goto out; 2986 2987 /* From mount should not have locked children in place of To's root */ 2988 if (has_locked_children(from, to->mnt.mnt_root)) 2989 goto out; 2990 2991 /* Setting sharing groups is only allowed on private mounts */ 2992 if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to)) 2993 goto out; 2994 2995 /* From should not be private */ 2996 if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from)) 2997 goto out; 2998 2999 if (IS_MNT_SLAVE(from)) { 3000 struct mount *m = from->mnt_master; 3001 3002 list_add(&to->mnt_slave, &from->mnt_slave); 3003 to->mnt_master = m; 3004 } 3005 3006 if (IS_MNT_SHARED(from)) { 3007 to->mnt_group_id = from->mnt_group_id; 3008 list_add(&to->mnt_share, &from->mnt_share); 3009 lock_mount_hash(); 3010 set_mnt_shared(to); 3011 unlock_mount_hash(); 3012 } 3013 3014 err = 0; 3015 out: 3016 namespace_unlock(); 3017 return err; 3018 } 3019 3020 /** 3021 * path_overmounted - check if path is overmounted 3022 * @path: path to check 3023 * 3024 * Check if path is overmounted, i.e., if there's a mount on top of 3025 * @path->mnt with @path->dentry as mountpoint. 3026 * 3027 * Context: namespace_sem must be held at least shared. 3028 * MUST NOT be called under lock_mount_hash() (there one should just 3029 * call __lookup_mnt() and check if it returns NULL). 3030 * Return: If path is overmounted true is returned, false if not. 3031 */ 3032 static inline bool path_overmounted(const struct path *path) 3033 { 3034 unsigned seq = read_seqbegin(&mount_lock); 3035 bool no_child; 3036 3037 rcu_read_lock(); 3038 no_child = !__lookup_mnt(path->mnt, path->dentry); 3039 rcu_read_unlock(); 3040 if (need_seqretry(&mount_lock, seq)) { 3041 read_seqlock_excl(&mount_lock); 3042 no_child = !__lookup_mnt(path->mnt, path->dentry); 3043 read_sequnlock_excl(&mount_lock); 3044 } 3045 return unlikely(!no_child); 3046 } 3047 3048 /** 3049 * can_move_mount_beneath - check that we can mount beneath the top mount 3050 * @from: mount to mount beneath 3051 * @to: mount under which to mount 3052 * 3053 * - Make sure that @to->dentry is actually the root of a mount under 3054 * which we can mount another mount. 3055 * - Make sure that nothing can be mounted beneath the caller's current 3056 * root or the rootfs of the namespace. 3057 * - Make sure that the caller can unmount the topmost mount ensuring 3058 * that the caller could reveal the underlying mountpoint. 3059 * - Ensure that nothing has been mounted on top of @from before we 3060 * grabbed @namespace_sem to avoid creating pointless shadow mounts. 3061 * - Prevent mounting beneath a mount if the propagation relationship 3062 * between the source mount, parent mount, and top mount would lead to 3063 * nonsensical mount trees. 3064 * 3065 * Context: This function expects namespace_lock() to be held. 3066 * Return: On success 0, and on error a negative error code is returned. 3067 */ 3068 static int can_move_mount_beneath(const struct path *from, 3069 const struct path *to, 3070 const struct mountpoint *mp) 3071 { 3072 struct mount *mnt_from = real_mount(from->mnt), 3073 *mnt_to = real_mount(to->mnt), 3074 *parent_mnt_to = mnt_to->mnt_parent; 3075 3076 if (!mnt_has_parent(mnt_to)) 3077 return -EINVAL; 3078 3079 if (!path_mounted(to)) 3080 return -EINVAL; 3081 3082 if (IS_MNT_LOCKED(mnt_to)) 3083 return -EINVAL; 3084 3085 /* Avoid creating shadow mounts during mount propagation. */ 3086 if (path_overmounted(from)) 3087 return -EINVAL; 3088 3089 /* 3090 * Mounting beneath the rootfs only makes sense when the 3091 * semantics of pivot_root(".", ".") are used. 3092 */ 3093 if (&mnt_to->mnt == current->fs->root.mnt) 3094 return -EINVAL; 3095 if (parent_mnt_to == current->nsproxy->mnt_ns->root) 3096 return -EINVAL; 3097 3098 for (struct mount *p = mnt_from; mnt_has_parent(p); p = p->mnt_parent) 3099 if (p == mnt_to) 3100 return -EINVAL; 3101 3102 /* 3103 * If the parent mount propagates to the child mount this would 3104 * mean mounting @mnt_from on @mnt_to->mnt_parent and then 3105 * propagating a copy @c of @mnt_from on top of @mnt_to. This 3106 * defeats the whole purpose of mounting beneath another mount. 3107 */ 3108 if (propagation_would_overmount(parent_mnt_to, mnt_to, mp)) 3109 return -EINVAL; 3110 3111 /* 3112 * If @mnt_to->mnt_parent propagates to @mnt_from this would 3113 * mean propagating a copy @c of @mnt_from on top of @mnt_from. 3114 * Afterwards @mnt_from would be mounted on top of 3115 * @mnt_to->mnt_parent and @mnt_to would be unmounted from 3116 * @mnt->mnt_parent and remounted on @mnt_from. But since @c is 3117 * already mounted on @mnt_from, @mnt_to would ultimately be 3118 * remounted on top of @c. Afterwards, @mnt_from would be 3119 * covered by a copy @c of @mnt_from and @c would be covered by 3120 * @mnt_from itself. This defeats the whole purpose of mounting 3121 * @mnt_from beneath @mnt_to. 3122 */ 3123 if (propagation_would_overmount(parent_mnt_to, mnt_from, mp)) 3124 return -EINVAL; 3125 3126 return 0; 3127 } 3128 3129 static int do_move_mount(struct path *old_path, struct path *new_path, 3130 bool beneath) 3131 { 3132 struct mnt_namespace *ns; 3133 struct mount *p; 3134 struct mount *old; 3135 struct mount *parent; 3136 struct mountpoint *mp, *old_mp; 3137 int err; 3138 bool attached; 3139 enum mnt_tree_flags_t flags = 0; 3140 3141 mp = do_lock_mount(new_path, beneath); 3142 if (IS_ERR(mp)) 3143 return PTR_ERR(mp); 3144 3145 old = real_mount(old_path->mnt); 3146 p = real_mount(new_path->mnt); 3147 parent = old->mnt_parent; 3148 attached = mnt_has_parent(old); 3149 if (attached) 3150 flags |= MNT_TREE_MOVE; 3151 old_mp = old->mnt_mp; 3152 ns = old->mnt_ns; 3153 3154 err = -EINVAL; 3155 /* The mountpoint must be in our namespace. */ 3156 if (!check_mnt(p)) 3157 goto out; 3158 3159 /* The thing moved must be mounted... */ 3160 if (!is_mounted(&old->mnt)) 3161 goto out; 3162 3163 /* ... and either ours or the root of anon namespace */ 3164 if (!(attached ? check_mnt(old) : is_anon_ns(ns))) 3165 goto out; 3166 3167 if (old->mnt.mnt_flags & MNT_LOCKED) 3168 goto out; 3169 3170 if (!path_mounted(old_path)) 3171 goto out; 3172 3173 if (d_is_dir(new_path->dentry) != 3174 d_is_dir(old_path->dentry)) 3175 goto out; 3176 /* 3177 * Don't move a mount residing in a shared parent. 3178 */ 3179 if (attached && IS_MNT_SHARED(parent)) 3180 goto out; 3181 3182 if (beneath) { 3183 err = can_move_mount_beneath(old_path, new_path, mp); 3184 if (err) 3185 goto out; 3186 3187 err = -EINVAL; 3188 p = p->mnt_parent; 3189 flags |= MNT_TREE_BENEATH; 3190 } 3191 3192 /* 3193 * Don't move a mount tree containing unbindable mounts to a destination 3194 * mount which is shared. 3195 */ 3196 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old)) 3197 goto out; 3198 err = -ELOOP; 3199 if (!check_for_nsfs_mounts(old)) 3200 goto out; 3201 for (; mnt_has_parent(p); p = p->mnt_parent) 3202 if (p == old) 3203 goto out; 3204 3205 err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp, flags); 3206 if (err) 3207 goto out; 3208 3209 /* if the mount is moved, it should no longer be expire 3210 * automatically */ 3211 list_del_init(&old->mnt_expire); 3212 if (attached) 3213 put_mountpoint(old_mp); 3214 out: 3215 unlock_mount(mp); 3216 if (!err) { 3217 if (attached) 3218 mntput_no_expire(parent); 3219 else 3220 free_mnt_ns(ns); 3221 } 3222 return err; 3223 } 3224 3225 static int do_move_mount_old(struct path *path, const char *old_name) 3226 { 3227 struct path old_path; 3228 int err; 3229 3230 if (!old_name || !*old_name) 3231 return -EINVAL; 3232 3233 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); 3234 if (err) 3235 return err; 3236 3237 err = do_move_mount(&old_path, path, false); 3238 path_put(&old_path); 3239 return err; 3240 } 3241 3242 /* 3243 * add a mount into a namespace's mount tree 3244 */ 3245 static int do_add_mount(struct mount *newmnt, struct mountpoint *mp, 3246 const struct path *path, int mnt_flags) 3247 { 3248 struct mount *parent = real_mount(path->mnt); 3249 3250 mnt_flags &= ~MNT_INTERNAL_FLAGS; 3251 3252 if (unlikely(!check_mnt(parent))) { 3253 /* that's acceptable only for automounts done in private ns */ 3254 if (!(mnt_flags & MNT_SHRINKABLE)) 3255 return -EINVAL; 3256 /* ... and for those we'd better have mountpoint still alive */ 3257 if (!parent->mnt_ns) 3258 return -EINVAL; 3259 } 3260 3261 /* Refuse the same filesystem on the same mount point */ 3262 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && path_mounted(path)) 3263 return -EBUSY; 3264 3265 if (d_is_symlink(newmnt->mnt.mnt_root)) 3266 return -EINVAL; 3267 3268 newmnt->mnt.mnt_flags = mnt_flags; 3269 return graft_tree(newmnt, parent, mp); 3270 } 3271 3272 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags); 3273 3274 /* 3275 * Create a new mount using a superblock configuration and request it 3276 * be added to the namespace tree. 3277 */ 3278 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint, 3279 unsigned int mnt_flags) 3280 { 3281 struct vfsmount *mnt; 3282 struct mountpoint *mp; 3283 struct super_block *sb = fc->root->d_sb; 3284 int error; 3285 3286 error = security_sb_kern_mount(sb); 3287 if (!error && mount_too_revealing(sb, &mnt_flags)) 3288 error = -EPERM; 3289 3290 if (unlikely(error)) { 3291 fc_drop_locked(fc); 3292 return error; 3293 } 3294 3295 up_write(&sb->s_umount); 3296 3297 mnt = vfs_create_mount(fc); 3298 if (IS_ERR(mnt)) 3299 return PTR_ERR(mnt); 3300 3301 mnt_warn_timestamp_expiry(mountpoint, mnt); 3302 3303 mp = lock_mount(mountpoint); 3304 if (IS_ERR(mp)) { 3305 mntput(mnt); 3306 return PTR_ERR(mp); 3307 } 3308 error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags); 3309 unlock_mount(mp); 3310 if (error < 0) 3311 mntput(mnt); 3312 return error; 3313 } 3314 3315 /* 3316 * create a new mount for userspace and request it to be added into the 3317 * namespace's tree 3318 */ 3319 static int do_new_mount(struct path *path, const char *fstype, int sb_flags, 3320 int mnt_flags, const char *name, void *data) 3321 { 3322 struct file_system_type *type; 3323 struct fs_context *fc; 3324 const char *subtype = NULL; 3325 int err = 0; 3326 3327 if (!fstype) 3328 return -EINVAL; 3329 3330 type = get_fs_type(fstype); 3331 if (!type) 3332 return -ENODEV; 3333 3334 if (type->fs_flags & FS_HAS_SUBTYPE) { 3335 subtype = strchr(fstype, '.'); 3336 if (subtype) { 3337 subtype++; 3338 if (!*subtype) { 3339 put_filesystem(type); 3340 return -EINVAL; 3341 } 3342 } 3343 } 3344 3345 fc = fs_context_for_mount(type, sb_flags); 3346 put_filesystem(type); 3347 if (IS_ERR(fc)) 3348 return PTR_ERR(fc); 3349 3350 /* 3351 * Indicate to the filesystem that the mount request is coming 3352 * from the legacy mount system call. 3353 */ 3354 fc->oldapi = true; 3355 3356 if (subtype) 3357 err = vfs_parse_fs_string(fc, "subtype", 3358 subtype, strlen(subtype)); 3359 if (!err && name) 3360 err = vfs_parse_fs_string(fc, "source", name, strlen(name)); 3361 if (!err) 3362 err = parse_monolithic_mount_data(fc, data); 3363 if (!err && !mount_capable(fc)) 3364 err = -EPERM; 3365 if (!err) 3366 err = vfs_get_tree(fc); 3367 if (!err) 3368 err = do_new_mount_fc(fc, path, mnt_flags); 3369 3370 put_fs_context(fc); 3371 return err; 3372 } 3373 3374 int finish_automount(struct vfsmount *m, const struct path *path) 3375 { 3376 struct dentry *dentry = path->dentry; 3377 struct mountpoint *mp; 3378 struct mount *mnt; 3379 int err; 3380 3381 if (!m) 3382 return 0; 3383 if (IS_ERR(m)) 3384 return PTR_ERR(m); 3385 3386 mnt = real_mount(m); 3387 /* The new mount record should have at least 2 refs to prevent it being 3388 * expired before we get a chance to add it 3389 */ 3390 BUG_ON(mnt_get_count(mnt) < 2); 3391 3392 if (m->mnt_sb == path->mnt->mnt_sb && 3393 m->mnt_root == dentry) { 3394 err = -ELOOP; 3395 goto discard; 3396 } 3397 3398 /* 3399 * we don't want to use lock_mount() - in this case finding something 3400 * that overmounts our mountpoint to be means "quitely drop what we've 3401 * got", not "try to mount it on top". 3402 */ 3403 inode_lock(dentry->d_inode); 3404 namespace_lock(); 3405 if (unlikely(cant_mount(dentry))) { 3406 err = -ENOENT; 3407 goto discard_locked; 3408 } 3409 if (path_overmounted(path)) { 3410 err = 0; 3411 goto discard_locked; 3412 } 3413 mp = get_mountpoint(dentry); 3414 if (IS_ERR(mp)) { 3415 err = PTR_ERR(mp); 3416 goto discard_locked; 3417 } 3418 3419 err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE); 3420 unlock_mount(mp); 3421 if (unlikely(err)) 3422 goto discard; 3423 mntput(m); 3424 return 0; 3425 3426 discard_locked: 3427 namespace_unlock(); 3428 inode_unlock(dentry->d_inode); 3429 discard: 3430 /* remove m from any expiration list it may be on */ 3431 if (!list_empty(&mnt->mnt_expire)) { 3432 namespace_lock(); 3433 list_del_init(&mnt->mnt_expire); 3434 namespace_unlock(); 3435 } 3436 mntput(m); 3437 mntput(m); 3438 return err; 3439 } 3440 3441 /** 3442 * mnt_set_expiry - Put a mount on an expiration list 3443 * @mnt: The mount to list. 3444 * @expiry_list: The list to add the mount to. 3445 */ 3446 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list) 3447 { 3448 namespace_lock(); 3449 3450 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list); 3451 3452 namespace_unlock(); 3453 } 3454 EXPORT_SYMBOL(mnt_set_expiry); 3455 3456 /* 3457 * process a list of expirable mountpoints with the intent of discarding any 3458 * mountpoints that aren't in use and haven't been touched since last we came 3459 * here 3460 */ 3461 void mark_mounts_for_expiry(struct list_head *mounts) 3462 { 3463 struct mount *mnt, *next; 3464 LIST_HEAD(graveyard); 3465 3466 if (list_empty(mounts)) 3467 return; 3468 3469 namespace_lock(); 3470 lock_mount_hash(); 3471 3472 /* extract from the expiration list every vfsmount that matches the 3473 * following criteria: 3474 * - only referenced by its parent vfsmount 3475 * - still marked for expiry (marked on the last call here; marks are 3476 * cleared by mntput()) 3477 */ 3478 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { 3479 if (!xchg(&mnt->mnt_expiry_mark, 1) || 3480 propagate_mount_busy(mnt, 1)) 3481 continue; 3482 list_move(&mnt->mnt_expire, &graveyard); 3483 } 3484 while (!list_empty(&graveyard)) { 3485 mnt = list_first_entry(&graveyard, struct mount, mnt_expire); 3486 touch_mnt_namespace(mnt->mnt_ns); 3487 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 3488 } 3489 unlock_mount_hash(); 3490 namespace_unlock(); 3491 } 3492 3493 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); 3494 3495 /* 3496 * Ripoff of 'select_parent()' 3497 * 3498 * search the list of submounts for a given mountpoint, and move any 3499 * shrinkable submounts to the 'graveyard' list. 3500 */ 3501 static int select_submounts(struct mount *parent, struct list_head *graveyard) 3502 { 3503 struct mount *this_parent = parent; 3504 struct list_head *next; 3505 int found = 0; 3506 3507 repeat: 3508 next = this_parent->mnt_mounts.next; 3509 resume: 3510 while (next != &this_parent->mnt_mounts) { 3511 struct list_head *tmp = next; 3512 struct mount *mnt = list_entry(tmp, struct mount, mnt_child); 3513 3514 next = tmp->next; 3515 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE)) 3516 continue; 3517 /* 3518 * Descend a level if the d_mounts list is non-empty. 3519 */ 3520 if (!list_empty(&mnt->mnt_mounts)) { 3521 this_parent = mnt; 3522 goto repeat; 3523 } 3524 3525 if (!propagate_mount_busy(mnt, 1)) { 3526 list_move_tail(&mnt->mnt_expire, graveyard); 3527 found++; 3528 } 3529 } 3530 /* 3531 * All done at this level ... ascend and resume the search 3532 */ 3533 if (this_parent != parent) { 3534 next = this_parent->mnt_child.next; 3535 this_parent = this_parent->mnt_parent; 3536 goto resume; 3537 } 3538 return found; 3539 } 3540 3541 /* 3542 * process a list of expirable mountpoints with the intent of discarding any 3543 * submounts of a specific parent mountpoint 3544 * 3545 * mount_lock must be held for write 3546 */ 3547 static void shrink_submounts(struct mount *mnt) 3548 { 3549 LIST_HEAD(graveyard); 3550 struct mount *m; 3551 3552 /* extract submounts of 'mountpoint' from the expiration list */ 3553 while (select_submounts(mnt, &graveyard)) { 3554 while (!list_empty(&graveyard)) { 3555 m = list_first_entry(&graveyard, struct mount, 3556 mnt_expire); 3557 touch_mnt_namespace(m->mnt_ns); 3558 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC); 3559 } 3560 } 3561 } 3562 3563 static void *copy_mount_options(const void __user * data) 3564 { 3565 char *copy; 3566 unsigned left, offset; 3567 3568 if (!data) 3569 return NULL; 3570 3571 copy = kmalloc(PAGE_SIZE, GFP_KERNEL); 3572 if (!copy) 3573 return ERR_PTR(-ENOMEM); 3574 3575 left = copy_from_user(copy, data, PAGE_SIZE); 3576 3577 /* 3578 * Not all architectures have an exact copy_from_user(). Resort to 3579 * byte at a time. 3580 */ 3581 offset = PAGE_SIZE - left; 3582 while (left) { 3583 char c; 3584 if (get_user(c, (const char __user *)data + offset)) 3585 break; 3586 copy[offset] = c; 3587 left--; 3588 offset++; 3589 } 3590 3591 if (left == PAGE_SIZE) { 3592 kfree(copy); 3593 return ERR_PTR(-EFAULT); 3594 } 3595 3596 return copy; 3597 } 3598 3599 static char *copy_mount_string(const void __user *data) 3600 { 3601 return data ? strndup_user(data, PATH_MAX) : NULL; 3602 } 3603 3604 /* 3605 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to 3606 * be given to the mount() call (ie: read-only, no-dev, no-suid etc). 3607 * 3608 * data is a (void *) that can point to any structure up to 3609 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent 3610 * information (or be NULL). 3611 * 3612 * Pre-0.97 versions of mount() didn't have a flags word. 3613 * When the flags word was introduced its top half was required 3614 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. 3615 * Therefore, if this magic number is present, it carries no information 3616 * and must be discarded. 3617 */ 3618 int path_mount(const char *dev_name, struct path *path, 3619 const char *type_page, unsigned long flags, void *data_page) 3620 { 3621 unsigned int mnt_flags = 0, sb_flags; 3622 int ret; 3623 3624 /* Discard magic */ 3625 if ((flags & MS_MGC_MSK) == MS_MGC_VAL) 3626 flags &= ~MS_MGC_MSK; 3627 3628 /* Basic sanity checks */ 3629 if (data_page) 3630 ((char *)data_page)[PAGE_SIZE - 1] = 0; 3631 3632 if (flags & MS_NOUSER) 3633 return -EINVAL; 3634 3635 ret = security_sb_mount(dev_name, path, type_page, flags, data_page); 3636 if (ret) 3637 return ret; 3638 if (!may_mount()) 3639 return -EPERM; 3640 if (flags & SB_MANDLOCK) 3641 warn_mandlock(); 3642 3643 /* Default to relatime unless overriden */ 3644 if (!(flags & MS_NOATIME)) 3645 mnt_flags |= MNT_RELATIME; 3646 3647 /* Separate the per-mountpoint flags */ 3648 if (flags & MS_NOSUID) 3649 mnt_flags |= MNT_NOSUID; 3650 if (flags & MS_NODEV) 3651 mnt_flags |= MNT_NODEV; 3652 if (flags & MS_NOEXEC) 3653 mnt_flags |= MNT_NOEXEC; 3654 if (flags & MS_NOATIME) 3655 mnt_flags |= MNT_NOATIME; 3656 if (flags & MS_NODIRATIME) 3657 mnt_flags |= MNT_NODIRATIME; 3658 if (flags & MS_STRICTATIME) 3659 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME); 3660 if (flags & MS_RDONLY) 3661 mnt_flags |= MNT_READONLY; 3662 if (flags & MS_NOSYMFOLLOW) 3663 mnt_flags |= MNT_NOSYMFOLLOW; 3664 3665 /* The default atime for remount is preservation */ 3666 if ((flags & MS_REMOUNT) && 3667 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME | 3668 MS_STRICTATIME)) == 0)) { 3669 mnt_flags &= ~MNT_ATIME_MASK; 3670 mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK; 3671 } 3672 3673 sb_flags = flags & (SB_RDONLY | 3674 SB_SYNCHRONOUS | 3675 SB_MANDLOCK | 3676 SB_DIRSYNC | 3677 SB_SILENT | 3678 SB_POSIXACL | 3679 SB_LAZYTIME | 3680 SB_I_VERSION); 3681 3682 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND)) 3683 return do_reconfigure_mnt(path, mnt_flags); 3684 if (flags & MS_REMOUNT) 3685 return do_remount(path, flags, sb_flags, mnt_flags, data_page); 3686 if (flags & MS_BIND) 3687 return do_loopback(path, dev_name, flags & MS_REC); 3688 if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 3689 return do_change_type(path, flags); 3690 if (flags & MS_MOVE) 3691 return do_move_mount_old(path, dev_name); 3692 3693 return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name, 3694 data_page); 3695 } 3696 3697 long do_mount(const char *dev_name, const char __user *dir_name, 3698 const char *type_page, unsigned long flags, void *data_page) 3699 { 3700 struct path path; 3701 int ret; 3702 3703 ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path); 3704 if (ret) 3705 return ret; 3706 ret = path_mount(dev_name, &path, type_page, flags, data_page); 3707 path_put(&path); 3708 return ret; 3709 } 3710 3711 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns) 3712 { 3713 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES); 3714 } 3715 3716 static void dec_mnt_namespaces(struct ucounts *ucounts) 3717 { 3718 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES); 3719 } 3720 3721 static void free_mnt_ns(struct mnt_namespace *ns) 3722 { 3723 if (!is_anon_ns(ns)) 3724 ns_free_inum(&ns->ns); 3725 dec_mnt_namespaces(ns->ucounts); 3726 put_user_ns(ns->user_ns); 3727 kfree(ns); 3728 } 3729 3730 /* 3731 * Assign a sequence number so we can detect when we attempt to bind 3732 * mount a reference to an older mount namespace into the current 3733 * mount namespace, preventing reference counting loops. A 64bit 3734 * number incrementing at 10Ghz will take 12,427 years to wrap which 3735 * is effectively never, so we can ignore the possibility. 3736 */ 3737 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1); 3738 3739 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon) 3740 { 3741 struct mnt_namespace *new_ns; 3742 struct ucounts *ucounts; 3743 int ret; 3744 3745 ucounts = inc_mnt_namespaces(user_ns); 3746 if (!ucounts) 3747 return ERR_PTR(-ENOSPC); 3748 3749 new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT); 3750 if (!new_ns) { 3751 dec_mnt_namespaces(ucounts); 3752 return ERR_PTR(-ENOMEM); 3753 } 3754 if (!anon) { 3755 ret = ns_alloc_inum(&new_ns->ns); 3756 if (ret) { 3757 kfree(new_ns); 3758 dec_mnt_namespaces(ucounts); 3759 return ERR_PTR(ret); 3760 } 3761 } 3762 new_ns->ns.ops = &mntns_operations; 3763 if (!anon) 3764 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq); 3765 refcount_set(&new_ns->ns.count, 1); 3766 INIT_LIST_HEAD(&new_ns->list); 3767 init_waitqueue_head(&new_ns->poll); 3768 spin_lock_init(&new_ns->ns_lock); 3769 new_ns->user_ns = get_user_ns(user_ns); 3770 new_ns->ucounts = ucounts; 3771 return new_ns; 3772 } 3773 3774 __latent_entropy 3775 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns, 3776 struct user_namespace *user_ns, struct fs_struct *new_fs) 3777 { 3778 struct mnt_namespace *new_ns; 3779 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL; 3780 struct mount *p, *q; 3781 struct mount *old; 3782 struct mount *new; 3783 int copy_flags; 3784 3785 BUG_ON(!ns); 3786 3787 if (likely(!(flags & CLONE_NEWNS))) { 3788 get_mnt_ns(ns); 3789 return ns; 3790 } 3791 3792 old = ns->root; 3793 3794 new_ns = alloc_mnt_ns(user_ns, false); 3795 if (IS_ERR(new_ns)) 3796 return new_ns; 3797 3798 namespace_lock(); 3799 /* First pass: copy the tree topology */ 3800 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE; 3801 if (user_ns != ns->user_ns) 3802 copy_flags |= CL_SHARED_TO_SLAVE; 3803 new = copy_tree(old, old->mnt.mnt_root, copy_flags); 3804 if (IS_ERR(new)) { 3805 namespace_unlock(); 3806 free_mnt_ns(new_ns); 3807 return ERR_CAST(new); 3808 } 3809 if (user_ns != ns->user_ns) { 3810 lock_mount_hash(); 3811 lock_mnt_tree(new); 3812 unlock_mount_hash(); 3813 } 3814 new_ns->root = new; 3815 list_add_tail(&new_ns->list, &new->mnt_list); 3816 3817 /* 3818 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts 3819 * as belonging to new namespace. We have already acquired a private 3820 * fs_struct, so tsk->fs->lock is not needed. 3821 */ 3822 p = old; 3823 q = new; 3824 while (p) { 3825 q->mnt_ns = new_ns; 3826 new_ns->mounts++; 3827 if (new_fs) { 3828 if (&p->mnt == new_fs->root.mnt) { 3829 new_fs->root.mnt = mntget(&q->mnt); 3830 rootmnt = &p->mnt; 3831 } 3832 if (&p->mnt == new_fs->pwd.mnt) { 3833 new_fs->pwd.mnt = mntget(&q->mnt); 3834 pwdmnt = &p->mnt; 3835 } 3836 } 3837 p = next_mnt(p, old); 3838 q = next_mnt(q, new); 3839 if (!q) 3840 break; 3841 // an mntns binding we'd skipped? 3842 while (p->mnt.mnt_root != q->mnt.mnt_root) 3843 p = next_mnt(skip_mnt_tree(p), old); 3844 } 3845 namespace_unlock(); 3846 3847 if (rootmnt) 3848 mntput(rootmnt); 3849 if (pwdmnt) 3850 mntput(pwdmnt); 3851 3852 return new_ns; 3853 } 3854 3855 struct dentry *mount_subtree(struct vfsmount *m, const char *name) 3856 { 3857 struct mount *mnt = real_mount(m); 3858 struct mnt_namespace *ns; 3859 struct super_block *s; 3860 struct path path; 3861 int err; 3862 3863 ns = alloc_mnt_ns(&init_user_ns, true); 3864 if (IS_ERR(ns)) { 3865 mntput(m); 3866 return ERR_CAST(ns); 3867 } 3868 mnt->mnt_ns = ns; 3869 ns->root = mnt; 3870 ns->mounts++; 3871 list_add(&mnt->mnt_list, &ns->list); 3872 3873 err = vfs_path_lookup(m->mnt_root, m, 3874 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path); 3875 3876 put_mnt_ns(ns); 3877 3878 if (err) 3879 return ERR_PTR(err); 3880 3881 /* trade a vfsmount reference for active sb one */ 3882 s = path.mnt->mnt_sb; 3883 atomic_inc(&s->s_active); 3884 mntput(path.mnt); 3885 /* lock the sucker */ 3886 down_write(&s->s_umount); 3887 /* ... and return the root of (sub)tree on it */ 3888 return path.dentry; 3889 } 3890 EXPORT_SYMBOL(mount_subtree); 3891 3892 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name, 3893 char __user *, type, unsigned long, flags, void __user *, data) 3894 { 3895 int ret; 3896 char *kernel_type; 3897 char *kernel_dev; 3898 void *options; 3899 3900 kernel_type = copy_mount_string(type); 3901 ret = PTR_ERR(kernel_type); 3902 if (IS_ERR(kernel_type)) 3903 goto out_type; 3904 3905 kernel_dev = copy_mount_string(dev_name); 3906 ret = PTR_ERR(kernel_dev); 3907 if (IS_ERR(kernel_dev)) 3908 goto out_dev; 3909 3910 options = copy_mount_options(data); 3911 ret = PTR_ERR(options); 3912 if (IS_ERR(options)) 3913 goto out_data; 3914 3915 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options); 3916 3917 kfree(options); 3918 out_data: 3919 kfree(kernel_dev); 3920 out_dev: 3921 kfree(kernel_type); 3922 out_type: 3923 return ret; 3924 } 3925 3926 #define FSMOUNT_VALID_FLAGS \ 3927 (MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV | \ 3928 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME | \ 3929 MOUNT_ATTR_NOSYMFOLLOW) 3930 3931 #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP) 3932 3933 #define MOUNT_SETATTR_PROPAGATION_FLAGS \ 3934 (MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED) 3935 3936 static unsigned int attr_flags_to_mnt_flags(u64 attr_flags) 3937 { 3938 unsigned int mnt_flags = 0; 3939 3940 if (attr_flags & MOUNT_ATTR_RDONLY) 3941 mnt_flags |= MNT_READONLY; 3942 if (attr_flags & MOUNT_ATTR_NOSUID) 3943 mnt_flags |= MNT_NOSUID; 3944 if (attr_flags & MOUNT_ATTR_NODEV) 3945 mnt_flags |= MNT_NODEV; 3946 if (attr_flags & MOUNT_ATTR_NOEXEC) 3947 mnt_flags |= MNT_NOEXEC; 3948 if (attr_flags & MOUNT_ATTR_NODIRATIME) 3949 mnt_flags |= MNT_NODIRATIME; 3950 if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW) 3951 mnt_flags |= MNT_NOSYMFOLLOW; 3952 3953 return mnt_flags; 3954 } 3955 3956 /* 3957 * Create a kernel mount representation for a new, prepared superblock 3958 * (specified by fs_fd) and attach to an open_tree-like file descriptor. 3959 */ 3960 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags, 3961 unsigned int, attr_flags) 3962 { 3963 struct mnt_namespace *ns; 3964 struct fs_context *fc; 3965 struct file *file; 3966 struct path newmount; 3967 struct mount *mnt; 3968 struct fd f; 3969 unsigned int mnt_flags = 0; 3970 long ret; 3971 3972 if (!may_mount()) 3973 return -EPERM; 3974 3975 if ((flags & ~(FSMOUNT_CLOEXEC)) != 0) 3976 return -EINVAL; 3977 3978 if (attr_flags & ~FSMOUNT_VALID_FLAGS) 3979 return -EINVAL; 3980 3981 mnt_flags = attr_flags_to_mnt_flags(attr_flags); 3982 3983 switch (attr_flags & MOUNT_ATTR__ATIME) { 3984 case MOUNT_ATTR_STRICTATIME: 3985 break; 3986 case MOUNT_ATTR_NOATIME: 3987 mnt_flags |= MNT_NOATIME; 3988 break; 3989 case MOUNT_ATTR_RELATIME: 3990 mnt_flags |= MNT_RELATIME; 3991 break; 3992 default: 3993 return -EINVAL; 3994 } 3995 3996 f = fdget(fs_fd); 3997 if (!f.file) 3998 return -EBADF; 3999 4000 ret = -EINVAL; 4001 if (f.file->f_op != &fscontext_fops) 4002 goto err_fsfd; 4003 4004 fc = f.file->private_data; 4005 4006 ret = mutex_lock_interruptible(&fc->uapi_mutex); 4007 if (ret < 0) 4008 goto err_fsfd; 4009 4010 /* There must be a valid superblock or we can't mount it */ 4011 ret = -EINVAL; 4012 if (!fc->root) 4013 goto err_unlock; 4014 4015 ret = -EPERM; 4016 if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) { 4017 pr_warn("VFS: Mount too revealing\n"); 4018 goto err_unlock; 4019 } 4020 4021 ret = -EBUSY; 4022 if (fc->phase != FS_CONTEXT_AWAITING_MOUNT) 4023 goto err_unlock; 4024 4025 if (fc->sb_flags & SB_MANDLOCK) 4026 warn_mandlock(); 4027 4028 newmount.mnt = vfs_create_mount(fc); 4029 if (IS_ERR(newmount.mnt)) { 4030 ret = PTR_ERR(newmount.mnt); 4031 goto err_unlock; 4032 } 4033 newmount.dentry = dget(fc->root); 4034 newmount.mnt->mnt_flags = mnt_flags; 4035 4036 /* We've done the mount bit - now move the file context into more or 4037 * less the same state as if we'd done an fspick(). We don't want to 4038 * do any memory allocation or anything like that at this point as we 4039 * don't want to have to handle any errors incurred. 4040 */ 4041 vfs_clean_context(fc); 4042 4043 ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true); 4044 if (IS_ERR(ns)) { 4045 ret = PTR_ERR(ns); 4046 goto err_path; 4047 } 4048 mnt = real_mount(newmount.mnt); 4049 mnt->mnt_ns = ns; 4050 ns->root = mnt; 4051 ns->mounts = 1; 4052 list_add(&mnt->mnt_list, &ns->list); 4053 mntget(newmount.mnt); 4054 4055 /* Attach to an apparent O_PATH fd with a note that we need to unmount 4056 * it, not just simply put it. 4057 */ 4058 file = dentry_open(&newmount, O_PATH, fc->cred); 4059 if (IS_ERR(file)) { 4060 dissolve_on_fput(newmount.mnt); 4061 ret = PTR_ERR(file); 4062 goto err_path; 4063 } 4064 file->f_mode |= FMODE_NEED_UNMOUNT; 4065 4066 ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0); 4067 if (ret >= 0) 4068 fd_install(ret, file); 4069 else 4070 fput(file); 4071 4072 err_path: 4073 path_put(&newmount); 4074 err_unlock: 4075 mutex_unlock(&fc->uapi_mutex); 4076 err_fsfd: 4077 fdput(f); 4078 return ret; 4079 } 4080 4081 /* 4082 * Move a mount from one place to another. In combination with 4083 * fsopen()/fsmount() this is used to install a new mount and in combination 4084 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy 4085 * a mount subtree. 4086 * 4087 * Note the flags value is a combination of MOVE_MOUNT_* flags. 4088 */ 4089 SYSCALL_DEFINE5(move_mount, 4090 int, from_dfd, const char __user *, from_pathname, 4091 int, to_dfd, const char __user *, to_pathname, 4092 unsigned int, flags) 4093 { 4094 struct path from_path, to_path; 4095 unsigned int lflags; 4096 int ret = 0; 4097 4098 if (!may_mount()) 4099 return -EPERM; 4100 4101 if (flags & ~MOVE_MOUNT__MASK) 4102 return -EINVAL; 4103 4104 if ((flags & (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP)) == 4105 (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP)) 4106 return -EINVAL; 4107 4108 /* If someone gives a pathname, they aren't permitted to move 4109 * from an fd that requires unmount as we can't get at the flag 4110 * to clear it afterwards. 4111 */ 4112 lflags = 0; 4113 if (flags & MOVE_MOUNT_F_SYMLINKS) lflags |= LOOKUP_FOLLOW; 4114 if (flags & MOVE_MOUNT_F_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT; 4115 if (flags & MOVE_MOUNT_F_EMPTY_PATH) lflags |= LOOKUP_EMPTY; 4116 4117 ret = user_path_at(from_dfd, from_pathname, lflags, &from_path); 4118 if (ret < 0) 4119 return ret; 4120 4121 lflags = 0; 4122 if (flags & MOVE_MOUNT_T_SYMLINKS) lflags |= LOOKUP_FOLLOW; 4123 if (flags & MOVE_MOUNT_T_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT; 4124 if (flags & MOVE_MOUNT_T_EMPTY_PATH) lflags |= LOOKUP_EMPTY; 4125 4126 ret = user_path_at(to_dfd, to_pathname, lflags, &to_path); 4127 if (ret < 0) 4128 goto out_from; 4129 4130 ret = security_move_mount(&from_path, &to_path); 4131 if (ret < 0) 4132 goto out_to; 4133 4134 if (flags & MOVE_MOUNT_SET_GROUP) 4135 ret = do_set_group(&from_path, &to_path); 4136 else 4137 ret = do_move_mount(&from_path, &to_path, 4138 (flags & MOVE_MOUNT_BENEATH)); 4139 4140 out_to: 4141 path_put(&to_path); 4142 out_from: 4143 path_put(&from_path); 4144 return ret; 4145 } 4146 4147 /* 4148 * Return true if path is reachable from root 4149 * 4150 * namespace_sem or mount_lock is held 4151 */ 4152 bool is_path_reachable(struct mount *mnt, struct dentry *dentry, 4153 const struct path *root) 4154 { 4155 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) { 4156 dentry = mnt->mnt_mountpoint; 4157 mnt = mnt->mnt_parent; 4158 } 4159 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry); 4160 } 4161 4162 bool path_is_under(const struct path *path1, const struct path *path2) 4163 { 4164 bool res; 4165 read_seqlock_excl(&mount_lock); 4166 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2); 4167 read_sequnlock_excl(&mount_lock); 4168 return res; 4169 } 4170 EXPORT_SYMBOL(path_is_under); 4171 4172 /* 4173 * pivot_root Semantics: 4174 * Moves the root file system of the current process to the directory put_old, 4175 * makes new_root as the new root file system of the current process, and sets 4176 * root/cwd of all processes which had them on the current root to new_root. 4177 * 4178 * Restrictions: 4179 * The new_root and put_old must be directories, and must not be on the 4180 * same file system as the current process root. The put_old must be 4181 * underneath new_root, i.e. adding a non-zero number of /.. to the string 4182 * pointed to by put_old must yield the same directory as new_root. No other 4183 * file system may be mounted on put_old. After all, new_root is a mountpoint. 4184 * 4185 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. 4186 * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives 4187 * in this situation. 4188 * 4189 * Notes: 4190 * - we don't move root/cwd if they are not at the root (reason: if something 4191 * cared enough to change them, it's probably wrong to force them elsewhere) 4192 * - it's okay to pick a root that isn't the root of a file system, e.g. 4193 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, 4194 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root 4195 * first. 4196 */ 4197 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root, 4198 const char __user *, put_old) 4199 { 4200 struct path new, old, root; 4201 struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent; 4202 struct mountpoint *old_mp, *root_mp; 4203 int error; 4204 4205 if (!may_mount()) 4206 return -EPERM; 4207 4208 error = user_path_at(AT_FDCWD, new_root, 4209 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new); 4210 if (error) 4211 goto out0; 4212 4213 error = user_path_at(AT_FDCWD, put_old, 4214 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old); 4215 if (error) 4216 goto out1; 4217 4218 error = security_sb_pivotroot(&old, &new); 4219 if (error) 4220 goto out2; 4221 4222 get_fs_root(current->fs, &root); 4223 old_mp = lock_mount(&old); 4224 error = PTR_ERR(old_mp); 4225 if (IS_ERR(old_mp)) 4226 goto out3; 4227 4228 error = -EINVAL; 4229 new_mnt = real_mount(new.mnt); 4230 root_mnt = real_mount(root.mnt); 4231 old_mnt = real_mount(old.mnt); 4232 ex_parent = new_mnt->mnt_parent; 4233 root_parent = root_mnt->mnt_parent; 4234 if (IS_MNT_SHARED(old_mnt) || 4235 IS_MNT_SHARED(ex_parent) || 4236 IS_MNT_SHARED(root_parent)) 4237 goto out4; 4238 if (!check_mnt(root_mnt) || !check_mnt(new_mnt)) 4239 goto out4; 4240 if (new_mnt->mnt.mnt_flags & MNT_LOCKED) 4241 goto out4; 4242 error = -ENOENT; 4243 if (d_unlinked(new.dentry)) 4244 goto out4; 4245 error = -EBUSY; 4246 if (new_mnt == root_mnt || old_mnt == root_mnt) 4247 goto out4; /* loop, on the same file system */ 4248 error = -EINVAL; 4249 if (!path_mounted(&root)) 4250 goto out4; /* not a mountpoint */ 4251 if (!mnt_has_parent(root_mnt)) 4252 goto out4; /* not attached */ 4253 if (!path_mounted(&new)) 4254 goto out4; /* not a mountpoint */ 4255 if (!mnt_has_parent(new_mnt)) 4256 goto out4; /* not attached */ 4257 /* make sure we can reach put_old from new_root */ 4258 if (!is_path_reachable(old_mnt, old.dentry, &new)) 4259 goto out4; 4260 /* make certain new is below the root */ 4261 if (!is_path_reachable(new_mnt, new.dentry, &root)) 4262 goto out4; 4263 lock_mount_hash(); 4264 umount_mnt(new_mnt); 4265 root_mp = unhash_mnt(root_mnt); /* we'll need its mountpoint */ 4266 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) { 4267 new_mnt->mnt.mnt_flags |= MNT_LOCKED; 4268 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED; 4269 } 4270 /* mount old root on put_old */ 4271 attach_mnt(root_mnt, old_mnt, old_mp, false); 4272 /* mount new_root on / */ 4273 attach_mnt(new_mnt, root_parent, root_mp, false); 4274 mnt_add_count(root_parent, -1); 4275 touch_mnt_namespace(current->nsproxy->mnt_ns); 4276 /* A moved mount should not expire automatically */ 4277 list_del_init(&new_mnt->mnt_expire); 4278 put_mountpoint(root_mp); 4279 unlock_mount_hash(); 4280 chroot_fs_refs(&root, &new); 4281 error = 0; 4282 out4: 4283 unlock_mount(old_mp); 4284 if (!error) 4285 mntput_no_expire(ex_parent); 4286 out3: 4287 path_put(&root); 4288 out2: 4289 path_put(&old); 4290 out1: 4291 path_put(&new); 4292 out0: 4293 return error; 4294 } 4295 4296 static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt) 4297 { 4298 unsigned int flags = mnt->mnt.mnt_flags; 4299 4300 /* flags to clear */ 4301 flags &= ~kattr->attr_clr; 4302 /* flags to raise */ 4303 flags |= kattr->attr_set; 4304 4305 return flags; 4306 } 4307 4308 static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt) 4309 { 4310 struct vfsmount *m = &mnt->mnt; 4311 struct user_namespace *fs_userns = m->mnt_sb->s_user_ns; 4312 4313 if (!kattr->mnt_idmap) 4314 return 0; 4315 4316 /* 4317 * Creating an idmapped mount with the filesystem wide idmapping 4318 * doesn't make sense so block that. We don't allow mushy semantics. 4319 */ 4320 if (!check_fsmapping(kattr->mnt_idmap, m->mnt_sb)) 4321 return -EINVAL; 4322 4323 /* 4324 * Once a mount has been idmapped we don't allow it to change its 4325 * mapping. It makes things simpler and callers can just create 4326 * another bind-mount they can idmap if they want to. 4327 */ 4328 if (is_idmapped_mnt(m)) 4329 return -EPERM; 4330 4331 /* The underlying filesystem doesn't support idmapped mounts yet. */ 4332 if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP)) 4333 return -EINVAL; 4334 4335 /* We're not controlling the superblock. */ 4336 if (!ns_capable(fs_userns, CAP_SYS_ADMIN)) 4337 return -EPERM; 4338 4339 /* Mount has already been visible in the filesystem hierarchy. */ 4340 if (!is_anon_ns(mnt->mnt_ns)) 4341 return -EINVAL; 4342 4343 return 0; 4344 } 4345 4346 /** 4347 * mnt_allow_writers() - check whether the attribute change allows writers 4348 * @kattr: the new mount attributes 4349 * @mnt: the mount to which @kattr will be applied 4350 * 4351 * Check whether thew new mount attributes in @kattr allow concurrent writers. 4352 * 4353 * Return: true if writers need to be held, false if not 4354 */ 4355 static inline bool mnt_allow_writers(const struct mount_kattr *kattr, 4356 const struct mount *mnt) 4357 { 4358 return (!(kattr->attr_set & MNT_READONLY) || 4359 (mnt->mnt.mnt_flags & MNT_READONLY)) && 4360 !kattr->mnt_idmap; 4361 } 4362 4363 static int mount_setattr_prepare(struct mount_kattr *kattr, struct mount *mnt) 4364 { 4365 struct mount *m; 4366 int err; 4367 4368 for (m = mnt; m; m = next_mnt(m, mnt)) { 4369 if (!can_change_locked_flags(m, recalc_flags(kattr, m))) { 4370 err = -EPERM; 4371 break; 4372 } 4373 4374 err = can_idmap_mount(kattr, m); 4375 if (err) 4376 break; 4377 4378 if (!mnt_allow_writers(kattr, m)) { 4379 err = mnt_hold_writers(m); 4380 if (err) 4381 break; 4382 } 4383 4384 if (!kattr->recurse) 4385 return 0; 4386 } 4387 4388 if (err) { 4389 struct mount *p; 4390 4391 /* 4392 * If we had to call mnt_hold_writers() MNT_WRITE_HOLD will 4393 * be set in @mnt_flags. The loop unsets MNT_WRITE_HOLD for all 4394 * mounts and needs to take care to include the first mount. 4395 */ 4396 for (p = mnt; p; p = next_mnt(p, mnt)) { 4397 /* If we had to hold writers unblock them. */ 4398 if (p->mnt.mnt_flags & MNT_WRITE_HOLD) 4399 mnt_unhold_writers(p); 4400 4401 /* 4402 * We're done once the first mount we changed got 4403 * MNT_WRITE_HOLD unset. 4404 */ 4405 if (p == m) 4406 break; 4407 } 4408 } 4409 return err; 4410 } 4411 4412 static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt) 4413 { 4414 if (!kattr->mnt_idmap) 4415 return; 4416 4417 /* 4418 * Pairs with smp_load_acquire() in mnt_idmap(). 4419 * 4420 * Since we only allow a mount to change the idmapping once and 4421 * verified this in can_idmap_mount() we know that the mount has 4422 * @nop_mnt_idmap attached to it. So there's no need to drop any 4423 * references. 4424 */ 4425 smp_store_release(&mnt->mnt.mnt_idmap, mnt_idmap_get(kattr->mnt_idmap)); 4426 } 4427 4428 static void mount_setattr_commit(struct mount_kattr *kattr, struct mount *mnt) 4429 { 4430 struct mount *m; 4431 4432 for (m = mnt; m; m = next_mnt(m, mnt)) { 4433 unsigned int flags; 4434 4435 do_idmap_mount(kattr, m); 4436 flags = recalc_flags(kattr, m); 4437 WRITE_ONCE(m->mnt.mnt_flags, flags); 4438 4439 /* If we had to hold writers unblock them. */ 4440 if (m->mnt.mnt_flags & MNT_WRITE_HOLD) 4441 mnt_unhold_writers(m); 4442 4443 if (kattr->propagation) 4444 change_mnt_propagation(m, kattr->propagation); 4445 if (!kattr->recurse) 4446 break; 4447 } 4448 touch_mnt_namespace(mnt->mnt_ns); 4449 } 4450 4451 static int do_mount_setattr(struct path *path, struct mount_kattr *kattr) 4452 { 4453 struct mount *mnt = real_mount(path->mnt); 4454 int err = 0; 4455 4456 if (!path_mounted(path)) 4457 return -EINVAL; 4458 4459 if (kattr->mnt_userns) { 4460 struct mnt_idmap *mnt_idmap; 4461 4462 mnt_idmap = alloc_mnt_idmap(kattr->mnt_userns); 4463 if (IS_ERR(mnt_idmap)) 4464 return PTR_ERR(mnt_idmap); 4465 kattr->mnt_idmap = mnt_idmap; 4466 } 4467 4468 if (kattr->propagation) { 4469 /* 4470 * Only take namespace_lock() if we're actually changing 4471 * propagation. 4472 */ 4473 namespace_lock(); 4474 if (kattr->propagation == MS_SHARED) { 4475 err = invent_group_ids(mnt, kattr->recurse); 4476 if (err) { 4477 namespace_unlock(); 4478 return err; 4479 } 4480 } 4481 } 4482 4483 err = -EINVAL; 4484 lock_mount_hash(); 4485 4486 /* Ensure that this isn't anything purely vfs internal. */ 4487 if (!is_mounted(&mnt->mnt)) 4488 goto out; 4489 4490 /* 4491 * If this is an attached mount make sure it's located in the callers 4492 * mount namespace. If it's not don't let the caller interact with it. 4493 * 4494 * If this mount doesn't have a parent it's most often simply a 4495 * detached mount with an anonymous mount namespace. IOW, something 4496 * that's simply not attached yet. But there are apparently also users 4497 * that do change mount properties on the rootfs itself. That obviously 4498 * neither has a parent nor is it a detached mount so we cannot 4499 * unconditionally check for detached mounts. 4500 */ 4501 if ((mnt_has_parent(mnt) || !is_anon_ns(mnt->mnt_ns)) && !check_mnt(mnt)) 4502 goto out; 4503 4504 /* 4505 * First, we get the mount tree in a shape where we can change mount 4506 * properties without failure. If we succeeded to do so we commit all 4507 * changes and if we failed we clean up. 4508 */ 4509 err = mount_setattr_prepare(kattr, mnt); 4510 if (!err) 4511 mount_setattr_commit(kattr, mnt); 4512 4513 out: 4514 unlock_mount_hash(); 4515 4516 if (kattr->propagation) { 4517 if (err) 4518 cleanup_group_ids(mnt, NULL); 4519 namespace_unlock(); 4520 } 4521 4522 return err; 4523 } 4524 4525 static int build_mount_idmapped(const struct mount_attr *attr, size_t usize, 4526 struct mount_kattr *kattr, unsigned int flags) 4527 { 4528 int err = 0; 4529 struct ns_common *ns; 4530 struct user_namespace *mnt_userns; 4531 struct fd f; 4532 4533 if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP)) 4534 return 0; 4535 4536 /* 4537 * We currently do not support clearing an idmapped mount. If this ever 4538 * is a use-case we can revisit this but for now let's keep it simple 4539 * and not allow it. 4540 */ 4541 if (attr->attr_clr & MOUNT_ATTR_IDMAP) 4542 return -EINVAL; 4543 4544 if (attr->userns_fd > INT_MAX) 4545 return -EINVAL; 4546 4547 f = fdget(attr->userns_fd); 4548 if (!f.file) 4549 return -EBADF; 4550 4551 if (!proc_ns_file(f.file)) { 4552 err = -EINVAL; 4553 goto out_fput; 4554 } 4555 4556 ns = get_proc_ns(file_inode(f.file)); 4557 if (ns->ops->type != CLONE_NEWUSER) { 4558 err = -EINVAL; 4559 goto out_fput; 4560 } 4561 4562 /* 4563 * The initial idmapping cannot be used to create an idmapped 4564 * mount. We use the initial idmapping as an indicator of a mount 4565 * that is not idmapped. It can simply be passed into helpers that 4566 * are aware of idmapped mounts as a convenient shortcut. A user 4567 * can just create a dedicated identity mapping to achieve the same 4568 * result. 4569 */ 4570 mnt_userns = container_of(ns, struct user_namespace, ns); 4571 if (mnt_userns == &init_user_ns) { 4572 err = -EPERM; 4573 goto out_fput; 4574 } 4575 4576 /* We're not controlling the target namespace. */ 4577 if (!ns_capable(mnt_userns, CAP_SYS_ADMIN)) { 4578 err = -EPERM; 4579 goto out_fput; 4580 } 4581 4582 kattr->mnt_userns = get_user_ns(mnt_userns); 4583 4584 out_fput: 4585 fdput(f); 4586 return err; 4587 } 4588 4589 static int build_mount_kattr(const struct mount_attr *attr, size_t usize, 4590 struct mount_kattr *kattr, unsigned int flags) 4591 { 4592 unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW; 4593 4594 if (flags & AT_NO_AUTOMOUNT) 4595 lookup_flags &= ~LOOKUP_AUTOMOUNT; 4596 if (flags & AT_SYMLINK_NOFOLLOW) 4597 lookup_flags &= ~LOOKUP_FOLLOW; 4598 if (flags & AT_EMPTY_PATH) 4599 lookup_flags |= LOOKUP_EMPTY; 4600 4601 *kattr = (struct mount_kattr) { 4602 .lookup_flags = lookup_flags, 4603 .recurse = !!(flags & AT_RECURSIVE), 4604 }; 4605 4606 if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS) 4607 return -EINVAL; 4608 if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1) 4609 return -EINVAL; 4610 kattr->propagation = attr->propagation; 4611 4612 if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS) 4613 return -EINVAL; 4614 4615 kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set); 4616 kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr); 4617 4618 /* 4619 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap, 4620 * users wanting to transition to a different atime setting cannot 4621 * simply specify the atime setting in @attr_set, but must also 4622 * specify MOUNT_ATTR__ATIME in the @attr_clr field. 4623 * So ensure that MOUNT_ATTR__ATIME can't be partially set in 4624 * @attr_clr and that @attr_set can't have any atime bits set if 4625 * MOUNT_ATTR__ATIME isn't set in @attr_clr. 4626 */ 4627 if (attr->attr_clr & MOUNT_ATTR__ATIME) { 4628 if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME) 4629 return -EINVAL; 4630 4631 /* 4632 * Clear all previous time settings as they are mutually 4633 * exclusive. 4634 */ 4635 kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME; 4636 switch (attr->attr_set & MOUNT_ATTR__ATIME) { 4637 case MOUNT_ATTR_RELATIME: 4638 kattr->attr_set |= MNT_RELATIME; 4639 break; 4640 case MOUNT_ATTR_NOATIME: 4641 kattr->attr_set |= MNT_NOATIME; 4642 break; 4643 case MOUNT_ATTR_STRICTATIME: 4644 break; 4645 default: 4646 return -EINVAL; 4647 } 4648 } else { 4649 if (attr->attr_set & MOUNT_ATTR__ATIME) 4650 return -EINVAL; 4651 } 4652 4653 return build_mount_idmapped(attr, usize, kattr, flags); 4654 } 4655 4656 static void finish_mount_kattr(struct mount_kattr *kattr) 4657 { 4658 put_user_ns(kattr->mnt_userns); 4659 kattr->mnt_userns = NULL; 4660 4661 if (kattr->mnt_idmap) 4662 mnt_idmap_put(kattr->mnt_idmap); 4663 } 4664 4665 SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path, 4666 unsigned int, flags, struct mount_attr __user *, uattr, 4667 size_t, usize) 4668 { 4669 int err; 4670 struct path target; 4671 struct mount_attr attr; 4672 struct mount_kattr kattr; 4673 4674 BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0); 4675 4676 if (flags & ~(AT_EMPTY_PATH | 4677 AT_RECURSIVE | 4678 AT_SYMLINK_NOFOLLOW | 4679 AT_NO_AUTOMOUNT)) 4680 return -EINVAL; 4681 4682 if (unlikely(usize > PAGE_SIZE)) 4683 return -E2BIG; 4684 if (unlikely(usize < MOUNT_ATTR_SIZE_VER0)) 4685 return -EINVAL; 4686 4687 if (!may_mount()) 4688 return -EPERM; 4689 4690 err = copy_struct_from_user(&attr, sizeof(attr), uattr, usize); 4691 if (err) 4692 return err; 4693 4694 /* Don't bother walking through the mounts if this is a nop. */ 4695 if (attr.attr_set == 0 && 4696 attr.attr_clr == 0 && 4697 attr.propagation == 0) 4698 return 0; 4699 4700 err = build_mount_kattr(&attr, usize, &kattr, flags); 4701 if (err) 4702 return err; 4703 4704 err = user_path_at(dfd, path, kattr.lookup_flags, &target); 4705 if (!err) { 4706 err = do_mount_setattr(&target, &kattr); 4707 path_put(&target); 4708 } 4709 finish_mount_kattr(&kattr); 4710 return err; 4711 } 4712 4713 static void __init init_mount_tree(void) 4714 { 4715 struct vfsmount *mnt; 4716 struct mount *m; 4717 struct mnt_namespace *ns; 4718 struct path root; 4719 4720 mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL); 4721 if (IS_ERR(mnt)) 4722 panic("Can't create rootfs"); 4723 4724 ns = alloc_mnt_ns(&init_user_ns, false); 4725 if (IS_ERR(ns)) 4726 panic("Can't allocate initial namespace"); 4727 m = real_mount(mnt); 4728 m->mnt_ns = ns; 4729 ns->root = m; 4730 ns->mounts = 1; 4731 list_add(&m->mnt_list, &ns->list); 4732 init_task.nsproxy->mnt_ns = ns; 4733 get_mnt_ns(ns); 4734 4735 root.mnt = mnt; 4736 root.dentry = mnt->mnt_root; 4737 mnt->mnt_flags |= MNT_LOCKED; 4738 4739 set_fs_pwd(current->fs, &root); 4740 set_fs_root(current->fs, &root); 4741 } 4742 4743 void __init mnt_init(void) 4744 { 4745 int err; 4746 4747 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount), 4748 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL); 4749 4750 mount_hashtable = alloc_large_system_hash("Mount-cache", 4751 sizeof(struct hlist_head), 4752 mhash_entries, 19, 4753 HASH_ZERO, 4754 &m_hash_shift, &m_hash_mask, 0, 0); 4755 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache", 4756 sizeof(struct hlist_head), 4757 mphash_entries, 19, 4758 HASH_ZERO, 4759 &mp_hash_shift, &mp_hash_mask, 0, 0); 4760 4761 if (!mount_hashtable || !mountpoint_hashtable) 4762 panic("Failed to allocate mount hash table\n"); 4763 4764 kernfs_init(); 4765 4766 err = sysfs_init(); 4767 if (err) 4768 printk(KERN_WARNING "%s: sysfs_init error: %d\n", 4769 __func__, err); 4770 fs_kobj = kobject_create_and_add("fs", NULL); 4771 if (!fs_kobj) 4772 printk(KERN_WARNING "%s: kobj create error\n", __func__); 4773 shmem_init(); 4774 init_rootfs(); 4775 init_mount_tree(); 4776 } 4777 4778 void put_mnt_ns(struct mnt_namespace *ns) 4779 { 4780 if (!refcount_dec_and_test(&ns->ns.count)) 4781 return; 4782 drop_collected_mounts(&ns->root->mnt); 4783 free_mnt_ns(ns); 4784 } 4785 4786 struct vfsmount *kern_mount(struct file_system_type *type) 4787 { 4788 struct vfsmount *mnt; 4789 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL); 4790 if (!IS_ERR(mnt)) { 4791 /* 4792 * it is a longterm mount, don't release mnt until 4793 * we unmount before file sys is unregistered 4794 */ 4795 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL; 4796 } 4797 return mnt; 4798 } 4799 EXPORT_SYMBOL_GPL(kern_mount); 4800 4801 void kern_unmount(struct vfsmount *mnt) 4802 { 4803 /* release long term mount so mount point can be released */ 4804 if (!IS_ERR(mnt)) { 4805 mnt_make_shortterm(mnt); 4806 synchronize_rcu(); /* yecchhh... */ 4807 mntput(mnt); 4808 } 4809 } 4810 EXPORT_SYMBOL(kern_unmount); 4811 4812 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num) 4813 { 4814 unsigned int i; 4815 4816 for (i = 0; i < num; i++) 4817 mnt_make_shortterm(mnt[i]); 4818 synchronize_rcu_expedited(); 4819 for (i = 0; i < num; i++) 4820 mntput(mnt[i]); 4821 } 4822 EXPORT_SYMBOL(kern_unmount_array); 4823 4824 bool our_mnt(struct vfsmount *mnt) 4825 { 4826 return check_mnt(real_mount(mnt)); 4827 } 4828 4829 bool current_chrooted(void) 4830 { 4831 /* Does the current process have a non-standard root */ 4832 struct path ns_root; 4833 struct path fs_root; 4834 bool chrooted; 4835 4836 /* Find the namespace root */ 4837 ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt; 4838 ns_root.dentry = ns_root.mnt->mnt_root; 4839 path_get(&ns_root); 4840 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root)) 4841 ; 4842 4843 get_fs_root(current->fs, &fs_root); 4844 4845 chrooted = !path_equal(&fs_root, &ns_root); 4846 4847 path_put(&fs_root); 4848 path_put(&ns_root); 4849 4850 return chrooted; 4851 } 4852 4853 static bool mnt_already_visible(struct mnt_namespace *ns, 4854 const struct super_block *sb, 4855 int *new_mnt_flags) 4856 { 4857 int new_flags = *new_mnt_flags; 4858 struct mount *mnt; 4859 bool visible = false; 4860 4861 down_read(&namespace_sem); 4862 lock_ns_list(ns); 4863 list_for_each_entry(mnt, &ns->list, mnt_list) { 4864 struct mount *child; 4865 int mnt_flags; 4866 4867 if (mnt_is_cursor(mnt)) 4868 continue; 4869 4870 if (mnt->mnt.mnt_sb->s_type != sb->s_type) 4871 continue; 4872 4873 /* This mount is not fully visible if it's root directory 4874 * is not the root directory of the filesystem. 4875 */ 4876 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root) 4877 continue; 4878 4879 /* A local view of the mount flags */ 4880 mnt_flags = mnt->mnt.mnt_flags; 4881 4882 /* Don't miss readonly hidden in the superblock flags */ 4883 if (sb_rdonly(mnt->mnt.mnt_sb)) 4884 mnt_flags |= MNT_LOCK_READONLY; 4885 4886 /* Verify the mount flags are equal to or more permissive 4887 * than the proposed new mount. 4888 */ 4889 if ((mnt_flags & MNT_LOCK_READONLY) && 4890 !(new_flags & MNT_READONLY)) 4891 continue; 4892 if ((mnt_flags & MNT_LOCK_ATIME) && 4893 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK))) 4894 continue; 4895 4896 /* This mount is not fully visible if there are any 4897 * locked child mounts that cover anything except for 4898 * empty directories. 4899 */ 4900 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 4901 struct inode *inode = child->mnt_mountpoint->d_inode; 4902 /* Only worry about locked mounts */ 4903 if (!(child->mnt.mnt_flags & MNT_LOCKED)) 4904 continue; 4905 /* Is the directory permanetly empty? */ 4906 if (!is_empty_dir_inode(inode)) 4907 goto next; 4908 } 4909 /* Preserve the locked attributes */ 4910 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \ 4911 MNT_LOCK_ATIME); 4912 visible = true; 4913 goto found; 4914 next: ; 4915 } 4916 found: 4917 unlock_ns_list(ns); 4918 up_read(&namespace_sem); 4919 return visible; 4920 } 4921 4922 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags) 4923 { 4924 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV; 4925 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 4926 unsigned long s_iflags; 4927 4928 if (ns->user_ns == &init_user_ns) 4929 return false; 4930 4931 /* Can this filesystem be too revealing? */ 4932 s_iflags = sb->s_iflags; 4933 if (!(s_iflags & SB_I_USERNS_VISIBLE)) 4934 return false; 4935 4936 if ((s_iflags & required_iflags) != required_iflags) { 4937 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n", 4938 required_iflags); 4939 return true; 4940 } 4941 4942 return !mnt_already_visible(ns, sb, new_mnt_flags); 4943 } 4944 4945 bool mnt_may_suid(struct vfsmount *mnt) 4946 { 4947 /* 4948 * Foreign mounts (accessed via fchdir or through /proc 4949 * symlinks) are always treated as if they are nosuid. This 4950 * prevents namespaces from trusting potentially unsafe 4951 * suid/sgid bits, file caps, or security labels that originate 4952 * in other namespaces. 4953 */ 4954 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) && 4955 current_in_userns(mnt->mnt_sb->s_user_ns); 4956 } 4957 4958 static struct ns_common *mntns_get(struct task_struct *task) 4959 { 4960 struct ns_common *ns = NULL; 4961 struct nsproxy *nsproxy; 4962 4963 task_lock(task); 4964 nsproxy = task->nsproxy; 4965 if (nsproxy) { 4966 ns = &nsproxy->mnt_ns->ns; 4967 get_mnt_ns(to_mnt_ns(ns)); 4968 } 4969 task_unlock(task); 4970 4971 return ns; 4972 } 4973 4974 static void mntns_put(struct ns_common *ns) 4975 { 4976 put_mnt_ns(to_mnt_ns(ns)); 4977 } 4978 4979 static int mntns_install(struct nsset *nsset, struct ns_common *ns) 4980 { 4981 struct nsproxy *nsproxy = nsset->nsproxy; 4982 struct fs_struct *fs = nsset->fs; 4983 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns; 4984 struct user_namespace *user_ns = nsset->cred->user_ns; 4985 struct path root; 4986 int err; 4987 4988 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) || 4989 !ns_capable(user_ns, CAP_SYS_CHROOT) || 4990 !ns_capable(user_ns, CAP_SYS_ADMIN)) 4991 return -EPERM; 4992 4993 if (is_anon_ns(mnt_ns)) 4994 return -EINVAL; 4995 4996 if (fs->users != 1) 4997 return -EINVAL; 4998 4999 get_mnt_ns(mnt_ns); 5000 old_mnt_ns = nsproxy->mnt_ns; 5001 nsproxy->mnt_ns = mnt_ns; 5002 5003 /* Find the root */ 5004 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt, 5005 "/", LOOKUP_DOWN, &root); 5006 if (err) { 5007 /* revert to old namespace */ 5008 nsproxy->mnt_ns = old_mnt_ns; 5009 put_mnt_ns(mnt_ns); 5010 return err; 5011 } 5012 5013 put_mnt_ns(old_mnt_ns); 5014 5015 /* Update the pwd and root */ 5016 set_fs_pwd(fs, &root); 5017 set_fs_root(fs, &root); 5018 5019 path_put(&root); 5020 return 0; 5021 } 5022 5023 static struct user_namespace *mntns_owner(struct ns_common *ns) 5024 { 5025 return to_mnt_ns(ns)->user_ns; 5026 } 5027 5028 const struct proc_ns_operations mntns_operations = { 5029 .name = "mnt", 5030 .type = CLONE_NEWNS, 5031 .get = mntns_get, 5032 .put = mntns_put, 5033 .install = mntns_install, 5034 .owner = mntns_owner, 5035 }; 5036 5037 #ifdef CONFIG_SYSCTL 5038 static struct ctl_table fs_namespace_sysctls[] = { 5039 { 5040 .procname = "mount-max", 5041 .data = &sysctl_mount_max, 5042 .maxlen = sizeof(unsigned int), 5043 .mode = 0644, 5044 .proc_handler = proc_dointvec_minmax, 5045 .extra1 = SYSCTL_ONE, 5046 }, 5047 { } 5048 }; 5049 5050 static int __init init_fs_namespace_sysctls(void) 5051 { 5052 register_sysctl_init("fs", fs_namespace_sysctls); 5053 return 0; 5054 } 5055 fs_initcall(init_fs_namespace_sysctls); 5056 5057 #endif /* CONFIG_SYSCTL */ 5058