1 /* 2 * linux/fs/namei.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * Some corrections by tytso. 9 */ 10 11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 12 * lookup logic. 13 */ 14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 15 */ 16 17 #include <linux/init.h> 18 #include <linux/export.h> 19 #include <linux/slab.h> 20 #include <linux/fs.h> 21 #include <linux/namei.h> 22 #include <linux/pagemap.h> 23 #include <linux/fsnotify.h> 24 #include <linux/personality.h> 25 #include <linux/security.h> 26 #include <linux/ima.h> 27 #include <linux/syscalls.h> 28 #include <linux/mount.h> 29 #include <linux/audit.h> 30 #include <linux/capability.h> 31 #include <linux/file.h> 32 #include <linux/fcntl.h> 33 #include <linux/device_cgroup.h> 34 #include <linux/fs_struct.h> 35 #include <linux/posix_acl.h> 36 #include <asm/uaccess.h> 37 38 #include "internal.h" 39 #include "mount.h" 40 41 /* [Feb-1997 T. Schoebel-Theuer] 42 * Fundamental changes in the pathname lookup mechanisms (namei) 43 * were necessary because of omirr. The reason is that omirr needs 44 * to know the _real_ pathname, not the user-supplied one, in case 45 * of symlinks (and also when transname replacements occur). 46 * 47 * The new code replaces the old recursive symlink resolution with 48 * an iterative one (in case of non-nested symlink chains). It does 49 * this with calls to <fs>_follow_link(). 50 * As a side effect, dir_namei(), _namei() and follow_link() are now 51 * replaced with a single function lookup_dentry() that can handle all 52 * the special cases of the former code. 53 * 54 * With the new dcache, the pathname is stored at each inode, at least as 55 * long as the refcount of the inode is positive. As a side effect, the 56 * size of the dcache depends on the inode cache and thus is dynamic. 57 * 58 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 59 * resolution to correspond with current state of the code. 60 * 61 * Note that the symlink resolution is not *completely* iterative. 62 * There is still a significant amount of tail- and mid- recursion in 63 * the algorithm. Also, note that <fs>_readlink() is not used in 64 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 65 * may return different results than <fs>_follow_link(). Many virtual 66 * filesystems (including /proc) exhibit this behavior. 67 */ 68 69 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 70 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 71 * and the name already exists in form of a symlink, try to create the new 72 * name indicated by the symlink. The old code always complained that the 73 * name already exists, due to not following the symlink even if its target 74 * is nonexistent. The new semantics affects also mknod() and link() when 75 * the name is a symlink pointing to a non-existent name. 76 * 77 * I don't know which semantics is the right one, since I have no access 78 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 79 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 80 * "old" one. Personally, I think the new semantics is much more logical. 81 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 82 * file does succeed in both HP-UX and SunOs, but not in Solaris 83 * and in the old Linux semantics. 84 */ 85 86 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 87 * semantics. See the comments in "open_namei" and "do_link" below. 88 * 89 * [10-Sep-98 Alan Modra] Another symlink change. 90 */ 91 92 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 93 * inside the path - always follow. 94 * in the last component in creation/removal/renaming - never follow. 95 * if LOOKUP_FOLLOW passed - follow. 96 * if the pathname has trailing slashes - follow. 97 * otherwise - don't follow. 98 * (applied in that order). 99 * 100 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 101 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 102 * During the 2.4 we need to fix the userland stuff depending on it - 103 * hopefully we will be able to get rid of that wart in 2.5. So far only 104 * XEmacs seems to be relying on it... 105 */ 106 /* 107 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 108 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 109 * any extra contention... 110 */ 111 112 /* In order to reduce some races, while at the same time doing additional 113 * checking and hopefully speeding things up, we copy filenames to the 114 * kernel data space before using them.. 115 * 116 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 117 * PATH_MAX includes the nul terminator --RR. 118 */ 119 static int do_getname(const char __user *filename, char *page) 120 { 121 int retval; 122 unsigned long len = PATH_MAX; 123 124 if (!segment_eq(get_fs(), KERNEL_DS)) { 125 if ((unsigned long) filename >= TASK_SIZE) 126 return -EFAULT; 127 if (TASK_SIZE - (unsigned long) filename < PATH_MAX) 128 len = TASK_SIZE - (unsigned long) filename; 129 } 130 131 retval = strncpy_from_user(page, filename, len); 132 if (retval > 0) { 133 if (retval < len) 134 return 0; 135 return -ENAMETOOLONG; 136 } else if (!retval) 137 retval = -ENOENT; 138 return retval; 139 } 140 141 static char *getname_flags(const char __user *filename, int flags, int *empty) 142 { 143 char *result = __getname(); 144 int retval; 145 146 if (!result) 147 return ERR_PTR(-ENOMEM); 148 149 retval = do_getname(filename, result); 150 if (retval < 0) { 151 if (retval == -ENOENT && empty) 152 *empty = 1; 153 if (retval != -ENOENT || !(flags & LOOKUP_EMPTY)) { 154 __putname(result); 155 return ERR_PTR(retval); 156 } 157 } 158 audit_getname(result); 159 return result; 160 } 161 162 char *getname(const char __user * filename) 163 { 164 return getname_flags(filename, 0, NULL); 165 } 166 167 #ifdef CONFIG_AUDITSYSCALL 168 void putname(const char *name) 169 { 170 if (unlikely(!audit_dummy_context())) 171 audit_putname(name); 172 else 173 __putname(name); 174 } 175 EXPORT_SYMBOL(putname); 176 #endif 177 178 static int check_acl(struct inode *inode, int mask) 179 { 180 #ifdef CONFIG_FS_POSIX_ACL 181 struct posix_acl *acl; 182 183 if (mask & MAY_NOT_BLOCK) { 184 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS); 185 if (!acl) 186 return -EAGAIN; 187 /* no ->get_acl() calls in RCU mode... */ 188 if (acl == ACL_NOT_CACHED) 189 return -ECHILD; 190 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK); 191 } 192 193 acl = get_cached_acl(inode, ACL_TYPE_ACCESS); 194 195 /* 196 * A filesystem can force a ACL callback by just never filling the 197 * ACL cache. But normally you'd fill the cache either at inode 198 * instantiation time, or on the first ->get_acl call. 199 * 200 * If the filesystem doesn't have a get_acl() function at all, we'll 201 * just create the negative cache entry. 202 */ 203 if (acl == ACL_NOT_CACHED) { 204 if (inode->i_op->get_acl) { 205 acl = inode->i_op->get_acl(inode, ACL_TYPE_ACCESS); 206 if (IS_ERR(acl)) 207 return PTR_ERR(acl); 208 } else { 209 set_cached_acl(inode, ACL_TYPE_ACCESS, NULL); 210 return -EAGAIN; 211 } 212 } 213 214 if (acl) { 215 int error = posix_acl_permission(inode, acl, mask); 216 posix_acl_release(acl); 217 return error; 218 } 219 #endif 220 221 return -EAGAIN; 222 } 223 224 /* 225 * This does the basic permission checking 226 */ 227 static int acl_permission_check(struct inode *inode, int mask) 228 { 229 unsigned int mode = inode->i_mode; 230 231 if (current_user_ns() != inode_userns(inode)) 232 goto other_perms; 233 234 if (likely(current_fsuid() == inode->i_uid)) 235 mode >>= 6; 236 else { 237 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) { 238 int error = check_acl(inode, mask); 239 if (error != -EAGAIN) 240 return error; 241 } 242 243 if (in_group_p(inode->i_gid)) 244 mode >>= 3; 245 } 246 247 other_perms: 248 /* 249 * If the DACs are ok we don't need any capability check. 250 */ 251 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 252 return 0; 253 return -EACCES; 254 } 255 256 /** 257 * generic_permission - check for access rights on a Posix-like filesystem 258 * @inode: inode to check access rights for 259 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...) 260 * 261 * Used to check for read/write/execute permissions on a file. 262 * We use "fsuid" for this, letting us set arbitrary permissions 263 * for filesystem access without changing the "normal" uids which 264 * are used for other things. 265 * 266 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk 267 * request cannot be satisfied (eg. requires blocking or too much complexity). 268 * It would then be called again in ref-walk mode. 269 */ 270 int generic_permission(struct inode *inode, int mask) 271 { 272 int ret; 273 274 /* 275 * Do the basic permission checks. 276 */ 277 ret = acl_permission_check(inode, mask); 278 if (ret != -EACCES) 279 return ret; 280 281 if (S_ISDIR(inode->i_mode)) { 282 /* DACs are overridable for directories */ 283 if (ns_capable(inode_userns(inode), CAP_DAC_OVERRIDE)) 284 return 0; 285 if (!(mask & MAY_WRITE)) 286 if (ns_capable(inode_userns(inode), CAP_DAC_READ_SEARCH)) 287 return 0; 288 return -EACCES; 289 } 290 /* 291 * Read/write DACs are always overridable. 292 * Executable DACs are overridable when there is 293 * at least one exec bit set. 294 */ 295 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO)) 296 if (ns_capable(inode_userns(inode), CAP_DAC_OVERRIDE)) 297 return 0; 298 299 /* 300 * Searching includes executable on directories, else just read. 301 */ 302 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 303 if (mask == MAY_READ) 304 if (ns_capable(inode_userns(inode), CAP_DAC_READ_SEARCH)) 305 return 0; 306 307 return -EACCES; 308 } 309 310 /* 311 * We _really_ want to just do "generic_permission()" without 312 * even looking at the inode->i_op values. So we keep a cache 313 * flag in inode->i_opflags, that says "this has not special 314 * permission function, use the fast case". 315 */ 316 static inline int do_inode_permission(struct inode *inode, int mask) 317 { 318 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) { 319 if (likely(inode->i_op->permission)) 320 return inode->i_op->permission(inode, mask); 321 322 /* This gets set once for the inode lifetime */ 323 spin_lock(&inode->i_lock); 324 inode->i_opflags |= IOP_FASTPERM; 325 spin_unlock(&inode->i_lock); 326 } 327 return generic_permission(inode, mask); 328 } 329 330 /** 331 * inode_permission - check for access rights to a given inode 332 * @inode: inode to check permission on 333 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...) 334 * 335 * Used to check for read/write/execute permissions on an inode. 336 * We use "fsuid" for this, letting us set arbitrary permissions 337 * for filesystem access without changing the "normal" uids which 338 * are used for other things. 339 * 340 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 341 */ 342 int inode_permission(struct inode *inode, int mask) 343 { 344 int retval; 345 346 if (unlikely(mask & MAY_WRITE)) { 347 umode_t mode = inode->i_mode; 348 349 /* 350 * Nobody gets write access to a read-only fs. 351 */ 352 if (IS_RDONLY(inode) && 353 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 354 return -EROFS; 355 356 /* 357 * Nobody gets write access to an immutable file. 358 */ 359 if (IS_IMMUTABLE(inode)) 360 return -EACCES; 361 } 362 363 retval = do_inode_permission(inode, mask); 364 if (retval) 365 return retval; 366 367 retval = devcgroup_inode_permission(inode, mask); 368 if (retval) 369 return retval; 370 371 return security_inode_permission(inode, mask); 372 } 373 374 /** 375 * path_get - get a reference to a path 376 * @path: path to get the reference to 377 * 378 * Given a path increment the reference count to the dentry and the vfsmount. 379 */ 380 void path_get(struct path *path) 381 { 382 mntget(path->mnt); 383 dget(path->dentry); 384 } 385 EXPORT_SYMBOL(path_get); 386 387 /** 388 * path_put - put a reference to a path 389 * @path: path to put the reference to 390 * 391 * Given a path decrement the reference count to the dentry and the vfsmount. 392 */ 393 void path_put(struct path *path) 394 { 395 dput(path->dentry); 396 mntput(path->mnt); 397 } 398 EXPORT_SYMBOL(path_put); 399 400 /* 401 * Path walking has 2 modes, rcu-walk and ref-walk (see 402 * Documentation/filesystems/path-lookup.txt). In situations when we can't 403 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab 404 * normal reference counts on dentries and vfsmounts to transition to rcu-walk 405 * mode. Refcounts are grabbed at the last known good point before rcu-walk 406 * got stuck, so ref-walk may continue from there. If this is not successful 407 * (eg. a seqcount has changed), then failure is returned and it's up to caller 408 * to restart the path walk from the beginning in ref-walk mode. 409 */ 410 411 /** 412 * unlazy_walk - try to switch to ref-walk mode. 413 * @nd: nameidata pathwalk data 414 * @dentry: child of nd->path.dentry or NULL 415 * Returns: 0 on success, -ECHILD on failure 416 * 417 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry 418 * for ref-walk mode. @dentry must be a path found by a do_lookup call on 419 * @nd or NULL. Must be called from rcu-walk context. 420 */ 421 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry) 422 { 423 struct fs_struct *fs = current->fs; 424 struct dentry *parent = nd->path.dentry; 425 int want_root = 0; 426 427 BUG_ON(!(nd->flags & LOOKUP_RCU)); 428 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 429 want_root = 1; 430 spin_lock(&fs->lock); 431 if (nd->root.mnt != fs->root.mnt || 432 nd->root.dentry != fs->root.dentry) 433 goto err_root; 434 } 435 spin_lock(&parent->d_lock); 436 if (!dentry) { 437 if (!__d_rcu_to_refcount(parent, nd->seq)) 438 goto err_parent; 439 BUG_ON(nd->inode != parent->d_inode); 440 } else { 441 if (dentry->d_parent != parent) 442 goto err_parent; 443 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 444 if (!__d_rcu_to_refcount(dentry, nd->seq)) 445 goto err_child; 446 /* 447 * If the sequence check on the child dentry passed, then 448 * the child has not been removed from its parent. This 449 * means the parent dentry must be valid and able to take 450 * a reference at this point. 451 */ 452 BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent); 453 BUG_ON(!parent->d_count); 454 parent->d_count++; 455 spin_unlock(&dentry->d_lock); 456 } 457 spin_unlock(&parent->d_lock); 458 if (want_root) { 459 path_get(&nd->root); 460 spin_unlock(&fs->lock); 461 } 462 mntget(nd->path.mnt); 463 464 rcu_read_unlock(); 465 br_read_unlock(vfsmount_lock); 466 nd->flags &= ~LOOKUP_RCU; 467 return 0; 468 469 err_child: 470 spin_unlock(&dentry->d_lock); 471 err_parent: 472 spin_unlock(&parent->d_lock); 473 err_root: 474 if (want_root) 475 spin_unlock(&fs->lock); 476 return -ECHILD; 477 } 478 479 /** 480 * release_open_intent - free up open intent resources 481 * @nd: pointer to nameidata 482 */ 483 void release_open_intent(struct nameidata *nd) 484 { 485 struct file *file = nd->intent.open.file; 486 487 if (file && !IS_ERR(file)) { 488 if (file->f_path.dentry == NULL) 489 put_filp(file); 490 else 491 fput(file); 492 } 493 } 494 495 static inline int d_revalidate(struct dentry *dentry, struct nameidata *nd) 496 { 497 return dentry->d_op->d_revalidate(dentry, nd); 498 } 499 500 /** 501 * complete_walk - successful completion of path walk 502 * @nd: pointer nameidata 503 * 504 * If we had been in RCU mode, drop out of it and legitimize nd->path. 505 * Revalidate the final result, unless we'd already done that during 506 * the path walk or the filesystem doesn't ask for it. Return 0 on 507 * success, -error on failure. In case of failure caller does not 508 * need to drop nd->path. 509 */ 510 static int complete_walk(struct nameidata *nd) 511 { 512 struct dentry *dentry = nd->path.dentry; 513 int status; 514 515 if (nd->flags & LOOKUP_RCU) { 516 nd->flags &= ~LOOKUP_RCU; 517 if (!(nd->flags & LOOKUP_ROOT)) 518 nd->root.mnt = NULL; 519 spin_lock(&dentry->d_lock); 520 if (unlikely(!__d_rcu_to_refcount(dentry, nd->seq))) { 521 spin_unlock(&dentry->d_lock); 522 rcu_read_unlock(); 523 br_read_unlock(vfsmount_lock); 524 return -ECHILD; 525 } 526 BUG_ON(nd->inode != dentry->d_inode); 527 spin_unlock(&dentry->d_lock); 528 mntget(nd->path.mnt); 529 rcu_read_unlock(); 530 br_read_unlock(vfsmount_lock); 531 } 532 533 if (likely(!(nd->flags & LOOKUP_JUMPED))) 534 return 0; 535 536 if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE))) 537 return 0; 538 539 if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT))) 540 return 0; 541 542 /* Note: we do not d_invalidate() */ 543 status = d_revalidate(dentry, nd); 544 if (status > 0) 545 return 0; 546 547 if (!status) 548 status = -ESTALE; 549 550 path_put(&nd->path); 551 return status; 552 } 553 554 static __always_inline void set_root(struct nameidata *nd) 555 { 556 if (!nd->root.mnt) 557 get_fs_root(current->fs, &nd->root); 558 } 559 560 static int link_path_walk(const char *, struct nameidata *); 561 562 static __always_inline void set_root_rcu(struct nameidata *nd) 563 { 564 if (!nd->root.mnt) { 565 struct fs_struct *fs = current->fs; 566 unsigned seq; 567 568 do { 569 seq = read_seqcount_begin(&fs->seq); 570 nd->root = fs->root; 571 nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq); 572 } while (read_seqcount_retry(&fs->seq, seq)); 573 } 574 } 575 576 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link) 577 { 578 int ret; 579 580 if (IS_ERR(link)) 581 goto fail; 582 583 if (*link == '/') { 584 set_root(nd); 585 path_put(&nd->path); 586 nd->path = nd->root; 587 path_get(&nd->root); 588 nd->flags |= LOOKUP_JUMPED; 589 } 590 nd->inode = nd->path.dentry->d_inode; 591 592 ret = link_path_walk(link, nd); 593 return ret; 594 fail: 595 path_put(&nd->path); 596 return PTR_ERR(link); 597 } 598 599 static void path_put_conditional(struct path *path, struct nameidata *nd) 600 { 601 dput(path->dentry); 602 if (path->mnt != nd->path.mnt) 603 mntput(path->mnt); 604 } 605 606 static inline void path_to_nameidata(const struct path *path, 607 struct nameidata *nd) 608 { 609 if (!(nd->flags & LOOKUP_RCU)) { 610 dput(nd->path.dentry); 611 if (nd->path.mnt != path->mnt) 612 mntput(nd->path.mnt); 613 } 614 nd->path.mnt = path->mnt; 615 nd->path.dentry = path->dentry; 616 } 617 618 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie) 619 { 620 struct inode *inode = link->dentry->d_inode; 621 if (!IS_ERR(cookie) && inode->i_op->put_link) 622 inode->i_op->put_link(link->dentry, nd, cookie); 623 path_put(link); 624 } 625 626 static __always_inline int 627 follow_link(struct path *link, struct nameidata *nd, void **p) 628 { 629 int error; 630 struct dentry *dentry = link->dentry; 631 632 BUG_ON(nd->flags & LOOKUP_RCU); 633 634 if (link->mnt == nd->path.mnt) 635 mntget(link->mnt); 636 637 if (unlikely(current->total_link_count >= 40)) { 638 *p = ERR_PTR(-ELOOP); /* no ->put_link(), please */ 639 path_put(&nd->path); 640 return -ELOOP; 641 } 642 cond_resched(); 643 current->total_link_count++; 644 645 touch_atime(link); 646 nd_set_link(nd, NULL); 647 648 error = security_inode_follow_link(link->dentry, nd); 649 if (error) { 650 *p = ERR_PTR(error); /* no ->put_link(), please */ 651 path_put(&nd->path); 652 return error; 653 } 654 655 nd->last_type = LAST_BIND; 656 *p = dentry->d_inode->i_op->follow_link(dentry, nd); 657 error = PTR_ERR(*p); 658 if (!IS_ERR(*p)) { 659 char *s = nd_get_link(nd); 660 error = 0; 661 if (s) 662 error = __vfs_follow_link(nd, s); 663 else if (nd->last_type == LAST_BIND) { 664 nd->flags |= LOOKUP_JUMPED; 665 nd->inode = nd->path.dentry->d_inode; 666 if (nd->inode->i_op->follow_link) { 667 /* stepped on a _really_ weird one */ 668 path_put(&nd->path); 669 error = -ELOOP; 670 } 671 } 672 } 673 return error; 674 } 675 676 static int follow_up_rcu(struct path *path) 677 { 678 struct mount *mnt = real_mount(path->mnt); 679 struct mount *parent; 680 struct dentry *mountpoint; 681 682 parent = mnt->mnt_parent; 683 if (&parent->mnt == path->mnt) 684 return 0; 685 mountpoint = mnt->mnt_mountpoint; 686 path->dentry = mountpoint; 687 path->mnt = &parent->mnt; 688 return 1; 689 } 690 691 int follow_up(struct path *path) 692 { 693 struct mount *mnt = real_mount(path->mnt); 694 struct mount *parent; 695 struct dentry *mountpoint; 696 697 br_read_lock(vfsmount_lock); 698 parent = mnt->mnt_parent; 699 if (&parent->mnt == path->mnt) { 700 br_read_unlock(vfsmount_lock); 701 return 0; 702 } 703 mntget(&parent->mnt); 704 mountpoint = dget(mnt->mnt_mountpoint); 705 br_read_unlock(vfsmount_lock); 706 dput(path->dentry); 707 path->dentry = mountpoint; 708 mntput(path->mnt); 709 path->mnt = &parent->mnt; 710 return 1; 711 } 712 713 /* 714 * Perform an automount 715 * - return -EISDIR to tell follow_managed() to stop and return the path we 716 * were called with. 717 */ 718 static int follow_automount(struct path *path, unsigned flags, 719 bool *need_mntput) 720 { 721 struct vfsmount *mnt; 722 int err; 723 724 if (!path->dentry->d_op || !path->dentry->d_op->d_automount) 725 return -EREMOTE; 726 727 /* We don't want to mount if someone's just doing a stat - 728 * unless they're stat'ing a directory and appended a '/' to 729 * the name. 730 * 731 * We do, however, want to mount if someone wants to open or 732 * create a file of any type under the mountpoint, wants to 733 * traverse through the mountpoint or wants to open the 734 * mounted directory. Also, autofs may mark negative dentries 735 * as being automount points. These will need the attentions 736 * of the daemon to instantiate them before they can be used. 737 */ 738 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY | 739 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) && 740 path->dentry->d_inode) 741 return -EISDIR; 742 743 current->total_link_count++; 744 if (current->total_link_count >= 40) 745 return -ELOOP; 746 747 mnt = path->dentry->d_op->d_automount(path); 748 if (IS_ERR(mnt)) { 749 /* 750 * The filesystem is allowed to return -EISDIR here to indicate 751 * it doesn't want to automount. For instance, autofs would do 752 * this so that its userspace daemon can mount on this dentry. 753 * 754 * However, we can only permit this if it's a terminal point in 755 * the path being looked up; if it wasn't then the remainder of 756 * the path is inaccessible and we should say so. 757 */ 758 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT)) 759 return -EREMOTE; 760 return PTR_ERR(mnt); 761 } 762 763 if (!mnt) /* mount collision */ 764 return 0; 765 766 if (!*need_mntput) { 767 /* lock_mount() may release path->mnt on error */ 768 mntget(path->mnt); 769 *need_mntput = true; 770 } 771 err = finish_automount(mnt, path); 772 773 switch (err) { 774 case -EBUSY: 775 /* Someone else made a mount here whilst we were busy */ 776 return 0; 777 case 0: 778 path_put(path); 779 path->mnt = mnt; 780 path->dentry = dget(mnt->mnt_root); 781 return 0; 782 default: 783 return err; 784 } 785 786 } 787 788 /* 789 * Handle a dentry that is managed in some way. 790 * - Flagged for transit management (autofs) 791 * - Flagged as mountpoint 792 * - Flagged as automount point 793 * 794 * This may only be called in refwalk mode. 795 * 796 * Serialization is taken care of in namespace.c 797 */ 798 static int follow_managed(struct path *path, unsigned flags) 799 { 800 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */ 801 unsigned managed; 802 bool need_mntput = false; 803 int ret = 0; 804 805 /* Given that we're not holding a lock here, we retain the value in a 806 * local variable for each dentry as we look at it so that we don't see 807 * the components of that value change under us */ 808 while (managed = ACCESS_ONCE(path->dentry->d_flags), 809 managed &= DCACHE_MANAGED_DENTRY, 810 unlikely(managed != 0)) { 811 /* Allow the filesystem to manage the transit without i_mutex 812 * being held. */ 813 if (managed & DCACHE_MANAGE_TRANSIT) { 814 BUG_ON(!path->dentry->d_op); 815 BUG_ON(!path->dentry->d_op->d_manage); 816 ret = path->dentry->d_op->d_manage(path->dentry, false); 817 if (ret < 0) 818 break; 819 } 820 821 /* Transit to a mounted filesystem. */ 822 if (managed & DCACHE_MOUNTED) { 823 struct vfsmount *mounted = lookup_mnt(path); 824 if (mounted) { 825 dput(path->dentry); 826 if (need_mntput) 827 mntput(path->mnt); 828 path->mnt = mounted; 829 path->dentry = dget(mounted->mnt_root); 830 need_mntput = true; 831 continue; 832 } 833 834 /* Something is mounted on this dentry in another 835 * namespace and/or whatever was mounted there in this 836 * namespace got unmounted before we managed to get the 837 * vfsmount_lock */ 838 } 839 840 /* Handle an automount point */ 841 if (managed & DCACHE_NEED_AUTOMOUNT) { 842 ret = follow_automount(path, flags, &need_mntput); 843 if (ret < 0) 844 break; 845 continue; 846 } 847 848 /* We didn't change the current path point */ 849 break; 850 } 851 852 if (need_mntput && path->mnt == mnt) 853 mntput(path->mnt); 854 if (ret == -EISDIR) 855 ret = 0; 856 return ret < 0 ? ret : need_mntput; 857 } 858 859 int follow_down_one(struct path *path) 860 { 861 struct vfsmount *mounted; 862 863 mounted = lookup_mnt(path); 864 if (mounted) { 865 dput(path->dentry); 866 mntput(path->mnt); 867 path->mnt = mounted; 868 path->dentry = dget(mounted->mnt_root); 869 return 1; 870 } 871 return 0; 872 } 873 874 static inline bool managed_dentry_might_block(struct dentry *dentry) 875 { 876 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT && 877 dentry->d_op->d_manage(dentry, true) < 0); 878 } 879 880 /* 881 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if 882 * we meet a managed dentry that would need blocking. 883 */ 884 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path, 885 struct inode **inode) 886 { 887 for (;;) { 888 struct mount *mounted; 889 /* 890 * Don't forget we might have a non-mountpoint managed dentry 891 * that wants to block transit. 892 */ 893 if (unlikely(managed_dentry_might_block(path->dentry))) 894 return false; 895 896 if (!d_mountpoint(path->dentry)) 897 break; 898 899 mounted = __lookup_mnt(path->mnt, path->dentry, 1); 900 if (!mounted) 901 break; 902 path->mnt = &mounted->mnt; 903 path->dentry = mounted->mnt.mnt_root; 904 nd->flags |= LOOKUP_JUMPED; 905 nd->seq = read_seqcount_begin(&path->dentry->d_seq); 906 /* 907 * Update the inode too. We don't need to re-check the 908 * dentry sequence number here after this d_inode read, 909 * because a mount-point is always pinned. 910 */ 911 *inode = path->dentry->d_inode; 912 } 913 return true; 914 } 915 916 static void follow_mount_rcu(struct nameidata *nd) 917 { 918 while (d_mountpoint(nd->path.dentry)) { 919 struct mount *mounted; 920 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry, 1); 921 if (!mounted) 922 break; 923 nd->path.mnt = &mounted->mnt; 924 nd->path.dentry = mounted->mnt.mnt_root; 925 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 926 } 927 } 928 929 static int follow_dotdot_rcu(struct nameidata *nd) 930 { 931 set_root_rcu(nd); 932 933 while (1) { 934 if (nd->path.dentry == nd->root.dentry && 935 nd->path.mnt == nd->root.mnt) { 936 break; 937 } 938 if (nd->path.dentry != nd->path.mnt->mnt_root) { 939 struct dentry *old = nd->path.dentry; 940 struct dentry *parent = old->d_parent; 941 unsigned seq; 942 943 seq = read_seqcount_begin(&parent->d_seq); 944 if (read_seqcount_retry(&old->d_seq, nd->seq)) 945 goto failed; 946 nd->path.dentry = parent; 947 nd->seq = seq; 948 break; 949 } 950 if (!follow_up_rcu(&nd->path)) 951 break; 952 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 953 } 954 follow_mount_rcu(nd); 955 nd->inode = nd->path.dentry->d_inode; 956 return 0; 957 958 failed: 959 nd->flags &= ~LOOKUP_RCU; 960 if (!(nd->flags & LOOKUP_ROOT)) 961 nd->root.mnt = NULL; 962 rcu_read_unlock(); 963 br_read_unlock(vfsmount_lock); 964 return -ECHILD; 965 } 966 967 /* 968 * Follow down to the covering mount currently visible to userspace. At each 969 * point, the filesystem owning that dentry may be queried as to whether the 970 * caller is permitted to proceed or not. 971 */ 972 int follow_down(struct path *path) 973 { 974 unsigned managed; 975 int ret; 976 977 while (managed = ACCESS_ONCE(path->dentry->d_flags), 978 unlikely(managed & DCACHE_MANAGED_DENTRY)) { 979 /* Allow the filesystem to manage the transit without i_mutex 980 * being held. 981 * 982 * We indicate to the filesystem if someone is trying to mount 983 * something here. This gives autofs the chance to deny anyone 984 * other than its daemon the right to mount on its 985 * superstructure. 986 * 987 * The filesystem may sleep at this point. 988 */ 989 if (managed & DCACHE_MANAGE_TRANSIT) { 990 BUG_ON(!path->dentry->d_op); 991 BUG_ON(!path->dentry->d_op->d_manage); 992 ret = path->dentry->d_op->d_manage( 993 path->dentry, false); 994 if (ret < 0) 995 return ret == -EISDIR ? 0 : ret; 996 } 997 998 /* Transit to a mounted filesystem. */ 999 if (managed & DCACHE_MOUNTED) { 1000 struct vfsmount *mounted = lookup_mnt(path); 1001 if (!mounted) 1002 break; 1003 dput(path->dentry); 1004 mntput(path->mnt); 1005 path->mnt = mounted; 1006 path->dentry = dget(mounted->mnt_root); 1007 continue; 1008 } 1009 1010 /* Don't handle automount points here */ 1011 break; 1012 } 1013 return 0; 1014 } 1015 1016 /* 1017 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot() 1018 */ 1019 static void follow_mount(struct path *path) 1020 { 1021 while (d_mountpoint(path->dentry)) { 1022 struct vfsmount *mounted = lookup_mnt(path); 1023 if (!mounted) 1024 break; 1025 dput(path->dentry); 1026 mntput(path->mnt); 1027 path->mnt = mounted; 1028 path->dentry = dget(mounted->mnt_root); 1029 } 1030 } 1031 1032 static void follow_dotdot(struct nameidata *nd) 1033 { 1034 set_root(nd); 1035 1036 while(1) { 1037 struct dentry *old = nd->path.dentry; 1038 1039 if (nd->path.dentry == nd->root.dentry && 1040 nd->path.mnt == nd->root.mnt) { 1041 break; 1042 } 1043 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1044 /* rare case of legitimate dget_parent()... */ 1045 nd->path.dentry = dget_parent(nd->path.dentry); 1046 dput(old); 1047 break; 1048 } 1049 if (!follow_up(&nd->path)) 1050 break; 1051 } 1052 follow_mount(&nd->path); 1053 nd->inode = nd->path.dentry->d_inode; 1054 } 1055 1056 /* 1057 * This looks up the name in dcache, possibly revalidates the old dentry and 1058 * allocates a new one if not found or not valid. In the need_lookup argument 1059 * returns whether i_op->lookup is necessary. 1060 * 1061 * dir->d_inode->i_mutex must be held 1062 */ 1063 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir, 1064 struct nameidata *nd, bool *need_lookup) 1065 { 1066 struct dentry *dentry; 1067 int error; 1068 1069 *need_lookup = false; 1070 dentry = d_lookup(dir, name); 1071 if (dentry) { 1072 if (d_need_lookup(dentry)) { 1073 *need_lookup = true; 1074 } else if (dentry->d_flags & DCACHE_OP_REVALIDATE) { 1075 error = d_revalidate(dentry, nd); 1076 if (unlikely(error <= 0)) { 1077 if (error < 0) { 1078 dput(dentry); 1079 return ERR_PTR(error); 1080 } else if (!d_invalidate(dentry)) { 1081 dput(dentry); 1082 dentry = NULL; 1083 } 1084 } 1085 } 1086 } 1087 1088 if (!dentry) { 1089 dentry = d_alloc(dir, name); 1090 if (unlikely(!dentry)) 1091 return ERR_PTR(-ENOMEM); 1092 1093 *need_lookup = true; 1094 } 1095 return dentry; 1096 } 1097 1098 /* 1099 * Call i_op->lookup on the dentry. The dentry must be negative but may be 1100 * hashed if it was pouplated with DCACHE_NEED_LOOKUP. 1101 * 1102 * dir->d_inode->i_mutex must be held 1103 */ 1104 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry, 1105 struct nameidata *nd) 1106 { 1107 struct dentry *old; 1108 1109 /* Don't create child dentry for a dead directory. */ 1110 if (unlikely(IS_DEADDIR(dir))) { 1111 dput(dentry); 1112 return ERR_PTR(-ENOENT); 1113 } 1114 1115 old = dir->i_op->lookup(dir, dentry, nd); 1116 if (unlikely(old)) { 1117 dput(dentry); 1118 dentry = old; 1119 } 1120 return dentry; 1121 } 1122 1123 static struct dentry *__lookup_hash(struct qstr *name, 1124 struct dentry *base, struct nameidata *nd) 1125 { 1126 bool need_lookup; 1127 struct dentry *dentry; 1128 1129 dentry = lookup_dcache(name, base, nd, &need_lookup); 1130 if (!need_lookup) 1131 return dentry; 1132 1133 return lookup_real(base->d_inode, dentry, nd); 1134 } 1135 1136 /* 1137 * It's more convoluted than I'd like it to be, but... it's still fairly 1138 * small and for now I'd prefer to have fast path as straight as possible. 1139 * It _is_ time-critical. 1140 */ 1141 static int do_lookup(struct nameidata *nd, struct qstr *name, 1142 struct path *path, struct inode **inode) 1143 { 1144 struct vfsmount *mnt = nd->path.mnt; 1145 struct dentry *dentry, *parent = nd->path.dentry; 1146 int need_reval = 1; 1147 int status = 1; 1148 int err; 1149 1150 /* 1151 * Rename seqlock is not required here because in the off chance 1152 * of a false negative due to a concurrent rename, we're going to 1153 * do the non-racy lookup, below. 1154 */ 1155 if (nd->flags & LOOKUP_RCU) { 1156 unsigned seq; 1157 *inode = nd->inode; 1158 dentry = __d_lookup_rcu(parent, name, &seq, inode); 1159 if (!dentry) 1160 goto unlazy; 1161 1162 /* Memory barrier in read_seqcount_begin of child is enough */ 1163 if (__read_seqcount_retry(&parent->d_seq, nd->seq)) 1164 return -ECHILD; 1165 nd->seq = seq; 1166 1167 if (unlikely(d_need_lookup(dentry))) 1168 goto unlazy; 1169 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) { 1170 status = d_revalidate(dentry, nd); 1171 if (unlikely(status <= 0)) { 1172 if (status != -ECHILD) 1173 need_reval = 0; 1174 goto unlazy; 1175 } 1176 } 1177 path->mnt = mnt; 1178 path->dentry = dentry; 1179 if (unlikely(!__follow_mount_rcu(nd, path, inode))) 1180 goto unlazy; 1181 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT)) 1182 goto unlazy; 1183 return 0; 1184 unlazy: 1185 if (unlazy_walk(nd, dentry)) 1186 return -ECHILD; 1187 } else { 1188 dentry = __d_lookup(parent, name); 1189 } 1190 1191 if (unlikely(!dentry)) 1192 goto need_lookup; 1193 1194 if (unlikely(d_need_lookup(dentry))) { 1195 dput(dentry); 1196 goto need_lookup; 1197 } 1198 1199 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval) 1200 status = d_revalidate(dentry, nd); 1201 if (unlikely(status <= 0)) { 1202 if (status < 0) { 1203 dput(dentry); 1204 return status; 1205 } 1206 if (!d_invalidate(dentry)) { 1207 dput(dentry); 1208 goto need_lookup; 1209 } 1210 } 1211 done: 1212 path->mnt = mnt; 1213 path->dentry = dentry; 1214 err = follow_managed(path, nd->flags); 1215 if (unlikely(err < 0)) { 1216 path_put_conditional(path, nd); 1217 return err; 1218 } 1219 if (err) 1220 nd->flags |= LOOKUP_JUMPED; 1221 *inode = path->dentry->d_inode; 1222 return 0; 1223 1224 need_lookup: 1225 BUG_ON(nd->inode != parent->d_inode); 1226 1227 mutex_lock(&parent->d_inode->i_mutex); 1228 dentry = __lookup_hash(name, parent, nd); 1229 mutex_unlock(&parent->d_inode->i_mutex); 1230 if (IS_ERR(dentry)) 1231 return PTR_ERR(dentry); 1232 goto done; 1233 } 1234 1235 static inline int may_lookup(struct nameidata *nd) 1236 { 1237 if (nd->flags & LOOKUP_RCU) { 1238 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK); 1239 if (err != -ECHILD) 1240 return err; 1241 if (unlazy_walk(nd, NULL)) 1242 return -ECHILD; 1243 } 1244 return inode_permission(nd->inode, MAY_EXEC); 1245 } 1246 1247 static inline int handle_dots(struct nameidata *nd, int type) 1248 { 1249 if (type == LAST_DOTDOT) { 1250 if (nd->flags & LOOKUP_RCU) { 1251 if (follow_dotdot_rcu(nd)) 1252 return -ECHILD; 1253 } else 1254 follow_dotdot(nd); 1255 } 1256 return 0; 1257 } 1258 1259 static void terminate_walk(struct nameidata *nd) 1260 { 1261 if (!(nd->flags & LOOKUP_RCU)) { 1262 path_put(&nd->path); 1263 } else { 1264 nd->flags &= ~LOOKUP_RCU; 1265 if (!(nd->flags & LOOKUP_ROOT)) 1266 nd->root.mnt = NULL; 1267 rcu_read_unlock(); 1268 br_read_unlock(vfsmount_lock); 1269 } 1270 } 1271 1272 /* 1273 * Do we need to follow links? We _really_ want to be able 1274 * to do this check without having to look at inode->i_op, 1275 * so we keep a cache of "no, this doesn't need follow_link" 1276 * for the common case. 1277 */ 1278 static inline int should_follow_link(struct inode *inode, int follow) 1279 { 1280 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) { 1281 if (likely(inode->i_op->follow_link)) 1282 return follow; 1283 1284 /* This gets set once for the inode lifetime */ 1285 spin_lock(&inode->i_lock); 1286 inode->i_opflags |= IOP_NOFOLLOW; 1287 spin_unlock(&inode->i_lock); 1288 } 1289 return 0; 1290 } 1291 1292 static inline int walk_component(struct nameidata *nd, struct path *path, 1293 struct qstr *name, int type, int follow) 1294 { 1295 struct inode *inode; 1296 int err; 1297 /* 1298 * "." and ".." are special - ".." especially so because it has 1299 * to be able to know about the current root directory and 1300 * parent relationships. 1301 */ 1302 if (unlikely(type != LAST_NORM)) 1303 return handle_dots(nd, type); 1304 err = do_lookup(nd, name, path, &inode); 1305 if (unlikely(err)) { 1306 terminate_walk(nd); 1307 return err; 1308 } 1309 if (!inode) { 1310 path_to_nameidata(path, nd); 1311 terminate_walk(nd); 1312 return -ENOENT; 1313 } 1314 if (should_follow_link(inode, follow)) { 1315 if (nd->flags & LOOKUP_RCU) { 1316 if (unlikely(unlazy_walk(nd, path->dentry))) { 1317 terminate_walk(nd); 1318 return -ECHILD; 1319 } 1320 } 1321 BUG_ON(inode != path->dentry->d_inode); 1322 return 1; 1323 } 1324 path_to_nameidata(path, nd); 1325 nd->inode = inode; 1326 return 0; 1327 } 1328 1329 /* 1330 * This limits recursive symlink follows to 8, while 1331 * limiting consecutive symlinks to 40. 1332 * 1333 * Without that kind of total limit, nasty chains of consecutive 1334 * symlinks can cause almost arbitrarily long lookups. 1335 */ 1336 static inline int nested_symlink(struct path *path, struct nameidata *nd) 1337 { 1338 int res; 1339 1340 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) { 1341 path_put_conditional(path, nd); 1342 path_put(&nd->path); 1343 return -ELOOP; 1344 } 1345 BUG_ON(nd->depth >= MAX_NESTED_LINKS); 1346 1347 nd->depth++; 1348 current->link_count++; 1349 1350 do { 1351 struct path link = *path; 1352 void *cookie; 1353 1354 res = follow_link(&link, nd, &cookie); 1355 if (!res) 1356 res = walk_component(nd, path, &nd->last, 1357 nd->last_type, LOOKUP_FOLLOW); 1358 put_link(nd, &link, cookie); 1359 } while (res > 0); 1360 1361 current->link_count--; 1362 nd->depth--; 1363 return res; 1364 } 1365 1366 /* 1367 * We really don't want to look at inode->i_op->lookup 1368 * when we don't have to. So we keep a cache bit in 1369 * the inode ->i_opflags field that says "yes, we can 1370 * do lookup on this inode". 1371 */ 1372 static inline int can_lookup(struct inode *inode) 1373 { 1374 if (likely(inode->i_opflags & IOP_LOOKUP)) 1375 return 1; 1376 if (likely(!inode->i_op->lookup)) 1377 return 0; 1378 1379 /* We do this once for the lifetime of the inode */ 1380 spin_lock(&inode->i_lock); 1381 inode->i_opflags |= IOP_LOOKUP; 1382 spin_unlock(&inode->i_lock); 1383 return 1; 1384 } 1385 1386 /* 1387 * We can do the critical dentry name comparison and hashing 1388 * operations one word at a time, but we are limited to: 1389 * 1390 * - Architectures with fast unaligned word accesses. We could 1391 * do a "get_unaligned()" if this helps and is sufficiently 1392 * fast. 1393 * 1394 * - Little-endian machines (so that we can generate the mask 1395 * of low bytes efficiently). Again, we *could* do a byte 1396 * swapping load on big-endian architectures if that is not 1397 * expensive enough to make the optimization worthless. 1398 * 1399 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we 1400 * do not trap on the (extremely unlikely) case of a page 1401 * crossing operation. 1402 * 1403 * - Furthermore, we need an efficient 64-bit compile for the 1404 * 64-bit case in order to generate the "number of bytes in 1405 * the final mask". Again, that could be replaced with a 1406 * efficient population count instruction or similar. 1407 */ 1408 #ifdef CONFIG_DCACHE_WORD_ACCESS 1409 1410 #include <asm/word-at-a-time.h> 1411 1412 #ifdef CONFIG_64BIT 1413 1414 static inline unsigned int fold_hash(unsigned long hash) 1415 { 1416 hash += hash >> (8*sizeof(int)); 1417 return hash; 1418 } 1419 1420 #else /* 32-bit case */ 1421 1422 #define fold_hash(x) (x) 1423 1424 #endif 1425 1426 unsigned int full_name_hash(const unsigned char *name, unsigned int len) 1427 { 1428 unsigned long a, mask; 1429 unsigned long hash = 0; 1430 1431 for (;;) { 1432 a = *(unsigned long *)name; 1433 if (len < sizeof(unsigned long)) 1434 break; 1435 hash += a; 1436 hash *= 9; 1437 name += sizeof(unsigned long); 1438 len -= sizeof(unsigned long); 1439 if (!len) 1440 goto done; 1441 } 1442 mask = ~(~0ul << len*8); 1443 hash += mask & a; 1444 done: 1445 return fold_hash(hash); 1446 } 1447 EXPORT_SYMBOL(full_name_hash); 1448 1449 /* 1450 * Calculate the length and hash of the path component, and 1451 * return the length of the component; 1452 */ 1453 static inline unsigned long hash_name(const char *name, unsigned int *hashp) 1454 { 1455 unsigned long a, mask, hash, len; 1456 1457 hash = a = 0; 1458 len = -sizeof(unsigned long); 1459 do { 1460 hash = (hash + a) * 9; 1461 len += sizeof(unsigned long); 1462 a = *(unsigned long *)(name+len); 1463 /* Do we have any NUL or '/' bytes in this word? */ 1464 mask = has_zero(a) | has_zero(a ^ REPEAT_BYTE('/')); 1465 } while (!mask); 1466 1467 /* The mask *below* the first high bit set */ 1468 mask = (mask - 1) & ~mask; 1469 mask >>= 7; 1470 hash += a & mask; 1471 *hashp = fold_hash(hash); 1472 1473 return len + count_masked_bytes(mask); 1474 } 1475 1476 #else 1477 1478 unsigned int full_name_hash(const unsigned char *name, unsigned int len) 1479 { 1480 unsigned long hash = init_name_hash(); 1481 while (len--) 1482 hash = partial_name_hash(*name++, hash); 1483 return end_name_hash(hash); 1484 } 1485 EXPORT_SYMBOL(full_name_hash); 1486 1487 /* 1488 * We know there's a real path component here of at least 1489 * one character. 1490 */ 1491 static inline unsigned long hash_name(const char *name, unsigned int *hashp) 1492 { 1493 unsigned long hash = init_name_hash(); 1494 unsigned long len = 0, c; 1495 1496 c = (unsigned char)*name; 1497 do { 1498 len++; 1499 hash = partial_name_hash(c, hash); 1500 c = (unsigned char)name[len]; 1501 } while (c && c != '/'); 1502 *hashp = end_name_hash(hash); 1503 return len; 1504 } 1505 1506 #endif 1507 1508 /* 1509 * Name resolution. 1510 * This is the basic name resolution function, turning a pathname into 1511 * the final dentry. We expect 'base' to be positive and a directory. 1512 * 1513 * Returns 0 and nd will have valid dentry and mnt on success. 1514 * Returns error and drops reference to input namei data on failure. 1515 */ 1516 static int link_path_walk(const char *name, struct nameidata *nd) 1517 { 1518 struct path next; 1519 int err; 1520 1521 while (*name=='/') 1522 name++; 1523 if (!*name) 1524 return 0; 1525 1526 /* At this point we know we have a real path component. */ 1527 for(;;) { 1528 struct qstr this; 1529 long len; 1530 int type; 1531 1532 err = may_lookup(nd); 1533 if (err) 1534 break; 1535 1536 len = hash_name(name, &this.hash); 1537 this.name = name; 1538 this.len = len; 1539 1540 type = LAST_NORM; 1541 if (name[0] == '.') switch (len) { 1542 case 2: 1543 if (name[1] == '.') { 1544 type = LAST_DOTDOT; 1545 nd->flags |= LOOKUP_JUMPED; 1546 } 1547 break; 1548 case 1: 1549 type = LAST_DOT; 1550 } 1551 if (likely(type == LAST_NORM)) { 1552 struct dentry *parent = nd->path.dentry; 1553 nd->flags &= ~LOOKUP_JUMPED; 1554 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { 1555 err = parent->d_op->d_hash(parent, nd->inode, 1556 &this); 1557 if (err < 0) 1558 break; 1559 } 1560 } 1561 1562 if (!name[len]) 1563 goto last_component; 1564 /* 1565 * If it wasn't NUL, we know it was '/'. Skip that 1566 * slash, and continue until no more slashes. 1567 */ 1568 do { 1569 len++; 1570 } while (unlikely(name[len] == '/')); 1571 if (!name[len]) 1572 goto last_component; 1573 name += len; 1574 1575 err = walk_component(nd, &next, &this, type, LOOKUP_FOLLOW); 1576 if (err < 0) 1577 return err; 1578 1579 if (err) { 1580 err = nested_symlink(&next, nd); 1581 if (err) 1582 return err; 1583 } 1584 if (can_lookup(nd->inode)) 1585 continue; 1586 err = -ENOTDIR; 1587 break; 1588 /* here ends the main loop */ 1589 1590 last_component: 1591 nd->last = this; 1592 nd->last_type = type; 1593 return 0; 1594 } 1595 terminate_walk(nd); 1596 return err; 1597 } 1598 1599 static int path_init(int dfd, const char *name, unsigned int flags, 1600 struct nameidata *nd, struct file **fp) 1601 { 1602 int retval = 0; 1603 int fput_needed; 1604 struct file *file; 1605 1606 nd->last_type = LAST_ROOT; /* if there are only slashes... */ 1607 nd->flags = flags | LOOKUP_JUMPED; 1608 nd->depth = 0; 1609 if (flags & LOOKUP_ROOT) { 1610 struct inode *inode = nd->root.dentry->d_inode; 1611 if (*name) { 1612 if (!inode->i_op->lookup) 1613 return -ENOTDIR; 1614 retval = inode_permission(inode, MAY_EXEC); 1615 if (retval) 1616 return retval; 1617 } 1618 nd->path = nd->root; 1619 nd->inode = inode; 1620 if (flags & LOOKUP_RCU) { 1621 br_read_lock(vfsmount_lock); 1622 rcu_read_lock(); 1623 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1624 } else { 1625 path_get(&nd->path); 1626 } 1627 return 0; 1628 } 1629 1630 nd->root.mnt = NULL; 1631 1632 if (*name=='/') { 1633 if (flags & LOOKUP_RCU) { 1634 br_read_lock(vfsmount_lock); 1635 rcu_read_lock(); 1636 set_root_rcu(nd); 1637 } else { 1638 set_root(nd); 1639 path_get(&nd->root); 1640 } 1641 nd->path = nd->root; 1642 } else if (dfd == AT_FDCWD) { 1643 if (flags & LOOKUP_RCU) { 1644 struct fs_struct *fs = current->fs; 1645 unsigned seq; 1646 1647 br_read_lock(vfsmount_lock); 1648 rcu_read_lock(); 1649 1650 do { 1651 seq = read_seqcount_begin(&fs->seq); 1652 nd->path = fs->pwd; 1653 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1654 } while (read_seqcount_retry(&fs->seq, seq)); 1655 } else { 1656 get_fs_pwd(current->fs, &nd->path); 1657 } 1658 } else { 1659 struct dentry *dentry; 1660 1661 file = fget_raw_light(dfd, &fput_needed); 1662 retval = -EBADF; 1663 if (!file) 1664 goto out_fail; 1665 1666 dentry = file->f_path.dentry; 1667 1668 if (*name) { 1669 retval = -ENOTDIR; 1670 if (!S_ISDIR(dentry->d_inode->i_mode)) 1671 goto fput_fail; 1672 1673 retval = inode_permission(dentry->d_inode, MAY_EXEC); 1674 if (retval) 1675 goto fput_fail; 1676 } 1677 1678 nd->path = file->f_path; 1679 if (flags & LOOKUP_RCU) { 1680 if (fput_needed) 1681 *fp = file; 1682 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1683 br_read_lock(vfsmount_lock); 1684 rcu_read_lock(); 1685 } else { 1686 path_get(&file->f_path); 1687 fput_light(file, fput_needed); 1688 } 1689 } 1690 1691 nd->inode = nd->path.dentry->d_inode; 1692 return 0; 1693 1694 fput_fail: 1695 fput_light(file, fput_needed); 1696 out_fail: 1697 return retval; 1698 } 1699 1700 static inline int lookup_last(struct nameidata *nd, struct path *path) 1701 { 1702 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len]) 1703 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 1704 1705 nd->flags &= ~LOOKUP_PARENT; 1706 return walk_component(nd, path, &nd->last, nd->last_type, 1707 nd->flags & LOOKUP_FOLLOW); 1708 } 1709 1710 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 1711 static int path_lookupat(int dfd, const char *name, 1712 unsigned int flags, struct nameidata *nd) 1713 { 1714 struct file *base = NULL; 1715 struct path path; 1716 int err; 1717 1718 /* 1719 * Path walking is largely split up into 2 different synchronisation 1720 * schemes, rcu-walk and ref-walk (explained in 1721 * Documentation/filesystems/path-lookup.txt). These share much of the 1722 * path walk code, but some things particularly setup, cleanup, and 1723 * following mounts are sufficiently divergent that functions are 1724 * duplicated. Typically there is a function foo(), and its RCU 1725 * analogue, foo_rcu(). 1726 * 1727 * -ECHILD is the error number of choice (just to avoid clashes) that 1728 * is returned if some aspect of an rcu-walk fails. Such an error must 1729 * be handled by restarting a traditional ref-walk (which will always 1730 * be able to complete). 1731 */ 1732 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base); 1733 1734 if (unlikely(err)) 1735 return err; 1736 1737 current->total_link_count = 0; 1738 err = link_path_walk(name, nd); 1739 1740 if (!err && !(flags & LOOKUP_PARENT)) { 1741 err = lookup_last(nd, &path); 1742 while (err > 0) { 1743 void *cookie; 1744 struct path link = path; 1745 nd->flags |= LOOKUP_PARENT; 1746 err = follow_link(&link, nd, &cookie); 1747 if (!err) 1748 err = lookup_last(nd, &path); 1749 put_link(nd, &link, cookie); 1750 } 1751 } 1752 1753 if (!err) 1754 err = complete_walk(nd); 1755 1756 if (!err && nd->flags & LOOKUP_DIRECTORY) { 1757 if (!nd->inode->i_op->lookup) { 1758 path_put(&nd->path); 1759 err = -ENOTDIR; 1760 } 1761 } 1762 1763 if (base) 1764 fput(base); 1765 1766 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 1767 path_put(&nd->root); 1768 nd->root.mnt = NULL; 1769 } 1770 return err; 1771 } 1772 1773 static int do_path_lookup(int dfd, const char *name, 1774 unsigned int flags, struct nameidata *nd) 1775 { 1776 int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd); 1777 if (unlikely(retval == -ECHILD)) 1778 retval = path_lookupat(dfd, name, flags, nd); 1779 if (unlikely(retval == -ESTALE)) 1780 retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd); 1781 1782 if (likely(!retval)) { 1783 if (unlikely(!audit_dummy_context())) { 1784 if (nd->path.dentry && nd->inode) 1785 audit_inode(name, nd->path.dentry); 1786 } 1787 } 1788 return retval; 1789 } 1790 1791 int kern_path_parent(const char *name, struct nameidata *nd) 1792 { 1793 return do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, nd); 1794 } 1795 1796 int kern_path(const char *name, unsigned int flags, struct path *path) 1797 { 1798 struct nameidata nd; 1799 int res = do_path_lookup(AT_FDCWD, name, flags, &nd); 1800 if (!res) 1801 *path = nd.path; 1802 return res; 1803 } 1804 1805 /** 1806 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 1807 * @dentry: pointer to dentry of the base directory 1808 * @mnt: pointer to vfs mount of the base directory 1809 * @name: pointer to file name 1810 * @flags: lookup flags 1811 * @path: pointer to struct path to fill 1812 */ 1813 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 1814 const char *name, unsigned int flags, 1815 struct path *path) 1816 { 1817 struct nameidata nd; 1818 int err; 1819 nd.root.dentry = dentry; 1820 nd.root.mnt = mnt; 1821 BUG_ON(flags & LOOKUP_PARENT); 1822 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */ 1823 err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd); 1824 if (!err) 1825 *path = nd.path; 1826 return err; 1827 } 1828 1829 /* 1830 * Restricted form of lookup. Doesn't follow links, single-component only, 1831 * needs parent already locked. Doesn't follow mounts. 1832 * SMP-safe. 1833 */ 1834 static struct dentry *lookup_hash(struct nameidata *nd) 1835 { 1836 return __lookup_hash(&nd->last, nd->path.dentry, nd); 1837 } 1838 1839 /** 1840 * lookup_one_len - filesystem helper to lookup single pathname component 1841 * @name: pathname component to lookup 1842 * @base: base directory to lookup from 1843 * @len: maximum length @len should be interpreted to 1844 * 1845 * Note that this routine is purely a helper for filesystem usage and should 1846 * not be called by generic code. Also note that by using this function the 1847 * nameidata argument is passed to the filesystem methods and a filesystem 1848 * using this helper needs to be prepared for that. 1849 */ 1850 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 1851 { 1852 struct qstr this; 1853 unsigned int c; 1854 int err; 1855 1856 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex)); 1857 1858 this.name = name; 1859 this.len = len; 1860 this.hash = full_name_hash(name, len); 1861 if (!len) 1862 return ERR_PTR(-EACCES); 1863 1864 while (len--) { 1865 c = *(const unsigned char *)name++; 1866 if (c == '/' || c == '\0') 1867 return ERR_PTR(-EACCES); 1868 } 1869 /* 1870 * See if the low-level filesystem might want 1871 * to use its own hash.. 1872 */ 1873 if (base->d_flags & DCACHE_OP_HASH) { 1874 int err = base->d_op->d_hash(base, base->d_inode, &this); 1875 if (err < 0) 1876 return ERR_PTR(err); 1877 } 1878 1879 err = inode_permission(base->d_inode, MAY_EXEC); 1880 if (err) 1881 return ERR_PTR(err); 1882 1883 return __lookup_hash(&this, base, NULL); 1884 } 1885 1886 int user_path_at_empty(int dfd, const char __user *name, unsigned flags, 1887 struct path *path, int *empty) 1888 { 1889 struct nameidata nd; 1890 char *tmp = getname_flags(name, flags, empty); 1891 int err = PTR_ERR(tmp); 1892 if (!IS_ERR(tmp)) { 1893 1894 BUG_ON(flags & LOOKUP_PARENT); 1895 1896 err = do_path_lookup(dfd, tmp, flags, &nd); 1897 putname(tmp); 1898 if (!err) 1899 *path = nd.path; 1900 } 1901 return err; 1902 } 1903 1904 int user_path_at(int dfd, const char __user *name, unsigned flags, 1905 struct path *path) 1906 { 1907 return user_path_at_empty(dfd, name, flags, path, NULL); 1908 } 1909 1910 static int user_path_parent(int dfd, const char __user *path, 1911 struct nameidata *nd, char **name) 1912 { 1913 char *s = getname(path); 1914 int error; 1915 1916 if (IS_ERR(s)) 1917 return PTR_ERR(s); 1918 1919 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd); 1920 if (error) 1921 putname(s); 1922 else 1923 *name = s; 1924 1925 return error; 1926 } 1927 1928 /* 1929 * It's inline, so penalty for filesystems that don't use sticky bit is 1930 * minimal. 1931 */ 1932 static inline int check_sticky(struct inode *dir, struct inode *inode) 1933 { 1934 uid_t fsuid = current_fsuid(); 1935 1936 if (!(dir->i_mode & S_ISVTX)) 1937 return 0; 1938 if (current_user_ns() != inode_userns(inode)) 1939 goto other_userns; 1940 if (inode->i_uid == fsuid) 1941 return 0; 1942 if (dir->i_uid == fsuid) 1943 return 0; 1944 1945 other_userns: 1946 return !ns_capable(inode_userns(inode), CAP_FOWNER); 1947 } 1948 1949 /* 1950 * Check whether we can remove a link victim from directory dir, check 1951 * whether the type of victim is right. 1952 * 1. We can't do it if dir is read-only (done in permission()) 1953 * 2. We should have write and exec permissions on dir 1954 * 3. We can't remove anything from append-only dir 1955 * 4. We can't do anything with immutable dir (done in permission()) 1956 * 5. If the sticky bit on dir is set we should either 1957 * a. be owner of dir, or 1958 * b. be owner of victim, or 1959 * c. have CAP_FOWNER capability 1960 * 6. If the victim is append-only or immutable we can't do antyhing with 1961 * links pointing to it. 1962 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 1963 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 1964 * 9. We can't remove a root or mountpoint. 1965 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 1966 * nfs_async_unlink(). 1967 */ 1968 static int may_delete(struct inode *dir,struct dentry *victim,int isdir) 1969 { 1970 int error; 1971 1972 if (!victim->d_inode) 1973 return -ENOENT; 1974 1975 BUG_ON(victim->d_parent->d_inode != dir); 1976 audit_inode_child(victim, dir); 1977 1978 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 1979 if (error) 1980 return error; 1981 if (IS_APPEND(dir)) 1982 return -EPERM; 1983 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)|| 1984 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode)) 1985 return -EPERM; 1986 if (isdir) { 1987 if (!S_ISDIR(victim->d_inode->i_mode)) 1988 return -ENOTDIR; 1989 if (IS_ROOT(victim)) 1990 return -EBUSY; 1991 } else if (S_ISDIR(victim->d_inode->i_mode)) 1992 return -EISDIR; 1993 if (IS_DEADDIR(dir)) 1994 return -ENOENT; 1995 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 1996 return -EBUSY; 1997 return 0; 1998 } 1999 2000 /* Check whether we can create an object with dentry child in directory 2001 * dir. 2002 * 1. We can't do it if child already exists (open has special treatment for 2003 * this case, but since we are inlined it's OK) 2004 * 2. We can't do it if dir is read-only (done in permission()) 2005 * 3. We should have write and exec permissions on dir 2006 * 4. We can't do it if dir is immutable (done in permission()) 2007 */ 2008 static inline int may_create(struct inode *dir, struct dentry *child) 2009 { 2010 if (child->d_inode) 2011 return -EEXIST; 2012 if (IS_DEADDIR(dir)) 2013 return -ENOENT; 2014 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 2015 } 2016 2017 /* 2018 * p1 and p2 should be directories on the same fs. 2019 */ 2020 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 2021 { 2022 struct dentry *p; 2023 2024 if (p1 == p2) { 2025 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 2026 return NULL; 2027 } 2028 2029 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 2030 2031 p = d_ancestor(p2, p1); 2032 if (p) { 2033 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT); 2034 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD); 2035 return p; 2036 } 2037 2038 p = d_ancestor(p1, p2); 2039 if (p) { 2040 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 2041 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 2042 return p; 2043 } 2044 2045 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 2046 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 2047 return NULL; 2048 } 2049 2050 void unlock_rename(struct dentry *p1, struct dentry *p2) 2051 { 2052 mutex_unlock(&p1->d_inode->i_mutex); 2053 if (p1 != p2) { 2054 mutex_unlock(&p2->d_inode->i_mutex); 2055 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 2056 } 2057 } 2058 2059 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2060 struct nameidata *nd) 2061 { 2062 int error = may_create(dir, dentry); 2063 2064 if (error) 2065 return error; 2066 2067 if (!dir->i_op->create) 2068 return -EACCES; /* shouldn't it be ENOSYS? */ 2069 mode &= S_IALLUGO; 2070 mode |= S_IFREG; 2071 error = security_inode_create(dir, dentry, mode); 2072 if (error) 2073 return error; 2074 error = dir->i_op->create(dir, dentry, mode, nd); 2075 if (!error) 2076 fsnotify_create(dir, dentry); 2077 return error; 2078 } 2079 2080 static int may_open(struct path *path, int acc_mode, int flag) 2081 { 2082 struct dentry *dentry = path->dentry; 2083 struct inode *inode = dentry->d_inode; 2084 int error; 2085 2086 /* O_PATH? */ 2087 if (!acc_mode) 2088 return 0; 2089 2090 if (!inode) 2091 return -ENOENT; 2092 2093 switch (inode->i_mode & S_IFMT) { 2094 case S_IFLNK: 2095 return -ELOOP; 2096 case S_IFDIR: 2097 if (acc_mode & MAY_WRITE) 2098 return -EISDIR; 2099 break; 2100 case S_IFBLK: 2101 case S_IFCHR: 2102 if (path->mnt->mnt_flags & MNT_NODEV) 2103 return -EACCES; 2104 /*FALLTHRU*/ 2105 case S_IFIFO: 2106 case S_IFSOCK: 2107 flag &= ~O_TRUNC; 2108 break; 2109 } 2110 2111 error = inode_permission(inode, acc_mode); 2112 if (error) 2113 return error; 2114 2115 /* 2116 * An append-only file must be opened in append mode for writing. 2117 */ 2118 if (IS_APPEND(inode)) { 2119 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 2120 return -EPERM; 2121 if (flag & O_TRUNC) 2122 return -EPERM; 2123 } 2124 2125 /* O_NOATIME can only be set by the owner or superuser */ 2126 if (flag & O_NOATIME && !inode_owner_or_capable(inode)) 2127 return -EPERM; 2128 2129 return 0; 2130 } 2131 2132 static int handle_truncate(struct file *filp) 2133 { 2134 struct path *path = &filp->f_path; 2135 struct inode *inode = path->dentry->d_inode; 2136 int error = get_write_access(inode); 2137 if (error) 2138 return error; 2139 /* 2140 * Refuse to truncate files with mandatory locks held on them. 2141 */ 2142 error = locks_verify_locked(inode); 2143 if (!error) 2144 error = security_path_truncate(path); 2145 if (!error) { 2146 error = do_truncate(path->dentry, 0, 2147 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 2148 filp); 2149 } 2150 put_write_access(inode); 2151 return error; 2152 } 2153 2154 static inline int open_to_namei_flags(int flag) 2155 { 2156 if ((flag & O_ACCMODE) == 3) 2157 flag--; 2158 return flag; 2159 } 2160 2161 /* 2162 * Handle the last step of open() 2163 */ 2164 static struct file *do_last(struct nameidata *nd, struct path *path, 2165 const struct open_flags *op, const char *pathname) 2166 { 2167 struct dentry *dir = nd->path.dentry; 2168 struct dentry *dentry; 2169 int open_flag = op->open_flag; 2170 int will_truncate = open_flag & O_TRUNC; 2171 int want_write = 0; 2172 int acc_mode = op->acc_mode; 2173 struct file *filp; 2174 int error; 2175 2176 nd->flags &= ~LOOKUP_PARENT; 2177 nd->flags |= op->intent; 2178 2179 switch (nd->last_type) { 2180 case LAST_DOTDOT: 2181 case LAST_DOT: 2182 error = handle_dots(nd, nd->last_type); 2183 if (error) 2184 return ERR_PTR(error); 2185 /* fallthrough */ 2186 case LAST_ROOT: 2187 error = complete_walk(nd); 2188 if (error) 2189 return ERR_PTR(error); 2190 audit_inode(pathname, nd->path.dentry); 2191 if (open_flag & O_CREAT) { 2192 error = -EISDIR; 2193 goto exit; 2194 } 2195 goto ok; 2196 case LAST_BIND: 2197 error = complete_walk(nd); 2198 if (error) 2199 return ERR_PTR(error); 2200 audit_inode(pathname, dir); 2201 goto ok; 2202 } 2203 2204 if (!(open_flag & O_CREAT)) { 2205 int symlink_ok = 0; 2206 if (nd->last.name[nd->last.len]) 2207 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 2208 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW)) 2209 symlink_ok = 1; 2210 /* we _can_ be in RCU mode here */ 2211 error = walk_component(nd, path, &nd->last, LAST_NORM, 2212 !symlink_ok); 2213 if (error < 0) 2214 return ERR_PTR(error); 2215 if (error) /* symlink */ 2216 return NULL; 2217 /* sayonara */ 2218 error = complete_walk(nd); 2219 if (error) 2220 return ERR_PTR(error); 2221 2222 error = -ENOTDIR; 2223 if (nd->flags & LOOKUP_DIRECTORY) { 2224 if (!nd->inode->i_op->lookup) 2225 goto exit; 2226 } 2227 audit_inode(pathname, nd->path.dentry); 2228 goto ok; 2229 } 2230 2231 /* create side of things */ 2232 /* 2233 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED has been 2234 * cleared when we got to the last component we are about to look up 2235 */ 2236 error = complete_walk(nd); 2237 if (error) 2238 return ERR_PTR(error); 2239 2240 audit_inode(pathname, dir); 2241 error = -EISDIR; 2242 /* trailing slashes? */ 2243 if (nd->last.name[nd->last.len]) 2244 goto exit; 2245 2246 mutex_lock(&dir->d_inode->i_mutex); 2247 2248 dentry = lookup_hash(nd); 2249 error = PTR_ERR(dentry); 2250 if (IS_ERR(dentry)) { 2251 mutex_unlock(&dir->d_inode->i_mutex); 2252 goto exit; 2253 } 2254 2255 path->dentry = dentry; 2256 path->mnt = nd->path.mnt; 2257 2258 /* Negative dentry, just create the file */ 2259 if (!dentry->d_inode) { 2260 umode_t mode = op->mode; 2261 if (!IS_POSIXACL(dir->d_inode)) 2262 mode &= ~current_umask(); 2263 /* 2264 * This write is needed to ensure that a 2265 * rw->ro transition does not occur between 2266 * the time when the file is created and when 2267 * a permanent write count is taken through 2268 * the 'struct file' in nameidata_to_filp(). 2269 */ 2270 error = mnt_want_write(nd->path.mnt); 2271 if (error) 2272 goto exit_mutex_unlock; 2273 want_write = 1; 2274 /* Don't check for write permission, don't truncate */ 2275 open_flag &= ~O_TRUNC; 2276 will_truncate = 0; 2277 acc_mode = MAY_OPEN; 2278 error = security_path_mknod(&nd->path, dentry, mode, 0); 2279 if (error) 2280 goto exit_mutex_unlock; 2281 error = vfs_create(dir->d_inode, dentry, mode, nd); 2282 if (error) 2283 goto exit_mutex_unlock; 2284 mutex_unlock(&dir->d_inode->i_mutex); 2285 dput(nd->path.dentry); 2286 nd->path.dentry = dentry; 2287 goto common; 2288 } 2289 2290 /* 2291 * It already exists. 2292 */ 2293 mutex_unlock(&dir->d_inode->i_mutex); 2294 audit_inode(pathname, path->dentry); 2295 2296 error = -EEXIST; 2297 if (open_flag & O_EXCL) 2298 goto exit_dput; 2299 2300 error = follow_managed(path, nd->flags); 2301 if (error < 0) 2302 goto exit_dput; 2303 2304 if (error) 2305 nd->flags |= LOOKUP_JUMPED; 2306 2307 error = -ENOENT; 2308 if (!path->dentry->d_inode) 2309 goto exit_dput; 2310 2311 if (path->dentry->d_inode->i_op->follow_link) 2312 return NULL; 2313 2314 path_to_nameidata(path, nd); 2315 nd->inode = path->dentry->d_inode; 2316 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */ 2317 error = complete_walk(nd); 2318 if (error) 2319 return ERR_PTR(error); 2320 error = -EISDIR; 2321 if (S_ISDIR(nd->inode->i_mode)) 2322 goto exit; 2323 ok: 2324 if (!S_ISREG(nd->inode->i_mode)) 2325 will_truncate = 0; 2326 2327 if (will_truncate) { 2328 error = mnt_want_write(nd->path.mnt); 2329 if (error) 2330 goto exit; 2331 want_write = 1; 2332 } 2333 common: 2334 error = may_open(&nd->path, acc_mode, open_flag); 2335 if (error) 2336 goto exit; 2337 filp = nameidata_to_filp(nd); 2338 if (!IS_ERR(filp)) { 2339 error = ima_file_check(filp, op->acc_mode); 2340 if (error) { 2341 fput(filp); 2342 filp = ERR_PTR(error); 2343 } 2344 } 2345 if (!IS_ERR(filp)) { 2346 if (will_truncate) { 2347 error = handle_truncate(filp); 2348 if (error) { 2349 fput(filp); 2350 filp = ERR_PTR(error); 2351 } 2352 } 2353 } 2354 out: 2355 if (want_write) 2356 mnt_drop_write(nd->path.mnt); 2357 path_put(&nd->path); 2358 return filp; 2359 2360 exit_mutex_unlock: 2361 mutex_unlock(&dir->d_inode->i_mutex); 2362 exit_dput: 2363 path_put_conditional(path, nd); 2364 exit: 2365 filp = ERR_PTR(error); 2366 goto out; 2367 } 2368 2369 static struct file *path_openat(int dfd, const char *pathname, 2370 struct nameidata *nd, const struct open_flags *op, int flags) 2371 { 2372 struct file *base = NULL; 2373 struct file *filp; 2374 struct path path; 2375 int error; 2376 2377 filp = get_empty_filp(); 2378 if (!filp) 2379 return ERR_PTR(-ENFILE); 2380 2381 filp->f_flags = op->open_flag; 2382 nd->intent.open.file = filp; 2383 nd->intent.open.flags = open_to_namei_flags(op->open_flag); 2384 nd->intent.open.create_mode = op->mode; 2385 2386 error = path_init(dfd, pathname, flags | LOOKUP_PARENT, nd, &base); 2387 if (unlikely(error)) 2388 goto out_filp; 2389 2390 current->total_link_count = 0; 2391 error = link_path_walk(pathname, nd); 2392 if (unlikely(error)) 2393 goto out_filp; 2394 2395 filp = do_last(nd, &path, op, pathname); 2396 while (unlikely(!filp)) { /* trailing symlink */ 2397 struct path link = path; 2398 void *cookie; 2399 if (!(nd->flags & LOOKUP_FOLLOW)) { 2400 path_put_conditional(&path, nd); 2401 path_put(&nd->path); 2402 filp = ERR_PTR(-ELOOP); 2403 break; 2404 } 2405 nd->flags |= LOOKUP_PARENT; 2406 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL); 2407 error = follow_link(&link, nd, &cookie); 2408 if (unlikely(error)) 2409 filp = ERR_PTR(error); 2410 else 2411 filp = do_last(nd, &path, op, pathname); 2412 put_link(nd, &link, cookie); 2413 } 2414 out: 2415 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) 2416 path_put(&nd->root); 2417 if (base) 2418 fput(base); 2419 release_open_intent(nd); 2420 return filp; 2421 2422 out_filp: 2423 filp = ERR_PTR(error); 2424 goto out; 2425 } 2426 2427 struct file *do_filp_open(int dfd, const char *pathname, 2428 const struct open_flags *op, int flags) 2429 { 2430 struct nameidata nd; 2431 struct file *filp; 2432 2433 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU); 2434 if (unlikely(filp == ERR_PTR(-ECHILD))) 2435 filp = path_openat(dfd, pathname, &nd, op, flags); 2436 if (unlikely(filp == ERR_PTR(-ESTALE))) 2437 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL); 2438 return filp; 2439 } 2440 2441 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt, 2442 const char *name, const struct open_flags *op, int flags) 2443 { 2444 struct nameidata nd; 2445 struct file *file; 2446 2447 nd.root.mnt = mnt; 2448 nd.root.dentry = dentry; 2449 2450 flags |= LOOKUP_ROOT; 2451 2452 if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN) 2453 return ERR_PTR(-ELOOP); 2454 2455 file = path_openat(-1, name, &nd, op, flags | LOOKUP_RCU); 2456 if (unlikely(file == ERR_PTR(-ECHILD))) 2457 file = path_openat(-1, name, &nd, op, flags); 2458 if (unlikely(file == ERR_PTR(-ESTALE))) 2459 file = path_openat(-1, name, &nd, op, flags | LOOKUP_REVAL); 2460 return file; 2461 } 2462 2463 struct dentry *kern_path_create(int dfd, const char *pathname, struct path *path, int is_dir) 2464 { 2465 struct dentry *dentry = ERR_PTR(-EEXIST); 2466 struct nameidata nd; 2467 int error = do_path_lookup(dfd, pathname, LOOKUP_PARENT, &nd); 2468 if (error) 2469 return ERR_PTR(error); 2470 2471 /* 2472 * Yucky last component or no last component at all? 2473 * (foo/., foo/.., /////) 2474 */ 2475 if (nd.last_type != LAST_NORM) 2476 goto out; 2477 nd.flags &= ~LOOKUP_PARENT; 2478 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL; 2479 nd.intent.open.flags = O_EXCL; 2480 2481 /* 2482 * Do the final lookup. 2483 */ 2484 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 2485 dentry = lookup_hash(&nd); 2486 if (IS_ERR(dentry)) 2487 goto fail; 2488 2489 if (dentry->d_inode) 2490 goto eexist; 2491 /* 2492 * Special case - lookup gave negative, but... we had foo/bar/ 2493 * From the vfs_mknod() POV we just have a negative dentry - 2494 * all is fine. Let's be bastards - you had / on the end, you've 2495 * been asking for (non-existent) directory. -ENOENT for you. 2496 */ 2497 if (unlikely(!is_dir && nd.last.name[nd.last.len])) { 2498 dput(dentry); 2499 dentry = ERR_PTR(-ENOENT); 2500 goto fail; 2501 } 2502 *path = nd.path; 2503 return dentry; 2504 eexist: 2505 dput(dentry); 2506 dentry = ERR_PTR(-EEXIST); 2507 fail: 2508 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2509 out: 2510 path_put(&nd.path); 2511 return dentry; 2512 } 2513 EXPORT_SYMBOL(kern_path_create); 2514 2515 struct dentry *user_path_create(int dfd, const char __user *pathname, struct path *path, int is_dir) 2516 { 2517 char *tmp = getname(pathname); 2518 struct dentry *res; 2519 if (IS_ERR(tmp)) 2520 return ERR_CAST(tmp); 2521 res = kern_path_create(dfd, tmp, path, is_dir); 2522 putname(tmp); 2523 return res; 2524 } 2525 EXPORT_SYMBOL(user_path_create); 2526 2527 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 2528 { 2529 int error = may_create(dir, dentry); 2530 2531 if (error) 2532 return error; 2533 2534 if ((S_ISCHR(mode) || S_ISBLK(mode)) && 2535 !ns_capable(inode_userns(dir), CAP_MKNOD)) 2536 return -EPERM; 2537 2538 if (!dir->i_op->mknod) 2539 return -EPERM; 2540 2541 error = devcgroup_inode_mknod(mode, dev); 2542 if (error) 2543 return error; 2544 2545 error = security_inode_mknod(dir, dentry, mode, dev); 2546 if (error) 2547 return error; 2548 2549 error = dir->i_op->mknod(dir, dentry, mode, dev); 2550 if (!error) 2551 fsnotify_create(dir, dentry); 2552 return error; 2553 } 2554 2555 static int may_mknod(umode_t mode) 2556 { 2557 switch (mode & S_IFMT) { 2558 case S_IFREG: 2559 case S_IFCHR: 2560 case S_IFBLK: 2561 case S_IFIFO: 2562 case S_IFSOCK: 2563 case 0: /* zero mode translates to S_IFREG */ 2564 return 0; 2565 case S_IFDIR: 2566 return -EPERM; 2567 default: 2568 return -EINVAL; 2569 } 2570 } 2571 2572 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode, 2573 unsigned, dev) 2574 { 2575 struct dentry *dentry; 2576 struct path path; 2577 int error; 2578 2579 if (S_ISDIR(mode)) 2580 return -EPERM; 2581 2582 dentry = user_path_create(dfd, filename, &path, 0); 2583 if (IS_ERR(dentry)) 2584 return PTR_ERR(dentry); 2585 2586 if (!IS_POSIXACL(path.dentry->d_inode)) 2587 mode &= ~current_umask(); 2588 error = may_mknod(mode); 2589 if (error) 2590 goto out_dput; 2591 error = mnt_want_write(path.mnt); 2592 if (error) 2593 goto out_dput; 2594 error = security_path_mknod(&path, dentry, mode, dev); 2595 if (error) 2596 goto out_drop_write; 2597 switch (mode & S_IFMT) { 2598 case 0: case S_IFREG: 2599 error = vfs_create(path.dentry->d_inode,dentry,mode,NULL); 2600 break; 2601 case S_IFCHR: case S_IFBLK: 2602 error = vfs_mknod(path.dentry->d_inode,dentry,mode, 2603 new_decode_dev(dev)); 2604 break; 2605 case S_IFIFO: case S_IFSOCK: 2606 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0); 2607 break; 2608 } 2609 out_drop_write: 2610 mnt_drop_write(path.mnt); 2611 out_dput: 2612 dput(dentry); 2613 mutex_unlock(&path.dentry->d_inode->i_mutex); 2614 path_put(&path); 2615 2616 return error; 2617 } 2618 2619 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev) 2620 { 2621 return sys_mknodat(AT_FDCWD, filename, mode, dev); 2622 } 2623 2624 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 2625 { 2626 int error = may_create(dir, dentry); 2627 unsigned max_links = dir->i_sb->s_max_links; 2628 2629 if (error) 2630 return error; 2631 2632 if (!dir->i_op->mkdir) 2633 return -EPERM; 2634 2635 mode &= (S_IRWXUGO|S_ISVTX); 2636 error = security_inode_mkdir(dir, dentry, mode); 2637 if (error) 2638 return error; 2639 2640 if (max_links && dir->i_nlink >= max_links) 2641 return -EMLINK; 2642 2643 error = dir->i_op->mkdir(dir, dentry, mode); 2644 if (!error) 2645 fsnotify_mkdir(dir, dentry); 2646 return error; 2647 } 2648 2649 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode) 2650 { 2651 struct dentry *dentry; 2652 struct path path; 2653 int error; 2654 2655 dentry = user_path_create(dfd, pathname, &path, 1); 2656 if (IS_ERR(dentry)) 2657 return PTR_ERR(dentry); 2658 2659 if (!IS_POSIXACL(path.dentry->d_inode)) 2660 mode &= ~current_umask(); 2661 error = mnt_want_write(path.mnt); 2662 if (error) 2663 goto out_dput; 2664 error = security_path_mkdir(&path, dentry, mode); 2665 if (error) 2666 goto out_drop_write; 2667 error = vfs_mkdir(path.dentry->d_inode, dentry, mode); 2668 out_drop_write: 2669 mnt_drop_write(path.mnt); 2670 out_dput: 2671 dput(dentry); 2672 mutex_unlock(&path.dentry->d_inode->i_mutex); 2673 path_put(&path); 2674 return error; 2675 } 2676 2677 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode) 2678 { 2679 return sys_mkdirat(AT_FDCWD, pathname, mode); 2680 } 2681 2682 /* 2683 * The dentry_unhash() helper will try to drop the dentry early: we 2684 * should have a usage count of 1 if we're the only user of this 2685 * dentry, and if that is true (possibly after pruning the dcache), 2686 * then we drop the dentry now. 2687 * 2688 * A low-level filesystem can, if it choses, legally 2689 * do a 2690 * 2691 * if (!d_unhashed(dentry)) 2692 * return -EBUSY; 2693 * 2694 * if it cannot handle the case of removing a directory 2695 * that is still in use by something else.. 2696 */ 2697 void dentry_unhash(struct dentry *dentry) 2698 { 2699 shrink_dcache_parent(dentry); 2700 spin_lock(&dentry->d_lock); 2701 if (dentry->d_count == 1) 2702 __d_drop(dentry); 2703 spin_unlock(&dentry->d_lock); 2704 } 2705 2706 int vfs_rmdir(struct inode *dir, struct dentry *dentry) 2707 { 2708 int error = may_delete(dir, dentry, 1); 2709 2710 if (error) 2711 return error; 2712 2713 if (!dir->i_op->rmdir) 2714 return -EPERM; 2715 2716 dget(dentry); 2717 mutex_lock(&dentry->d_inode->i_mutex); 2718 2719 error = -EBUSY; 2720 if (d_mountpoint(dentry)) 2721 goto out; 2722 2723 error = security_inode_rmdir(dir, dentry); 2724 if (error) 2725 goto out; 2726 2727 shrink_dcache_parent(dentry); 2728 error = dir->i_op->rmdir(dir, dentry); 2729 if (error) 2730 goto out; 2731 2732 dentry->d_inode->i_flags |= S_DEAD; 2733 dont_mount(dentry); 2734 2735 out: 2736 mutex_unlock(&dentry->d_inode->i_mutex); 2737 dput(dentry); 2738 if (!error) 2739 d_delete(dentry); 2740 return error; 2741 } 2742 2743 static long do_rmdir(int dfd, const char __user *pathname) 2744 { 2745 int error = 0; 2746 char * name; 2747 struct dentry *dentry; 2748 struct nameidata nd; 2749 2750 error = user_path_parent(dfd, pathname, &nd, &name); 2751 if (error) 2752 return error; 2753 2754 switch(nd.last_type) { 2755 case LAST_DOTDOT: 2756 error = -ENOTEMPTY; 2757 goto exit1; 2758 case LAST_DOT: 2759 error = -EINVAL; 2760 goto exit1; 2761 case LAST_ROOT: 2762 error = -EBUSY; 2763 goto exit1; 2764 } 2765 2766 nd.flags &= ~LOOKUP_PARENT; 2767 2768 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 2769 dentry = lookup_hash(&nd); 2770 error = PTR_ERR(dentry); 2771 if (IS_ERR(dentry)) 2772 goto exit2; 2773 if (!dentry->d_inode) { 2774 error = -ENOENT; 2775 goto exit3; 2776 } 2777 error = mnt_want_write(nd.path.mnt); 2778 if (error) 2779 goto exit3; 2780 error = security_path_rmdir(&nd.path, dentry); 2781 if (error) 2782 goto exit4; 2783 error = vfs_rmdir(nd.path.dentry->d_inode, dentry); 2784 exit4: 2785 mnt_drop_write(nd.path.mnt); 2786 exit3: 2787 dput(dentry); 2788 exit2: 2789 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2790 exit1: 2791 path_put(&nd.path); 2792 putname(name); 2793 return error; 2794 } 2795 2796 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 2797 { 2798 return do_rmdir(AT_FDCWD, pathname); 2799 } 2800 2801 int vfs_unlink(struct inode *dir, struct dentry *dentry) 2802 { 2803 int error = may_delete(dir, dentry, 0); 2804 2805 if (error) 2806 return error; 2807 2808 if (!dir->i_op->unlink) 2809 return -EPERM; 2810 2811 mutex_lock(&dentry->d_inode->i_mutex); 2812 if (d_mountpoint(dentry)) 2813 error = -EBUSY; 2814 else { 2815 error = security_inode_unlink(dir, dentry); 2816 if (!error) { 2817 error = dir->i_op->unlink(dir, dentry); 2818 if (!error) 2819 dont_mount(dentry); 2820 } 2821 } 2822 mutex_unlock(&dentry->d_inode->i_mutex); 2823 2824 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 2825 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) { 2826 fsnotify_link_count(dentry->d_inode); 2827 d_delete(dentry); 2828 } 2829 2830 return error; 2831 } 2832 2833 /* 2834 * Make sure that the actual truncation of the file will occur outside its 2835 * directory's i_mutex. Truncate can take a long time if there is a lot of 2836 * writeout happening, and we don't want to prevent access to the directory 2837 * while waiting on the I/O. 2838 */ 2839 static long do_unlinkat(int dfd, const char __user *pathname) 2840 { 2841 int error; 2842 char *name; 2843 struct dentry *dentry; 2844 struct nameidata nd; 2845 struct inode *inode = NULL; 2846 2847 error = user_path_parent(dfd, pathname, &nd, &name); 2848 if (error) 2849 return error; 2850 2851 error = -EISDIR; 2852 if (nd.last_type != LAST_NORM) 2853 goto exit1; 2854 2855 nd.flags &= ~LOOKUP_PARENT; 2856 2857 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 2858 dentry = lookup_hash(&nd); 2859 error = PTR_ERR(dentry); 2860 if (!IS_ERR(dentry)) { 2861 /* Why not before? Because we want correct error value */ 2862 if (nd.last.name[nd.last.len]) 2863 goto slashes; 2864 inode = dentry->d_inode; 2865 if (!inode) 2866 goto slashes; 2867 ihold(inode); 2868 error = mnt_want_write(nd.path.mnt); 2869 if (error) 2870 goto exit2; 2871 error = security_path_unlink(&nd.path, dentry); 2872 if (error) 2873 goto exit3; 2874 error = vfs_unlink(nd.path.dentry->d_inode, dentry); 2875 exit3: 2876 mnt_drop_write(nd.path.mnt); 2877 exit2: 2878 dput(dentry); 2879 } 2880 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2881 if (inode) 2882 iput(inode); /* truncate the inode here */ 2883 exit1: 2884 path_put(&nd.path); 2885 putname(name); 2886 return error; 2887 2888 slashes: 2889 error = !dentry->d_inode ? -ENOENT : 2890 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR; 2891 goto exit2; 2892 } 2893 2894 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 2895 { 2896 if ((flag & ~AT_REMOVEDIR) != 0) 2897 return -EINVAL; 2898 2899 if (flag & AT_REMOVEDIR) 2900 return do_rmdir(dfd, pathname); 2901 2902 return do_unlinkat(dfd, pathname); 2903 } 2904 2905 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 2906 { 2907 return do_unlinkat(AT_FDCWD, pathname); 2908 } 2909 2910 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname) 2911 { 2912 int error = may_create(dir, dentry); 2913 2914 if (error) 2915 return error; 2916 2917 if (!dir->i_op->symlink) 2918 return -EPERM; 2919 2920 error = security_inode_symlink(dir, dentry, oldname); 2921 if (error) 2922 return error; 2923 2924 error = dir->i_op->symlink(dir, dentry, oldname); 2925 if (!error) 2926 fsnotify_create(dir, dentry); 2927 return error; 2928 } 2929 2930 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 2931 int, newdfd, const char __user *, newname) 2932 { 2933 int error; 2934 char *from; 2935 struct dentry *dentry; 2936 struct path path; 2937 2938 from = getname(oldname); 2939 if (IS_ERR(from)) 2940 return PTR_ERR(from); 2941 2942 dentry = user_path_create(newdfd, newname, &path, 0); 2943 error = PTR_ERR(dentry); 2944 if (IS_ERR(dentry)) 2945 goto out_putname; 2946 2947 error = mnt_want_write(path.mnt); 2948 if (error) 2949 goto out_dput; 2950 error = security_path_symlink(&path, dentry, from); 2951 if (error) 2952 goto out_drop_write; 2953 error = vfs_symlink(path.dentry->d_inode, dentry, from); 2954 out_drop_write: 2955 mnt_drop_write(path.mnt); 2956 out_dput: 2957 dput(dentry); 2958 mutex_unlock(&path.dentry->d_inode->i_mutex); 2959 path_put(&path); 2960 out_putname: 2961 putname(from); 2962 return error; 2963 } 2964 2965 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 2966 { 2967 return sys_symlinkat(oldname, AT_FDCWD, newname); 2968 } 2969 2970 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) 2971 { 2972 struct inode *inode = old_dentry->d_inode; 2973 unsigned max_links = dir->i_sb->s_max_links; 2974 int error; 2975 2976 if (!inode) 2977 return -ENOENT; 2978 2979 error = may_create(dir, new_dentry); 2980 if (error) 2981 return error; 2982 2983 if (dir->i_sb != inode->i_sb) 2984 return -EXDEV; 2985 2986 /* 2987 * A link to an append-only or immutable file cannot be created. 2988 */ 2989 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 2990 return -EPERM; 2991 if (!dir->i_op->link) 2992 return -EPERM; 2993 if (S_ISDIR(inode->i_mode)) 2994 return -EPERM; 2995 2996 error = security_inode_link(old_dentry, dir, new_dentry); 2997 if (error) 2998 return error; 2999 3000 mutex_lock(&inode->i_mutex); 3001 /* Make sure we don't allow creating hardlink to an unlinked file */ 3002 if (inode->i_nlink == 0) 3003 error = -ENOENT; 3004 else if (max_links && inode->i_nlink >= max_links) 3005 error = -EMLINK; 3006 else 3007 error = dir->i_op->link(old_dentry, dir, new_dentry); 3008 mutex_unlock(&inode->i_mutex); 3009 if (!error) 3010 fsnotify_link(dir, inode, new_dentry); 3011 return error; 3012 } 3013 3014 /* 3015 * Hardlinks are often used in delicate situations. We avoid 3016 * security-related surprises by not following symlinks on the 3017 * newname. --KAB 3018 * 3019 * We don't follow them on the oldname either to be compatible 3020 * with linux 2.0, and to avoid hard-linking to directories 3021 * and other special files. --ADM 3022 */ 3023 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 3024 int, newdfd, const char __user *, newname, int, flags) 3025 { 3026 struct dentry *new_dentry; 3027 struct path old_path, new_path; 3028 int how = 0; 3029 int error; 3030 3031 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) 3032 return -EINVAL; 3033 /* 3034 * To use null names we require CAP_DAC_READ_SEARCH 3035 * This ensures that not everyone will be able to create 3036 * handlink using the passed filedescriptor. 3037 */ 3038 if (flags & AT_EMPTY_PATH) { 3039 if (!capable(CAP_DAC_READ_SEARCH)) 3040 return -ENOENT; 3041 how = LOOKUP_EMPTY; 3042 } 3043 3044 if (flags & AT_SYMLINK_FOLLOW) 3045 how |= LOOKUP_FOLLOW; 3046 3047 error = user_path_at(olddfd, oldname, how, &old_path); 3048 if (error) 3049 return error; 3050 3051 new_dentry = user_path_create(newdfd, newname, &new_path, 0); 3052 error = PTR_ERR(new_dentry); 3053 if (IS_ERR(new_dentry)) 3054 goto out; 3055 3056 error = -EXDEV; 3057 if (old_path.mnt != new_path.mnt) 3058 goto out_dput; 3059 error = mnt_want_write(new_path.mnt); 3060 if (error) 3061 goto out_dput; 3062 error = security_path_link(old_path.dentry, &new_path, new_dentry); 3063 if (error) 3064 goto out_drop_write; 3065 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry); 3066 out_drop_write: 3067 mnt_drop_write(new_path.mnt); 3068 out_dput: 3069 dput(new_dentry); 3070 mutex_unlock(&new_path.dentry->d_inode->i_mutex); 3071 path_put(&new_path); 3072 out: 3073 path_put(&old_path); 3074 3075 return error; 3076 } 3077 3078 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 3079 { 3080 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 3081 } 3082 3083 /* 3084 * The worst of all namespace operations - renaming directory. "Perverted" 3085 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 3086 * Problems: 3087 * a) we can get into loop creation. Check is done in is_subdir(). 3088 * b) race potential - two innocent renames can create a loop together. 3089 * That's where 4.4 screws up. Current fix: serialization on 3090 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 3091 * story. 3092 * c) we have to lock _three_ objects - parents and victim (if it exists). 3093 * And that - after we got ->i_mutex on parents (until then we don't know 3094 * whether the target exists). Solution: try to be smart with locking 3095 * order for inodes. We rely on the fact that tree topology may change 3096 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 3097 * move will be locked. Thus we can rank directories by the tree 3098 * (ancestors first) and rank all non-directories after them. 3099 * That works since everybody except rename does "lock parent, lookup, 3100 * lock child" and rename is under ->s_vfs_rename_mutex. 3101 * HOWEVER, it relies on the assumption that any object with ->lookup() 3102 * has no more than 1 dentry. If "hybrid" objects will ever appear, 3103 * we'd better make sure that there's no link(2) for them. 3104 * d) conversion from fhandle to dentry may come in the wrong moment - when 3105 * we are removing the target. Solution: we will have to grab ->i_mutex 3106 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 3107 * ->i_mutex on parents, which works but leads to some truly excessive 3108 * locking]. 3109 */ 3110 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry, 3111 struct inode *new_dir, struct dentry *new_dentry) 3112 { 3113 int error = 0; 3114 struct inode *target = new_dentry->d_inode; 3115 unsigned max_links = new_dir->i_sb->s_max_links; 3116 3117 /* 3118 * If we are going to change the parent - check write permissions, 3119 * we'll need to flip '..'. 3120 */ 3121 if (new_dir != old_dir) { 3122 error = inode_permission(old_dentry->d_inode, MAY_WRITE); 3123 if (error) 3124 return error; 3125 } 3126 3127 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry); 3128 if (error) 3129 return error; 3130 3131 dget(new_dentry); 3132 if (target) 3133 mutex_lock(&target->i_mutex); 3134 3135 error = -EBUSY; 3136 if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry)) 3137 goto out; 3138 3139 error = -EMLINK; 3140 if (max_links && !target && new_dir != old_dir && 3141 new_dir->i_nlink >= max_links) 3142 goto out; 3143 3144 if (target) 3145 shrink_dcache_parent(new_dentry); 3146 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry); 3147 if (error) 3148 goto out; 3149 3150 if (target) { 3151 target->i_flags |= S_DEAD; 3152 dont_mount(new_dentry); 3153 } 3154 out: 3155 if (target) 3156 mutex_unlock(&target->i_mutex); 3157 dput(new_dentry); 3158 if (!error) 3159 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) 3160 d_move(old_dentry,new_dentry); 3161 return error; 3162 } 3163 3164 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry, 3165 struct inode *new_dir, struct dentry *new_dentry) 3166 { 3167 struct inode *target = new_dentry->d_inode; 3168 int error; 3169 3170 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry); 3171 if (error) 3172 return error; 3173 3174 dget(new_dentry); 3175 if (target) 3176 mutex_lock(&target->i_mutex); 3177 3178 error = -EBUSY; 3179 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry)) 3180 goto out; 3181 3182 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry); 3183 if (error) 3184 goto out; 3185 3186 if (target) 3187 dont_mount(new_dentry); 3188 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) 3189 d_move(old_dentry, new_dentry); 3190 out: 3191 if (target) 3192 mutex_unlock(&target->i_mutex); 3193 dput(new_dentry); 3194 return error; 3195 } 3196 3197 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry, 3198 struct inode *new_dir, struct dentry *new_dentry) 3199 { 3200 int error; 3201 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode); 3202 const unsigned char *old_name; 3203 3204 if (old_dentry->d_inode == new_dentry->d_inode) 3205 return 0; 3206 3207 error = may_delete(old_dir, old_dentry, is_dir); 3208 if (error) 3209 return error; 3210 3211 if (!new_dentry->d_inode) 3212 error = may_create(new_dir, new_dentry); 3213 else 3214 error = may_delete(new_dir, new_dentry, is_dir); 3215 if (error) 3216 return error; 3217 3218 if (!old_dir->i_op->rename) 3219 return -EPERM; 3220 3221 old_name = fsnotify_oldname_init(old_dentry->d_name.name); 3222 3223 if (is_dir) 3224 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry); 3225 else 3226 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry); 3227 if (!error) 3228 fsnotify_move(old_dir, new_dir, old_name, is_dir, 3229 new_dentry->d_inode, old_dentry); 3230 fsnotify_oldname_free(old_name); 3231 3232 return error; 3233 } 3234 3235 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 3236 int, newdfd, const char __user *, newname) 3237 { 3238 struct dentry *old_dir, *new_dir; 3239 struct dentry *old_dentry, *new_dentry; 3240 struct dentry *trap; 3241 struct nameidata oldnd, newnd; 3242 char *from; 3243 char *to; 3244 int error; 3245 3246 error = user_path_parent(olddfd, oldname, &oldnd, &from); 3247 if (error) 3248 goto exit; 3249 3250 error = user_path_parent(newdfd, newname, &newnd, &to); 3251 if (error) 3252 goto exit1; 3253 3254 error = -EXDEV; 3255 if (oldnd.path.mnt != newnd.path.mnt) 3256 goto exit2; 3257 3258 old_dir = oldnd.path.dentry; 3259 error = -EBUSY; 3260 if (oldnd.last_type != LAST_NORM) 3261 goto exit2; 3262 3263 new_dir = newnd.path.dentry; 3264 if (newnd.last_type != LAST_NORM) 3265 goto exit2; 3266 3267 oldnd.flags &= ~LOOKUP_PARENT; 3268 newnd.flags &= ~LOOKUP_PARENT; 3269 newnd.flags |= LOOKUP_RENAME_TARGET; 3270 3271 trap = lock_rename(new_dir, old_dir); 3272 3273 old_dentry = lookup_hash(&oldnd); 3274 error = PTR_ERR(old_dentry); 3275 if (IS_ERR(old_dentry)) 3276 goto exit3; 3277 /* source must exist */ 3278 error = -ENOENT; 3279 if (!old_dentry->d_inode) 3280 goto exit4; 3281 /* unless the source is a directory trailing slashes give -ENOTDIR */ 3282 if (!S_ISDIR(old_dentry->d_inode->i_mode)) { 3283 error = -ENOTDIR; 3284 if (oldnd.last.name[oldnd.last.len]) 3285 goto exit4; 3286 if (newnd.last.name[newnd.last.len]) 3287 goto exit4; 3288 } 3289 /* source should not be ancestor of target */ 3290 error = -EINVAL; 3291 if (old_dentry == trap) 3292 goto exit4; 3293 new_dentry = lookup_hash(&newnd); 3294 error = PTR_ERR(new_dentry); 3295 if (IS_ERR(new_dentry)) 3296 goto exit4; 3297 /* target should not be an ancestor of source */ 3298 error = -ENOTEMPTY; 3299 if (new_dentry == trap) 3300 goto exit5; 3301 3302 error = mnt_want_write(oldnd.path.mnt); 3303 if (error) 3304 goto exit5; 3305 error = security_path_rename(&oldnd.path, old_dentry, 3306 &newnd.path, new_dentry); 3307 if (error) 3308 goto exit6; 3309 error = vfs_rename(old_dir->d_inode, old_dentry, 3310 new_dir->d_inode, new_dentry); 3311 exit6: 3312 mnt_drop_write(oldnd.path.mnt); 3313 exit5: 3314 dput(new_dentry); 3315 exit4: 3316 dput(old_dentry); 3317 exit3: 3318 unlock_rename(new_dir, old_dir); 3319 exit2: 3320 path_put(&newnd.path); 3321 putname(to); 3322 exit1: 3323 path_put(&oldnd.path); 3324 putname(from); 3325 exit: 3326 return error; 3327 } 3328 3329 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 3330 { 3331 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname); 3332 } 3333 3334 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link) 3335 { 3336 int len; 3337 3338 len = PTR_ERR(link); 3339 if (IS_ERR(link)) 3340 goto out; 3341 3342 len = strlen(link); 3343 if (len > (unsigned) buflen) 3344 len = buflen; 3345 if (copy_to_user(buffer, link, len)) 3346 len = -EFAULT; 3347 out: 3348 return len; 3349 } 3350 3351 /* 3352 * A helper for ->readlink(). This should be used *ONLY* for symlinks that 3353 * have ->follow_link() touching nd only in nd_set_link(). Using (or not 3354 * using) it for any given inode is up to filesystem. 3355 */ 3356 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen) 3357 { 3358 struct nameidata nd; 3359 void *cookie; 3360 int res; 3361 3362 nd.depth = 0; 3363 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd); 3364 if (IS_ERR(cookie)) 3365 return PTR_ERR(cookie); 3366 3367 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd)); 3368 if (dentry->d_inode->i_op->put_link) 3369 dentry->d_inode->i_op->put_link(dentry, &nd, cookie); 3370 return res; 3371 } 3372 3373 int vfs_follow_link(struct nameidata *nd, const char *link) 3374 { 3375 return __vfs_follow_link(nd, link); 3376 } 3377 3378 /* get the link contents into pagecache */ 3379 static char *page_getlink(struct dentry * dentry, struct page **ppage) 3380 { 3381 char *kaddr; 3382 struct page *page; 3383 struct address_space *mapping = dentry->d_inode->i_mapping; 3384 page = read_mapping_page(mapping, 0, NULL); 3385 if (IS_ERR(page)) 3386 return (char*)page; 3387 *ppage = page; 3388 kaddr = kmap(page); 3389 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1); 3390 return kaddr; 3391 } 3392 3393 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 3394 { 3395 struct page *page = NULL; 3396 char *s = page_getlink(dentry, &page); 3397 int res = vfs_readlink(dentry,buffer,buflen,s); 3398 if (page) { 3399 kunmap(page); 3400 page_cache_release(page); 3401 } 3402 return res; 3403 } 3404 3405 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd) 3406 { 3407 struct page *page = NULL; 3408 nd_set_link(nd, page_getlink(dentry, &page)); 3409 return page; 3410 } 3411 3412 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie) 3413 { 3414 struct page *page = cookie; 3415 3416 if (page) { 3417 kunmap(page); 3418 page_cache_release(page); 3419 } 3420 } 3421 3422 /* 3423 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS 3424 */ 3425 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs) 3426 { 3427 struct address_space *mapping = inode->i_mapping; 3428 struct page *page; 3429 void *fsdata; 3430 int err; 3431 char *kaddr; 3432 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE; 3433 if (nofs) 3434 flags |= AOP_FLAG_NOFS; 3435 3436 retry: 3437 err = pagecache_write_begin(NULL, mapping, 0, len-1, 3438 flags, &page, &fsdata); 3439 if (err) 3440 goto fail; 3441 3442 kaddr = kmap_atomic(page); 3443 memcpy(kaddr, symname, len-1); 3444 kunmap_atomic(kaddr); 3445 3446 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1, 3447 page, fsdata); 3448 if (err < 0) 3449 goto fail; 3450 if (err < len-1) 3451 goto retry; 3452 3453 mark_inode_dirty(inode); 3454 return 0; 3455 fail: 3456 return err; 3457 } 3458 3459 int page_symlink(struct inode *inode, const char *symname, int len) 3460 { 3461 return __page_symlink(inode, symname, len, 3462 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS)); 3463 } 3464 3465 const struct inode_operations page_symlink_inode_operations = { 3466 .readlink = generic_readlink, 3467 .follow_link = page_follow_link_light, 3468 .put_link = page_put_link, 3469 }; 3470 3471 EXPORT_SYMBOL(user_path_at); 3472 EXPORT_SYMBOL(follow_down_one); 3473 EXPORT_SYMBOL(follow_down); 3474 EXPORT_SYMBOL(follow_up); 3475 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */ 3476 EXPORT_SYMBOL(getname); 3477 EXPORT_SYMBOL(lock_rename); 3478 EXPORT_SYMBOL(lookup_one_len); 3479 EXPORT_SYMBOL(page_follow_link_light); 3480 EXPORT_SYMBOL(page_put_link); 3481 EXPORT_SYMBOL(page_readlink); 3482 EXPORT_SYMBOL(__page_symlink); 3483 EXPORT_SYMBOL(page_symlink); 3484 EXPORT_SYMBOL(page_symlink_inode_operations); 3485 EXPORT_SYMBOL(kern_path); 3486 EXPORT_SYMBOL(vfs_path_lookup); 3487 EXPORT_SYMBOL(inode_permission); 3488 EXPORT_SYMBOL(unlock_rename); 3489 EXPORT_SYMBOL(vfs_create); 3490 EXPORT_SYMBOL(vfs_follow_link); 3491 EXPORT_SYMBOL(vfs_link); 3492 EXPORT_SYMBOL(vfs_mkdir); 3493 EXPORT_SYMBOL(vfs_mknod); 3494 EXPORT_SYMBOL(generic_permission); 3495 EXPORT_SYMBOL(vfs_readlink); 3496 EXPORT_SYMBOL(vfs_rename); 3497 EXPORT_SYMBOL(vfs_rmdir); 3498 EXPORT_SYMBOL(vfs_symlink); 3499 EXPORT_SYMBOL(vfs_unlink); 3500 EXPORT_SYMBOL(dentry_unhash); 3501 EXPORT_SYMBOL(generic_readlink); 3502