1 /* 2 * linux/fs/namei.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * Some corrections by tytso. 9 */ 10 11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 12 * lookup logic. 13 */ 14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 15 */ 16 17 #include <linux/init.h> 18 #include <linux/module.h> 19 #include <linux/slab.h> 20 #include <linux/fs.h> 21 #include <linux/namei.h> 22 #include <linux/quotaops.h> 23 #include <linux/pagemap.h> 24 #include <linux/fsnotify.h> 25 #include <linux/personality.h> 26 #include <linux/security.h> 27 #include <linux/ima.h> 28 #include <linux/syscalls.h> 29 #include <linux/mount.h> 30 #include <linux/audit.h> 31 #include <linux/capability.h> 32 #include <linux/file.h> 33 #include <linux/fcntl.h> 34 #include <linux/device_cgroup.h> 35 #include <linux/fs_struct.h> 36 #include <asm/uaccess.h> 37 38 #define ACC_MODE(x) ("\000\004\002\006"[(x)&O_ACCMODE]) 39 40 /* [Feb-1997 T. Schoebel-Theuer] 41 * Fundamental changes in the pathname lookup mechanisms (namei) 42 * were necessary because of omirr. The reason is that omirr needs 43 * to know the _real_ pathname, not the user-supplied one, in case 44 * of symlinks (and also when transname replacements occur). 45 * 46 * The new code replaces the old recursive symlink resolution with 47 * an iterative one (in case of non-nested symlink chains). It does 48 * this with calls to <fs>_follow_link(). 49 * As a side effect, dir_namei(), _namei() and follow_link() are now 50 * replaced with a single function lookup_dentry() that can handle all 51 * the special cases of the former code. 52 * 53 * With the new dcache, the pathname is stored at each inode, at least as 54 * long as the refcount of the inode is positive. As a side effect, the 55 * size of the dcache depends on the inode cache and thus is dynamic. 56 * 57 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 58 * resolution to correspond with current state of the code. 59 * 60 * Note that the symlink resolution is not *completely* iterative. 61 * There is still a significant amount of tail- and mid- recursion in 62 * the algorithm. Also, note that <fs>_readlink() is not used in 63 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 64 * may return different results than <fs>_follow_link(). Many virtual 65 * filesystems (including /proc) exhibit this behavior. 66 */ 67 68 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 69 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 70 * and the name already exists in form of a symlink, try to create the new 71 * name indicated by the symlink. The old code always complained that the 72 * name already exists, due to not following the symlink even if its target 73 * is nonexistent. The new semantics affects also mknod() and link() when 74 * the name is a symlink pointing to a non-existant name. 75 * 76 * I don't know which semantics is the right one, since I have no access 77 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 78 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 79 * "old" one. Personally, I think the new semantics is much more logical. 80 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 81 * file does succeed in both HP-UX and SunOs, but not in Solaris 82 * and in the old Linux semantics. 83 */ 84 85 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 86 * semantics. See the comments in "open_namei" and "do_link" below. 87 * 88 * [10-Sep-98 Alan Modra] Another symlink change. 89 */ 90 91 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 92 * inside the path - always follow. 93 * in the last component in creation/removal/renaming - never follow. 94 * if LOOKUP_FOLLOW passed - follow. 95 * if the pathname has trailing slashes - follow. 96 * otherwise - don't follow. 97 * (applied in that order). 98 * 99 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 100 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 101 * During the 2.4 we need to fix the userland stuff depending on it - 102 * hopefully we will be able to get rid of that wart in 2.5. So far only 103 * XEmacs seems to be relying on it... 104 */ 105 /* 106 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 107 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 108 * any extra contention... 109 */ 110 111 static int __link_path_walk(const char *name, struct nameidata *nd); 112 113 /* In order to reduce some races, while at the same time doing additional 114 * checking and hopefully speeding things up, we copy filenames to the 115 * kernel data space before using them.. 116 * 117 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 118 * PATH_MAX includes the nul terminator --RR. 119 */ 120 static int do_getname(const char __user *filename, char *page) 121 { 122 int retval; 123 unsigned long len = PATH_MAX; 124 125 if (!segment_eq(get_fs(), KERNEL_DS)) { 126 if ((unsigned long) filename >= TASK_SIZE) 127 return -EFAULT; 128 if (TASK_SIZE - (unsigned long) filename < PATH_MAX) 129 len = TASK_SIZE - (unsigned long) filename; 130 } 131 132 retval = strncpy_from_user(page, filename, len); 133 if (retval > 0) { 134 if (retval < len) 135 return 0; 136 return -ENAMETOOLONG; 137 } else if (!retval) 138 retval = -ENOENT; 139 return retval; 140 } 141 142 char * getname(const char __user * filename) 143 { 144 char *tmp, *result; 145 146 result = ERR_PTR(-ENOMEM); 147 tmp = __getname(); 148 if (tmp) { 149 int retval = do_getname(filename, tmp); 150 151 result = tmp; 152 if (retval < 0) { 153 __putname(tmp); 154 result = ERR_PTR(retval); 155 } 156 } 157 audit_getname(result); 158 return result; 159 } 160 161 #ifdef CONFIG_AUDITSYSCALL 162 void putname(const char *name) 163 { 164 if (unlikely(!audit_dummy_context())) 165 audit_putname(name); 166 else 167 __putname(name); 168 } 169 EXPORT_SYMBOL(putname); 170 #endif 171 172 /* 173 * This does basic POSIX ACL permission checking 174 */ 175 static int acl_permission_check(struct inode *inode, int mask, 176 int (*check_acl)(struct inode *inode, int mask)) 177 { 178 umode_t mode = inode->i_mode; 179 180 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 181 182 if (current_fsuid() == inode->i_uid) 183 mode >>= 6; 184 else { 185 if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) { 186 int error = check_acl(inode, mask); 187 if (error != -EAGAIN) 188 return error; 189 } 190 191 if (in_group_p(inode->i_gid)) 192 mode >>= 3; 193 } 194 195 /* 196 * If the DACs are ok we don't need any capability check. 197 */ 198 if ((mask & ~mode) == 0) 199 return 0; 200 return -EACCES; 201 } 202 203 /** 204 * generic_permission - check for access rights on a Posix-like filesystem 205 * @inode: inode to check access rights for 206 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 207 * @check_acl: optional callback to check for Posix ACLs 208 * 209 * Used to check for read/write/execute permissions on a file. 210 * We use "fsuid" for this, letting us set arbitrary permissions 211 * for filesystem access without changing the "normal" uids which 212 * are used for other things.. 213 */ 214 int generic_permission(struct inode *inode, int mask, 215 int (*check_acl)(struct inode *inode, int mask)) 216 { 217 int ret; 218 219 /* 220 * Do the basic POSIX ACL permission checks. 221 */ 222 ret = acl_permission_check(inode, mask, check_acl); 223 if (ret != -EACCES) 224 return ret; 225 226 /* 227 * Read/write DACs are always overridable. 228 * Executable DACs are overridable if at least one exec bit is set. 229 */ 230 if (!(mask & MAY_EXEC) || execute_ok(inode)) 231 if (capable(CAP_DAC_OVERRIDE)) 232 return 0; 233 234 /* 235 * Searching includes executable on directories, else just read. 236 */ 237 if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE))) 238 if (capable(CAP_DAC_READ_SEARCH)) 239 return 0; 240 241 return -EACCES; 242 } 243 244 /** 245 * inode_permission - check for access rights to a given inode 246 * @inode: inode to check permission on 247 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 248 * 249 * Used to check for read/write/execute permissions on an inode. 250 * We use "fsuid" for this, letting us set arbitrary permissions 251 * for filesystem access without changing the "normal" uids which 252 * are used for other things. 253 */ 254 int inode_permission(struct inode *inode, int mask) 255 { 256 int retval; 257 258 if (mask & MAY_WRITE) { 259 umode_t mode = inode->i_mode; 260 261 /* 262 * Nobody gets write access to a read-only fs. 263 */ 264 if (IS_RDONLY(inode) && 265 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 266 return -EROFS; 267 268 /* 269 * Nobody gets write access to an immutable file. 270 */ 271 if (IS_IMMUTABLE(inode)) 272 return -EACCES; 273 } 274 275 if (inode->i_op->permission) 276 retval = inode->i_op->permission(inode, mask); 277 else 278 retval = generic_permission(inode, mask, inode->i_op->check_acl); 279 280 if (retval) 281 return retval; 282 283 retval = devcgroup_inode_permission(inode, mask); 284 if (retval) 285 return retval; 286 287 return security_inode_permission(inode, 288 mask & (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND)); 289 } 290 291 /** 292 * file_permission - check for additional access rights to a given file 293 * @file: file to check access rights for 294 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 295 * 296 * Used to check for read/write/execute permissions on an already opened 297 * file. 298 * 299 * Note: 300 * Do not use this function in new code. All access checks should 301 * be done using inode_permission(). 302 */ 303 int file_permission(struct file *file, int mask) 304 { 305 return inode_permission(file->f_path.dentry->d_inode, mask); 306 } 307 308 /* 309 * get_write_access() gets write permission for a file. 310 * put_write_access() releases this write permission. 311 * This is used for regular files. 312 * We cannot support write (and maybe mmap read-write shared) accesses and 313 * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode 314 * can have the following values: 315 * 0: no writers, no VM_DENYWRITE mappings 316 * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist 317 * > 0: (i_writecount) users are writing to the file. 318 * 319 * Normally we operate on that counter with atomic_{inc,dec} and it's safe 320 * except for the cases where we don't hold i_writecount yet. Then we need to 321 * use {get,deny}_write_access() - these functions check the sign and refuse 322 * to do the change if sign is wrong. Exclusion between them is provided by 323 * the inode->i_lock spinlock. 324 */ 325 326 int get_write_access(struct inode * inode) 327 { 328 spin_lock(&inode->i_lock); 329 if (atomic_read(&inode->i_writecount) < 0) { 330 spin_unlock(&inode->i_lock); 331 return -ETXTBSY; 332 } 333 atomic_inc(&inode->i_writecount); 334 spin_unlock(&inode->i_lock); 335 336 return 0; 337 } 338 339 int deny_write_access(struct file * file) 340 { 341 struct inode *inode = file->f_path.dentry->d_inode; 342 343 spin_lock(&inode->i_lock); 344 if (atomic_read(&inode->i_writecount) > 0) { 345 spin_unlock(&inode->i_lock); 346 return -ETXTBSY; 347 } 348 atomic_dec(&inode->i_writecount); 349 spin_unlock(&inode->i_lock); 350 351 return 0; 352 } 353 354 /** 355 * path_get - get a reference to a path 356 * @path: path to get the reference to 357 * 358 * Given a path increment the reference count to the dentry and the vfsmount. 359 */ 360 void path_get(struct path *path) 361 { 362 mntget(path->mnt); 363 dget(path->dentry); 364 } 365 EXPORT_SYMBOL(path_get); 366 367 /** 368 * path_put - put a reference to a path 369 * @path: path to put the reference to 370 * 371 * Given a path decrement the reference count to the dentry and the vfsmount. 372 */ 373 void path_put(struct path *path) 374 { 375 dput(path->dentry); 376 mntput(path->mnt); 377 } 378 EXPORT_SYMBOL(path_put); 379 380 /** 381 * release_open_intent - free up open intent resources 382 * @nd: pointer to nameidata 383 */ 384 void release_open_intent(struct nameidata *nd) 385 { 386 if (nd->intent.open.file->f_path.dentry == NULL) 387 put_filp(nd->intent.open.file); 388 else 389 fput(nd->intent.open.file); 390 } 391 392 static inline struct dentry * 393 do_revalidate(struct dentry *dentry, struct nameidata *nd) 394 { 395 int status = dentry->d_op->d_revalidate(dentry, nd); 396 if (unlikely(status <= 0)) { 397 /* 398 * The dentry failed validation. 399 * If d_revalidate returned 0 attempt to invalidate 400 * the dentry otherwise d_revalidate is asking us 401 * to return a fail status. 402 */ 403 if (!status) { 404 if (!d_invalidate(dentry)) { 405 dput(dentry); 406 dentry = NULL; 407 } 408 } else { 409 dput(dentry); 410 dentry = ERR_PTR(status); 411 } 412 } 413 return dentry; 414 } 415 416 /* 417 * Internal lookup() using the new generic dcache. 418 * SMP-safe 419 */ 420 static struct dentry * cached_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd) 421 { 422 struct dentry * dentry = __d_lookup(parent, name); 423 424 /* lockess __d_lookup may fail due to concurrent d_move() 425 * in some unrelated directory, so try with d_lookup 426 */ 427 if (!dentry) 428 dentry = d_lookup(parent, name); 429 430 if (dentry && dentry->d_op && dentry->d_op->d_revalidate) 431 dentry = do_revalidate(dentry, nd); 432 433 return dentry; 434 } 435 436 /* 437 * Short-cut version of permission(), for calling by 438 * path_walk(), when dcache lock is held. Combines parts 439 * of permission() and generic_permission(), and tests ONLY for 440 * MAY_EXEC permission. 441 * 442 * If appropriate, check DAC only. If not appropriate, or 443 * short-cut DAC fails, then call permission() to do more 444 * complete permission check. 445 */ 446 static int exec_permission_lite(struct inode *inode) 447 { 448 int ret; 449 450 if (inode->i_op->permission) { 451 ret = inode->i_op->permission(inode, MAY_EXEC); 452 if (!ret) 453 goto ok; 454 return ret; 455 } 456 ret = acl_permission_check(inode, MAY_EXEC, inode->i_op->check_acl); 457 if (!ret) 458 goto ok; 459 460 if (capable(CAP_DAC_OVERRIDE) || capable(CAP_DAC_READ_SEARCH)) 461 goto ok; 462 463 return ret; 464 ok: 465 return security_inode_permission(inode, MAY_EXEC); 466 } 467 468 /* 469 * This is called when everything else fails, and we actually have 470 * to go to the low-level filesystem to find out what we should do.. 471 * 472 * We get the directory semaphore, and after getting that we also 473 * make sure that nobody added the entry to the dcache in the meantime.. 474 * SMP-safe 475 */ 476 static struct dentry * real_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd) 477 { 478 struct dentry * result; 479 struct inode *dir = parent->d_inode; 480 481 mutex_lock(&dir->i_mutex); 482 /* 483 * First re-do the cached lookup just in case it was created 484 * while we waited for the directory semaphore.. 485 * 486 * FIXME! This could use version numbering or similar to 487 * avoid unnecessary cache lookups. 488 * 489 * The "dcache_lock" is purely to protect the RCU list walker 490 * from concurrent renames at this point (we mustn't get false 491 * negatives from the RCU list walk here, unlike the optimistic 492 * fast walk). 493 * 494 * so doing d_lookup() (with seqlock), instead of lockfree __d_lookup 495 */ 496 result = d_lookup(parent, name); 497 if (!result) { 498 struct dentry *dentry; 499 500 /* Don't create child dentry for a dead directory. */ 501 result = ERR_PTR(-ENOENT); 502 if (IS_DEADDIR(dir)) 503 goto out_unlock; 504 505 dentry = d_alloc(parent, name); 506 result = ERR_PTR(-ENOMEM); 507 if (dentry) { 508 result = dir->i_op->lookup(dir, dentry, nd); 509 if (result) 510 dput(dentry); 511 else 512 result = dentry; 513 } 514 out_unlock: 515 mutex_unlock(&dir->i_mutex); 516 return result; 517 } 518 519 /* 520 * Uhhuh! Nasty case: the cache was re-populated while 521 * we waited on the semaphore. Need to revalidate. 522 */ 523 mutex_unlock(&dir->i_mutex); 524 if (result->d_op && result->d_op->d_revalidate) { 525 result = do_revalidate(result, nd); 526 if (!result) 527 result = ERR_PTR(-ENOENT); 528 } 529 return result; 530 } 531 532 /* 533 * Wrapper to retry pathname resolution whenever the underlying 534 * file system returns an ESTALE. 535 * 536 * Retry the whole path once, forcing real lookup requests 537 * instead of relying on the dcache. 538 */ 539 static __always_inline int link_path_walk(const char *name, struct nameidata *nd) 540 { 541 struct path save = nd->path; 542 int result; 543 544 /* make sure the stuff we saved doesn't go away */ 545 path_get(&save); 546 547 result = __link_path_walk(name, nd); 548 if (result == -ESTALE) { 549 /* nd->path had been dropped */ 550 nd->path = save; 551 path_get(&nd->path); 552 nd->flags |= LOOKUP_REVAL; 553 result = __link_path_walk(name, nd); 554 } 555 556 path_put(&save); 557 558 return result; 559 } 560 561 static __always_inline void set_root(struct nameidata *nd) 562 { 563 if (!nd->root.mnt) { 564 struct fs_struct *fs = current->fs; 565 read_lock(&fs->lock); 566 nd->root = fs->root; 567 path_get(&nd->root); 568 read_unlock(&fs->lock); 569 } 570 } 571 572 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link) 573 { 574 int res = 0; 575 char *name; 576 if (IS_ERR(link)) 577 goto fail; 578 579 if (*link == '/') { 580 set_root(nd); 581 path_put(&nd->path); 582 nd->path = nd->root; 583 path_get(&nd->root); 584 } 585 586 res = link_path_walk(link, nd); 587 if (nd->depth || res || nd->last_type!=LAST_NORM) 588 return res; 589 /* 590 * If it is an iterative symlinks resolution in open_namei() we 591 * have to copy the last component. And all that crap because of 592 * bloody create() on broken symlinks. Furrfu... 593 */ 594 name = __getname(); 595 if (unlikely(!name)) { 596 path_put(&nd->path); 597 return -ENOMEM; 598 } 599 strcpy(name, nd->last.name); 600 nd->last.name = name; 601 return 0; 602 fail: 603 path_put(&nd->path); 604 return PTR_ERR(link); 605 } 606 607 static void path_put_conditional(struct path *path, struct nameidata *nd) 608 { 609 dput(path->dentry); 610 if (path->mnt != nd->path.mnt) 611 mntput(path->mnt); 612 } 613 614 static inline void path_to_nameidata(struct path *path, struct nameidata *nd) 615 { 616 dput(nd->path.dentry); 617 if (nd->path.mnt != path->mnt) 618 mntput(nd->path.mnt); 619 nd->path.mnt = path->mnt; 620 nd->path.dentry = path->dentry; 621 } 622 623 static __always_inline int __do_follow_link(struct path *path, struct nameidata *nd) 624 { 625 int error; 626 void *cookie; 627 struct dentry *dentry = path->dentry; 628 629 touch_atime(path->mnt, dentry); 630 nd_set_link(nd, NULL); 631 632 if (path->mnt != nd->path.mnt) { 633 path_to_nameidata(path, nd); 634 dget(dentry); 635 } 636 mntget(path->mnt); 637 cookie = dentry->d_inode->i_op->follow_link(dentry, nd); 638 error = PTR_ERR(cookie); 639 if (!IS_ERR(cookie)) { 640 char *s = nd_get_link(nd); 641 error = 0; 642 if (s) 643 error = __vfs_follow_link(nd, s); 644 if (dentry->d_inode->i_op->put_link) 645 dentry->d_inode->i_op->put_link(dentry, nd, cookie); 646 } 647 path_put(path); 648 649 return error; 650 } 651 652 /* 653 * This limits recursive symlink follows to 8, while 654 * limiting consecutive symlinks to 40. 655 * 656 * Without that kind of total limit, nasty chains of consecutive 657 * symlinks can cause almost arbitrarily long lookups. 658 */ 659 static inline int do_follow_link(struct path *path, struct nameidata *nd) 660 { 661 int err = -ELOOP; 662 if (current->link_count >= MAX_NESTED_LINKS) 663 goto loop; 664 if (current->total_link_count >= 40) 665 goto loop; 666 BUG_ON(nd->depth >= MAX_NESTED_LINKS); 667 cond_resched(); 668 err = security_inode_follow_link(path->dentry, nd); 669 if (err) 670 goto loop; 671 current->link_count++; 672 current->total_link_count++; 673 nd->depth++; 674 err = __do_follow_link(path, nd); 675 current->link_count--; 676 nd->depth--; 677 return err; 678 loop: 679 path_put_conditional(path, nd); 680 path_put(&nd->path); 681 return err; 682 } 683 684 int follow_up(struct path *path) 685 { 686 struct vfsmount *parent; 687 struct dentry *mountpoint; 688 spin_lock(&vfsmount_lock); 689 parent = path->mnt->mnt_parent; 690 if (parent == path->mnt) { 691 spin_unlock(&vfsmount_lock); 692 return 0; 693 } 694 mntget(parent); 695 mountpoint = dget(path->mnt->mnt_mountpoint); 696 spin_unlock(&vfsmount_lock); 697 dput(path->dentry); 698 path->dentry = mountpoint; 699 mntput(path->mnt); 700 path->mnt = parent; 701 return 1; 702 } 703 704 /* no need for dcache_lock, as serialization is taken care in 705 * namespace.c 706 */ 707 static int __follow_mount(struct path *path) 708 { 709 int res = 0; 710 while (d_mountpoint(path->dentry)) { 711 struct vfsmount *mounted = lookup_mnt(path); 712 if (!mounted) 713 break; 714 dput(path->dentry); 715 if (res) 716 mntput(path->mnt); 717 path->mnt = mounted; 718 path->dentry = dget(mounted->mnt_root); 719 res = 1; 720 } 721 return res; 722 } 723 724 static void follow_mount(struct path *path) 725 { 726 while (d_mountpoint(path->dentry)) { 727 struct vfsmount *mounted = lookup_mnt(path); 728 if (!mounted) 729 break; 730 dput(path->dentry); 731 mntput(path->mnt); 732 path->mnt = mounted; 733 path->dentry = dget(mounted->mnt_root); 734 } 735 } 736 737 /* no need for dcache_lock, as serialization is taken care in 738 * namespace.c 739 */ 740 int follow_down(struct path *path) 741 { 742 struct vfsmount *mounted; 743 744 mounted = lookup_mnt(path); 745 if (mounted) { 746 dput(path->dentry); 747 mntput(path->mnt); 748 path->mnt = mounted; 749 path->dentry = dget(mounted->mnt_root); 750 return 1; 751 } 752 return 0; 753 } 754 755 static __always_inline void follow_dotdot(struct nameidata *nd) 756 { 757 set_root(nd); 758 759 while(1) { 760 struct vfsmount *parent; 761 struct dentry *old = nd->path.dentry; 762 763 if (nd->path.dentry == nd->root.dentry && 764 nd->path.mnt == nd->root.mnt) { 765 break; 766 } 767 spin_lock(&dcache_lock); 768 if (nd->path.dentry != nd->path.mnt->mnt_root) { 769 nd->path.dentry = dget(nd->path.dentry->d_parent); 770 spin_unlock(&dcache_lock); 771 dput(old); 772 break; 773 } 774 spin_unlock(&dcache_lock); 775 spin_lock(&vfsmount_lock); 776 parent = nd->path.mnt->mnt_parent; 777 if (parent == nd->path.mnt) { 778 spin_unlock(&vfsmount_lock); 779 break; 780 } 781 mntget(parent); 782 nd->path.dentry = dget(nd->path.mnt->mnt_mountpoint); 783 spin_unlock(&vfsmount_lock); 784 dput(old); 785 mntput(nd->path.mnt); 786 nd->path.mnt = parent; 787 } 788 follow_mount(&nd->path); 789 } 790 791 /* 792 * It's more convoluted than I'd like it to be, but... it's still fairly 793 * small and for now I'd prefer to have fast path as straight as possible. 794 * It _is_ time-critical. 795 */ 796 static int do_lookup(struct nameidata *nd, struct qstr *name, 797 struct path *path) 798 { 799 struct vfsmount *mnt = nd->path.mnt; 800 struct dentry *dentry = __d_lookup(nd->path.dentry, name); 801 802 if (!dentry) 803 goto need_lookup; 804 if (dentry->d_op && dentry->d_op->d_revalidate) 805 goto need_revalidate; 806 done: 807 path->mnt = mnt; 808 path->dentry = dentry; 809 __follow_mount(path); 810 return 0; 811 812 need_lookup: 813 dentry = real_lookup(nd->path.dentry, name, nd); 814 if (IS_ERR(dentry)) 815 goto fail; 816 goto done; 817 818 need_revalidate: 819 dentry = do_revalidate(dentry, nd); 820 if (!dentry) 821 goto need_lookup; 822 if (IS_ERR(dentry)) 823 goto fail; 824 goto done; 825 826 fail: 827 return PTR_ERR(dentry); 828 } 829 830 /* 831 * Name resolution. 832 * This is the basic name resolution function, turning a pathname into 833 * the final dentry. We expect 'base' to be positive and a directory. 834 * 835 * Returns 0 and nd will have valid dentry and mnt on success. 836 * Returns error and drops reference to input namei data on failure. 837 */ 838 static int __link_path_walk(const char *name, struct nameidata *nd) 839 { 840 struct path next; 841 struct inode *inode; 842 int err; 843 unsigned int lookup_flags = nd->flags; 844 845 while (*name=='/') 846 name++; 847 if (!*name) 848 goto return_reval; 849 850 inode = nd->path.dentry->d_inode; 851 if (nd->depth) 852 lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE); 853 854 /* At this point we know we have a real path component. */ 855 for(;;) { 856 unsigned long hash; 857 struct qstr this; 858 unsigned int c; 859 860 nd->flags |= LOOKUP_CONTINUE; 861 err = exec_permission_lite(inode); 862 if (err) 863 break; 864 865 this.name = name; 866 c = *(const unsigned char *)name; 867 868 hash = init_name_hash(); 869 do { 870 name++; 871 hash = partial_name_hash(c, hash); 872 c = *(const unsigned char *)name; 873 } while (c && (c != '/')); 874 this.len = name - (const char *) this.name; 875 this.hash = end_name_hash(hash); 876 877 /* remove trailing slashes? */ 878 if (!c) 879 goto last_component; 880 while (*++name == '/'); 881 if (!*name) 882 goto last_with_slashes; 883 884 /* 885 * "." and ".." are special - ".." especially so because it has 886 * to be able to know about the current root directory and 887 * parent relationships. 888 */ 889 if (this.name[0] == '.') switch (this.len) { 890 default: 891 break; 892 case 2: 893 if (this.name[1] != '.') 894 break; 895 follow_dotdot(nd); 896 inode = nd->path.dentry->d_inode; 897 /* fallthrough */ 898 case 1: 899 continue; 900 } 901 /* 902 * See if the low-level filesystem might want 903 * to use its own hash.. 904 */ 905 if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) { 906 err = nd->path.dentry->d_op->d_hash(nd->path.dentry, 907 &this); 908 if (err < 0) 909 break; 910 } 911 /* This does the actual lookups.. */ 912 err = do_lookup(nd, &this, &next); 913 if (err) 914 break; 915 916 err = -ENOENT; 917 inode = next.dentry->d_inode; 918 if (!inode) 919 goto out_dput; 920 921 if (inode->i_op->follow_link) { 922 err = do_follow_link(&next, nd); 923 if (err) 924 goto return_err; 925 err = -ENOENT; 926 inode = nd->path.dentry->d_inode; 927 if (!inode) 928 break; 929 } else 930 path_to_nameidata(&next, nd); 931 err = -ENOTDIR; 932 if (!inode->i_op->lookup) 933 break; 934 continue; 935 /* here ends the main loop */ 936 937 last_with_slashes: 938 lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 939 last_component: 940 /* Clear LOOKUP_CONTINUE iff it was previously unset */ 941 nd->flags &= lookup_flags | ~LOOKUP_CONTINUE; 942 if (lookup_flags & LOOKUP_PARENT) 943 goto lookup_parent; 944 if (this.name[0] == '.') switch (this.len) { 945 default: 946 break; 947 case 2: 948 if (this.name[1] != '.') 949 break; 950 follow_dotdot(nd); 951 inode = nd->path.dentry->d_inode; 952 /* fallthrough */ 953 case 1: 954 goto return_reval; 955 } 956 if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) { 957 err = nd->path.dentry->d_op->d_hash(nd->path.dentry, 958 &this); 959 if (err < 0) 960 break; 961 } 962 err = do_lookup(nd, &this, &next); 963 if (err) 964 break; 965 inode = next.dentry->d_inode; 966 if ((lookup_flags & LOOKUP_FOLLOW) 967 && inode && inode->i_op->follow_link) { 968 err = do_follow_link(&next, nd); 969 if (err) 970 goto return_err; 971 inode = nd->path.dentry->d_inode; 972 } else 973 path_to_nameidata(&next, nd); 974 err = -ENOENT; 975 if (!inode) 976 break; 977 if (lookup_flags & LOOKUP_DIRECTORY) { 978 err = -ENOTDIR; 979 if (!inode->i_op->lookup) 980 break; 981 } 982 goto return_base; 983 lookup_parent: 984 nd->last = this; 985 nd->last_type = LAST_NORM; 986 if (this.name[0] != '.') 987 goto return_base; 988 if (this.len == 1) 989 nd->last_type = LAST_DOT; 990 else if (this.len == 2 && this.name[1] == '.') 991 nd->last_type = LAST_DOTDOT; 992 else 993 goto return_base; 994 return_reval: 995 /* 996 * We bypassed the ordinary revalidation routines. 997 * We may need to check the cached dentry for staleness. 998 */ 999 if (nd->path.dentry && nd->path.dentry->d_sb && 1000 (nd->path.dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)) { 1001 err = -ESTALE; 1002 /* Note: we do not d_invalidate() */ 1003 if (!nd->path.dentry->d_op->d_revalidate( 1004 nd->path.dentry, nd)) 1005 break; 1006 } 1007 return_base: 1008 return 0; 1009 out_dput: 1010 path_put_conditional(&next, nd); 1011 break; 1012 } 1013 path_put(&nd->path); 1014 return_err: 1015 return err; 1016 } 1017 1018 static int path_walk(const char *name, struct nameidata *nd) 1019 { 1020 current->total_link_count = 0; 1021 return link_path_walk(name, nd); 1022 } 1023 1024 static int path_init(int dfd, const char *name, unsigned int flags, struct nameidata *nd) 1025 { 1026 int retval = 0; 1027 int fput_needed; 1028 struct file *file; 1029 1030 nd->last_type = LAST_ROOT; /* if there are only slashes... */ 1031 nd->flags = flags; 1032 nd->depth = 0; 1033 nd->root.mnt = NULL; 1034 1035 if (*name=='/') { 1036 set_root(nd); 1037 nd->path = nd->root; 1038 path_get(&nd->root); 1039 } else if (dfd == AT_FDCWD) { 1040 struct fs_struct *fs = current->fs; 1041 read_lock(&fs->lock); 1042 nd->path = fs->pwd; 1043 path_get(&fs->pwd); 1044 read_unlock(&fs->lock); 1045 } else { 1046 struct dentry *dentry; 1047 1048 file = fget_light(dfd, &fput_needed); 1049 retval = -EBADF; 1050 if (!file) 1051 goto out_fail; 1052 1053 dentry = file->f_path.dentry; 1054 1055 retval = -ENOTDIR; 1056 if (!S_ISDIR(dentry->d_inode->i_mode)) 1057 goto fput_fail; 1058 1059 retval = file_permission(file, MAY_EXEC); 1060 if (retval) 1061 goto fput_fail; 1062 1063 nd->path = file->f_path; 1064 path_get(&file->f_path); 1065 1066 fput_light(file, fput_needed); 1067 } 1068 return 0; 1069 1070 fput_fail: 1071 fput_light(file, fput_needed); 1072 out_fail: 1073 return retval; 1074 } 1075 1076 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 1077 static int do_path_lookup(int dfd, const char *name, 1078 unsigned int flags, struct nameidata *nd) 1079 { 1080 int retval = path_init(dfd, name, flags, nd); 1081 if (!retval) 1082 retval = path_walk(name, nd); 1083 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry && 1084 nd->path.dentry->d_inode)) 1085 audit_inode(name, nd->path.dentry); 1086 if (nd->root.mnt) { 1087 path_put(&nd->root); 1088 nd->root.mnt = NULL; 1089 } 1090 return retval; 1091 } 1092 1093 int path_lookup(const char *name, unsigned int flags, 1094 struct nameidata *nd) 1095 { 1096 return do_path_lookup(AT_FDCWD, name, flags, nd); 1097 } 1098 1099 int kern_path(const char *name, unsigned int flags, struct path *path) 1100 { 1101 struct nameidata nd; 1102 int res = do_path_lookup(AT_FDCWD, name, flags, &nd); 1103 if (!res) 1104 *path = nd.path; 1105 return res; 1106 } 1107 1108 /** 1109 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 1110 * @dentry: pointer to dentry of the base directory 1111 * @mnt: pointer to vfs mount of the base directory 1112 * @name: pointer to file name 1113 * @flags: lookup flags 1114 * @nd: pointer to nameidata 1115 */ 1116 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 1117 const char *name, unsigned int flags, 1118 struct nameidata *nd) 1119 { 1120 int retval; 1121 1122 /* same as do_path_lookup */ 1123 nd->last_type = LAST_ROOT; 1124 nd->flags = flags; 1125 nd->depth = 0; 1126 1127 nd->path.dentry = dentry; 1128 nd->path.mnt = mnt; 1129 path_get(&nd->path); 1130 nd->root = nd->path; 1131 path_get(&nd->root); 1132 1133 retval = path_walk(name, nd); 1134 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry && 1135 nd->path.dentry->d_inode)) 1136 audit_inode(name, nd->path.dentry); 1137 1138 path_put(&nd->root); 1139 nd->root.mnt = NULL; 1140 1141 return retval; 1142 } 1143 1144 /** 1145 * path_lookup_open - lookup a file path with open intent 1146 * @dfd: the directory to use as base, or AT_FDCWD 1147 * @name: pointer to file name 1148 * @lookup_flags: lookup intent flags 1149 * @nd: pointer to nameidata 1150 * @open_flags: open intent flags 1151 */ 1152 static int path_lookup_open(int dfd, const char *name, 1153 unsigned int lookup_flags, struct nameidata *nd, int open_flags) 1154 { 1155 struct file *filp = get_empty_filp(); 1156 int err; 1157 1158 if (filp == NULL) 1159 return -ENFILE; 1160 nd->intent.open.file = filp; 1161 nd->intent.open.flags = open_flags; 1162 nd->intent.open.create_mode = 0; 1163 err = do_path_lookup(dfd, name, lookup_flags|LOOKUP_OPEN, nd); 1164 if (IS_ERR(nd->intent.open.file)) { 1165 if (err == 0) { 1166 err = PTR_ERR(nd->intent.open.file); 1167 path_put(&nd->path); 1168 } 1169 } else if (err != 0) 1170 release_open_intent(nd); 1171 return err; 1172 } 1173 1174 static struct dentry *__lookup_hash(struct qstr *name, 1175 struct dentry *base, struct nameidata *nd) 1176 { 1177 struct dentry *dentry; 1178 struct inode *inode; 1179 int err; 1180 1181 inode = base->d_inode; 1182 1183 /* 1184 * See if the low-level filesystem might want 1185 * to use its own hash.. 1186 */ 1187 if (base->d_op && base->d_op->d_hash) { 1188 err = base->d_op->d_hash(base, name); 1189 dentry = ERR_PTR(err); 1190 if (err < 0) 1191 goto out; 1192 } 1193 1194 dentry = cached_lookup(base, name, nd); 1195 if (!dentry) { 1196 struct dentry *new; 1197 1198 /* Don't create child dentry for a dead directory. */ 1199 dentry = ERR_PTR(-ENOENT); 1200 if (IS_DEADDIR(inode)) 1201 goto out; 1202 1203 new = d_alloc(base, name); 1204 dentry = ERR_PTR(-ENOMEM); 1205 if (!new) 1206 goto out; 1207 dentry = inode->i_op->lookup(inode, new, nd); 1208 if (!dentry) 1209 dentry = new; 1210 else 1211 dput(new); 1212 } 1213 out: 1214 return dentry; 1215 } 1216 1217 /* 1218 * Restricted form of lookup. Doesn't follow links, single-component only, 1219 * needs parent already locked. Doesn't follow mounts. 1220 * SMP-safe. 1221 */ 1222 static struct dentry *lookup_hash(struct nameidata *nd) 1223 { 1224 int err; 1225 1226 err = inode_permission(nd->path.dentry->d_inode, MAY_EXEC); 1227 if (err) 1228 return ERR_PTR(err); 1229 return __lookup_hash(&nd->last, nd->path.dentry, nd); 1230 } 1231 1232 static int __lookup_one_len(const char *name, struct qstr *this, 1233 struct dentry *base, int len) 1234 { 1235 unsigned long hash; 1236 unsigned int c; 1237 1238 this->name = name; 1239 this->len = len; 1240 if (!len) 1241 return -EACCES; 1242 1243 hash = init_name_hash(); 1244 while (len--) { 1245 c = *(const unsigned char *)name++; 1246 if (c == '/' || c == '\0') 1247 return -EACCES; 1248 hash = partial_name_hash(c, hash); 1249 } 1250 this->hash = end_name_hash(hash); 1251 return 0; 1252 } 1253 1254 /** 1255 * lookup_one_len - filesystem helper to lookup single pathname component 1256 * @name: pathname component to lookup 1257 * @base: base directory to lookup from 1258 * @len: maximum length @len should be interpreted to 1259 * 1260 * Note that this routine is purely a helper for filesystem usage and should 1261 * not be called by generic code. Also note that by using this function the 1262 * nameidata argument is passed to the filesystem methods and a filesystem 1263 * using this helper needs to be prepared for that. 1264 */ 1265 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 1266 { 1267 int err; 1268 struct qstr this; 1269 1270 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex)); 1271 1272 err = __lookup_one_len(name, &this, base, len); 1273 if (err) 1274 return ERR_PTR(err); 1275 1276 err = inode_permission(base->d_inode, MAY_EXEC); 1277 if (err) 1278 return ERR_PTR(err); 1279 return __lookup_hash(&this, base, NULL); 1280 } 1281 1282 /** 1283 * lookup_one_noperm - bad hack for sysfs 1284 * @name: pathname component to lookup 1285 * @base: base directory to lookup from 1286 * 1287 * This is a variant of lookup_one_len that doesn't perform any permission 1288 * checks. It's a horrible hack to work around the braindead sysfs 1289 * architecture and should not be used anywhere else. 1290 * 1291 * DON'T USE THIS FUNCTION EVER, thanks. 1292 */ 1293 struct dentry *lookup_one_noperm(const char *name, struct dentry *base) 1294 { 1295 int err; 1296 struct qstr this; 1297 1298 err = __lookup_one_len(name, &this, base, strlen(name)); 1299 if (err) 1300 return ERR_PTR(err); 1301 return __lookup_hash(&this, base, NULL); 1302 } 1303 1304 int user_path_at(int dfd, const char __user *name, unsigned flags, 1305 struct path *path) 1306 { 1307 struct nameidata nd; 1308 char *tmp = getname(name); 1309 int err = PTR_ERR(tmp); 1310 if (!IS_ERR(tmp)) { 1311 1312 BUG_ON(flags & LOOKUP_PARENT); 1313 1314 err = do_path_lookup(dfd, tmp, flags, &nd); 1315 putname(tmp); 1316 if (!err) 1317 *path = nd.path; 1318 } 1319 return err; 1320 } 1321 1322 static int user_path_parent(int dfd, const char __user *path, 1323 struct nameidata *nd, char **name) 1324 { 1325 char *s = getname(path); 1326 int error; 1327 1328 if (IS_ERR(s)) 1329 return PTR_ERR(s); 1330 1331 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd); 1332 if (error) 1333 putname(s); 1334 else 1335 *name = s; 1336 1337 return error; 1338 } 1339 1340 /* 1341 * It's inline, so penalty for filesystems that don't use sticky bit is 1342 * minimal. 1343 */ 1344 static inline int check_sticky(struct inode *dir, struct inode *inode) 1345 { 1346 uid_t fsuid = current_fsuid(); 1347 1348 if (!(dir->i_mode & S_ISVTX)) 1349 return 0; 1350 if (inode->i_uid == fsuid) 1351 return 0; 1352 if (dir->i_uid == fsuid) 1353 return 0; 1354 return !capable(CAP_FOWNER); 1355 } 1356 1357 /* 1358 * Check whether we can remove a link victim from directory dir, check 1359 * whether the type of victim is right. 1360 * 1. We can't do it if dir is read-only (done in permission()) 1361 * 2. We should have write and exec permissions on dir 1362 * 3. We can't remove anything from append-only dir 1363 * 4. We can't do anything with immutable dir (done in permission()) 1364 * 5. If the sticky bit on dir is set we should either 1365 * a. be owner of dir, or 1366 * b. be owner of victim, or 1367 * c. have CAP_FOWNER capability 1368 * 6. If the victim is append-only or immutable we can't do antyhing with 1369 * links pointing to it. 1370 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 1371 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 1372 * 9. We can't remove a root or mountpoint. 1373 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 1374 * nfs_async_unlink(). 1375 */ 1376 static int may_delete(struct inode *dir,struct dentry *victim,int isdir) 1377 { 1378 int error; 1379 1380 if (!victim->d_inode) 1381 return -ENOENT; 1382 1383 BUG_ON(victim->d_parent->d_inode != dir); 1384 audit_inode_child(victim->d_name.name, victim, dir); 1385 1386 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 1387 if (error) 1388 return error; 1389 if (IS_APPEND(dir)) 1390 return -EPERM; 1391 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)|| 1392 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode)) 1393 return -EPERM; 1394 if (isdir) { 1395 if (!S_ISDIR(victim->d_inode->i_mode)) 1396 return -ENOTDIR; 1397 if (IS_ROOT(victim)) 1398 return -EBUSY; 1399 } else if (S_ISDIR(victim->d_inode->i_mode)) 1400 return -EISDIR; 1401 if (IS_DEADDIR(dir)) 1402 return -ENOENT; 1403 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 1404 return -EBUSY; 1405 return 0; 1406 } 1407 1408 /* Check whether we can create an object with dentry child in directory 1409 * dir. 1410 * 1. We can't do it if child already exists (open has special treatment for 1411 * this case, but since we are inlined it's OK) 1412 * 2. We can't do it if dir is read-only (done in permission()) 1413 * 3. We should have write and exec permissions on dir 1414 * 4. We can't do it if dir is immutable (done in permission()) 1415 */ 1416 static inline int may_create(struct inode *dir, struct dentry *child) 1417 { 1418 if (child->d_inode) 1419 return -EEXIST; 1420 if (IS_DEADDIR(dir)) 1421 return -ENOENT; 1422 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 1423 } 1424 1425 /* 1426 * O_DIRECTORY translates into forcing a directory lookup. 1427 */ 1428 static inline int lookup_flags(unsigned int f) 1429 { 1430 unsigned long retval = LOOKUP_FOLLOW; 1431 1432 if (f & O_NOFOLLOW) 1433 retval &= ~LOOKUP_FOLLOW; 1434 1435 if (f & O_DIRECTORY) 1436 retval |= LOOKUP_DIRECTORY; 1437 1438 return retval; 1439 } 1440 1441 /* 1442 * p1 and p2 should be directories on the same fs. 1443 */ 1444 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 1445 { 1446 struct dentry *p; 1447 1448 if (p1 == p2) { 1449 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 1450 return NULL; 1451 } 1452 1453 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 1454 1455 p = d_ancestor(p2, p1); 1456 if (p) { 1457 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT); 1458 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD); 1459 return p; 1460 } 1461 1462 p = d_ancestor(p1, p2); 1463 if (p) { 1464 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 1465 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 1466 return p; 1467 } 1468 1469 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 1470 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 1471 return NULL; 1472 } 1473 1474 void unlock_rename(struct dentry *p1, struct dentry *p2) 1475 { 1476 mutex_unlock(&p1->d_inode->i_mutex); 1477 if (p1 != p2) { 1478 mutex_unlock(&p2->d_inode->i_mutex); 1479 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 1480 } 1481 } 1482 1483 int vfs_create(struct inode *dir, struct dentry *dentry, int mode, 1484 struct nameidata *nd) 1485 { 1486 int error = may_create(dir, dentry); 1487 1488 if (error) 1489 return error; 1490 1491 if (!dir->i_op->create) 1492 return -EACCES; /* shouldn't it be ENOSYS? */ 1493 mode &= S_IALLUGO; 1494 mode |= S_IFREG; 1495 error = security_inode_create(dir, dentry, mode); 1496 if (error) 1497 return error; 1498 vfs_dq_init(dir); 1499 error = dir->i_op->create(dir, dentry, mode, nd); 1500 if (!error) 1501 fsnotify_create(dir, dentry); 1502 return error; 1503 } 1504 1505 int may_open(struct path *path, int acc_mode, int flag) 1506 { 1507 struct dentry *dentry = path->dentry; 1508 struct inode *inode = dentry->d_inode; 1509 int error; 1510 1511 if (!inode) 1512 return -ENOENT; 1513 1514 switch (inode->i_mode & S_IFMT) { 1515 case S_IFLNK: 1516 return -ELOOP; 1517 case S_IFDIR: 1518 if (acc_mode & MAY_WRITE) 1519 return -EISDIR; 1520 break; 1521 case S_IFBLK: 1522 case S_IFCHR: 1523 if (path->mnt->mnt_flags & MNT_NODEV) 1524 return -EACCES; 1525 /*FALLTHRU*/ 1526 case S_IFIFO: 1527 case S_IFSOCK: 1528 flag &= ~O_TRUNC; 1529 break; 1530 } 1531 1532 error = inode_permission(inode, acc_mode); 1533 if (error) 1534 return error; 1535 1536 error = ima_path_check(path, acc_mode ? 1537 acc_mode & (MAY_READ | MAY_WRITE | MAY_EXEC) : 1538 ACC_MODE(flag) & (MAY_READ | MAY_WRITE), 1539 IMA_COUNT_UPDATE); 1540 1541 if (error) 1542 return error; 1543 /* 1544 * An append-only file must be opened in append mode for writing. 1545 */ 1546 if (IS_APPEND(inode)) { 1547 error = -EPERM; 1548 if ((flag & FMODE_WRITE) && !(flag & O_APPEND)) 1549 goto err_out; 1550 if (flag & O_TRUNC) 1551 goto err_out; 1552 } 1553 1554 /* O_NOATIME can only be set by the owner or superuser */ 1555 if (flag & O_NOATIME) 1556 if (!is_owner_or_cap(inode)) { 1557 error = -EPERM; 1558 goto err_out; 1559 } 1560 1561 /* 1562 * Ensure there are no outstanding leases on the file. 1563 */ 1564 error = break_lease(inode, flag); 1565 if (error) 1566 goto err_out; 1567 1568 if (flag & O_TRUNC) { 1569 error = get_write_access(inode); 1570 if (error) 1571 goto err_out; 1572 1573 /* 1574 * Refuse to truncate files with mandatory locks held on them. 1575 */ 1576 error = locks_verify_locked(inode); 1577 if (!error) 1578 error = security_path_truncate(path, 0, 1579 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN); 1580 if (!error) { 1581 vfs_dq_init(inode); 1582 1583 error = do_truncate(dentry, 0, 1584 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 1585 NULL); 1586 } 1587 put_write_access(inode); 1588 if (error) 1589 goto err_out; 1590 } else 1591 if (flag & FMODE_WRITE) 1592 vfs_dq_init(inode); 1593 1594 return 0; 1595 err_out: 1596 ima_counts_put(path, acc_mode ? 1597 acc_mode & (MAY_READ | MAY_WRITE | MAY_EXEC) : 1598 ACC_MODE(flag) & (MAY_READ | MAY_WRITE)); 1599 return error; 1600 } 1601 1602 /* 1603 * Be careful about ever adding any more callers of this 1604 * function. Its flags must be in the namei format, not 1605 * what get passed to sys_open(). 1606 */ 1607 static int __open_namei_create(struct nameidata *nd, struct path *path, 1608 int flag, int mode) 1609 { 1610 int error; 1611 struct dentry *dir = nd->path.dentry; 1612 1613 if (!IS_POSIXACL(dir->d_inode)) 1614 mode &= ~current_umask(); 1615 error = security_path_mknod(&nd->path, path->dentry, mode, 0); 1616 if (error) 1617 goto out_unlock; 1618 error = vfs_create(dir->d_inode, path->dentry, mode, nd); 1619 out_unlock: 1620 mutex_unlock(&dir->d_inode->i_mutex); 1621 dput(nd->path.dentry); 1622 nd->path.dentry = path->dentry; 1623 if (error) 1624 return error; 1625 /* Don't check for write permission, don't truncate */ 1626 return may_open(&nd->path, 0, flag & ~O_TRUNC); 1627 } 1628 1629 /* 1630 * Note that while the flag value (low two bits) for sys_open means: 1631 * 00 - read-only 1632 * 01 - write-only 1633 * 10 - read-write 1634 * 11 - special 1635 * it is changed into 1636 * 00 - no permissions needed 1637 * 01 - read-permission 1638 * 10 - write-permission 1639 * 11 - read-write 1640 * for the internal routines (ie open_namei()/follow_link() etc) 1641 * This is more logical, and also allows the 00 "no perm needed" 1642 * to be used for symlinks (where the permissions are checked 1643 * later). 1644 * 1645 */ 1646 static inline int open_to_namei_flags(int flag) 1647 { 1648 if ((flag+1) & O_ACCMODE) 1649 flag++; 1650 return flag; 1651 } 1652 1653 static int open_will_write_to_fs(int flag, struct inode *inode) 1654 { 1655 /* 1656 * We'll never write to the fs underlying 1657 * a device file. 1658 */ 1659 if (special_file(inode->i_mode)) 1660 return 0; 1661 return (flag & O_TRUNC); 1662 } 1663 1664 /* 1665 * Note that the low bits of the passed in "open_flag" 1666 * are not the same as in the local variable "flag". See 1667 * open_to_namei_flags() for more details. 1668 */ 1669 struct file *do_filp_open(int dfd, const char *pathname, 1670 int open_flag, int mode, int acc_mode) 1671 { 1672 struct file *filp; 1673 struct nameidata nd; 1674 int error; 1675 struct path path; 1676 struct dentry *dir; 1677 int count = 0; 1678 int will_write; 1679 int flag = open_to_namei_flags(open_flag); 1680 1681 if (!acc_mode) 1682 acc_mode = MAY_OPEN | ACC_MODE(flag); 1683 1684 /* O_TRUNC implies we need access checks for write permissions */ 1685 if (flag & O_TRUNC) 1686 acc_mode |= MAY_WRITE; 1687 1688 /* Allow the LSM permission hook to distinguish append 1689 access from general write access. */ 1690 if (flag & O_APPEND) 1691 acc_mode |= MAY_APPEND; 1692 1693 /* 1694 * The simplest case - just a plain lookup. 1695 */ 1696 if (!(flag & O_CREAT)) { 1697 error = path_lookup_open(dfd, pathname, lookup_flags(flag), 1698 &nd, flag); 1699 if (error) 1700 return ERR_PTR(error); 1701 goto ok; 1702 } 1703 1704 /* 1705 * Create - we need to know the parent. 1706 */ 1707 error = path_init(dfd, pathname, LOOKUP_PARENT, &nd); 1708 if (error) 1709 return ERR_PTR(error); 1710 error = path_walk(pathname, &nd); 1711 if (error) { 1712 if (nd.root.mnt) 1713 path_put(&nd.root); 1714 return ERR_PTR(error); 1715 } 1716 if (unlikely(!audit_dummy_context())) 1717 audit_inode(pathname, nd.path.dentry); 1718 1719 /* 1720 * We have the parent and last component. First of all, check 1721 * that we are not asked to creat(2) an obvious directory - that 1722 * will not do. 1723 */ 1724 error = -EISDIR; 1725 if (nd.last_type != LAST_NORM || nd.last.name[nd.last.len]) 1726 goto exit_parent; 1727 1728 error = -ENFILE; 1729 filp = get_empty_filp(); 1730 if (filp == NULL) 1731 goto exit_parent; 1732 nd.intent.open.file = filp; 1733 nd.intent.open.flags = flag; 1734 nd.intent.open.create_mode = mode; 1735 dir = nd.path.dentry; 1736 nd.flags &= ~LOOKUP_PARENT; 1737 nd.flags |= LOOKUP_CREATE | LOOKUP_OPEN; 1738 if (flag & O_EXCL) 1739 nd.flags |= LOOKUP_EXCL; 1740 mutex_lock(&dir->d_inode->i_mutex); 1741 path.dentry = lookup_hash(&nd); 1742 path.mnt = nd.path.mnt; 1743 1744 do_last: 1745 error = PTR_ERR(path.dentry); 1746 if (IS_ERR(path.dentry)) { 1747 mutex_unlock(&dir->d_inode->i_mutex); 1748 goto exit; 1749 } 1750 1751 if (IS_ERR(nd.intent.open.file)) { 1752 error = PTR_ERR(nd.intent.open.file); 1753 goto exit_mutex_unlock; 1754 } 1755 1756 /* Negative dentry, just create the file */ 1757 if (!path.dentry->d_inode) { 1758 /* 1759 * This write is needed to ensure that a 1760 * ro->rw transition does not occur between 1761 * the time when the file is created and when 1762 * a permanent write count is taken through 1763 * the 'struct file' in nameidata_to_filp(). 1764 */ 1765 error = mnt_want_write(nd.path.mnt); 1766 if (error) 1767 goto exit_mutex_unlock; 1768 error = __open_namei_create(&nd, &path, flag, mode); 1769 if (error) { 1770 mnt_drop_write(nd.path.mnt); 1771 goto exit; 1772 } 1773 filp = nameidata_to_filp(&nd, open_flag); 1774 if (IS_ERR(filp)) 1775 ima_counts_put(&nd.path, 1776 acc_mode & (MAY_READ | MAY_WRITE | 1777 MAY_EXEC)); 1778 mnt_drop_write(nd.path.mnt); 1779 if (nd.root.mnt) 1780 path_put(&nd.root); 1781 return filp; 1782 } 1783 1784 /* 1785 * It already exists. 1786 */ 1787 mutex_unlock(&dir->d_inode->i_mutex); 1788 audit_inode(pathname, path.dentry); 1789 1790 error = -EEXIST; 1791 if (flag & O_EXCL) 1792 goto exit_dput; 1793 1794 if (__follow_mount(&path)) { 1795 error = -ELOOP; 1796 if (flag & O_NOFOLLOW) 1797 goto exit_dput; 1798 } 1799 1800 error = -ENOENT; 1801 if (!path.dentry->d_inode) 1802 goto exit_dput; 1803 if (path.dentry->d_inode->i_op->follow_link) 1804 goto do_link; 1805 1806 path_to_nameidata(&path, &nd); 1807 error = -EISDIR; 1808 if (path.dentry->d_inode && S_ISDIR(path.dentry->d_inode->i_mode)) 1809 goto exit; 1810 ok: 1811 /* 1812 * Consider: 1813 * 1. may_open() truncates a file 1814 * 2. a rw->ro mount transition occurs 1815 * 3. nameidata_to_filp() fails due to 1816 * the ro mount. 1817 * That would be inconsistent, and should 1818 * be avoided. Taking this mnt write here 1819 * ensures that (2) can not occur. 1820 */ 1821 will_write = open_will_write_to_fs(flag, nd.path.dentry->d_inode); 1822 if (will_write) { 1823 error = mnt_want_write(nd.path.mnt); 1824 if (error) 1825 goto exit; 1826 } 1827 error = may_open(&nd.path, acc_mode, flag); 1828 if (error) { 1829 if (will_write) 1830 mnt_drop_write(nd.path.mnt); 1831 goto exit; 1832 } 1833 filp = nameidata_to_filp(&nd, open_flag); 1834 if (IS_ERR(filp)) 1835 ima_counts_put(&nd.path, 1836 acc_mode & (MAY_READ | MAY_WRITE | MAY_EXEC)); 1837 /* 1838 * It is now safe to drop the mnt write 1839 * because the filp has had a write taken 1840 * on its behalf. 1841 */ 1842 if (will_write) 1843 mnt_drop_write(nd.path.mnt); 1844 if (nd.root.mnt) 1845 path_put(&nd.root); 1846 return filp; 1847 1848 exit_mutex_unlock: 1849 mutex_unlock(&dir->d_inode->i_mutex); 1850 exit_dput: 1851 path_put_conditional(&path, &nd); 1852 exit: 1853 if (!IS_ERR(nd.intent.open.file)) 1854 release_open_intent(&nd); 1855 exit_parent: 1856 if (nd.root.mnt) 1857 path_put(&nd.root); 1858 path_put(&nd.path); 1859 return ERR_PTR(error); 1860 1861 do_link: 1862 error = -ELOOP; 1863 if (flag & O_NOFOLLOW) 1864 goto exit_dput; 1865 /* 1866 * This is subtle. Instead of calling do_follow_link() we do the 1867 * thing by hands. The reason is that this way we have zero link_count 1868 * and path_walk() (called from ->follow_link) honoring LOOKUP_PARENT. 1869 * After that we have the parent and last component, i.e. 1870 * we are in the same situation as after the first path_walk(). 1871 * Well, almost - if the last component is normal we get its copy 1872 * stored in nd->last.name and we will have to putname() it when we 1873 * are done. Procfs-like symlinks just set LAST_BIND. 1874 */ 1875 nd.flags |= LOOKUP_PARENT; 1876 error = security_inode_follow_link(path.dentry, &nd); 1877 if (error) 1878 goto exit_dput; 1879 error = __do_follow_link(&path, &nd); 1880 if (error) { 1881 /* Does someone understand code flow here? Or it is only 1882 * me so stupid? Anathema to whoever designed this non-sense 1883 * with "intent.open". 1884 */ 1885 release_open_intent(&nd); 1886 if (nd.root.mnt) 1887 path_put(&nd.root); 1888 return ERR_PTR(error); 1889 } 1890 nd.flags &= ~LOOKUP_PARENT; 1891 if (nd.last_type == LAST_BIND) 1892 goto ok; 1893 error = -EISDIR; 1894 if (nd.last_type != LAST_NORM) 1895 goto exit; 1896 if (nd.last.name[nd.last.len]) { 1897 __putname(nd.last.name); 1898 goto exit; 1899 } 1900 error = -ELOOP; 1901 if (count++==32) { 1902 __putname(nd.last.name); 1903 goto exit; 1904 } 1905 dir = nd.path.dentry; 1906 mutex_lock(&dir->d_inode->i_mutex); 1907 path.dentry = lookup_hash(&nd); 1908 path.mnt = nd.path.mnt; 1909 __putname(nd.last.name); 1910 goto do_last; 1911 } 1912 1913 /** 1914 * filp_open - open file and return file pointer 1915 * 1916 * @filename: path to open 1917 * @flags: open flags as per the open(2) second argument 1918 * @mode: mode for the new file if O_CREAT is set, else ignored 1919 * 1920 * This is the helper to open a file from kernelspace if you really 1921 * have to. But in generally you should not do this, so please move 1922 * along, nothing to see here.. 1923 */ 1924 struct file *filp_open(const char *filename, int flags, int mode) 1925 { 1926 return do_filp_open(AT_FDCWD, filename, flags, mode, 0); 1927 } 1928 EXPORT_SYMBOL(filp_open); 1929 1930 /** 1931 * lookup_create - lookup a dentry, creating it if it doesn't exist 1932 * @nd: nameidata info 1933 * @is_dir: directory flag 1934 * 1935 * Simple function to lookup and return a dentry and create it 1936 * if it doesn't exist. Is SMP-safe. 1937 * 1938 * Returns with nd->path.dentry->d_inode->i_mutex locked. 1939 */ 1940 struct dentry *lookup_create(struct nameidata *nd, int is_dir) 1941 { 1942 struct dentry *dentry = ERR_PTR(-EEXIST); 1943 1944 mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 1945 /* 1946 * Yucky last component or no last component at all? 1947 * (foo/., foo/.., /////) 1948 */ 1949 if (nd->last_type != LAST_NORM) 1950 goto fail; 1951 nd->flags &= ~LOOKUP_PARENT; 1952 nd->flags |= LOOKUP_CREATE | LOOKUP_EXCL; 1953 nd->intent.open.flags = O_EXCL; 1954 1955 /* 1956 * Do the final lookup. 1957 */ 1958 dentry = lookup_hash(nd); 1959 if (IS_ERR(dentry)) 1960 goto fail; 1961 1962 if (dentry->d_inode) 1963 goto eexist; 1964 /* 1965 * Special case - lookup gave negative, but... we had foo/bar/ 1966 * From the vfs_mknod() POV we just have a negative dentry - 1967 * all is fine. Let's be bastards - you had / on the end, you've 1968 * been asking for (non-existent) directory. -ENOENT for you. 1969 */ 1970 if (unlikely(!is_dir && nd->last.name[nd->last.len])) { 1971 dput(dentry); 1972 dentry = ERR_PTR(-ENOENT); 1973 } 1974 return dentry; 1975 eexist: 1976 dput(dentry); 1977 dentry = ERR_PTR(-EEXIST); 1978 fail: 1979 return dentry; 1980 } 1981 EXPORT_SYMBOL_GPL(lookup_create); 1982 1983 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) 1984 { 1985 int error = may_create(dir, dentry); 1986 1987 if (error) 1988 return error; 1989 1990 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD)) 1991 return -EPERM; 1992 1993 if (!dir->i_op->mknod) 1994 return -EPERM; 1995 1996 error = devcgroup_inode_mknod(mode, dev); 1997 if (error) 1998 return error; 1999 2000 error = security_inode_mknod(dir, dentry, mode, dev); 2001 if (error) 2002 return error; 2003 2004 vfs_dq_init(dir); 2005 error = dir->i_op->mknod(dir, dentry, mode, dev); 2006 if (!error) 2007 fsnotify_create(dir, dentry); 2008 return error; 2009 } 2010 2011 static int may_mknod(mode_t mode) 2012 { 2013 switch (mode & S_IFMT) { 2014 case S_IFREG: 2015 case S_IFCHR: 2016 case S_IFBLK: 2017 case S_IFIFO: 2018 case S_IFSOCK: 2019 case 0: /* zero mode translates to S_IFREG */ 2020 return 0; 2021 case S_IFDIR: 2022 return -EPERM; 2023 default: 2024 return -EINVAL; 2025 } 2026 } 2027 2028 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode, 2029 unsigned, dev) 2030 { 2031 int error; 2032 char *tmp; 2033 struct dentry *dentry; 2034 struct nameidata nd; 2035 2036 if (S_ISDIR(mode)) 2037 return -EPERM; 2038 2039 error = user_path_parent(dfd, filename, &nd, &tmp); 2040 if (error) 2041 return error; 2042 2043 dentry = lookup_create(&nd, 0); 2044 if (IS_ERR(dentry)) { 2045 error = PTR_ERR(dentry); 2046 goto out_unlock; 2047 } 2048 if (!IS_POSIXACL(nd.path.dentry->d_inode)) 2049 mode &= ~current_umask(); 2050 error = may_mknod(mode); 2051 if (error) 2052 goto out_dput; 2053 error = mnt_want_write(nd.path.mnt); 2054 if (error) 2055 goto out_dput; 2056 error = security_path_mknod(&nd.path, dentry, mode, dev); 2057 if (error) 2058 goto out_drop_write; 2059 switch (mode & S_IFMT) { 2060 case 0: case S_IFREG: 2061 error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd); 2062 break; 2063 case S_IFCHR: case S_IFBLK: 2064 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode, 2065 new_decode_dev(dev)); 2066 break; 2067 case S_IFIFO: case S_IFSOCK: 2068 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0); 2069 break; 2070 } 2071 out_drop_write: 2072 mnt_drop_write(nd.path.mnt); 2073 out_dput: 2074 dput(dentry); 2075 out_unlock: 2076 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2077 path_put(&nd.path); 2078 putname(tmp); 2079 2080 return error; 2081 } 2082 2083 SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev) 2084 { 2085 return sys_mknodat(AT_FDCWD, filename, mode, dev); 2086 } 2087 2088 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode) 2089 { 2090 int error = may_create(dir, dentry); 2091 2092 if (error) 2093 return error; 2094 2095 if (!dir->i_op->mkdir) 2096 return -EPERM; 2097 2098 mode &= (S_IRWXUGO|S_ISVTX); 2099 error = security_inode_mkdir(dir, dentry, mode); 2100 if (error) 2101 return error; 2102 2103 vfs_dq_init(dir); 2104 error = dir->i_op->mkdir(dir, dentry, mode); 2105 if (!error) 2106 fsnotify_mkdir(dir, dentry); 2107 return error; 2108 } 2109 2110 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode) 2111 { 2112 int error = 0; 2113 char * tmp; 2114 struct dentry *dentry; 2115 struct nameidata nd; 2116 2117 error = user_path_parent(dfd, pathname, &nd, &tmp); 2118 if (error) 2119 goto out_err; 2120 2121 dentry = lookup_create(&nd, 1); 2122 error = PTR_ERR(dentry); 2123 if (IS_ERR(dentry)) 2124 goto out_unlock; 2125 2126 if (!IS_POSIXACL(nd.path.dentry->d_inode)) 2127 mode &= ~current_umask(); 2128 error = mnt_want_write(nd.path.mnt); 2129 if (error) 2130 goto out_dput; 2131 error = security_path_mkdir(&nd.path, dentry, mode); 2132 if (error) 2133 goto out_drop_write; 2134 error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode); 2135 out_drop_write: 2136 mnt_drop_write(nd.path.mnt); 2137 out_dput: 2138 dput(dentry); 2139 out_unlock: 2140 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2141 path_put(&nd.path); 2142 putname(tmp); 2143 out_err: 2144 return error; 2145 } 2146 2147 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode) 2148 { 2149 return sys_mkdirat(AT_FDCWD, pathname, mode); 2150 } 2151 2152 /* 2153 * We try to drop the dentry early: we should have 2154 * a usage count of 2 if we're the only user of this 2155 * dentry, and if that is true (possibly after pruning 2156 * the dcache), then we drop the dentry now. 2157 * 2158 * A low-level filesystem can, if it choses, legally 2159 * do a 2160 * 2161 * if (!d_unhashed(dentry)) 2162 * return -EBUSY; 2163 * 2164 * if it cannot handle the case of removing a directory 2165 * that is still in use by something else.. 2166 */ 2167 void dentry_unhash(struct dentry *dentry) 2168 { 2169 dget(dentry); 2170 shrink_dcache_parent(dentry); 2171 spin_lock(&dcache_lock); 2172 spin_lock(&dentry->d_lock); 2173 if (atomic_read(&dentry->d_count) == 2) 2174 __d_drop(dentry); 2175 spin_unlock(&dentry->d_lock); 2176 spin_unlock(&dcache_lock); 2177 } 2178 2179 int vfs_rmdir(struct inode *dir, struct dentry *dentry) 2180 { 2181 int error = may_delete(dir, dentry, 1); 2182 2183 if (error) 2184 return error; 2185 2186 if (!dir->i_op->rmdir) 2187 return -EPERM; 2188 2189 vfs_dq_init(dir); 2190 2191 mutex_lock(&dentry->d_inode->i_mutex); 2192 dentry_unhash(dentry); 2193 if (d_mountpoint(dentry)) 2194 error = -EBUSY; 2195 else { 2196 error = security_inode_rmdir(dir, dentry); 2197 if (!error) { 2198 error = dir->i_op->rmdir(dir, dentry); 2199 if (!error) 2200 dentry->d_inode->i_flags |= S_DEAD; 2201 } 2202 } 2203 mutex_unlock(&dentry->d_inode->i_mutex); 2204 if (!error) { 2205 d_delete(dentry); 2206 } 2207 dput(dentry); 2208 2209 return error; 2210 } 2211 2212 static long do_rmdir(int dfd, const char __user *pathname) 2213 { 2214 int error = 0; 2215 char * name; 2216 struct dentry *dentry; 2217 struct nameidata nd; 2218 2219 error = user_path_parent(dfd, pathname, &nd, &name); 2220 if (error) 2221 return error; 2222 2223 switch(nd.last_type) { 2224 case LAST_DOTDOT: 2225 error = -ENOTEMPTY; 2226 goto exit1; 2227 case LAST_DOT: 2228 error = -EINVAL; 2229 goto exit1; 2230 case LAST_ROOT: 2231 error = -EBUSY; 2232 goto exit1; 2233 } 2234 2235 nd.flags &= ~LOOKUP_PARENT; 2236 2237 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 2238 dentry = lookup_hash(&nd); 2239 error = PTR_ERR(dentry); 2240 if (IS_ERR(dentry)) 2241 goto exit2; 2242 error = mnt_want_write(nd.path.mnt); 2243 if (error) 2244 goto exit3; 2245 error = security_path_rmdir(&nd.path, dentry); 2246 if (error) 2247 goto exit4; 2248 error = vfs_rmdir(nd.path.dentry->d_inode, dentry); 2249 exit4: 2250 mnt_drop_write(nd.path.mnt); 2251 exit3: 2252 dput(dentry); 2253 exit2: 2254 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2255 exit1: 2256 path_put(&nd.path); 2257 putname(name); 2258 return error; 2259 } 2260 2261 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 2262 { 2263 return do_rmdir(AT_FDCWD, pathname); 2264 } 2265 2266 int vfs_unlink(struct inode *dir, struct dentry *dentry) 2267 { 2268 int error = may_delete(dir, dentry, 0); 2269 2270 if (error) 2271 return error; 2272 2273 if (!dir->i_op->unlink) 2274 return -EPERM; 2275 2276 vfs_dq_init(dir); 2277 2278 mutex_lock(&dentry->d_inode->i_mutex); 2279 if (d_mountpoint(dentry)) 2280 error = -EBUSY; 2281 else { 2282 error = security_inode_unlink(dir, dentry); 2283 if (!error) 2284 error = dir->i_op->unlink(dir, dentry); 2285 } 2286 mutex_unlock(&dentry->d_inode->i_mutex); 2287 2288 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 2289 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) { 2290 fsnotify_link_count(dentry->d_inode); 2291 d_delete(dentry); 2292 } 2293 2294 return error; 2295 } 2296 2297 /* 2298 * Make sure that the actual truncation of the file will occur outside its 2299 * directory's i_mutex. Truncate can take a long time if there is a lot of 2300 * writeout happening, and we don't want to prevent access to the directory 2301 * while waiting on the I/O. 2302 */ 2303 static long do_unlinkat(int dfd, const char __user *pathname) 2304 { 2305 int error; 2306 char *name; 2307 struct dentry *dentry; 2308 struct nameidata nd; 2309 struct inode *inode = NULL; 2310 2311 error = user_path_parent(dfd, pathname, &nd, &name); 2312 if (error) 2313 return error; 2314 2315 error = -EISDIR; 2316 if (nd.last_type != LAST_NORM) 2317 goto exit1; 2318 2319 nd.flags &= ~LOOKUP_PARENT; 2320 2321 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 2322 dentry = lookup_hash(&nd); 2323 error = PTR_ERR(dentry); 2324 if (!IS_ERR(dentry)) { 2325 /* Why not before? Because we want correct error value */ 2326 if (nd.last.name[nd.last.len]) 2327 goto slashes; 2328 inode = dentry->d_inode; 2329 if (inode) 2330 atomic_inc(&inode->i_count); 2331 error = mnt_want_write(nd.path.mnt); 2332 if (error) 2333 goto exit2; 2334 error = security_path_unlink(&nd.path, dentry); 2335 if (error) 2336 goto exit3; 2337 error = vfs_unlink(nd.path.dentry->d_inode, dentry); 2338 exit3: 2339 mnt_drop_write(nd.path.mnt); 2340 exit2: 2341 dput(dentry); 2342 } 2343 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2344 if (inode) 2345 iput(inode); /* truncate the inode here */ 2346 exit1: 2347 path_put(&nd.path); 2348 putname(name); 2349 return error; 2350 2351 slashes: 2352 error = !dentry->d_inode ? -ENOENT : 2353 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR; 2354 goto exit2; 2355 } 2356 2357 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 2358 { 2359 if ((flag & ~AT_REMOVEDIR) != 0) 2360 return -EINVAL; 2361 2362 if (flag & AT_REMOVEDIR) 2363 return do_rmdir(dfd, pathname); 2364 2365 return do_unlinkat(dfd, pathname); 2366 } 2367 2368 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 2369 { 2370 return do_unlinkat(AT_FDCWD, pathname); 2371 } 2372 2373 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname) 2374 { 2375 int error = may_create(dir, dentry); 2376 2377 if (error) 2378 return error; 2379 2380 if (!dir->i_op->symlink) 2381 return -EPERM; 2382 2383 error = security_inode_symlink(dir, dentry, oldname); 2384 if (error) 2385 return error; 2386 2387 vfs_dq_init(dir); 2388 error = dir->i_op->symlink(dir, dentry, oldname); 2389 if (!error) 2390 fsnotify_create(dir, dentry); 2391 return error; 2392 } 2393 2394 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 2395 int, newdfd, const char __user *, newname) 2396 { 2397 int error; 2398 char *from; 2399 char *to; 2400 struct dentry *dentry; 2401 struct nameidata nd; 2402 2403 from = getname(oldname); 2404 if (IS_ERR(from)) 2405 return PTR_ERR(from); 2406 2407 error = user_path_parent(newdfd, newname, &nd, &to); 2408 if (error) 2409 goto out_putname; 2410 2411 dentry = lookup_create(&nd, 0); 2412 error = PTR_ERR(dentry); 2413 if (IS_ERR(dentry)) 2414 goto out_unlock; 2415 2416 error = mnt_want_write(nd.path.mnt); 2417 if (error) 2418 goto out_dput; 2419 error = security_path_symlink(&nd.path, dentry, from); 2420 if (error) 2421 goto out_drop_write; 2422 error = vfs_symlink(nd.path.dentry->d_inode, dentry, from); 2423 out_drop_write: 2424 mnt_drop_write(nd.path.mnt); 2425 out_dput: 2426 dput(dentry); 2427 out_unlock: 2428 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2429 path_put(&nd.path); 2430 putname(to); 2431 out_putname: 2432 putname(from); 2433 return error; 2434 } 2435 2436 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 2437 { 2438 return sys_symlinkat(oldname, AT_FDCWD, newname); 2439 } 2440 2441 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) 2442 { 2443 struct inode *inode = old_dentry->d_inode; 2444 int error; 2445 2446 if (!inode) 2447 return -ENOENT; 2448 2449 error = may_create(dir, new_dentry); 2450 if (error) 2451 return error; 2452 2453 if (dir->i_sb != inode->i_sb) 2454 return -EXDEV; 2455 2456 /* 2457 * A link to an append-only or immutable file cannot be created. 2458 */ 2459 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 2460 return -EPERM; 2461 if (!dir->i_op->link) 2462 return -EPERM; 2463 if (S_ISDIR(inode->i_mode)) 2464 return -EPERM; 2465 2466 error = security_inode_link(old_dentry, dir, new_dentry); 2467 if (error) 2468 return error; 2469 2470 mutex_lock(&inode->i_mutex); 2471 vfs_dq_init(dir); 2472 error = dir->i_op->link(old_dentry, dir, new_dentry); 2473 mutex_unlock(&inode->i_mutex); 2474 if (!error) 2475 fsnotify_link(dir, inode, new_dentry); 2476 return error; 2477 } 2478 2479 /* 2480 * Hardlinks are often used in delicate situations. We avoid 2481 * security-related surprises by not following symlinks on the 2482 * newname. --KAB 2483 * 2484 * We don't follow them on the oldname either to be compatible 2485 * with linux 2.0, and to avoid hard-linking to directories 2486 * and other special files. --ADM 2487 */ 2488 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 2489 int, newdfd, const char __user *, newname, int, flags) 2490 { 2491 struct dentry *new_dentry; 2492 struct nameidata nd; 2493 struct path old_path; 2494 int error; 2495 char *to; 2496 2497 if ((flags & ~AT_SYMLINK_FOLLOW) != 0) 2498 return -EINVAL; 2499 2500 error = user_path_at(olddfd, oldname, 2501 flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0, 2502 &old_path); 2503 if (error) 2504 return error; 2505 2506 error = user_path_parent(newdfd, newname, &nd, &to); 2507 if (error) 2508 goto out; 2509 error = -EXDEV; 2510 if (old_path.mnt != nd.path.mnt) 2511 goto out_release; 2512 new_dentry = lookup_create(&nd, 0); 2513 error = PTR_ERR(new_dentry); 2514 if (IS_ERR(new_dentry)) 2515 goto out_unlock; 2516 error = mnt_want_write(nd.path.mnt); 2517 if (error) 2518 goto out_dput; 2519 error = security_path_link(old_path.dentry, &nd.path, new_dentry); 2520 if (error) 2521 goto out_drop_write; 2522 error = vfs_link(old_path.dentry, nd.path.dentry->d_inode, new_dentry); 2523 out_drop_write: 2524 mnt_drop_write(nd.path.mnt); 2525 out_dput: 2526 dput(new_dentry); 2527 out_unlock: 2528 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2529 out_release: 2530 path_put(&nd.path); 2531 putname(to); 2532 out: 2533 path_put(&old_path); 2534 2535 return error; 2536 } 2537 2538 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 2539 { 2540 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 2541 } 2542 2543 /* 2544 * The worst of all namespace operations - renaming directory. "Perverted" 2545 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 2546 * Problems: 2547 * a) we can get into loop creation. Check is done in is_subdir(). 2548 * b) race potential - two innocent renames can create a loop together. 2549 * That's where 4.4 screws up. Current fix: serialization on 2550 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 2551 * story. 2552 * c) we have to lock _three_ objects - parents and victim (if it exists). 2553 * And that - after we got ->i_mutex on parents (until then we don't know 2554 * whether the target exists). Solution: try to be smart with locking 2555 * order for inodes. We rely on the fact that tree topology may change 2556 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 2557 * move will be locked. Thus we can rank directories by the tree 2558 * (ancestors first) and rank all non-directories after them. 2559 * That works since everybody except rename does "lock parent, lookup, 2560 * lock child" and rename is under ->s_vfs_rename_mutex. 2561 * HOWEVER, it relies on the assumption that any object with ->lookup() 2562 * has no more than 1 dentry. If "hybrid" objects will ever appear, 2563 * we'd better make sure that there's no link(2) for them. 2564 * d) some filesystems don't support opened-but-unlinked directories, 2565 * either because of layout or because they are not ready to deal with 2566 * all cases correctly. The latter will be fixed (taking this sort of 2567 * stuff into VFS), but the former is not going away. Solution: the same 2568 * trick as in rmdir(). 2569 * e) conversion from fhandle to dentry may come in the wrong moment - when 2570 * we are removing the target. Solution: we will have to grab ->i_mutex 2571 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 2572 * ->i_mutex on parents, which works but leads to some truely excessive 2573 * locking]. 2574 */ 2575 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry, 2576 struct inode *new_dir, struct dentry *new_dentry) 2577 { 2578 int error = 0; 2579 struct inode *target; 2580 2581 /* 2582 * If we are going to change the parent - check write permissions, 2583 * we'll need to flip '..'. 2584 */ 2585 if (new_dir != old_dir) { 2586 error = inode_permission(old_dentry->d_inode, MAY_WRITE); 2587 if (error) 2588 return error; 2589 } 2590 2591 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry); 2592 if (error) 2593 return error; 2594 2595 target = new_dentry->d_inode; 2596 if (target) { 2597 mutex_lock(&target->i_mutex); 2598 dentry_unhash(new_dentry); 2599 } 2600 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry)) 2601 error = -EBUSY; 2602 else 2603 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry); 2604 if (target) { 2605 if (!error) 2606 target->i_flags |= S_DEAD; 2607 mutex_unlock(&target->i_mutex); 2608 if (d_unhashed(new_dentry)) 2609 d_rehash(new_dentry); 2610 dput(new_dentry); 2611 } 2612 if (!error) 2613 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) 2614 d_move(old_dentry,new_dentry); 2615 return error; 2616 } 2617 2618 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry, 2619 struct inode *new_dir, struct dentry *new_dentry) 2620 { 2621 struct inode *target; 2622 int error; 2623 2624 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry); 2625 if (error) 2626 return error; 2627 2628 dget(new_dentry); 2629 target = new_dentry->d_inode; 2630 if (target) 2631 mutex_lock(&target->i_mutex); 2632 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry)) 2633 error = -EBUSY; 2634 else 2635 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry); 2636 if (!error) { 2637 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) 2638 d_move(old_dentry, new_dentry); 2639 } 2640 if (target) 2641 mutex_unlock(&target->i_mutex); 2642 dput(new_dentry); 2643 return error; 2644 } 2645 2646 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry, 2647 struct inode *new_dir, struct dentry *new_dentry) 2648 { 2649 int error; 2650 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode); 2651 const char *old_name; 2652 2653 if (old_dentry->d_inode == new_dentry->d_inode) 2654 return 0; 2655 2656 error = may_delete(old_dir, old_dentry, is_dir); 2657 if (error) 2658 return error; 2659 2660 if (!new_dentry->d_inode) 2661 error = may_create(new_dir, new_dentry); 2662 else 2663 error = may_delete(new_dir, new_dentry, is_dir); 2664 if (error) 2665 return error; 2666 2667 if (!old_dir->i_op->rename) 2668 return -EPERM; 2669 2670 vfs_dq_init(old_dir); 2671 vfs_dq_init(new_dir); 2672 2673 old_name = fsnotify_oldname_init(old_dentry->d_name.name); 2674 2675 if (is_dir) 2676 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry); 2677 else 2678 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry); 2679 if (!error) { 2680 const char *new_name = old_dentry->d_name.name; 2681 fsnotify_move(old_dir, new_dir, old_name, new_name, is_dir, 2682 new_dentry->d_inode, old_dentry); 2683 } 2684 fsnotify_oldname_free(old_name); 2685 2686 return error; 2687 } 2688 2689 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 2690 int, newdfd, const char __user *, newname) 2691 { 2692 struct dentry *old_dir, *new_dir; 2693 struct dentry *old_dentry, *new_dentry; 2694 struct dentry *trap; 2695 struct nameidata oldnd, newnd; 2696 char *from; 2697 char *to; 2698 int error; 2699 2700 error = user_path_parent(olddfd, oldname, &oldnd, &from); 2701 if (error) 2702 goto exit; 2703 2704 error = user_path_parent(newdfd, newname, &newnd, &to); 2705 if (error) 2706 goto exit1; 2707 2708 error = -EXDEV; 2709 if (oldnd.path.mnt != newnd.path.mnt) 2710 goto exit2; 2711 2712 old_dir = oldnd.path.dentry; 2713 error = -EBUSY; 2714 if (oldnd.last_type != LAST_NORM) 2715 goto exit2; 2716 2717 new_dir = newnd.path.dentry; 2718 if (newnd.last_type != LAST_NORM) 2719 goto exit2; 2720 2721 oldnd.flags &= ~LOOKUP_PARENT; 2722 newnd.flags &= ~LOOKUP_PARENT; 2723 newnd.flags |= LOOKUP_RENAME_TARGET; 2724 2725 trap = lock_rename(new_dir, old_dir); 2726 2727 old_dentry = lookup_hash(&oldnd); 2728 error = PTR_ERR(old_dentry); 2729 if (IS_ERR(old_dentry)) 2730 goto exit3; 2731 /* source must exist */ 2732 error = -ENOENT; 2733 if (!old_dentry->d_inode) 2734 goto exit4; 2735 /* unless the source is a directory trailing slashes give -ENOTDIR */ 2736 if (!S_ISDIR(old_dentry->d_inode->i_mode)) { 2737 error = -ENOTDIR; 2738 if (oldnd.last.name[oldnd.last.len]) 2739 goto exit4; 2740 if (newnd.last.name[newnd.last.len]) 2741 goto exit4; 2742 } 2743 /* source should not be ancestor of target */ 2744 error = -EINVAL; 2745 if (old_dentry == trap) 2746 goto exit4; 2747 new_dentry = lookup_hash(&newnd); 2748 error = PTR_ERR(new_dentry); 2749 if (IS_ERR(new_dentry)) 2750 goto exit4; 2751 /* target should not be an ancestor of source */ 2752 error = -ENOTEMPTY; 2753 if (new_dentry == trap) 2754 goto exit5; 2755 2756 error = mnt_want_write(oldnd.path.mnt); 2757 if (error) 2758 goto exit5; 2759 error = security_path_rename(&oldnd.path, old_dentry, 2760 &newnd.path, new_dentry); 2761 if (error) 2762 goto exit6; 2763 error = vfs_rename(old_dir->d_inode, old_dentry, 2764 new_dir->d_inode, new_dentry); 2765 exit6: 2766 mnt_drop_write(oldnd.path.mnt); 2767 exit5: 2768 dput(new_dentry); 2769 exit4: 2770 dput(old_dentry); 2771 exit3: 2772 unlock_rename(new_dir, old_dir); 2773 exit2: 2774 path_put(&newnd.path); 2775 putname(to); 2776 exit1: 2777 path_put(&oldnd.path); 2778 putname(from); 2779 exit: 2780 return error; 2781 } 2782 2783 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 2784 { 2785 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname); 2786 } 2787 2788 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link) 2789 { 2790 int len; 2791 2792 len = PTR_ERR(link); 2793 if (IS_ERR(link)) 2794 goto out; 2795 2796 len = strlen(link); 2797 if (len > (unsigned) buflen) 2798 len = buflen; 2799 if (copy_to_user(buffer, link, len)) 2800 len = -EFAULT; 2801 out: 2802 return len; 2803 } 2804 2805 /* 2806 * A helper for ->readlink(). This should be used *ONLY* for symlinks that 2807 * have ->follow_link() touching nd only in nd_set_link(). Using (or not 2808 * using) it for any given inode is up to filesystem. 2809 */ 2810 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen) 2811 { 2812 struct nameidata nd; 2813 void *cookie; 2814 int res; 2815 2816 nd.depth = 0; 2817 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd); 2818 if (IS_ERR(cookie)) 2819 return PTR_ERR(cookie); 2820 2821 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd)); 2822 if (dentry->d_inode->i_op->put_link) 2823 dentry->d_inode->i_op->put_link(dentry, &nd, cookie); 2824 return res; 2825 } 2826 2827 int vfs_follow_link(struct nameidata *nd, const char *link) 2828 { 2829 return __vfs_follow_link(nd, link); 2830 } 2831 2832 /* get the link contents into pagecache */ 2833 static char *page_getlink(struct dentry * dentry, struct page **ppage) 2834 { 2835 char *kaddr; 2836 struct page *page; 2837 struct address_space *mapping = dentry->d_inode->i_mapping; 2838 page = read_mapping_page(mapping, 0, NULL); 2839 if (IS_ERR(page)) 2840 return (char*)page; 2841 *ppage = page; 2842 kaddr = kmap(page); 2843 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1); 2844 return kaddr; 2845 } 2846 2847 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 2848 { 2849 struct page *page = NULL; 2850 char *s = page_getlink(dentry, &page); 2851 int res = vfs_readlink(dentry,buffer,buflen,s); 2852 if (page) { 2853 kunmap(page); 2854 page_cache_release(page); 2855 } 2856 return res; 2857 } 2858 2859 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd) 2860 { 2861 struct page *page = NULL; 2862 nd_set_link(nd, page_getlink(dentry, &page)); 2863 return page; 2864 } 2865 2866 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie) 2867 { 2868 struct page *page = cookie; 2869 2870 if (page) { 2871 kunmap(page); 2872 page_cache_release(page); 2873 } 2874 } 2875 2876 /* 2877 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS 2878 */ 2879 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs) 2880 { 2881 struct address_space *mapping = inode->i_mapping; 2882 struct page *page; 2883 void *fsdata; 2884 int err; 2885 char *kaddr; 2886 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE; 2887 if (nofs) 2888 flags |= AOP_FLAG_NOFS; 2889 2890 retry: 2891 err = pagecache_write_begin(NULL, mapping, 0, len-1, 2892 flags, &page, &fsdata); 2893 if (err) 2894 goto fail; 2895 2896 kaddr = kmap_atomic(page, KM_USER0); 2897 memcpy(kaddr, symname, len-1); 2898 kunmap_atomic(kaddr, KM_USER0); 2899 2900 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1, 2901 page, fsdata); 2902 if (err < 0) 2903 goto fail; 2904 if (err < len-1) 2905 goto retry; 2906 2907 mark_inode_dirty(inode); 2908 return 0; 2909 fail: 2910 return err; 2911 } 2912 2913 int page_symlink(struct inode *inode, const char *symname, int len) 2914 { 2915 return __page_symlink(inode, symname, len, 2916 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS)); 2917 } 2918 2919 const struct inode_operations page_symlink_inode_operations = { 2920 .readlink = generic_readlink, 2921 .follow_link = page_follow_link_light, 2922 .put_link = page_put_link, 2923 }; 2924 2925 EXPORT_SYMBOL(user_path_at); 2926 EXPORT_SYMBOL(follow_down); 2927 EXPORT_SYMBOL(follow_up); 2928 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */ 2929 EXPORT_SYMBOL(getname); 2930 EXPORT_SYMBOL(lock_rename); 2931 EXPORT_SYMBOL(lookup_one_len); 2932 EXPORT_SYMBOL(page_follow_link_light); 2933 EXPORT_SYMBOL(page_put_link); 2934 EXPORT_SYMBOL(page_readlink); 2935 EXPORT_SYMBOL(__page_symlink); 2936 EXPORT_SYMBOL(page_symlink); 2937 EXPORT_SYMBOL(page_symlink_inode_operations); 2938 EXPORT_SYMBOL(path_lookup); 2939 EXPORT_SYMBOL(kern_path); 2940 EXPORT_SYMBOL(vfs_path_lookup); 2941 EXPORT_SYMBOL(inode_permission); 2942 EXPORT_SYMBOL(file_permission); 2943 EXPORT_SYMBOL(unlock_rename); 2944 EXPORT_SYMBOL(vfs_create); 2945 EXPORT_SYMBOL(vfs_follow_link); 2946 EXPORT_SYMBOL(vfs_link); 2947 EXPORT_SYMBOL(vfs_mkdir); 2948 EXPORT_SYMBOL(vfs_mknod); 2949 EXPORT_SYMBOL(generic_permission); 2950 EXPORT_SYMBOL(vfs_readlink); 2951 EXPORT_SYMBOL(vfs_rename); 2952 EXPORT_SYMBOL(vfs_rmdir); 2953 EXPORT_SYMBOL(vfs_symlink); 2954 EXPORT_SYMBOL(vfs_unlink); 2955 EXPORT_SYMBOL(dentry_unhash); 2956 EXPORT_SYMBOL(generic_readlink); 2957