xref: /openbmc/linux/fs/namei.c (revision f17f06a0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/namei.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * Some corrections by tytso.
10  */
11 
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13  * lookup logic.
14  */
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
16  */
17 
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
22 #include <linux/fs.h>
23 #include <linux/namei.h>
24 #include <linux/pagemap.h>
25 #include <linux/fsnotify.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/ima.h>
29 #include <linux/syscalls.h>
30 #include <linux/mount.h>
31 #include <linux/audit.h>
32 #include <linux/capability.h>
33 #include <linux/file.h>
34 #include <linux/fcntl.h>
35 #include <linux/device_cgroup.h>
36 #include <linux/fs_struct.h>
37 #include <linux/posix_acl.h>
38 #include <linux/hash.h>
39 #include <linux/bitops.h>
40 #include <linux/init_task.h>
41 #include <linux/uaccess.h>
42 
43 #include "internal.h"
44 #include "mount.h"
45 
46 /* [Feb-1997 T. Schoebel-Theuer]
47  * Fundamental changes in the pathname lookup mechanisms (namei)
48  * were necessary because of omirr.  The reason is that omirr needs
49  * to know the _real_ pathname, not the user-supplied one, in case
50  * of symlinks (and also when transname replacements occur).
51  *
52  * The new code replaces the old recursive symlink resolution with
53  * an iterative one (in case of non-nested symlink chains).  It does
54  * this with calls to <fs>_follow_link().
55  * As a side effect, dir_namei(), _namei() and follow_link() are now
56  * replaced with a single function lookup_dentry() that can handle all
57  * the special cases of the former code.
58  *
59  * With the new dcache, the pathname is stored at each inode, at least as
60  * long as the refcount of the inode is positive.  As a side effect, the
61  * size of the dcache depends on the inode cache and thus is dynamic.
62  *
63  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
64  * resolution to correspond with current state of the code.
65  *
66  * Note that the symlink resolution is not *completely* iterative.
67  * There is still a significant amount of tail- and mid- recursion in
68  * the algorithm.  Also, note that <fs>_readlink() is not used in
69  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
70  * may return different results than <fs>_follow_link().  Many virtual
71  * filesystems (including /proc) exhibit this behavior.
72  */
73 
74 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
75  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
76  * and the name already exists in form of a symlink, try to create the new
77  * name indicated by the symlink. The old code always complained that the
78  * name already exists, due to not following the symlink even if its target
79  * is nonexistent.  The new semantics affects also mknod() and link() when
80  * the name is a symlink pointing to a non-existent name.
81  *
82  * I don't know which semantics is the right one, since I have no access
83  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
84  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
85  * "old" one. Personally, I think the new semantics is much more logical.
86  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
87  * file does succeed in both HP-UX and SunOs, but not in Solaris
88  * and in the old Linux semantics.
89  */
90 
91 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
92  * semantics.  See the comments in "open_namei" and "do_link" below.
93  *
94  * [10-Sep-98 Alan Modra] Another symlink change.
95  */
96 
97 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
98  *	inside the path - always follow.
99  *	in the last component in creation/removal/renaming - never follow.
100  *	if LOOKUP_FOLLOW passed - follow.
101  *	if the pathname has trailing slashes - follow.
102  *	otherwise - don't follow.
103  * (applied in that order).
104  *
105  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
106  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
107  * During the 2.4 we need to fix the userland stuff depending on it -
108  * hopefully we will be able to get rid of that wart in 2.5. So far only
109  * XEmacs seems to be relying on it...
110  */
111 /*
112  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
113  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
114  * any extra contention...
115  */
116 
117 /* In order to reduce some races, while at the same time doing additional
118  * checking and hopefully speeding things up, we copy filenames to the
119  * kernel data space before using them..
120  *
121  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
122  * PATH_MAX includes the nul terminator --RR.
123  */
124 
125 #define EMBEDDED_NAME_MAX	(PATH_MAX - offsetof(struct filename, iname))
126 
127 struct filename *
128 getname_flags(const char __user *filename, int flags, int *empty)
129 {
130 	struct filename *result;
131 	char *kname;
132 	int len;
133 
134 	result = audit_reusename(filename);
135 	if (result)
136 		return result;
137 
138 	result = __getname();
139 	if (unlikely(!result))
140 		return ERR_PTR(-ENOMEM);
141 
142 	/*
143 	 * First, try to embed the struct filename inside the names_cache
144 	 * allocation
145 	 */
146 	kname = (char *)result->iname;
147 	result->name = kname;
148 
149 	len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
150 	if (unlikely(len < 0)) {
151 		__putname(result);
152 		return ERR_PTR(len);
153 	}
154 
155 	/*
156 	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
157 	 * separate struct filename so we can dedicate the entire
158 	 * names_cache allocation for the pathname, and re-do the copy from
159 	 * userland.
160 	 */
161 	if (unlikely(len == EMBEDDED_NAME_MAX)) {
162 		const size_t size = offsetof(struct filename, iname[1]);
163 		kname = (char *)result;
164 
165 		/*
166 		 * size is chosen that way we to guarantee that
167 		 * result->iname[0] is within the same object and that
168 		 * kname can't be equal to result->iname, no matter what.
169 		 */
170 		result = kzalloc(size, GFP_KERNEL);
171 		if (unlikely(!result)) {
172 			__putname(kname);
173 			return ERR_PTR(-ENOMEM);
174 		}
175 		result->name = kname;
176 		len = strncpy_from_user(kname, filename, PATH_MAX);
177 		if (unlikely(len < 0)) {
178 			__putname(kname);
179 			kfree(result);
180 			return ERR_PTR(len);
181 		}
182 		if (unlikely(len == PATH_MAX)) {
183 			__putname(kname);
184 			kfree(result);
185 			return ERR_PTR(-ENAMETOOLONG);
186 		}
187 	}
188 
189 	result->refcnt = 1;
190 	/* The empty path is special. */
191 	if (unlikely(!len)) {
192 		if (empty)
193 			*empty = 1;
194 		if (!(flags & LOOKUP_EMPTY)) {
195 			putname(result);
196 			return ERR_PTR(-ENOENT);
197 		}
198 	}
199 
200 	result->uptr = filename;
201 	result->aname = NULL;
202 	audit_getname(result);
203 	return result;
204 }
205 
206 struct filename *
207 getname(const char __user * filename)
208 {
209 	return getname_flags(filename, 0, NULL);
210 }
211 
212 struct filename *
213 getname_kernel(const char * filename)
214 {
215 	struct filename *result;
216 	int len = strlen(filename) + 1;
217 
218 	result = __getname();
219 	if (unlikely(!result))
220 		return ERR_PTR(-ENOMEM);
221 
222 	if (len <= EMBEDDED_NAME_MAX) {
223 		result->name = (char *)result->iname;
224 	} else if (len <= PATH_MAX) {
225 		const size_t size = offsetof(struct filename, iname[1]);
226 		struct filename *tmp;
227 
228 		tmp = kmalloc(size, GFP_KERNEL);
229 		if (unlikely(!tmp)) {
230 			__putname(result);
231 			return ERR_PTR(-ENOMEM);
232 		}
233 		tmp->name = (char *)result;
234 		result = tmp;
235 	} else {
236 		__putname(result);
237 		return ERR_PTR(-ENAMETOOLONG);
238 	}
239 	memcpy((char *)result->name, filename, len);
240 	result->uptr = NULL;
241 	result->aname = NULL;
242 	result->refcnt = 1;
243 	audit_getname(result);
244 
245 	return result;
246 }
247 
248 void putname(struct filename *name)
249 {
250 	BUG_ON(name->refcnt <= 0);
251 
252 	if (--name->refcnt > 0)
253 		return;
254 
255 	if (name->name != name->iname) {
256 		__putname(name->name);
257 		kfree(name);
258 	} else
259 		__putname(name);
260 }
261 
262 static int check_acl(struct inode *inode, int mask)
263 {
264 #ifdef CONFIG_FS_POSIX_ACL
265 	struct posix_acl *acl;
266 
267 	if (mask & MAY_NOT_BLOCK) {
268 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
269 	        if (!acl)
270 	                return -EAGAIN;
271 		/* no ->get_acl() calls in RCU mode... */
272 		if (is_uncached_acl(acl))
273 			return -ECHILD;
274 	        return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
275 	}
276 
277 	acl = get_acl(inode, ACL_TYPE_ACCESS);
278 	if (IS_ERR(acl))
279 		return PTR_ERR(acl);
280 	if (acl) {
281 	        int error = posix_acl_permission(inode, acl, mask);
282 	        posix_acl_release(acl);
283 	        return error;
284 	}
285 #endif
286 
287 	return -EAGAIN;
288 }
289 
290 /*
291  * This does the basic permission checking
292  */
293 static int acl_permission_check(struct inode *inode, int mask)
294 {
295 	unsigned int mode = inode->i_mode;
296 
297 	if (likely(uid_eq(current_fsuid(), inode->i_uid)))
298 		mode >>= 6;
299 	else {
300 		if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
301 			int error = check_acl(inode, mask);
302 			if (error != -EAGAIN)
303 				return error;
304 		}
305 
306 		if (in_group_p(inode->i_gid))
307 			mode >>= 3;
308 	}
309 
310 	/*
311 	 * If the DACs are ok we don't need any capability check.
312 	 */
313 	if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
314 		return 0;
315 	return -EACCES;
316 }
317 
318 /**
319  * generic_permission -  check for access rights on a Posix-like filesystem
320  * @inode:	inode to check access rights for
321  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
322  *
323  * Used to check for read/write/execute permissions on a file.
324  * We use "fsuid" for this, letting us set arbitrary permissions
325  * for filesystem access without changing the "normal" uids which
326  * are used for other things.
327  *
328  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
329  * request cannot be satisfied (eg. requires blocking or too much complexity).
330  * It would then be called again in ref-walk mode.
331  */
332 int generic_permission(struct inode *inode, int mask)
333 {
334 	int ret;
335 
336 	/*
337 	 * Do the basic permission checks.
338 	 */
339 	ret = acl_permission_check(inode, mask);
340 	if (ret != -EACCES)
341 		return ret;
342 
343 	if (S_ISDIR(inode->i_mode)) {
344 		/* DACs are overridable for directories */
345 		if (!(mask & MAY_WRITE))
346 			if (capable_wrt_inode_uidgid(inode,
347 						     CAP_DAC_READ_SEARCH))
348 				return 0;
349 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
350 			return 0;
351 		return -EACCES;
352 	}
353 
354 	/*
355 	 * Searching includes executable on directories, else just read.
356 	 */
357 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
358 	if (mask == MAY_READ)
359 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
360 			return 0;
361 	/*
362 	 * Read/write DACs are always overridable.
363 	 * Executable DACs are overridable when there is
364 	 * at least one exec bit set.
365 	 */
366 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
367 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
368 			return 0;
369 
370 	return -EACCES;
371 }
372 EXPORT_SYMBOL(generic_permission);
373 
374 /*
375  * We _really_ want to just do "generic_permission()" without
376  * even looking at the inode->i_op values. So we keep a cache
377  * flag in inode->i_opflags, that says "this has not special
378  * permission function, use the fast case".
379  */
380 static inline int do_inode_permission(struct inode *inode, int mask)
381 {
382 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
383 		if (likely(inode->i_op->permission))
384 			return inode->i_op->permission(inode, mask);
385 
386 		/* This gets set once for the inode lifetime */
387 		spin_lock(&inode->i_lock);
388 		inode->i_opflags |= IOP_FASTPERM;
389 		spin_unlock(&inode->i_lock);
390 	}
391 	return generic_permission(inode, mask);
392 }
393 
394 /**
395  * sb_permission - Check superblock-level permissions
396  * @sb: Superblock of inode to check permission on
397  * @inode: Inode to check permission on
398  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
399  *
400  * Separate out file-system wide checks from inode-specific permission checks.
401  */
402 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
403 {
404 	if (unlikely(mask & MAY_WRITE)) {
405 		umode_t mode = inode->i_mode;
406 
407 		/* Nobody gets write access to a read-only fs. */
408 		if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
409 			return -EROFS;
410 	}
411 	return 0;
412 }
413 
414 /**
415  * inode_permission - Check for access rights to a given inode
416  * @inode: Inode to check permission on
417  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
418  *
419  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
420  * this, letting us set arbitrary permissions for filesystem access without
421  * changing the "normal" UIDs which are used for other things.
422  *
423  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
424  */
425 int inode_permission(struct inode *inode, int mask)
426 {
427 	int retval;
428 
429 	retval = sb_permission(inode->i_sb, inode, mask);
430 	if (retval)
431 		return retval;
432 
433 	if (unlikely(mask & MAY_WRITE)) {
434 		/*
435 		 * Nobody gets write access to an immutable file.
436 		 */
437 		if (IS_IMMUTABLE(inode))
438 			return -EPERM;
439 
440 		/*
441 		 * Updating mtime will likely cause i_uid and i_gid to be
442 		 * written back improperly if their true value is unknown
443 		 * to the vfs.
444 		 */
445 		if (HAS_UNMAPPED_ID(inode))
446 			return -EACCES;
447 	}
448 
449 	retval = do_inode_permission(inode, mask);
450 	if (retval)
451 		return retval;
452 
453 	retval = devcgroup_inode_permission(inode, mask);
454 	if (retval)
455 		return retval;
456 
457 	return security_inode_permission(inode, mask);
458 }
459 EXPORT_SYMBOL(inode_permission);
460 
461 /**
462  * path_get - get a reference to a path
463  * @path: path to get the reference to
464  *
465  * Given a path increment the reference count to the dentry and the vfsmount.
466  */
467 void path_get(const struct path *path)
468 {
469 	mntget(path->mnt);
470 	dget(path->dentry);
471 }
472 EXPORT_SYMBOL(path_get);
473 
474 /**
475  * path_put - put a reference to a path
476  * @path: path to put the reference to
477  *
478  * Given a path decrement the reference count to the dentry and the vfsmount.
479  */
480 void path_put(const struct path *path)
481 {
482 	dput(path->dentry);
483 	mntput(path->mnt);
484 }
485 EXPORT_SYMBOL(path_put);
486 
487 #define EMBEDDED_LEVELS 2
488 struct nameidata {
489 	struct path	path;
490 	struct qstr	last;
491 	struct path	root;
492 	struct inode	*inode; /* path.dentry.d_inode */
493 	unsigned int	flags;
494 	unsigned	seq, m_seq, r_seq;
495 	int		last_type;
496 	unsigned	depth;
497 	int		total_link_count;
498 	struct saved {
499 		struct path link;
500 		struct delayed_call done;
501 		const char *name;
502 		unsigned seq;
503 	} *stack, internal[EMBEDDED_LEVELS];
504 	struct filename	*name;
505 	struct nameidata *saved;
506 	struct inode	*link_inode;
507 	unsigned	root_seq;
508 	int		dfd;
509 } __randomize_layout;
510 
511 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
512 {
513 	struct nameidata *old = current->nameidata;
514 	p->stack = p->internal;
515 	p->dfd = dfd;
516 	p->name = name;
517 	p->total_link_count = old ? old->total_link_count : 0;
518 	p->saved = old;
519 	current->nameidata = p;
520 }
521 
522 static void restore_nameidata(void)
523 {
524 	struct nameidata *now = current->nameidata, *old = now->saved;
525 
526 	current->nameidata = old;
527 	if (old)
528 		old->total_link_count = now->total_link_count;
529 	if (now->stack != now->internal)
530 		kfree(now->stack);
531 }
532 
533 static int __nd_alloc_stack(struct nameidata *nd)
534 {
535 	struct saved *p;
536 
537 	if (nd->flags & LOOKUP_RCU) {
538 		p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
539 				  GFP_ATOMIC);
540 		if (unlikely(!p))
541 			return -ECHILD;
542 	} else {
543 		p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
544 				  GFP_KERNEL);
545 		if (unlikely(!p))
546 			return -ENOMEM;
547 	}
548 	memcpy(p, nd->internal, sizeof(nd->internal));
549 	nd->stack = p;
550 	return 0;
551 }
552 
553 /**
554  * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
555  * @path: nameidate to verify
556  *
557  * Rename can sometimes move a file or directory outside of a bind
558  * mount, path_connected allows those cases to be detected.
559  */
560 static bool path_connected(const struct path *path)
561 {
562 	struct vfsmount *mnt = path->mnt;
563 	struct super_block *sb = mnt->mnt_sb;
564 
565 	/* Bind mounts and multi-root filesystems can have disconnected paths */
566 	if (!(sb->s_iflags & SB_I_MULTIROOT) && (mnt->mnt_root == sb->s_root))
567 		return true;
568 
569 	return is_subdir(path->dentry, mnt->mnt_root);
570 }
571 
572 static inline int nd_alloc_stack(struct nameidata *nd)
573 {
574 	if (likely(nd->depth != EMBEDDED_LEVELS))
575 		return 0;
576 	if (likely(nd->stack != nd->internal))
577 		return 0;
578 	return __nd_alloc_stack(nd);
579 }
580 
581 static void drop_links(struct nameidata *nd)
582 {
583 	int i = nd->depth;
584 	while (i--) {
585 		struct saved *last = nd->stack + i;
586 		do_delayed_call(&last->done);
587 		clear_delayed_call(&last->done);
588 	}
589 }
590 
591 static void terminate_walk(struct nameidata *nd)
592 {
593 	drop_links(nd);
594 	if (!(nd->flags & LOOKUP_RCU)) {
595 		int i;
596 		path_put(&nd->path);
597 		for (i = 0; i < nd->depth; i++)
598 			path_put(&nd->stack[i].link);
599 		if (nd->flags & LOOKUP_ROOT_GRABBED) {
600 			path_put(&nd->root);
601 			nd->flags &= ~LOOKUP_ROOT_GRABBED;
602 		}
603 	} else {
604 		nd->flags &= ~LOOKUP_RCU;
605 		rcu_read_unlock();
606 	}
607 	nd->depth = 0;
608 }
609 
610 /* path_put is needed afterwards regardless of success or failure */
611 static bool legitimize_path(struct nameidata *nd,
612 			    struct path *path, unsigned seq)
613 {
614 	int res = __legitimize_mnt(path->mnt, nd->m_seq);
615 	if (unlikely(res)) {
616 		if (res > 0)
617 			path->mnt = NULL;
618 		path->dentry = NULL;
619 		return false;
620 	}
621 	if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
622 		path->dentry = NULL;
623 		return false;
624 	}
625 	return !read_seqcount_retry(&path->dentry->d_seq, seq);
626 }
627 
628 static bool legitimize_links(struct nameidata *nd)
629 {
630 	int i;
631 	for (i = 0; i < nd->depth; i++) {
632 		struct saved *last = nd->stack + i;
633 		if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
634 			drop_links(nd);
635 			nd->depth = i + 1;
636 			return false;
637 		}
638 	}
639 	return true;
640 }
641 
642 static bool legitimize_root(struct nameidata *nd)
643 {
644 	/*
645 	 * For scoped-lookups (where nd->root has been zeroed), we need to
646 	 * restart the whole lookup from scratch -- because set_root() is wrong
647 	 * for these lookups (nd->dfd is the root, not the filesystem root).
648 	 */
649 	if (!nd->root.mnt && (nd->flags & LOOKUP_IS_SCOPED))
650 		return false;
651 	/* Nothing to do if nd->root is zero or is managed by the VFS user. */
652 	if (!nd->root.mnt || (nd->flags & LOOKUP_ROOT))
653 		return true;
654 	nd->flags |= LOOKUP_ROOT_GRABBED;
655 	return legitimize_path(nd, &nd->root, nd->root_seq);
656 }
657 
658 /*
659  * Path walking has 2 modes, rcu-walk and ref-walk (see
660  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
661  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
662  * normal reference counts on dentries and vfsmounts to transition to ref-walk
663  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
664  * got stuck, so ref-walk may continue from there. If this is not successful
665  * (eg. a seqcount has changed), then failure is returned and it's up to caller
666  * to restart the path walk from the beginning in ref-walk mode.
667  */
668 
669 /**
670  * unlazy_walk - try to switch to ref-walk mode.
671  * @nd: nameidata pathwalk data
672  * Returns: 0 on success, -ECHILD on failure
673  *
674  * unlazy_walk attempts to legitimize the current nd->path and nd->root
675  * for ref-walk mode.
676  * Must be called from rcu-walk context.
677  * Nothing should touch nameidata between unlazy_walk() failure and
678  * terminate_walk().
679  */
680 static int unlazy_walk(struct nameidata *nd)
681 {
682 	struct dentry *parent = nd->path.dentry;
683 
684 	BUG_ON(!(nd->flags & LOOKUP_RCU));
685 
686 	nd->flags &= ~LOOKUP_RCU;
687 	if (unlikely(!legitimize_links(nd)))
688 		goto out1;
689 	if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
690 		goto out;
691 	if (unlikely(!legitimize_root(nd)))
692 		goto out;
693 	rcu_read_unlock();
694 	BUG_ON(nd->inode != parent->d_inode);
695 	return 0;
696 
697 out1:
698 	nd->path.mnt = NULL;
699 	nd->path.dentry = NULL;
700 out:
701 	rcu_read_unlock();
702 	return -ECHILD;
703 }
704 
705 /**
706  * unlazy_child - try to switch to ref-walk mode.
707  * @nd: nameidata pathwalk data
708  * @dentry: child of nd->path.dentry
709  * @seq: seq number to check dentry against
710  * Returns: 0 on success, -ECHILD on failure
711  *
712  * unlazy_child attempts to legitimize the current nd->path, nd->root and dentry
713  * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
714  * @nd.  Must be called from rcu-walk context.
715  * Nothing should touch nameidata between unlazy_child() failure and
716  * terminate_walk().
717  */
718 static int unlazy_child(struct nameidata *nd, struct dentry *dentry, unsigned seq)
719 {
720 	BUG_ON(!(nd->flags & LOOKUP_RCU));
721 
722 	nd->flags &= ~LOOKUP_RCU;
723 	if (unlikely(!legitimize_links(nd)))
724 		goto out2;
725 	if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
726 		goto out2;
727 	if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
728 		goto out1;
729 
730 	/*
731 	 * We need to move both the parent and the dentry from the RCU domain
732 	 * to be properly refcounted. And the sequence number in the dentry
733 	 * validates *both* dentry counters, since we checked the sequence
734 	 * number of the parent after we got the child sequence number. So we
735 	 * know the parent must still be valid if the child sequence number is
736 	 */
737 	if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
738 		goto out;
739 	if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
740 		goto out_dput;
741 	/*
742 	 * Sequence counts matched. Now make sure that the root is
743 	 * still valid and get it if required.
744 	 */
745 	if (unlikely(!legitimize_root(nd)))
746 		goto out_dput;
747 	rcu_read_unlock();
748 	return 0;
749 
750 out2:
751 	nd->path.mnt = NULL;
752 out1:
753 	nd->path.dentry = NULL;
754 out:
755 	rcu_read_unlock();
756 	return -ECHILD;
757 out_dput:
758 	rcu_read_unlock();
759 	dput(dentry);
760 	return -ECHILD;
761 }
762 
763 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
764 {
765 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
766 		return dentry->d_op->d_revalidate(dentry, flags);
767 	else
768 		return 1;
769 }
770 
771 /**
772  * complete_walk - successful completion of path walk
773  * @nd:  pointer nameidata
774  *
775  * If we had been in RCU mode, drop out of it and legitimize nd->path.
776  * Revalidate the final result, unless we'd already done that during
777  * the path walk or the filesystem doesn't ask for it.  Return 0 on
778  * success, -error on failure.  In case of failure caller does not
779  * need to drop nd->path.
780  */
781 static int complete_walk(struct nameidata *nd)
782 {
783 	struct dentry *dentry = nd->path.dentry;
784 	int status;
785 
786 	if (nd->flags & LOOKUP_RCU) {
787 		/*
788 		 * We don't want to zero nd->root for scoped-lookups or
789 		 * externally-managed nd->root.
790 		 */
791 		if (!(nd->flags & (LOOKUP_ROOT | LOOKUP_IS_SCOPED)))
792 			nd->root.mnt = NULL;
793 		if (unlikely(unlazy_walk(nd)))
794 			return -ECHILD;
795 	}
796 
797 	if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
798 		/*
799 		 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't
800 		 * ever step outside the root during lookup" and should already
801 		 * be guaranteed by the rest of namei, we want to avoid a namei
802 		 * BUG resulting in userspace being given a path that was not
803 		 * scoped within the root at some point during the lookup.
804 		 *
805 		 * So, do a final sanity-check to make sure that in the
806 		 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED)
807 		 * we won't silently return an fd completely outside of the
808 		 * requested root to userspace.
809 		 *
810 		 * Userspace could move the path outside the root after this
811 		 * check, but as discussed elsewhere this is not a concern (the
812 		 * resolved file was inside the root at some point).
813 		 */
814 		if (!path_is_under(&nd->path, &nd->root))
815 			return -EXDEV;
816 	}
817 
818 	if (likely(!(nd->flags & LOOKUP_JUMPED)))
819 		return 0;
820 
821 	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
822 		return 0;
823 
824 	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
825 	if (status > 0)
826 		return 0;
827 
828 	if (!status)
829 		status = -ESTALE;
830 
831 	return status;
832 }
833 
834 static int set_root(struct nameidata *nd)
835 {
836 	struct fs_struct *fs = current->fs;
837 
838 	/*
839 	 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we
840 	 * still have to ensure it doesn't happen because it will cause a breakout
841 	 * from the dirfd.
842 	 */
843 	if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED))
844 		return -ENOTRECOVERABLE;
845 
846 	if (nd->flags & LOOKUP_RCU) {
847 		unsigned seq;
848 
849 		do {
850 			seq = read_seqcount_begin(&fs->seq);
851 			nd->root = fs->root;
852 			nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
853 		} while (read_seqcount_retry(&fs->seq, seq));
854 	} else {
855 		get_fs_root(fs, &nd->root);
856 		nd->flags |= LOOKUP_ROOT_GRABBED;
857 	}
858 	return 0;
859 }
860 
861 static void path_put_conditional(struct path *path, struct nameidata *nd)
862 {
863 	dput(path->dentry);
864 	if (path->mnt != nd->path.mnt)
865 		mntput(path->mnt);
866 }
867 
868 static inline void path_to_nameidata(const struct path *path,
869 					struct nameidata *nd)
870 {
871 	if (!(nd->flags & LOOKUP_RCU)) {
872 		dput(nd->path.dentry);
873 		if (nd->path.mnt != path->mnt)
874 			mntput(nd->path.mnt);
875 	}
876 	nd->path.mnt = path->mnt;
877 	nd->path.dentry = path->dentry;
878 }
879 
880 static int nd_jump_root(struct nameidata *nd)
881 {
882 	if (unlikely(nd->flags & LOOKUP_BENEATH))
883 		return -EXDEV;
884 	if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
885 		/* Absolute path arguments to path_init() are allowed. */
886 		if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt)
887 			return -EXDEV;
888 	}
889 	if (!nd->root.mnt) {
890 		int error = set_root(nd);
891 		if (error)
892 			return error;
893 	}
894 	if (nd->flags & LOOKUP_RCU) {
895 		struct dentry *d;
896 		nd->path = nd->root;
897 		d = nd->path.dentry;
898 		nd->inode = d->d_inode;
899 		nd->seq = nd->root_seq;
900 		if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
901 			return -ECHILD;
902 	} else {
903 		path_put(&nd->path);
904 		nd->path = nd->root;
905 		path_get(&nd->path);
906 		nd->inode = nd->path.dentry->d_inode;
907 	}
908 	nd->flags |= LOOKUP_JUMPED;
909 	return 0;
910 }
911 
912 /*
913  * Helper to directly jump to a known parsed path from ->get_link,
914  * caller must have taken a reference to path beforehand.
915  */
916 int nd_jump_link(struct path *path)
917 {
918 	int error = -ELOOP;
919 	struct nameidata *nd = current->nameidata;
920 
921 	if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS))
922 		goto err;
923 
924 	error = -EXDEV;
925 	if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
926 		if (nd->path.mnt != path->mnt)
927 			goto err;
928 	}
929 	/* Not currently safe for scoped-lookups. */
930 	if (unlikely(nd->flags & LOOKUP_IS_SCOPED))
931 		goto err;
932 
933 	path_put(&nd->path);
934 	nd->path = *path;
935 	nd->inode = nd->path.dentry->d_inode;
936 	nd->flags |= LOOKUP_JUMPED;
937 	return 0;
938 
939 err:
940 	path_put(path);
941 	return error;
942 }
943 
944 static inline void put_link(struct nameidata *nd)
945 {
946 	struct saved *last = nd->stack + --nd->depth;
947 	do_delayed_call(&last->done);
948 	if (!(nd->flags & LOOKUP_RCU))
949 		path_put(&last->link);
950 }
951 
952 int sysctl_protected_symlinks __read_mostly = 0;
953 int sysctl_protected_hardlinks __read_mostly = 0;
954 int sysctl_protected_fifos __read_mostly;
955 int sysctl_protected_regular __read_mostly;
956 
957 /**
958  * may_follow_link - Check symlink following for unsafe situations
959  * @nd: nameidata pathwalk data
960  *
961  * In the case of the sysctl_protected_symlinks sysctl being enabled,
962  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
963  * in a sticky world-writable directory. This is to protect privileged
964  * processes from failing races against path names that may change out
965  * from under them by way of other users creating malicious symlinks.
966  * It will permit symlinks to be followed only when outside a sticky
967  * world-writable directory, or when the uid of the symlink and follower
968  * match, or when the directory owner matches the symlink's owner.
969  *
970  * Returns 0 if following the symlink is allowed, -ve on error.
971  */
972 static inline int may_follow_link(struct nameidata *nd)
973 {
974 	const struct inode *inode;
975 	const struct inode *parent;
976 	kuid_t puid;
977 
978 	if (!sysctl_protected_symlinks)
979 		return 0;
980 
981 	/* Allowed if owner and follower match. */
982 	inode = nd->link_inode;
983 	if (uid_eq(current_cred()->fsuid, inode->i_uid))
984 		return 0;
985 
986 	/* Allowed if parent directory not sticky and world-writable. */
987 	parent = nd->inode;
988 	if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
989 		return 0;
990 
991 	/* Allowed if parent directory and link owner match. */
992 	puid = parent->i_uid;
993 	if (uid_valid(puid) && uid_eq(puid, inode->i_uid))
994 		return 0;
995 
996 	if (nd->flags & LOOKUP_RCU)
997 		return -ECHILD;
998 
999 	audit_inode(nd->name, nd->stack[0].link.dentry, 0);
1000 	audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link");
1001 	return -EACCES;
1002 }
1003 
1004 /**
1005  * safe_hardlink_source - Check for safe hardlink conditions
1006  * @inode: the source inode to hardlink from
1007  *
1008  * Return false if at least one of the following conditions:
1009  *    - inode is not a regular file
1010  *    - inode is setuid
1011  *    - inode is setgid and group-exec
1012  *    - access failure for read and write
1013  *
1014  * Otherwise returns true.
1015  */
1016 static bool safe_hardlink_source(struct inode *inode)
1017 {
1018 	umode_t mode = inode->i_mode;
1019 
1020 	/* Special files should not get pinned to the filesystem. */
1021 	if (!S_ISREG(mode))
1022 		return false;
1023 
1024 	/* Setuid files should not get pinned to the filesystem. */
1025 	if (mode & S_ISUID)
1026 		return false;
1027 
1028 	/* Executable setgid files should not get pinned to the filesystem. */
1029 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
1030 		return false;
1031 
1032 	/* Hardlinking to unreadable or unwritable sources is dangerous. */
1033 	if (inode_permission(inode, MAY_READ | MAY_WRITE))
1034 		return false;
1035 
1036 	return true;
1037 }
1038 
1039 /**
1040  * may_linkat - Check permissions for creating a hardlink
1041  * @link: the source to hardlink from
1042  *
1043  * Block hardlink when all of:
1044  *  - sysctl_protected_hardlinks enabled
1045  *  - fsuid does not match inode
1046  *  - hardlink source is unsafe (see safe_hardlink_source() above)
1047  *  - not CAP_FOWNER in a namespace with the inode owner uid mapped
1048  *
1049  * Returns 0 if successful, -ve on error.
1050  */
1051 static int may_linkat(struct path *link)
1052 {
1053 	struct inode *inode = link->dentry->d_inode;
1054 
1055 	/* Inode writeback is not safe when the uid or gid are invalid. */
1056 	if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
1057 		return -EOVERFLOW;
1058 
1059 	if (!sysctl_protected_hardlinks)
1060 		return 0;
1061 
1062 	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1063 	 * otherwise, it must be a safe source.
1064 	 */
1065 	if (safe_hardlink_source(inode) || inode_owner_or_capable(inode))
1066 		return 0;
1067 
1068 	audit_log_path_denied(AUDIT_ANOM_LINK, "linkat");
1069 	return -EPERM;
1070 }
1071 
1072 /**
1073  * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1074  *			  should be allowed, or not, on files that already
1075  *			  exist.
1076  * @dir_mode: mode bits of directory
1077  * @dir_uid: owner of directory
1078  * @inode: the inode of the file to open
1079  *
1080  * Block an O_CREAT open of a FIFO (or a regular file) when:
1081  *   - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1082  *   - the file already exists
1083  *   - we are in a sticky directory
1084  *   - we don't own the file
1085  *   - the owner of the directory doesn't own the file
1086  *   - the directory is world writable
1087  * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1088  * the directory doesn't have to be world writable: being group writable will
1089  * be enough.
1090  *
1091  * Returns 0 if the open is allowed, -ve on error.
1092  */
1093 static int may_create_in_sticky(umode_t dir_mode, kuid_t dir_uid,
1094 				struct inode * const inode)
1095 {
1096 	if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) ||
1097 	    (!sysctl_protected_regular && S_ISREG(inode->i_mode)) ||
1098 	    likely(!(dir_mode & S_ISVTX)) ||
1099 	    uid_eq(inode->i_uid, dir_uid) ||
1100 	    uid_eq(current_fsuid(), inode->i_uid))
1101 		return 0;
1102 
1103 	if (likely(dir_mode & 0002) ||
1104 	    (dir_mode & 0020 &&
1105 	     ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) ||
1106 	      (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) {
1107 		const char *operation = S_ISFIFO(inode->i_mode) ?
1108 					"sticky_create_fifo" :
1109 					"sticky_create_regular";
1110 		audit_log_path_denied(AUDIT_ANOM_CREAT, operation);
1111 		return -EACCES;
1112 	}
1113 	return 0;
1114 }
1115 
1116 static __always_inline
1117 const char *get_link(struct nameidata *nd)
1118 {
1119 	struct saved *last = nd->stack + nd->depth - 1;
1120 	struct dentry *dentry = last->link.dentry;
1121 	struct inode *inode = nd->link_inode;
1122 	int error;
1123 	const char *res;
1124 
1125 	if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS))
1126 		return ERR_PTR(-ELOOP);
1127 
1128 	if (!(nd->flags & LOOKUP_RCU)) {
1129 		touch_atime(&last->link);
1130 		cond_resched();
1131 	} else if (atime_needs_update(&last->link, inode)) {
1132 		if (unlikely(unlazy_walk(nd)))
1133 			return ERR_PTR(-ECHILD);
1134 		touch_atime(&last->link);
1135 	}
1136 
1137 	error = security_inode_follow_link(dentry, inode,
1138 					   nd->flags & LOOKUP_RCU);
1139 	if (unlikely(error))
1140 		return ERR_PTR(error);
1141 
1142 	nd->last_type = LAST_BIND;
1143 	res = READ_ONCE(inode->i_link);
1144 	if (!res) {
1145 		const char * (*get)(struct dentry *, struct inode *,
1146 				struct delayed_call *);
1147 		get = inode->i_op->get_link;
1148 		if (nd->flags & LOOKUP_RCU) {
1149 			res = get(NULL, inode, &last->done);
1150 			if (res == ERR_PTR(-ECHILD)) {
1151 				if (unlikely(unlazy_walk(nd)))
1152 					return ERR_PTR(-ECHILD);
1153 				res = get(dentry, inode, &last->done);
1154 			}
1155 		} else {
1156 			res = get(dentry, inode, &last->done);
1157 		}
1158 		if (IS_ERR_OR_NULL(res))
1159 			return res;
1160 	}
1161 	if (*res == '/') {
1162 		error = nd_jump_root(nd);
1163 		if (unlikely(error))
1164 			return ERR_PTR(error);
1165 		while (unlikely(*++res == '/'))
1166 			;
1167 	}
1168 	if (!*res)
1169 		res = NULL;
1170 	return res;
1171 }
1172 
1173 /*
1174  * follow_up - Find the mountpoint of path's vfsmount
1175  *
1176  * Given a path, find the mountpoint of its source file system.
1177  * Replace @path with the path of the mountpoint in the parent mount.
1178  * Up is towards /.
1179  *
1180  * Return 1 if we went up a level and 0 if we were already at the
1181  * root.
1182  */
1183 int follow_up(struct path *path)
1184 {
1185 	struct mount *mnt = real_mount(path->mnt);
1186 	struct mount *parent;
1187 	struct dentry *mountpoint;
1188 
1189 	read_seqlock_excl(&mount_lock);
1190 	parent = mnt->mnt_parent;
1191 	if (parent == mnt) {
1192 		read_sequnlock_excl(&mount_lock);
1193 		return 0;
1194 	}
1195 	mntget(&parent->mnt);
1196 	mountpoint = dget(mnt->mnt_mountpoint);
1197 	read_sequnlock_excl(&mount_lock);
1198 	dput(path->dentry);
1199 	path->dentry = mountpoint;
1200 	mntput(path->mnt);
1201 	path->mnt = &parent->mnt;
1202 	return 1;
1203 }
1204 EXPORT_SYMBOL(follow_up);
1205 
1206 /*
1207  * Perform an automount
1208  * - return -EISDIR to tell follow_managed() to stop and return the path we
1209  *   were called with.
1210  */
1211 static int follow_automount(struct path *path, struct nameidata *nd,
1212 			    bool *need_mntput)
1213 {
1214 	struct vfsmount *mnt;
1215 	int err;
1216 
1217 	if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1218 		return -EREMOTE;
1219 
1220 	/* We don't want to mount if someone's just doing a stat -
1221 	 * unless they're stat'ing a directory and appended a '/' to
1222 	 * the name.
1223 	 *
1224 	 * We do, however, want to mount if someone wants to open or
1225 	 * create a file of any type under the mountpoint, wants to
1226 	 * traverse through the mountpoint or wants to open the
1227 	 * mounted directory.  Also, autofs may mark negative dentries
1228 	 * as being automount points.  These will need the attentions
1229 	 * of the daemon to instantiate them before they can be used.
1230 	 */
1231 	if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1232 			   LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1233 	    path->dentry->d_inode)
1234 		return -EISDIR;
1235 
1236 	nd->total_link_count++;
1237 	if (nd->total_link_count >= 40)
1238 		return -ELOOP;
1239 
1240 	mnt = path->dentry->d_op->d_automount(path);
1241 	if (IS_ERR(mnt)) {
1242 		/*
1243 		 * The filesystem is allowed to return -EISDIR here to indicate
1244 		 * it doesn't want to automount.  For instance, autofs would do
1245 		 * this so that its userspace daemon can mount on this dentry.
1246 		 *
1247 		 * However, we can only permit this if it's a terminal point in
1248 		 * the path being looked up; if it wasn't then the remainder of
1249 		 * the path is inaccessible and we should say so.
1250 		 */
1251 		if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1252 			return -EREMOTE;
1253 		return PTR_ERR(mnt);
1254 	}
1255 
1256 	if (!mnt) /* mount collision */
1257 		return 0;
1258 
1259 	if (!*need_mntput) {
1260 		/* lock_mount() may release path->mnt on error */
1261 		mntget(path->mnt);
1262 		*need_mntput = true;
1263 	}
1264 	err = finish_automount(mnt, path);
1265 
1266 	switch (err) {
1267 	case -EBUSY:
1268 		/* Someone else made a mount here whilst we were busy */
1269 		return 0;
1270 	case 0:
1271 		path_put(path);
1272 		path->mnt = mnt;
1273 		path->dentry = dget(mnt->mnt_root);
1274 		return 0;
1275 	default:
1276 		return err;
1277 	}
1278 
1279 }
1280 
1281 /*
1282  * Handle a dentry that is managed in some way.
1283  * - Flagged for transit management (autofs)
1284  * - Flagged as mountpoint
1285  * - Flagged as automount point
1286  *
1287  * This may only be called in refwalk mode.
1288  * On success path->dentry is known positive.
1289  *
1290  * Serialization is taken care of in namespace.c
1291  */
1292 static int follow_managed(struct path *path, struct nameidata *nd)
1293 {
1294 	struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1295 	unsigned flags;
1296 	bool need_mntput = false;
1297 	int ret = 0;
1298 
1299 	/* Given that we're not holding a lock here, we retain the value in a
1300 	 * local variable for each dentry as we look at it so that we don't see
1301 	 * the components of that value change under us */
1302 	while (flags = smp_load_acquire(&path->dentry->d_flags),
1303 	       unlikely(flags & DCACHE_MANAGED_DENTRY)) {
1304 		/* Allow the filesystem to manage the transit without i_mutex
1305 		 * being held. */
1306 		if (flags & DCACHE_MANAGE_TRANSIT) {
1307 			BUG_ON(!path->dentry->d_op);
1308 			BUG_ON(!path->dentry->d_op->d_manage);
1309 			ret = path->dentry->d_op->d_manage(path, false);
1310 			flags = smp_load_acquire(&path->dentry->d_flags);
1311 			if (ret < 0)
1312 				break;
1313 		}
1314 
1315 		/* Transit to a mounted filesystem. */
1316 		if (flags & DCACHE_MOUNTED) {
1317 			struct vfsmount *mounted = lookup_mnt(path);
1318 			if (mounted) {
1319 				dput(path->dentry);
1320 				if (need_mntput)
1321 					mntput(path->mnt);
1322 				path->mnt = mounted;
1323 				path->dentry = dget(mounted->mnt_root);
1324 				need_mntput = true;
1325 				continue;
1326 			}
1327 
1328 			/* Something is mounted on this dentry in another
1329 			 * namespace and/or whatever was mounted there in this
1330 			 * namespace got unmounted before lookup_mnt() could
1331 			 * get it */
1332 		}
1333 
1334 		/* Handle an automount point */
1335 		if (flags & DCACHE_NEED_AUTOMOUNT) {
1336 			ret = follow_automount(path, nd, &need_mntput);
1337 			if (ret < 0)
1338 				break;
1339 			continue;
1340 		}
1341 
1342 		/* We didn't change the current path point */
1343 		break;
1344 	}
1345 
1346 	if (need_mntput) {
1347 		if (path->mnt == mnt)
1348 			mntput(path->mnt);
1349 		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1350 			ret = -EXDEV;
1351 		else
1352 			nd->flags |= LOOKUP_JUMPED;
1353 	}
1354 	if (ret == -EISDIR || !ret)
1355 		ret = 1;
1356 	if (ret > 0 && unlikely(d_flags_negative(flags)))
1357 		ret = -ENOENT;
1358 	if (unlikely(ret < 0))
1359 		path_put_conditional(path, nd);
1360 	return ret;
1361 }
1362 
1363 int follow_down_one(struct path *path)
1364 {
1365 	struct vfsmount *mounted;
1366 
1367 	mounted = lookup_mnt(path);
1368 	if (mounted) {
1369 		dput(path->dentry);
1370 		mntput(path->mnt);
1371 		path->mnt = mounted;
1372 		path->dentry = dget(mounted->mnt_root);
1373 		return 1;
1374 	}
1375 	return 0;
1376 }
1377 EXPORT_SYMBOL(follow_down_one);
1378 
1379 static inline int managed_dentry_rcu(const struct path *path)
1380 {
1381 	return (path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1382 		path->dentry->d_op->d_manage(path, true) : 0;
1383 }
1384 
1385 /*
1386  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1387  * we meet a managed dentry that would need blocking.
1388  */
1389 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1390 			       struct inode **inode, unsigned *seqp)
1391 {
1392 	for (;;) {
1393 		struct mount *mounted;
1394 		/*
1395 		 * Don't forget we might have a non-mountpoint managed dentry
1396 		 * that wants to block transit.
1397 		 */
1398 		switch (managed_dentry_rcu(path)) {
1399 		case -ECHILD:
1400 		default:
1401 			return false;
1402 		case -EISDIR:
1403 			return true;
1404 		case 0:
1405 			break;
1406 		}
1407 
1408 		if (!d_mountpoint(path->dentry))
1409 			return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1410 
1411 		mounted = __lookup_mnt(path->mnt, path->dentry);
1412 		if (!mounted)
1413 			break;
1414 		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1415 			return false;
1416 		path->mnt = &mounted->mnt;
1417 		path->dentry = mounted->mnt.mnt_root;
1418 		nd->flags |= LOOKUP_JUMPED;
1419 		*seqp = read_seqcount_begin(&path->dentry->d_seq);
1420 		/*
1421 		 * Update the inode too. We don't need to re-check the
1422 		 * dentry sequence number here after this d_inode read,
1423 		 * because a mount-point is always pinned.
1424 		 */
1425 		*inode = path->dentry->d_inode;
1426 	}
1427 	return !read_seqretry(&mount_lock, nd->m_seq) &&
1428 		!(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1429 }
1430 
1431 static int follow_dotdot_rcu(struct nameidata *nd)
1432 {
1433 	struct inode *inode = nd->inode;
1434 
1435 	while (1) {
1436 		if (path_equal(&nd->path, &nd->root)) {
1437 			if (unlikely(nd->flags & LOOKUP_BENEATH))
1438 				return -ECHILD;
1439 			break;
1440 		}
1441 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1442 			struct dentry *old = nd->path.dentry;
1443 			struct dentry *parent = old->d_parent;
1444 			unsigned seq;
1445 
1446 			inode = parent->d_inode;
1447 			seq = read_seqcount_begin(&parent->d_seq);
1448 			if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1449 				return -ECHILD;
1450 			nd->path.dentry = parent;
1451 			nd->seq = seq;
1452 			if (unlikely(!path_connected(&nd->path)))
1453 				return -ECHILD;
1454 			break;
1455 		} else {
1456 			struct mount *mnt = real_mount(nd->path.mnt);
1457 			struct mount *mparent = mnt->mnt_parent;
1458 			struct dentry *mountpoint = mnt->mnt_mountpoint;
1459 			struct inode *inode2 = mountpoint->d_inode;
1460 			unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1461 			if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1462 				return -ECHILD;
1463 			if (&mparent->mnt == nd->path.mnt)
1464 				break;
1465 			if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1466 				return -ECHILD;
1467 			/* we know that mountpoint was pinned */
1468 			nd->path.dentry = mountpoint;
1469 			nd->path.mnt = &mparent->mnt;
1470 			inode = inode2;
1471 			nd->seq = seq;
1472 		}
1473 	}
1474 	while (unlikely(d_mountpoint(nd->path.dentry))) {
1475 		struct mount *mounted;
1476 		mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1477 		if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1478 			return -ECHILD;
1479 		if (!mounted)
1480 			break;
1481 		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1482 			return -ECHILD;
1483 		nd->path.mnt = &mounted->mnt;
1484 		nd->path.dentry = mounted->mnt.mnt_root;
1485 		inode = nd->path.dentry->d_inode;
1486 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1487 	}
1488 	nd->inode = inode;
1489 	return 0;
1490 }
1491 
1492 /*
1493  * Follow down to the covering mount currently visible to userspace.  At each
1494  * point, the filesystem owning that dentry may be queried as to whether the
1495  * caller is permitted to proceed or not.
1496  */
1497 int follow_down(struct path *path)
1498 {
1499 	unsigned managed;
1500 	int ret;
1501 
1502 	while (managed = READ_ONCE(path->dentry->d_flags),
1503 	       unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1504 		/* Allow the filesystem to manage the transit without i_mutex
1505 		 * being held.
1506 		 *
1507 		 * We indicate to the filesystem if someone is trying to mount
1508 		 * something here.  This gives autofs the chance to deny anyone
1509 		 * other than its daemon the right to mount on its
1510 		 * superstructure.
1511 		 *
1512 		 * The filesystem may sleep at this point.
1513 		 */
1514 		if (managed & DCACHE_MANAGE_TRANSIT) {
1515 			BUG_ON(!path->dentry->d_op);
1516 			BUG_ON(!path->dentry->d_op->d_manage);
1517 			ret = path->dentry->d_op->d_manage(path, false);
1518 			if (ret < 0)
1519 				return ret == -EISDIR ? 0 : ret;
1520 		}
1521 
1522 		/* Transit to a mounted filesystem. */
1523 		if (managed & DCACHE_MOUNTED) {
1524 			struct vfsmount *mounted = lookup_mnt(path);
1525 			if (!mounted)
1526 				break;
1527 			dput(path->dentry);
1528 			mntput(path->mnt);
1529 			path->mnt = mounted;
1530 			path->dentry = dget(mounted->mnt_root);
1531 			continue;
1532 		}
1533 
1534 		/* Don't handle automount points here */
1535 		break;
1536 	}
1537 	return 0;
1538 }
1539 EXPORT_SYMBOL(follow_down);
1540 
1541 /*
1542  * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1543  */
1544 static void follow_mount(struct path *path)
1545 {
1546 	while (d_mountpoint(path->dentry)) {
1547 		struct vfsmount *mounted = lookup_mnt(path);
1548 		if (!mounted)
1549 			break;
1550 		dput(path->dentry);
1551 		mntput(path->mnt);
1552 		path->mnt = mounted;
1553 		path->dentry = dget(mounted->mnt_root);
1554 	}
1555 }
1556 
1557 static int path_parent_directory(struct path *path)
1558 {
1559 	struct dentry *old = path->dentry;
1560 	/* rare case of legitimate dget_parent()... */
1561 	path->dentry = dget_parent(path->dentry);
1562 	dput(old);
1563 	if (unlikely(!path_connected(path)))
1564 		return -ENOENT;
1565 	return 0;
1566 }
1567 
1568 static int follow_dotdot(struct nameidata *nd)
1569 {
1570 	while (1) {
1571 		if (path_equal(&nd->path, &nd->root)) {
1572 			if (unlikely(nd->flags & LOOKUP_BENEATH))
1573 				return -EXDEV;
1574 			break;
1575 		}
1576 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1577 			int ret = path_parent_directory(&nd->path);
1578 			if (ret)
1579 				return ret;
1580 			break;
1581 		}
1582 		if (!follow_up(&nd->path))
1583 			break;
1584 		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1585 			return -EXDEV;
1586 	}
1587 	follow_mount(&nd->path);
1588 	nd->inode = nd->path.dentry->d_inode;
1589 	return 0;
1590 }
1591 
1592 /*
1593  * This looks up the name in dcache and possibly revalidates the found dentry.
1594  * NULL is returned if the dentry does not exist in the cache.
1595  */
1596 static struct dentry *lookup_dcache(const struct qstr *name,
1597 				    struct dentry *dir,
1598 				    unsigned int flags)
1599 {
1600 	struct dentry *dentry = d_lookup(dir, name);
1601 	if (dentry) {
1602 		int error = d_revalidate(dentry, flags);
1603 		if (unlikely(error <= 0)) {
1604 			if (!error)
1605 				d_invalidate(dentry);
1606 			dput(dentry);
1607 			return ERR_PTR(error);
1608 		}
1609 	}
1610 	return dentry;
1611 }
1612 
1613 /*
1614  * Parent directory has inode locked exclusive.  This is one
1615  * and only case when ->lookup() gets called on non in-lookup
1616  * dentries - as the matter of fact, this only gets called
1617  * when directory is guaranteed to have no in-lookup children
1618  * at all.
1619  */
1620 static struct dentry *__lookup_hash(const struct qstr *name,
1621 		struct dentry *base, unsigned int flags)
1622 {
1623 	struct dentry *dentry = lookup_dcache(name, base, flags);
1624 	struct dentry *old;
1625 	struct inode *dir = base->d_inode;
1626 
1627 	if (dentry)
1628 		return dentry;
1629 
1630 	/* Don't create child dentry for a dead directory. */
1631 	if (unlikely(IS_DEADDIR(dir)))
1632 		return ERR_PTR(-ENOENT);
1633 
1634 	dentry = d_alloc(base, name);
1635 	if (unlikely(!dentry))
1636 		return ERR_PTR(-ENOMEM);
1637 
1638 	old = dir->i_op->lookup(dir, dentry, flags);
1639 	if (unlikely(old)) {
1640 		dput(dentry);
1641 		dentry = old;
1642 	}
1643 	return dentry;
1644 }
1645 
1646 static int lookup_fast(struct nameidata *nd,
1647 		       struct path *path, struct inode **inode,
1648 		       unsigned *seqp)
1649 {
1650 	struct vfsmount *mnt = nd->path.mnt;
1651 	struct dentry *dentry, *parent = nd->path.dentry;
1652 	int status = 1;
1653 	int err;
1654 
1655 	/*
1656 	 * Rename seqlock is not required here because in the off chance
1657 	 * of a false negative due to a concurrent rename, the caller is
1658 	 * going to fall back to non-racy lookup.
1659 	 */
1660 	if (nd->flags & LOOKUP_RCU) {
1661 		unsigned seq;
1662 		bool negative;
1663 		dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1664 		if (unlikely(!dentry)) {
1665 			if (unlazy_walk(nd))
1666 				return -ECHILD;
1667 			return 0;
1668 		}
1669 
1670 		/*
1671 		 * This sequence count validates that the inode matches
1672 		 * the dentry name information from lookup.
1673 		 */
1674 		*inode = d_backing_inode(dentry);
1675 		negative = d_is_negative(dentry);
1676 		if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1677 			return -ECHILD;
1678 
1679 		/*
1680 		 * This sequence count validates that the parent had no
1681 		 * changes while we did the lookup of the dentry above.
1682 		 *
1683 		 * The memory barrier in read_seqcount_begin of child is
1684 		 *  enough, we can use __read_seqcount_retry here.
1685 		 */
1686 		if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1687 			return -ECHILD;
1688 
1689 		*seqp = seq;
1690 		status = d_revalidate(dentry, nd->flags);
1691 		if (likely(status > 0)) {
1692 			/*
1693 			 * Note: do negative dentry check after revalidation in
1694 			 * case that drops it.
1695 			 */
1696 			if (unlikely(negative))
1697 				return -ENOENT;
1698 			path->mnt = mnt;
1699 			path->dentry = dentry;
1700 			if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1701 				return 1;
1702 		}
1703 		if (unlazy_child(nd, dentry, seq))
1704 			return -ECHILD;
1705 		if (unlikely(status == -ECHILD))
1706 			/* we'd been told to redo it in non-rcu mode */
1707 			status = d_revalidate(dentry, nd->flags);
1708 	} else {
1709 		dentry = __d_lookup(parent, &nd->last);
1710 		if (unlikely(!dentry))
1711 			return 0;
1712 		status = d_revalidate(dentry, nd->flags);
1713 	}
1714 	if (unlikely(status <= 0)) {
1715 		if (!status)
1716 			d_invalidate(dentry);
1717 		dput(dentry);
1718 		return status;
1719 	}
1720 
1721 	path->mnt = mnt;
1722 	path->dentry = dentry;
1723 	err = follow_managed(path, nd);
1724 	if (likely(err > 0))
1725 		*inode = d_backing_inode(path->dentry);
1726 	return err;
1727 }
1728 
1729 /* Fast lookup failed, do it the slow way */
1730 static struct dentry *__lookup_slow(const struct qstr *name,
1731 				    struct dentry *dir,
1732 				    unsigned int flags)
1733 {
1734 	struct dentry *dentry, *old;
1735 	struct inode *inode = dir->d_inode;
1736 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1737 
1738 	/* Don't go there if it's already dead */
1739 	if (unlikely(IS_DEADDIR(inode)))
1740 		return ERR_PTR(-ENOENT);
1741 again:
1742 	dentry = d_alloc_parallel(dir, name, &wq);
1743 	if (IS_ERR(dentry))
1744 		return dentry;
1745 	if (unlikely(!d_in_lookup(dentry))) {
1746 		int error = d_revalidate(dentry, flags);
1747 		if (unlikely(error <= 0)) {
1748 			if (!error) {
1749 				d_invalidate(dentry);
1750 				dput(dentry);
1751 				goto again;
1752 			}
1753 			dput(dentry);
1754 			dentry = ERR_PTR(error);
1755 		}
1756 	} else {
1757 		old = inode->i_op->lookup(inode, dentry, flags);
1758 		d_lookup_done(dentry);
1759 		if (unlikely(old)) {
1760 			dput(dentry);
1761 			dentry = old;
1762 		}
1763 	}
1764 	return dentry;
1765 }
1766 
1767 static struct dentry *lookup_slow(const struct qstr *name,
1768 				  struct dentry *dir,
1769 				  unsigned int flags)
1770 {
1771 	struct inode *inode = dir->d_inode;
1772 	struct dentry *res;
1773 	inode_lock_shared(inode);
1774 	res = __lookup_slow(name, dir, flags);
1775 	inode_unlock_shared(inode);
1776 	return res;
1777 }
1778 
1779 static inline int may_lookup(struct nameidata *nd)
1780 {
1781 	if (nd->flags & LOOKUP_RCU) {
1782 		int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1783 		if (err != -ECHILD)
1784 			return err;
1785 		if (unlazy_walk(nd))
1786 			return -ECHILD;
1787 	}
1788 	return inode_permission(nd->inode, MAY_EXEC);
1789 }
1790 
1791 static inline int handle_dots(struct nameidata *nd, int type)
1792 {
1793 	if (type == LAST_DOTDOT) {
1794 		int error = 0;
1795 
1796 		if (!nd->root.mnt) {
1797 			error = set_root(nd);
1798 			if (error)
1799 				return error;
1800 		}
1801 		if (nd->flags & LOOKUP_RCU)
1802 			error = follow_dotdot_rcu(nd);
1803 		else
1804 			error = follow_dotdot(nd);
1805 		if (error)
1806 			return error;
1807 
1808 		if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
1809 			/*
1810 			 * If there was a racing rename or mount along our
1811 			 * path, then we can't be sure that ".." hasn't jumped
1812 			 * above nd->root (and so userspace should retry or use
1813 			 * some fallback).
1814 			 */
1815 			smp_rmb();
1816 			if (unlikely(__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq)))
1817 				return -EAGAIN;
1818 			if (unlikely(__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq)))
1819 				return -EAGAIN;
1820 		}
1821 	}
1822 	return 0;
1823 }
1824 
1825 static int pick_link(struct nameidata *nd, struct path *link,
1826 		     struct inode *inode, unsigned seq)
1827 {
1828 	int error;
1829 	struct saved *last;
1830 	if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1831 		path_to_nameidata(link, nd);
1832 		return -ELOOP;
1833 	}
1834 	if (!(nd->flags & LOOKUP_RCU)) {
1835 		if (link->mnt == nd->path.mnt)
1836 			mntget(link->mnt);
1837 	}
1838 	error = nd_alloc_stack(nd);
1839 	if (unlikely(error)) {
1840 		if (error == -ECHILD) {
1841 			if (unlikely(!legitimize_path(nd, link, seq))) {
1842 				drop_links(nd);
1843 				nd->depth = 0;
1844 				nd->flags &= ~LOOKUP_RCU;
1845 				nd->path.mnt = NULL;
1846 				nd->path.dentry = NULL;
1847 				rcu_read_unlock();
1848 			} else if (likely(unlazy_walk(nd)) == 0)
1849 				error = nd_alloc_stack(nd);
1850 		}
1851 		if (error) {
1852 			path_put(link);
1853 			return error;
1854 		}
1855 	}
1856 
1857 	last = nd->stack + nd->depth++;
1858 	last->link = *link;
1859 	clear_delayed_call(&last->done);
1860 	nd->link_inode = inode;
1861 	last->seq = seq;
1862 	return 1;
1863 }
1864 
1865 enum {WALK_FOLLOW = 1, WALK_MORE = 2};
1866 
1867 /*
1868  * Do we need to follow links? We _really_ want to be able
1869  * to do this check without having to look at inode->i_op,
1870  * so we keep a cache of "no, this doesn't need follow_link"
1871  * for the common case.
1872  */
1873 static inline int step_into(struct nameidata *nd, struct path *path,
1874 			    int flags, struct inode *inode, unsigned seq)
1875 {
1876 	if (!(flags & WALK_MORE) && nd->depth)
1877 		put_link(nd);
1878 	if (likely(!d_is_symlink(path->dentry)) ||
1879 	   !(flags & WALK_FOLLOW || nd->flags & LOOKUP_FOLLOW)) {
1880 		/* not a symlink or should not follow */
1881 		path_to_nameidata(path, nd);
1882 		nd->inode = inode;
1883 		nd->seq = seq;
1884 		return 0;
1885 	}
1886 	/* make sure that d_is_symlink above matches inode */
1887 	if (nd->flags & LOOKUP_RCU) {
1888 		if (read_seqcount_retry(&path->dentry->d_seq, seq))
1889 			return -ECHILD;
1890 	}
1891 	return pick_link(nd, path, inode, seq);
1892 }
1893 
1894 static int walk_component(struct nameidata *nd, int flags)
1895 {
1896 	struct path path;
1897 	struct inode *inode;
1898 	unsigned seq;
1899 	int err;
1900 	/*
1901 	 * "." and ".." are special - ".." especially so because it has
1902 	 * to be able to know about the current root directory and
1903 	 * parent relationships.
1904 	 */
1905 	if (unlikely(nd->last_type != LAST_NORM)) {
1906 		err = handle_dots(nd, nd->last_type);
1907 		if (!(flags & WALK_MORE) && nd->depth)
1908 			put_link(nd);
1909 		return err;
1910 	}
1911 	err = lookup_fast(nd, &path, &inode, &seq);
1912 	if (unlikely(err <= 0)) {
1913 		if (err < 0)
1914 			return err;
1915 		path.dentry = lookup_slow(&nd->last, nd->path.dentry,
1916 					  nd->flags);
1917 		if (IS_ERR(path.dentry))
1918 			return PTR_ERR(path.dentry);
1919 
1920 		path.mnt = nd->path.mnt;
1921 		err = follow_managed(&path, nd);
1922 		if (unlikely(err < 0))
1923 			return err;
1924 
1925 		seq = 0;	/* we are already out of RCU mode */
1926 		inode = d_backing_inode(path.dentry);
1927 	}
1928 
1929 	return step_into(nd, &path, flags, inode, seq);
1930 }
1931 
1932 /*
1933  * We can do the critical dentry name comparison and hashing
1934  * operations one word at a time, but we are limited to:
1935  *
1936  * - Architectures with fast unaligned word accesses. We could
1937  *   do a "get_unaligned()" if this helps and is sufficiently
1938  *   fast.
1939  *
1940  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1941  *   do not trap on the (extremely unlikely) case of a page
1942  *   crossing operation.
1943  *
1944  * - Furthermore, we need an efficient 64-bit compile for the
1945  *   64-bit case in order to generate the "number of bytes in
1946  *   the final mask". Again, that could be replaced with a
1947  *   efficient population count instruction or similar.
1948  */
1949 #ifdef CONFIG_DCACHE_WORD_ACCESS
1950 
1951 #include <asm/word-at-a-time.h>
1952 
1953 #ifdef HASH_MIX
1954 
1955 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1956 
1957 #elif defined(CONFIG_64BIT)
1958 /*
1959  * Register pressure in the mixing function is an issue, particularly
1960  * on 32-bit x86, but almost any function requires one state value and
1961  * one temporary.  Instead, use a function designed for two state values
1962  * and no temporaries.
1963  *
1964  * This function cannot create a collision in only two iterations, so
1965  * we have two iterations to achieve avalanche.  In those two iterations,
1966  * we have six layers of mixing, which is enough to spread one bit's
1967  * influence out to 2^6 = 64 state bits.
1968  *
1969  * Rotate constants are scored by considering either 64 one-bit input
1970  * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
1971  * probability of that delta causing a change to each of the 128 output
1972  * bits, using a sample of random initial states.
1973  *
1974  * The Shannon entropy of the computed probabilities is then summed
1975  * to produce a score.  Ideally, any input change has a 50% chance of
1976  * toggling any given output bit.
1977  *
1978  * Mixing scores (in bits) for (12,45):
1979  * Input delta: 1-bit      2-bit
1980  * 1 round:     713.3    42542.6
1981  * 2 rounds:   2753.7   140389.8
1982  * 3 rounds:   5954.1   233458.2
1983  * 4 rounds:   7862.6   256672.2
1984  * Perfect:    8192     258048
1985  *            (64*128) (64*63/2 * 128)
1986  */
1987 #define HASH_MIX(x, y, a)	\
1988 	(	x ^= (a),	\
1989 	y ^= x,	x = rol64(x,12),\
1990 	x += y,	y = rol64(y,45),\
1991 	y *= 9			)
1992 
1993 /*
1994  * Fold two longs into one 32-bit hash value.  This must be fast, but
1995  * latency isn't quite as critical, as there is a fair bit of additional
1996  * work done before the hash value is used.
1997  */
1998 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1999 {
2000 	y ^= x * GOLDEN_RATIO_64;
2001 	y *= GOLDEN_RATIO_64;
2002 	return y >> 32;
2003 }
2004 
2005 #else	/* 32-bit case */
2006 
2007 /*
2008  * Mixing scores (in bits) for (7,20):
2009  * Input delta: 1-bit      2-bit
2010  * 1 round:     330.3     9201.6
2011  * 2 rounds:   1246.4    25475.4
2012  * 3 rounds:   1907.1    31295.1
2013  * 4 rounds:   2042.3    31718.6
2014  * Perfect:    2048      31744
2015  *            (32*64)   (32*31/2 * 64)
2016  */
2017 #define HASH_MIX(x, y, a)	\
2018 	(	x ^= (a),	\
2019 	y ^= x,	x = rol32(x, 7),\
2020 	x += y,	y = rol32(y,20),\
2021 	y *= 9			)
2022 
2023 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2024 {
2025 	/* Use arch-optimized multiply if one exists */
2026 	return __hash_32(y ^ __hash_32(x));
2027 }
2028 
2029 #endif
2030 
2031 /*
2032  * Return the hash of a string of known length.  This is carfully
2033  * designed to match hash_name(), which is the more critical function.
2034  * In particular, we must end by hashing a final word containing 0..7
2035  * payload bytes, to match the way that hash_name() iterates until it
2036  * finds the delimiter after the name.
2037  */
2038 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2039 {
2040 	unsigned long a, x = 0, y = (unsigned long)salt;
2041 
2042 	for (;;) {
2043 		if (!len)
2044 			goto done;
2045 		a = load_unaligned_zeropad(name);
2046 		if (len < sizeof(unsigned long))
2047 			break;
2048 		HASH_MIX(x, y, a);
2049 		name += sizeof(unsigned long);
2050 		len -= sizeof(unsigned long);
2051 	}
2052 	x ^= a & bytemask_from_count(len);
2053 done:
2054 	return fold_hash(x, y);
2055 }
2056 EXPORT_SYMBOL(full_name_hash);
2057 
2058 /* Return the "hash_len" (hash and length) of a null-terminated string */
2059 u64 hashlen_string(const void *salt, const char *name)
2060 {
2061 	unsigned long a = 0, x = 0, y = (unsigned long)salt;
2062 	unsigned long adata, mask, len;
2063 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2064 
2065 	len = 0;
2066 	goto inside;
2067 
2068 	do {
2069 		HASH_MIX(x, y, a);
2070 		len += sizeof(unsigned long);
2071 inside:
2072 		a = load_unaligned_zeropad(name+len);
2073 	} while (!has_zero(a, &adata, &constants));
2074 
2075 	adata = prep_zero_mask(a, adata, &constants);
2076 	mask = create_zero_mask(adata);
2077 	x ^= a & zero_bytemask(mask);
2078 
2079 	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2080 }
2081 EXPORT_SYMBOL(hashlen_string);
2082 
2083 /*
2084  * Calculate the length and hash of the path component, and
2085  * return the "hash_len" as the result.
2086  */
2087 static inline u64 hash_name(const void *salt, const char *name)
2088 {
2089 	unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
2090 	unsigned long adata, bdata, mask, len;
2091 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2092 
2093 	len = 0;
2094 	goto inside;
2095 
2096 	do {
2097 		HASH_MIX(x, y, a);
2098 		len += sizeof(unsigned long);
2099 inside:
2100 		a = load_unaligned_zeropad(name+len);
2101 		b = a ^ REPEAT_BYTE('/');
2102 	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
2103 
2104 	adata = prep_zero_mask(a, adata, &constants);
2105 	bdata = prep_zero_mask(b, bdata, &constants);
2106 	mask = create_zero_mask(adata | bdata);
2107 	x ^= a & zero_bytemask(mask);
2108 
2109 	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2110 }
2111 
2112 #else	/* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2113 
2114 /* Return the hash of a string of known length */
2115 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2116 {
2117 	unsigned long hash = init_name_hash(salt);
2118 	while (len--)
2119 		hash = partial_name_hash((unsigned char)*name++, hash);
2120 	return end_name_hash(hash);
2121 }
2122 EXPORT_SYMBOL(full_name_hash);
2123 
2124 /* Return the "hash_len" (hash and length) of a null-terminated string */
2125 u64 hashlen_string(const void *salt, const char *name)
2126 {
2127 	unsigned long hash = init_name_hash(salt);
2128 	unsigned long len = 0, c;
2129 
2130 	c = (unsigned char)*name;
2131 	while (c) {
2132 		len++;
2133 		hash = partial_name_hash(c, hash);
2134 		c = (unsigned char)name[len];
2135 	}
2136 	return hashlen_create(end_name_hash(hash), len);
2137 }
2138 EXPORT_SYMBOL(hashlen_string);
2139 
2140 /*
2141  * We know there's a real path component here of at least
2142  * one character.
2143  */
2144 static inline u64 hash_name(const void *salt, const char *name)
2145 {
2146 	unsigned long hash = init_name_hash(salt);
2147 	unsigned long len = 0, c;
2148 
2149 	c = (unsigned char)*name;
2150 	do {
2151 		len++;
2152 		hash = partial_name_hash(c, hash);
2153 		c = (unsigned char)name[len];
2154 	} while (c && c != '/');
2155 	return hashlen_create(end_name_hash(hash), len);
2156 }
2157 
2158 #endif
2159 
2160 /*
2161  * Name resolution.
2162  * This is the basic name resolution function, turning a pathname into
2163  * the final dentry. We expect 'base' to be positive and a directory.
2164  *
2165  * Returns 0 and nd will have valid dentry and mnt on success.
2166  * Returns error and drops reference to input namei data on failure.
2167  */
2168 static int link_path_walk(const char *name, struct nameidata *nd)
2169 {
2170 	int err;
2171 
2172 	if (IS_ERR(name))
2173 		return PTR_ERR(name);
2174 	while (*name=='/')
2175 		name++;
2176 	if (!*name)
2177 		return 0;
2178 
2179 	/* At this point we know we have a real path component. */
2180 	for(;;) {
2181 		u64 hash_len;
2182 		int type;
2183 
2184 		err = may_lookup(nd);
2185 		if (err)
2186 			return err;
2187 
2188 		hash_len = hash_name(nd->path.dentry, name);
2189 
2190 		type = LAST_NORM;
2191 		if (name[0] == '.') switch (hashlen_len(hash_len)) {
2192 			case 2:
2193 				if (name[1] == '.') {
2194 					type = LAST_DOTDOT;
2195 					nd->flags |= LOOKUP_JUMPED;
2196 				}
2197 				break;
2198 			case 1:
2199 				type = LAST_DOT;
2200 		}
2201 		if (likely(type == LAST_NORM)) {
2202 			struct dentry *parent = nd->path.dentry;
2203 			nd->flags &= ~LOOKUP_JUMPED;
2204 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2205 				struct qstr this = { { .hash_len = hash_len }, .name = name };
2206 				err = parent->d_op->d_hash(parent, &this);
2207 				if (err < 0)
2208 					return err;
2209 				hash_len = this.hash_len;
2210 				name = this.name;
2211 			}
2212 		}
2213 
2214 		nd->last.hash_len = hash_len;
2215 		nd->last.name = name;
2216 		nd->last_type = type;
2217 
2218 		name += hashlen_len(hash_len);
2219 		if (!*name)
2220 			goto OK;
2221 		/*
2222 		 * If it wasn't NUL, we know it was '/'. Skip that
2223 		 * slash, and continue until no more slashes.
2224 		 */
2225 		do {
2226 			name++;
2227 		} while (unlikely(*name == '/'));
2228 		if (unlikely(!*name)) {
2229 OK:
2230 			/* pathname body, done */
2231 			if (!nd->depth)
2232 				return 0;
2233 			name = nd->stack[nd->depth - 1].name;
2234 			/* trailing symlink, done */
2235 			if (!name)
2236 				return 0;
2237 			/* last component of nested symlink */
2238 			err = walk_component(nd, WALK_FOLLOW);
2239 		} else {
2240 			/* not the last component */
2241 			err = walk_component(nd, WALK_FOLLOW | WALK_MORE);
2242 		}
2243 		if (err < 0)
2244 			return err;
2245 
2246 		if (err) {
2247 			const char *s = get_link(nd);
2248 
2249 			if (IS_ERR(s))
2250 				return PTR_ERR(s);
2251 			err = 0;
2252 			if (unlikely(!s)) {
2253 				/* jumped */
2254 				put_link(nd);
2255 			} else {
2256 				nd->stack[nd->depth - 1].name = name;
2257 				name = s;
2258 				continue;
2259 			}
2260 		}
2261 		if (unlikely(!d_can_lookup(nd->path.dentry))) {
2262 			if (nd->flags & LOOKUP_RCU) {
2263 				if (unlazy_walk(nd))
2264 					return -ECHILD;
2265 			}
2266 			return -ENOTDIR;
2267 		}
2268 	}
2269 }
2270 
2271 /* must be paired with terminate_walk() */
2272 static const char *path_init(struct nameidata *nd, unsigned flags)
2273 {
2274 	int error;
2275 	const char *s = nd->name->name;
2276 
2277 	if (!*s)
2278 		flags &= ~LOOKUP_RCU;
2279 	if (flags & LOOKUP_RCU)
2280 		rcu_read_lock();
2281 
2282 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
2283 	nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
2284 	nd->depth = 0;
2285 
2286 	nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount);
2287 	nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount);
2288 	smp_rmb();
2289 
2290 	if (flags & LOOKUP_ROOT) {
2291 		struct dentry *root = nd->root.dentry;
2292 		struct inode *inode = root->d_inode;
2293 		if (*s && unlikely(!d_can_lookup(root)))
2294 			return ERR_PTR(-ENOTDIR);
2295 		nd->path = nd->root;
2296 		nd->inode = inode;
2297 		if (flags & LOOKUP_RCU) {
2298 			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2299 			nd->root_seq = nd->seq;
2300 		} else {
2301 			path_get(&nd->path);
2302 		}
2303 		return s;
2304 	}
2305 
2306 	nd->root.mnt = NULL;
2307 	nd->path.mnt = NULL;
2308 	nd->path.dentry = NULL;
2309 
2310 	/* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */
2311 	if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) {
2312 		error = nd_jump_root(nd);
2313 		if (unlikely(error))
2314 			return ERR_PTR(error);
2315 		return s;
2316 	}
2317 
2318 	/* Relative pathname -- get the starting-point it is relative to. */
2319 	if (nd->dfd == AT_FDCWD) {
2320 		if (flags & LOOKUP_RCU) {
2321 			struct fs_struct *fs = current->fs;
2322 			unsigned seq;
2323 
2324 			do {
2325 				seq = read_seqcount_begin(&fs->seq);
2326 				nd->path = fs->pwd;
2327 				nd->inode = nd->path.dentry->d_inode;
2328 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2329 			} while (read_seqcount_retry(&fs->seq, seq));
2330 		} else {
2331 			get_fs_pwd(current->fs, &nd->path);
2332 			nd->inode = nd->path.dentry->d_inode;
2333 		}
2334 	} else {
2335 		/* Caller must check execute permissions on the starting path component */
2336 		struct fd f = fdget_raw(nd->dfd);
2337 		struct dentry *dentry;
2338 
2339 		if (!f.file)
2340 			return ERR_PTR(-EBADF);
2341 
2342 		dentry = f.file->f_path.dentry;
2343 
2344 		if (*s && unlikely(!d_can_lookup(dentry))) {
2345 			fdput(f);
2346 			return ERR_PTR(-ENOTDIR);
2347 		}
2348 
2349 		nd->path = f.file->f_path;
2350 		if (flags & LOOKUP_RCU) {
2351 			nd->inode = nd->path.dentry->d_inode;
2352 			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2353 		} else {
2354 			path_get(&nd->path);
2355 			nd->inode = nd->path.dentry->d_inode;
2356 		}
2357 		fdput(f);
2358 	}
2359 
2360 	/* For scoped-lookups we need to set the root to the dirfd as well. */
2361 	if (flags & LOOKUP_IS_SCOPED) {
2362 		nd->root = nd->path;
2363 		if (flags & LOOKUP_RCU) {
2364 			nd->root_seq = nd->seq;
2365 		} else {
2366 			path_get(&nd->root);
2367 			nd->flags |= LOOKUP_ROOT_GRABBED;
2368 		}
2369 	}
2370 	return s;
2371 }
2372 
2373 static const char *trailing_symlink(struct nameidata *nd)
2374 {
2375 	const char *s;
2376 	int error = may_follow_link(nd);
2377 	if (unlikely(error))
2378 		return ERR_PTR(error);
2379 	nd->flags |= LOOKUP_PARENT;
2380 	nd->stack[0].name = NULL;
2381 	s = get_link(nd);
2382 	return s ? s : "";
2383 }
2384 
2385 static inline int lookup_last(struct nameidata *nd)
2386 {
2387 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2388 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2389 
2390 	nd->flags &= ~LOOKUP_PARENT;
2391 	return walk_component(nd, 0);
2392 }
2393 
2394 static int handle_lookup_down(struct nameidata *nd)
2395 {
2396 	struct path path = nd->path;
2397 	struct inode *inode = nd->inode;
2398 	unsigned seq = nd->seq;
2399 	int err;
2400 
2401 	if (nd->flags & LOOKUP_RCU) {
2402 		/*
2403 		 * don't bother with unlazy_walk on failure - we are
2404 		 * at the very beginning of walk, so we lose nothing
2405 		 * if we simply redo everything in non-RCU mode
2406 		 */
2407 		if (unlikely(!__follow_mount_rcu(nd, &path, &inode, &seq)))
2408 			return -ECHILD;
2409 	} else {
2410 		dget(path.dentry);
2411 		err = follow_managed(&path, nd);
2412 		if (unlikely(err < 0))
2413 			return err;
2414 		inode = d_backing_inode(path.dentry);
2415 		seq = 0;
2416 	}
2417 	path_to_nameidata(&path, nd);
2418 	nd->inode = inode;
2419 	nd->seq = seq;
2420 	return 0;
2421 }
2422 
2423 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2424 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2425 {
2426 	const char *s = path_init(nd, flags);
2427 	int err;
2428 
2429 	if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2430 		err = handle_lookup_down(nd);
2431 		if (unlikely(err < 0))
2432 			s = ERR_PTR(err);
2433 	}
2434 
2435 	while (!(err = link_path_walk(s, nd))
2436 		&& ((err = lookup_last(nd)) > 0)) {
2437 		s = trailing_symlink(nd);
2438 	}
2439 	if (!err)
2440 		err = complete_walk(nd);
2441 
2442 	if (!err && nd->flags & LOOKUP_DIRECTORY)
2443 		if (!d_can_lookup(nd->path.dentry))
2444 			err = -ENOTDIR;
2445 	if (!err) {
2446 		*path = nd->path;
2447 		nd->path.mnt = NULL;
2448 		nd->path.dentry = NULL;
2449 	}
2450 	terminate_walk(nd);
2451 	return err;
2452 }
2453 
2454 int filename_lookup(int dfd, struct filename *name, unsigned flags,
2455 		    struct path *path, struct path *root)
2456 {
2457 	int retval;
2458 	struct nameidata nd;
2459 	if (IS_ERR(name))
2460 		return PTR_ERR(name);
2461 	if (unlikely(root)) {
2462 		nd.root = *root;
2463 		flags |= LOOKUP_ROOT;
2464 	}
2465 	set_nameidata(&nd, dfd, name);
2466 	retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2467 	if (unlikely(retval == -ECHILD))
2468 		retval = path_lookupat(&nd, flags, path);
2469 	if (unlikely(retval == -ESTALE))
2470 		retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2471 
2472 	if (likely(!retval))
2473 		audit_inode(name, path->dentry, 0);
2474 	restore_nameidata();
2475 	putname(name);
2476 	return retval;
2477 }
2478 
2479 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2480 static int path_parentat(struct nameidata *nd, unsigned flags,
2481 				struct path *parent)
2482 {
2483 	const char *s = path_init(nd, flags);
2484 	int err = link_path_walk(s, nd);
2485 	if (!err)
2486 		err = complete_walk(nd);
2487 	if (!err) {
2488 		*parent = nd->path;
2489 		nd->path.mnt = NULL;
2490 		nd->path.dentry = NULL;
2491 	}
2492 	terminate_walk(nd);
2493 	return err;
2494 }
2495 
2496 static struct filename *filename_parentat(int dfd, struct filename *name,
2497 				unsigned int flags, struct path *parent,
2498 				struct qstr *last, int *type)
2499 {
2500 	int retval;
2501 	struct nameidata nd;
2502 
2503 	if (IS_ERR(name))
2504 		return name;
2505 	set_nameidata(&nd, dfd, name);
2506 	retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2507 	if (unlikely(retval == -ECHILD))
2508 		retval = path_parentat(&nd, flags, parent);
2509 	if (unlikely(retval == -ESTALE))
2510 		retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2511 	if (likely(!retval)) {
2512 		*last = nd.last;
2513 		*type = nd.last_type;
2514 		audit_inode(name, parent->dentry, AUDIT_INODE_PARENT);
2515 	} else {
2516 		putname(name);
2517 		name = ERR_PTR(retval);
2518 	}
2519 	restore_nameidata();
2520 	return name;
2521 }
2522 
2523 /* does lookup, returns the object with parent locked */
2524 struct dentry *kern_path_locked(const char *name, struct path *path)
2525 {
2526 	struct filename *filename;
2527 	struct dentry *d;
2528 	struct qstr last;
2529 	int type;
2530 
2531 	filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2532 				    &last, &type);
2533 	if (IS_ERR(filename))
2534 		return ERR_CAST(filename);
2535 	if (unlikely(type != LAST_NORM)) {
2536 		path_put(path);
2537 		putname(filename);
2538 		return ERR_PTR(-EINVAL);
2539 	}
2540 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2541 	d = __lookup_hash(&last, path->dentry, 0);
2542 	if (IS_ERR(d)) {
2543 		inode_unlock(path->dentry->d_inode);
2544 		path_put(path);
2545 	}
2546 	putname(filename);
2547 	return d;
2548 }
2549 
2550 int kern_path(const char *name, unsigned int flags, struct path *path)
2551 {
2552 	return filename_lookup(AT_FDCWD, getname_kernel(name),
2553 			       flags, path, NULL);
2554 }
2555 EXPORT_SYMBOL(kern_path);
2556 
2557 /**
2558  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2559  * @dentry:  pointer to dentry of the base directory
2560  * @mnt: pointer to vfs mount of the base directory
2561  * @name: pointer to file name
2562  * @flags: lookup flags
2563  * @path: pointer to struct path to fill
2564  */
2565 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2566 		    const char *name, unsigned int flags,
2567 		    struct path *path)
2568 {
2569 	struct path root = {.mnt = mnt, .dentry = dentry};
2570 	/* the first argument of filename_lookup() is ignored with root */
2571 	return filename_lookup(AT_FDCWD, getname_kernel(name),
2572 			       flags , path, &root);
2573 }
2574 EXPORT_SYMBOL(vfs_path_lookup);
2575 
2576 static int lookup_one_len_common(const char *name, struct dentry *base,
2577 				 int len, struct qstr *this)
2578 {
2579 	this->name = name;
2580 	this->len = len;
2581 	this->hash = full_name_hash(base, name, len);
2582 	if (!len)
2583 		return -EACCES;
2584 
2585 	if (unlikely(name[0] == '.')) {
2586 		if (len < 2 || (len == 2 && name[1] == '.'))
2587 			return -EACCES;
2588 	}
2589 
2590 	while (len--) {
2591 		unsigned int c = *(const unsigned char *)name++;
2592 		if (c == '/' || c == '\0')
2593 			return -EACCES;
2594 	}
2595 	/*
2596 	 * See if the low-level filesystem might want
2597 	 * to use its own hash..
2598 	 */
2599 	if (base->d_flags & DCACHE_OP_HASH) {
2600 		int err = base->d_op->d_hash(base, this);
2601 		if (err < 0)
2602 			return err;
2603 	}
2604 
2605 	return inode_permission(base->d_inode, MAY_EXEC);
2606 }
2607 
2608 /**
2609  * try_lookup_one_len - filesystem helper to lookup single pathname component
2610  * @name:	pathname component to lookup
2611  * @base:	base directory to lookup from
2612  * @len:	maximum length @len should be interpreted to
2613  *
2614  * Look up a dentry by name in the dcache, returning NULL if it does not
2615  * currently exist.  The function does not try to create a dentry.
2616  *
2617  * Note that this routine is purely a helper for filesystem usage and should
2618  * not be called by generic code.
2619  *
2620  * The caller must hold base->i_mutex.
2621  */
2622 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
2623 {
2624 	struct qstr this;
2625 	int err;
2626 
2627 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2628 
2629 	err = lookup_one_len_common(name, base, len, &this);
2630 	if (err)
2631 		return ERR_PTR(err);
2632 
2633 	return lookup_dcache(&this, base, 0);
2634 }
2635 EXPORT_SYMBOL(try_lookup_one_len);
2636 
2637 /**
2638  * lookup_one_len - filesystem helper to lookup single pathname component
2639  * @name:	pathname component to lookup
2640  * @base:	base directory to lookup from
2641  * @len:	maximum length @len should be interpreted to
2642  *
2643  * Note that this routine is purely a helper for filesystem usage and should
2644  * not be called by generic code.
2645  *
2646  * The caller must hold base->i_mutex.
2647  */
2648 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2649 {
2650 	struct dentry *dentry;
2651 	struct qstr this;
2652 	int err;
2653 
2654 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2655 
2656 	err = lookup_one_len_common(name, base, len, &this);
2657 	if (err)
2658 		return ERR_PTR(err);
2659 
2660 	dentry = lookup_dcache(&this, base, 0);
2661 	return dentry ? dentry : __lookup_slow(&this, base, 0);
2662 }
2663 EXPORT_SYMBOL(lookup_one_len);
2664 
2665 /**
2666  * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2667  * @name:	pathname component to lookup
2668  * @base:	base directory to lookup from
2669  * @len:	maximum length @len should be interpreted to
2670  *
2671  * Note that this routine is purely a helper for filesystem usage and should
2672  * not be called by generic code.
2673  *
2674  * Unlike lookup_one_len, it should be called without the parent
2675  * i_mutex held, and will take the i_mutex itself if necessary.
2676  */
2677 struct dentry *lookup_one_len_unlocked(const char *name,
2678 				       struct dentry *base, int len)
2679 {
2680 	struct qstr this;
2681 	int err;
2682 	struct dentry *ret;
2683 
2684 	err = lookup_one_len_common(name, base, len, &this);
2685 	if (err)
2686 		return ERR_PTR(err);
2687 
2688 	ret = lookup_dcache(&this, base, 0);
2689 	if (!ret)
2690 		ret = lookup_slow(&this, base, 0);
2691 	return ret;
2692 }
2693 EXPORT_SYMBOL(lookup_one_len_unlocked);
2694 
2695 /*
2696  * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT)
2697  * on negatives.  Returns known positive or ERR_PTR(); that's what
2698  * most of the users want.  Note that pinned negative with unlocked parent
2699  * _can_ become positive at any time, so callers of lookup_one_len_unlocked()
2700  * need to be very careful; pinned positives have ->d_inode stable, so
2701  * this one avoids such problems.
2702  */
2703 struct dentry *lookup_positive_unlocked(const char *name,
2704 				       struct dentry *base, int len)
2705 {
2706 	struct dentry *ret = lookup_one_len_unlocked(name, base, len);
2707 	if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
2708 		dput(ret);
2709 		ret = ERR_PTR(-ENOENT);
2710 	}
2711 	return ret;
2712 }
2713 EXPORT_SYMBOL(lookup_positive_unlocked);
2714 
2715 #ifdef CONFIG_UNIX98_PTYS
2716 int path_pts(struct path *path)
2717 {
2718 	/* Find something mounted on "pts" in the same directory as
2719 	 * the input path.
2720 	 */
2721 	struct dentry *child, *parent;
2722 	struct qstr this;
2723 	int ret;
2724 
2725 	ret = path_parent_directory(path);
2726 	if (ret)
2727 		return ret;
2728 
2729 	parent = path->dentry;
2730 	this.name = "pts";
2731 	this.len = 3;
2732 	child = d_hash_and_lookup(parent, &this);
2733 	if (!child)
2734 		return -ENOENT;
2735 
2736 	path->dentry = child;
2737 	dput(parent);
2738 	follow_mount(path);
2739 	return 0;
2740 }
2741 #endif
2742 
2743 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2744 		 struct path *path, int *empty)
2745 {
2746 	return filename_lookup(dfd, getname_flags(name, flags, empty),
2747 			       flags, path, NULL);
2748 }
2749 EXPORT_SYMBOL(user_path_at_empty);
2750 
2751 /**
2752  * path_mountpoint - look up a path to be umounted
2753  * @nd:		lookup context
2754  * @flags:	lookup flags
2755  * @path:	pointer to container for result
2756  *
2757  * Look up the given name, but don't attempt to revalidate the last component.
2758  * Returns 0 and "path" will be valid on success; Returns error otherwise.
2759  */
2760 static int
2761 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2762 {
2763 	const char *s = path_init(nd, flags);
2764 	int err;
2765 
2766 	while (!(err = link_path_walk(s, nd)) &&
2767 		(err = lookup_last(nd)) > 0) {
2768 		s = trailing_symlink(nd);
2769 	}
2770 	if (!err && (nd->flags & LOOKUP_RCU))
2771 		err = unlazy_walk(nd);
2772 	if (!err)
2773 		err = handle_lookup_down(nd);
2774 	if (!err) {
2775 		*path = nd->path;
2776 		nd->path.mnt = NULL;
2777 		nd->path.dentry = NULL;
2778 	}
2779 	terminate_walk(nd);
2780 	return err;
2781 }
2782 
2783 static int
2784 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2785 			unsigned int flags)
2786 {
2787 	struct nameidata nd;
2788 	int error;
2789 	if (IS_ERR(name))
2790 		return PTR_ERR(name);
2791 	set_nameidata(&nd, dfd, name);
2792 	error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2793 	if (unlikely(error == -ECHILD))
2794 		error = path_mountpoint(&nd, flags, path);
2795 	if (unlikely(error == -ESTALE))
2796 		error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2797 	if (likely(!error))
2798 		audit_inode(name, path->dentry, AUDIT_INODE_NOEVAL);
2799 	restore_nameidata();
2800 	putname(name);
2801 	return error;
2802 }
2803 
2804 /**
2805  * user_path_mountpoint_at - lookup a path from userland in order to umount it
2806  * @dfd:	directory file descriptor
2807  * @name:	pathname from userland
2808  * @flags:	lookup flags
2809  * @path:	pointer to container to hold result
2810  *
2811  * A umount is a special case for path walking. We're not actually interested
2812  * in the inode in this situation, and ESTALE errors can be a problem. We
2813  * simply want track down the dentry and vfsmount attached at the mountpoint
2814  * and avoid revalidating the last component.
2815  *
2816  * Returns 0 and populates "path" on success.
2817  */
2818 int
2819 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2820 			struct path *path)
2821 {
2822 	return filename_mountpoint(dfd, getname(name), path, flags);
2823 }
2824 
2825 int
2826 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2827 			unsigned int flags)
2828 {
2829 	return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2830 }
2831 EXPORT_SYMBOL(kern_path_mountpoint);
2832 
2833 int __check_sticky(struct inode *dir, struct inode *inode)
2834 {
2835 	kuid_t fsuid = current_fsuid();
2836 
2837 	if (uid_eq(inode->i_uid, fsuid))
2838 		return 0;
2839 	if (uid_eq(dir->i_uid, fsuid))
2840 		return 0;
2841 	return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2842 }
2843 EXPORT_SYMBOL(__check_sticky);
2844 
2845 /*
2846  *	Check whether we can remove a link victim from directory dir, check
2847  *  whether the type of victim is right.
2848  *  1. We can't do it if dir is read-only (done in permission())
2849  *  2. We should have write and exec permissions on dir
2850  *  3. We can't remove anything from append-only dir
2851  *  4. We can't do anything with immutable dir (done in permission())
2852  *  5. If the sticky bit on dir is set we should either
2853  *	a. be owner of dir, or
2854  *	b. be owner of victim, or
2855  *	c. have CAP_FOWNER capability
2856  *  6. If the victim is append-only or immutable we can't do antyhing with
2857  *     links pointing to it.
2858  *  7. If the victim has an unknown uid or gid we can't change the inode.
2859  *  8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2860  *  9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2861  * 10. We can't remove a root or mountpoint.
2862  * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2863  *     nfs_async_unlink().
2864  */
2865 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2866 {
2867 	struct inode *inode = d_backing_inode(victim);
2868 	int error;
2869 
2870 	if (d_is_negative(victim))
2871 		return -ENOENT;
2872 	BUG_ON(!inode);
2873 
2874 	BUG_ON(victim->d_parent->d_inode != dir);
2875 
2876 	/* Inode writeback is not safe when the uid or gid are invalid. */
2877 	if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
2878 		return -EOVERFLOW;
2879 
2880 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2881 
2882 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2883 	if (error)
2884 		return error;
2885 	if (IS_APPEND(dir))
2886 		return -EPERM;
2887 
2888 	if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2889 	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode))
2890 		return -EPERM;
2891 	if (isdir) {
2892 		if (!d_is_dir(victim))
2893 			return -ENOTDIR;
2894 		if (IS_ROOT(victim))
2895 			return -EBUSY;
2896 	} else if (d_is_dir(victim))
2897 		return -EISDIR;
2898 	if (IS_DEADDIR(dir))
2899 		return -ENOENT;
2900 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2901 		return -EBUSY;
2902 	return 0;
2903 }
2904 
2905 /*	Check whether we can create an object with dentry child in directory
2906  *  dir.
2907  *  1. We can't do it if child already exists (open has special treatment for
2908  *     this case, but since we are inlined it's OK)
2909  *  2. We can't do it if dir is read-only (done in permission())
2910  *  3. We can't do it if the fs can't represent the fsuid or fsgid.
2911  *  4. We should have write and exec permissions on dir
2912  *  5. We can't do it if dir is immutable (done in permission())
2913  */
2914 static inline int may_create(struct inode *dir, struct dentry *child)
2915 {
2916 	struct user_namespace *s_user_ns;
2917 	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2918 	if (child->d_inode)
2919 		return -EEXIST;
2920 	if (IS_DEADDIR(dir))
2921 		return -ENOENT;
2922 	s_user_ns = dir->i_sb->s_user_ns;
2923 	if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2924 	    !kgid_has_mapping(s_user_ns, current_fsgid()))
2925 		return -EOVERFLOW;
2926 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2927 }
2928 
2929 /*
2930  * p1 and p2 should be directories on the same fs.
2931  */
2932 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2933 {
2934 	struct dentry *p;
2935 
2936 	if (p1 == p2) {
2937 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2938 		return NULL;
2939 	}
2940 
2941 	mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2942 
2943 	p = d_ancestor(p2, p1);
2944 	if (p) {
2945 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2946 		inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2947 		return p;
2948 	}
2949 
2950 	p = d_ancestor(p1, p2);
2951 	if (p) {
2952 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2953 		inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2954 		return p;
2955 	}
2956 
2957 	inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2958 	inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2959 	return NULL;
2960 }
2961 EXPORT_SYMBOL(lock_rename);
2962 
2963 void unlock_rename(struct dentry *p1, struct dentry *p2)
2964 {
2965 	inode_unlock(p1->d_inode);
2966 	if (p1 != p2) {
2967 		inode_unlock(p2->d_inode);
2968 		mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2969 	}
2970 }
2971 EXPORT_SYMBOL(unlock_rename);
2972 
2973 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2974 		bool want_excl)
2975 {
2976 	int error = may_create(dir, dentry);
2977 	if (error)
2978 		return error;
2979 
2980 	if (!dir->i_op->create)
2981 		return -EACCES;	/* shouldn't it be ENOSYS? */
2982 	mode &= S_IALLUGO;
2983 	mode |= S_IFREG;
2984 	error = security_inode_create(dir, dentry, mode);
2985 	if (error)
2986 		return error;
2987 	error = dir->i_op->create(dir, dentry, mode, want_excl);
2988 	if (!error)
2989 		fsnotify_create(dir, dentry);
2990 	return error;
2991 }
2992 EXPORT_SYMBOL(vfs_create);
2993 
2994 int vfs_mkobj(struct dentry *dentry, umode_t mode,
2995 		int (*f)(struct dentry *, umode_t, void *),
2996 		void *arg)
2997 {
2998 	struct inode *dir = dentry->d_parent->d_inode;
2999 	int error = may_create(dir, dentry);
3000 	if (error)
3001 		return error;
3002 
3003 	mode &= S_IALLUGO;
3004 	mode |= S_IFREG;
3005 	error = security_inode_create(dir, dentry, mode);
3006 	if (error)
3007 		return error;
3008 	error = f(dentry, mode, arg);
3009 	if (!error)
3010 		fsnotify_create(dir, dentry);
3011 	return error;
3012 }
3013 EXPORT_SYMBOL(vfs_mkobj);
3014 
3015 bool may_open_dev(const struct path *path)
3016 {
3017 	return !(path->mnt->mnt_flags & MNT_NODEV) &&
3018 		!(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
3019 }
3020 
3021 static int may_open(const struct path *path, int acc_mode, int flag)
3022 {
3023 	struct dentry *dentry = path->dentry;
3024 	struct inode *inode = dentry->d_inode;
3025 	int error;
3026 
3027 	if (!inode)
3028 		return -ENOENT;
3029 
3030 	switch (inode->i_mode & S_IFMT) {
3031 	case S_IFLNK:
3032 		return -ELOOP;
3033 	case S_IFDIR:
3034 		if (acc_mode & MAY_WRITE)
3035 			return -EISDIR;
3036 		break;
3037 	case S_IFBLK:
3038 	case S_IFCHR:
3039 		if (!may_open_dev(path))
3040 			return -EACCES;
3041 		/*FALLTHRU*/
3042 	case S_IFIFO:
3043 	case S_IFSOCK:
3044 		flag &= ~O_TRUNC;
3045 		break;
3046 	}
3047 
3048 	error = inode_permission(inode, MAY_OPEN | acc_mode);
3049 	if (error)
3050 		return error;
3051 
3052 	/*
3053 	 * An append-only file must be opened in append mode for writing.
3054 	 */
3055 	if (IS_APPEND(inode)) {
3056 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
3057 			return -EPERM;
3058 		if (flag & O_TRUNC)
3059 			return -EPERM;
3060 	}
3061 
3062 	/* O_NOATIME can only be set by the owner or superuser */
3063 	if (flag & O_NOATIME && !inode_owner_or_capable(inode))
3064 		return -EPERM;
3065 
3066 	return 0;
3067 }
3068 
3069 static int handle_truncate(struct file *filp)
3070 {
3071 	const struct path *path = &filp->f_path;
3072 	struct inode *inode = path->dentry->d_inode;
3073 	int error = get_write_access(inode);
3074 	if (error)
3075 		return error;
3076 	/*
3077 	 * Refuse to truncate files with mandatory locks held on them.
3078 	 */
3079 	error = locks_verify_locked(filp);
3080 	if (!error)
3081 		error = security_path_truncate(path);
3082 	if (!error) {
3083 		error = do_truncate(path->dentry, 0,
3084 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
3085 				    filp);
3086 	}
3087 	put_write_access(inode);
3088 	return error;
3089 }
3090 
3091 static inline int open_to_namei_flags(int flag)
3092 {
3093 	if ((flag & O_ACCMODE) == 3)
3094 		flag--;
3095 	return flag;
3096 }
3097 
3098 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode)
3099 {
3100 	struct user_namespace *s_user_ns;
3101 	int error = security_path_mknod(dir, dentry, mode, 0);
3102 	if (error)
3103 		return error;
3104 
3105 	s_user_ns = dir->dentry->d_sb->s_user_ns;
3106 	if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
3107 	    !kgid_has_mapping(s_user_ns, current_fsgid()))
3108 		return -EOVERFLOW;
3109 
3110 	error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
3111 	if (error)
3112 		return error;
3113 
3114 	return security_inode_create(dir->dentry->d_inode, dentry, mode);
3115 }
3116 
3117 /*
3118  * Attempt to atomically look up, create and open a file from a negative
3119  * dentry.
3120  *
3121  * Returns 0 if successful.  The file will have been created and attached to
3122  * @file by the filesystem calling finish_open().
3123  *
3124  * If the file was looked up only or didn't need creating, FMODE_OPENED won't
3125  * be set.  The caller will need to perform the open themselves.  @path will
3126  * have been updated to point to the new dentry.  This may be negative.
3127  *
3128  * Returns an error code otherwise.
3129  */
3130 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
3131 			struct path *path, struct file *file,
3132 			const struct open_flags *op,
3133 			int open_flag, umode_t mode)
3134 {
3135 	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3136 	struct inode *dir =  nd->path.dentry->d_inode;
3137 	int error;
3138 
3139 	if (!(~open_flag & (O_EXCL | O_CREAT)))	/* both O_EXCL and O_CREAT */
3140 		open_flag &= ~O_TRUNC;
3141 
3142 	if (nd->flags & LOOKUP_DIRECTORY)
3143 		open_flag |= O_DIRECTORY;
3144 
3145 	file->f_path.dentry = DENTRY_NOT_SET;
3146 	file->f_path.mnt = nd->path.mnt;
3147 	error = dir->i_op->atomic_open(dir, dentry, file,
3148 				       open_to_namei_flags(open_flag), mode);
3149 	d_lookup_done(dentry);
3150 	if (!error) {
3151 		if (file->f_mode & FMODE_OPENED) {
3152 			/*
3153 			 * We didn't have the inode before the open, so check open
3154 			 * permission here.
3155 			 */
3156 			int acc_mode = op->acc_mode;
3157 			if (file->f_mode & FMODE_CREATED) {
3158 				WARN_ON(!(open_flag & O_CREAT));
3159 				fsnotify_create(dir, dentry);
3160 				acc_mode = 0;
3161 			}
3162 			error = may_open(&file->f_path, acc_mode, open_flag);
3163 			if (WARN_ON(error > 0))
3164 				error = -EINVAL;
3165 		} else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3166 			error = -EIO;
3167 		} else {
3168 			if (file->f_path.dentry) {
3169 				dput(dentry);
3170 				dentry = file->f_path.dentry;
3171 			}
3172 			if (file->f_mode & FMODE_CREATED)
3173 				fsnotify_create(dir, dentry);
3174 			if (unlikely(d_is_negative(dentry))) {
3175 				error = -ENOENT;
3176 			} else {
3177 				path->dentry = dentry;
3178 				path->mnt = nd->path.mnt;
3179 				return 0;
3180 			}
3181 		}
3182 	}
3183 	dput(dentry);
3184 	return error;
3185 }
3186 
3187 /*
3188  * Look up and maybe create and open the last component.
3189  *
3190  * Must be called with parent locked (exclusive in O_CREAT case).
3191  *
3192  * Returns 0 on success, that is, if
3193  *  the file was successfully atomically created (if necessary) and opened, or
3194  *  the file was not completely opened at this time, though lookups and
3195  *  creations were performed.
3196  * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3197  * In the latter case dentry returned in @path might be negative if O_CREAT
3198  * hadn't been specified.
3199  *
3200  * An error code is returned on failure.
3201  */
3202 static int lookup_open(struct nameidata *nd, struct path *path,
3203 			struct file *file,
3204 			const struct open_flags *op,
3205 			bool got_write)
3206 {
3207 	struct dentry *dir = nd->path.dentry;
3208 	struct inode *dir_inode = dir->d_inode;
3209 	int open_flag = op->open_flag;
3210 	struct dentry *dentry;
3211 	int error, create_error = 0;
3212 	umode_t mode = op->mode;
3213 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3214 
3215 	if (unlikely(IS_DEADDIR(dir_inode)))
3216 		return -ENOENT;
3217 
3218 	file->f_mode &= ~FMODE_CREATED;
3219 	dentry = d_lookup(dir, &nd->last);
3220 	for (;;) {
3221 		if (!dentry) {
3222 			dentry = d_alloc_parallel(dir, &nd->last, &wq);
3223 			if (IS_ERR(dentry))
3224 				return PTR_ERR(dentry);
3225 		}
3226 		if (d_in_lookup(dentry))
3227 			break;
3228 
3229 		error = d_revalidate(dentry, nd->flags);
3230 		if (likely(error > 0))
3231 			break;
3232 		if (error)
3233 			goto out_dput;
3234 		d_invalidate(dentry);
3235 		dput(dentry);
3236 		dentry = NULL;
3237 	}
3238 	if (dentry->d_inode) {
3239 		/* Cached positive dentry: will open in f_op->open */
3240 		goto out_no_open;
3241 	}
3242 
3243 	/*
3244 	 * Checking write permission is tricky, bacuse we don't know if we are
3245 	 * going to actually need it: O_CREAT opens should work as long as the
3246 	 * file exists.  But checking existence breaks atomicity.  The trick is
3247 	 * to check access and if not granted clear O_CREAT from the flags.
3248 	 *
3249 	 * Another problem is returing the "right" error value (e.g. for an
3250 	 * O_EXCL open we want to return EEXIST not EROFS).
3251 	 */
3252 	if (open_flag & O_CREAT) {
3253 		if (!IS_POSIXACL(dir->d_inode))
3254 			mode &= ~current_umask();
3255 		if (unlikely(!got_write)) {
3256 			create_error = -EROFS;
3257 			open_flag &= ~O_CREAT;
3258 			if (open_flag & (O_EXCL | O_TRUNC))
3259 				goto no_open;
3260 			/* No side effects, safe to clear O_CREAT */
3261 		} else {
3262 			create_error = may_o_create(&nd->path, dentry, mode);
3263 			if (create_error) {
3264 				open_flag &= ~O_CREAT;
3265 				if (open_flag & O_EXCL)
3266 					goto no_open;
3267 			}
3268 		}
3269 	} else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) &&
3270 		   unlikely(!got_write)) {
3271 		/*
3272 		 * No O_CREATE -> atomicity not a requirement -> fall
3273 		 * back to lookup + open
3274 		 */
3275 		goto no_open;
3276 	}
3277 
3278 	if (dir_inode->i_op->atomic_open) {
3279 		error = atomic_open(nd, dentry, path, file, op, open_flag,
3280 				    mode);
3281 		if (unlikely(error == -ENOENT) && create_error)
3282 			error = create_error;
3283 		return error;
3284 	}
3285 
3286 no_open:
3287 	if (d_in_lookup(dentry)) {
3288 		struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3289 							     nd->flags);
3290 		d_lookup_done(dentry);
3291 		if (unlikely(res)) {
3292 			if (IS_ERR(res)) {
3293 				error = PTR_ERR(res);
3294 				goto out_dput;
3295 			}
3296 			dput(dentry);
3297 			dentry = res;
3298 		}
3299 	}
3300 
3301 	/* Negative dentry, just create the file */
3302 	if (!dentry->d_inode && (open_flag & O_CREAT)) {
3303 		file->f_mode |= FMODE_CREATED;
3304 		audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3305 		if (!dir_inode->i_op->create) {
3306 			error = -EACCES;
3307 			goto out_dput;
3308 		}
3309 		error = dir_inode->i_op->create(dir_inode, dentry, mode,
3310 						open_flag & O_EXCL);
3311 		if (error)
3312 			goto out_dput;
3313 		fsnotify_create(dir_inode, dentry);
3314 	}
3315 	if (unlikely(create_error) && !dentry->d_inode) {
3316 		error = create_error;
3317 		goto out_dput;
3318 	}
3319 out_no_open:
3320 	path->dentry = dentry;
3321 	path->mnt = nd->path.mnt;
3322 	return 0;
3323 
3324 out_dput:
3325 	dput(dentry);
3326 	return error;
3327 }
3328 
3329 /*
3330  * Handle the last step of open()
3331  */
3332 static int do_last(struct nameidata *nd,
3333 		   struct file *file, const struct open_flags *op)
3334 {
3335 	struct dentry *dir = nd->path.dentry;
3336 	kuid_t dir_uid = nd->inode->i_uid;
3337 	umode_t dir_mode = nd->inode->i_mode;
3338 	int open_flag = op->open_flag;
3339 	bool will_truncate = (open_flag & O_TRUNC) != 0;
3340 	bool got_write = false;
3341 	int acc_mode = op->acc_mode;
3342 	unsigned seq;
3343 	struct inode *inode;
3344 	struct path path;
3345 	int error;
3346 
3347 	nd->flags &= ~LOOKUP_PARENT;
3348 	nd->flags |= op->intent;
3349 
3350 	if (nd->last_type != LAST_NORM) {
3351 		error = handle_dots(nd, nd->last_type);
3352 		if (unlikely(error))
3353 			return error;
3354 		goto finish_open;
3355 	}
3356 
3357 	if (!(open_flag & O_CREAT)) {
3358 		if (nd->last.name[nd->last.len])
3359 			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3360 		/* we _can_ be in RCU mode here */
3361 		error = lookup_fast(nd, &path, &inode, &seq);
3362 		if (likely(error > 0))
3363 			goto finish_lookup;
3364 
3365 		if (error < 0)
3366 			return error;
3367 
3368 		BUG_ON(nd->inode != dir->d_inode);
3369 		BUG_ON(nd->flags & LOOKUP_RCU);
3370 	} else {
3371 		/* create side of things */
3372 		/*
3373 		 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3374 		 * has been cleared when we got to the last component we are
3375 		 * about to look up
3376 		 */
3377 		error = complete_walk(nd);
3378 		if (error)
3379 			return error;
3380 
3381 		audit_inode(nd->name, dir, AUDIT_INODE_PARENT);
3382 		/* trailing slashes? */
3383 		if (unlikely(nd->last.name[nd->last.len]))
3384 			return -EISDIR;
3385 	}
3386 
3387 	if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3388 		error = mnt_want_write(nd->path.mnt);
3389 		if (!error)
3390 			got_write = true;
3391 		/*
3392 		 * do _not_ fail yet - we might not need that or fail with
3393 		 * a different error; let lookup_open() decide; we'll be
3394 		 * dropping this one anyway.
3395 		 */
3396 	}
3397 	if (open_flag & O_CREAT)
3398 		inode_lock(dir->d_inode);
3399 	else
3400 		inode_lock_shared(dir->d_inode);
3401 	error = lookup_open(nd, &path, file, op, got_write);
3402 	if (open_flag & O_CREAT)
3403 		inode_unlock(dir->d_inode);
3404 	else
3405 		inode_unlock_shared(dir->d_inode);
3406 
3407 	if (error)
3408 		goto out;
3409 
3410 	if (file->f_mode & FMODE_OPENED) {
3411 		if ((file->f_mode & FMODE_CREATED) ||
3412 		    !S_ISREG(file_inode(file)->i_mode))
3413 			will_truncate = false;
3414 
3415 		audit_inode(nd->name, file->f_path.dentry, 0);
3416 		goto opened;
3417 	}
3418 
3419 	if (file->f_mode & FMODE_CREATED) {
3420 		/* Don't check for write permission, don't truncate */
3421 		open_flag &= ~O_TRUNC;
3422 		will_truncate = false;
3423 		acc_mode = 0;
3424 		path_to_nameidata(&path, nd);
3425 		goto finish_open_created;
3426 	}
3427 
3428 	/*
3429 	 * If atomic_open() acquired write access it is dropped now due to
3430 	 * possible mount and symlink following (this might be optimized away if
3431 	 * necessary...)
3432 	 */
3433 	if (got_write) {
3434 		mnt_drop_write(nd->path.mnt);
3435 		got_write = false;
3436 	}
3437 
3438 	error = follow_managed(&path, nd);
3439 	if (unlikely(error < 0))
3440 		return error;
3441 
3442 	/*
3443 	 * create/update audit record if it already exists.
3444 	 */
3445 	audit_inode(nd->name, path.dentry, 0);
3446 
3447 	if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3448 		path_to_nameidata(&path, nd);
3449 		return -EEXIST;
3450 	}
3451 
3452 	seq = 0;	/* out of RCU mode, so the value doesn't matter */
3453 	inode = d_backing_inode(path.dentry);
3454 finish_lookup:
3455 	error = step_into(nd, &path, 0, inode, seq);
3456 	if (unlikely(error))
3457 		return error;
3458 finish_open:
3459 	/* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
3460 	error = complete_walk(nd);
3461 	if (error)
3462 		return error;
3463 	audit_inode(nd->name, nd->path.dentry, 0);
3464 	if (open_flag & O_CREAT) {
3465 		error = -EISDIR;
3466 		if (d_is_dir(nd->path.dentry))
3467 			goto out;
3468 		error = may_create_in_sticky(dir_mode, dir_uid,
3469 					     d_backing_inode(nd->path.dentry));
3470 		if (unlikely(error))
3471 			goto out;
3472 	}
3473 	error = -ENOTDIR;
3474 	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3475 		goto out;
3476 	if (!d_is_reg(nd->path.dentry))
3477 		will_truncate = false;
3478 
3479 	if (will_truncate) {
3480 		error = mnt_want_write(nd->path.mnt);
3481 		if (error)
3482 			goto out;
3483 		got_write = true;
3484 	}
3485 finish_open_created:
3486 	error = may_open(&nd->path, acc_mode, open_flag);
3487 	if (error)
3488 		goto out;
3489 	BUG_ON(file->f_mode & FMODE_OPENED); /* once it's opened, it's opened */
3490 	error = vfs_open(&nd->path, file);
3491 	if (error)
3492 		goto out;
3493 opened:
3494 	error = ima_file_check(file, op->acc_mode);
3495 	if (!error && will_truncate)
3496 		error = handle_truncate(file);
3497 out:
3498 	if (unlikely(error > 0)) {
3499 		WARN_ON(1);
3500 		error = -EINVAL;
3501 	}
3502 	if (got_write)
3503 		mnt_drop_write(nd->path.mnt);
3504 	return error;
3505 }
3506 
3507 struct dentry *vfs_tmpfile(struct dentry *dentry, umode_t mode, int open_flag)
3508 {
3509 	struct dentry *child = NULL;
3510 	struct inode *dir = dentry->d_inode;
3511 	struct inode *inode;
3512 	int error;
3513 
3514 	/* we want directory to be writable */
3515 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3516 	if (error)
3517 		goto out_err;
3518 	error = -EOPNOTSUPP;
3519 	if (!dir->i_op->tmpfile)
3520 		goto out_err;
3521 	error = -ENOMEM;
3522 	child = d_alloc(dentry, &slash_name);
3523 	if (unlikely(!child))
3524 		goto out_err;
3525 	error = dir->i_op->tmpfile(dir, child, mode);
3526 	if (error)
3527 		goto out_err;
3528 	error = -ENOENT;
3529 	inode = child->d_inode;
3530 	if (unlikely(!inode))
3531 		goto out_err;
3532 	if (!(open_flag & O_EXCL)) {
3533 		spin_lock(&inode->i_lock);
3534 		inode->i_state |= I_LINKABLE;
3535 		spin_unlock(&inode->i_lock);
3536 	}
3537 	ima_post_create_tmpfile(inode);
3538 	return child;
3539 
3540 out_err:
3541 	dput(child);
3542 	return ERR_PTR(error);
3543 }
3544 EXPORT_SYMBOL(vfs_tmpfile);
3545 
3546 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3547 		const struct open_flags *op,
3548 		struct file *file)
3549 {
3550 	struct dentry *child;
3551 	struct path path;
3552 	int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3553 	if (unlikely(error))
3554 		return error;
3555 	error = mnt_want_write(path.mnt);
3556 	if (unlikely(error))
3557 		goto out;
3558 	child = vfs_tmpfile(path.dentry, op->mode, op->open_flag);
3559 	error = PTR_ERR(child);
3560 	if (IS_ERR(child))
3561 		goto out2;
3562 	dput(path.dentry);
3563 	path.dentry = child;
3564 	audit_inode(nd->name, child, 0);
3565 	/* Don't check for other permissions, the inode was just created */
3566 	error = may_open(&path, 0, op->open_flag);
3567 	if (error)
3568 		goto out2;
3569 	file->f_path.mnt = path.mnt;
3570 	error = finish_open(file, child, NULL);
3571 out2:
3572 	mnt_drop_write(path.mnt);
3573 out:
3574 	path_put(&path);
3575 	return error;
3576 }
3577 
3578 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3579 {
3580 	struct path path;
3581 	int error = path_lookupat(nd, flags, &path);
3582 	if (!error) {
3583 		audit_inode(nd->name, path.dentry, 0);
3584 		error = vfs_open(&path, file);
3585 		path_put(&path);
3586 	}
3587 	return error;
3588 }
3589 
3590 static struct file *path_openat(struct nameidata *nd,
3591 			const struct open_flags *op, unsigned flags)
3592 {
3593 	struct file *file;
3594 	int error;
3595 
3596 	file = alloc_empty_file(op->open_flag, current_cred());
3597 	if (IS_ERR(file))
3598 		return file;
3599 
3600 	if (unlikely(file->f_flags & __O_TMPFILE)) {
3601 		error = do_tmpfile(nd, flags, op, file);
3602 	} else if (unlikely(file->f_flags & O_PATH)) {
3603 		error = do_o_path(nd, flags, file);
3604 	} else {
3605 		const char *s = path_init(nd, flags);
3606 		while (!(error = link_path_walk(s, nd)) &&
3607 			(error = do_last(nd, file, op)) > 0) {
3608 			nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3609 			s = trailing_symlink(nd);
3610 		}
3611 		terminate_walk(nd);
3612 	}
3613 	if (likely(!error)) {
3614 		if (likely(file->f_mode & FMODE_OPENED))
3615 			return file;
3616 		WARN_ON(1);
3617 		error = -EINVAL;
3618 	}
3619 	fput(file);
3620 	if (error == -EOPENSTALE) {
3621 		if (flags & LOOKUP_RCU)
3622 			error = -ECHILD;
3623 		else
3624 			error = -ESTALE;
3625 	}
3626 	return ERR_PTR(error);
3627 }
3628 
3629 struct file *do_filp_open(int dfd, struct filename *pathname,
3630 		const struct open_flags *op)
3631 {
3632 	struct nameidata nd;
3633 	int flags = op->lookup_flags;
3634 	struct file *filp;
3635 
3636 	set_nameidata(&nd, dfd, pathname);
3637 	filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3638 	if (unlikely(filp == ERR_PTR(-ECHILD)))
3639 		filp = path_openat(&nd, op, flags);
3640 	if (unlikely(filp == ERR_PTR(-ESTALE)))
3641 		filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3642 	restore_nameidata();
3643 	return filp;
3644 }
3645 
3646 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3647 		const char *name, const struct open_flags *op)
3648 {
3649 	struct nameidata nd;
3650 	struct file *file;
3651 	struct filename *filename;
3652 	int flags = op->lookup_flags | LOOKUP_ROOT;
3653 
3654 	nd.root.mnt = mnt;
3655 	nd.root.dentry = dentry;
3656 
3657 	if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3658 		return ERR_PTR(-ELOOP);
3659 
3660 	filename = getname_kernel(name);
3661 	if (IS_ERR(filename))
3662 		return ERR_CAST(filename);
3663 
3664 	set_nameidata(&nd, -1, filename);
3665 	file = path_openat(&nd, op, flags | LOOKUP_RCU);
3666 	if (unlikely(file == ERR_PTR(-ECHILD)))
3667 		file = path_openat(&nd, op, flags);
3668 	if (unlikely(file == ERR_PTR(-ESTALE)))
3669 		file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3670 	restore_nameidata();
3671 	putname(filename);
3672 	return file;
3673 }
3674 
3675 static struct dentry *filename_create(int dfd, struct filename *name,
3676 				struct path *path, unsigned int lookup_flags)
3677 {
3678 	struct dentry *dentry = ERR_PTR(-EEXIST);
3679 	struct qstr last;
3680 	int type;
3681 	int err2;
3682 	int error;
3683 	bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3684 
3685 	/*
3686 	 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3687 	 * other flags passed in are ignored!
3688 	 */
3689 	lookup_flags &= LOOKUP_REVAL;
3690 
3691 	name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3692 	if (IS_ERR(name))
3693 		return ERR_CAST(name);
3694 
3695 	/*
3696 	 * Yucky last component or no last component at all?
3697 	 * (foo/., foo/.., /////)
3698 	 */
3699 	if (unlikely(type != LAST_NORM))
3700 		goto out;
3701 
3702 	/* don't fail immediately if it's r/o, at least try to report other errors */
3703 	err2 = mnt_want_write(path->mnt);
3704 	/*
3705 	 * Do the final lookup.
3706 	 */
3707 	lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3708 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3709 	dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3710 	if (IS_ERR(dentry))
3711 		goto unlock;
3712 
3713 	error = -EEXIST;
3714 	if (d_is_positive(dentry))
3715 		goto fail;
3716 
3717 	/*
3718 	 * Special case - lookup gave negative, but... we had foo/bar/
3719 	 * From the vfs_mknod() POV we just have a negative dentry -
3720 	 * all is fine. Let's be bastards - you had / on the end, you've
3721 	 * been asking for (non-existent) directory. -ENOENT for you.
3722 	 */
3723 	if (unlikely(!is_dir && last.name[last.len])) {
3724 		error = -ENOENT;
3725 		goto fail;
3726 	}
3727 	if (unlikely(err2)) {
3728 		error = err2;
3729 		goto fail;
3730 	}
3731 	putname(name);
3732 	return dentry;
3733 fail:
3734 	dput(dentry);
3735 	dentry = ERR_PTR(error);
3736 unlock:
3737 	inode_unlock(path->dentry->d_inode);
3738 	if (!err2)
3739 		mnt_drop_write(path->mnt);
3740 out:
3741 	path_put(path);
3742 	putname(name);
3743 	return dentry;
3744 }
3745 
3746 struct dentry *kern_path_create(int dfd, const char *pathname,
3747 				struct path *path, unsigned int lookup_flags)
3748 {
3749 	return filename_create(dfd, getname_kernel(pathname),
3750 				path, lookup_flags);
3751 }
3752 EXPORT_SYMBOL(kern_path_create);
3753 
3754 void done_path_create(struct path *path, struct dentry *dentry)
3755 {
3756 	dput(dentry);
3757 	inode_unlock(path->dentry->d_inode);
3758 	mnt_drop_write(path->mnt);
3759 	path_put(path);
3760 }
3761 EXPORT_SYMBOL(done_path_create);
3762 
3763 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3764 				struct path *path, unsigned int lookup_flags)
3765 {
3766 	return filename_create(dfd, getname(pathname), path, lookup_flags);
3767 }
3768 EXPORT_SYMBOL(user_path_create);
3769 
3770 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3771 {
3772 	int error = may_create(dir, dentry);
3773 
3774 	if (error)
3775 		return error;
3776 
3777 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3778 		return -EPERM;
3779 
3780 	if (!dir->i_op->mknod)
3781 		return -EPERM;
3782 
3783 	error = devcgroup_inode_mknod(mode, dev);
3784 	if (error)
3785 		return error;
3786 
3787 	error = security_inode_mknod(dir, dentry, mode, dev);
3788 	if (error)
3789 		return error;
3790 
3791 	error = dir->i_op->mknod(dir, dentry, mode, dev);
3792 	if (!error)
3793 		fsnotify_create(dir, dentry);
3794 	return error;
3795 }
3796 EXPORT_SYMBOL(vfs_mknod);
3797 
3798 static int may_mknod(umode_t mode)
3799 {
3800 	switch (mode & S_IFMT) {
3801 	case S_IFREG:
3802 	case S_IFCHR:
3803 	case S_IFBLK:
3804 	case S_IFIFO:
3805 	case S_IFSOCK:
3806 	case 0: /* zero mode translates to S_IFREG */
3807 		return 0;
3808 	case S_IFDIR:
3809 		return -EPERM;
3810 	default:
3811 		return -EINVAL;
3812 	}
3813 }
3814 
3815 long do_mknodat(int dfd, const char __user *filename, umode_t mode,
3816 		unsigned int dev)
3817 {
3818 	struct dentry *dentry;
3819 	struct path path;
3820 	int error;
3821 	unsigned int lookup_flags = 0;
3822 
3823 	error = may_mknod(mode);
3824 	if (error)
3825 		return error;
3826 retry:
3827 	dentry = user_path_create(dfd, filename, &path, lookup_flags);
3828 	if (IS_ERR(dentry))
3829 		return PTR_ERR(dentry);
3830 
3831 	if (!IS_POSIXACL(path.dentry->d_inode))
3832 		mode &= ~current_umask();
3833 	error = security_path_mknod(&path, dentry, mode, dev);
3834 	if (error)
3835 		goto out;
3836 	switch (mode & S_IFMT) {
3837 		case 0: case S_IFREG:
3838 			error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3839 			if (!error)
3840 				ima_post_path_mknod(dentry);
3841 			break;
3842 		case S_IFCHR: case S_IFBLK:
3843 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3844 					new_decode_dev(dev));
3845 			break;
3846 		case S_IFIFO: case S_IFSOCK:
3847 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3848 			break;
3849 	}
3850 out:
3851 	done_path_create(&path, dentry);
3852 	if (retry_estale(error, lookup_flags)) {
3853 		lookup_flags |= LOOKUP_REVAL;
3854 		goto retry;
3855 	}
3856 	return error;
3857 }
3858 
3859 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3860 		unsigned int, dev)
3861 {
3862 	return do_mknodat(dfd, filename, mode, dev);
3863 }
3864 
3865 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3866 {
3867 	return do_mknodat(AT_FDCWD, filename, mode, dev);
3868 }
3869 
3870 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3871 {
3872 	int error = may_create(dir, dentry);
3873 	unsigned max_links = dir->i_sb->s_max_links;
3874 
3875 	if (error)
3876 		return error;
3877 
3878 	if (!dir->i_op->mkdir)
3879 		return -EPERM;
3880 
3881 	mode &= (S_IRWXUGO|S_ISVTX);
3882 	error = security_inode_mkdir(dir, dentry, mode);
3883 	if (error)
3884 		return error;
3885 
3886 	if (max_links && dir->i_nlink >= max_links)
3887 		return -EMLINK;
3888 
3889 	error = dir->i_op->mkdir(dir, dentry, mode);
3890 	if (!error)
3891 		fsnotify_mkdir(dir, dentry);
3892 	return error;
3893 }
3894 EXPORT_SYMBOL(vfs_mkdir);
3895 
3896 long do_mkdirat(int dfd, const char __user *pathname, umode_t mode)
3897 {
3898 	struct dentry *dentry;
3899 	struct path path;
3900 	int error;
3901 	unsigned int lookup_flags = LOOKUP_DIRECTORY;
3902 
3903 retry:
3904 	dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3905 	if (IS_ERR(dentry))
3906 		return PTR_ERR(dentry);
3907 
3908 	if (!IS_POSIXACL(path.dentry->d_inode))
3909 		mode &= ~current_umask();
3910 	error = security_path_mkdir(&path, dentry, mode);
3911 	if (!error)
3912 		error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3913 	done_path_create(&path, dentry);
3914 	if (retry_estale(error, lookup_flags)) {
3915 		lookup_flags |= LOOKUP_REVAL;
3916 		goto retry;
3917 	}
3918 	return error;
3919 }
3920 
3921 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3922 {
3923 	return do_mkdirat(dfd, pathname, mode);
3924 }
3925 
3926 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3927 {
3928 	return do_mkdirat(AT_FDCWD, pathname, mode);
3929 }
3930 
3931 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3932 {
3933 	int error = may_delete(dir, dentry, 1);
3934 
3935 	if (error)
3936 		return error;
3937 
3938 	if (!dir->i_op->rmdir)
3939 		return -EPERM;
3940 
3941 	dget(dentry);
3942 	inode_lock(dentry->d_inode);
3943 
3944 	error = -EBUSY;
3945 	if (is_local_mountpoint(dentry))
3946 		goto out;
3947 
3948 	error = security_inode_rmdir(dir, dentry);
3949 	if (error)
3950 		goto out;
3951 
3952 	error = dir->i_op->rmdir(dir, dentry);
3953 	if (error)
3954 		goto out;
3955 
3956 	shrink_dcache_parent(dentry);
3957 	dentry->d_inode->i_flags |= S_DEAD;
3958 	dont_mount(dentry);
3959 	detach_mounts(dentry);
3960 	fsnotify_rmdir(dir, dentry);
3961 
3962 out:
3963 	inode_unlock(dentry->d_inode);
3964 	dput(dentry);
3965 	if (!error)
3966 		d_delete(dentry);
3967 	return error;
3968 }
3969 EXPORT_SYMBOL(vfs_rmdir);
3970 
3971 long do_rmdir(int dfd, const char __user *pathname)
3972 {
3973 	int error = 0;
3974 	struct filename *name;
3975 	struct dentry *dentry;
3976 	struct path path;
3977 	struct qstr last;
3978 	int type;
3979 	unsigned int lookup_flags = 0;
3980 retry:
3981 	name = filename_parentat(dfd, getname(pathname), lookup_flags,
3982 				&path, &last, &type);
3983 	if (IS_ERR(name))
3984 		return PTR_ERR(name);
3985 
3986 	switch (type) {
3987 	case LAST_DOTDOT:
3988 		error = -ENOTEMPTY;
3989 		goto exit1;
3990 	case LAST_DOT:
3991 		error = -EINVAL;
3992 		goto exit1;
3993 	case LAST_ROOT:
3994 		error = -EBUSY;
3995 		goto exit1;
3996 	}
3997 
3998 	error = mnt_want_write(path.mnt);
3999 	if (error)
4000 		goto exit1;
4001 
4002 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4003 	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4004 	error = PTR_ERR(dentry);
4005 	if (IS_ERR(dentry))
4006 		goto exit2;
4007 	if (!dentry->d_inode) {
4008 		error = -ENOENT;
4009 		goto exit3;
4010 	}
4011 	error = security_path_rmdir(&path, dentry);
4012 	if (error)
4013 		goto exit3;
4014 	error = vfs_rmdir(path.dentry->d_inode, dentry);
4015 exit3:
4016 	dput(dentry);
4017 exit2:
4018 	inode_unlock(path.dentry->d_inode);
4019 	mnt_drop_write(path.mnt);
4020 exit1:
4021 	path_put(&path);
4022 	putname(name);
4023 	if (retry_estale(error, lookup_flags)) {
4024 		lookup_flags |= LOOKUP_REVAL;
4025 		goto retry;
4026 	}
4027 	return error;
4028 }
4029 
4030 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
4031 {
4032 	return do_rmdir(AT_FDCWD, pathname);
4033 }
4034 
4035 /**
4036  * vfs_unlink - unlink a filesystem object
4037  * @dir:	parent directory
4038  * @dentry:	victim
4039  * @delegated_inode: returns victim inode, if the inode is delegated.
4040  *
4041  * The caller must hold dir->i_mutex.
4042  *
4043  * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
4044  * return a reference to the inode in delegated_inode.  The caller
4045  * should then break the delegation on that inode and retry.  Because
4046  * breaking a delegation may take a long time, the caller should drop
4047  * dir->i_mutex before doing so.
4048  *
4049  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4050  * be appropriate for callers that expect the underlying filesystem not
4051  * to be NFS exported.
4052  */
4053 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
4054 {
4055 	struct inode *target = dentry->d_inode;
4056 	int error = may_delete(dir, dentry, 0);
4057 
4058 	if (error)
4059 		return error;
4060 
4061 	if (!dir->i_op->unlink)
4062 		return -EPERM;
4063 
4064 	inode_lock(target);
4065 	if (is_local_mountpoint(dentry))
4066 		error = -EBUSY;
4067 	else {
4068 		error = security_inode_unlink(dir, dentry);
4069 		if (!error) {
4070 			error = try_break_deleg(target, delegated_inode);
4071 			if (error)
4072 				goto out;
4073 			error = dir->i_op->unlink(dir, dentry);
4074 			if (!error) {
4075 				dont_mount(dentry);
4076 				detach_mounts(dentry);
4077 				fsnotify_unlink(dir, dentry);
4078 			}
4079 		}
4080 	}
4081 out:
4082 	inode_unlock(target);
4083 
4084 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
4085 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
4086 		fsnotify_link_count(target);
4087 		d_delete(dentry);
4088 	}
4089 
4090 	return error;
4091 }
4092 EXPORT_SYMBOL(vfs_unlink);
4093 
4094 /*
4095  * Make sure that the actual truncation of the file will occur outside its
4096  * directory's i_mutex.  Truncate can take a long time if there is a lot of
4097  * writeout happening, and we don't want to prevent access to the directory
4098  * while waiting on the I/O.
4099  */
4100 long do_unlinkat(int dfd, struct filename *name)
4101 {
4102 	int error;
4103 	struct dentry *dentry;
4104 	struct path path;
4105 	struct qstr last;
4106 	int type;
4107 	struct inode *inode = NULL;
4108 	struct inode *delegated_inode = NULL;
4109 	unsigned int lookup_flags = 0;
4110 retry:
4111 	name = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4112 	if (IS_ERR(name))
4113 		return PTR_ERR(name);
4114 
4115 	error = -EISDIR;
4116 	if (type != LAST_NORM)
4117 		goto exit1;
4118 
4119 	error = mnt_want_write(path.mnt);
4120 	if (error)
4121 		goto exit1;
4122 retry_deleg:
4123 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4124 	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4125 	error = PTR_ERR(dentry);
4126 	if (!IS_ERR(dentry)) {
4127 		/* Why not before? Because we want correct error value */
4128 		if (last.name[last.len])
4129 			goto slashes;
4130 		inode = dentry->d_inode;
4131 		if (d_is_negative(dentry))
4132 			goto slashes;
4133 		ihold(inode);
4134 		error = security_path_unlink(&path, dentry);
4135 		if (error)
4136 			goto exit2;
4137 		error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
4138 exit2:
4139 		dput(dentry);
4140 	}
4141 	inode_unlock(path.dentry->d_inode);
4142 	if (inode)
4143 		iput(inode);	/* truncate the inode here */
4144 	inode = NULL;
4145 	if (delegated_inode) {
4146 		error = break_deleg_wait(&delegated_inode);
4147 		if (!error)
4148 			goto retry_deleg;
4149 	}
4150 	mnt_drop_write(path.mnt);
4151 exit1:
4152 	path_put(&path);
4153 	if (retry_estale(error, lookup_flags)) {
4154 		lookup_flags |= LOOKUP_REVAL;
4155 		inode = NULL;
4156 		goto retry;
4157 	}
4158 	putname(name);
4159 	return error;
4160 
4161 slashes:
4162 	if (d_is_negative(dentry))
4163 		error = -ENOENT;
4164 	else if (d_is_dir(dentry))
4165 		error = -EISDIR;
4166 	else
4167 		error = -ENOTDIR;
4168 	goto exit2;
4169 }
4170 
4171 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4172 {
4173 	if ((flag & ~AT_REMOVEDIR) != 0)
4174 		return -EINVAL;
4175 
4176 	if (flag & AT_REMOVEDIR)
4177 		return do_rmdir(dfd, pathname);
4178 
4179 	return do_unlinkat(dfd, getname(pathname));
4180 }
4181 
4182 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4183 {
4184 	return do_unlinkat(AT_FDCWD, getname(pathname));
4185 }
4186 
4187 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
4188 {
4189 	int error = may_create(dir, dentry);
4190 
4191 	if (error)
4192 		return error;
4193 
4194 	if (!dir->i_op->symlink)
4195 		return -EPERM;
4196 
4197 	error = security_inode_symlink(dir, dentry, oldname);
4198 	if (error)
4199 		return error;
4200 
4201 	error = dir->i_op->symlink(dir, dentry, oldname);
4202 	if (!error)
4203 		fsnotify_create(dir, dentry);
4204 	return error;
4205 }
4206 EXPORT_SYMBOL(vfs_symlink);
4207 
4208 long do_symlinkat(const char __user *oldname, int newdfd,
4209 		  const char __user *newname)
4210 {
4211 	int error;
4212 	struct filename *from;
4213 	struct dentry *dentry;
4214 	struct path path;
4215 	unsigned int lookup_flags = 0;
4216 
4217 	from = getname(oldname);
4218 	if (IS_ERR(from))
4219 		return PTR_ERR(from);
4220 retry:
4221 	dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4222 	error = PTR_ERR(dentry);
4223 	if (IS_ERR(dentry))
4224 		goto out_putname;
4225 
4226 	error = security_path_symlink(&path, dentry, from->name);
4227 	if (!error)
4228 		error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
4229 	done_path_create(&path, dentry);
4230 	if (retry_estale(error, lookup_flags)) {
4231 		lookup_flags |= LOOKUP_REVAL;
4232 		goto retry;
4233 	}
4234 out_putname:
4235 	putname(from);
4236 	return error;
4237 }
4238 
4239 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4240 		int, newdfd, const char __user *, newname)
4241 {
4242 	return do_symlinkat(oldname, newdfd, newname);
4243 }
4244 
4245 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4246 {
4247 	return do_symlinkat(oldname, AT_FDCWD, newname);
4248 }
4249 
4250 /**
4251  * vfs_link - create a new link
4252  * @old_dentry:	object to be linked
4253  * @dir:	new parent
4254  * @new_dentry:	where to create the new link
4255  * @delegated_inode: returns inode needing a delegation break
4256  *
4257  * The caller must hold dir->i_mutex
4258  *
4259  * If vfs_link discovers a delegation on the to-be-linked file in need
4260  * of breaking, it will return -EWOULDBLOCK and return a reference to the
4261  * inode in delegated_inode.  The caller should then break the delegation
4262  * and retry.  Because breaking a delegation may take a long time, the
4263  * caller should drop the i_mutex before doing so.
4264  *
4265  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4266  * be appropriate for callers that expect the underlying filesystem not
4267  * to be NFS exported.
4268  */
4269 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4270 {
4271 	struct inode *inode = old_dentry->d_inode;
4272 	unsigned max_links = dir->i_sb->s_max_links;
4273 	int error;
4274 
4275 	if (!inode)
4276 		return -ENOENT;
4277 
4278 	error = may_create(dir, new_dentry);
4279 	if (error)
4280 		return error;
4281 
4282 	if (dir->i_sb != inode->i_sb)
4283 		return -EXDEV;
4284 
4285 	/*
4286 	 * A link to an append-only or immutable file cannot be created.
4287 	 */
4288 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4289 		return -EPERM;
4290 	/*
4291 	 * Updating the link count will likely cause i_uid and i_gid to
4292 	 * be writen back improperly if their true value is unknown to
4293 	 * the vfs.
4294 	 */
4295 	if (HAS_UNMAPPED_ID(inode))
4296 		return -EPERM;
4297 	if (!dir->i_op->link)
4298 		return -EPERM;
4299 	if (S_ISDIR(inode->i_mode))
4300 		return -EPERM;
4301 
4302 	error = security_inode_link(old_dentry, dir, new_dentry);
4303 	if (error)
4304 		return error;
4305 
4306 	inode_lock(inode);
4307 	/* Make sure we don't allow creating hardlink to an unlinked file */
4308 	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4309 		error =  -ENOENT;
4310 	else if (max_links && inode->i_nlink >= max_links)
4311 		error = -EMLINK;
4312 	else {
4313 		error = try_break_deleg(inode, delegated_inode);
4314 		if (!error)
4315 			error = dir->i_op->link(old_dentry, dir, new_dentry);
4316 	}
4317 
4318 	if (!error && (inode->i_state & I_LINKABLE)) {
4319 		spin_lock(&inode->i_lock);
4320 		inode->i_state &= ~I_LINKABLE;
4321 		spin_unlock(&inode->i_lock);
4322 	}
4323 	inode_unlock(inode);
4324 	if (!error)
4325 		fsnotify_link(dir, inode, new_dentry);
4326 	return error;
4327 }
4328 EXPORT_SYMBOL(vfs_link);
4329 
4330 /*
4331  * Hardlinks are often used in delicate situations.  We avoid
4332  * security-related surprises by not following symlinks on the
4333  * newname.  --KAB
4334  *
4335  * We don't follow them on the oldname either to be compatible
4336  * with linux 2.0, and to avoid hard-linking to directories
4337  * and other special files.  --ADM
4338  */
4339 int do_linkat(int olddfd, const char __user *oldname, int newdfd,
4340 	      const char __user *newname, int flags)
4341 {
4342 	struct dentry *new_dentry;
4343 	struct path old_path, new_path;
4344 	struct inode *delegated_inode = NULL;
4345 	int how = 0;
4346 	int error;
4347 
4348 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4349 		return -EINVAL;
4350 	/*
4351 	 * To use null names we require CAP_DAC_READ_SEARCH
4352 	 * This ensures that not everyone will be able to create
4353 	 * handlink using the passed filedescriptor.
4354 	 */
4355 	if (flags & AT_EMPTY_PATH) {
4356 		if (!capable(CAP_DAC_READ_SEARCH))
4357 			return -ENOENT;
4358 		how = LOOKUP_EMPTY;
4359 	}
4360 
4361 	if (flags & AT_SYMLINK_FOLLOW)
4362 		how |= LOOKUP_FOLLOW;
4363 retry:
4364 	error = user_path_at(olddfd, oldname, how, &old_path);
4365 	if (error)
4366 		return error;
4367 
4368 	new_dentry = user_path_create(newdfd, newname, &new_path,
4369 					(how & LOOKUP_REVAL));
4370 	error = PTR_ERR(new_dentry);
4371 	if (IS_ERR(new_dentry))
4372 		goto out;
4373 
4374 	error = -EXDEV;
4375 	if (old_path.mnt != new_path.mnt)
4376 		goto out_dput;
4377 	error = may_linkat(&old_path);
4378 	if (unlikely(error))
4379 		goto out_dput;
4380 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
4381 	if (error)
4382 		goto out_dput;
4383 	error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4384 out_dput:
4385 	done_path_create(&new_path, new_dentry);
4386 	if (delegated_inode) {
4387 		error = break_deleg_wait(&delegated_inode);
4388 		if (!error) {
4389 			path_put(&old_path);
4390 			goto retry;
4391 		}
4392 	}
4393 	if (retry_estale(error, how)) {
4394 		path_put(&old_path);
4395 		how |= LOOKUP_REVAL;
4396 		goto retry;
4397 	}
4398 out:
4399 	path_put(&old_path);
4400 
4401 	return error;
4402 }
4403 
4404 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4405 		int, newdfd, const char __user *, newname, int, flags)
4406 {
4407 	return do_linkat(olddfd, oldname, newdfd, newname, flags);
4408 }
4409 
4410 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4411 {
4412 	return do_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4413 }
4414 
4415 /**
4416  * vfs_rename - rename a filesystem object
4417  * @old_dir:	parent of source
4418  * @old_dentry:	source
4419  * @new_dir:	parent of destination
4420  * @new_dentry:	destination
4421  * @delegated_inode: returns an inode needing a delegation break
4422  * @flags:	rename flags
4423  *
4424  * The caller must hold multiple mutexes--see lock_rename()).
4425  *
4426  * If vfs_rename discovers a delegation in need of breaking at either
4427  * the source or destination, it will return -EWOULDBLOCK and return a
4428  * reference to the inode in delegated_inode.  The caller should then
4429  * break the delegation and retry.  Because breaking a delegation may
4430  * take a long time, the caller should drop all locks before doing
4431  * so.
4432  *
4433  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4434  * be appropriate for callers that expect the underlying filesystem not
4435  * to be NFS exported.
4436  *
4437  * The worst of all namespace operations - renaming directory. "Perverted"
4438  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4439  * Problems:
4440  *
4441  *	a) we can get into loop creation.
4442  *	b) race potential - two innocent renames can create a loop together.
4443  *	   That's where 4.4 screws up. Current fix: serialization on
4444  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4445  *	   story.
4446  *	c) we have to lock _four_ objects - parents and victim (if it exists),
4447  *	   and source (if it is not a directory).
4448  *	   And that - after we got ->i_mutex on parents (until then we don't know
4449  *	   whether the target exists).  Solution: try to be smart with locking
4450  *	   order for inodes.  We rely on the fact that tree topology may change
4451  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
4452  *	   move will be locked.  Thus we can rank directories by the tree
4453  *	   (ancestors first) and rank all non-directories after them.
4454  *	   That works since everybody except rename does "lock parent, lookup,
4455  *	   lock child" and rename is under ->s_vfs_rename_mutex.
4456  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
4457  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
4458  *	   we'd better make sure that there's no link(2) for them.
4459  *	d) conversion from fhandle to dentry may come in the wrong moment - when
4460  *	   we are removing the target. Solution: we will have to grab ->i_mutex
4461  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4462  *	   ->i_mutex on parents, which works but leads to some truly excessive
4463  *	   locking].
4464  */
4465 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4466 	       struct inode *new_dir, struct dentry *new_dentry,
4467 	       struct inode **delegated_inode, unsigned int flags)
4468 {
4469 	int error;
4470 	bool is_dir = d_is_dir(old_dentry);
4471 	struct inode *source = old_dentry->d_inode;
4472 	struct inode *target = new_dentry->d_inode;
4473 	bool new_is_dir = false;
4474 	unsigned max_links = new_dir->i_sb->s_max_links;
4475 	struct name_snapshot old_name;
4476 
4477 	if (source == target)
4478 		return 0;
4479 
4480 	error = may_delete(old_dir, old_dentry, is_dir);
4481 	if (error)
4482 		return error;
4483 
4484 	if (!target) {
4485 		error = may_create(new_dir, new_dentry);
4486 	} else {
4487 		new_is_dir = d_is_dir(new_dentry);
4488 
4489 		if (!(flags & RENAME_EXCHANGE))
4490 			error = may_delete(new_dir, new_dentry, is_dir);
4491 		else
4492 			error = may_delete(new_dir, new_dentry, new_is_dir);
4493 	}
4494 	if (error)
4495 		return error;
4496 
4497 	if (!old_dir->i_op->rename)
4498 		return -EPERM;
4499 
4500 	/*
4501 	 * If we are going to change the parent - check write permissions,
4502 	 * we'll need to flip '..'.
4503 	 */
4504 	if (new_dir != old_dir) {
4505 		if (is_dir) {
4506 			error = inode_permission(source, MAY_WRITE);
4507 			if (error)
4508 				return error;
4509 		}
4510 		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4511 			error = inode_permission(target, MAY_WRITE);
4512 			if (error)
4513 				return error;
4514 		}
4515 	}
4516 
4517 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4518 				      flags);
4519 	if (error)
4520 		return error;
4521 
4522 	take_dentry_name_snapshot(&old_name, old_dentry);
4523 	dget(new_dentry);
4524 	if (!is_dir || (flags & RENAME_EXCHANGE))
4525 		lock_two_nondirectories(source, target);
4526 	else if (target)
4527 		inode_lock(target);
4528 
4529 	error = -EBUSY;
4530 	if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4531 		goto out;
4532 
4533 	if (max_links && new_dir != old_dir) {
4534 		error = -EMLINK;
4535 		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4536 			goto out;
4537 		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4538 		    old_dir->i_nlink >= max_links)
4539 			goto out;
4540 	}
4541 	if (!is_dir) {
4542 		error = try_break_deleg(source, delegated_inode);
4543 		if (error)
4544 			goto out;
4545 	}
4546 	if (target && !new_is_dir) {
4547 		error = try_break_deleg(target, delegated_inode);
4548 		if (error)
4549 			goto out;
4550 	}
4551 	error = old_dir->i_op->rename(old_dir, old_dentry,
4552 				       new_dir, new_dentry, flags);
4553 	if (error)
4554 		goto out;
4555 
4556 	if (!(flags & RENAME_EXCHANGE) && target) {
4557 		if (is_dir) {
4558 			shrink_dcache_parent(new_dentry);
4559 			target->i_flags |= S_DEAD;
4560 		}
4561 		dont_mount(new_dentry);
4562 		detach_mounts(new_dentry);
4563 	}
4564 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4565 		if (!(flags & RENAME_EXCHANGE))
4566 			d_move(old_dentry, new_dentry);
4567 		else
4568 			d_exchange(old_dentry, new_dentry);
4569 	}
4570 out:
4571 	if (!is_dir || (flags & RENAME_EXCHANGE))
4572 		unlock_two_nondirectories(source, target);
4573 	else if (target)
4574 		inode_unlock(target);
4575 	dput(new_dentry);
4576 	if (!error) {
4577 		fsnotify_move(old_dir, new_dir, &old_name.name, is_dir,
4578 			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4579 		if (flags & RENAME_EXCHANGE) {
4580 			fsnotify_move(new_dir, old_dir, &old_dentry->d_name,
4581 				      new_is_dir, NULL, new_dentry);
4582 		}
4583 	}
4584 	release_dentry_name_snapshot(&old_name);
4585 
4586 	return error;
4587 }
4588 EXPORT_SYMBOL(vfs_rename);
4589 
4590 static int do_renameat2(int olddfd, const char __user *oldname, int newdfd,
4591 			const char __user *newname, unsigned int flags)
4592 {
4593 	struct dentry *old_dentry, *new_dentry;
4594 	struct dentry *trap;
4595 	struct path old_path, new_path;
4596 	struct qstr old_last, new_last;
4597 	int old_type, new_type;
4598 	struct inode *delegated_inode = NULL;
4599 	struct filename *from;
4600 	struct filename *to;
4601 	unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4602 	bool should_retry = false;
4603 	int error;
4604 
4605 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4606 		return -EINVAL;
4607 
4608 	if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4609 	    (flags & RENAME_EXCHANGE))
4610 		return -EINVAL;
4611 
4612 	if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4613 		return -EPERM;
4614 
4615 	if (flags & RENAME_EXCHANGE)
4616 		target_flags = 0;
4617 
4618 retry:
4619 	from = filename_parentat(olddfd, getname(oldname), lookup_flags,
4620 				&old_path, &old_last, &old_type);
4621 	if (IS_ERR(from)) {
4622 		error = PTR_ERR(from);
4623 		goto exit;
4624 	}
4625 
4626 	to = filename_parentat(newdfd, getname(newname), lookup_flags,
4627 				&new_path, &new_last, &new_type);
4628 	if (IS_ERR(to)) {
4629 		error = PTR_ERR(to);
4630 		goto exit1;
4631 	}
4632 
4633 	error = -EXDEV;
4634 	if (old_path.mnt != new_path.mnt)
4635 		goto exit2;
4636 
4637 	error = -EBUSY;
4638 	if (old_type != LAST_NORM)
4639 		goto exit2;
4640 
4641 	if (flags & RENAME_NOREPLACE)
4642 		error = -EEXIST;
4643 	if (new_type != LAST_NORM)
4644 		goto exit2;
4645 
4646 	error = mnt_want_write(old_path.mnt);
4647 	if (error)
4648 		goto exit2;
4649 
4650 retry_deleg:
4651 	trap = lock_rename(new_path.dentry, old_path.dentry);
4652 
4653 	old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4654 	error = PTR_ERR(old_dentry);
4655 	if (IS_ERR(old_dentry))
4656 		goto exit3;
4657 	/* source must exist */
4658 	error = -ENOENT;
4659 	if (d_is_negative(old_dentry))
4660 		goto exit4;
4661 	new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4662 	error = PTR_ERR(new_dentry);
4663 	if (IS_ERR(new_dentry))
4664 		goto exit4;
4665 	error = -EEXIST;
4666 	if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4667 		goto exit5;
4668 	if (flags & RENAME_EXCHANGE) {
4669 		error = -ENOENT;
4670 		if (d_is_negative(new_dentry))
4671 			goto exit5;
4672 
4673 		if (!d_is_dir(new_dentry)) {
4674 			error = -ENOTDIR;
4675 			if (new_last.name[new_last.len])
4676 				goto exit5;
4677 		}
4678 	}
4679 	/* unless the source is a directory trailing slashes give -ENOTDIR */
4680 	if (!d_is_dir(old_dentry)) {
4681 		error = -ENOTDIR;
4682 		if (old_last.name[old_last.len])
4683 			goto exit5;
4684 		if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4685 			goto exit5;
4686 	}
4687 	/* source should not be ancestor of target */
4688 	error = -EINVAL;
4689 	if (old_dentry == trap)
4690 		goto exit5;
4691 	/* target should not be an ancestor of source */
4692 	if (!(flags & RENAME_EXCHANGE))
4693 		error = -ENOTEMPTY;
4694 	if (new_dentry == trap)
4695 		goto exit5;
4696 
4697 	error = security_path_rename(&old_path, old_dentry,
4698 				     &new_path, new_dentry, flags);
4699 	if (error)
4700 		goto exit5;
4701 	error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4702 			   new_path.dentry->d_inode, new_dentry,
4703 			   &delegated_inode, flags);
4704 exit5:
4705 	dput(new_dentry);
4706 exit4:
4707 	dput(old_dentry);
4708 exit3:
4709 	unlock_rename(new_path.dentry, old_path.dentry);
4710 	if (delegated_inode) {
4711 		error = break_deleg_wait(&delegated_inode);
4712 		if (!error)
4713 			goto retry_deleg;
4714 	}
4715 	mnt_drop_write(old_path.mnt);
4716 exit2:
4717 	if (retry_estale(error, lookup_flags))
4718 		should_retry = true;
4719 	path_put(&new_path);
4720 	putname(to);
4721 exit1:
4722 	path_put(&old_path);
4723 	putname(from);
4724 	if (should_retry) {
4725 		should_retry = false;
4726 		lookup_flags |= LOOKUP_REVAL;
4727 		goto retry;
4728 	}
4729 exit:
4730 	return error;
4731 }
4732 
4733 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4734 		int, newdfd, const char __user *, newname, unsigned int, flags)
4735 {
4736 	return do_renameat2(olddfd, oldname, newdfd, newname, flags);
4737 }
4738 
4739 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4740 		int, newdfd, const char __user *, newname)
4741 {
4742 	return do_renameat2(olddfd, oldname, newdfd, newname, 0);
4743 }
4744 
4745 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4746 {
4747 	return do_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4748 }
4749 
4750 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4751 {
4752 	int error = may_create(dir, dentry);
4753 	if (error)
4754 		return error;
4755 
4756 	if (!dir->i_op->mknod)
4757 		return -EPERM;
4758 
4759 	return dir->i_op->mknod(dir, dentry,
4760 				S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4761 }
4762 EXPORT_SYMBOL(vfs_whiteout);
4763 
4764 int readlink_copy(char __user *buffer, int buflen, const char *link)
4765 {
4766 	int len = PTR_ERR(link);
4767 	if (IS_ERR(link))
4768 		goto out;
4769 
4770 	len = strlen(link);
4771 	if (len > (unsigned) buflen)
4772 		len = buflen;
4773 	if (copy_to_user(buffer, link, len))
4774 		len = -EFAULT;
4775 out:
4776 	return len;
4777 }
4778 
4779 /**
4780  * vfs_readlink - copy symlink body into userspace buffer
4781  * @dentry: dentry on which to get symbolic link
4782  * @buffer: user memory pointer
4783  * @buflen: size of buffer
4784  *
4785  * Does not touch atime.  That's up to the caller if necessary
4786  *
4787  * Does not call security hook.
4788  */
4789 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4790 {
4791 	struct inode *inode = d_inode(dentry);
4792 	DEFINE_DELAYED_CALL(done);
4793 	const char *link;
4794 	int res;
4795 
4796 	if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
4797 		if (unlikely(inode->i_op->readlink))
4798 			return inode->i_op->readlink(dentry, buffer, buflen);
4799 
4800 		if (!d_is_symlink(dentry))
4801 			return -EINVAL;
4802 
4803 		spin_lock(&inode->i_lock);
4804 		inode->i_opflags |= IOP_DEFAULT_READLINK;
4805 		spin_unlock(&inode->i_lock);
4806 	}
4807 
4808 	link = READ_ONCE(inode->i_link);
4809 	if (!link) {
4810 		link = inode->i_op->get_link(dentry, inode, &done);
4811 		if (IS_ERR(link))
4812 			return PTR_ERR(link);
4813 	}
4814 	res = readlink_copy(buffer, buflen, link);
4815 	do_delayed_call(&done);
4816 	return res;
4817 }
4818 EXPORT_SYMBOL(vfs_readlink);
4819 
4820 /**
4821  * vfs_get_link - get symlink body
4822  * @dentry: dentry on which to get symbolic link
4823  * @done: caller needs to free returned data with this
4824  *
4825  * Calls security hook and i_op->get_link() on the supplied inode.
4826  *
4827  * It does not touch atime.  That's up to the caller if necessary.
4828  *
4829  * Does not work on "special" symlinks like /proc/$$/fd/N
4830  */
4831 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
4832 {
4833 	const char *res = ERR_PTR(-EINVAL);
4834 	struct inode *inode = d_inode(dentry);
4835 
4836 	if (d_is_symlink(dentry)) {
4837 		res = ERR_PTR(security_inode_readlink(dentry));
4838 		if (!res)
4839 			res = inode->i_op->get_link(dentry, inode, done);
4840 	}
4841 	return res;
4842 }
4843 EXPORT_SYMBOL(vfs_get_link);
4844 
4845 /* get the link contents into pagecache */
4846 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4847 			  struct delayed_call *callback)
4848 {
4849 	char *kaddr;
4850 	struct page *page;
4851 	struct address_space *mapping = inode->i_mapping;
4852 
4853 	if (!dentry) {
4854 		page = find_get_page(mapping, 0);
4855 		if (!page)
4856 			return ERR_PTR(-ECHILD);
4857 		if (!PageUptodate(page)) {
4858 			put_page(page);
4859 			return ERR_PTR(-ECHILD);
4860 		}
4861 	} else {
4862 		page = read_mapping_page(mapping, 0, NULL);
4863 		if (IS_ERR(page))
4864 			return (char*)page;
4865 	}
4866 	set_delayed_call(callback, page_put_link, page);
4867 	BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4868 	kaddr = page_address(page);
4869 	nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4870 	return kaddr;
4871 }
4872 
4873 EXPORT_SYMBOL(page_get_link);
4874 
4875 void page_put_link(void *arg)
4876 {
4877 	put_page(arg);
4878 }
4879 EXPORT_SYMBOL(page_put_link);
4880 
4881 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4882 {
4883 	DEFINE_DELAYED_CALL(done);
4884 	int res = readlink_copy(buffer, buflen,
4885 				page_get_link(dentry, d_inode(dentry),
4886 					      &done));
4887 	do_delayed_call(&done);
4888 	return res;
4889 }
4890 EXPORT_SYMBOL(page_readlink);
4891 
4892 /*
4893  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4894  */
4895 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4896 {
4897 	struct address_space *mapping = inode->i_mapping;
4898 	struct page *page;
4899 	void *fsdata;
4900 	int err;
4901 	unsigned int flags = 0;
4902 	if (nofs)
4903 		flags |= AOP_FLAG_NOFS;
4904 
4905 retry:
4906 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
4907 				flags, &page, &fsdata);
4908 	if (err)
4909 		goto fail;
4910 
4911 	memcpy(page_address(page), symname, len-1);
4912 
4913 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4914 							page, fsdata);
4915 	if (err < 0)
4916 		goto fail;
4917 	if (err < len-1)
4918 		goto retry;
4919 
4920 	mark_inode_dirty(inode);
4921 	return 0;
4922 fail:
4923 	return err;
4924 }
4925 EXPORT_SYMBOL(__page_symlink);
4926 
4927 int page_symlink(struct inode *inode, const char *symname, int len)
4928 {
4929 	return __page_symlink(inode, symname, len,
4930 			!mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4931 }
4932 EXPORT_SYMBOL(page_symlink);
4933 
4934 const struct inode_operations page_symlink_inode_operations = {
4935 	.get_link	= page_get_link,
4936 };
4937 EXPORT_SYMBOL(page_symlink_inode_operations);
4938