xref: /openbmc/linux/fs/namei.c (revision f0702555)
1 /*
2  *  linux/fs/namei.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * Some corrections by tytso.
9  */
10 
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12  * lookup logic.
13  */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15  */
16 
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <linux/bitops.h>
39 #include <asm/uaccess.h>
40 
41 #include "internal.h"
42 #include "mount.h"
43 
44 /* [Feb-1997 T. Schoebel-Theuer]
45  * Fundamental changes in the pathname lookup mechanisms (namei)
46  * were necessary because of omirr.  The reason is that omirr needs
47  * to know the _real_ pathname, not the user-supplied one, in case
48  * of symlinks (and also when transname replacements occur).
49  *
50  * The new code replaces the old recursive symlink resolution with
51  * an iterative one (in case of non-nested symlink chains).  It does
52  * this with calls to <fs>_follow_link().
53  * As a side effect, dir_namei(), _namei() and follow_link() are now
54  * replaced with a single function lookup_dentry() that can handle all
55  * the special cases of the former code.
56  *
57  * With the new dcache, the pathname is stored at each inode, at least as
58  * long as the refcount of the inode is positive.  As a side effect, the
59  * size of the dcache depends on the inode cache and thus is dynamic.
60  *
61  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
62  * resolution to correspond with current state of the code.
63  *
64  * Note that the symlink resolution is not *completely* iterative.
65  * There is still a significant amount of tail- and mid- recursion in
66  * the algorithm.  Also, note that <fs>_readlink() is not used in
67  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
68  * may return different results than <fs>_follow_link().  Many virtual
69  * filesystems (including /proc) exhibit this behavior.
70  */
71 
72 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
73  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
74  * and the name already exists in form of a symlink, try to create the new
75  * name indicated by the symlink. The old code always complained that the
76  * name already exists, due to not following the symlink even if its target
77  * is nonexistent.  The new semantics affects also mknod() and link() when
78  * the name is a symlink pointing to a non-existent name.
79  *
80  * I don't know which semantics is the right one, since I have no access
81  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
82  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
83  * "old" one. Personally, I think the new semantics is much more logical.
84  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
85  * file does succeed in both HP-UX and SunOs, but not in Solaris
86  * and in the old Linux semantics.
87  */
88 
89 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
90  * semantics.  See the comments in "open_namei" and "do_link" below.
91  *
92  * [10-Sep-98 Alan Modra] Another symlink change.
93  */
94 
95 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
96  *	inside the path - always follow.
97  *	in the last component in creation/removal/renaming - never follow.
98  *	if LOOKUP_FOLLOW passed - follow.
99  *	if the pathname has trailing slashes - follow.
100  *	otherwise - don't follow.
101  * (applied in that order).
102  *
103  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
104  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
105  * During the 2.4 we need to fix the userland stuff depending on it -
106  * hopefully we will be able to get rid of that wart in 2.5. So far only
107  * XEmacs seems to be relying on it...
108  */
109 /*
110  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
111  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
112  * any extra contention...
113  */
114 
115 /* In order to reduce some races, while at the same time doing additional
116  * checking and hopefully speeding things up, we copy filenames to the
117  * kernel data space before using them..
118  *
119  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
120  * PATH_MAX includes the nul terminator --RR.
121  */
122 
123 #define EMBEDDED_NAME_MAX	(PATH_MAX - offsetof(struct filename, iname))
124 
125 struct filename *
126 getname_flags(const char __user *filename, int flags, int *empty)
127 {
128 	struct filename *result;
129 	char *kname;
130 	int len;
131 
132 	result = audit_reusename(filename);
133 	if (result)
134 		return result;
135 
136 	result = __getname();
137 	if (unlikely(!result))
138 		return ERR_PTR(-ENOMEM);
139 
140 	/*
141 	 * First, try to embed the struct filename inside the names_cache
142 	 * allocation
143 	 */
144 	kname = (char *)result->iname;
145 	result->name = kname;
146 
147 	len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
148 	if (unlikely(len < 0)) {
149 		__putname(result);
150 		return ERR_PTR(len);
151 	}
152 
153 	/*
154 	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
155 	 * separate struct filename so we can dedicate the entire
156 	 * names_cache allocation for the pathname, and re-do the copy from
157 	 * userland.
158 	 */
159 	if (unlikely(len == EMBEDDED_NAME_MAX)) {
160 		const size_t size = offsetof(struct filename, iname[1]);
161 		kname = (char *)result;
162 
163 		/*
164 		 * size is chosen that way we to guarantee that
165 		 * result->iname[0] is within the same object and that
166 		 * kname can't be equal to result->iname, no matter what.
167 		 */
168 		result = kzalloc(size, GFP_KERNEL);
169 		if (unlikely(!result)) {
170 			__putname(kname);
171 			return ERR_PTR(-ENOMEM);
172 		}
173 		result->name = kname;
174 		len = strncpy_from_user(kname, filename, PATH_MAX);
175 		if (unlikely(len < 0)) {
176 			__putname(kname);
177 			kfree(result);
178 			return ERR_PTR(len);
179 		}
180 		if (unlikely(len == PATH_MAX)) {
181 			__putname(kname);
182 			kfree(result);
183 			return ERR_PTR(-ENAMETOOLONG);
184 		}
185 	}
186 
187 	result->refcnt = 1;
188 	/* The empty path is special. */
189 	if (unlikely(!len)) {
190 		if (empty)
191 			*empty = 1;
192 		if (!(flags & LOOKUP_EMPTY)) {
193 			putname(result);
194 			return ERR_PTR(-ENOENT);
195 		}
196 	}
197 
198 	result->uptr = filename;
199 	result->aname = NULL;
200 	audit_getname(result);
201 	return result;
202 }
203 
204 struct filename *
205 getname(const char __user * filename)
206 {
207 	return getname_flags(filename, 0, NULL);
208 }
209 
210 struct filename *
211 getname_kernel(const char * filename)
212 {
213 	struct filename *result;
214 	int len = strlen(filename) + 1;
215 
216 	result = __getname();
217 	if (unlikely(!result))
218 		return ERR_PTR(-ENOMEM);
219 
220 	if (len <= EMBEDDED_NAME_MAX) {
221 		result->name = (char *)result->iname;
222 	} else if (len <= PATH_MAX) {
223 		struct filename *tmp;
224 
225 		tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
226 		if (unlikely(!tmp)) {
227 			__putname(result);
228 			return ERR_PTR(-ENOMEM);
229 		}
230 		tmp->name = (char *)result;
231 		result = tmp;
232 	} else {
233 		__putname(result);
234 		return ERR_PTR(-ENAMETOOLONG);
235 	}
236 	memcpy((char *)result->name, filename, len);
237 	result->uptr = NULL;
238 	result->aname = NULL;
239 	result->refcnt = 1;
240 	audit_getname(result);
241 
242 	return result;
243 }
244 
245 void putname(struct filename *name)
246 {
247 	BUG_ON(name->refcnt <= 0);
248 
249 	if (--name->refcnt > 0)
250 		return;
251 
252 	if (name->name != name->iname) {
253 		__putname(name->name);
254 		kfree(name);
255 	} else
256 		__putname(name);
257 }
258 
259 static int check_acl(struct inode *inode, int mask)
260 {
261 #ifdef CONFIG_FS_POSIX_ACL
262 	struct posix_acl *acl;
263 
264 	if (mask & MAY_NOT_BLOCK) {
265 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
266 	        if (!acl)
267 	                return -EAGAIN;
268 		/* no ->get_acl() calls in RCU mode... */
269 		if (is_uncached_acl(acl))
270 			return -ECHILD;
271 	        return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
272 	}
273 
274 	acl = get_acl(inode, ACL_TYPE_ACCESS);
275 	if (IS_ERR(acl))
276 		return PTR_ERR(acl);
277 	if (acl) {
278 	        int error = posix_acl_permission(inode, acl, mask);
279 	        posix_acl_release(acl);
280 	        return error;
281 	}
282 #endif
283 
284 	return -EAGAIN;
285 }
286 
287 /*
288  * This does the basic permission checking
289  */
290 static int acl_permission_check(struct inode *inode, int mask)
291 {
292 	unsigned int mode = inode->i_mode;
293 
294 	if (likely(uid_eq(current_fsuid(), inode->i_uid)))
295 		mode >>= 6;
296 	else {
297 		if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
298 			int error = check_acl(inode, mask);
299 			if (error != -EAGAIN)
300 				return error;
301 		}
302 
303 		if (in_group_p(inode->i_gid))
304 			mode >>= 3;
305 	}
306 
307 	/*
308 	 * If the DACs are ok we don't need any capability check.
309 	 */
310 	if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
311 		return 0;
312 	return -EACCES;
313 }
314 
315 /**
316  * generic_permission -  check for access rights on a Posix-like filesystem
317  * @inode:	inode to check access rights for
318  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
319  *
320  * Used to check for read/write/execute permissions on a file.
321  * We use "fsuid" for this, letting us set arbitrary permissions
322  * for filesystem access without changing the "normal" uids which
323  * are used for other things.
324  *
325  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
326  * request cannot be satisfied (eg. requires blocking or too much complexity).
327  * It would then be called again in ref-walk mode.
328  */
329 int generic_permission(struct inode *inode, int mask)
330 {
331 	int ret;
332 
333 	/*
334 	 * Do the basic permission checks.
335 	 */
336 	ret = acl_permission_check(inode, mask);
337 	if (ret != -EACCES)
338 		return ret;
339 
340 	if (S_ISDIR(inode->i_mode)) {
341 		/* DACs are overridable for directories */
342 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
343 			return 0;
344 		if (!(mask & MAY_WRITE))
345 			if (capable_wrt_inode_uidgid(inode,
346 						     CAP_DAC_READ_SEARCH))
347 				return 0;
348 		return -EACCES;
349 	}
350 	/*
351 	 * Read/write DACs are always overridable.
352 	 * Executable DACs are overridable when there is
353 	 * at least one exec bit set.
354 	 */
355 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
356 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
357 			return 0;
358 
359 	/*
360 	 * Searching includes executable on directories, else just read.
361 	 */
362 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
363 	if (mask == MAY_READ)
364 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
365 			return 0;
366 
367 	return -EACCES;
368 }
369 EXPORT_SYMBOL(generic_permission);
370 
371 /*
372  * We _really_ want to just do "generic_permission()" without
373  * even looking at the inode->i_op values. So we keep a cache
374  * flag in inode->i_opflags, that says "this has not special
375  * permission function, use the fast case".
376  */
377 static inline int do_inode_permission(struct inode *inode, int mask)
378 {
379 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
380 		if (likely(inode->i_op->permission))
381 			return inode->i_op->permission(inode, mask);
382 
383 		/* This gets set once for the inode lifetime */
384 		spin_lock(&inode->i_lock);
385 		inode->i_opflags |= IOP_FASTPERM;
386 		spin_unlock(&inode->i_lock);
387 	}
388 	return generic_permission(inode, mask);
389 }
390 
391 /**
392  * __inode_permission - Check for access rights to a given inode
393  * @inode: Inode to check permission on
394  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
395  *
396  * Check for read/write/execute permissions on an inode.
397  *
398  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
399  *
400  * This does not check for a read-only file system.  You probably want
401  * inode_permission().
402  */
403 int __inode_permission(struct inode *inode, int mask)
404 {
405 	int retval;
406 
407 	if (unlikely(mask & MAY_WRITE)) {
408 		/*
409 		 * Nobody gets write access to an immutable file.
410 		 */
411 		if (IS_IMMUTABLE(inode))
412 			return -EACCES;
413 	}
414 
415 	retval = do_inode_permission(inode, mask);
416 	if (retval)
417 		return retval;
418 
419 	retval = devcgroup_inode_permission(inode, mask);
420 	if (retval)
421 		return retval;
422 
423 	return security_inode_permission(inode, mask);
424 }
425 EXPORT_SYMBOL(__inode_permission);
426 
427 /**
428  * sb_permission - Check superblock-level permissions
429  * @sb: Superblock of inode to check permission on
430  * @inode: Inode to check permission on
431  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
432  *
433  * Separate out file-system wide checks from inode-specific permission checks.
434  */
435 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
436 {
437 	if (unlikely(mask & MAY_WRITE)) {
438 		umode_t mode = inode->i_mode;
439 
440 		/* Nobody gets write access to a read-only fs. */
441 		if ((sb->s_flags & MS_RDONLY) &&
442 		    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
443 			return -EROFS;
444 	}
445 	return 0;
446 }
447 
448 /**
449  * inode_permission - Check for access rights to a given inode
450  * @inode: Inode to check permission on
451  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
452  *
453  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
454  * this, letting us set arbitrary permissions for filesystem access without
455  * changing the "normal" UIDs which are used for other things.
456  *
457  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
458  */
459 int inode_permission(struct inode *inode, int mask)
460 {
461 	int retval;
462 
463 	retval = sb_permission(inode->i_sb, inode, mask);
464 	if (retval)
465 		return retval;
466 	return __inode_permission(inode, mask);
467 }
468 EXPORT_SYMBOL(inode_permission);
469 
470 /**
471  * path_get - get a reference to a path
472  * @path: path to get the reference to
473  *
474  * Given a path increment the reference count to the dentry and the vfsmount.
475  */
476 void path_get(const struct path *path)
477 {
478 	mntget(path->mnt);
479 	dget(path->dentry);
480 }
481 EXPORT_SYMBOL(path_get);
482 
483 /**
484  * path_put - put a reference to a path
485  * @path: path to put the reference to
486  *
487  * Given a path decrement the reference count to the dentry and the vfsmount.
488  */
489 void path_put(const struct path *path)
490 {
491 	dput(path->dentry);
492 	mntput(path->mnt);
493 }
494 EXPORT_SYMBOL(path_put);
495 
496 #define EMBEDDED_LEVELS 2
497 struct nameidata {
498 	struct path	path;
499 	struct qstr	last;
500 	struct path	root;
501 	struct inode	*inode; /* path.dentry.d_inode */
502 	unsigned int	flags;
503 	unsigned	seq, m_seq;
504 	int		last_type;
505 	unsigned	depth;
506 	int		total_link_count;
507 	struct saved {
508 		struct path link;
509 		struct delayed_call done;
510 		const char *name;
511 		unsigned seq;
512 	} *stack, internal[EMBEDDED_LEVELS];
513 	struct filename	*name;
514 	struct nameidata *saved;
515 	struct inode	*link_inode;
516 	unsigned	root_seq;
517 	int		dfd;
518 };
519 
520 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
521 {
522 	struct nameidata *old = current->nameidata;
523 	p->stack = p->internal;
524 	p->dfd = dfd;
525 	p->name = name;
526 	p->total_link_count = old ? old->total_link_count : 0;
527 	p->saved = old;
528 	current->nameidata = p;
529 }
530 
531 static void restore_nameidata(void)
532 {
533 	struct nameidata *now = current->nameidata, *old = now->saved;
534 
535 	current->nameidata = old;
536 	if (old)
537 		old->total_link_count = now->total_link_count;
538 	if (now->stack != now->internal)
539 		kfree(now->stack);
540 }
541 
542 static int __nd_alloc_stack(struct nameidata *nd)
543 {
544 	struct saved *p;
545 
546 	if (nd->flags & LOOKUP_RCU) {
547 		p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
548 				  GFP_ATOMIC);
549 		if (unlikely(!p))
550 			return -ECHILD;
551 	} else {
552 		p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
553 				  GFP_KERNEL);
554 		if (unlikely(!p))
555 			return -ENOMEM;
556 	}
557 	memcpy(p, nd->internal, sizeof(nd->internal));
558 	nd->stack = p;
559 	return 0;
560 }
561 
562 /**
563  * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
564  * @path: nameidate to verify
565  *
566  * Rename can sometimes move a file or directory outside of a bind
567  * mount, path_connected allows those cases to be detected.
568  */
569 static bool path_connected(const struct path *path)
570 {
571 	struct vfsmount *mnt = path->mnt;
572 
573 	/* Only bind mounts can have disconnected paths */
574 	if (mnt->mnt_root == mnt->mnt_sb->s_root)
575 		return true;
576 
577 	return is_subdir(path->dentry, mnt->mnt_root);
578 }
579 
580 static inline int nd_alloc_stack(struct nameidata *nd)
581 {
582 	if (likely(nd->depth != EMBEDDED_LEVELS))
583 		return 0;
584 	if (likely(nd->stack != nd->internal))
585 		return 0;
586 	return __nd_alloc_stack(nd);
587 }
588 
589 static void drop_links(struct nameidata *nd)
590 {
591 	int i = nd->depth;
592 	while (i--) {
593 		struct saved *last = nd->stack + i;
594 		do_delayed_call(&last->done);
595 		clear_delayed_call(&last->done);
596 	}
597 }
598 
599 static void terminate_walk(struct nameidata *nd)
600 {
601 	drop_links(nd);
602 	if (!(nd->flags & LOOKUP_RCU)) {
603 		int i;
604 		path_put(&nd->path);
605 		for (i = 0; i < nd->depth; i++)
606 			path_put(&nd->stack[i].link);
607 		if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
608 			path_put(&nd->root);
609 			nd->root.mnt = NULL;
610 		}
611 	} else {
612 		nd->flags &= ~LOOKUP_RCU;
613 		if (!(nd->flags & LOOKUP_ROOT))
614 			nd->root.mnt = NULL;
615 		rcu_read_unlock();
616 	}
617 	nd->depth = 0;
618 }
619 
620 /* path_put is needed afterwards regardless of success or failure */
621 static bool legitimize_path(struct nameidata *nd,
622 			    struct path *path, unsigned seq)
623 {
624 	int res = __legitimize_mnt(path->mnt, nd->m_seq);
625 	if (unlikely(res)) {
626 		if (res > 0)
627 			path->mnt = NULL;
628 		path->dentry = NULL;
629 		return false;
630 	}
631 	if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
632 		path->dentry = NULL;
633 		return false;
634 	}
635 	return !read_seqcount_retry(&path->dentry->d_seq, seq);
636 }
637 
638 static bool legitimize_links(struct nameidata *nd)
639 {
640 	int i;
641 	for (i = 0; i < nd->depth; i++) {
642 		struct saved *last = nd->stack + i;
643 		if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
644 			drop_links(nd);
645 			nd->depth = i + 1;
646 			return false;
647 		}
648 	}
649 	return true;
650 }
651 
652 /*
653  * Path walking has 2 modes, rcu-walk and ref-walk (see
654  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
655  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
656  * normal reference counts on dentries and vfsmounts to transition to ref-walk
657  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
658  * got stuck, so ref-walk may continue from there. If this is not successful
659  * (eg. a seqcount has changed), then failure is returned and it's up to caller
660  * to restart the path walk from the beginning in ref-walk mode.
661  */
662 
663 /**
664  * unlazy_walk - try to switch to ref-walk mode.
665  * @nd: nameidata pathwalk data
666  * @dentry: child of nd->path.dentry or NULL
667  * @seq: seq number to check dentry against
668  * Returns: 0 on success, -ECHILD on failure
669  *
670  * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
671  * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
672  * @nd or NULL.  Must be called from rcu-walk context.
673  * Nothing should touch nameidata between unlazy_walk() failure and
674  * terminate_walk().
675  */
676 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry, unsigned seq)
677 {
678 	struct dentry *parent = nd->path.dentry;
679 
680 	BUG_ON(!(nd->flags & LOOKUP_RCU));
681 
682 	nd->flags &= ~LOOKUP_RCU;
683 	if (unlikely(!legitimize_links(nd)))
684 		goto out2;
685 	if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
686 		goto out2;
687 	if (unlikely(!lockref_get_not_dead(&parent->d_lockref)))
688 		goto out1;
689 
690 	/*
691 	 * For a negative lookup, the lookup sequence point is the parents
692 	 * sequence point, and it only needs to revalidate the parent dentry.
693 	 *
694 	 * For a positive lookup, we need to move both the parent and the
695 	 * dentry from the RCU domain to be properly refcounted. And the
696 	 * sequence number in the dentry validates *both* dentry counters,
697 	 * since we checked the sequence number of the parent after we got
698 	 * the child sequence number. So we know the parent must still
699 	 * be valid if the child sequence number is still valid.
700 	 */
701 	if (!dentry) {
702 		if (read_seqcount_retry(&parent->d_seq, nd->seq))
703 			goto out;
704 		BUG_ON(nd->inode != parent->d_inode);
705 	} else {
706 		if (!lockref_get_not_dead(&dentry->d_lockref))
707 			goto out;
708 		if (read_seqcount_retry(&dentry->d_seq, seq))
709 			goto drop_dentry;
710 	}
711 
712 	/*
713 	 * Sequence counts matched. Now make sure that the root is
714 	 * still valid and get it if required.
715 	 */
716 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
717 		if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) {
718 			rcu_read_unlock();
719 			dput(dentry);
720 			return -ECHILD;
721 		}
722 	}
723 
724 	rcu_read_unlock();
725 	return 0;
726 
727 drop_dentry:
728 	rcu_read_unlock();
729 	dput(dentry);
730 	goto drop_root_mnt;
731 out2:
732 	nd->path.mnt = NULL;
733 out1:
734 	nd->path.dentry = NULL;
735 out:
736 	rcu_read_unlock();
737 drop_root_mnt:
738 	if (!(nd->flags & LOOKUP_ROOT))
739 		nd->root.mnt = NULL;
740 	return -ECHILD;
741 }
742 
743 static int unlazy_link(struct nameidata *nd, struct path *link, unsigned seq)
744 {
745 	if (unlikely(!legitimize_path(nd, link, seq))) {
746 		drop_links(nd);
747 		nd->depth = 0;
748 		nd->flags &= ~LOOKUP_RCU;
749 		nd->path.mnt = NULL;
750 		nd->path.dentry = NULL;
751 		if (!(nd->flags & LOOKUP_ROOT))
752 			nd->root.mnt = NULL;
753 		rcu_read_unlock();
754 	} else if (likely(unlazy_walk(nd, NULL, 0)) == 0) {
755 		return 0;
756 	}
757 	path_put(link);
758 	return -ECHILD;
759 }
760 
761 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
762 {
763 	return dentry->d_op->d_revalidate(dentry, flags);
764 }
765 
766 /**
767  * complete_walk - successful completion of path walk
768  * @nd:  pointer nameidata
769  *
770  * If we had been in RCU mode, drop out of it and legitimize nd->path.
771  * Revalidate the final result, unless we'd already done that during
772  * the path walk or the filesystem doesn't ask for it.  Return 0 on
773  * success, -error on failure.  In case of failure caller does not
774  * need to drop nd->path.
775  */
776 static int complete_walk(struct nameidata *nd)
777 {
778 	struct dentry *dentry = nd->path.dentry;
779 	int status;
780 
781 	if (nd->flags & LOOKUP_RCU) {
782 		if (!(nd->flags & LOOKUP_ROOT))
783 			nd->root.mnt = NULL;
784 		if (unlikely(unlazy_walk(nd, NULL, 0)))
785 			return -ECHILD;
786 	}
787 
788 	if (likely(!(nd->flags & LOOKUP_JUMPED)))
789 		return 0;
790 
791 	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
792 		return 0;
793 
794 	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
795 	if (status > 0)
796 		return 0;
797 
798 	if (!status)
799 		status = -ESTALE;
800 
801 	return status;
802 }
803 
804 static void set_root(struct nameidata *nd)
805 {
806 	struct fs_struct *fs = current->fs;
807 
808 	if (nd->flags & LOOKUP_RCU) {
809 		unsigned seq;
810 
811 		do {
812 			seq = read_seqcount_begin(&fs->seq);
813 			nd->root = fs->root;
814 			nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
815 		} while (read_seqcount_retry(&fs->seq, seq));
816 	} else {
817 		get_fs_root(fs, &nd->root);
818 	}
819 }
820 
821 static void path_put_conditional(struct path *path, struct nameidata *nd)
822 {
823 	dput(path->dentry);
824 	if (path->mnt != nd->path.mnt)
825 		mntput(path->mnt);
826 }
827 
828 static inline void path_to_nameidata(const struct path *path,
829 					struct nameidata *nd)
830 {
831 	if (!(nd->flags & LOOKUP_RCU)) {
832 		dput(nd->path.dentry);
833 		if (nd->path.mnt != path->mnt)
834 			mntput(nd->path.mnt);
835 	}
836 	nd->path.mnt = path->mnt;
837 	nd->path.dentry = path->dentry;
838 }
839 
840 static int nd_jump_root(struct nameidata *nd)
841 {
842 	if (nd->flags & LOOKUP_RCU) {
843 		struct dentry *d;
844 		nd->path = nd->root;
845 		d = nd->path.dentry;
846 		nd->inode = d->d_inode;
847 		nd->seq = nd->root_seq;
848 		if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
849 			return -ECHILD;
850 	} else {
851 		path_put(&nd->path);
852 		nd->path = nd->root;
853 		path_get(&nd->path);
854 		nd->inode = nd->path.dentry->d_inode;
855 	}
856 	nd->flags |= LOOKUP_JUMPED;
857 	return 0;
858 }
859 
860 /*
861  * Helper to directly jump to a known parsed path from ->get_link,
862  * caller must have taken a reference to path beforehand.
863  */
864 void nd_jump_link(struct path *path)
865 {
866 	struct nameidata *nd = current->nameidata;
867 	path_put(&nd->path);
868 
869 	nd->path = *path;
870 	nd->inode = nd->path.dentry->d_inode;
871 	nd->flags |= LOOKUP_JUMPED;
872 }
873 
874 static inline void put_link(struct nameidata *nd)
875 {
876 	struct saved *last = nd->stack + --nd->depth;
877 	do_delayed_call(&last->done);
878 	if (!(nd->flags & LOOKUP_RCU))
879 		path_put(&last->link);
880 }
881 
882 int sysctl_protected_symlinks __read_mostly = 0;
883 int sysctl_protected_hardlinks __read_mostly = 0;
884 
885 /**
886  * may_follow_link - Check symlink following for unsafe situations
887  * @nd: nameidata pathwalk data
888  *
889  * In the case of the sysctl_protected_symlinks sysctl being enabled,
890  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
891  * in a sticky world-writable directory. This is to protect privileged
892  * processes from failing races against path names that may change out
893  * from under them by way of other users creating malicious symlinks.
894  * It will permit symlinks to be followed only when outside a sticky
895  * world-writable directory, or when the uid of the symlink and follower
896  * match, or when the directory owner matches the symlink's owner.
897  *
898  * Returns 0 if following the symlink is allowed, -ve on error.
899  */
900 static inline int may_follow_link(struct nameidata *nd)
901 {
902 	const struct inode *inode;
903 	const struct inode *parent;
904 
905 	if (!sysctl_protected_symlinks)
906 		return 0;
907 
908 	/* Allowed if owner and follower match. */
909 	inode = nd->link_inode;
910 	if (uid_eq(current_cred()->fsuid, inode->i_uid))
911 		return 0;
912 
913 	/* Allowed if parent directory not sticky and world-writable. */
914 	parent = nd->inode;
915 	if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
916 		return 0;
917 
918 	/* Allowed if parent directory and link owner match. */
919 	if (uid_eq(parent->i_uid, inode->i_uid))
920 		return 0;
921 
922 	if (nd->flags & LOOKUP_RCU)
923 		return -ECHILD;
924 
925 	audit_log_link_denied("follow_link", &nd->stack[0].link);
926 	return -EACCES;
927 }
928 
929 /**
930  * safe_hardlink_source - Check for safe hardlink conditions
931  * @inode: the source inode to hardlink from
932  *
933  * Return false if at least one of the following conditions:
934  *    - inode is not a regular file
935  *    - inode is setuid
936  *    - inode is setgid and group-exec
937  *    - access failure for read and write
938  *
939  * Otherwise returns true.
940  */
941 static bool safe_hardlink_source(struct inode *inode)
942 {
943 	umode_t mode = inode->i_mode;
944 
945 	/* Special files should not get pinned to the filesystem. */
946 	if (!S_ISREG(mode))
947 		return false;
948 
949 	/* Setuid files should not get pinned to the filesystem. */
950 	if (mode & S_ISUID)
951 		return false;
952 
953 	/* Executable setgid files should not get pinned to the filesystem. */
954 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
955 		return false;
956 
957 	/* Hardlinking to unreadable or unwritable sources is dangerous. */
958 	if (inode_permission(inode, MAY_READ | MAY_WRITE))
959 		return false;
960 
961 	return true;
962 }
963 
964 /**
965  * may_linkat - Check permissions for creating a hardlink
966  * @link: the source to hardlink from
967  *
968  * Block hardlink when all of:
969  *  - sysctl_protected_hardlinks enabled
970  *  - fsuid does not match inode
971  *  - hardlink source is unsafe (see safe_hardlink_source() above)
972  *  - not CAP_FOWNER in a namespace with the inode owner uid mapped
973  *
974  * Returns 0 if successful, -ve on error.
975  */
976 static int may_linkat(struct path *link)
977 {
978 	struct inode *inode;
979 
980 	if (!sysctl_protected_hardlinks)
981 		return 0;
982 
983 	inode = link->dentry->d_inode;
984 
985 	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
986 	 * otherwise, it must be a safe source.
987 	 */
988 	if (inode_owner_or_capable(inode) || safe_hardlink_source(inode))
989 		return 0;
990 
991 	audit_log_link_denied("linkat", link);
992 	return -EPERM;
993 }
994 
995 static __always_inline
996 const char *get_link(struct nameidata *nd)
997 {
998 	struct saved *last = nd->stack + nd->depth - 1;
999 	struct dentry *dentry = last->link.dentry;
1000 	struct inode *inode = nd->link_inode;
1001 	int error;
1002 	const char *res;
1003 
1004 	if (!(nd->flags & LOOKUP_RCU)) {
1005 		touch_atime(&last->link);
1006 		cond_resched();
1007 	} else if (atime_needs_update(&last->link, inode)) {
1008 		if (unlikely(unlazy_walk(nd, NULL, 0)))
1009 			return ERR_PTR(-ECHILD);
1010 		touch_atime(&last->link);
1011 	}
1012 
1013 	error = security_inode_follow_link(dentry, inode,
1014 					   nd->flags & LOOKUP_RCU);
1015 	if (unlikely(error))
1016 		return ERR_PTR(error);
1017 
1018 	nd->last_type = LAST_BIND;
1019 	res = inode->i_link;
1020 	if (!res) {
1021 		const char * (*get)(struct dentry *, struct inode *,
1022 				struct delayed_call *);
1023 		get = inode->i_op->get_link;
1024 		if (nd->flags & LOOKUP_RCU) {
1025 			res = get(NULL, inode, &last->done);
1026 			if (res == ERR_PTR(-ECHILD)) {
1027 				if (unlikely(unlazy_walk(nd, NULL, 0)))
1028 					return ERR_PTR(-ECHILD);
1029 				res = get(dentry, inode, &last->done);
1030 			}
1031 		} else {
1032 			res = get(dentry, inode, &last->done);
1033 		}
1034 		if (IS_ERR_OR_NULL(res))
1035 			return res;
1036 	}
1037 	if (*res == '/') {
1038 		if (!nd->root.mnt)
1039 			set_root(nd);
1040 		if (unlikely(nd_jump_root(nd)))
1041 			return ERR_PTR(-ECHILD);
1042 		while (unlikely(*++res == '/'))
1043 			;
1044 	}
1045 	if (!*res)
1046 		res = NULL;
1047 	return res;
1048 }
1049 
1050 /*
1051  * follow_up - Find the mountpoint of path's vfsmount
1052  *
1053  * Given a path, find the mountpoint of its source file system.
1054  * Replace @path with the path of the mountpoint in the parent mount.
1055  * Up is towards /.
1056  *
1057  * Return 1 if we went up a level and 0 if we were already at the
1058  * root.
1059  */
1060 int follow_up(struct path *path)
1061 {
1062 	struct mount *mnt = real_mount(path->mnt);
1063 	struct mount *parent;
1064 	struct dentry *mountpoint;
1065 
1066 	read_seqlock_excl(&mount_lock);
1067 	parent = mnt->mnt_parent;
1068 	if (parent == mnt) {
1069 		read_sequnlock_excl(&mount_lock);
1070 		return 0;
1071 	}
1072 	mntget(&parent->mnt);
1073 	mountpoint = dget(mnt->mnt_mountpoint);
1074 	read_sequnlock_excl(&mount_lock);
1075 	dput(path->dentry);
1076 	path->dentry = mountpoint;
1077 	mntput(path->mnt);
1078 	path->mnt = &parent->mnt;
1079 	return 1;
1080 }
1081 EXPORT_SYMBOL(follow_up);
1082 
1083 /*
1084  * Perform an automount
1085  * - return -EISDIR to tell follow_managed() to stop and return the path we
1086  *   were called with.
1087  */
1088 static int follow_automount(struct path *path, struct nameidata *nd,
1089 			    bool *need_mntput)
1090 {
1091 	struct vfsmount *mnt;
1092 	int err;
1093 
1094 	if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1095 		return -EREMOTE;
1096 
1097 	/* We don't want to mount if someone's just doing a stat -
1098 	 * unless they're stat'ing a directory and appended a '/' to
1099 	 * the name.
1100 	 *
1101 	 * We do, however, want to mount if someone wants to open or
1102 	 * create a file of any type under the mountpoint, wants to
1103 	 * traverse through the mountpoint or wants to open the
1104 	 * mounted directory.  Also, autofs may mark negative dentries
1105 	 * as being automount points.  These will need the attentions
1106 	 * of the daemon to instantiate them before they can be used.
1107 	 */
1108 	if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1109 			   LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1110 	    path->dentry->d_inode)
1111 		return -EISDIR;
1112 
1113 	nd->total_link_count++;
1114 	if (nd->total_link_count >= 40)
1115 		return -ELOOP;
1116 
1117 	mnt = path->dentry->d_op->d_automount(path);
1118 	if (IS_ERR(mnt)) {
1119 		/*
1120 		 * The filesystem is allowed to return -EISDIR here to indicate
1121 		 * it doesn't want to automount.  For instance, autofs would do
1122 		 * this so that its userspace daemon can mount on this dentry.
1123 		 *
1124 		 * However, we can only permit this if it's a terminal point in
1125 		 * the path being looked up; if it wasn't then the remainder of
1126 		 * the path is inaccessible and we should say so.
1127 		 */
1128 		if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1129 			return -EREMOTE;
1130 		return PTR_ERR(mnt);
1131 	}
1132 
1133 	if (!mnt) /* mount collision */
1134 		return 0;
1135 
1136 	if (!*need_mntput) {
1137 		/* lock_mount() may release path->mnt on error */
1138 		mntget(path->mnt);
1139 		*need_mntput = true;
1140 	}
1141 	err = finish_automount(mnt, path);
1142 
1143 	switch (err) {
1144 	case -EBUSY:
1145 		/* Someone else made a mount here whilst we were busy */
1146 		return 0;
1147 	case 0:
1148 		path_put(path);
1149 		path->mnt = mnt;
1150 		path->dentry = dget(mnt->mnt_root);
1151 		return 0;
1152 	default:
1153 		return err;
1154 	}
1155 
1156 }
1157 
1158 /*
1159  * Handle a dentry that is managed in some way.
1160  * - Flagged for transit management (autofs)
1161  * - Flagged as mountpoint
1162  * - Flagged as automount point
1163  *
1164  * This may only be called in refwalk mode.
1165  *
1166  * Serialization is taken care of in namespace.c
1167  */
1168 static int follow_managed(struct path *path, struct nameidata *nd)
1169 {
1170 	struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1171 	unsigned managed;
1172 	bool need_mntput = false;
1173 	int ret = 0;
1174 
1175 	/* Given that we're not holding a lock here, we retain the value in a
1176 	 * local variable for each dentry as we look at it so that we don't see
1177 	 * the components of that value change under us */
1178 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1179 	       managed &= DCACHE_MANAGED_DENTRY,
1180 	       unlikely(managed != 0)) {
1181 		/* Allow the filesystem to manage the transit without i_mutex
1182 		 * being held. */
1183 		if (managed & DCACHE_MANAGE_TRANSIT) {
1184 			BUG_ON(!path->dentry->d_op);
1185 			BUG_ON(!path->dentry->d_op->d_manage);
1186 			ret = path->dentry->d_op->d_manage(path->dentry, false);
1187 			if (ret < 0)
1188 				break;
1189 		}
1190 
1191 		/* Transit to a mounted filesystem. */
1192 		if (managed & DCACHE_MOUNTED) {
1193 			struct vfsmount *mounted = lookup_mnt(path);
1194 			if (mounted) {
1195 				dput(path->dentry);
1196 				if (need_mntput)
1197 					mntput(path->mnt);
1198 				path->mnt = mounted;
1199 				path->dentry = dget(mounted->mnt_root);
1200 				need_mntput = true;
1201 				continue;
1202 			}
1203 
1204 			/* Something is mounted on this dentry in another
1205 			 * namespace and/or whatever was mounted there in this
1206 			 * namespace got unmounted before lookup_mnt() could
1207 			 * get it */
1208 		}
1209 
1210 		/* Handle an automount point */
1211 		if (managed & DCACHE_NEED_AUTOMOUNT) {
1212 			ret = follow_automount(path, nd, &need_mntput);
1213 			if (ret < 0)
1214 				break;
1215 			continue;
1216 		}
1217 
1218 		/* We didn't change the current path point */
1219 		break;
1220 	}
1221 
1222 	if (need_mntput && path->mnt == mnt)
1223 		mntput(path->mnt);
1224 	if (ret == -EISDIR || !ret)
1225 		ret = 1;
1226 	if (need_mntput)
1227 		nd->flags |= LOOKUP_JUMPED;
1228 	if (unlikely(ret < 0))
1229 		path_put_conditional(path, nd);
1230 	return ret;
1231 }
1232 
1233 int follow_down_one(struct path *path)
1234 {
1235 	struct vfsmount *mounted;
1236 
1237 	mounted = lookup_mnt(path);
1238 	if (mounted) {
1239 		dput(path->dentry);
1240 		mntput(path->mnt);
1241 		path->mnt = mounted;
1242 		path->dentry = dget(mounted->mnt_root);
1243 		return 1;
1244 	}
1245 	return 0;
1246 }
1247 EXPORT_SYMBOL(follow_down_one);
1248 
1249 static inline int managed_dentry_rcu(struct dentry *dentry)
1250 {
1251 	return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1252 		dentry->d_op->d_manage(dentry, true) : 0;
1253 }
1254 
1255 /*
1256  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1257  * we meet a managed dentry that would need blocking.
1258  */
1259 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1260 			       struct inode **inode, unsigned *seqp)
1261 {
1262 	for (;;) {
1263 		struct mount *mounted;
1264 		/*
1265 		 * Don't forget we might have a non-mountpoint managed dentry
1266 		 * that wants to block transit.
1267 		 */
1268 		switch (managed_dentry_rcu(path->dentry)) {
1269 		case -ECHILD:
1270 		default:
1271 			return false;
1272 		case -EISDIR:
1273 			return true;
1274 		case 0:
1275 			break;
1276 		}
1277 
1278 		if (!d_mountpoint(path->dentry))
1279 			return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1280 
1281 		mounted = __lookup_mnt(path->mnt, path->dentry);
1282 		if (!mounted)
1283 			break;
1284 		path->mnt = &mounted->mnt;
1285 		path->dentry = mounted->mnt.mnt_root;
1286 		nd->flags |= LOOKUP_JUMPED;
1287 		*seqp = read_seqcount_begin(&path->dentry->d_seq);
1288 		/*
1289 		 * Update the inode too. We don't need to re-check the
1290 		 * dentry sequence number here after this d_inode read,
1291 		 * because a mount-point is always pinned.
1292 		 */
1293 		*inode = path->dentry->d_inode;
1294 	}
1295 	return !read_seqretry(&mount_lock, nd->m_seq) &&
1296 		!(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1297 }
1298 
1299 static int follow_dotdot_rcu(struct nameidata *nd)
1300 {
1301 	struct inode *inode = nd->inode;
1302 
1303 	while (1) {
1304 		if (path_equal(&nd->path, &nd->root))
1305 			break;
1306 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1307 			struct dentry *old = nd->path.dentry;
1308 			struct dentry *parent = old->d_parent;
1309 			unsigned seq;
1310 
1311 			inode = parent->d_inode;
1312 			seq = read_seqcount_begin(&parent->d_seq);
1313 			if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1314 				return -ECHILD;
1315 			nd->path.dentry = parent;
1316 			nd->seq = seq;
1317 			if (unlikely(!path_connected(&nd->path)))
1318 				return -ENOENT;
1319 			break;
1320 		} else {
1321 			struct mount *mnt = real_mount(nd->path.mnt);
1322 			struct mount *mparent = mnt->mnt_parent;
1323 			struct dentry *mountpoint = mnt->mnt_mountpoint;
1324 			struct inode *inode2 = mountpoint->d_inode;
1325 			unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1326 			if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1327 				return -ECHILD;
1328 			if (&mparent->mnt == nd->path.mnt)
1329 				break;
1330 			/* we know that mountpoint was pinned */
1331 			nd->path.dentry = mountpoint;
1332 			nd->path.mnt = &mparent->mnt;
1333 			inode = inode2;
1334 			nd->seq = seq;
1335 		}
1336 	}
1337 	while (unlikely(d_mountpoint(nd->path.dentry))) {
1338 		struct mount *mounted;
1339 		mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1340 		if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1341 			return -ECHILD;
1342 		if (!mounted)
1343 			break;
1344 		nd->path.mnt = &mounted->mnt;
1345 		nd->path.dentry = mounted->mnt.mnt_root;
1346 		inode = nd->path.dentry->d_inode;
1347 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1348 	}
1349 	nd->inode = inode;
1350 	return 0;
1351 }
1352 
1353 /*
1354  * Follow down to the covering mount currently visible to userspace.  At each
1355  * point, the filesystem owning that dentry may be queried as to whether the
1356  * caller is permitted to proceed or not.
1357  */
1358 int follow_down(struct path *path)
1359 {
1360 	unsigned managed;
1361 	int ret;
1362 
1363 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1364 	       unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1365 		/* Allow the filesystem to manage the transit without i_mutex
1366 		 * being held.
1367 		 *
1368 		 * We indicate to the filesystem if someone is trying to mount
1369 		 * something here.  This gives autofs the chance to deny anyone
1370 		 * other than its daemon the right to mount on its
1371 		 * superstructure.
1372 		 *
1373 		 * The filesystem may sleep at this point.
1374 		 */
1375 		if (managed & DCACHE_MANAGE_TRANSIT) {
1376 			BUG_ON(!path->dentry->d_op);
1377 			BUG_ON(!path->dentry->d_op->d_manage);
1378 			ret = path->dentry->d_op->d_manage(
1379 				path->dentry, false);
1380 			if (ret < 0)
1381 				return ret == -EISDIR ? 0 : ret;
1382 		}
1383 
1384 		/* Transit to a mounted filesystem. */
1385 		if (managed & DCACHE_MOUNTED) {
1386 			struct vfsmount *mounted = lookup_mnt(path);
1387 			if (!mounted)
1388 				break;
1389 			dput(path->dentry);
1390 			mntput(path->mnt);
1391 			path->mnt = mounted;
1392 			path->dentry = dget(mounted->mnt_root);
1393 			continue;
1394 		}
1395 
1396 		/* Don't handle automount points here */
1397 		break;
1398 	}
1399 	return 0;
1400 }
1401 EXPORT_SYMBOL(follow_down);
1402 
1403 /*
1404  * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1405  */
1406 static void follow_mount(struct path *path)
1407 {
1408 	while (d_mountpoint(path->dentry)) {
1409 		struct vfsmount *mounted = lookup_mnt(path);
1410 		if (!mounted)
1411 			break;
1412 		dput(path->dentry);
1413 		mntput(path->mnt);
1414 		path->mnt = mounted;
1415 		path->dentry = dget(mounted->mnt_root);
1416 	}
1417 }
1418 
1419 static int path_parent_directory(struct path *path)
1420 {
1421 	struct dentry *old = path->dentry;
1422 	/* rare case of legitimate dget_parent()... */
1423 	path->dentry = dget_parent(path->dentry);
1424 	dput(old);
1425 	if (unlikely(!path_connected(path)))
1426 		return -ENOENT;
1427 	return 0;
1428 }
1429 
1430 static int follow_dotdot(struct nameidata *nd)
1431 {
1432 	while(1) {
1433 		if (nd->path.dentry == nd->root.dentry &&
1434 		    nd->path.mnt == nd->root.mnt) {
1435 			break;
1436 		}
1437 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1438 			int ret = path_parent_directory(&nd->path);
1439 			if (ret)
1440 				return ret;
1441 			break;
1442 		}
1443 		if (!follow_up(&nd->path))
1444 			break;
1445 	}
1446 	follow_mount(&nd->path);
1447 	nd->inode = nd->path.dentry->d_inode;
1448 	return 0;
1449 }
1450 
1451 /*
1452  * This looks up the name in dcache, possibly revalidates the old dentry and
1453  * allocates a new one if not found or not valid.  In the need_lookup argument
1454  * returns whether i_op->lookup is necessary.
1455  */
1456 static struct dentry *lookup_dcache(const struct qstr *name,
1457 				    struct dentry *dir,
1458 				    unsigned int flags)
1459 {
1460 	struct dentry *dentry;
1461 	int error;
1462 
1463 	dentry = d_lookup(dir, name);
1464 	if (dentry) {
1465 		if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1466 			error = d_revalidate(dentry, flags);
1467 			if (unlikely(error <= 0)) {
1468 				if (!error)
1469 					d_invalidate(dentry);
1470 				dput(dentry);
1471 				return ERR_PTR(error);
1472 			}
1473 		}
1474 	}
1475 	return dentry;
1476 }
1477 
1478 /*
1479  * Call i_op->lookup on the dentry.  The dentry must be negative and
1480  * unhashed.
1481  *
1482  * dir->d_inode->i_mutex must be held
1483  */
1484 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1485 				  unsigned int flags)
1486 {
1487 	struct dentry *old;
1488 
1489 	/* Don't create child dentry for a dead directory. */
1490 	if (unlikely(IS_DEADDIR(dir))) {
1491 		dput(dentry);
1492 		return ERR_PTR(-ENOENT);
1493 	}
1494 
1495 	old = dir->i_op->lookup(dir, dentry, flags);
1496 	if (unlikely(old)) {
1497 		dput(dentry);
1498 		dentry = old;
1499 	}
1500 	return dentry;
1501 }
1502 
1503 static struct dentry *__lookup_hash(const struct qstr *name,
1504 		struct dentry *base, unsigned int flags)
1505 {
1506 	struct dentry *dentry = lookup_dcache(name, base, flags);
1507 
1508 	if (dentry)
1509 		return dentry;
1510 
1511 	dentry = d_alloc(base, name);
1512 	if (unlikely(!dentry))
1513 		return ERR_PTR(-ENOMEM);
1514 
1515 	return lookup_real(base->d_inode, dentry, flags);
1516 }
1517 
1518 static int lookup_fast(struct nameidata *nd,
1519 		       struct path *path, struct inode **inode,
1520 		       unsigned *seqp)
1521 {
1522 	struct vfsmount *mnt = nd->path.mnt;
1523 	struct dentry *dentry, *parent = nd->path.dentry;
1524 	int status = 1;
1525 	int err;
1526 
1527 	/*
1528 	 * Rename seqlock is not required here because in the off chance
1529 	 * of a false negative due to a concurrent rename, the caller is
1530 	 * going to fall back to non-racy lookup.
1531 	 */
1532 	if (nd->flags & LOOKUP_RCU) {
1533 		unsigned seq;
1534 		bool negative;
1535 		dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1536 		if (unlikely(!dentry)) {
1537 			if (unlazy_walk(nd, NULL, 0))
1538 				return -ECHILD;
1539 			return 0;
1540 		}
1541 
1542 		/*
1543 		 * This sequence count validates that the inode matches
1544 		 * the dentry name information from lookup.
1545 		 */
1546 		*inode = d_backing_inode(dentry);
1547 		negative = d_is_negative(dentry);
1548 		if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1549 			return -ECHILD;
1550 
1551 		/*
1552 		 * This sequence count validates that the parent had no
1553 		 * changes while we did the lookup of the dentry above.
1554 		 *
1555 		 * The memory barrier in read_seqcount_begin of child is
1556 		 *  enough, we can use __read_seqcount_retry here.
1557 		 */
1558 		if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1559 			return -ECHILD;
1560 
1561 		*seqp = seq;
1562 		if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
1563 			status = d_revalidate(dentry, nd->flags);
1564 		if (unlikely(status <= 0)) {
1565 			if (unlazy_walk(nd, dentry, seq))
1566 				return -ECHILD;
1567 			if (status == -ECHILD)
1568 				status = d_revalidate(dentry, nd->flags);
1569 		} else {
1570 			/*
1571 			 * Note: do negative dentry check after revalidation in
1572 			 * case that drops it.
1573 			 */
1574 			if (unlikely(negative))
1575 				return -ENOENT;
1576 			path->mnt = mnt;
1577 			path->dentry = dentry;
1578 			if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1579 				return 1;
1580 			if (unlazy_walk(nd, dentry, seq))
1581 				return -ECHILD;
1582 		}
1583 	} else {
1584 		dentry = __d_lookup(parent, &nd->last);
1585 		if (unlikely(!dentry))
1586 			return 0;
1587 		if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
1588 			status = d_revalidate(dentry, nd->flags);
1589 	}
1590 	if (unlikely(status <= 0)) {
1591 		if (!status)
1592 			d_invalidate(dentry);
1593 		dput(dentry);
1594 		return status;
1595 	}
1596 	if (unlikely(d_is_negative(dentry))) {
1597 		dput(dentry);
1598 		return -ENOENT;
1599 	}
1600 
1601 	path->mnt = mnt;
1602 	path->dentry = dentry;
1603 	err = follow_managed(path, nd);
1604 	if (likely(err > 0))
1605 		*inode = d_backing_inode(path->dentry);
1606 	return err;
1607 }
1608 
1609 /* Fast lookup failed, do it the slow way */
1610 static struct dentry *lookup_slow(const struct qstr *name,
1611 				  struct dentry *dir,
1612 				  unsigned int flags)
1613 {
1614 	struct dentry *dentry = ERR_PTR(-ENOENT), *old;
1615 	struct inode *inode = dir->d_inode;
1616 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1617 
1618 	inode_lock_shared(inode);
1619 	/* Don't go there if it's already dead */
1620 	if (unlikely(IS_DEADDIR(inode)))
1621 		goto out;
1622 again:
1623 	dentry = d_alloc_parallel(dir, name, &wq);
1624 	if (IS_ERR(dentry))
1625 		goto out;
1626 	if (unlikely(!d_in_lookup(dentry))) {
1627 		if ((dentry->d_flags & DCACHE_OP_REVALIDATE) &&
1628 		    !(flags & LOOKUP_NO_REVAL)) {
1629 			int error = d_revalidate(dentry, flags);
1630 			if (unlikely(error <= 0)) {
1631 				if (!error) {
1632 					d_invalidate(dentry);
1633 					dput(dentry);
1634 					goto again;
1635 				}
1636 				dput(dentry);
1637 				dentry = ERR_PTR(error);
1638 			}
1639 		}
1640 	} else {
1641 		old = inode->i_op->lookup(inode, dentry, flags);
1642 		d_lookup_done(dentry);
1643 		if (unlikely(old)) {
1644 			dput(dentry);
1645 			dentry = old;
1646 		}
1647 	}
1648 out:
1649 	inode_unlock_shared(inode);
1650 	return dentry;
1651 }
1652 
1653 static inline int may_lookup(struct nameidata *nd)
1654 {
1655 	if (nd->flags & LOOKUP_RCU) {
1656 		int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1657 		if (err != -ECHILD)
1658 			return err;
1659 		if (unlazy_walk(nd, NULL, 0))
1660 			return -ECHILD;
1661 	}
1662 	return inode_permission(nd->inode, MAY_EXEC);
1663 }
1664 
1665 static inline int handle_dots(struct nameidata *nd, int type)
1666 {
1667 	if (type == LAST_DOTDOT) {
1668 		if (!nd->root.mnt)
1669 			set_root(nd);
1670 		if (nd->flags & LOOKUP_RCU) {
1671 			return follow_dotdot_rcu(nd);
1672 		} else
1673 			return follow_dotdot(nd);
1674 	}
1675 	return 0;
1676 }
1677 
1678 static int pick_link(struct nameidata *nd, struct path *link,
1679 		     struct inode *inode, unsigned seq)
1680 {
1681 	int error;
1682 	struct saved *last;
1683 	if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1684 		path_to_nameidata(link, nd);
1685 		return -ELOOP;
1686 	}
1687 	if (!(nd->flags & LOOKUP_RCU)) {
1688 		if (link->mnt == nd->path.mnt)
1689 			mntget(link->mnt);
1690 	}
1691 	error = nd_alloc_stack(nd);
1692 	if (unlikely(error)) {
1693 		if (error == -ECHILD) {
1694 			if (unlikely(unlazy_link(nd, link, seq)))
1695 				return -ECHILD;
1696 			error = nd_alloc_stack(nd);
1697 		}
1698 		if (error) {
1699 			path_put(link);
1700 			return error;
1701 		}
1702 	}
1703 
1704 	last = nd->stack + nd->depth++;
1705 	last->link = *link;
1706 	clear_delayed_call(&last->done);
1707 	nd->link_inode = inode;
1708 	last->seq = seq;
1709 	return 1;
1710 }
1711 
1712 /*
1713  * Do we need to follow links? We _really_ want to be able
1714  * to do this check without having to look at inode->i_op,
1715  * so we keep a cache of "no, this doesn't need follow_link"
1716  * for the common case.
1717  */
1718 static inline int should_follow_link(struct nameidata *nd, struct path *link,
1719 				     int follow,
1720 				     struct inode *inode, unsigned seq)
1721 {
1722 	if (likely(!d_is_symlink(link->dentry)))
1723 		return 0;
1724 	if (!follow)
1725 		return 0;
1726 	/* make sure that d_is_symlink above matches inode */
1727 	if (nd->flags & LOOKUP_RCU) {
1728 		if (read_seqcount_retry(&link->dentry->d_seq, seq))
1729 			return -ECHILD;
1730 	}
1731 	return pick_link(nd, link, inode, seq);
1732 }
1733 
1734 enum {WALK_GET = 1, WALK_PUT = 2};
1735 
1736 static int walk_component(struct nameidata *nd, int flags)
1737 {
1738 	struct path path;
1739 	struct inode *inode;
1740 	unsigned seq;
1741 	int err;
1742 	/*
1743 	 * "." and ".." are special - ".." especially so because it has
1744 	 * to be able to know about the current root directory and
1745 	 * parent relationships.
1746 	 */
1747 	if (unlikely(nd->last_type != LAST_NORM)) {
1748 		err = handle_dots(nd, nd->last_type);
1749 		if (flags & WALK_PUT)
1750 			put_link(nd);
1751 		return err;
1752 	}
1753 	err = lookup_fast(nd, &path, &inode, &seq);
1754 	if (unlikely(err <= 0)) {
1755 		if (err < 0)
1756 			return err;
1757 		path.dentry = lookup_slow(&nd->last, nd->path.dentry,
1758 					  nd->flags);
1759 		if (IS_ERR(path.dentry))
1760 			return PTR_ERR(path.dentry);
1761 
1762 		path.mnt = nd->path.mnt;
1763 		err = follow_managed(&path, nd);
1764 		if (unlikely(err < 0))
1765 			return err;
1766 
1767 		if (unlikely(d_is_negative(path.dentry))) {
1768 			path_to_nameidata(&path, nd);
1769 			return -ENOENT;
1770 		}
1771 
1772 		seq = 0;	/* we are already out of RCU mode */
1773 		inode = d_backing_inode(path.dentry);
1774 	}
1775 
1776 	if (flags & WALK_PUT)
1777 		put_link(nd);
1778 	err = should_follow_link(nd, &path, flags & WALK_GET, inode, seq);
1779 	if (unlikely(err))
1780 		return err;
1781 	path_to_nameidata(&path, nd);
1782 	nd->inode = inode;
1783 	nd->seq = seq;
1784 	return 0;
1785 }
1786 
1787 /*
1788  * We can do the critical dentry name comparison and hashing
1789  * operations one word at a time, but we are limited to:
1790  *
1791  * - Architectures with fast unaligned word accesses. We could
1792  *   do a "get_unaligned()" if this helps and is sufficiently
1793  *   fast.
1794  *
1795  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1796  *   do not trap on the (extremely unlikely) case of a page
1797  *   crossing operation.
1798  *
1799  * - Furthermore, we need an efficient 64-bit compile for the
1800  *   64-bit case in order to generate the "number of bytes in
1801  *   the final mask". Again, that could be replaced with a
1802  *   efficient population count instruction or similar.
1803  */
1804 #ifdef CONFIG_DCACHE_WORD_ACCESS
1805 
1806 #include <asm/word-at-a-time.h>
1807 
1808 #ifdef HASH_MIX
1809 
1810 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1811 
1812 #elif defined(CONFIG_64BIT)
1813 /*
1814  * Register pressure in the mixing function is an issue, particularly
1815  * on 32-bit x86, but almost any function requires one state value and
1816  * one temporary.  Instead, use a function designed for two state values
1817  * and no temporaries.
1818  *
1819  * This function cannot create a collision in only two iterations, so
1820  * we have two iterations to achieve avalanche.  In those two iterations,
1821  * we have six layers of mixing, which is enough to spread one bit's
1822  * influence out to 2^6 = 64 state bits.
1823  *
1824  * Rotate constants are scored by considering either 64 one-bit input
1825  * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
1826  * probability of that delta causing a change to each of the 128 output
1827  * bits, using a sample of random initial states.
1828  *
1829  * The Shannon entropy of the computed probabilities is then summed
1830  * to produce a score.  Ideally, any input change has a 50% chance of
1831  * toggling any given output bit.
1832  *
1833  * Mixing scores (in bits) for (12,45):
1834  * Input delta: 1-bit      2-bit
1835  * 1 round:     713.3    42542.6
1836  * 2 rounds:   2753.7   140389.8
1837  * 3 rounds:   5954.1   233458.2
1838  * 4 rounds:   7862.6   256672.2
1839  * Perfect:    8192     258048
1840  *            (64*128) (64*63/2 * 128)
1841  */
1842 #define HASH_MIX(x, y, a)	\
1843 	(	x ^= (a),	\
1844 	y ^= x,	x = rol64(x,12),\
1845 	x += y,	y = rol64(y,45),\
1846 	y *= 9			)
1847 
1848 /*
1849  * Fold two longs into one 32-bit hash value.  This must be fast, but
1850  * latency isn't quite as critical, as there is a fair bit of additional
1851  * work done before the hash value is used.
1852  */
1853 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1854 {
1855 	y ^= x * GOLDEN_RATIO_64;
1856 	y *= GOLDEN_RATIO_64;
1857 	return y >> 32;
1858 }
1859 
1860 #else	/* 32-bit case */
1861 
1862 /*
1863  * Mixing scores (in bits) for (7,20):
1864  * Input delta: 1-bit      2-bit
1865  * 1 round:     330.3     9201.6
1866  * 2 rounds:   1246.4    25475.4
1867  * 3 rounds:   1907.1    31295.1
1868  * 4 rounds:   2042.3    31718.6
1869  * Perfect:    2048      31744
1870  *            (32*64)   (32*31/2 * 64)
1871  */
1872 #define HASH_MIX(x, y, a)	\
1873 	(	x ^= (a),	\
1874 	y ^= x,	x = rol32(x, 7),\
1875 	x += y,	y = rol32(y,20),\
1876 	y *= 9			)
1877 
1878 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1879 {
1880 	/* Use arch-optimized multiply if one exists */
1881 	return __hash_32(y ^ __hash_32(x));
1882 }
1883 
1884 #endif
1885 
1886 /*
1887  * Return the hash of a string of known length.  This is carfully
1888  * designed to match hash_name(), which is the more critical function.
1889  * In particular, we must end by hashing a final word containing 0..7
1890  * payload bytes, to match the way that hash_name() iterates until it
1891  * finds the delimiter after the name.
1892  */
1893 unsigned int full_name_hash(const char *name, unsigned int len)
1894 {
1895 	unsigned long a, x = 0, y = 0;
1896 
1897 	for (;;) {
1898 		if (!len)
1899 			goto done;
1900 		a = load_unaligned_zeropad(name);
1901 		if (len < sizeof(unsigned long))
1902 			break;
1903 		HASH_MIX(x, y, a);
1904 		name += sizeof(unsigned long);
1905 		len -= sizeof(unsigned long);
1906 	}
1907 	x ^= a & bytemask_from_count(len);
1908 done:
1909 	return fold_hash(x, y);
1910 }
1911 EXPORT_SYMBOL(full_name_hash);
1912 
1913 /* Return the "hash_len" (hash and length) of a null-terminated string */
1914 u64 hashlen_string(const char *name)
1915 {
1916 	unsigned long a = 0, x = 0, y = 0, adata, mask, len;
1917 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1918 
1919 	len = -sizeof(unsigned long);
1920 	do {
1921 		HASH_MIX(x, y, a);
1922 		len += sizeof(unsigned long);
1923 		a = load_unaligned_zeropad(name+len);
1924 	} while (!has_zero(a, &adata, &constants));
1925 
1926 	adata = prep_zero_mask(a, adata, &constants);
1927 	mask = create_zero_mask(adata);
1928 	x ^= a & zero_bytemask(mask);
1929 
1930 	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1931 }
1932 EXPORT_SYMBOL(hashlen_string);
1933 
1934 /*
1935  * Calculate the length and hash of the path component, and
1936  * return the "hash_len" as the result.
1937  */
1938 static inline u64 hash_name(const char *name)
1939 {
1940 	unsigned long a = 0, b, x = 0, y = 0, adata, bdata, mask, len;
1941 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1942 
1943 	len = -sizeof(unsigned long);
1944 	do {
1945 		HASH_MIX(x, y, a);
1946 		len += sizeof(unsigned long);
1947 		a = load_unaligned_zeropad(name+len);
1948 		b = a ^ REPEAT_BYTE('/');
1949 	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1950 
1951 	adata = prep_zero_mask(a, adata, &constants);
1952 	bdata = prep_zero_mask(b, bdata, &constants);
1953 	mask = create_zero_mask(adata | bdata);
1954 	x ^= a & zero_bytemask(mask);
1955 
1956 	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1957 }
1958 
1959 #else	/* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
1960 
1961 /* Return the hash of a string of known length */
1962 unsigned int full_name_hash(const char *name, unsigned int len)
1963 {
1964 	unsigned long hash = init_name_hash();
1965 	while (len--)
1966 		hash = partial_name_hash((unsigned char)*name++, hash);
1967 	return end_name_hash(hash);
1968 }
1969 EXPORT_SYMBOL(full_name_hash);
1970 
1971 /* Return the "hash_len" (hash and length) of a null-terminated string */
1972 u64 hashlen_string(const char *name)
1973 {
1974 	unsigned long hash = init_name_hash();
1975 	unsigned long len = 0, c;
1976 
1977 	c = (unsigned char)*name;
1978 	while (c) {
1979 		len++;
1980 		hash = partial_name_hash(c, hash);
1981 		c = (unsigned char)name[len];
1982 	}
1983 	return hashlen_create(end_name_hash(hash), len);
1984 }
1985 EXPORT_SYMBOL(hashlen_string);
1986 
1987 /*
1988  * We know there's a real path component here of at least
1989  * one character.
1990  */
1991 static inline u64 hash_name(const char *name)
1992 {
1993 	unsigned long hash = init_name_hash();
1994 	unsigned long len = 0, c;
1995 
1996 	c = (unsigned char)*name;
1997 	do {
1998 		len++;
1999 		hash = partial_name_hash(c, hash);
2000 		c = (unsigned char)name[len];
2001 	} while (c && c != '/');
2002 	return hashlen_create(end_name_hash(hash), len);
2003 }
2004 
2005 #endif
2006 
2007 /*
2008  * Name resolution.
2009  * This is the basic name resolution function, turning a pathname into
2010  * the final dentry. We expect 'base' to be positive and a directory.
2011  *
2012  * Returns 0 and nd will have valid dentry and mnt on success.
2013  * Returns error and drops reference to input namei data on failure.
2014  */
2015 static int link_path_walk(const char *name, struct nameidata *nd)
2016 {
2017 	int err;
2018 
2019 	while (*name=='/')
2020 		name++;
2021 	if (!*name)
2022 		return 0;
2023 
2024 	/* At this point we know we have a real path component. */
2025 	for(;;) {
2026 		u64 hash_len;
2027 		int type;
2028 
2029 		err = may_lookup(nd);
2030 		if (err)
2031 			return err;
2032 
2033 		hash_len = hash_name(name);
2034 
2035 		type = LAST_NORM;
2036 		if (name[0] == '.') switch (hashlen_len(hash_len)) {
2037 			case 2:
2038 				if (name[1] == '.') {
2039 					type = LAST_DOTDOT;
2040 					nd->flags |= LOOKUP_JUMPED;
2041 				}
2042 				break;
2043 			case 1:
2044 				type = LAST_DOT;
2045 		}
2046 		if (likely(type == LAST_NORM)) {
2047 			struct dentry *parent = nd->path.dentry;
2048 			nd->flags &= ~LOOKUP_JUMPED;
2049 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2050 				struct qstr this = { { .hash_len = hash_len }, .name = name };
2051 				err = parent->d_op->d_hash(parent, &this);
2052 				if (err < 0)
2053 					return err;
2054 				hash_len = this.hash_len;
2055 				name = this.name;
2056 			}
2057 		}
2058 
2059 		nd->last.hash_len = hash_len;
2060 		nd->last.name = name;
2061 		nd->last_type = type;
2062 
2063 		name += hashlen_len(hash_len);
2064 		if (!*name)
2065 			goto OK;
2066 		/*
2067 		 * If it wasn't NUL, we know it was '/'. Skip that
2068 		 * slash, and continue until no more slashes.
2069 		 */
2070 		do {
2071 			name++;
2072 		} while (unlikely(*name == '/'));
2073 		if (unlikely(!*name)) {
2074 OK:
2075 			/* pathname body, done */
2076 			if (!nd->depth)
2077 				return 0;
2078 			name = nd->stack[nd->depth - 1].name;
2079 			/* trailing symlink, done */
2080 			if (!name)
2081 				return 0;
2082 			/* last component of nested symlink */
2083 			err = walk_component(nd, WALK_GET | WALK_PUT);
2084 		} else {
2085 			err = walk_component(nd, WALK_GET);
2086 		}
2087 		if (err < 0)
2088 			return err;
2089 
2090 		if (err) {
2091 			const char *s = get_link(nd);
2092 
2093 			if (IS_ERR(s))
2094 				return PTR_ERR(s);
2095 			err = 0;
2096 			if (unlikely(!s)) {
2097 				/* jumped */
2098 				put_link(nd);
2099 			} else {
2100 				nd->stack[nd->depth - 1].name = name;
2101 				name = s;
2102 				continue;
2103 			}
2104 		}
2105 		if (unlikely(!d_can_lookup(nd->path.dentry))) {
2106 			if (nd->flags & LOOKUP_RCU) {
2107 				if (unlazy_walk(nd, NULL, 0))
2108 					return -ECHILD;
2109 			}
2110 			return -ENOTDIR;
2111 		}
2112 	}
2113 }
2114 
2115 static const char *path_init(struct nameidata *nd, unsigned flags)
2116 {
2117 	int retval = 0;
2118 	const char *s = nd->name->name;
2119 
2120 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
2121 	nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
2122 	nd->depth = 0;
2123 	if (flags & LOOKUP_ROOT) {
2124 		struct dentry *root = nd->root.dentry;
2125 		struct inode *inode = root->d_inode;
2126 		if (*s) {
2127 			if (!d_can_lookup(root))
2128 				return ERR_PTR(-ENOTDIR);
2129 			retval = inode_permission(inode, MAY_EXEC);
2130 			if (retval)
2131 				return ERR_PTR(retval);
2132 		}
2133 		nd->path = nd->root;
2134 		nd->inode = inode;
2135 		if (flags & LOOKUP_RCU) {
2136 			rcu_read_lock();
2137 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2138 			nd->root_seq = nd->seq;
2139 			nd->m_seq = read_seqbegin(&mount_lock);
2140 		} else {
2141 			path_get(&nd->path);
2142 		}
2143 		return s;
2144 	}
2145 
2146 	nd->root.mnt = NULL;
2147 	nd->path.mnt = NULL;
2148 	nd->path.dentry = NULL;
2149 
2150 	nd->m_seq = read_seqbegin(&mount_lock);
2151 	if (*s == '/') {
2152 		if (flags & LOOKUP_RCU)
2153 			rcu_read_lock();
2154 		set_root(nd);
2155 		if (likely(!nd_jump_root(nd)))
2156 			return s;
2157 		nd->root.mnt = NULL;
2158 		rcu_read_unlock();
2159 		return ERR_PTR(-ECHILD);
2160 	} else if (nd->dfd == AT_FDCWD) {
2161 		if (flags & LOOKUP_RCU) {
2162 			struct fs_struct *fs = current->fs;
2163 			unsigned seq;
2164 
2165 			rcu_read_lock();
2166 
2167 			do {
2168 				seq = read_seqcount_begin(&fs->seq);
2169 				nd->path = fs->pwd;
2170 				nd->inode = nd->path.dentry->d_inode;
2171 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2172 			} while (read_seqcount_retry(&fs->seq, seq));
2173 		} else {
2174 			get_fs_pwd(current->fs, &nd->path);
2175 			nd->inode = nd->path.dentry->d_inode;
2176 		}
2177 		return s;
2178 	} else {
2179 		/* Caller must check execute permissions on the starting path component */
2180 		struct fd f = fdget_raw(nd->dfd);
2181 		struct dentry *dentry;
2182 
2183 		if (!f.file)
2184 			return ERR_PTR(-EBADF);
2185 
2186 		dentry = f.file->f_path.dentry;
2187 
2188 		if (*s) {
2189 			if (!d_can_lookup(dentry)) {
2190 				fdput(f);
2191 				return ERR_PTR(-ENOTDIR);
2192 			}
2193 		}
2194 
2195 		nd->path = f.file->f_path;
2196 		if (flags & LOOKUP_RCU) {
2197 			rcu_read_lock();
2198 			nd->inode = nd->path.dentry->d_inode;
2199 			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2200 		} else {
2201 			path_get(&nd->path);
2202 			nd->inode = nd->path.dentry->d_inode;
2203 		}
2204 		fdput(f);
2205 		return s;
2206 	}
2207 }
2208 
2209 static const char *trailing_symlink(struct nameidata *nd)
2210 {
2211 	const char *s;
2212 	int error = may_follow_link(nd);
2213 	if (unlikely(error))
2214 		return ERR_PTR(error);
2215 	nd->flags |= LOOKUP_PARENT;
2216 	nd->stack[0].name = NULL;
2217 	s = get_link(nd);
2218 	return s ? s : "";
2219 }
2220 
2221 static inline int lookup_last(struct nameidata *nd)
2222 {
2223 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2224 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2225 
2226 	nd->flags &= ~LOOKUP_PARENT;
2227 	return walk_component(nd,
2228 			nd->flags & LOOKUP_FOLLOW
2229 				? nd->depth
2230 					? WALK_PUT | WALK_GET
2231 					: WALK_GET
2232 				: 0);
2233 }
2234 
2235 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2236 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2237 {
2238 	const char *s = path_init(nd, flags);
2239 	int err;
2240 
2241 	if (IS_ERR(s))
2242 		return PTR_ERR(s);
2243 	while (!(err = link_path_walk(s, nd))
2244 		&& ((err = lookup_last(nd)) > 0)) {
2245 		s = trailing_symlink(nd);
2246 		if (IS_ERR(s)) {
2247 			err = PTR_ERR(s);
2248 			break;
2249 		}
2250 	}
2251 	if (!err)
2252 		err = complete_walk(nd);
2253 
2254 	if (!err && nd->flags & LOOKUP_DIRECTORY)
2255 		if (!d_can_lookup(nd->path.dentry))
2256 			err = -ENOTDIR;
2257 	if (!err) {
2258 		*path = nd->path;
2259 		nd->path.mnt = NULL;
2260 		nd->path.dentry = NULL;
2261 	}
2262 	terminate_walk(nd);
2263 	return err;
2264 }
2265 
2266 static int filename_lookup(int dfd, struct filename *name, unsigned flags,
2267 			   struct path *path, struct path *root)
2268 {
2269 	int retval;
2270 	struct nameidata nd;
2271 	if (IS_ERR(name))
2272 		return PTR_ERR(name);
2273 	if (unlikely(root)) {
2274 		nd.root = *root;
2275 		flags |= LOOKUP_ROOT;
2276 	}
2277 	set_nameidata(&nd, dfd, name);
2278 	retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2279 	if (unlikely(retval == -ECHILD))
2280 		retval = path_lookupat(&nd, flags, path);
2281 	if (unlikely(retval == -ESTALE))
2282 		retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2283 
2284 	if (likely(!retval))
2285 		audit_inode(name, path->dentry, flags & LOOKUP_PARENT);
2286 	restore_nameidata();
2287 	putname(name);
2288 	return retval;
2289 }
2290 
2291 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2292 static int path_parentat(struct nameidata *nd, unsigned flags,
2293 				struct path *parent)
2294 {
2295 	const char *s = path_init(nd, flags);
2296 	int err;
2297 	if (IS_ERR(s))
2298 		return PTR_ERR(s);
2299 	err = link_path_walk(s, nd);
2300 	if (!err)
2301 		err = complete_walk(nd);
2302 	if (!err) {
2303 		*parent = nd->path;
2304 		nd->path.mnt = NULL;
2305 		nd->path.dentry = NULL;
2306 	}
2307 	terminate_walk(nd);
2308 	return err;
2309 }
2310 
2311 static struct filename *filename_parentat(int dfd, struct filename *name,
2312 				unsigned int flags, struct path *parent,
2313 				struct qstr *last, int *type)
2314 {
2315 	int retval;
2316 	struct nameidata nd;
2317 
2318 	if (IS_ERR(name))
2319 		return name;
2320 	set_nameidata(&nd, dfd, name);
2321 	retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2322 	if (unlikely(retval == -ECHILD))
2323 		retval = path_parentat(&nd, flags, parent);
2324 	if (unlikely(retval == -ESTALE))
2325 		retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2326 	if (likely(!retval)) {
2327 		*last = nd.last;
2328 		*type = nd.last_type;
2329 		audit_inode(name, parent->dentry, LOOKUP_PARENT);
2330 	} else {
2331 		putname(name);
2332 		name = ERR_PTR(retval);
2333 	}
2334 	restore_nameidata();
2335 	return name;
2336 }
2337 
2338 /* does lookup, returns the object with parent locked */
2339 struct dentry *kern_path_locked(const char *name, struct path *path)
2340 {
2341 	struct filename *filename;
2342 	struct dentry *d;
2343 	struct qstr last;
2344 	int type;
2345 
2346 	filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2347 				    &last, &type);
2348 	if (IS_ERR(filename))
2349 		return ERR_CAST(filename);
2350 	if (unlikely(type != LAST_NORM)) {
2351 		path_put(path);
2352 		putname(filename);
2353 		return ERR_PTR(-EINVAL);
2354 	}
2355 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2356 	d = __lookup_hash(&last, path->dentry, 0);
2357 	if (IS_ERR(d)) {
2358 		inode_unlock(path->dentry->d_inode);
2359 		path_put(path);
2360 	}
2361 	putname(filename);
2362 	return d;
2363 }
2364 
2365 int kern_path(const char *name, unsigned int flags, struct path *path)
2366 {
2367 	return filename_lookup(AT_FDCWD, getname_kernel(name),
2368 			       flags, path, NULL);
2369 }
2370 EXPORT_SYMBOL(kern_path);
2371 
2372 /**
2373  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2374  * @dentry:  pointer to dentry of the base directory
2375  * @mnt: pointer to vfs mount of the base directory
2376  * @name: pointer to file name
2377  * @flags: lookup flags
2378  * @path: pointer to struct path to fill
2379  */
2380 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2381 		    const char *name, unsigned int flags,
2382 		    struct path *path)
2383 {
2384 	struct path root = {.mnt = mnt, .dentry = dentry};
2385 	/* the first argument of filename_lookup() is ignored with root */
2386 	return filename_lookup(AT_FDCWD, getname_kernel(name),
2387 			       flags , path, &root);
2388 }
2389 EXPORT_SYMBOL(vfs_path_lookup);
2390 
2391 /**
2392  * lookup_hash - lookup single pathname component on already hashed name
2393  * @name:	name and hash to lookup
2394  * @base:	base directory to lookup from
2395  *
2396  * The name must have been verified and hashed (see lookup_one_len()).  Using
2397  * this after just full_name_hash() is unsafe.
2398  *
2399  * This function also doesn't check for search permission on base directory.
2400  *
2401  * Use lookup_one_len_unlocked() instead, unless you really know what you are
2402  * doing.
2403  *
2404  * Do not hold i_mutex; this helper takes i_mutex if necessary.
2405  */
2406 struct dentry *lookup_hash(const struct qstr *name, struct dentry *base)
2407 {
2408 	struct dentry *ret;
2409 
2410 	ret = lookup_dcache(name, base, 0);
2411 	if (!ret)
2412 		ret = lookup_slow(name, base, 0);
2413 
2414 	return ret;
2415 }
2416 EXPORT_SYMBOL(lookup_hash);
2417 
2418 /**
2419  * lookup_one_len - filesystem helper to lookup single pathname component
2420  * @name:	pathname component to lookup
2421  * @base:	base directory to lookup from
2422  * @len:	maximum length @len should be interpreted to
2423  *
2424  * Note that this routine is purely a helper for filesystem usage and should
2425  * not be called by generic code.
2426  *
2427  * The caller must hold base->i_mutex.
2428  */
2429 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2430 {
2431 	struct qstr this;
2432 	unsigned int c;
2433 	int err;
2434 
2435 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2436 
2437 	this.name = name;
2438 	this.len = len;
2439 	this.hash = full_name_hash(name, len);
2440 	if (!len)
2441 		return ERR_PTR(-EACCES);
2442 
2443 	if (unlikely(name[0] == '.')) {
2444 		if (len < 2 || (len == 2 && name[1] == '.'))
2445 			return ERR_PTR(-EACCES);
2446 	}
2447 
2448 	while (len--) {
2449 		c = *(const unsigned char *)name++;
2450 		if (c == '/' || c == '\0')
2451 			return ERR_PTR(-EACCES);
2452 	}
2453 	/*
2454 	 * See if the low-level filesystem might want
2455 	 * to use its own hash..
2456 	 */
2457 	if (base->d_flags & DCACHE_OP_HASH) {
2458 		int err = base->d_op->d_hash(base, &this);
2459 		if (err < 0)
2460 			return ERR_PTR(err);
2461 	}
2462 
2463 	err = inode_permission(base->d_inode, MAY_EXEC);
2464 	if (err)
2465 		return ERR_PTR(err);
2466 
2467 	return __lookup_hash(&this, base, 0);
2468 }
2469 EXPORT_SYMBOL(lookup_one_len);
2470 
2471 /**
2472  * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2473  * @name:	pathname component to lookup
2474  * @base:	base directory to lookup from
2475  * @len:	maximum length @len should be interpreted to
2476  *
2477  * Note that this routine is purely a helper for filesystem usage and should
2478  * not be called by generic code.
2479  *
2480  * Unlike lookup_one_len, it should be called without the parent
2481  * i_mutex held, and will take the i_mutex itself if necessary.
2482  */
2483 struct dentry *lookup_one_len_unlocked(const char *name,
2484 				       struct dentry *base, int len)
2485 {
2486 	struct qstr this;
2487 	unsigned int c;
2488 	int err;
2489 
2490 	this.name = name;
2491 	this.len = len;
2492 	this.hash = full_name_hash(name, len);
2493 	if (!len)
2494 		return ERR_PTR(-EACCES);
2495 
2496 	if (unlikely(name[0] == '.')) {
2497 		if (len < 2 || (len == 2 && name[1] == '.'))
2498 			return ERR_PTR(-EACCES);
2499 	}
2500 
2501 	while (len--) {
2502 		c = *(const unsigned char *)name++;
2503 		if (c == '/' || c == '\0')
2504 			return ERR_PTR(-EACCES);
2505 	}
2506 	/*
2507 	 * See if the low-level filesystem might want
2508 	 * to use its own hash..
2509 	 */
2510 	if (base->d_flags & DCACHE_OP_HASH) {
2511 		int err = base->d_op->d_hash(base, &this);
2512 		if (err < 0)
2513 			return ERR_PTR(err);
2514 	}
2515 
2516 	err = inode_permission(base->d_inode, MAY_EXEC);
2517 	if (err)
2518 		return ERR_PTR(err);
2519 
2520 	return lookup_hash(&this, base);
2521 }
2522 EXPORT_SYMBOL(lookup_one_len_unlocked);
2523 
2524 #ifdef CONFIG_UNIX98_PTYS
2525 int path_pts(struct path *path)
2526 {
2527 	/* Find something mounted on "pts" in the same directory as
2528 	 * the input path.
2529 	 */
2530 	struct dentry *child, *parent;
2531 	struct qstr this;
2532 	int ret;
2533 
2534 	ret = path_parent_directory(path);
2535 	if (ret)
2536 		return ret;
2537 
2538 	parent = path->dentry;
2539 	this.name = "pts";
2540 	this.len = 3;
2541 	child = d_hash_and_lookup(parent, &this);
2542 	if (!child)
2543 		return -ENOENT;
2544 
2545 	path->dentry = child;
2546 	dput(parent);
2547 	follow_mount(path);
2548 	return 0;
2549 }
2550 #endif
2551 
2552 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2553 		 struct path *path, int *empty)
2554 {
2555 	return filename_lookup(dfd, getname_flags(name, flags, empty),
2556 			       flags, path, NULL);
2557 }
2558 EXPORT_SYMBOL(user_path_at_empty);
2559 
2560 /*
2561  * NB: most callers don't do anything directly with the reference to the
2562  *     to struct filename, but the nd->last pointer points into the name string
2563  *     allocated by getname. So we must hold the reference to it until all
2564  *     path-walking is complete.
2565  */
2566 static inline struct filename *
2567 user_path_parent(int dfd, const char __user *path,
2568 		 struct path *parent,
2569 		 struct qstr *last,
2570 		 int *type,
2571 		 unsigned int flags)
2572 {
2573 	/* only LOOKUP_REVAL is allowed in extra flags */
2574 	return filename_parentat(dfd, getname(path), flags & LOOKUP_REVAL,
2575 				 parent, last, type);
2576 }
2577 
2578 /**
2579  * mountpoint_last - look up last component for umount
2580  * @nd:   pathwalk nameidata - currently pointing at parent directory of "last"
2581  * @path: pointer to container for result
2582  *
2583  * This is a special lookup_last function just for umount. In this case, we
2584  * need to resolve the path without doing any revalidation.
2585  *
2586  * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2587  * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2588  * in almost all cases, this lookup will be served out of the dcache. The only
2589  * cases where it won't are if nd->last refers to a symlink or the path is
2590  * bogus and it doesn't exist.
2591  *
2592  * Returns:
2593  * -error: if there was an error during lookup. This includes -ENOENT if the
2594  *         lookup found a negative dentry. The nd->path reference will also be
2595  *         put in this case.
2596  *
2597  * 0:      if we successfully resolved nd->path and found it to not to be a
2598  *         symlink that needs to be followed. "path" will also be populated.
2599  *         The nd->path reference will also be put.
2600  *
2601  * 1:      if we successfully resolved nd->last and found it to be a symlink
2602  *         that needs to be followed. "path" will be populated with the path
2603  *         to the link, and nd->path will *not* be put.
2604  */
2605 static int
2606 mountpoint_last(struct nameidata *nd, struct path *path)
2607 {
2608 	int error = 0;
2609 	struct dentry *dentry;
2610 	struct dentry *dir = nd->path.dentry;
2611 
2612 	/* If we're in rcuwalk, drop out of it to handle last component */
2613 	if (nd->flags & LOOKUP_RCU) {
2614 		if (unlazy_walk(nd, NULL, 0))
2615 			return -ECHILD;
2616 	}
2617 
2618 	nd->flags &= ~LOOKUP_PARENT;
2619 
2620 	if (unlikely(nd->last_type != LAST_NORM)) {
2621 		error = handle_dots(nd, nd->last_type);
2622 		if (error)
2623 			return error;
2624 		dentry = dget(nd->path.dentry);
2625 	} else {
2626 		dentry = d_lookup(dir, &nd->last);
2627 		if (!dentry) {
2628 			/*
2629 			 * No cached dentry. Mounted dentries are pinned in the
2630 			 * cache, so that means that this dentry is probably
2631 			 * a symlink or the path doesn't actually point
2632 			 * to a mounted dentry.
2633 			 */
2634 			dentry = lookup_slow(&nd->last, dir,
2635 					     nd->flags | LOOKUP_NO_REVAL);
2636 			if (IS_ERR(dentry))
2637 				return PTR_ERR(dentry);
2638 		}
2639 	}
2640 	if (d_is_negative(dentry)) {
2641 		dput(dentry);
2642 		return -ENOENT;
2643 	}
2644 	if (nd->depth)
2645 		put_link(nd);
2646 	path->dentry = dentry;
2647 	path->mnt = nd->path.mnt;
2648 	error = should_follow_link(nd, path, nd->flags & LOOKUP_FOLLOW,
2649 				   d_backing_inode(dentry), 0);
2650 	if (unlikely(error))
2651 		return error;
2652 	mntget(path->mnt);
2653 	follow_mount(path);
2654 	return 0;
2655 }
2656 
2657 /**
2658  * path_mountpoint - look up a path to be umounted
2659  * @nd:		lookup context
2660  * @flags:	lookup flags
2661  * @path:	pointer to container for result
2662  *
2663  * Look up the given name, but don't attempt to revalidate the last component.
2664  * Returns 0 and "path" will be valid on success; Returns error otherwise.
2665  */
2666 static int
2667 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2668 {
2669 	const char *s = path_init(nd, flags);
2670 	int err;
2671 	if (IS_ERR(s))
2672 		return PTR_ERR(s);
2673 	while (!(err = link_path_walk(s, nd)) &&
2674 		(err = mountpoint_last(nd, path)) > 0) {
2675 		s = trailing_symlink(nd);
2676 		if (IS_ERR(s)) {
2677 			err = PTR_ERR(s);
2678 			break;
2679 		}
2680 	}
2681 	terminate_walk(nd);
2682 	return err;
2683 }
2684 
2685 static int
2686 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2687 			unsigned int flags)
2688 {
2689 	struct nameidata nd;
2690 	int error;
2691 	if (IS_ERR(name))
2692 		return PTR_ERR(name);
2693 	set_nameidata(&nd, dfd, name);
2694 	error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2695 	if (unlikely(error == -ECHILD))
2696 		error = path_mountpoint(&nd, flags, path);
2697 	if (unlikely(error == -ESTALE))
2698 		error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2699 	if (likely(!error))
2700 		audit_inode(name, path->dentry, 0);
2701 	restore_nameidata();
2702 	putname(name);
2703 	return error;
2704 }
2705 
2706 /**
2707  * user_path_mountpoint_at - lookup a path from userland in order to umount it
2708  * @dfd:	directory file descriptor
2709  * @name:	pathname from userland
2710  * @flags:	lookup flags
2711  * @path:	pointer to container to hold result
2712  *
2713  * A umount is a special case for path walking. We're not actually interested
2714  * in the inode in this situation, and ESTALE errors can be a problem. We
2715  * simply want track down the dentry and vfsmount attached at the mountpoint
2716  * and avoid revalidating the last component.
2717  *
2718  * Returns 0 and populates "path" on success.
2719  */
2720 int
2721 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2722 			struct path *path)
2723 {
2724 	return filename_mountpoint(dfd, getname(name), path, flags);
2725 }
2726 
2727 int
2728 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2729 			unsigned int flags)
2730 {
2731 	return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2732 }
2733 EXPORT_SYMBOL(kern_path_mountpoint);
2734 
2735 int __check_sticky(struct inode *dir, struct inode *inode)
2736 {
2737 	kuid_t fsuid = current_fsuid();
2738 
2739 	if (uid_eq(inode->i_uid, fsuid))
2740 		return 0;
2741 	if (uid_eq(dir->i_uid, fsuid))
2742 		return 0;
2743 	return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2744 }
2745 EXPORT_SYMBOL(__check_sticky);
2746 
2747 /*
2748  *	Check whether we can remove a link victim from directory dir, check
2749  *  whether the type of victim is right.
2750  *  1. We can't do it if dir is read-only (done in permission())
2751  *  2. We should have write and exec permissions on dir
2752  *  3. We can't remove anything from append-only dir
2753  *  4. We can't do anything with immutable dir (done in permission())
2754  *  5. If the sticky bit on dir is set we should either
2755  *	a. be owner of dir, or
2756  *	b. be owner of victim, or
2757  *	c. have CAP_FOWNER capability
2758  *  6. If the victim is append-only or immutable we can't do antyhing with
2759  *     links pointing to it.
2760  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2761  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2762  *  9. We can't remove a root or mountpoint.
2763  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2764  *     nfs_async_unlink().
2765  */
2766 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2767 {
2768 	struct inode *inode = d_backing_inode(victim);
2769 	int error;
2770 
2771 	if (d_is_negative(victim))
2772 		return -ENOENT;
2773 	BUG_ON(!inode);
2774 
2775 	BUG_ON(victim->d_parent->d_inode != dir);
2776 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2777 
2778 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2779 	if (error)
2780 		return error;
2781 	if (IS_APPEND(dir))
2782 		return -EPERM;
2783 
2784 	if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2785 	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2786 		return -EPERM;
2787 	if (isdir) {
2788 		if (!d_is_dir(victim))
2789 			return -ENOTDIR;
2790 		if (IS_ROOT(victim))
2791 			return -EBUSY;
2792 	} else if (d_is_dir(victim))
2793 		return -EISDIR;
2794 	if (IS_DEADDIR(dir))
2795 		return -ENOENT;
2796 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2797 		return -EBUSY;
2798 	return 0;
2799 }
2800 
2801 /*	Check whether we can create an object with dentry child in directory
2802  *  dir.
2803  *  1. We can't do it if child already exists (open has special treatment for
2804  *     this case, but since we are inlined it's OK)
2805  *  2. We can't do it if dir is read-only (done in permission())
2806  *  3. We should have write and exec permissions on dir
2807  *  4. We can't do it if dir is immutable (done in permission())
2808  */
2809 static inline int may_create(struct inode *dir, struct dentry *child)
2810 {
2811 	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2812 	if (child->d_inode)
2813 		return -EEXIST;
2814 	if (IS_DEADDIR(dir))
2815 		return -ENOENT;
2816 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2817 }
2818 
2819 /*
2820  * p1 and p2 should be directories on the same fs.
2821  */
2822 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2823 {
2824 	struct dentry *p;
2825 
2826 	if (p1 == p2) {
2827 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2828 		return NULL;
2829 	}
2830 
2831 	mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2832 
2833 	p = d_ancestor(p2, p1);
2834 	if (p) {
2835 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2836 		inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2837 		return p;
2838 	}
2839 
2840 	p = d_ancestor(p1, p2);
2841 	if (p) {
2842 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2843 		inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2844 		return p;
2845 	}
2846 
2847 	inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2848 	inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2849 	return NULL;
2850 }
2851 EXPORT_SYMBOL(lock_rename);
2852 
2853 void unlock_rename(struct dentry *p1, struct dentry *p2)
2854 {
2855 	inode_unlock(p1->d_inode);
2856 	if (p1 != p2) {
2857 		inode_unlock(p2->d_inode);
2858 		mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2859 	}
2860 }
2861 EXPORT_SYMBOL(unlock_rename);
2862 
2863 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2864 		bool want_excl)
2865 {
2866 	int error = may_create(dir, dentry);
2867 	if (error)
2868 		return error;
2869 
2870 	if (!dir->i_op->create)
2871 		return -EACCES;	/* shouldn't it be ENOSYS? */
2872 	mode &= S_IALLUGO;
2873 	mode |= S_IFREG;
2874 	error = security_inode_create(dir, dentry, mode);
2875 	if (error)
2876 		return error;
2877 	error = dir->i_op->create(dir, dentry, mode, want_excl);
2878 	if (!error)
2879 		fsnotify_create(dir, dentry);
2880 	return error;
2881 }
2882 EXPORT_SYMBOL(vfs_create);
2883 
2884 static int may_open(struct path *path, int acc_mode, int flag)
2885 {
2886 	struct dentry *dentry = path->dentry;
2887 	struct inode *inode = dentry->d_inode;
2888 	int error;
2889 
2890 	if (!inode)
2891 		return -ENOENT;
2892 
2893 	switch (inode->i_mode & S_IFMT) {
2894 	case S_IFLNK:
2895 		return -ELOOP;
2896 	case S_IFDIR:
2897 		if (acc_mode & MAY_WRITE)
2898 			return -EISDIR;
2899 		break;
2900 	case S_IFBLK:
2901 	case S_IFCHR:
2902 		if (path->mnt->mnt_flags & MNT_NODEV)
2903 			return -EACCES;
2904 		/*FALLTHRU*/
2905 	case S_IFIFO:
2906 	case S_IFSOCK:
2907 		flag &= ~O_TRUNC;
2908 		break;
2909 	}
2910 
2911 	error = inode_permission(inode, MAY_OPEN | acc_mode);
2912 	if (error)
2913 		return error;
2914 
2915 	/*
2916 	 * An append-only file must be opened in append mode for writing.
2917 	 */
2918 	if (IS_APPEND(inode)) {
2919 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2920 			return -EPERM;
2921 		if (flag & O_TRUNC)
2922 			return -EPERM;
2923 	}
2924 
2925 	/* O_NOATIME can only be set by the owner or superuser */
2926 	if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2927 		return -EPERM;
2928 
2929 	return 0;
2930 }
2931 
2932 static int handle_truncate(struct file *filp)
2933 {
2934 	struct path *path = &filp->f_path;
2935 	struct inode *inode = path->dentry->d_inode;
2936 	int error = get_write_access(inode);
2937 	if (error)
2938 		return error;
2939 	/*
2940 	 * Refuse to truncate files with mandatory locks held on them.
2941 	 */
2942 	error = locks_verify_locked(filp);
2943 	if (!error)
2944 		error = security_path_truncate(path);
2945 	if (!error) {
2946 		error = do_truncate(path->dentry, 0,
2947 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2948 				    filp);
2949 	}
2950 	put_write_access(inode);
2951 	return error;
2952 }
2953 
2954 static inline int open_to_namei_flags(int flag)
2955 {
2956 	if ((flag & O_ACCMODE) == 3)
2957 		flag--;
2958 	return flag;
2959 }
2960 
2961 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode)
2962 {
2963 	int error = security_path_mknod(dir, dentry, mode, 0);
2964 	if (error)
2965 		return error;
2966 
2967 	error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2968 	if (error)
2969 		return error;
2970 
2971 	return security_inode_create(dir->dentry->d_inode, dentry, mode);
2972 }
2973 
2974 /*
2975  * Attempt to atomically look up, create and open a file from a negative
2976  * dentry.
2977  *
2978  * Returns 0 if successful.  The file will have been created and attached to
2979  * @file by the filesystem calling finish_open().
2980  *
2981  * Returns 1 if the file was looked up only or didn't need creating.  The
2982  * caller will need to perform the open themselves.  @path will have been
2983  * updated to point to the new dentry.  This may be negative.
2984  *
2985  * Returns an error code otherwise.
2986  */
2987 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2988 			struct path *path, struct file *file,
2989 			const struct open_flags *op,
2990 			int open_flag, umode_t mode,
2991 			int *opened)
2992 {
2993 	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2994 	struct inode *dir =  nd->path.dentry->d_inode;
2995 	int error;
2996 
2997 	if (!(~open_flag & (O_EXCL | O_CREAT)))	/* both O_EXCL and O_CREAT */
2998 		open_flag &= ~O_TRUNC;
2999 
3000 	if (nd->flags & LOOKUP_DIRECTORY)
3001 		open_flag |= O_DIRECTORY;
3002 
3003 	file->f_path.dentry = DENTRY_NOT_SET;
3004 	file->f_path.mnt = nd->path.mnt;
3005 	error = dir->i_op->atomic_open(dir, dentry, file,
3006 				       open_to_namei_flags(open_flag),
3007 				       mode, opened);
3008 	d_lookup_done(dentry);
3009 	if (!error) {
3010 		/*
3011 		 * We didn't have the inode before the open, so check open
3012 		 * permission here.
3013 		 */
3014 		int acc_mode = op->acc_mode;
3015 		if (*opened & FILE_CREATED) {
3016 			WARN_ON(!(open_flag & O_CREAT));
3017 			fsnotify_create(dir, dentry);
3018 			acc_mode = 0;
3019 		}
3020 		error = may_open(&file->f_path, acc_mode, open_flag);
3021 		if (WARN_ON(error > 0))
3022 			error = -EINVAL;
3023 	} else if (error > 0) {
3024 		if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3025 			error = -EIO;
3026 		} else {
3027 			if (file->f_path.dentry) {
3028 				dput(dentry);
3029 				dentry = file->f_path.dentry;
3030 			}
3031 			if (*opened & FILE_CREATED)
3032 				fsnotify_create(dir, dentry);
3033 			if (unlikely(d_is_negative(dentry))) {
3034 				error = -ENOENT;
3035 			} else {
3036 				path->dentry = dentry;
3037 				path->mnt = nd->path.mnt;
3038 				return 1;
3039 			}
3040 		}
3041 	}
3042 	dput(dentry);
3043 	return error;
3044 }
3045 
3046 /*
3047  * Look up and maybe create and open the last component.
3048  *
3049  * Must be called with i_mutex held on parent.
3050  *
3051  * Returns 0 if the file was successfully atomically created (if necessary) and
3052  * opened.  In this case the file will be returned attached to @file.
3053  *
3054  * Returns 1 if the file was not completely opened at this time, though lookups
3055  * and creations will have been performed and the dentry returned in @path will
3056  * be positive upon return if O_CREAT was specified.  If O_CREAT wasn't
3057  * specified then a negative dentry may be returned.
3058  *
3059  * An error code is returned otherwise.
3060  *
3061  * FILE_CREATE will be set in @*opened if the dentry was created and will be
3062  * cleared otherwise prior to returning.
3063  */
3064 static int lookup_open(struct nameidata *nd, struct path *path,
3065 			struct file *file,
3066 			const struct open_flags *op,
3067 			bool got_write, int *opened)
3068 {
3069 	struct dentry *dir = nd->path.dentry;
3070 	struct inode *dir_inode = dir->d_inode;
3071 	int open_flag = op->open_flag;
3072 	struct dentry *dentry;
3073 	int error, create_error = 0;
3074 	umode_t mode = op->mode;
3075 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3076 
3077 	if (unlikely(IS_DEADDIR(dir_inode)))
3078 		return -ENOENT;
3079 
3080 	*opened &= ~FILE_CREATED;
3081 	dentry = d_lookup(dir, &nd->last);
3082 	for (;;) {
3083 		if (!dentry) {
3084 			dentry = d_alloc_parallel(dir, &nd->last, &wq);
3085 			if (IS_ERR(dentry))
3086 				return PTR_ERR(dentry);
3087 		}
3088 		if (d_in_lookup(dentry))
3089 			break;
3090 
3091 		if (!(dentry->d_flags & DCACHE_OP_REVALIDATE))
3092 			break;
3093 
3094 		error = d_revalidate(dentry, nd->flags);
3095 		if (likely(error > 0))
3096 			break;
3097 		if (error)
3098 			goto out_dput;
3099 		d_invalidate(dentry);
3100 		dput(dentry);
3101 		dentry = NULL;
3102 	}
3103 	if (dentry->d_inode) {
3104 		/* Cached positive dentry: will open in f_op->open */
3105 		goto out_no_open;
3106 	}
3107 
3108 	/*
3109 	 * Checking write permission is tricky, bacuse we don't know if we are
3110 	 * going to actually need it: O_CREAT opens should work as long as the
3111 	 * file exists.  But checking existence breaks atomicity.  The trick is
3112 	 * to check access and if not granted clear O_CREAT from the flags.
3113 	 *
3114 	 * Another problem is returing the "right" error value (e.g. for an
3115 	 * O_EXCL open we want to return EEXIST not EROFS).
3116 	 */
3117 	if (open_flag & O_CREAT) {
3118 		if (!IS_POSIXACL(dir->d_inode))
3119 			mode &= ~current_umask();
3120 		if (unlikely(!got_write)) {
3121 			create_error = -EROFS;
3122 			open_flag &= ~O_CREAT;
3123 			if (open_flag & (O_EXCL | O_TRUNC))
3124 				goto no_open;
3125 			/* No side effects, safe to clear O_CREAT */
3126 		} else {
3127 			create_error = may_o_create(&nd->path, dentry, mode);
3128 			if (create_error) {
3129 				open_flag &= ~O_CREAT;
3130 				if (open_flag & O_EXCL)
3131 					goto no_open;
3132 			}
3133 		}
3134 	} else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) &&
3135 		   unlikely(!got_write)) {
3136 		/*
3137 		 * No O_CREATE -> atomicity not a requirement -> fall
3138 		 * back to lookup + open
3139 		 */
3140 		goto no_open;
3141 	}
3142 
3143 	if (dir_inode->i_op->atomic_open) {
3144 		error = atomic_open(nd, dentry, path, file, op, open_flag,
3145 				    mode, opened);
3146 		if (unlikely(error == -ENOENT) && create_error)
3147 			error = create_error;
3148 		return error;
3149 	}
3150 
3151 no_open:
3152 	if (d_in_lookup(dentry)) {
3153 		struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3154 							     nd->flags);
3155 		d_lookup_done(dentry);
3156 		if (unlikely(res)) {
3157 			if (IS_ERR(res)) {
3158 				error = PTR_ERR(res);
3159 				goto out_dput;
3160 			}
3161 			dput(dentry);
3162 			dentry = res;
3163 		}
3164 	}
3165 
3166 	/* Negative dentry, just create the file */
3167 	if (!dentry->d_inode && (open_flag & O_CREAT)) {
3168 		*opened |= FILE_CREATED;
3169 		audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3170 		if (!dir_inode->i_op->create) {
3171 			error = -EACCES;
3172 			goto out_dput;
3173 		}
3174 		error = dir_inode->i_op->create(dir_inode, dentry, mode,
3175 						open_flag & O_EXCL);
3176 		if (error)
3177 			goto out_dput;
3178 		fsnotify_create(dir_inode, dentry);
3179 	}
3180 	if (unlikely(create_error) && !dentry->d_inode) {
3181 		error = create_error;
3182 		goto out_dput;
3183 	}
3184 out_no_open:
3185 	path->dentry = dentry;
3186 	path->mnt = nd->path.mnt;
3187 	return 1;
3188 
3189 out_dput:
3190 	dput(dentry);
3191 	return error;
3192 }
3193 
3194 /*
3195  * Handle the last step of open()
3196  */
3197 static int do_last(struct nameidata *nd,
3198 		   struct file *file, const struct open_flags *op,
3199 		   int *opened)
3200 {
3201 	struct dentry *dir = nd->path.dentry;
3202 	int open_flag = op->open_flag;
3203 	bool will_truncate = (open_flag & O_TRUNC) != 0;
3204 	bool got_write = false;
3205 	int acc_mode = op->acc_mode;
3206 	unsigned seq;
3207 	struct inode *inode;
3208 	struct path path;
3209 	int error;
3210 
3211 	nd->flags &= ~LOOKUP_PARENT;
3212 	nd->flags |= op->intent;
3213 
3214 	if (nd->last_type != LAST_NORM) {
3215 		error = handle_dots(nd, nd->last_type);
3216 		if (unlikely(error))
3217 			return error;
3218 		goto finish_open;
3219 	}
3220 
3221 	if (!(open_flag & O_CREAT)) {
3222 		if (nd->last.name[nd->last.len])
3223 			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3224 		/* we _can_ be in RCU mode here */
3225 		error = lookup_fast(nd, &path, &inode, &seq);
3226 		if (likely(error > 0))
3227 			goto finish_lookup;
3228 
3229 		if (error < 0)
3230 			return error;
3231 
3232 		BUG_ON(nd->inode != dir->d_inode);
3233 		BUG_ON(nd->flags & LOOKUP_RCU);
3234 	} else {
3235 		/* create side of things */
3236 		/*
3237 		 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3238 		 * has been cleared when we got to the last component we are
3239 		 * about to look up
3240 		 */
3241 		error = complete_walk(nd);
3242 		if (error)
3243 			return error;
3244 
3245 		audit_inode(nd->name, dir, LOOKUP_PARENT);
3246 		/* trailing slashes? */
3247 		if (unlikely(nd->last.name[nd->last.len]))
3248 			return -EISDIR;
3249 	}
3250 
3251 	if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3252 		error = mnt_want_write(nd->path.mnt);
3253 		if (!error)
3254 			got_write = true;
3255 		/*
3256 		 * do _not_ fail yet - we might not need that or fail with
3257 		 * a different error; let lookup_open() decide; we'll be
3258 		 * dropping this one anyway.
3259 		 */
3260 	}
3261 	if (open_flag & O_CREAT)
3262 		inode_lock(dir->d_inode);
3263 	else
3264 		inode_lock_shared(dir->d_inode);
3265 	error = lookup_open(nd, &path, file, op, got_write, opened);
3266 	if (open_flag & O_CREAT)
3267 		inode_unlock(dir->d_inode);
3268 	else
3269 		inode_unlock_shared(dir->d_inode);
3270 
3271 	if (error <= 0) {
3272 		if (error)
3273 			goto out;
3274 
3275 		if ((*opened & FILE_CREATED) ||
3276 		    !S_ISREG(file_inode(file)->i_mode))
3277 			will_truncate = false;
3278 
3279 		audit_inode(nd->name, file->f_path.dentry, 0);
3280 		goto opened;
3281 	}
3282 
3283 	if (*opened & FILE_CREATED) {
3284 		/* Don't check for write permission, don't truncate */
3285 		open_flag &= ~O_TRUNC;
3286 		will_truncate = false;
3287 		acc_mode = 0;
3288 		path_to_nameidata(&path, nd);
3289 		goto finish_open_created;
3290 	}
3291 
3292 	/*
3293 	 * If atomic_open() acquired write access it is dropped now due to
3294 	 * possible mount and symlink following (this might be optimized away if
3295 	 * necessary...)
3296 	 */
3297 	if (got_write) {
3298 		mnt_drop_write(nd->path.mnt);
3299 		got_write = false;
3300 	}
3301 
3302 	error = follow_managed(&path, nd);
3303 	if (unlikely(error < 0))
3304 		return error;
3305 
3306 	if (unlikely(d_is_negative(path.dentry))) {
3307 		path_to_nameidata(&path, nd);
3308 		return -ENOENT;
3309 	}
3310 
3311 	/*
3312 	 * create/update audit record if it already exists.
3313 	 */
3314 	audit_inode(nd->name, path.dentry, 0);
3315 
3316 	if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3317 		path_to_nameidata(&path, nd);
3318 		return -EEXIST;
3319 	}
3320 
3321 	seq = 0;	/* out of RCU mode, so the value doesn't matter */
3322 	inode = d_backing_inode(path.dentry);
3323 finish_lookup:
3324 	if (nd->depth)
3325 		put_link(nd);
3326 	error = should_follow_link(nd, &path, nd->flags & LOOKUP_FOLLOW,
3327 				   inode, seq);
3328 	if (unlikely(error))
3329 		return error;
3330 
3331 	path_to_nameidata(&path, nd);
3332 	nd->inode = inode;
3333 	nd->seq = seq;
3334 	/* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
3335 finish_open:
3336 	error = complete_walk(nd);
3337 	if (error)
3338 		return error;
3339 	audit_inode(nd->name, nd->path.dentry, 0);
3340 	error = -EISDIR;
3341 	if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3342 		goto out;
3343 	error = -ENOTDIR;
3344 	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3345 		goto out;
3346 	if (!d_is_reg(nd->path.dentry))
3347 		will_truncate = false;
3348 
3349 	if (will_truncate) {
3350 		error = mnt_want_write(nd->path.mnt);
3351 		if (error)
3352 			goto out;
3353 		got_write = true;
3354 	}
3355 finish_open_created:
3356 	error = may_open(&nd->path, acc_mode, open_flag);
3357 	if (error)
3358 		goto out;
3359 	BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3360 	error = vfs_open(&nd->path, file, current_cred());
3361 	if (error)
3362 		goto out;
3363 	*opened |= FILE_OPENED;
3364 opened:
3365 	error = open_check_o_direct(file);
3366 	if (!error)
3367 		error = ima_file_check(file, op->acc_mode, *opened);
3368 	if (!error && will_truncate)
3369 		error = handle_truncate(file);
3370 out:
3371 	if (unlikely(error) && (*opened & FILE_OPENED))
3372 		fput(file);
3373 	if (unlikely(error > 0)) {
3374 		WARN_ON(1);
3375 		error = -EINVAL;
3376 	}
3377 	if (got_write)
3378 		mnt_drop_write(nd->path.mnt);
3379 	return error;
3380 }
3381 
3382 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3383 		const struct open_flags *op,
3384 		struct file *file, int *opened)
3385 {
3386 	static const struct qstr name = QSTR_INIT("/", 1);
3387 	struct dentry *child;
3388 	struct inode *dir;
3389 	struct path path;
3390 	int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3391 	if (unlikely(error))
3392 		return error;
3393 	error = mnt_want_write(path.mnt);
3394 	if (unlikely(error))
3395 		goto out;
3396 	dir = path.dentry->d_inode;
3397 	/* we want directory to be writable */
3398 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3399 	if (error)
3400 		goto out2;
3401 	if (!dir->i_op->tmpfile) {
3402 		error = -EOPNOTSUPP;
3403 		goto out2;
3404 	}
3405 	child = d_alloc(path.dentry, &name);
3406 	if (unlikely(!child)) {
3407 		error = -ENOMEM;
3408 		goto out2;
3409 	}
3410 	dput(path.dentry);
3411 	path.dentry = child;
3412 	error = dir->i_op->tmpfile(dir, child, op->mode);
3413 	if (error)
3414 		goto out2;
3415 	audit_inode(nd->name, child, 0);
3416 	/* Don't check for other permissions, the inode was just created */
3417 	error = may_open(&path, 0, op->open_flag);
3418 	if (error)
3419 		goto out2;
3420 	file->f_path.mnt = path.mnt;
3421 	error = finish_open(file, child, NULL, opened);
3422 	if (error)
3423 		goto out2;
3424 	error = open_check_o_direct(file);
3425 	if (error) {
3426 		fput(file);
3427 	} else if (!(op->open_flag & O_EXCL)) {
3428 		struct inode *inode = file_inode(file);
3429 		spin_lock(&inode->i_lock);
3430 		inode->i_state |= I_LINKABLE;
3431 		spin_unlock(&inode->i_lock);
3432 	}
3433 out2:
3434 	mnt_drop_write(path.mnt);
3435 out:
3436 	path_put(&path);
3437 	return error;
3438 }
3439 
3440 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3441 {
3442 	struct path path;
3443 	int error = path_lookupat(nd, flags, &path);
3444 	if (!error) {
3445 		audit_inode(nd->name, path.dentry, 0);
3446 		error = vfs_open(&path, file, current_cred());
3447 		path_put(&path);
3448 	}
3449 	return error;
3450 }
3451 
3452 static struct file *path_openat(struct nameidata *nd,
3453 			const struct open_flags *op, unsigned flags)
3454 {
3455 	const char *s;
3456 	struct file *file;
3457 	int opened = 0;
3458 	int error;
3459 
3460 	file = get_empty_filp();
3461 	if (IS_ERR(file))
3462 		return file;
3463 
3464 	file->f_flags = op->open_flag;
3465 
3466 	if (unlikely(file->f_flags & __O_TMPFILE)) {
3467 		error = do_tmpfile(nd, flags, op, file, &opened);
3468 		goto out2;
3469 	}
3470 
3471 	if (unlikely(file->f_flags & O_PATH)) {
3472 		error = do_o_path(nd, flags, file);
3473 		if (!error)
3474 			opened |= FILE_OPENED;
3475 		goto out2;
3476 	}
3477 
3478 	s = path_init(nd, flags);
3479 	if (IS_ERR(s)) {
3480 		put_filp(file);
3481 		return ERR_CAST(s);
3482 	}
3483 	while (!(error = link_path_walk(s, nd)) &&
3484 		(error = do_last(nd, file, op, &opened)) > 0) {
3485 		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3486 		s = trailing_symlink(nd);
3487 		if (IS_ERR(s)) {
3488 			error = PTR_ERR(s);
3489 			break;
3490 		}
3491 	}
3492 	terminate_walk(nd);
3493 out2:
3494 	if (!(opened & FILE_OPENED)) {
3495 		BUG_ON(!error);
3496 		put_filp(file);
3497 	}
3498 	if (unlikely(error)) {
3499 		if (error == -EOPENSTALE) {
3500 			if (flags & LOOKUP_RCU)
3501 				error = -ECHILD;
3502 			else
3503 				error = -ESTALE;
3504 		}
3505 		file = ERR_PTR(error);
3506 	}
3507 	return file;
3508 }
3509 
3510 struct file *do_filp_open(int dfd, struct filename *pathname,
3511 		const struct open_flags *op)
3512 {
3513 	struct nameidata nd;
3514 	int flags = op->lookup_flags;
3515 	struct file *filp;
3516 
3517 	set_nameidata(&nd, dfd, pathname);
3518 	filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3519 	if (unlikely(filp == ERR_PTR(-ECHILD)))
3520 		filp = path_openat(&nd, op, flags);
3521 	if (unlikely(filp == ERR_PTR(-ESTALE)))
3522 		filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3523 	restore_nameidata();
3524 	return filp;
3525 }
3526 
3527 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3528 		const char *name, const struct open_flags *op)
3529 {
3530 	struct nameidata nd;
3531 	struct file *file;
3532 	struct filename *filename;
3533 	int flags = op->lookup_flags | LOOKUP_ROOT;
3534 
3535 	nd.root.mnt = mnt;
3536 	nd.root.dentry = dentry;
3537 
3538 	if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3539 		return ERR_PTR(-ELOOP);
3540 
3541 	filename = getname_kernel(name);
3542 	if (IS_ERR(filename))
3543 		return ERR_CAST(filename);
3544 
3545 	set_nameidata(&nd, -1, filename);
3546 	file = path_openat(&nd, op, flags | LOOKUP_RCU);
3547 	if (unlikely(file == ERR_PTR(-ECHILD)))
3548 		file = path_openat(&nd, op, flags);
3549 	if (unlikely(file == ERR_PTR(-ESTALE)))
3550 		file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3551 	restore_nameidata();
3552 	putname(filename);
3553 	return file;
3554 }
3555 
3556 static struct dentry *filename_create(int dfd, struct filename *name,
3557 				struct path *path, unsigned int lookup_flags)
3558 {
3559 	struct dentry *dentry = ERR_PTR(-EEXIST);
3560 	struct qstr last;
3561 	int type;
3562 	int err2;
3563 	int error;
3564 	bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3565 
3566 	/*
3567 	 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3568 	 * other flags passed in are ignored!
3569 	 */
3570 	lookup_flags &= LOOKUP_REVAL;
3571 
3572 	name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3573 	if (IS_ERR(name))
3574 		return ERR_CAST(name);
3575 
3576 	/*
3577 	 * Yucky last component or no last component at all?
3578 	 * (foo/., foo/.., /////)
3579 	 */
3580 	if (unlikely(type != LAST_NORM))
3581 		goto out;
3582 
3583 	/* don't fail immediately if it's r/o, at least try to report other errors */
3584 	err2 = mnt_want_write(path->mnt);
3585 	/*
3586 	 * Do the final lookup.
3587 	 */
3588 	lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3589 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3590 	dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3591 	if (IS_ERR(dentry))
3592 		goto unlock;
3593 
3594 	error = -EEXIST;
3595 	if (d_is_positive(dentry))
3596 		goto fail;
3597 
3598 	/*
3599 	 * Special case - lookup gave negative, but... we had foo/bar/
3600 	 * From the vfs_mknod() POV we just have a negative dentry -
3601 	 * all is fine. Let's be bastards - you had / on the end, you've
3602 	 * been asking for (non-existent) directory. -ENOENT for you.
3603 	 */
3604 	if (unlikely(!is_dir && last.name[last.len])) {
3605 		error = -ENOENT;
3606 		goto fail;
3607 	}
3608 	if (unlikely(err2)) {
3609 		error = err2;
3610 		goto fail;
3611 	}
3612 	putname(name);
3613 	return dentry;
3614 fail:
3615 	dput(dentry);
3616 	dentry = ERR_PTR(error);
3617 unlock:
3618 	inode_unlock(path->dentry->d_inode);
3619 	if (!err2)
3620 		mnt_drop_write(path->mnt);
3621 out:
3622 	path_put(path);
3623 	putname(name);
3624 	return dentry;
3625 }
3626 
3627 struct dentry *kern_path_create(int dfd, const char *pathname,
3628 				struct path *path, unsigned int lookup_flags)
3629 {
3630 	return filename_create(dfd, getname_kernel(pathname),
3631 				path, lookup_flags);
3632 }
3633 EXPORT_SYMBOL(kern_path_create);
3634 
3635 void done_path_create(struct path *path, struct dentry *dentry)
3636 {
3637 	dput(dentry);
3638 	inode_unlock(path->dentry->d_inode);
3639 	mnt_drop_write(path->mnt);
3640 	path_put(path);
3641 }
3642 EXPORT_SYMBOL(done_path_create);
3643 
3644 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3645 				struct path *path, unsigned int lookup_flags)
3646 {
3647 	return filename_create(dfd, getname(pathname), path, lookup_flags);
3648 }
3649 EXPORT_SYMBOL(user_path_create);
3650 
3651 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3652 {
3653 	int error = may_create(dir, dentry);
3654 
3655 	if (error)
3656 		return error;
3657 
3658 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3659 		return -EPERM;
3660 
3661 	if (!dir->i_op->mknod)
3662 		return -EPERM;
3663 
3664 	error = devcgroup_inode_mknod(mode, dev);
3665 	if (error)
3666 		return error;
3667 
3668 	error = security_inode_mknod(dir, dentry, mode, dev);
3669 	if (error)
3670 		return error;
3671 
3672 	error = dir->i_op->mknod(dir, dentry, mode, dev);
3673 	if (!error)
3674 		fsnotify_create(dir, dentry);
3675 	return error;
3676 }
3677 EXPORT_SYMBOL(vfs_mknod);
3678 
3679 static int may_mknod(umode_t mode)
3680 {
3681 	switch (mode & S_IFMT) {
3682 	case S_IFREG:
3683 	case S_IFCHR:
3684 	case S_IFBLK:
3685 	case S_IFIFO:
3686 	case S_IFSOCK:
3687 	case 0: /* zero mode translates to S_IFREG */
3688 		return 0;
3689 	case S_IFDIR:
3690 		return -EPERM;
3691 	default:
3692 		return -EINVAL;
3693 	}
3694 }
3695 
3696 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3697 		unsigned, dev)
3698 {
3699 	struct dentry *dentry;
3700 	struct path path;
3701 	int error;
3702 	unsigned int lookup_flags = 0;
3703 
3704 	error = may_mknod(mode);
3705 	if (error)
3706 		return error;
3707 retry:
3708 	dentry = user_path_create(dfd, filename, &path, lookup_flags);
3709 	if (IS_ERR(dentry))
3710 		return PTR_ERR(dentry);
3711 
3712 	if (!IS_POSIXACL(path.dentry->d_inode))
3713 		mode &= ~current_umask();
3714 	error = security_path_mknod(&path, dentry, mode, dev);
3715 	if (error)
3716 		goto out;
3717 	switch (mode & S_IFMT) {
3718 		case 0: case S_IFREG:
3719 			error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3720 			if (!error)
3721 				ima_post_path_mknod(dentry);
3722 			break;
3723 		case S_IFCHR: case S_IFBLK:
3724 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3725 					new_decode_dev(dev));
3726 			break;
3727 		case S_IFIFO: case S_IFSOCK:
3728 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3729 			break;
3730 	}
3731 out:
3732 	done_path_create(&path, dentry);
3733 	if (retry_estale(error, lookup_flags)) {
3734 		lookup_flags |= LOOKUP_REVAL;
3735 		goto retry;
3736 	}
3737 	return error;
3738 }
3739 
3740 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3741 {
3742 	return sys_mknodat(AT_FDCWD, filename, mode, dev);
3743 }
3744 
3745 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3746 {
3747 	int error = may_create(dir, dentry);
3748 	unsigned max_links = dir->i_sb->s_max_links;
3749 
3750 	if (error)
3751 		return error;
3752 
3753 	if (!dir->i_op->mkdir)
3754 		return -EPERM;
3755 
3756 	mode &= (S_IRWXUGO|S_ISVTX);
3757 	error = security_inode_mkdir(dir, dentry, mode);
3758 	if (error)
3759 		return error;
3760 
3761 	if (max_links && dir->i_nlink >= max_links)
3762 		return -EMLINK;
3763 
3764 	error = dir->i_op->mkdir(dir, dentry, mode);
3765 	if (!error)
3766 		fsnotify_mkdir(dir, dentry);
3767 	return error;
3768 }
3769 EXPORT_SYMBOL(vfs_mkdir);
3770 
3771 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3772 {
3773 	struct dentry *dentry;
3774 	struct path path;
3775 	int error;
3776 	unsigned int lookup_flags = LOOKUP_DIRECTORY;
3777 
3778 retry:
3779 	dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3780 	if (IS_ERR(dentry))
3781 		return PTR_ERR(dentry);
3782 
3783 	if (!IS_POSIXACL(path.dentry->d_inode))
3784 		mode &= ~current_umask();
3785 	error = security_path_mkdir(&path, dentry, mode);
3786 	if (!error)
3787 		error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3788 	done_path_create(&path, dentry);
3789 	if (retry_estale(error, lookup_flags)) {
3790 		lookup_flags |= LOOKUP_REVAL;
3791 		goto retry;
3792 	}
3793 	return error;
3794 }
3795 
3796 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3797 {
3798 	return sys_mkdirat(AT_FDCWD, pathname, mode);
3799 }
3800 
3801 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3802 {
3803 	int error = may_delete(dir, dentry, 1);
3804 
3805 	if (error)
3806 		return error;
3807 
3808 	if (!dir->i_op->rmdir)
3809 		return -EPERM;
3810 
3811 	dget(dentry);
3812 	inode_lock(dentry->d_inode);
3813 
3814 	error = -EBUSY;
3815 	if (is_local_mountpoint(dentry))
3816 		goto out;
3817 
3818 	error = security_inode_rmdir(dir, dentry);
3819 	if (error)
3820 		goto out;
3821 
3822 	shrink_dcache_parent(dentry);
3823 	error = dir->i_op->rmdir(dir, dentry);
3824 	if (error)
3825 		goto out;
3826 
3827 	dentry->d_inode->i_flags |= S_DEAD;
3828 	dont_mount(dentry);
3829 	detach_mounts(dentry);
3830 
3831 out:
3832 	inode_unlock(dentry->d_inode);
3833 	dput(dentry);
3834 	if (!error)
3835 		d_delete(dentry);
3836 	return error;
3837 }
3838 EXPORT_SYMBOL(vfs_rmdir);
3839 
3840 static long do_rmdir(int dfd, const char __user *pathname)
3841 {
3842 	int error = 0;
3843 	struct filename *name;
3844 	struct dentry *dentry;
3845 	struct path path;
3846 	struct qstr last;
3847 	int type;
3848 	unsigned int lookup_flags = 0;
3849 retry:
3850 	name = user_path_parent(dfd, pathname,
3851 				&path, &last, &type, lookup_flags);
3852 	if (IS_ERR(name))
3853 		return PTR_ERR(name);
3854 
3855 	switch (type) {
3856 	case LAST_DOTDOT:
3857 		error = -ENOTEMPTY;
3858 		goto exit1;
3859 	case LAST_DOT:
3860 		error = -EINVAL;
3861 		goto exit1;
3862 	case LAST_ROOT:
3863 		error = -EBUSY;
3864 		goto exit1;
3865 	}
3866 
3867 	error = mnt_want_write(path.mnt);
3868 	if (error)
3869 		goto exit1;
3870 
3871 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3872 	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3873 	error = PTR_ERR(dentry);
3874 	if (IS_ERR(dentry))
3875 		goto exit2;
3876 	if (!dentry->d_inode) {
3877 		error = -ENOENT;
3878 		goto exit3;
3879 	}
3880 	error = security_path_rmdir(&path, dentry);
3881 	if (error)
3882 		goto exit3;
3883 	error = vfs_rmdir(path.dentry->d_inode, dentry);
3884 exit3:
3885 	dput(dentry);
3886 exit2:
3887 	inode_unlock(path.dentry->d_inode);
3888 	mnt_drop_write(path.mnt);
3889 exit1:
3890 	path_put(&path);
3891 	putname(name);
3892 	if (retry_estale(error, lookup_flags)) {
3893 		lookup_flags |= LOOKUP_REVAL;
3894 		goto retry;
3895 	}
3896 	return error;
3897 }
3898 
3899 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3900 {
3901 	return do_rmdir(AT_FDCWD, pathname);
3902 }
3903 
3904 /**
3905  * vfs_unlink - unlink a filesystem object
3906  * @dir:	parent directory
3907  * @dentry:	victim
3908  * @delegated_inode: returns victim inode, if the inode is delegated.
3909  *
3910  * The caller must hold dir->i_mutex.
3911  *
3912  * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3913  * return a reference to the inode in delegated_inode.  The caller
3914  * should then break the delegation on that inode and retry.  Because
3915  * breaking a delegation may take a long time, the caller should drop
3916  * dir->i_mutex before doing so.
3917  *
3918  * Alternatively, a caller may pass NULL for delegated_inode.  This may
3919  * be appropriate for callers that expect the underlying filesystem not
3920  * to be NFS exported.
3921  */
3922 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3923 {
3924 	struct inode *target = dentry->d_inode;
3925 	int error = may_delete(dir, dentry, 0);
3926 
3927 	if (error)
3928 		return error;
3929 
3930 	if (!dir->i_op->unlink)
3931 		return -EPERM;
3932 
3933 	inode_lock(target);
3934 	if (is_local_mountpoint(dentry))
3935 		error = -EBUSY;
3936 	else {
3937 		error = security_inode_unlink(dir, dentry);
3938 		if (!error) {
3939 			error = try_break_deleg(target, delegated_inode);
3940 			if (error)
3941 				goto out;
3942 			error = dir->i_op->unlink(dir, dentry);
3943 			if (!error) {
3944 				dont_mount(dentry);
3945 				detach_mounts(dentry);
3946 			}
3947 		}
3948 	}
3949 out:
3950 	inode_unlock(target);
3951 
3952 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
3953 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3954 		fsnotify_link_count(target);
3955 		d_delete(dentry);
3956 	}
3957 
3958 	return error;
3959 }
3960 EXPORT_SYMBOL(vfs_unlink);
3961 
3962 /*
3963  * Make sure that the actual truncation of the file will occur outside its
3964  * directory's i_mutex.  Truncate can take a long time if there is a lot of
3965  * writeout happening, and we don't want to prevent access to the directory
3966  * while waiting on the I/O.
3967  */
3968 static long do_unlinkat(int dfd, const char __user *pathname)
3969 {
3970 	int error;
3971 	struct filename *name;
3972 	struct dentry *dentry;
3973 	struct path path;
3974 	struct qstr last;
3975 	int type;
3976 	struct inode *inode = NULL;
3977 	struct inode *delegated_inode = NULL;
3978 	unsigned int lookup_flags = 0;
3979 retry:
3980 	name = user_path_parent(dfd, pathname,
3981 				&path, &last, &type, lookup_flags);
3982 	if (IS_ERR(name))
3983 		return PTR_ERR(name);
3984 
3985 	error = -EISDIR;
3986 	if (type != LAST_NORM)
3987 		goto exit1;
3988 
3989 	error = mnt_want_write(path.mnt);
3990 	if (error)
3991 		goto exit1;
3992 retry_deleg:
3993 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3994 	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3995 	error = PTR_ERR(dentry);
3996 	if (!IS_ERR(dentry)) {
3997 		/* Why not before? Because we want correct error value */
3998 		if (last.name[last.len])
3999 			goto slashes;
4000 		inode = dentry->d_inode;
4001 		if (d_is_negative(dentry))
4002 			goto slashes;
4003 		ihold(inode);
4004 		error = security_path_unlink(&path, dentry);
4005 		if (error)
4006 			goto exit2;
4007 		error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
4008 exit2:
4009 		dput(dentry);
4010 	}
4011 	inode_unlock(path.dentry->d_inode);
4012 	if (inode)
4013 		iput(inode);	/* truncate the inode here */
4014 	inode = NULL;
4015 	if (delegated_inode) {
4016 		error = break_deleg_wait(&delegated_inode);
4017 		if (!error)
4018 			goto retry_deleg;
4019 	}
4020 	mnt_drop_write(path.mnt);
4021 exit1:
4022 	path_put(&path);
4023 	putname(name);
4024 	if (retry_estale(error, lookup_flags)) {
4025 		lookup_flags |= LOOKUP_REVAL;
4026 		inode = NULL;
4027 		goto retry;
4028 	}
4029 	return error;
4030 
4031 slashes:
4032 	if (d_is_negative(dentry))
4033 		error = -ENOENT;
4034 	else if (d_is_dir(dentry))
4035 		error = -EISDIR;
4036 	else
4037 		error = -ENOTDIR;
4038 	goto exit2;
4039 }
4040 
4041 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4042 {
4043 	if ((flag & ~AT_REMOVEDIR) != 0)
4044 		return -EINVAL;
4045 
4046 	if (flag & AT_REMOVEDIR)
4047 		return do_rmdir(dfd, pathname);
4048 
4049 	return do_unlinkat(dfd, pathname);
4050 }
4051 
4052 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4053 {
4054 	return do_unlinkat(AT_FDCWD, pathname);
4055 }
4056 
4057 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
4058 {
4059 	int error = may_create(dir, dentry);
4060 
4061 	if (error)
4062 		return error;
4063 
4064 	if (!dir->i_op->symlink)
4065 		return -EPERM;
4066 
4067 	error = security_inode_symlink(dir, dentry, oldname);
4068 	if (error)
4069 		return error;
4070 
4071 	error = dir->i_op->symlink(dir, dentry, oldname);
4072 	if (!error)
4073 		fsnotify_create(dir, dentry);
4074 	return error;
4075 }
4076 EXPORT_SYMBOL(vfs_symlink);
4077 
4078 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4079 		int, newdfd, const char __user *, newname)
4080 {
4081 	int error;
4082 	struct filename *from;
4083 	struct dentry *dentry;
4084 	struct path path;
4085 	unsigned int lookup_flags = 0;
4086 
4087 	from = getname(oldname);
4088 	if (IS_ERR(from))
4089 		return PTR_ERR(from);
4090 retry:
4091 	dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4092 	error = PTR_ERR(dentry);
4093 	if (IS_ERR(dentry))
4094 		goto out_putname;
4095 
4096 	error = security_path_symlink(&path, dentry, from->name);
4097 	if (!error)
4098 		error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
4099 	done_path_create(&path, dentry);
4100 	if (retry_estale(error, lookup_flags)) {
4101 		lookup_flags |= LOOKUP_REVAL;
4102 		goto retry;
4103 	}
4104 out_putname:
4105 	putname(from);
4106 	return error;
4107 }
4108 
4109 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4110 {
4111 	return sys_symlinkat(oldname, AT_FDCWD, newname);
4112 }
4113 
4114 /**
4115  * vfs_link - create a new link
4116  * @old_dentry:	object to be linked
4117  * @dir:	new parent
4118  * @new_dentry:	where to create the new link
4119  * @delegated_inode: returns inode needing a delegation break
4120  *
4121  * The caller must hold dir->i_mutex
4122  *
4123  * If vfs_link discovers a delegation on the to-be-linked file in need
4124  * of breaking, it will return -EWOULDBLOCK and return a reference to the
4125  * inode in delegated_inode.  The caller should then break the delegation
4126  * and retry.  Because breaking a delegation may take a long time, the
4127  * caller should drop the i_mutex before doing so.
4128  *
4129  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4130  * be appropriate for callers that expect the underlying filesystem not
4131  * to be NFS exported.
4132  */
4133 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4134 {
4135 	struct inode *inode = old_dentry->d_inode;
4136 	unsigned max_links = dir->i_sb->s_max_links;
4137 	int error;
4138 
4139 	if (!inode)
4140 		return -ENOENT;
4141 
4142 	error = may_create(dir, new_dentry);
4143 	if (error)
4144 		return error;
4145 
4146 	if (dir->i_sb != inode->i_sb)
4147 		return -EXDEV;
4148 
4149 	/*
4150 	 * A link to an append-only or immutable file cannot be created.
4151 	 */
4152 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4153 		return -EPERM;
4154 	if (!dir->i_op->link)
4155 		return -EPERM;
4156 	if (S_ISDIR(inode->i_mode))
4157 		return -EPERM;
4158 
4159 	error = security_inode_link(old_dentry, dir, new_dentry);
4160 	if (error)
4161 		return error;
4162 
4163 	inode_lock(inode);
4164 	/* Make sure we don't allow creating hardlink to an unlinked file */
4165 	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4166 		error =  -ENOENT;
4167 	else if (max_links && inode->i_nlink >= max_links)
4168 		error = -EMLINK;
4169 	else {
4170 		error = try_break_deleg(inode, delegated_inode);
4171 		if (!error)
4172 			error = dir->i_op->link(old_dentry, dir, new_dentry);
4173 	}
4174 
4175 	if (!error && (inode->i_state & I_LINKABLE)) {
4176 		spin_lock(&inode->i_lock);
4177 		inode->i_state &= ~I_LINKABLE;
4178 		spin_unlock(&inode->i_lock);
4179 	}
4180 	inode_unlock(inode);
4181 	if (!error)
4182 		fsnotify_link(dir, inode, new_dentry);
4183 	return error;
4184 }
4185 EXPORT_SYMBOL(vfs_link);
4186 
4187 /*
4188  * Hardlinks are often used in delicate situations.  We avoid
4189  * security-related surprises by not following symlinks on the
4190  * newname.  --KAB
4191  *
4192  * We don't follow them on the oldname either to be compatible
4193  * with linux 2.0, and to avoid hard-linking to directories
4194  * and other special files.  --ADM
4195  */
4196 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4197 		int, newdfd, const char __user *, newname, int, flags)
4198 {
4199 	struct dentry *new_dentry;
4200 	struct path old_path, new_path;
4201 	struct inode *delegated_inode = NULL;
4202 	int how = 0;
4203 	int error;
4204 
4205 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4206 		return -EINVAL;
4207 	/*
4208 	 * To use null names we require CAP_DAC_READ_SEARCH
4209 	 * This ensures that not everyone will be able to create
4210 	 * handlink using the passed filedescriptor.
4211 	 */
4212 	if (flags & AT_EMPTY_PATH) {
4213 		if (!capable(CAP_DAC_READ_SEARCH))
4214 			return -ENOENT;
4215 		how = LOOKUP_EMPTY;
4216 	}
4217 
4218 	if (flags & AT_SYMLINK_FOLLOW)
4219 		how |= LOOKUP_FOLLOW;
4220 retry:
4221 	error = user_path_at(olddfd, oldname, how, &old_path);
4222 	if (error)
4223 		return error;
4224 
4225 	new_dentry = user_path_create(newdfd, newname, &new_path,
4226 					(how & LOOKUP_REVAL));
4227 	error = PTR_ERR(new_dentry);
4228 	if (IS_ERR(new_dentry))
4229 		goto out;
4230 
4231 	error = -EXDEV;
4232 	if (old_path.mnt != new_path.mnt)
4233 		goto out_dput;
4234 	error = may_linkat(&old_path);
4235 	if (unlikely(error))
4236 		goto out_dput;
4237 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
4238 	if (error)
4239 		goto out_dput;
4240 	error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4241 out_dput:
4242 	done_path_create(&new_path, new_dentry);
4243 	if (delegated_inode) {
4244 		error = break_deleg_wait(&delegated_inode);
4245 		if (!error) {
4246 			path_put(&old_path);
4247 			goto retry;
4248 		}
4249 	}
4250 	if (retry_estale(error, how)) {
4251 		path_put(&old_path);
4252 		how |= LOOKUP_REVAL;
4253 		goto retry;
4254 	}
4255 out:
4256 	path_put(&old_path);
4257 
4258 	return error;
4259 }
4260 
4261 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4262 {
4263 	return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4264 }
4265 
4266 /**
4267  * vfs_rename - rename a filesystem object
4268  * @old_dir:	parent of source
4269  * @old_dentry:	source
4270  * @new_dir:	parent of destination
4271  * @new_dentry:	destination
4272  * @delegated_inode: returns an inode needing a delegation break
4273  * @flags:	rename flags
4274  *
4275  * The caller must hold multiple mutexes--see lock_rename()).
4276  *
4277  * If vfs_rename discovers a delegation in need of breaking at either
4278  * the source or destination, it will return -EWOULDBLOCK and return a
4279  * reference to the inode in delegated_inode.  The caller should then
4280  * break the delegation and retry.  Because breaking a delegation may
4281  * take a long time, the caller should drop all locks before doing
4282  * so.
4283  *
4284  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4285  * be appropriate for callers that expect the underlying filesystem not
4286  * to be NFS exported.
4287  *
4288  * The worst of all namespace operations - renaming directory. "Perverted"
4289  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4290  * Problems:
4291  *	a) we can get into loop creation.
4292  *	b) race potential - two innocent renames can create a loop together.
4293  *	   That's where 4.4 screws up. Current fix: serialization on
4294  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4295  *	   story.
4296  *	c) we have to lock _four_ objects - parents and victim (if it exists),
4297  *	   and source (if it is not a directory).
4298  *	   And that - after we got ->i_mutex on parents (until then we don't know
4299  *	   whether the target exists).  Solution: try to be smart with locking
4300  *	   order for inodes.  We rely on the fact that tree topology may change
4301  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
4302  *	   move will be locked.  Thus we can rank directories by the tree
4303  *	   (ancestors first) and rank all non-directories after them.
4304  *	   That works since everybody except rename does "lock parent, lookup,
4305  *	   lock child" and rename is under ->s_vfs_rename_mutex.
4306  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
4307  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
4308  *	   we'd better make sure that there's no link(2) for them.
4309  *	d) conversion from fhandle to dentry may come in the wrong moment - when
4310  *	   we are removing the target. Solution: we will have to grab ->i_mutex
4311  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4312  *	   ->i_mutex on parents, which works but leads to some truly excessive
4313  *	   locking].
4314  */
4315 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4316 	       struct inode *new_dir, struct dentry *new_dentry,
4317 	       struct inode **delegated_inode, unsigned int flags)
4318 {
4319 	int error;
4320 	bool is_dir = d_is_dir(old_dentry);
4321 	const unsigned char *old_name;
4322 	struct inode *source = old_dentry->d_inode;
4323 	struct inode *target = new_dentry->d_inode;
4324 	bool new_is_dir = false;
4325 	unsigned max_links = new_dir->i_sb->s_max_links;
4326 
4327 	/*
4328 	 * Check source == target.
4329 	 * On overlayfs need to look at underlying inodes.
4330 	 */
4331 	if (vfs_select_inode(old_dentry, 0) == vfs_select_inode(new_dentry, 0))
4332 		return 0;
4333 
4334 	error = may_delete(old_dir, old_dentry, is_dir);
4335 	if (error)
4336 		return error;
4337 
4338 	if (!target) {
4339 		error = may_create(new_dir, new_dentry);
4340 	} else {
4341 		new_is_dir = d_is_dir(new_dentry);
4342 
4343 		if (!(flags & RENAME_EXCHANGE))
4344 			error = may_delete(new_dir, new_dentry, is_dir);
4345 		else
4346 			error = may_delete(new_dir, new_dentry, new_is_dir);
4347 	}
4348 	if (error)
4349 		return error;
4350 
4351 	if (!old_dir->i_op->rename && !old_dir->i_op->rename2)
4352 		return -EPERM;
4353 
4354 	if (flags && !old_dir->i_op->rename2)
4355 		return -EINVAL;
4356 
4357 	/*
4358 	 * If we are going to change the parent - check write permissions,
4359 	 * we'll need to flip '..'.
4360 	 */
4361 	if (new_dir != old_dir) {
4362 		if (is_dir) {
4363 			error = inode_permission(source, MAY_WRITE);
4364 			if (error)
4365 				return error;
4366 		}
4367 		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4368 			error = inode_permission(target, MAY_WRITE);
4369 			if (error)
4370 				return error;
4371 		}
4372 	}
4373 
4374 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4375 				      flags);
4376 	if (error)
4377 		return error;
4378 
4379 	old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4380 	dget(new_dentry);
4381 	if (!is_dir || (flags & RENAME_EXCHANGE))
4382 		lock_two_nondirectories(source, target);
4383 	else if (target)
4384 		inode_lock(target);
4385 
4386 	error = -EBUSY;
4387 	if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4388 		goto out;
4389 
4390 	if (max_links && new_dir != old_dir) {
4391 		error = -EMLINK;
4392 		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4393 			goto out;
4394 		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4395 		    old_dir->i_nlink >= max_links)
4396 			goto out;
4397 	}
4398 	if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4399 		shrink_dcache_parent(new_dentry);
4400 	if (!is_dir) {
4401 		error = try_break_deleg(source, delegated_inode);
4402 		if (error)
4403 			goto out;
4404 	}
4405 	if (target && !new_is_dir) {
4406 		error = try_break_deleg(target, delegated_inode);
4407 		if (error)
4408 			goto out;
4409 	}
4410 	if (!old_dir->i_op->rename2) {
4411 		error = old_dir->i_op->rename(old_dir, old_dentry,
4412 					      new_dir, new_dentry);
4413 	} else {
4414 		WARN_ON(old_dir->i_op->rename != NULL);
4415 		error = old_dir->i_op->rename2(old_dir, old_dentry,
4416 					       new_dir, new_dentry, flags);
4417 	}
4418 	if (error)
4419 		goto out;
4420 
4421 	if (!(flags & RENAME_EXCHANGE) && target) {
4422 		if (is_dir)
4423 			target->i_flags |= S_DEAD;
4424 		dont_mount(new_dentry);
4425 		detach_mounts(new_dentry);
4426 	}
4427 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4428 		if (!(flags & RENAME_EXCHANGE))
4429 			d_move(old_dentry, new_dentry);
4430 		else
4431 			d_exchange(old_dentry, new_dentry);
4432 	}
4433 out:
4434 	if (!is_dir || (flags & RENAME_EXCHANGE))
4435 		unlock_two_nondirectories(source, target);
4436 	else if (target)
4437 		inode_unlock(target);
4438 	dput(new_dentry);
4439 	if (!error) {
4440 		fsnotify_move(old_dir, new_dir, old_name, is_dir,
4441 			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4442 		if (flags & RENAME_EXCHANGE) {
4443 			fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4444 				      new_is_dir, NULL, new_dentry);
4445 		}
4446 	}
4447 	fsnotify_oldname_free(old_name);
4448 
4449 	return error;
4450 }
4451 EXPORT_SYMBOL(vfs_rename);
4452 
4453 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4454 		int, newdfd, const char __user *, newname, unsigned int, flags)
4455 {
4456 	struct dentry *old_dentry, *new_dentry;
4457 	struct dentry *trap;
4458 	struct path old_path, new_path;
4459 	struct qstr old_last, new_last;
4460 	int old_type, new_type;
4461 	struct inode *delegated_inode = NULL;
4462 	struct filename *from;
4463 	struct filename *to;
4464 	unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4465 	bool should_retry = false;
4466 	int error;
4467 
4468 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4469 		return -EINVAL;
4470 
4471 	if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4472 	    (flags & RENAME_EXCHANGE))
4473 		return -EINVAL;
4474 
4475 	if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4476 		return -EPERM;
4477 
4478 	if (flags & RENAME_EXCHANGE)
4479 		target_flags = 0;
4480 
4481 retry:
4482 	from = user_path_parent(olddfd, oldname,
4483 				&old_path, &old_last, &old_type, lookup_flags);
4484 	if (IS_ERR(from)) {
4485 		error = PTR_ERR(from);
4486 		goto exit;
4487 	}
4488 
4489 	to = user_path_parent(newdfd, newname,
4490 				&new_path, &new_last, &new_type, lookup_flags);
4491 	if (IS_ERR(to)) {
4492 		error = PTR_ERR(to);
4493 		goto exit1;
4494 	}
4495 
4496 	error = -EXDEV;
4497 	if (old_path.mnt != new_path.mnt)
4498 		goto exit2;
4499 
4500 	error = -EBUSY;
4501 	if (old_type != LAST_NORM)
4502 		goto exit2;
4503 
4504 	if (flags & RENAME_NOREPLACE)
4505 		error = -EEXIST;
4506 	if (new_type != LAST_NORM)
4507 		goto exit2;
4508 
4509 	error = mnt_want_write(old_path.mnt);
4510 	if (error)
4511 		goto exit2;
4512 
4513 retry_deleg:
4514 	trap = lock_rename(new_path.dentry, old_path.dentry);
4515 
4516 	old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4517 	error = PTR_ERR(old_dentry);
4518 	if (IS_ERR(old_dentry))
4519 		goto exit3;
4520 	/* source must exist */
4521 	error = -ENOENT;
4522 	if (d_is_negative(old_dentry))
4523 		goto exit4;
4524 	new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4525 	error = PTR_ERR(new_dentry);
4526 	if (IS_ERR(new_dentry))
4527 		goto exit4;
4528 	error = -EEXIST;
4529 	if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4530 		goto exit5;
4531 	if (flags & RENAME_EXCHANGE) {
4532 		error = -ENOENT;
4533 		if (d_is_negative(new_dentry))
4534 			goto exit5;
4535 
4536 		if (!d_is_dir(new_dentry)) {
4537 			error = -ENOTDIR;
4538 			if (new_last.name[new_last.len])
4539 				goto exit5;
4540 		}
4541 	}
4542 	/* unless the source is a directory trailing slashes give -ENOTDIR */
4543 	if (!d_is_dir(old_dentry)) {
4544 		error = -ENOTDIR;
4545 		if (old_last.name[old_last.len])
4546 			goto exit5;
4547 		if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4548 			goto exit5;
4549 	}
4550 	/* source should not be ancestor of target */
4551 	error = -EINVAL;
4552 	if (old_dentry == trap)
4553 		goto exit5;
4554 	/* target should not be an ancestor of source */
4555 	if (!(flags & RENAME_EXCHANGE))
4556 		error = -ENOTEMPTY;
4557 	if (new_dentry == trap)
4558 		goto exit5;
4559 
4560 	error = security_path_rename(&old_path, old_dentry,
4561 				     &new_path, new_dentry, flags);
4562 	if (error)
4563 		goto exit5;
4564 	error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4565 			   new_path.dentry->d_inode, new_dentry,
4566 			   &delegated_inode, flags);
4567 exit5:
4568 	dput(new_dentry);
4569 exit4:
4570 	dput(old_dentry);
4571 exit3:
4572 	unlock_rename(new_path.dentry, old_path.dentry);
4573 	if (delegated_inode) {
4574 		error = break_deleg_wait(&delegated_inode);
4575 		if (!error)
4576 			goto retry_deleg;
4577 	}
4578 	mnt_drop_write(old_path.mnt);
4579 exit2:
4580 	if (retry_estale(error, lookup_flags))
4581 		should_retry = true;
4582 	path_put(&new_path);
4583 	putname(to);
4584 exit1:
4585 	path_put(&old_path);
4586 	putname(from);
4587 	if (should_retry) {
4588 		should_retry = false;
4589 		lookup_flags |= LOOKUP_REVAL;
4590 		goto retry;
4591 	}
4592 exit:
4593 	return error;
4594 }
4595 
4596 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4597 		int, newdfd, const char __user *, newname)
4598 {
4599 	return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4600 }
4601 
4602 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4603 {
4604 	return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4605 }
4606 
4607 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4608 {
4609 	int error = may_create(dir, dentry);
4610 	if (error)
4611 		return error;
4612 
4613 	if (!dir->i_op->mknod)
4614 		return -EPERM;
4615 
4616 	return dir->i_op->mknod(dir, dentry,
4617 				S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4618 }
4619 EXPORT_SYMBOL(vfs_whiteout);
4620 
4621 int readlink_copy(char __user *buffer, int buflen, const char *link)
4622 {
4623 	int len = PTR_ERR(link);
4624 	if (IS_ERR(link))
4625 		goto out;
4626 
4627 	len = strlen(link);
4628 	if (len > (unsigned) buflen)
4629 		len = buflen;
4630 	if (copy_to_user(buffer, link, len))
4631 		len = -EFAULT;
4632 out:
4633 	return len;
4634 }
4635 
4636 /*
4637  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
4638  * have ->get_link() not calling nd_jump_link().  Using (or not using) it
4639  * for any given inode is up to filesystem.
4640  */
4641 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4642 {
4643 	DEFINE_DELAYED_CALL(done);
4644 	struct inode *inode = d_inode(dentry);
4645 	const char *link = inode->i_link;
4646 	int res;
4647 
4648 	if (!link) {
4649 		link = inode->i_op->get_link(dentry, inode, &done);
4650 		if (IS_ERR(link))
4651 			return PTR_ERR(link);
4652 	}
4653 	res = readlink_copy(buffer, buflen, link);
4654 	do_delayed_call(&done);
4655 	return res;
4656 }
4657 EXPORT_SYMBOL(generic_readlink);
4658 
4659 /* get the link contents into pagecache */
4660 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4661 			  struct delayed_call *callback)
4662 {
4663 	char *kaddr;
4664 	struct page *page;
4665 	struct address_space *mapping = inode->i_mapping;
4666 
4667 	if (!dentry) {
4668 		page = find_get_page(mapping, 0);
4669 		if (!page)
4670 			return ERR_PTR(-ECHILD);
4671 		if (!PageUptodate(page)) {
4672 			put_page(page);
4673 			return ERR_PTR(-ECHILD);
4674 		}
4675 	} else {
4676 		page = read_mapping_page(mapping, 0, NULL);
4677 		if (IS_ERR(page))
4678 			return (char*)page;
4679 	}
4680 	set_delayed_call(callback, page_put_link, page);
4681 	BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4682 	kaddr = page_address(page);
4683 	nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4684 	return kaddr;
4685 }
4686 
4687 EXPORT_SYMBOL(page_get_link);
4688 
4689 void page_put_link(void *arg)
4690 {
4691 	put_page(arg);
4692 }
4693 EXPORT_SYMBOL(page_put_link);
4694 
4695 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4696 {
4697 	DEFINE_DELAYED_CALL(done);
4698 	int res = readlink_copy(buffer, buflen,
4699 				page_get_link(dentry, d_inode(dentry),
4700 					      &done));
4701 	do_delayed_call(&done);
4702 	return res;
4703 }
4704 EXPORT_SYMBOL(page_readlink);
4705 
4706 /*
4707  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4708  */
4709 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4710 {
4711 	struct address_space *mapping = inode->i_mapping;
4712 	struct page *page;
4713 	void *fsdata;
4714 	int err;
4715 	unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4716 	if (nofs)
4717 		flags |= AOP_FLAG_NOFS;
4718 
4719 retry:
4720 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
4721 				flags, &page, &fsdata);
4722 	if (err)
4723 		goto fail;
4724 
4725 	memcpy(page_address(page), symname, len-1);
4726 
4727 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4728 							page, fsdata);
4729 	if (err < 0)
4730 		goto fail;
4731 	if (err < len-1)
4732 		goto retry;
4733 
4734 	mark_inode_dirty(inode);
4735 	return 0;
4736 fail:
4737 	return err;
4738 }
4739 EXPORT_SYMBOL(__page_symlink);
4740 
4741 int page_symlink(struct inode *inode, const char *symname, int len)
4742 {
4743 	return __page_symlink(inode, symname, len,
4744 			!mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4745 }
4746 EXPORT_SYMBOL(page_symlink);
4747 
4748 const struct inode_operations page_symlink_inode_operations = {
4749 	.readlink	= generic_readlink,
4750 	.get_link	= page_get_link,
4751 };
4752 EXPORT_SYMBOL(page_symlink_inode_operations);
4753