xref: /openbmc/linux/fs/namei.c (revision efdbd7345f8836f7495f3ac6ee237d86cb3bb6b0)
1 /*
2  *  linux/fs/namei.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * Some corrections by tytso.
9  */
10 
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12  * lookup logic.
13  */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15  */
16 
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <asm/uaccess.h>
39 
40 #include "internal.h"
41 #include "mount.h"
42 
43 /* [Feb-1997 T. Schoebel-Theuer]
44  * Fundamental changes in the pathname lookup mechanisms (namei)
45  * were necessary because of omirr.  The reason is that omirr needs
46  * to know the _real_ pathname, not the user-supplied one, in case
47  * of symlinks (and also when transname replacements occur).
48  *
49  * The new code replaces the old recursive symlink resolution with
50  * an iterative one (in case of non-nested symlink chains).  It does
51  * this with calls to <fs>_follow_link().
52  * As a side effect, dir_namei(), _namei() and follow_link() are now
53  * replaced with a single function lookup_dentry() that can handle all
54  * the special cases of the former code.
55  *
56  * With the new dcache, the pathname is stored at each inode, at least as
57  * long as the refcount of the inode is positive.  As a side effect, the
58  * size of the dcache depends on the inode cache and thus is dynamic.
59  *
60  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
61  * resolution to correspond with current state of the code.
62  *
63  * Note that the symlink resolution is not *completely* iterative.
64  * There is still a significant amount of tail- and mid- recursion in
65  * the algorithm.  Also, note that <fs>_readlink() is not used in
66  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
67  * may return different results than <fs>_follow_link().  Many virtual
68  * filesystems (including /proc) exhibit this behavior.
69  */
70 
71 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
72  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
73  * and the name already exists in form of a symlink, try to create the new
74  * name indicated by the symlink. The old code always complained that the
75  * name already exists, due to not following the symlink even if its target
76  * is nonexistent.  The new semantics affects also mknod() and link() when
77  * the name is a symlink pointing to a non-existent name.
78  *
79  * I don't know which semantics is the right one, since I have no access
80  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
81  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
82  * "old" one. Personally, I think the new semantics is much more logical.
83  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
84  * file does succeed in both HP-UX and SunOs, but not in Solaris
85  * and in the old Linux semantics.
86  */
87 
88 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
89  * semantics.  See the comments in "open_namei" and "do_link" below.
90  *
91  * [10-Sep-98 Alan Modra] Another symlink change.
92  */
93 
94 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
95  *	inside the path - always follow.
96  *	in the last component in creation/removal/renaming - never follow.
97  *	if LOOKUP_FOLLOW passed - follow.
98  *	if the pathname has trailing slashes - follow.
99  *	otherwise - don't follow.
100  * (applied in that order).
101  *
102  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
103  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
104  * During the 2.4 we need to fix the userland stuff depending on it -
105  * hopefully we will be able to get rid of that wart in 2.5. So far only
106  * XEmacs seems to be relying on it...
107  */
108 /*
109  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
110  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
111  * any extra contention...
112  */
113 
114 /* In order to reduce some races, while at the same time doing additional
115  * checking and hopefully speeding things up, we copy filenames to the
116  * kernel data space before using them..
117  *
118  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
119  * PATH_MAX includes the nul terminator --RR.
120  */
121 
122 #define EMBEDDED_NAME_MAX	(PATH_MAX - offsetof(struct filename, iname))
123 
124 struct filename *
125 getname_flags(const char __user *filename, int flags, int *empty)
126 {
127 	struct filename *result;
128 	char *kname;
129 	int len;
130 
131 	result = audit_reusename(filename);
132 	if (result)
133 		return result;
134 
135 	result = __getname();
136 	if (unlikely(!result))
137 		return ERR_PTR(-ENOMEM);
138 
139 	/*
140 	 * First, try to embed the struct filename inside the names_cache
141 	 * allocation
142 	 */
143 	kname = (char *)result->iname;
144 	result->name = kname;
145 
146 	len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
147 	if (unlikely(len < 0)) {
148 		__putname(result);
149 		return ERR_PTR(len);
150 	}
151 
152 	/*
153 	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
154 	 * separate struct filename so we can dedicate the entire
155 	 * names_cache allocation for the pathname, and re-do the copy from
156 	 * userland.
157 	 */
158 	if (unlikely(len == EMBEDDED_NAME_MAX)) {
159 		const size_t size = offsetof(struct filename, iname[1]);
160 		kname = (char *)result;
161 
162 		/*
163 		 * size is chosen that way we to guarantee that
164 		 * result->iname[0] is within the same object and that
165 		 * kname can't be equal to result->iname, no matter what.
166 		 */
167 		result = kzalloc(size, GFP_KERNEL);
168 		if (unlikely(!result)) {
169 			__putname(kname);
170 			return ERR_PTR(-ENOMEM);
171 		}
172 		result->name = kname;
173 		len = strncpy_from_user(kname, filename, PATH_MAX);
174 		if (unlikely(len < 0)) {
175 			__putname(kname);
176 			kfree(result);
177 			return ERR_PTR(len);
178 		}
179 		if (unlikely(len == PATH_MAX)) {
180 			__putname(kname);
181 			kfree(result);
182 			return ERR_PTR(-ENAMETOOLONG);
183 		}
184 	}
185 
186 	result->refcnt = 1;
187 	/* The empty path is special. */
188 	if (unlikely(!len)) {
189 		if (empty)
190 			*empty = 1;
191 		if (!(flags & LOOKUP_EMPTY)) {
192 			putname(result);
193 			return ERR_PTR(-ENOENT);
194 		}
195 	}
196 
197 	result->uptr = filename;
198 	result->aname = NULL;
199 	audit_getname(result);
200 	return result;
201 }
202 
203 struct filename *
204 getname(const char __user * filename)
205 {
206 	return getname_flags(filename, 0, NULL);
207 }
208 
209 struct filename *
210 getname_kernel(const char * filename)
211 {
212 	struct filename *result;
213 	int len = strlen(filename) + 1;
214 
215 	result = __getname();
216 	if (unlikely(!result))
217 		return ERR_PTR(-ENOMEM);
218 
219 	if (len <= EMBEDDED_NAME_MAX) {
220 		result->name = (char *)result->iname;
221 	} else if (len <= PATH_MAX) {
222 		struct filename *tmp;
223 
224 		tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
225 		if (unlikely(!tmp)) {
226 			__putname(result);
227 			return ERR_PTR(-ENOMEM);
228 		}
229 		tmp->name = (char *)result;
230 		result = tmp;
231 	} else {
232 		__putname(result);
233 		return ERR_PTR(-ENAMETOOLONG);
234 	}
235 	memcpy((char *)result->name, filename, len);
236 	result->uptr = NULL;
237 	result->aname = NULL;
238 	result->refcnt = 1;
239 	audit_getname(result);
240 
241 	return result;
242 }
243 
244 void putname(struct filename *name)
245 {
246 	BUG_ON(name->refcnt <= 0);
247 
248 	if (--name->refcnt > 0)
249 		return;
250 
251 	if (name->name != name->iname) {
252 		__putname(name->name);
253 		kfree(name);
254 	} else
255 		__putname(name);
256 }
257 
258 static int check_acl(struct inode *inode, int mask)
259 {
260 #ifdef CONFIG_FS_POSIX_ACL
261 	struct posix_acl *acl;
262 
263 	if (mask & MAY_NOT_BLOCK) {
264 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
265 	        if (!acl)
266 	                return -EAGAIN;
267 		/* no ->get_acl() calls in RCU mode... */
268 		if (acl == ACL_NOT_CACHED)
269 			return -ECHILD;
270 	        return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
271 	}
272 
273 	acl = get_acl(inode, ACL_TYPE_ACCESS);
274 	if (IS_ERR(acl))
275 		return PTR_ERR(acl);
276 	if (acl) {
277 	        int error = posix_acl_permission(inode, acl, mask);
278 	        posix_acl_release(acl);
279 	        return error;
280 	}
281 #endif
282 
283 	return -EAGAIN;
284 }
285 
286 /*
287  * This does the basic permission checking
288  */
289 static int acl_permission_check(struct inode *inode, int mask)
290 {
291 	unsigned int mode = inode->i_mode;
292 
293 	if (likely(uid_eq(current_fsuid(), inode->i_uid)))
294 		mode >>= 6;
295 	else {
296 		if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
297 			int error = check_acl(inode, mask);
298 			if (error != -EAGAIN)
299 				return error;
300 		}
301 
302 		if (in_group_p(inode->i_gid))
303 			mode >>= 3;
304 	}
305 
306 	/*
307 	 * If the DACs are ok we don't need any capability check.
308 	 */
309 	if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
310 		return 0;
311 	return -EACCES;
312 }
313 
314 /**
315  * generic_permission -  check for access rights on a Posix-like filesystem
316  * @inode:	inode to check access rights for
317  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
318  *
319  * Used to check for read/write/execute permissions on a file.
320  * We use "fsuid" for this, letting us set arbitrary permissions
321  * for filesystem access without changing the "normal" uids which
322  * are used for other things.
323  *
324  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
325  * request cannot be satisfied (eg. requires blocking or too much complexity).
326  * It would then be called again in ref-walk mode.
327  */
328 int generic_permission(struct inode *inode, int mask)
329 {
330 	int ret;
331 
332 	/*
333 	 * Do the basic permission checks.
334 	 */
335 	ret = acl_permission_check(inode, mask);
336 	if (ret != -EACCES)
337 		return ret;
338 
339 	if (S_ISDIR(inode->i_mode)) {
340 		/* DACs are overridable for directories */
341 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
342 			return 0;
343 		if (!(mask & MAY_WRITE))
344 			if (capable_wrt_inode_uidgid(inode,
345 						     CAP_DAC_READ_SEARCH))
346 				return 0;
347 		return -EACCES;
348 	}
349 	/*
350 	 * Read/write DACs are always overridable.
351 	 * Executable DACs are overridable when there is
352 	 * at least one exec bit set.
353 	 */
354 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
355 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
356 			return 0;
357 
358 	/*
359 	 * Searching includes executable on directories, else just read.
360 	 */
361 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
362 	if (mask == MAY_READ)
363 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
364 			return 0;
365 
366 	return -EACCES;
367 }
368 EXPORT_SYMBOL(generic_permission);
369 
370 /*
371  * We _really_ want to just do "generic_permission()" without
372  * even looking at the inode->i_op values. So we keep a cache
373  * flag in inode->i_opflags, that says "this has not special
374  * permission function, use the fast case".
375  */
376 static inline int do_inode_permission(struct inode *inode, int mask)
377 {
378 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
379 		if (likely(inode->i_op->permission))
380 			return inode->i_op->permission(inode, mask);
381 
382 		/* This gets set once for the inode lifetime */
383 		spin_lock(&inode->i_lock);
384 		inode->i_opflags |= IOP_FASTPERM;
385 		spin_unlock(&inode->i_lock);
386 	}
387 	return generic_permission(inode, mask);
388 }
389 
390 /**
391  * __inode_permission - Check for access rights to a given inode
392  * @inode: Inode to check permission on
393  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
394  *
395  * Check for read/write/execute permissions on an inode.
396  *
397  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
398  *
399  * This does not check for a read-only file system.  You probably want
400  * inode_permission().
401  */
402 int __inode_permission(struct inode *inode, int mask)
403 {
404 	int retval;
405 
406 	if (unlikely(mask & MAY_WRITE)) {
407 		/*
408 		 * Nobody gets write access to an immutable file.
409 		 */
410 		if (IS_IMMUTABLE(inode))
411 			return -EACCES;
412 	}
413 
414 	retval = do_inode_permission(inode, mask);
415 	if (retval)
416 		return retval;
417 
418 	retval = devcgroup_inode_permission(inode, mask);
419 	if (retval)
420 		return retval;
421 
422 	return security_inode_permission(inode, mask);
423 }
424 EXPORT_SYMBOL(__inode_permission);
425 
426 /**
427  * sb_permission - Check superblock-level permissions
428  * @sb: Superblock of inode to check permission on
429  * @inode: Inode to check permission on
430  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
431  *
432  * Separate out file-system wide checks from inode-specific permission checks.
433  */
434 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
435 {
436 	if (unlikely(mask & MAY_WRITE)) {
437 		umode_t mode = inode->i_mode;
438 
439 		/* Nobody gets write access to a read-only fs. */
440 		if ((sb->s_flags & MS_RDONLY) &&
441 		    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
442 			return -EROFS;
443 	}
444 	return 0;
445 }
446 
447 /**
448  * inode_permission - Check for access rights to a given inode
449  * @inode: Inode to check permission on
450  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
451  *
452  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
453  * this, letting us set arbitrary permissions for filesystem access without
454  * changing the "normal" UIDs which are used for other things.
455  *
456  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
457  */
458 int inode_permission(struct inode *inode, int mask)
459 {
460 	int retval;
461 
462 	retval = sb_permission(inode->i_sb, inode, mask);
463 	if (retval)
464 		return retval;
465 	return __inode_permission(inode, mask);
466 }
467 EXPORT_SYMBOL(inode_permission);
468 
469 /**
470  * path_get - get a reference to a path
471  * @path: path to get the reference to
472  *
473  * Given a path increment the reference count to the dentry and the vfsmount.
474  */
475 void path_get(const struct path *path)
476 {
477 	mntget(path->mnt);
478 	dget(path->dentry);
479 }
480 EXPORT_SYMBOL(path_get);
481 
482 /**
483  * path_put - put a reference to a path
484  * @path: path to put the reference to
485  *
486  * Given a path decrement the reference count to the dentry and the vfsmount.
487  */
488 void path_put(const struct path *path)
489 {
490 	dput(path->dentry);
491 	mntput(path->mnt);
492 }
493 EXPORT_SYMBOL(path_put);
494 
495 #define EMBEDDED_LEVELS 2
496 struct nameidata {
497 	struct path	path;
498 	struct qstr	last;
499 	struct path	root;
500 	struct inode	*inode; /* path.dentry.d_inode */
501 	unsigned int	flags;
502 	unsigned	seq, m_seq;
503 	int		last_type;
504 	unsigned	depth;
505 	int		total_link_count;
506 	struct saved {
507 		struct path link;
508 		void *cookie;
509 		const char *name;
510 		struct inode *inode;
511 		unsigned seq;
512 	} *stack, internal[EMBEDDED_LEVELS];
513 	struct filename	*name;
514 	struct nameidata *saved;
515 	unsigned	root_seq;
516 	int		dfd;
517 };
518 
519 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
520 {
521 	struct nameidata *old = current->nameidata;
522 	p->stack = p->internal;
523 	p->dfd = dfd;
524 	p->name = name;
525 	p->total_link_count = old ? old->total_link_count : 0;
526 	p->saved = old;
527 	current->nameidata = p;
528 }
529 
530 static void restore_nameidata(void)
531 {
532 	struct nameidata *now = current->nameidata, *old = now->saved;
533 
534 	current->nameidata = old;
535 	if (old)
536 		old->total_link_count = now->total_link_count;
537 	if (now->stack != now->internal) {
538 		kfree(now->stack);
539 		now->stack = now->internal;
540 	}
541 }
542 
543 static int __nd_alloc_stack(struct nameidata *nd)
544 {
545 	struct saved *p;
546 
547 	if (nd->flags & LOOKUP_RCU) {
548 		p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
549 				  GFP_ATOMIC);
550 		if (unlikely(!p))
551 			return -ECHILD;
552 	} else {
553 		p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
554 				  GFP_KERNEL);
555 		if (unlikely(!p))
556 			return -ENOMEM;
557 	}
558 	memcpy(p, nd->internal, sizeof(nd->internal));
559 	nd->stack = p;
560 	return 0;
561 }
562 
563 /**
564  * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
565  * @path: nameidate to verify
566  *
567  * Rename can sometimes move a file or directory outside of a bind
568  * mount, path_connected allows those cases to be detected.
569  */
570 static bool path_connected(const struct path *path)
571 {
572 	struct vfsmount *mnt = path->mnt;
573 
574 	/* Only bind mounts can have disconnected paths */
575 	if (mnt->mnt_root == mnt->mnt_sb->s_root)
576 		return true;
577 
578 	return is_subdir(path->dentry, mnt->mnt_root);
579 }
580 
581 static inline int nd_alloc_stack(struct nameidata *nd)
582 {
583 	if (likely(nd->depth != EMBEDDED_LEVELS))
584 		return 0;
585 	if (likely(nd->stack != nd->internal))
586 		return 0;
587 	return __nd_alloc_stack(nd);
588 }
589 
590 static void drop_links(struct nameidata *nd)
591 {
592 	int i = nd->depth;
593 	while (i--) {
594 		struct saved *last = nd->stack + i;
595 		struct inode *inode = last->inode;
596 		if (last->cookie && inode->i_op->put_link) {
597 			inode->i_op->put_link(inode, last->cookie);
598 			last->cookie = NULL;
599 		}
600 	}
601 }
602 
603 static void terminate_walk(struct nameidata *nd)
604 {
605 	drop_links(nd);
606 	if (!(nd->flags & LOOKUP_RCU)) {
607 		int i;
608 		path_put(&nd->path);
609 		for (i = 0; i < nd->depth; i++)
610 			path_put(&nd->stack[i].link);
611 		if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
612 			path_put(&nd->root);
613 			nd->root.mnt = NULL;
614 		}
615 	} else {
616 		nd->flags &= ~LOOKUP_RCU;
617 		if (!(nd->flags & LOOKUP_ROOT))
618 			nd->root.mnt = NULL;
619 		rcu_read_unlock();
620 	}
621 	nd->depth = 0;
622 }
623 
624 /* path_put is needed afterwards regardless of success or failure */
625 static bool legitimize_path(struct nameidata *nd,
626 			    struct path *path, unsigned seq)
627 {
628 	int res = __legitimize_mnt(path->mnt, nd->m_seq);
629 	if (unlikely(res)) {
630 		if (res > 0)
631 			path->mnt = NULL;
632 		path->dentry = NULL;
633 		return false;
634 	}
635 	if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
636 		path->dentry = NULL;
637 		return false;
638 	}
639 	return !read_seqcount_retry(&path->dentry->d_seq, seq);
640 }
641 
642 static bool legitimize_links(struct nameidata *nd)
643 {
644 	int i;
645 	for (i = 0; i < nd->depth; i++) {
646 		struct saved *last = nd->stack + i;
647 		if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
648 			drop_links(nd);
649 			nd->depth = i + 1;
650 			return false;
651 		}
652 	}
653 	return true;
654 }
655 
656 /*
657  * Path walking has 2 modes, rcu-walk and ref-walk (see
658  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
659  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
660  * normal reference counts on dentries and vfsmounts to transition to rcu-walk
661  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
662  * got stuck, so ref-walk may continue from there. If this is not successful
663  * (eg. a seqcount has changed), then failure is returned and it's up to caller
664  * to restart the path walk from the beginning in ref-walk mode.
665  */
666 
667 /**
668  * unlazy_walk - try to switch to ref-walk mode.
669  * @nd: nameidata pathwalk data
670  * @dentry: child of nd->path.dentry or NULL
671  * @seq: seq number to check dentry against
672  * Returns: 0 on success, -ECHILD on failure
673  *
674  * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
675  * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
676  * @nd or NULL.  Must be called from rcu-walk context.
677  * Nothing should touch nameidata between unlazy_walk() failure and
678  * terminate_walk().
679  */
680 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry, unsigned seq)
681 {
682 	struct dentry *parent = nd->path.dentry;
683 
684 	BUG_ON(!(nd->flags & LOOKUP_RCU));
685 
686 	nd->flags &= ~LOOKUP_RCU;
687 	if (unlikely(!legitimize_links(nd)))
688 		goto out2;
689 	if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
690 		goto out2;
691 	if (unlikely(!lockref_get_not_dead(&parent->d_lockref)))
692 		goto out1;
693 
694 	/*
695 	 * For a negative lookup, the lookup sequence point is the parents
696 	 * sequence point, and it only needs to revalidate the parent dentry.
697 	 *
698 	 * For a positive lookup, we need to move both the parent and the
699 	 * dentry from the RCU domain to be properly refcounted. And the
700 	 * sequence number in the dentry validates *both* dentry counters,
701 	 * since we checked the sequence number of the parent after we got
702 	 * the child sequence number. So we know the parent must still
703 	 * be valid if the child sequence number is still valid.
704 	 */
705 	if (!dentry) {
706 		if (read_seqcount_retry(&parent->d_seq, nd->seq))
707 			goto out;
708 		BUG_ON(nd->inode != parent->d_inode);
709 	} else {
710 		if (!lockref_get_not_dead(&dentry->d_lockref))
711 			goto out;
712 		if (read_seqcount_retry(&dentry->d_seq, seq))
713 			goto drop_dentry;
714 	}
715 
716 	/*
717 	 * Sequence counts matched. Now make sure that the root is
718 	 * still valid and get it if required.
719 	 */
720 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
721 		if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) {
722 			rcu_read_unlock();
723 			dput(dentry);
724 			return -ECHILD;
725 		}
726 	}
727 
728 	rcu_read_unlock();
729 	return 0;
730 
731 drop_dentry:
732 	rcu_read_unlock();
733 	dput(dentry);
734 	goto drop_root_mnt;
735 out2:
736 	nd->path.mnt = NULL;
737 out1:
738 	nd->path.dentry = NULL;
739 out:
740 	rcu_read_unlock();
741 drop_root_mnt:
742 	if (!(nd->flags & LOOKUP_ROOT))
743 		nd->root.mnt = NULL;
744 	return -ECHILD;
745 }
746 
747 static int unlazy_link(struct nameidata *nd, struct path *link, unsigned seq)
748 {
749 	if (unlikely(!legitimize_path(nd, link, seq))) {
750 		drop_links(nd);
751 		nd->depth = 0;
752 		nd->flags &= ~LOOKUP_RCU;
753 		nd->path.mnt = NULL;
754 		nd->path.dentry = NULL;
755 		if (!(nd->flags & LOOKUP_ROOT))
756 			nd->root.mnt = NULL;
757 		rcu_read_unlock();
758 	} else if (likely(unlazy_walk(nd, NULL, 0)) == 0) {
759 		return 0;
760 	}
761 	path_put(link);
762 	return -ECHILD;
763 }
764 
765 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
766 {
767 	return dentry->d_op->d_revalidate(dentry, flags);
768 }
769 
770 /**
771  * complete_walk - successful completion of path walk
772  * @nd:  pointer nameidata
773  *
774  * If we had been in RCU mode, drop out of it and legitimize nd->path.
775  * Revalidate the final result, unless we'd already done that during
776  * the path walk or the filesystem doesn't ask for it.  Return 0 on
777  * success, -error on failure.  In case of failure caller does not
778  * need to drop nd->path.
779  */
780 static int complete_walk(struct nameidata *nd)
781 {
782 	struct dentry *dentry = nd->path.dentry;
783 	int status;
784 
785 	if (nd->flags & LOOKUP_RCU) {
786 		if (!(nd->flags & LOOKUP_ROOT))
787 			nd->root.mnt = NULL;
788 		if (unlikely(unlazy_walk(nd, NULL, 0)))
789 			return -ECHILD;
790 	}
791 
792 	if (likely(!(nd->flags & LOOKUP_JUMPED)))
793 		return 0;
794 
795 	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
796 		return 0;
797 
798 	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
799 	if (status > 0)
800 		return 0;
801 
802 	if (!status)
803 		status = -ESTALE;
804 
805 	return status;
806 }
807 
808 static void set_root(struct nameidata *nd)
809 {
810 	get_fs_root(current->fs, &nd->root);
811 }
812 
813 static void set_root_rcu(struct nameidata *nd)
814 {
815 	struct fs_struct *fs = current->fs;
816 	unsigned seq;
817 
818 	do {
819 		seq = read_seqcount_begin(&fs->seq);
820 		nd->root = fs->root;
821 		nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
822 	} while (read_seqcount_retry(&fs->seq, seq));
823 }
824 
825 static void path_put_conditional(struct path *path, struct nameidata *nd)
826 {
827 	dput(path->dentry);
828 	if (path->mnt != nd->path.mnt)
829 		mntput(path->mnt);
830 }
831 
832 static inline void path_to_nameidata(const struct path *path,
833 					struct nameidata *nd)
834 {
835 	if (!(nd->flags & LOOKUP_RCU)) {
836 		dput(nd->path.dentry);
837 		if (nd->path.mnt != path->mnt)
838 			mntput(nd->path.mnt);
839 	}
840 	nd->path.mnt = path->mnt;
841 	nd->path.dentry = path->dentry;
842 }
843 
844 /*
845  * Helper to directly jump to a known parsed path from ->follow_link,
846  * caller must have taken a reference to path beforehand.
847  */
848 void nd_jump_link(struct path *path)
849 {
850 	struct nameidata *nd = current->nameidata;
851 	path_put(&nd->path);
852 
853 	nd->path = *path;
854 	nd->inode = nd->path.dentry->d_inode;
855 	nd->flags |= LOOKUP_JUMPED;
856 }
857 
858 static inline void put_link(struct nameidata *nd)
859 {
860 	struct saved *last = nd->stack + --nd->depth;
861 	struct inode *inode = last->inode;
862 	if (last->cookie && inode->i_op->put_link)
863 		inode->i_op->put_link(inode, last->cookie);
864 	if (!(nd->flags & LOOKUP_RCU))
865 		path_put(&last->link);
866 }
867 
868 int sysctl_protected_symlinks __read_mostly = 0;
869 int sysctl_protected_hardlinks __read_mostly = 0;
870 
871 /**
872  * may_follow_link - Check symlink following for unsafe situations
873  * @nd: nameidata pathwalk data
874  *
875  * In the case of the sysctl_protected_symlinks sysctl being enabled,
876  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
877  * in a sticky world-writable directory. This is to protect privileged
878  * processes from failing races against path names that may change out
879  * from under them by way of other users creating malicious symlinks.
880  * It will permit symlinks to be followed only when outside a sticky
881  * world-writable directory, or when the uid of the symlink and follower
882  * match, or when the directory owner matches the symlink's owner.
883  *
884  * Returns 0 if following the symlink is allowed, -ve on error.
885  */
886 static inline int may_follow_link(struct nameidata *nd)
887 {
888 	const struct inode *inode;
889 	const struct inode *parent;
890 
891 	if (!sysctl_protected_symlinks)
892 		return 0;
893 
894 	/* Allowed if owner and follower match. */
895 	inode = nd->stack[0].inode;
896 	if (uid_eq(current_cred()->fsuid, inode->i_uid))
897 		return 0;
898 
899 	/* Allowed if parent directory not sticky and world-writable. */
900 	parent = nd->inode;
901 	if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
902 		return 0;
903 
904 	/* Allowed if parent directory and link owner match. */
905 	if (uid_eq(parent->i_uid, inode->i_uid))
906 		return 0;
907 
908 	if (nd->flags & LOOKUP_RCU)
909 		return -ECHILD;
910 
911 	audit_log_link_denied("follow_link", &nd->stack[0].link);
912 	return -EACCES;
913 }
914 
915 /**
916  * safe_hardlink_source - Check for safe hardlink conditions
917  * @inode: the source inode to hardlink from
918  *
919  * Return false if at least one of the following conditions:
920  *    - inode is not a regular file
921  *    - inode is setuid
922  *    - inode is setgid and group-exec
923  *    - access failure for read and write
924  *
925  * Otherwise returns true.
926  */
927 static bool safe_hardlink_source(struct inode *inode)
928 {
929 	umode_t mode = inode->i_mode;
930 
931 	/* Special files should not get pinned to the filesystem. */
932 	if (!S_ISREG(mode))
933 		return false;
934 
935 	/* Setuid files should not get pinned to the filesystem. */
936 	if (mode & S_ISUID)
937 		return false;
938 
939 	/* Executable setgid files should not get pinned to the filesystem. */
940 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
941 		return false;
942 
943 	/* Hardlinking to unreadable or unwritable sources is dangerous. */
944 	if (inode_permission(inode, MAY_READ | MAY_WRITE))
945 		return false;
946 
947 	return true;
948 }
949 
950 /**
951  * may_linkat - Check permissions for creating a hardlink
952  * @link: the source to hardlink from
953  *
954  * Block hardlink when all of:
955  *  - sysctl_protected_hardlinks enabled
956  *  - fsuid does not match inode
957  *  - hardlink source is unsafe (see safe_hardlink_source() above)
958  *  - not CAP_FOWNER
959  *
960  * Returns 0 if successful, -ve on error.
961  */
962 static int may_linkat(struct path *link)
963 {
964 	const struct cred *cred;
965 	struct inode *inode;
966 
967 	if (!sysctl_protected_hardlinks)
968 		return 0;
969 
970 	cred = current_cred();
971 	inode = link->dentry->d_inode;
972 
973 	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
974 	 * otherwise, it must be a safe source.
975 	 */
976 	if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) ||
977 	    capable(CAP_FOWNER))
978 		return 0;
979 
980 	audit_log_link_denied("linkat", link);
981 	return -EPERM;
982 }
983 
984 static __always_inline
985 const char *get_link(struct nameidata *nd)
986 {
987 	struct saved *last = nd->stack + nd->depth - 1;
988 	struct dentry *dentry = last->link.dentry;
989 	struct inode *inode = last->inode;
990 	int error;
991 	const char *res;
992 
993 	if (!(nd->flags & LOOKUP_RCU)) {
994 		touch_atime(&last->link);
995 		cond_resched();
996 	} else if (atime_needs_update(&last->link, inode)) {
997 		if (unlikely(unlazy_walk(nd, NULL, 0)))
998 			return ERR_PTR(-ECHILD);
999 		touch_atime(&last->link);
1000 	}
1001 
1002 	error = security_inode_follow_link(dentry, inode,
1003 					   nd->flags & LOOKUP_RCU);
1004 	if (unlikely(error))
1005 		return ERR_PTR(error);
1006 
1007 	nd->last_type = LAST_BIND;
1008 	res = inode->i_link;
1009 	if (!res) {
1010 		if (nd->flags & LOOKUP_RCU) {
1011 			if (unlikely(unlazy_walk(nd, NULL, 0)))
1012 				return ERR_PTR(-ECHILD);
1013 		}
1014 		res = inode->i_op->follow_link(dentry, &last->cookie);
1015 		if (IS_ERR_OR_NULL(res)) {
1016 			last->cookie = NULL;
1017 			return res;
1018 		}
1019 	}
1020 	if (*res == '/') {
1021 		if (nd->flags & LOOKUP_RCU) {
1022 			struct dentry *d;
1023 			if (!nd->root.mnt)
1024 				set_root_rcu(nd);
1025 			nd->path = nd->root;
1026 			d = nd->path.dentry;
1027 			nd->inode = d->d_inode;
1028 			nd->seq = nd->root_seq;
1029 			if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
1030 				return ERR_PTR(-ECHILD);
1031 		} else {
1032 			if (!nd->root.mnt)
1033 				set_root(nd);
1034 			path_put(&nd->path);
1035 			nd->path = nd->root;
1036 			path_get(&nd->root);
1037 			nd->inode = nd->path.dentry->d_inode;
1038 		}
1039 		nd->flags |= LOOKUP_JUMPED;
1040 		while (unlikely(*++res == '/'))
1041 			;
1042 	}
1043 	if (!*res)
1044 		res = NULL;
1045 	return res;
1046 }
1047 
1048 /*
1049  * follow_up - Find the mountpoint of path's vfsmount
1050  *
1051  * Given a path, find the mountpoint of its source file system.
1052  * Replace @path with the path of the mountpoint in the parent mount.
1053  * Up is towards /.
1054  *
1055  * Return 1 if we went up a level and 0 if we were already at the
1056  * root.
1057  */
1058 int follow_up(struct path *path)
1059 {
1060 	struct mount *mnt = real_mount(path->mnt);
1061 	struct mount *parent;
1062 	struct dentry *mountpoint;
1063 
1064 	read_seqlock_excl(&mount_lock);
1065 	parent = mnt->mnt_parent;
1066 	if (parent == mnt) {
1067 		read_sequnlock_excl(&mount_lock);
1068 		return 0;
1069 	}
1070 	mntget(&parent->mnt);
1071 	mountpoint = dget(mnt->mnt_mountpoint);
1072 	read_sequnlock_excl(&mount_lock);
1073 	dput(path->dentry);
1074 	path->dentry = mountpoint;
1075 	mntput(path->mnt);
1076 	path->mnt = &parent->mnt;
1077 	return 1;
1078 }
1079 EXPORT_SYMBOL(follow_up);
1080 
1081 /*
1082  * Perform an automount
1083  * - return -EISDIR to tell follow_managed() to stop and return the path we
1084  *   were called with.
1085  */
1086 static int follow_automount(struct path *path, struct nameidata *nd,
1087 			    bool *need_mntput)
1088 {
1089 	struct vfsmount *mnt;
1090 	int err;
1091 
1092 	if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1093 		return -EREMOTE;
1094 
1095 	/* We don't want to mount if someone's just doing a stat -
1096 	 * unless they're stat'ing a directory and appended a '/' to
1097 	 * the name.
1098 	 *
1099 	 * We do, however, want to mount if someone wants to open or
1100 	 * create a file of any type under the mountpoint, wants to
1101 	 * traverse through the mountpoint or wants to open the
1102 	 * mounted directory.  Also, autofs may mark negative dentries
1103 	 * as being automount points.  These will need the attentions
1104 	 * of the daemon to instantiate them before they can be used.
1105 	 */
1106 	if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1107 			   LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1108 	    path->dentry->d_inode)
1109 		return -EISDIR;
1110 
1111 	nd->total_link_count++;
1112 	if (nd->total_link_count >= 40)
1113 		return -ELOOP;
1114 
1115 	mnt = path->dentry->d_op->d_automount(path);
1116 	if (IS_ERR(mnt)) {
1117 		/*
1118 		 * The filesystem is allowed to return -EISDIR here to indicate
1119 		 * it doesn't want to automount.  For instance, autofs would do
1120 		 * this so that its userspace daemon can mount on this dentry.
1121 		 *
1122 		 * However, we can only permit this if it's a terminal point in
1123 		 * the path being looked up; if it wasn't then the remainder of
1124 		 * the path is inaccessible and we should say so.
1125 		 */
1126 		if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1127 			return -EREMOTE;
1128 		return PTR_ERR(mnt);
1129 	}
1130 
1131 	if (!mnt) /* mount collision */
1132 		return 0;
1133 
1134 	if (!*need_mntput) {
1135 		/* lock_mount() may release path->mnt on error */
1136 		mntget(path->mnt);
1137 		*need_mntput = true;
1138 	}
1139 	err = finish_automount(mnt, path);
1140 
1141 	switch (err) {
1142 	case -EBUSY:
1143 		/* Someone else made a mount here whilst we were busy */
1144 		return 0;
1145 	case 0:
1146 		path_put(path);
1147 		path->mnt = mnt;
1148 		path->dentry = dget(mnt->mnt_root);
1149 		return 0;
1150 	default:
1151 		return err;
1152 	}
1153 
1154 }
1155 
1156 /*
1157  * Handle a dentry that is managed in some way.
1158  * - Flagged for transit management (autofs)
1159  * - Flagged as mountpoint
1160  * - Flagged as automount point
1161  *
1162  * This may only be called in refwalk mode.
1163  *
1164  * Serialization is taken care of in namespace.c
1165  */
1166 static int follow_managed(struct path *path, struct nameidata *nd)
1167 {
1168 	struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1169 	unsigned managed;
1170 	bool need_mntput = false;
1171 	int ret = 0;
1172 
1173 	/* Given that we're not holding a lock here, we retain the value in a
1174 	 * local variable for each dentry as we look at it so that we don't see
1175 	 * the components of that value change under us */
1176 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1177 	       managed &= DCACHE_MANAGED_DENTRY,
1178 	       unlikely(managed != 0)) {
1179 		/* Allow the filesystem to manage the transit without i_mutex
1180 		 * being held. */
1181 		if (managed & DCACHE_MANAGE_TRANSIT) {
1182 			BUG_ON(!path->dentry->d_op);
1183 			BUG_ON(!path->dentry->d_op->d_manage);
1184 			ret = path->dentry->d_op->d_manage(path->dentry, false);
1185 			if (ret < 0)
1186 				break;
1187 		}
1188 
1189 		/* Transit to a mounted filesystem. */
1190 		if (managed & DCACHE_MOUNTED) {
1191 			struct vfsmount *mounted = lookup_mnt(path);
1192 			if (mounted) {
1193 				dput(path->dentry);
1194 				if (need_mntput)
1195 					mntput(path->mnt);
1196 				path->mnt = mounted;
1197 				path->dentry = dget(mounted->mnt_root);
1198 				need_mntput = true;
1199 				continue;
1200 			}
1201 
1202 			/* Something is mounted on this dentry in another
1203 			 * namespace and/or whatever was mounted there in this
1204 			 * namespace got unmounted before lookup_mnt() could
1205 			 * get it */
1206 		}
1207 
1208 		/* Handle an automount point */
1209 		if (managed & DCACHE_NEED_AUTOMOUNT) {
1210 			ret = follow_automount(path, nd, &need_mntput);
1211 			if (ret < 0)
1212 				break;
1213 			continue;
1214 		}
1215 
1216 		/* We didn't change the current path point */
1217 		break;
1218 	}
1219 
1220 	if (need_mntput && path->mnt == mnt)
1221 		mntput(path->mnt);
1222 	if (ret == -EISDIR)
1223 		ret = 0;
1224 	if (need_mntput)
1225 		nd->flags |= LOOKUP_JUMPED;
1226 	if (unlikely(ret < 0))
1227 		path_put_conditional(path, nd);
1228 	return ret;
1229 }
1230 
1231 int follow_down_one(struct path *path)
1232 {
1233 	struct vfsmount *mounted;
1234 
1235 	mounted = lookup_mnt(path);
1236 	if (mounted) {
1237 		dput(path->dentry);
1238 		mntput(path->mnt);
1239 		path->mnt = mounted;
1240 		path->dentry = dget(mounted->mnt_root);
1241 		return 1;
1242 	}
1243 	return 0;
1244 }
1245 EXPORT_SYMBOL(follow_down_one);
1246 
1247 static inline int managed_dentry_rcu(struct dentry *dentry)
1248 {
1249 	return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1250 		dentry->d_op->d_manage(dentry, true) : 0;
1251 }
1252 
1253 /*
1254  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1255  * we meet a managed dentry that would need blocking.
1256  */
1257 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1258 			       struct inode **inode, unsigned *seqp)
1259 {
1260 	for (;;) {
1261 		struct mount *mounted;
1262 		/*
1263 		 * Don't forget we might have a non-mountpoint managed dentry
1264 		 * that wants to block transit.
1265 		 */
1266 		switch (managed_dentry_rcu(path->dentry)) {
1267 		case -ECHILD:
1268 		default:
1269 			return false;
1270 		case -EISDIR:
1271 			return true;
1272 		case 0:
1273 			break;
1274 		}
1275 
1276 		if (!d_mountpoint(path->dentry))
1277 			return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1278 
1279 		mounted = __lookup_mnt(path->mnt, path->dentry);
1280 		if (!mounted)
1281 			break;
1282 		path->mnt = &mounted->mnt;
1283 		path->dentry = mounted->mnt.mnt_root;
1284 		nd->flags |= LOOKUP_JUMPED;
1285 		*seqp = read_seqcount_begin(&path->dentry->d_seq);
1286 		/*
1287 		 * Update the inode too. We don't need to re-check the
1288 		 * dentry sequence number here after this d_inode read,
1289 		 * because a mount-point is always pinned.
1290 		 */
1291 		*inode = path->dentry->d_inode;
1292 	}
1293 	return !read_seqretry(&mount_lock, nd->m_seq) &&
1294 		!(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1295 }
1296 
1297 static int follow_dotdot_rcu(struct nameidata *nd)
1298 {
1299 	struct inode *inode = nd->inode;
1300 	if (!nd->root.mnt)
1301 		set_root_rcu(nd);
1302 
1303 	while (1) {
1304 		if (path_equal(&nd->path, &nd->root))
1305 			break;
1306 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1307 			struct dentry *old = nd->path.dentry;
1308 			struct dentry *parent = old->d_parent;
1309 			unsigned seq;
1310 
1311 			inode = parent->d_inode;
1312 			seq = read_seqcount_begin(&parent->d_seq);
1313 			if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1314 				return -ECHILD;
1315 			nd->path.dentry = parent;
1316 			nd->seq = seq;
1317 			if (unlikely(!path_connected(&nd->path)))
1318 				return -ENOENT;
1319 			break;
1320 		} else {
1321 			struct mount *mnt = real_mount(nd->path.mnt);
1322 			struct mount *mparent = mnt->mnt_parent;
1323 			struct dentry *mountpoint = mnt->mnt_mountpoint;
1324 			struct inode *inode2 = mountpoint->d_inode;
1325 			unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1326 			if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1327 				return -ECHILD;
1328 			if (&mparent->mnt == nd->path.mnt)
1329 				break;
1330 			/* we know that mountpoint was pinned */
1331 			nd->path.dentry = mountpoint;
1332 			nd->path.mnt = &mparent->mnt;
1333 			inode = inode2;
1334 			nd->seq = seq;
1335 		}
1336 	}
1337 	while (unlikely(d_mountpoint(nd->path.dentry))) {
1338 		struct mount *mounted;
1339 		mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1340 		if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1341 			return -ECHILD;
1342 		if (!mounted)
1343 			break;
1344 		nd->path.mnt = &mounted->mnt;
1345 		nd->path.dentry = mounted->mnt.mnt_root;
1346 		inode = nd->path.dentry->d_inode;
1347 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1348 	}
1349 	nd->inode = inode;
1350 	return 0;
1351 }
1352 
1353 /*
1354  * Follow down to the covering mount currently visible to userspace.  At each
1355  * point, the filesystem owning that dentry may be queried as to whether the
1356  * caller is permitted to proceed or not.
1357  */
1358 int follow_down(struct path *path)
1359 {
1360 	unsigned managed;
1361 	int ret;
1362 
1363 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1364 	       unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1365 		/* Allow the filesystem to manage the transit without i_mutex
1366 		 * being held.
1367 		 *
1368 		 * We indicate to the filesystem if someone is trying to mount
1369 		 * something here.  This gives autofs the chance to deny anyone
1370 		 * other than its daemon the right to mount on its
1371 		 * superstructure.
1372 		 *
1373 		 * The filesystem may sleep at this point.
1374 		 */
1375 		if (managed & DCACHE_MANAGE_TRANSIT) {
1376 			BUG_ON(!path->dentry->d_op);
1377 			BUG_ON(!path->dentry->d_op->d_manage);
1378 			ret = path->dentry->d_op->d_manage(
1379 				path->dentry, false);
1380 			if (ret < 0)
1381 				return ret == -EISDIR ? 0 : ret;
1382 		}
1383 
1384 		/* Transit to a mounted filesystem. */
1385 		if (managed & DCACHE_MOUNTED) {
1386 			struct vfsmount *mounted = lookup_mnt(path);
1387 			if (!mounted)
1388 				break;
1389 			dput(path->dentry);
1390 			mntput(path->mnt);
1391 			path->mnt = mounted;
1392 			path->dentry = dget(mounted->mnt_root);
1393 			continue;
1394 		}
1395 
1396 		/* Don't handle automount points here */
1397 		break;
1398 	}
1399 	return 0;
1400 }
1401 EXPORT_SYMBOL(follow_down);
1402 
1403 /*
1404  * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1405  */
1406 static void follow_mount(struct path *path)
1407 {
1408 	while (d_mountpoint(path->dentry)) {
1409 		struct vfsmount *mounted = lookup_mnt(path);
1410 		if (!mounted)
1411 			break;
1412 		dput(path->dentry);
1413 		mntput(path->mnt);
1414 		path->mnt = mounted;
1415 		path->dentry = dget(mounted->mnt_root);
1416 	}
1417 }
1418 
1419 static int follow_dotdot(struct nameidata *nd)
1420 {
1421 	if (!nd->root.mnt)
1422 		set_root(nd);
1423 
1424 	while(1) {
1425 		struct dentry *old = nd->path.dentry;
1426 
1427 		if (nd->path.dentry == nd->root.dentry &&
1428 		    nd->path.mnt == nd->root.mnt) {
1429 			break;
1430 		}
1431 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1432 			/* rare case of legitimate dget_parent()... */
1433 			nd->path.dentry = dget_parent(nd->path.dentry);
1434 			dput(old);
1435 			if (unlikely(!path_connected(&nd->path)))
1436 				return -ENOENT;
1437 			break;
1438 		}
1439 		if (!follow_up(&nd->path))
1440 			break;
1441 	}
1442 	follow_mount(&nd->path);
1443 	nd->inode = nd->path.dentry->d_inode;
1444 	return 0;
1445 }
1446 
1447 /*
1448  * This looks up the name in dcache, possibly revalidates the old dentry and
1449  * allocates a new one if not found or not valid.  In the need_lookup argument
1450  * returns whether i_op->lookup is necessary.
1451  *
1452  * dir->d_inode->i_mutex must be held
1453  */
1454 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1455 				    unsigned int flags, bool *need_lookup)
1456 {
1457 	struct dentry *dentry;
1458 	int error;
1459 
1460 	*need_lookup = false;
1461 	dentry = d_lookup(dir, name);
1462 	if (dentry) {
1463 		if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1464 			error = d_revalidate(dentry, flags);
1465 			if (unlikely(error <= 0)) {
1466 				if (error < 0) {
1467 					dput(dentry);
1468 					return ERR_PTR(error);
1469 				} else {
1470 					d_invalidate(dentry);
1471 					dput(dentry);
1472 					dentry = NULL;
1473 				}
1474 			}
1475 		}
1476 	}
1477 
1478 	if (!dentry) {
1479 		dentry = d_alloc(dir, name);
1480 		if (unlikely(!dentry))
1481 			return ERR_PTR(-ENOMEM);
1482 
1483 		*need_lookup = true;
1484 	}
1485 	return dentry;
1486 }
1487 
1488 /*
1489  * Call i_op->lookup on the dentry.  The dentry must be negative and
1490  * unhashed.
1491  *
1492  * dir->d_inode->i_mutex must be held
1493  */
1494 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1495 				  unsigned int flags)
1496 {
1497 	struct dentry *old;
1498 
1499 	/* Don't create child dentry for a dead directory. */
1500 	if (unlikely(IS_DEADDIR(dir))) {
1501 		dput(dentry);
1502 		return ERR_PTR(-ENOENT);
1503 	}
1504 
1505 	old = dir->i_op->lookup(dir, dentry, flags);
1506 	if (unlikely(old)) {
1507 		dput(dentry);
1508 		dentry = old;
1509 	}
1510 	return dentry;
1511 }
1512 
1513 static struct dentry *__lookup_hash(struct qstr *name,
1514 		struct dentry *base, unsigned int flags)
1515 {
1516 	bool need_lookup;
1517 	struct dentry *dentry;
1518 
1519 	dentry = lookup_dcache(name, base, flags, &need_lookup);
1520 	if (!need_lookup)
1521 		return dentry;
1522 
1523 	return lookup_real(base->d_inode, dentry, flags);
1524 }
1525 
1526 /*
1527  *  It's more convoluted than I'd like it to be, but... it's still fairly
1528  *  small and for now I'd prefer to have fast path as straight as possible.
1529  *  It _is_ time-critical.
1530  */
1531 static int lookup_fast(struct nameidata *nd,
1532 		       struct path *path, struct inode **inode,
1533 		       unsigned *seqp)
1534 {
1535 	struct vfsmount *mnt = nd->path.mnt;
1536 	struct dentry *dentry, *parent = nd->path.dentry;
1537 	int need_reval = 1;
1538 	int status = 1;
1539 	int err;
1540 
1541 	/*
1542 	 * Rename seqlock is not required here because in the off chance
1543 	 * of a false negative due to a concurrent rename, we're going to
1544 	 * do the non-racy lookup, below.
1545 	 */
1546 	if (nd->flags & LOOKUP_RCU) {
1547 		unsigned seq;
1548 		bool negative;
1549 		dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1550 		if (!dentry)
1551 			goto unlazy;
1552 
1553 		/*
1554 		 * This sequence count validates that the inode matches
1555 		 * the dentry name information from lookup.
1556 		 */
1557 		*inode = d_backing_inode(dentry);
1558 		negative = d_is_negative(dentry);
1559 		if (read_seqcount_retry(&dentry->d_seq, seq))
1560 			return -ECHILD;
1561 		if (negative)
1562 			return -ENOENT;
1563 
1564 		/*
1565 		 * This sequence count validates that the parent had no
1566 		 * changes while we did the lookup of the dentry above.
1567 		 *
1568 		 * The memory barrier in read_seqcount_begin of child is
1569 		 *  enough, we can use __read_seqcount_retry here.
1570 		 */
1571 		if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1572 			return -ECHILD;
1573 
1574 		*seqp = seq;
1575 		if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1576 			status = d_revalidate(dentry, nd->flags);
1577 			if (unlikely(status <= 0)) {
1578 				if (status != -ECHILD)
1579 					need_reval = 0;
1580 				goto unlazy;
1581 			}
1582 		}
1583 		path->mnt = mnt;
1584 		path->dentry = dentry;
1585 		if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1586 			return 0;
1587 unlazy:
1588 		if (unlazy_walk(nd, dentry, seq))
1589 			return -ECHILD;
1590 	} else {
1591 		dentry = __d_lookup(parent, &nd->last);
1592 	}
1593 
1594 	if (unlikely(!dentry))
1595 		goto need_lookup;
1596 
1597 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1598 		status = d_revalidate(dentry, nd->flags);
1599 	if (unlikely(status <= 0)) {
1600 		if (status < 0) {
1601 			dput(dentry);
1602 			return status;
1603 		}
1604 		d_invalidate(dentry);
1605 		dput(dentry);
1606 		goto need_lookup;
1607 	}
1608 
1609 	if (unlikely(d_is_negative(dentry))) {
1610 		dput(dentry);
1611 		return -ENOENT;
1612 	}
1613 	path->mnt = mnt;
1614 	path->dentry = dentry;
1615 	err = follow_managed(path, nd);
1616 	if (likely(!err))
1617 		*inode = d_backing_inode(path->dentry);
1618 	return err;
1619 
1620 need_lookup:
1621 	return 1;
1622 }
1623 
1624 /* Fast lookup failed, do it the slow way */
1625 static int lookup_slow(struct nameidata *nd, struct path *path)
1626 {
1627 	struct dentry *dentry, *parent;
1628 
1629 	parent = nd->path.dentry;
1630 	BUG_ON(nd->inode != parent->d_inode);
1631 
1632 	mutex_lock(&parent->d_inode->i_mutex);
1633 	dentry = __lookup_hash(&nd->last, parent, nd->flags);
1634 	mutex_unlock(&parent->d_inode->i_mutex);
1635 	if (IS_ERR(dentry))
1636 		return PTR_ERR(dentry);
1637 	path->mnt = nd->path.mnt;
1638 	path->dentry = dentry;
1639 	return follow_managed(path, nd);
1640 }
1641 
1642 static inline int may_lookup(struct nameidata *nd)
1643 {
1644 	if (nd->flags & LOOKUP_RCU) {
1645 		int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1646 		if (err != -ECHILD)
1647 			return err;
1648 		if (unlazy_walk(nd, NULL, 0))
1649 			return -ECHILD;
1650 	}
1651 	return inode_permission(nd->inode, MAY_EXEC);
1652 }
1653 
1654 static inline int handle_dots(struct nameidata *nd, int type)
1655 {
1656 	if (type == LAST_DOTDOT) {
1657 		if (nd->flags & LOOKUP_RCU) {
1658 			return follow_dotdot_rcu(nd);
1659 		} else
1660 			return follow_dotdot(nd);
1661 	}
1662 	return 0;
1663 }
1664 
1665 static int pick_link(struct nameidata *nd, struct path *link,
1666 		     struct inode *inode, unsigned seq)
1667 {
1668 	int error;
1669 	struct saved *last;
1670 	if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1671 		path_to_nameidata(link, nd);
1672 		return -ELOOP;
1673 	}
1674 	if (!(nd->flags & LOOKUP_RCU)) {
1675 		if (link->mnt == nd->path.mnt)
1676 			mntget(link->mnt);
1677 	}
1678 	error = nd_alloc_stack(nd);
1679 	if (unlikely(error)) {
1680 		if (error == -ECHILD) {
1681 			if (unlikely(unlazy_link(nd, link, seq)))
1682 				return -ECHILD;
1683 			error = nd_alloc_stack(nd);
1684 		}
1685 		if (error) {
1686 			path_put(link);
1687 			return error;
1688 		}
1689 	}
1690 
1691 	last = nd->stack + nd->depth++;
1692 	last->link = *link;
1693 	last->cookie = NULL;
1694 	last->inode = inode;
1695 	last->seq = seq;
1696 	return 1;
1697 }
1698 
1699 /*
1700  * Do we need to follow links? We _really_ want to be able
1701  * to do this check without having to look at inode->i_op,
1702  * so we keep a cache of "no, this doesn't need follow_link"
1703  * for the common case.
1704  */
1705 static inline int should_follow_link(struct nameidata *nd, struct path *link,
1706 				     int follow,
1707 				     struct inode *inode, unsigned seq)
1708 {
1709 	if (likely(!d_is_symlink(link->dentry)))
1710 		return 0;
1711 	if (!follow)
1712 		return 0;
1713 	return pick_link(nd, link, inode, seq);
1714 }
1715 
1716 enum {WALK_GET = 1, WALK_PUT = 2};
1717 
1718 static int walk_component(struct nameidata *nd, int flags)
1719 {
1720 	struct path path;
1721 	struct inode *inode;
1722 	unsigned seq;
1723 	int err;
1724 	/*
1725 	 * "." and ".." are special - ".." especially so because it has
1726 	 * to be able to know about the current root directory and
1727 	 * parent relationships.
1728 	 */
1729 	if (unlikely(nd->last_type != LAST_NORM)) {
1730 		err = handle_dots(nd, nd->last_type);
1731 		if (flags & WALK_PUT)
1732 			put_link(nd);
1733 		return err;
1734 	}
1735 	err = lookup_fast(nd, &path, &inode, &seq);
1736 	if (unlikely(err)) {
1737 		if (err < 0)
1738 			return err;
1739 
1740 		err = lookup_slow(nd, &path);
1741 		if (err < 0)
1742 			return err;
1743 
1744 		inode = d_backing_inode(path.dentry);
1745 		seq = 0;	/* we are already out of RCU mode */
1746 		err = -ENOENT;
1747 		if (d_is_negative(path.dentry))
1748 			goto out_path_put;
1749 	}
1750 
1751 	if (flags & WALK_PUT)
1752 		put_link(nd);
1753 	err = should_follow_link(nd, &path, flags & WALK_GET, inode, seq);
1754 	if (unlikely(err))
1755 		return err;
1756 	path_to_nameidata(&path, nd);
1757 	nd->inode = inode;
1758 	nd->seq = seq;
1759 	return 0;
1760 
1761 out_path_put:
1762 	path_to_nameidata(&path, nd);
1763 	return err;
1764 }
1765 
1766 /*
1767  * We can do the critical dentry name comparison and hashing
1768  * operations one word at a time, but we are limited to:
1769  *
1770  * - Architectures with fast unaligned word accesses. We could
1771  *   do a "get_unaligned()" if this helps and is sufficiently
1772  *   fast.
1773  *
1774  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1775  *   do not trap on the (extremely unlikely) case of a page
1776  *   crossing operation.
1777  *
1778  * - Furthermore, we need an efficient 64-bit compile for the
1779  *   64-bit case in order to generate the "number of bytes in
1780  *   the final mask". Again, that could be replaced with a
1781  *   efficient population count instruction or similar.
1782  */
1783 #ifdef CONFIG_DCACHE_WORD_ACCESS
1784 
1785 #include <asm/word-at-a-time.h>
1786 
1787 #ifdef CONFIG_64BIT
1788 
1789 static inline unsigned int fold_hash(unsigned long hash)
1790 {
1791 	return hash_64(hash, 32);
1792 }
1793 
1794 #else	/* 32-bit case */
1795 
1796 #define fold_hash(x) (x)
1797 
1798 #endif
1799 
1800 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1801 {
1802 	unsigned long a, mask;
1803 	unsigned long hash = 0;
1804 
1805 	for (;;) {
1806 		a = load_unaligned_zeropad(name);
1807 		if (len < sizeof(unsigned long))
1808 			break;
1809 		hash += a;
1810 		hash *= 9;
1811 		name += sizeof(unsigned long);
1812 		len -= sizeof(unsigned long);
1813 		if (!len)
1814 			goto done;
1815 	}
1816 	mask = bytemask_from_count(len);
1817 	hash += mask & a;
1818 done:
1819 	return fold_hash(hash);
1820 }
1821 EXPORT_SYMBOL(full_name_hash);
1822 
1823 /*
1824  * Calculate the length and hash of the path component, and
1825  * return the "hash_len" as the result.
1826  */
1827 static inline u64 hash_name(const char *name)
1828 {
1829 	unsigned long a, b, adata, bdata, mask, hash, len;
1830 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1831 
1832 	hash = a = 0;
1833 	len = -sizeof(unsigned long);
1834 	do {
1835 		hash = (hash + a) * 9;
1836 		len += sizeof(unsigned long);
1837 		a = load_unaligned_zeropad(name+len);
1838 		b = a ^ REPEAT_BYTE('/');
1839 	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1840 
1841 	adata = prep_zero_mask(a, adata, &constants);
1842 	bdata = prep_zero_mask(b, bdata, &constants);
1843 
1844 	mask = create_zero_mask(adata | bdata);
1845 
1846 	hash += a & zero_bytemask(mask);
1847 	len += find_zero(mask);
1848 	return hashlen_create(fold_hash(hash), len);
1849 }
1850 
1851 #else
1852 
1853 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1854 {
1855 	unsigned long hash = init_name_hash();
1856 	while (len--)
1857 		hash = partial_name_hash(*name++, hash);
1858 	return end_name_hash(hash);
1859 }
1860 EXPORT_SYMBOL(full_name_hash);
1861 
1862 /*
1863  * We know there's a real path component here of at least
1864  * one character.
1865  */
1866 static inline u64 hash_name(const char *name)
1867 {
1868 	unsigned long hash = init_name_hash();
1869 	unsigned long len = 0, c;
1870 
1871 	c = (unsigned char)*name;
1872 	do {
1873 		len++;
1874 		hash = partial_name_hash(c, hash);
1875 		c = (unsigned char)name[len];
1876 	} while (c && c != '/');
1877 	return hashlen_create(end_name_hash(hash), len);
1878 }
1879 
1880 #endif
1881 
1882 /*
1883  * Name resolution.
1884  * This is the basic name resolution function, turning a pathname into
1885  * the final dentry. We expect 'base' to be positive and a directory.
1886  *
1887  * Returns 0 and nd will have valid dentry and mnt on success.
1888  * Returns error and drops reference to input namei data on failure.
1889  */
1890 static int link_path_walk(const char *name, struct nameidata *nd)
1891 {
1892 	int err;
1893 
1894 	while (*name=='/')
1895 		name++;
1896 	if (!*name)
1897 		return 0;
1898 
1899 	/* At this point we know we have a real path component. */
1900 	for(;;) {
1901 		u64 hash_len;
1902 		int type;
1903 
1904 		err = may_lookup(nd);
1905  		if (err)
1906 			return err;
1907 
1908 		hash_len = hash_name(name);
1909 
1910 		type = LAST_NORM;
1911 		if (name[0] == '.') switch (hashlen_len(hash_len)) {
1912 			case 2:
1913 				if (name[1] == '.') {
1914 					type = LAST_DOTDOT;
1915 					nd->flags |= LOOKUP_JUMPED;
1916 				}
1917 				break;
1918 			case 1:
1919 				type = LAST_DOT;
1920 		}
1921 		if (likely(type == LAST_NORM)) {
1922 			struct dentry *parent = nd->path.dentry;
1923 			nd->flags &= ~LOOKUP_JUMPED;
1924 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1925 				struct qstr this = { { .hash_len = hash_len }, .name = name };
1926 				err = parent->d_op->d_hash(parent, &this);
1927 				if (err < 0)
1928 					return err;
1929 				hash_len = this.hash_len;
1930 				name = this.name;
1931 			}
1932 		}
1933 
1934 		nd->last.hash_len = hash_len;
1935 		nd->last.name = name;
1936 		nd->last_type = type;
1937 
1938 		name += hashlen_len(hash_len);
1939 		if (!*name)
1940 			goto OK;
1941 		/*
1942 		 * If it wasn't NUL, we know it was '/'. Skip that
1943 		 * slash, and continue until no more slashes.
1944 		 */
1945 		do {
1946 			name++;
1947 		} while (unlikely(*name == '/'));
1948 		if (unlikely(!*name)) {
1949 OK:
1950 			/* pathname body, done */
1951 			if (!nd->depth)
1952 				return 0;
1953 			name = nd->stack[nd->depth - 1].name;
1954 			/* trailing symlink, done */
1955 			if (!name)
1956 				return 0;
1957 			/* last component of nested symlink */
1958 			err = walk_component(nd, WALK_GET | WALK_PUT);
1959 		} else {
1960 			err = walk_component(nd, WALK_GET);
1961 		}
1962 		if (err < 0)
1963 			return err;
1964 
1965 		if (err) {
1966 			const char *s = get_link(nd);
1967 
1968 			if (unlikely(IS_ERR(s)))
1969 				return PTR_ERR(s);
1970 			err = 0;
1971 			if (unlikely(!s)) {
1972 				/* jumped */
1973 				put_link(nd);
1974 			} else {
1975 				nd->stack[nd->depth - 1].name = name;
1976 				name = s;
1977 				continue;
1978 			}
1979 		}
1980 		if (unlikely(!d_can_lookup(nd->path.dentry))) {
1981 			if (nd->flags & LOOKUP_RCU) {
1982 				if (unlazy_walk(nd, NULL, 0))
1983 					return -ECHILD;
1984 			}
1985 			return -ENOTDIR;
1986 		}
1987 	}
1988 }
1989 
1990 static const char *path_init(struct nameidata *nd, unsigned flags)
1991 {
1992 	int retval = 0;
1993 	const char *s = nd->name->name;
1994 
1995 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
1996 	nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
1997 	nd->depth = 0;
1998 	nd->total_link_count = 0;
1999 	if (flags & LOOKUP_ROOT) {
2000 		struct dentry *root = nd->root.dentry;
2001 		struct inode *inode = root->d_inode;
2002 		if (*s) {
2003 			if (!d_can_lookup(root))
2004 				return ERR_PTR(-ENOTDIR);
2005 			retval = inode_permission(inode, MAY_EXEC);
2006 			if (retval)
2007 				return ERR_PTR(retval);
2008 		}
2009 		nd->path = nd->root;
2010 		nd->inode = inode;
2011 		if (flags & LOOKUP_RCU) {
2012 			rcu_read_lock();
2013 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2014 			nd->root_seq = nd->seq;
2015 			nd->m_seq = read_seqbegin(&mount_lock);
2016 		} else {
2017 			path_get(&nd->path);
2018 		}
2019 		return s;
2020 	}
2021 
2022 	nd->root.mnt = NULL;
2023 
2024 	nd->m_seq = read_seqbegin(&mount_lock);
2025 	if (*s == '/') {
2026 		if (flags & LOOKUP_RCU) {
2027 			rcu_read_lock();
2028 			set_root_rcu(nd);
2029 			nd->seq = nd->root_seq;
2030 		} else {
2031 			set_root(nd);
2032 			path_get(&nd->root);
2033 		}
2034 		nd->path = nd->root;
2035 	} else if (nd->dfd == AT_FDCWD) {
2036 		if (flags & LOOKUP_RCU) {
2037 			struct fs_struct *fs = current->fs;
2038 			unsigned seq;
2039 
2040 			rcu_read_lock();
2041 
2042 			do {
2043 				seq = read_seqcount_begin(&fs->seq);
2044 				nd->path = fs->pwd;
2045 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2046 			} while (read_seqcount_retry(&fs->seq, seq));
2047 		} else {
2048 			get_fs_pwd(current->fs, &nd->path);
2049 		}
2050 	} else {
2051 		/* Caller must check execute permissions on the starting path component */
2052 		struct fd f = fdget_raw(nd->dfd);
2053 		struct dentry *dentry;
2054 
2055 		if (!f.file)
2056 			return ERR_PTR(-EBADF);
2057 
2058 		dentry = f.file->f_path.dentry;
2059 
2060 		if (*s) {
2061 			if (!d_can_lookup(dentry)) {
2062 				fdput(f);
2063 				return ERR_PTR(-ENOTDIR);
2064 			}
2065 		}
2066 
2067 		nd->path = f.file->f_path;
2068 		if (flags & LOOKUP_RCU) {
2069 			rcu_read_lock();
2070 			nd->inode = nd->path.dentry->d_inode;
2071 			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2072 		} else {
2073 			path_get(&nd->path);
2074 			nd->inode = nd->path.dentry->d_inode;
2075 		}
2076 		fdput(f);
2077 		return s;
2078 	}
2079 
2080 	nd->inode = nd->path.dentry->d_inode;
2081 	if (!(flags & LOOKUP_RCU))
2082 		return s;
2083 	if (likely(!read_seqcount_retry(&nd->path.dentry->d_seq, nd->seq)))
2084 		return s;
2085 	if (!(nd->flags & LOOKUP_ROOT))
2086 		nd->root.mnt = NULL;
2087 	rcu_read_unlock();
2088 	return ERR_PTR(-ECHILD);
2089 }
2090 
2091 static const char *trailing_symlink(struct nameidata *nd)
2092 {
2093 	const char *s;
2094 	int error = may_follow_link(nd);
2095 	if (unlikely(error))
2096 		return ERR_PTR(error);
2097 	nd->flags |= LOOKUP_PARENT;
2098 	nd->stack[0].name = NULL;
2099 	s = get_link(nd);
2100 	return s ? s : "";
2101 }
2102 
2103 static inline int lookup_last(struct nameidata *nd)
2104 {
2105 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2106 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2107 
2108 	nd->flags &= ~LOOKUP_PARENT;
2109 	return walk_component(nd,
2110 			nd->flags & LOOKUP_FOLLOW
2111 				? nd->depth
2112 					? WALK_PUT | WALK_GET
2113 					: WALK_GET
2114 				: 0);
2115 }
2116 
2117 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2118 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2119 {
2120 	const char *s = path_init(nd, flags);
2121 	int err;
2122 
2123 	if (IS_ERR(s))
2124 		return PTR_ERR(s);
2125 	while (!(err = link_path_walk(s, nd))
2126 		&& ((err = lookup_last(nd)) > 0)) {
2127 		s = trailing_symlink(nd);
2128 		if (IS_ERR(s)) {
2129 			err = PTR_ERR(s);
2130 			break;
2131 		}
2132 	}
2133 	if (!err)
2134 		err = complete_walk(nd);
2135 
2136 	if (!err && nd->flags & LOOKUP_DIRECTORY)
2137 		if (!d_can_lookup(nd->path.dentry))
2138 			err = -ENOTDIR;
2139 	if (!err) {
2140 		*path = nd->path;
2141 		nd->path.mnt = NULL;
2142 		nd->path.dentry = NULL;
2143 	}
2144 	terminate_walk(nd);
2145 	return err;
2146 }
2147 
2148 static int filename_lookup(int dfd, struct filename *name, unsigned flags,
2149 			   struct path *path, struct path *root)
2150 {
2151 	int retval;
2152 	struct nameidata nd;
2153 	if (IS_ERR(name))
2154 		return PTR_ERR(name);
2155 	if (unlikely(root)) {
2156 		nd.root = *root;
2157 		flags |= LOOKUP_ROOT;
2158 	}
2159 	set_nameidata(&nd, dfd, name);
2160 	retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2161 	if (unlikely(retval == -ECHILD))
2162 		retval = path_lookupat(&nd, flags, path);
2163 	if (unlikely(retval == -ESTALE))
2164 		retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2165 
2166 	if (likely(!retval))
2167 		audit_inode(name, path->dentry, flags & LOOKUP_PARENT);
2168 	restore_nameidata();
2169 	putname(name);
2170 	return retval;
2171 }
2172 
2173 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2174 static int path_parentat(struct nameidata *nd, unsigned flags,
2175 				struct path *parent)
2176 {
2177 	const char *s = path_init(nd, flags);
2178 	int err;
2179 	if (IS_ERR(s))
2180 		return PTR_ERR(s);
2181 	err = link_path_walk(s, nd);
2182 	if (!err)
2183 		err = complete_walk(nd);
2184 	if (!err) {
2185 		*parent = nd->path;
2186 		nd->path.mnt = NULL;
2187 		nd->path.dentry = NULL;
2188 	}
2189 	terminate_walk(nd);
2190 	return err;
2191 }
2192 
2193 static struct filename *filename_parentat(int dfd, struct filename *name,
2194 				unsigned int flags, struct path *parent,
2195 				struct qstr *last, int *type)
2196 {
2197 	int retval;
2198 	struct nameidata nd;
2199 
2200 	if (IS_ERR(name))
2201 		return name;
2202 	set_nameidata(&nd, dfd, name);
2203 	retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2204 	if (unlikely(retval == -ECHILD))
2205 		retval = path_parentat(&nd, flags, parent);
2206 	if (unlikely(retval == -ESTALE))
2207 		retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2208 	if (likely(!retval)) {
2209 		*last = nd.last;
2210 		*type = nd.last_type;
2211 		audit_inode(name, parent->dentry, LOOKUP_PARENT);
2212 	} else {
2213 		putname(name);
2214 		name = ERR_PTR(retval);
2215 	}
2216 	restore_nameidata();
2217 	return name;
2218 }
2219 
2220 /* does lookup, returns the object with parent locked */
2221 struct dentry *kern_path_locked(const char *name, struct path *path)
2222 {
2223 	struct filename *filename;
2224 	struct dentry *d;
2225 	struct qstr last;
2226 	int type;
2227 
2228 	filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2229 				    &last, &type);
2230 	if (IS_ERR(filename))
2231 		return ERR_CAST(filename);
2232 	if (unlikely(type != LAST_NORM)) {
2233 		path_put(path);
2234 		putname(filename);
2235 		return ERR_PTR(-EINVAL);
2236 	}
2237 	mutex_lock_nested(&path->dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2238 	d = __lookup_hash(&last, path->dentry, 0);
2239 	if (IS_ERR(d)) {
2240 		mutex_unlock(&path->dentry->d_inode->i_mutex);
2241 		path_put(path);
2242 	}
2243 	putname(filename);
2244 	return d;
2245 }
2246 
2247 int kern_path(const char *name, unsigned int flags, struct path *path)
2248 {
2249 	return filename_lookup(AT_FDCWD, getname_kernel(name),
2250 			       flags, path, NULL);
2251 }
2252 EXPORT_SYMBOL(kern_path);
2253 
2254 /**
2255  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2256  * @dentry:  pointer to dentry of the base directory
2257  * @mnt: pointer to vfs mount of the base directory
2258  * @name: pointer to file name
2259  * @flags: lookup flags
2260  * @path: pointer to struct path to fill
2261  */
2262 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2263 		    const char *name, unsigned int flags,
2264 		    struct path *path)
2265 {
2266 	struct path root = {.mnt = mnt, .dentry = dentry};
2267 	/* the first argument of filename_lookup() is ignored with root */
2268 	return filename_lookup(AT_FDCWD, getname_kernel(name),
2269 			       flags , path, &root);
2270 }
2271 EXPORT_SYMBOL(vfs_path_lookup);
2272 
2273 /**
2274  * lookup_one_len - filesystem helper to lookup single pathname component
2275  * @name:	pathname component to lookup
2276  * @base:	base directory to lookup from
2277  * @len:	maximum length @len should be interpreted to
2278  *
2279  * Note that this routine is purely a helper for filesystem usage and should
2280  * not be called by generic code.
2281  */
2282 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2283 {
2284 	struct qstr this;
2285 	unsigned int c;
2286 	int err;
2287 
2288 	WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2289 
2290 	this.name = name;
2291 	this.len = len;
2292 	this.hash = full_name_hash(name, len);
2293 	if (!len)
2294 		return ERR_PTR(-EACCES);
2295 
2296 	if (unlikely(name[0] == '.')) {
2297 		if (len < 2 || (len == 2 && name[1] == '.'))
2298 			return ERR_PTR(-EACCES);
2299 	}
2300 
2301 	while (len--) {
2302 		c = *(const unsigned char *)name++;
2303 		if (c == '/' || c == '\0')
2304 			return ERR_PTR(-EACCES);
2305 	}
2306 	/*
2307 	 * See if the low-level filesystem might want
2308 	 * to use its own hash..
2309 	 */
2310 	if (base->d_flags & DCACHE_OP_HASH) {
2311 		int err = base->d_op->d_hash(base, &this);
2312 		if (err < 0)
2313 			return ERR_PTR(err);
2314 	}
2315 
2316 	err = inode_permission(base->d_inode, MAY_EXEC);
2317 	if (err)
2318 		return ERR_PTR(err);
2319 
2320 	return __lookup_hash(&this, base, 0);
2321 }
2322 EXPORT_SYMBOL(lookup_one_len);
2323 
2324 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2325 		 struct path *path, int *empty)
2326 {
2327 	return filename_lookup(dfd, getname_flags(name, flags, empty),
2328 			       flags, path, NULL);
2329 }
2330 EXPORT_SYMBOL(user_path_at_empty);
2331 
2332 /*
2333  * NB: most callers don't do anything directly with the reference to the
2334  *     to struct filename, but the nd->last pointer points into the name string
2335  *     allocated by getname. So we must hold the reference to it until all
2336  *     path-walking is complete.
2337  */
2338 static inline struct filename *
2339 user_path_parent(int dfd, const char __user *path,
2340 		 struct path *parent,
2341 		 struct qstr *last,
2342 		 int *type,
2343 		 unsigned int flags)
2344 {
2345 	/* only LOOKUP_REVAL is allowed in extra flags */
2346 	return filename_parentat(dfd, getname(path), flags & LOOKUP_REVAL,
2347 				 parent, last, type);
2348 }
2349 
2350 /**
2351  * mountpoint_last - look up last component for umount
2352  * @nd:   pathwalk nameidata - currently pointing at parent directory of "last"
2353  * @path: pointer to container for result
2354  *
2355  * This is a special lookup_last function just for umount. In this case, we
2356  * need to resolve the path without doing any revalidation.
2357  *
2358  * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2359  * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2360  * in almost all cases, this lookup will be served out of the dcache. The only
2361  * cases where it won't are if nd->last refers to a symlink or the path is
2362  * bogus and it doesn't exist.
2363  *
2364  * Returns:
2365  * -error: if there was an error during lookup. This includes -ENOENT if the
2366  *         lookup found a negative dentry. The nd->path reference will also be
2367  *         put in this case.
2368  *
2369  * 0:      if we successfully resolved nd->path and found it to not to be a
2370  *         symlink that needs to be followed. "path" will also be populated.
2371  *         The nd->path reference will also be put.
2372  *
2373  * 1:      if we successfully resolved nd->last and found it to be a symlink
2374  *         that needs to be followed. "path" will be populated with the path
2375  *         to the link, and nd->path will *not* be put.
2376  */
2377 static int
2378 mountpoint_last(struct nameidata *nd, struct path *path)
2379 {
2380 	int error = 0;
2381 	struct dentry *dentry;
2382 	struct dentry *dir = nd->path.dentry;
2383 
2384 	/* If we're in rcuwalk, drop out of it to handle last component */
2385 	if (nd->flags & LOOKUP_RCU) {
2386 		if (unlazy_walk(nd, NULL, 0))
2387 			return -ECHILD;
2388 	}
2389 
2390 	nd->flags &= ~LOOKUP_PARENT;
2391 
2392 	if (unlikely(nd->last_type != LAST_NORM)) {
2393 		error = handle_dots(nd, nd->last_type);
2394 		if (error)
2395 			return error;
2396 		dentry = dget(nd->path.dentry);
2397 		goto done;
2398 	}
2399 
2400 	mutex_lock(&dir->d_inode->i_mutex);
2401 	dentry = d_lookup(dir, &nd->last);
2402 	if (!dentry) {
2403 		/*
2404 		 * No cached dentry. Mounted dentries are pinned in the cache,
2405 		 * so that means that this dentry is probably a symlink or the
2406 		 * path doesn't actually point to a mounted dentry.
2407 		 */
2408 		dentry = d_alloc(dir, &nd->last);
2409 		if (!dentry) {
2410 			mutex_unlock(&dir->d_inode->i_mutex);
2411 			return -ENOMEM;
2412 		}
2413 		dentry = lookup_real(dir->d_inode, dentry, nd->flags);
2414 		if (IS_ERR(dentry)) {
2415 			mutex_unlock(&dir->d_inode->i_mutex);
2416 			return PTR_ERR(dentry);
2417 		}
2418 	}
2419 	mutex_unlock(&dir->d_inode->i_mutex);
2420 
2421 done:
2422 	if (d_is_negative(dentry)) {
2423 		dput(dentry);
2424 		return -ENOENT;
2425 	}
2426 	if (nd->depth)
2427 		put_link(nd);
2428 	path->dentry = dentry;
2429 	path->mnt = nd->path.mnt;
2430 	error = should_follow_link(nd, path, nd->flags & LOOKUP_FOLLOW,
2431 				   d_backing_inode(dentry), 0);
2432 	if (unlikely(error))
2433 		return error;
2434 	mntget(path->mnt);
2435 	follow_mount(path);
2436 	return 0;
2437 }
2438 
2439 /**
2440  * path_mountpoint - look up a path to be umounted
2441  * @nd:		lookup context
2442  * @flags:	lookup flags
2443  * @path:	pointer to container for result
2444  *
2445  * Look up the given name, but don't attempt to revalidate the last component.
2446  * Returns 0 and "path" will be valid on success; Returns error otherwise.
2447  */
2448 static int
2449 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2450 {
2451 	const char *s = path_init(nd, flags);
2452 	int err;
2453 	if (IS_ERR(s))
2454 		return PTR_ERR(s);
2455 	while (!(err = link_path_walk(s, nd)) &&
2456 		(err = mountpoint_last(nd, path)) > 0) {
2457 		s = trailing_symlink(nd);
2458 		if (IS_ERR(s)) {
2459 			err = PTR_ERR(s);
2460 			break;
2461 		}
2462 	}
2463 	terminate_walk(nd);
2464 	return err;
2465 }
2466 
2467 static int
2468 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2469 			unsigned int flags)
2470 {
2471 	struct nameidata nd;
2472 	int error;
2473 	if (IS_ERR(name))
2474 		return PTR_ERR(name);
2475 	set_nameidata(&nd, dfd, name);
2476 	error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2477 	if (unlikely(error == -ECHILD))
2478 		error = path_mountpoint(&nd, flags, path);
2479 	if (unlikely(error == -ESTALE))
2480 		error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2481 	if (likely(!error))
2482 		audit_inode(name, path->dentry, 0);
2483 	restore_nameidata();
2484 	putname(name);
2485 	return error;
2486 }
2487 
2488 /**
2489  * user_path_mountpoint_at - lookup a path from userland in order to umount it
2490  * @dfd:	directory file descriptor
2491  * @name:	pathname from userland
2492  * @flags:	lookup flags
2493  * @path:	pointer to container to hold result
2494  *
2495  * A umount is a special case for path walking. We're not actually interested
2496  * in the inode in this situation, and ESTALE errors can be a problem. We
2497  * simply want track down the dentry and vfsmount attached at the mountpoint
2498  * and avoid revalidating the last component.
2499  *
2500  * Returns 0 and populates "path" on success.
2501  */
2502 int
2503 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2504 			struct path *path)
2505 {
2506 	return filename_mountpoint(dfd, getname(name), path, flags);
2507 }
2508 
2509 int
2510 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2511 			unsigned int flags)
2512 {
2513 	return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2514 }
2515 EXPORT_SYMBOL(kern_path_mountpoint);
2516 
2517 int __check_sticky(struct inode *dir, struct inode *inode)
2518 {
2519 	kuid_t fsuid = current_fsuid();
2520 
2521 	if (uid_eq(inode->i_uid, fsuid))
2522 		return 0;
2523 	if (uid_eq(dir->i_uid, fsuid))
2524 		return 0;
2525 	return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2526 }
2527 EXPORT_SYMBOL(__check_sticky);
2528 
2529 /*
2530  *	Check whether we can remove a link victim from directory dir, check
2531  *  whether the type of victim is right.
2532  *  1. We can't do it if dir is read-only (done in permission())
2533  *  2. We should have write and exec permissions on dir
2534  *  3. We can't remove anything from append-only dir
2535  *  4. We can't do anything with immutable dir (done in permission())
2536  *  5. If the sticky bit on dir is set we should either
2537  *	a. be owner of dir, or
2538  *	b. be owner of victim, or
2539  *	c. have CAP_FOWNER capability
2540  *  6. If the victim is append-only or immutable we can't do antyhing with
2541  *     links pointing to it.
2542  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2543  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2544  *  9. We can't remove a root or mountpoint.
2545  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2546  *     nfs_async_unlink().
2547  */
2548 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2549 {
2550 	struct inode *inode = d_backing_inode(victim);
2551 	int error;
2552 
2553 	if (d_is_negative(victim))
2554 		return -ENOENT;
2555 	BUG_ON(!inode);
2556 
2557 	BUG_ON(victim->d_parent->d_inode != dir);
2558 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2559 
2560 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2561 	if (error)
2562 		return error;
2563 	if (IS_APPEND(dir))
2564 		return -EPERM;
2565 
2566 	if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2567 	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2568 		return -EPERM;
2569 	if (isdir) {
2570 		if (!d_is_dir(victim))
2571 			return -ENOTDIR;
2572 		if (IS_ROOT(victim))
2573 			return -EBUSY;
2574 	} else if (d_is_dir(victim))
2575 		return -EISDIR;
2576 	if (IS_DEADDIR(dir))
2577 		return -ENOENT;
2578 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2579 		return -EBUSY;
2580 	return 0;
2581 }
2582 
2583 /*	Check whether we can create an object with dentry child in directory
2584  *  dir.
2585  *  1. We can't do it if child already exists (open has special treatment for
2586  *     this case, but since we are inlined it's OK)
2587  *  2. We can't do it if dir is read-only (done in permission())
2588  *  3. We should have write and exec permissions on dir
2589  *  4. We can't do it if dir is immutable (done in permission())
2590  */
2591 static inline int may_create(struct inode *dir, struct dentry *child)
2592 {
2593 	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2594 	if (child->d_inode)
2595 		return -EEXIST;
2596 	if (IS_DEADDIR(dir))
2597 		return -ENOENT;
2598 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2599 }
2600 
2601 /*
2602  * p1 and p2 should be directories on the same fs.
2603  */
2604 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2605 {
2606 	struct dentry *p;
2607 
2608 	if (p1 == p2) {
2609 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2610 		return NULL;
2611 	}
2612 
2613 	mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2614 
2615 	p = d_ancestor(p2, p1);
2616 	if (p) {
2617 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2618 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2619 		return p;
2620 	}
2621 
2622 	p = d_ancestor(p1, p2);
2623 	if (p) {
2624 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2625 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2626 		return p;
2627 	}
2628 
2629 	mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2630 	mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT2);
2631 	return NULL;
2632 }
2633 EXPORT_SYMBOL(lock_rename);
2634 
2635 void unlock_rename(struct dentry *p1, struct dentry *p2)
2636 {
2637 	mutex_unlock(&p1->d_inode->i_mutex);
2638 	if (p1 != p2) {
2639 		mutex_unlock(&p2->d_inode->i_mutex);
2640 		mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2641 	}
2642 }
2643 EXPORT_SYMBOL(unlock_rename);
2644 
2645 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2646 		bool want_excl)
2647 {
2648 	int error = may_create(dir, dentry);
2649 	if (error)
2650 		return error;
2651 
2652 	if (!dir->i_op->create)
2653 		return -EACCES;	/* shouldn't it be ENOSYS? */
2654 	mode &= S_IALLUGO;
2655 	mode |= S_IFREG;
2656 	error = security_inode_create(dir, dentry, mode);
2657 	if (error)
2658 		return error;
2659 	error = dir->i_op->create(dir, dentry, mode, want_excl);
2660 	if (!error)
2661 		fsnotify_create(dir, dentry);
2662 	return error;
2663 }
2664 EXPORT_SYMBOL(vfs_create);
2665 
2666 static int may_open(struct path *path, int acc_mode, int flag)
2667 {
2668 	struct dentry *dentry = path->dentry;
2669 	struct inode *inode = dentry->d_inode;
2670 	int error;
2671 
2672 	/* O_PATH? */
2673 	if (!acc_mode)
2674 		return 0;
2675 
2676 	if (!inode)
2677 		return -ENOENT;
2678 
2679 	switch (inode->i_mode & S_IFMT) {
2680 	case S_IFLNK:
2681 		return -ELOOP;
2682 	case S_IFDIR:
2683 		if (acc_mode & MAY_WRITE)
2684 			return -EISDIR;
2685 		break;
2686 	case S_IFBLK:
2687 	case S_IFCHR:
2688 		if (path->mnt->mnt_flags & MNT_NODEV)
2689 			return -EACCES;
2690 		/*FALLTHRU*/
2691 	case S_IFIFO:
2692 	case S_IFSOCK:
2693 		flag &= ~O_TRUNC;
2694 		break;
2695 	}
2696 
2697 	error = inode_permission(inode, acc_mode);
2698 	if (error)
2699 		return error;
2700 
2701 	/*
2702 	 * An append-only file must be opened in append mode for writing.
2703 	 */
2704 	if (IS_APPEND(inode)) {
2705 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2706 			return -EPERM;
2707 		if (flag & O_TRUNC)
2708 			return -EPERM;
2709 	}
2710 
2711 	/* O_NOATIME can only be set by the owner or superuser */
2712 	if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2713 		return -EPERM;
2714 
2715 	return 0;
2716 }
2717 
2718 static int handle_truncate(struct file *filp)
2719 {
2720 	struct path *path = &filp->f_path;
2721 	struct inode *inode = path->dentry->d_inode;
2722 	int error = get_write_access(inode);
2723 	if (error)
2724 		return error;
2725 	/*
2726 	 * Refuse to truncate files with mandatory locks held on them.
2727 	 */
2728 	error = locks_verify_locked(filp);
2729 	if (!error)
2730 		error = security_path_truncate(path);
2731 	if (!error) {
2732 		error = do_truncate(path->dentry, 0,
2733 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2734 				    filp);
2735 	}
2736 	put_write_access(inode);
2737 	return error;
2738 }
2739 
2740 static inline int open_to_namei_flags(int flag)
2741 {
2742 	if ((flag & O_ACCMODE) == 3)
2743 		flag--;
2744 	return flag;
2745 }
2746 
2747 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2748 {
2749 	int error = security_path_mknod(dir, dentry, mode, 0);
2750 	if (error)
2751 		return error;
2752 
2753 	error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2754 	if (error)
2755 		return error;
2756 
2757 	return security_inode_create(dir->dentry->d_inode, dentry, mode);
2758 }
2759 
2760 /*
2761  * Attempt to atomically look up, create and open a file from a negative
2762  * dentry.
2763  *
2764  * Returns 0 if successful.  The file will have been created and attached to
2765  * @file by the filesystem calling finish_open().
2766  *
2767  * Returns 1 if the file was looked up only or didn't need creating.  The
2768  * caller will need to perform the open themselves.  @path will have been
2769  * updated to point to the new dentry.  This may be negative.
2770  *
2771  * Returns an error code otherwise.
2772  */
2773 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2774 			struct path *path, struct file *file,
2775 			const struct open_flags *op,
2776 			bool got_write, bool need_lookup,
2777 			int *opened)
2778 {
2779 	struct inode *dir =  nd->path.dentry->d_inode;
2780 	unsigned open_flag = open_to_namei_flags(op->open_flag);
2781 	umode_t mode;
2782 	int error;
2783 	int acc_mode;
2784 	int create_error = 0;
2785 	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2786 	bool excl;
2787 
2788 	BUG_ON(dentry->d_inode);
2789 
2790 	/* Don't create child dentry for a dead directory. */
2791 	if (unlikely(IS_DEADDIR(dir))) {
2792 		error = -ENOENT;
2793 		goto out;
2794 	}
2795 
2796 	mode = op->mode;
2797 	if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2798 		mode &= ~current_umask();
2799 
2800 	excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT);
2801 	if (excl)
2802 		open_flag &= ~O_TRUNC;
2803 
2804 	/*
2805 	 * Checking write permission is tricky, bacuse we don't know if we are
2806 	 * going to actually need it: O_CREAT opens should work as long as the
2807 	 * file exists.  But checking existence breaks atomicity.  The trick is
2808 	 * to check access and if not granted clear O_CREAT from the flags.
2809 	 *
2810 	 * Another problem is returing the "right" error value (e.g. for an
2811 	 * O_EXCL open we want to return EEXIST not EROFS).
2812 	 */
2813 	if (((open_flag & (O_CREAT | O_TRUNC)) ||
2814 	    (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2815 		if (!(open_flag & O_CREAT)) {
2816 			/*
2817 			 * No O_CREATE -> atomicity not a requirement -> fall
2818 			 * back to lookup + open
2819 			 */
2820 			goto no_open;
2821 		} else if (open_flag & (O_EXCL | O_TRUNC)) {
2822 			/* Fall back and fail with the right error */
2823 			create_error = -EROFS;
2824 			goto no_open;
2825 		} else {
2826 			/* No side effects, safe to clear O_CREAT */
2827 			create_error = -EROFS;
2828 			open_flag &= ~O_CREAT;
2829 		}
2830 	}
2831 
2832 	if (open_flag & O_CREAT) {
2833 		error = may_o_create(&nd->path, dentry, mode);
2834 		if (error) {
2835 			create_error = error;
2836 			if (open_flag & O_EXCL)
2837 				goto no_open;
2838 			open_flag &= ~O_CREAT;
2839 		}
2840 	}
2841 
2842 	if (nd->flags & LOOKUP_DIRECTORY)
2843 		open_flag |= O_DIRECTORY;
2844 
2845 	file->f_path.dentry = DENTRY_NOT_SET;
2846 	file->f_path.mnt = nd->path.mnt;
2847 	error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2848 				      opened);
2849 	if (error < 0) {
2850 		if (create_error && error == -ENOENT)
2851 			error = create_error;
2852 		goto out;
2853 	}
2854 
2855 	if (error) {	/* returned 1, that is */
2856 		if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2857 			error = -EIO;
2858 			goto out;
2859 		}
2860 		if (file->f_path.dentry) {
2861 			dput(dentry);
2862 			dentry = file->f_path.dentry;
2863 		}
2864 		if (*opened & FILE_CREATED)
2865 			fsnotify_create(dir, dentry);
2866 		if (!dentry->d_inode) {
2867 			WARN_ON(*opened & FILE_CREATED);
2868 			if (create_error) {
2869 				error = create_error;
2870 				goto out;
2871 			}
2872 		} else {
2873 			if (excl && !(*opened & FILE_CREATED)) {
2874 				error = -EEXIST;
2875 				goto out;
2876 			}
2877 		}
2878 		goto looked_up;
2879 	}
2880 
2881 	/*
2882 	 * We didn't have the inode before the open, so check open permission
2883 	 * here.
2884 	 */
2885 	acc_mode = op->acc_mode;
2886 	if (*opened & FILE_CREATED) {
2887 		WARN_ON(!(open_flag & O_CREAT));
2888 		fsnotify_create(dir, dentry);
2889 		acc_mode = MAY_OPEN;
2890 	}
2891 	error = may_open(&file->f_path, acc_mode, open_flag);
2892 	if (error)
2893 		fput(file);
2894 
2895 out:
2896 	dput(dentry);
2897 	return error;
2898 
2899 no_open:
2900 	if (need_lookup) {
2901 		dentry = lookup_real(dir, dentry, nd->flags);
2902 		if (IS_ERR(dentry))
2903 			return PTR_ERR(dentry);
2904 
2905 		if (create_error) {
2906 			int open_flag = op->open_flag;
2907 
2908 			error = create_error;
2909 			if ((open_flag & O_EXCL)) {
2910 				if (!dentry->d_inode)
2911 					goto out;
2912 			} else if (!dentry->d_inode) {
2913 				goto out;
2914 			} else if ((open_flag & O_TRUNC) &&
2915 				   d_is_reg(dentry)) {
2916 				goto out;
2917 			}
2918 			/* will fail later, go on to get the right error */
2919 		}
2920 	}
2921 looked_up:
2922 	path->dentry = dentry;
2923 	path->mnt = nd->path.mnt;
2924 	return 1;
2925 }
2926 
2927 /*
2928  * Look up and maybe create and open the last component.
2929  *
2930  * Must be called with i_mutex held on parent.
2931  *
2932  * Returns 0 if the file was successfully atomically created (if necessary) and
2933  * opened.  In this case the file will be returned attached to @file.
2934  *
2935  * Returns 1 if the file was not completely opened at this time, though lookups
2936  * and creations will have been performed and the dentry returned in @path will
2937  * be positive upon return if O_CREAT was specified.  If O_CREAT wasn't
2938  * specified then a negative dentry may be returned.
2939  *
2940  * An error code is returned otherwise.
2941  *
2942  * FILE_CREATE will be set in @*opened if the dentry was created and will be
2943  * cleared otherwise prior to returning.
2944  */
2945 static int lookup_open(struct nameidata *nd, struct path *path,
2946 			struct file *file,
2947 			const struct open_flags *op,
2948 			bool got_write, int *opened)
2949 {
2950 	struct dentry *dir = nd->path.dentry;
2951 	struct inode *dir_inode = dir->d_inode;
2952 	struct dentry *dentry;
2953 	int error;
2954 	bool need_lookup;
2955 
2956 	*opened &= ~FILE_CREATED;
2957 	dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2958 	if (IS_ERR(dentry))
2959 		return PTR_ERR(dentry);
2960 
2961 	/* Cached positive dentry: will open in f_op->open */
2962 	if (!need_lookup && dentry->d_inode)
2963 		goto out_no_open;
2964 
2965 	if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2966 		return atomic_open(nd, dentry, path, file, op, got_write,
2967 				   need_lookup, opened);
2968 	}
2969 
2970 	if (need_lookup) {
2971 		BUG_ON(dentry->d_inode);
2972 
2973 		dentry = lookup_real(dir_inode, dentry, nd->flags);
2974 		if (IS_ERR(dentry))
2975 			return PTR_ERR(dentry);
2976 	}
2977 
2978 	/* Negative dentry, just create the file */
2979 	if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2980 		umode_t mode = op->mode;
2981 		if (!IS_POSIXACL(dir->d_inode))
2982 			mode &= ~current_umask();
2983 		/*
2984 		 * This write is needed to ensure that a
2985 		 * rw->ro transition does not occur between
2986 		 * the time when the file is created and when
2987 		 * a permanent write count is taken through
2988 		 * the 'struct file' in finish_open().
2989 		 */
2990 		if (!got_write) {
2991 			error = -EROFS;
2992 			goto out_dput;
2993 		}
2994 		*opened |= FILE_CREATED;
2995 		error = security_path_mknod(&nd->path, dentry, mode, 0);
2996 		if (error)
2997 			goto out_dput;
2998 		error = vfs_create(dir->d_inode, dentry, mode,
2999 				   nd->flags & LOOKUP_EXCL);
3000 		if (error)
3001 			goto out_dput;
3002 	}
3003 out_no_open:
3004 	path->dentry = dentry;
3005 	path->mnt = nd->path.mnt;
3006 	return 1;
3007 
3008 out_dput:
3009 	dput(dentry);
3010 	return error;
3011 }
3012 
3013 /*
3014  * Handle the last step of open()
3015  */
3016 static int do_last(struct nameidata *nd,
3017 		   struct file *file, const struct open_flags *op,
3018 		   int *opened)
3019 {
3020 	struct dentry *dir = nd->path.dentry;
3021 	int open_flag = op->open_flag;
3022 	bool will_truncate = (open_flag & O_TRUNC) != 0;
3023 	bool got_write = false;
3024 	int acc_mode = op->acc_mode;
3025 	unsigned seq;
3026 	struct inode *inode;
3027 	struct path save_parent = { .dentry = NULL, .mnt = NULL };
3028 	struct path path;
3029 	bool retried = false;
3030 	int error;
3031 
3032 	nd->flags &= ~LOOKUP_PARENT;
3033 	nd->flags |= op->intent;
3034 
3035 	if (nd->last_type != LAST_NORM) {
3036 		error = handle_dots(nd, nd->last_type);
3037 		if (unlikely(error))
3038 			return error;
3039 		goto finish_open;
3040 	}
3041 
3042 	if (!(open_flag & O_CREAT)) {
3043 		if (nd->last.name[nd->last.len])
3044 			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3045 		/* we _can_ be in RCU mode here */
3046 		error = lookup_fast(nd, &path, &inode, &seq);
3047 		if (likely(!error))
3048 			goto finish_lookup;
3049 
3050 		if (error < 0)
3051 			return error;
3052 
3053 		BUG_ON(nd->inode != dir->d_inode);
3054 	} else {
3055 		/* create side of things */
3056 		/*
3057 		 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3058 		 * has been cleared when we got to the last component we are
3059 		 * about to look up
3060 		 */
3061 		error = complete_walk(nd);
3062 		if (error)
3063 			return error;
3064 
3065 		audit_inode(nd->name, dir, LOOKUP_PARENT);
3066 		/* trailing slashes? */
3067 		if (unlikely(nd->last.name[nd->last.len]))
3068 			return -EISDIR;
3069 	}
3070 
3071 retry_lookup:
3072 	if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3073 		error = mnt_want_write(nd->path.mnt);
3074 		if (!error)
3075 			got_write = true;
3076 		/*
3077 		 * do _not_ fail yet - we might not need that or fail with
3078 		 * a different error; let lookup_open() decide; we'll be
3079 		 * dropping this one anyway.
3080 		 */
3081 	}
3082 	mutex_lock(&dir->d_inode->i_mutex);
3083 	error = lookup_open(nd, &path, file, op, got_write, opened);
3084 	mutex_unlock(&dir->d_inode->i_mutex);
3085 
3086 	if (error <= 0) {
3087 		if (error)
3088 			goto out;
3089 
3090 		if ((*opened & FILE_CREATED) ||
3091 		    !S_ISREG(file_inode(file)->i_mode))
3092 			will_truncate = false;
3093 
3094 		audit_inode(nd->name, file->f_path.dentry, 0);
3095 		goto opened;
3096 	}
3097 
3098 	if (*opened & FILE_CREATED) {
3099 		/* Don't check for write permission, don't truncate */
3100 		open_flag &= ~O_TRUNC;
3101 		will_truncate = false;
3102 		acc_mode = MAY_OPEN;
3103 		path_to_nameidata(&path, nd);
3104 		goto finish_open_created;
3105 	}
3106 
3107 	/*
3108 	 * create/update audit record if it already exists.
3109 	 */
3110 	if (d_is_positive(path.dentry))
3111 		audit_inode(nd->name, path.dentry, 0);
3112 
3113 	/*
3114 	 * If atomic_open() acquired write access it is dropped now due to
3115 	 * possible mount and symlink following (this might be optimized away if
3116 	 * necessary...)
3117 	 */
3118 	if (got_write) {
3119 		mnt_drop_write(nd->path.mnt);
3120 		got_write = false;
3121 	}
3122 
3123 	if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3124 		path_to_nameidata(&path, nd);
3125 		return -EEXIST;
3126 	}
3127 
3128 	error = follow_managed(&path, nd);
3129 	if (unlikely(error < 0))
3130 		return error;
3131 
3132 	BUG_ON(nd->flags & LOOKUP_RCU);
3133 	inode = d_backing_inode(path.dentry);
3134 	seq = 0;	/* out of RCU mode, so the value doesn't matter */
3135 	if (unlikely(d_is_negative(path.dentry))) {
3136 		path_to_nameidata(&path, nd);
3137 		return -ENOENT;
3138 	}
3139 finish_lookup:
3140 	if (nd->depth)
3141 		put_link(nd);
3142 	error = should_follow_link(nd, &path, nd->flags & LOOKUP_FOLLOW,
3143 				   inode, seq);
3144 	if (unlikely(error))
3145 		return error;
3146 
3147 	if (unlikely(d_is_symlink(path.dentry)) && !(open_flag & O_PATH)) {
3148 		path_to_nameidata(&path, nd);
3149 		return -ELOOP;
3150 	}
3151 
3152 	if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path.mnt) {
3153 		path_to_nameidata(&path, nd);
3154 	} else {
3155 		save_parent.dentry = nd->path.dentry;
3156 		save_parent.mnt = mntget(path.mnt);
3157 		nd->path.dentry = path.dentry;
3158 
3159 	}
3160 	nd->inode = inode;
3161 	nd->seq = seq;
3162 	/* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
3163 finish_open:
3164 	error = complete_walk(nd);
3165 	if (error) {
3166 		path_put(&save_parent);
3167 		return error;
3168 	}
3169 	audit_inode(nd->name, nd->path.dentry, 0);
3170 	error = -EISDIR;
3171 	if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3172 		goto out;
3173 	error = -ENOTDIR;
3174 	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3175 		goto out;
3176 	if (!d_is_reg(nd->path.dentry))
3177 		will_truncate = false;
3178 
3179 	if (will_truncate) {
3180 		error = mnt_want_write(nd->path.mnt);
3181 		if (error)
3182 			goto out;
3183 		got_write = true;
3184 	}
3185 finish_open_created:
3186 	error = may_open(&nd->path, acc_mode, open_flag);
3187 	if (error)
3188 		goto out;
3189 
3190 	BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3191 	error = vfs_open(&nd->path, file, current_cred());
3192 	if (!error) {
3193 		*opened |= FILE_OPENED;
3194 	} else {
3195 		if (error == -EOPENSTALE)
3196 			goto stale_open;
3197 		goto out;
3198 	}
3199 opened:
3200 	error = open_check_o_direct(file);
3201 	if (error)
3202 		goto exit_fput;
3203 	error = ima_file_check(file, op->acc_mode, *opened);
3204 	if (error)
3205 		goto exit_fput;
3206 
3207 	if (will_truncate) {
3208 		error = handle_truncate(file);
3209 		if (error)
3210 			goto exit_fput;
3211 	}
3212 out:
3213 	if (got_write)
3214 		mnt_drop_write(nd->path.mnt);
3215 	path_put(&save_parent);
3216 	return error;
3217 
3218 exit_fput:
3219 	fput(file);
3220 	goto out;
3221 
3222 stale_open:
3223 	/* If no saved parent or already retried then can't retry */
3224 	if (!save_parent.dentry || retried)
3225 		goto out;
3226 
3227 	BUG_ON(save_parent.dentry != dir);
3228 	path_put(&nd->path);
3229 	nd->path = save_parent;
3230 	nd->inode = dir->d_inode;
3231 	save_parent.mnt = NULL;
3232 	save_parent.dentry = NULL;
3233 	if (got_write) {
3234 		mnt_drop_write(nd->path.mnt);
3235 		got_write = false;
3236 	}
3237 	retried = true;
3238 	goto retry_lookup;
3239 }
3240 
3241 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3242 		const struct open_flags *op,
3243 		struct file *file, int *opened)
3244 {
3245 	static const struct qstr name = QSTR_INIT("/", 1);
3246 	struct dentry *child;
3247 	struct inode *dir;
3248 	struct path path;
3249 	int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3250 	if (unlikely(error))
3251 		return error;
3252 	error = mnt_want_write(path.mnt);
3253 	if (unlikely(error))
3254 		goto out;
3255 	dir = path.dentry->d_inode;
3256 	/* we want directory to be writable */
3257 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3258 	if (error)
3259 		goto out2;
3260 	if (!dir->i_op->tmpfile) {
3261 		error = -EOPNOTSUPP;
3262 		goto out2;
3263 	}
3264 	child = d_alloc(path.dentry, &name);
3265 	if (unlikely(!child)) {
3266 		error = -ENOMEM;
3267 		goto out2;
3268 	}
3269 	dput(path.dentry);
3270 	path.dentry = child;
3271 	error = dir->i_op->tmpfile(dir, child, op->mode);
3272 	if (error)
3273 		goto out2;
3274 	audit_inode(nd->name, child, 0);
3275 	/* Don't check for other permissions, the inode was just created */
3276 	error = may_open(&path, MAY_OPEN, op->open_flag);
3277 	if (error)
3278 		goto out2;
3279 	file->f_path.mnt = path.mnt;
3280 	error = finish_open(file, child, NULL, opened);
3281 	if (error)
3282 		goto out2;
3283 	error = open_check_o_direct(file);
3284 	if (error) {
3285 		fput(file);
3286 	} else if (!(op->open_flag & O_EXCL)) {
3287 		struct inode *inode = file_inode(file);
3288 		spin_lock(&inode->i_lock);
3289 		inode->i_state |= I_LINKABLE;
3290 		spin_unlock(&inode->i_lock);
3291 	}
3292 out2:
3293 	mnt_drop_write(path.mnt);
3294 out:
3295 	path_put(&path);
3296 	return error;
3297 }
3298 
3299 static struct file *path_openat(struct nameidata *nd,
3300 			const struct open_flags *op, unsigned flags)
3301 {
3302 	const char *s;
3303 	struct file *file;
3304 	int opened = 0;
3305 	int error;
3306 
3307 	file = get_empty_filp();
3308 	if (IS_ERR(file))
3309 		return file;
3310 
3311 	file->f_flags = op->open_flag;
3312 
3313 	if (unlikely(file->f_flags & __O_TMPFILE)) {
3314 		error = do_tmpfile(nd, flags, op, file, &opened);
3315 		goto out2;
3316 	}
3317 
3318 	s = path_init(nd, flags);
3319 	if (IS_ERR(s)) {
3320 		put_filp(file);
3321 		return ERR_CAST(s);
3322 	}
3323 	while (!(error = link_path_walk(s, nd)) &&
3324 		(error = do_last(nd, file, op, &opened)) > 0) {
3325 		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3326 		s = trailing_symlink(nd);
3327 		if (IS_ERR(s)) {
3328 			error = PTR_ERR(s);
3329 			break;
3330 		}
3331 	}
3332 	terminate_walk(nd);
3333 out2:
3334 	if (!(opened & FILE_OPENED)) {
3335 		BUG_ON(!error);
3336 		put_filp(file);
3337 	}
3338 	if (unlikely(error)) {
3339 		if (error == -EOPENSTALE) {
3340 			if (flags & LOOKUP_RCU)
3341 				error = -ECHILD;
3342 			else
3343 				error = -ESTALE;
3344 		}
3345 		file = ERR_PTR(error);
3346 	}
3347 	return file;
3348 }
3349 
3350 struct file *do_filp_open(int dfd, struct filename *pathname,
3351 		const struct open_flags *op)
3352 {
3353 	struct nameidata nd;
3354 	int flags = op->lookup_flags;
3355 	struct file *filp;
3356 
3357 	set_nameidata(&nd, dfd, pathname);
3358 	filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3359 	if (unlikely(filp == ERR_PTR(-ECHILD)))
3360 		filp = path_openat(&nd, op, flags);
3361 	if (unlikely(filp == ERR_PTR(-ESTALE)))
3362 		filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3363 	restore_nameidata();
3364 	return filp;
3365 }
3366 
3367 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3368 		const char *name, const struct open_flags *op)
3369 {
3370 	struct nameidata nd;
3371 	struct file *file;
3372 	struct filename *filename;
3373 	int flags = op->lookup_flags | LOOKUP_ROOT;
3374 
3375 	nd.root.mnt = mnt;
3376 	nd.root.dentry = dentry;
3377 
3378 	if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3379 		return ERR_PTR(-ELOOP);
3380 
3381 	filename = getname_kernel(name);
3382 	if (unlikely(IS_ERR(filename)))
3383 		return ERR_CAST(filename);
3384 
3385 	set_nameidata(&nd, -1, filename);
3386 	file = path_openat(&nd, op, flags | LOOKUP_RCU);
3387 	if (unlikely(file == ERR_PTR(-ECHILD)))
3388 		file = path_openat(&nd, op, flags);
3389 	if (unlikely(file == ERR_PTR(-ESTALE)))
3390 		file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3391 	restore_nameidata();
3392 	putname(filename);
3393 	return file;
3394 }
3395 
3396 static struct dentry *filename_create(int dfd, struct filename *name,
3397 				struct path *path, unsigned int lookup_flags)
3398 {
3399 	struct dentry *dentry = ERR_PTR(-EEXIST);
3400 	struct qstr last;
3401 	int type;
3402 	int err2;
3403 	int error;
3404 	bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3405 
3406 	/*
3407 	 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3408 	 * other flags passed in are ignored!
3409 	 */
3410 	lookup_flags &= LOOKUP_REVAL;
3411 
3412 	name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3413 	if (IS_ERR(name))
3414 		return ERR_CAST(name);
3415 
3416 	/*
3417 	 * Yucky last component or no last component at all?
3418 	 * (foo/., foo/.., /////)
3419 	 */
3420 	if (unlikely(type != LAST_NORM))
3421 		goto out;
3422 
3423 	/* don't fail immediately if it's r/o, at least try to report other errors */
3424 	err2 = mnt_want_write(path->mnt);
3425 	/*
3426 	 * Do the final lookup.
3427 	 */
3428 	lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3429 	mutex_lock_nested(&path->dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3430 	dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3431 	if (IS_ERR(dentry))
3432 		goto unlock;
3433 
3434 	error = -EEXIST;
3435 	if (d_is_positive(dentry))
3436 		goto fail;
3437 
3438 	/*
3439 	 * Special case - lookup gave negative, but... we had foo/bar/
3440 	 * From the vfs_mknod() POV we just have a negative dentry -
3441 	 * all is fine. Let's be bastards - you had / on the end, you've
3442 	 * been asking for (non-existent) directory. -ENOENT for you.
3443 	 */
3444 	if (unlikely(!is_dir && last.name[last.len])) {
3445 		error = -ENOENT;
3446 		goto fail;
3447 	}
3448 	if (unlikely(err2)) {
3449 		error = err2;
3450 		goto fail;
3451 	}
3452 	putname(name);
3453 	return dentry;
3454 fail:
3455 	dput(dentry);
3456 	dentry = ERR_PTR(error);
3457 unlock:
3458 	mutex_unlock(&path->dentry->d_inode->i_mutex);
3459 	if (!err2)
3460 		mnt_drop_write(path->mnt);
3461 out:
3462 	path_put(path);
3463 	putname(name);
3464 	return dentry;
3465 }
3466 
3467 struct dentry *kern_path_create(int dfd, const char *pathname,
3468 				struct path *path, unsigned int lookup_flags)
3469 {
3470 	return filename_create(dfd, getname_kernel(pathname),
3471 				path, lookup_flags);
3472 }
3473 EXPORT_SYMBOL(kern_path_create);
3474 
3475 void done_path_create(struct path *path, struct dentry *dentry)
3476 {
3477 	dput(dentry);
3478 	mutex_unlock(&path->dentry->d_inode->i_mutex);
3479 	mnt_drop_write(path->mnt);
3480 	path_put(path);
3481 }
3482 EXPORT_SYMBOL(done_path_create);
3483 
3484 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3485 				struct path *path, unsigned int lookup_flags)
3486 {
3487 	return filename_create(dfd, getname(pathname), path, lookup_flags);
3488 }
3489 EXPORT_SYMBOL(user_path_create);
3490 
3491 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3492 {
3493 	int error = may_create(dir, dentry);
3494 
3495 	if (error)
3496 		return error;
3497 
3498 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3499 		return -EPERM;
3500 
3501 	if (!dir->i_op->mknod)
3502 		return -EPERM;
3503 
3504 	error = devcgroup_inode_mknod(mode, dev);
3505 	if (error)
3506 		return error;
3507 
3508 	error = security_inode_mknod(dir, dentry, mode, dev);
3509 	if (error)
3510 		return error;
3511 
3512 	error = dir->i_op->mknod(dir, dentry, mode, dev);
3513 	if (!error)
3514 		fsnotify_create(dir, dentry);
3515 	return error;
3516 }
3517 EXPORT_SYMBOL(vfs_mknod);
3518 
3519 static int may_mknod(umode_t mode)
3520 {
3521 	switch (mode & S_IFMT) {
3522 	case S_IFREG:
3523 	case S_IFCHR:
3524 	case S_IFBLK:
3525 	case S_IFIFO:
3526 	case S_IFSOCK:
3527 	case 0: /* zero mode translates to S_IFREG */
3528 		return 0;
3529 	case S_IFDIR:
3530 		return -EPERM;
3531 	default:
3532 		return -EINVAL;
3533 	}
3534 }
3535 
3536 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3537 		unsigned, dev)
3538 {
3539 	struct dentry *dentry;
3540 	struct path path;
3541 	int error;
3542 	unsigned int lookup_flags = 0;
3543 
3544 	error = may_mknod(mode);
3545 	if (error)
3546 		return error;
3547 retry:
3548 	dentry = user_path_create(dfd, filename, &path, lookup_flags);
3549 	if (IS_ERR(dentry))
3550 		return PTR_ERR(dentry);
3551 
3552 	if (!IS_POSIXACL(path.dentry->d_inode))
3553 		mode &= ~current_umask();
3554 	error = security_path_mknod(&path, dentry, mode, dev);
3555 	if (error)
3556 		goto out;
3557 	switch (mode & S_IFMT) {
3558 		case 0: case S_IFREG:
3559 			error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3560 			break;
3561 		case S_IFCHR: case S_IFBLK:
3562 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3563 					new_decode_dev(dev));
3564 			break;
3565 		case S_IFIFO: case S_IFSOCK:
3566 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3567 			break;
3568 	}
3569 out:
3570 	done_path_create(&path, dentry);
3571 	if (retry_estale(error, lookup_flags)) {
3572 		lookup_flags |= LOOKUP_REVAL;
3573 		goto retry;
3574 	}
3575 	return error;
3576 }
3577 
3578 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3579 {
3580 	return sys_mknodat(AT_FDCWD, filename, mode, dev);
3581 }
3582 
3583 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3584 {
3585 	int error = may_create(dir, dentry);
3586 	unsigned max_links = dir->i_sb->s_max_links;
3587 
3588 	if (error)
3589 		return error;
3590 
3591 	if (!dir->i_op->mkdir)
3592 		return -EPERM;
3593 
3594 	mode &= (S_IRWXUGO|S_ISVTX);
3595 	error = security_inode_mkdir(dir, dentry, mode);
3596 	if (error)
3597 		return error;
3598 
3599 	if (max_links && dir->i_nlink >= max_links)
3600 		return -EMLINK;
3601 
3602 	error = dir->i_op->mkdir(dir, dentry, mode);
3603 	if (!error)
3604 		fsnotify_mkdir(dir, dentry);
3605 	return error;
3606 }
3607 EXPORT_SYMBOL(vfs_mkdir);
3608 
3609 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3610 {
3611 	struct dentry *dentry;
3612 	struct path path;
3613 	int error;
3614 	unsigned int lookup_flags = LOOKUP_DIRECTORY;
3615 
3616 retry:
3617 	dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3618 	if (IS_ERR(dentry))
3619 		return PTR_ERR(dentry);
3620 
3621 	if (!IS_POSIXACL(path.dentry->d_inode))
3622 		mode &= ~current_umask();
3623 	error = security_path_mkdir(&path, dentry, mode);
3624 	if (!error)
3625 		error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3626 	done_path_create(&path, dentry);
3627 	if (retry_estale(error, lookup_flags)) {
3628 		lookup_flags |= LOOKUP_REVAL;
3629 		goto retry;
3630 	}
3631 	return error;
3632 }
3633 
3634 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3635 {
3636 	return sys_mkdirat(AT_FDCWD, pathname, mode);
3637 }
3638 
3639 /*
3640  * The dentry_unhash() helper will try to drop the dentry early: we
3641  * should have a usage count of 1 if we're the only user of this
3642  * dentry, and if that is true (possibly after pruning the dcache),
3643  * then we drop the dentry now.
3644  *
3645  * A low-level filesystem can, if it choses, legally
3646  * do a
3647  *
3648  *	if (!d_unhashed(dentry))
3649  *		return -EBUSY;
3650  *
3651  * if it cannot handle the case of removing a directory
3652  * that is still in use by something else..
3653  */
3654 void dentry_unhash(struct dentry *dentry)
3655 {
3656 	shrink_dcache_parent(dentry);
3657 	spin_lock(&dentry->d_lock);
3658 	if (dentry->d_lockref.count == 1)
3659 		__d_drop(dentry);
3660 	spin_unlock(&dentry->d_lock);
3661 }
3662 EXPORT_SYMBOL(dentry_unhash);
3663 
3664 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3665 {
3666 	int error = may_delete(dir, dentry, 1);
3667 
3668 	if (error)
3669 		return error;
3670 
3671 	if (!dir->i_op->rmdir)
3672 		return -EPERM;
3673 
3674 	dget(dentry);
3675 	mutex_lock(&dentry->d_inode->i_mutex);
3676 
3677 	error = -EBUSY;
3678 	if (is_local_mountpoint(dentry))
3679 		goto out;
3680 
3681 	error = security_inode_rmdir(dir, dentry);
3682 	if (error)
3683 		goto out;
3684 
3685 	shrink_dcache_parent(dentry);
3686 	error = dir->i_op->rmdir(dir, dentry);
3687 	if (error)
3688 		goto out;
3689 
3690 	dentry->d_inode->i_flags |= S_DEAD;
3691 	dont_mount(dentry);
3692 	detach_mounts(dentry);
3693 
3694 out:
3695 	mutex_unlock(&dentry->d_inode->i_mutex);
3696 	dput(dentry);
3697 	if (!error)
3698 		d_delete(dentry);
3699 	return error;
3700 }
3701 EXPORT_SYMBOL(vfs_rmdir);
3702 
3703 static long do_rmdir(int dfd, const char __user *pathname)
3704 {
3705 	int error = 0;
3706 	struct filename *name;
3707 	struct dentry *dentry;
3708 	struct path path;
3709 	struct qstr last;
3710 	int type;
3711 	unsigned int lookup_flags = 0;
3712 retry:
3713 	name = user_path_parent(dfd, pathname,
3714 				&path, &last, &type, lookup_flags);
3715 	if (IS_ERR(name))
3716 		return PTR_ERR(name);
3717 
3718 	switch (type) {
3719 	case LAST_DOTDOT:
3720 		error = -ENOTEMPTY;
3721 		goto exit1;
3722 	case LAST_DOT:
3723 		error = -EINVAL;
3724 		goto exit1;
3725 	case LAST_ROOT:
3726 		error = -EBUSY;
3727 		goto exit1;
3728 	}
3729 
3730 	error = mnt_want_write(path.mnt);
3731 	if (error)
3732 		goto exit1;
3733 
3734 	mutex_lock_nested(&path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3735 	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3736 	error = PTR_ERR(dentry);
3737 	if (IS_ERR(dentry))
3738 		goto exit2;
3739 	if (!dentry->d_inode) {
3740 		error = -ENOENT;
3741 		goto exit3;
3742 	}
3743 	error = security_path_rmdir(&path, dentry);
3744 	if (error)
3745 		goto exit3;
3746 	error = vfs_rmdir(path.dentry->d_inode, dentry);
3747 exit3:
3748 	dput(dentry);
3749 exit2:
3750 	mutex_unlock(&path.dentry->d_inode->i_mutex);
3751 	mnt_drop_write(path.mnt);
3752 exit1:
3753 	path_put(&path);
3754 	putname(name);
3755 	if (retry_estale(error, lookup_flags)) {
3756 		lookup_flags |= LOOKUP_REVAL;
3757 		goto retry;
3758 	}
3759 	return error;
3760 }
3761 
3762 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3763 {
3764 	return do_rmdir(AT_FDCWD, pathname);
3765 }
3766 
3767 /**
3768  * vfs_unlink - unlink a filesystem object
3769  * @dir:	parent directory
3770  * @dentry:	victim
3771  * @delegated_inode: returns victim inode, if the inode is delegated.
3772  *
3773  * The caller must hold dir->i_mutex.
3774  *
3775  * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3776  * return a reference to the inode in delegated_inode.  The caller
3777  * should then break the delegation on that inode and retry.  Because
3778  * breaking a delegation may take a long time, the caller should drop
3779  * dir->i_mutex before doing so.
3780  *
3781  * Alternatively, a caller may pass NULL for delegated_inode.  This may
3782  * be appropriate for callers that expect the underlying filesystem not
3783  * to be NFS exported.
3784  */
3785 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3786 {
3787 	struct inode *target = dentry->d_inode;
3788 	int error = may_delete(dir, dentry, 0);
3789 
3790 	if (error)
3791 		return error;
3792 
3793 	if (!dir->i_op->unlink)
3794 		return -EPERM;
3795 
3796 	mutex_lock(&target->i_mutex);
3797 	if (is_local_mountpoint(dentry))
3798 		error = -EBUSY;
3799 	else {
3800 		error = security_inode_unlink(dir, dentry);
3801 		if (!error) {
3802 			error = try_break_deleg(target, delegated_inode);
3803 			if (error)
3804 				goto out;
3805 			error = dir->i_op->unlink(dir, dentry);
3806 			if (!error) {
3807 				dont_mount(dentry);
3808 				detach_mounts(dentry);
3809 			}
3810 		}
3811 	}
3812 out:
3813 	mutex_unlock(&target->i_mutex);
3814 
3815 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
3816 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3817 		fsnotify_link_count(target);
3818 		d_delete(dentry);
3819 	}
3820 
3821 	return error;
3822 }
3823 EXPORT_SYMBOL(vfs_unlink);
3824 
3825 /*
3826  * Make sure that the actual truncation of the file will occur outside its
3827  * directory's i_mutex.  Truncate can take a long time if there is a lot of
3828  * writeout happening, and we don't want to prevent access to the directory
3829  * while waiting on the I/O.
3830  */
3831 static long do_unlinkat(int dfd, const char __user *pathname)
3832 {
3833 	int error;
3834 	struct filename *name;
3835 	struct dentry *dentry;
3836 	struct path path;
3837 	struct qstr last;
3838 	int type;
3839 	struct inode *inode = NULL;
3840 	struct inode *delegated_inode = NULL;
3841 	unsigned int lookup_flags = 0;
3842 retry:
3843 	name = user_path_parent(dfd, pathname,
3844 				&path, &last, &type, lookup_flags);
3845 	if (IS_ERR(name))
3846 		return PTR_ERR(name);
3847 
3848 	error = -EISDIR;
3849 	if (type != LAST_NORM)
3850 		goto exit1;
3851 
3852 	error = mnt_want_write(path.mnt);
3853 	if (error)
3854 		goto exit1;
3855 retry_deleg:
3856 	mutex_lock_nested(&path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3857 	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3858 	error = PTR_ERR(dentry);
3859 	if (!IS_ERR(dentry)) {
3860 		/* Why not before? Because we want correct error value */
3861 		if (last.name[last.len])
3862 			goto slashes;
3863 		inode = dentry->d_inode;
3864 		if (d_is_negative(dentry))
3865 			goto slashes;
3866 		ihold(inode);
3867 		error = security_path_unlink(&path, dentry);
3868 		if (error)
3869 			goto exit2;
3870 		error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
3871 exit2:
3872 		dput(dentry);
3873 	}
3874 	mutex_unlock(&path.dentry->d_inode->i_mutex);
3875 	if (inode)
3876 		iput(inode);	/* truncate the inode here */
3877 	inode = NULL;
3878 	if (delegated_inode) {
3879 		error = break_deleg_wait(&delegated_inode);
3880 		if (!error)
3881 			goto retry_deleg;
3882 	}
3883 	mnt_drop_write(path.mnt);
3884 exit1:
3885 	path_put(&path);
3886 	putname(name);
3887 	if (retry_estale(error, lookup_flags)) {
3888 		lookup_flags |= LOOKUP_REVAL;
3889 		inode = NULL;
3890 		goto retry;
3891 	}
3892 	return error;
3893 
3894 slashes:
3895 	if (d_is_negative(dentry))
3896 		error = -ENOENT;
3897 	else if (d_is_dir(dentry))
3898 		error = -EISDIR;
3899 	else
3900 		error = -ENOTDIR;
3901 	goto exit2;
3902 }
3903 
3904 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3905 {
3906 	if ((flag & ~AT_REMOVEDIR) != 0)
3907 		return -EINVAL;
3908 
3909 	if (flag & AT_REMOVEDIR)
3910 		return do_rmdir(dfd, pathname);
3911 
3912 	return do_unlinkat(dfd, pathname);
3913 }
3914 
3915 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3916 {
3917 	return do_unlinkat(AT_FDCWD, pathname);
3918 }
3919 
3920 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3921 {
3922 	int error = may_create(dir, dentry);
3923 
3924 	if (error)
3925 		return error;
3926 
3927 	if (!dir->i_op->symlink)
3928 		return -EPERM;
3929 
3930 	error = security_inode_symlink(dir, dentry, oldname);
3931 	if (error)
3932 		return error;
3933 
3934 	error = dir->i_op->symlink(dir, dentry, oldname);
3935 	if (!error)
3936 		fsnotify_create(dir, dentry);
3937 	return error;
3938 }
3939 EXPORT_SYMBOL(vfs_symlink);
3940 
3941 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3942 		int, newdfd, const char __user *, newname)
3943 {
3944 	int error;
3945 	struct filename *from;
3946 	struct dentry *dentry;
3947 	struct path path;
3948 	unsigned int lookup_flags = 0;
3949 
3950 	from = getname(oldname);
3951 	if (IS_ERR(from))
3952 		return PTR_ERR(from);
3953 retry:
3954 	dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3955 	error = PTR_ERR(dentry);
3956 	if (IS_ERR(dentry))
3957 		goto out_putname;
3958 
3959 	error = security_path_symlink(&path, dentry, from->name);
3960 	if (!error)
3961 		error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3962 	done_path_create(&path, dentry);
3963 	if (retry_estale(error, lookup_flags)) {
3964 		lookup_flags |= LOOKUP_REVAL;
3965 		goto retry;
3966 	}
3967 out_putname:
3968 	putname(from);
3969 	return error;
3970 }
3971 
3972 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3973 {
3974 	return sys_symlinkat(oldname, AT_FDCWD, newname);
3975 }
3976 
3977 /**
3978  * vfs_link - create a new link
3979  * @old_dentry:	object to be linked
3980  * @dir:	new parent
3981  * @new_dentry:	where to create the new link
3982  * @delegated_inode: returns inode needing a delegation break
3983  *
3984  * The caller must hold dir->i_mutex
3985  *
3986  * If vfs_link discovers a delegation on the to-be-linked file in need
3987  * of breaking, it will return -EWOULDBLOCK and return a reference to the
3988  * inode in delegated_inode.  The caller should then break the delegation
3989  * and retry.  Because breaking a delegation may take a long time, the
3990  * caller should drop the i_mutex before doing so.
3991  *
3992  * Alternatively, a caller may pass NULL for delegated_inode.  This may
3993  * be appropriate for callers that expect the underlying filesystem not
3994  * to be NFS exported.
3995  */
3996 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
3997 {
3998 	struct inode *inode = old_dentry->d_inode;
3999 	unsigned max_links = dir->i_sb->s_max_links;
4000 	int error;
4001 
4002 	if (!inode)
4003 		return -ENOENT;
4004 
4005 	error = may_create(dir, new_dentry);
4006 	if (error)
4007 		return error;
4008 
4009 	if (dir->i_sb != inode->i_sb)
4010 		return -EXDEV;
4011 
4012 	/*
4013 	 * A link to an append-only or immutable file cannot be created.
4014 	 */
4015 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4016 		return -EPERM;
4017 	if (!dir->i_op->link)
4018 		return -EPERM;
4019 	if (S_ISDIR(inode->i_mode))
4020 		return -EPERM;
4021 
4022 	error = security_inode_link(old_dentry, dir, new_dentry);
4023 	if (error)
4024 		return error;
4025 
4026 	mutex_lock(&inode->i_mutex);
4027 	/* Make sure we don't allow creating hardlink to an unlinked file */
4028 	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4029 		error =  -ENOENT;
4030 	else if (max_links && inode->i_nlink >= max_links)
4031 		error = -EMLINK;
4032 	else {
4033 		error = try_break_deleg(inode, delegated_inode);
4034 		if (!error)
4035 			error = dir->i_op->link(old_dentry, dir, new_dentry);
4036 	}
4037 
4038 	if (!error && (inode->i_state & I_LINKABLE)) {
4039 		spin_lock(&inode->i_lock);
4040 		inode->i_state &= ~I_LINKABLE;
4041 		spin_unlock(&inode->i_lock);
4042 	}
4043 	mutex_unlock(&inode->i_mutex);
4044 	if (!error)
4045 		fsnotify_link(dir, inode, new_dentry);
4046 	return error;
4047 }
4048 EXPORT_SYMBOL(vfs_link);
4049 
4050 /*
4051  * Hardlinks are often used in delicate situations.  We avoid
4052  * security-related surprises by not following symlinks on the
4053  * newname.  --KAB
4054  *
4055  * We don't follow them on the oldname either to be compatible
4056  * with linux 2.0, and to avoid hard-linking to directories
4057  * and other special files.  --ADM
4058  */
4059 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4060 		int, newdfd, const char __user *, newname, int, flags)
4061 {
4062 	struct dentry *new_dentry;
4063 	struct path old_path, new_path;
4064 	struct inode *delegated_inode = NULL;
4065 	int how = 0;
4066 	int error;
4067 
4068 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4069 		return -EINVAL;
4070 	/*
4071 	 * To use null names we require CAP_DAC_READ_SEARCH
4072 	 * This ensures that not everyone will be able to create
4073 	 * handlink using the passed filedescriptor.
4074 	 */
4075 	if (flags & AT_EMPTY_PATH) {
4076 		if (!capable(CAP_DAC_READ_SEARCH))
4077 			return -ENOENT;
4078 		how = LOOKUP_EMPTY;
4079 	}
4080 
4081 	if (flags & AT_SYMLINK_FOLLOW)
4082 		how |= LOOKUP_FOLLOW;
4083 retry:
4084 	error = user_path_at(olddfd, oldname, how, &old_path);
4085 	if (error)
4086 		return error;
4087 
4088 	new_dentry = user_path_create(newdfd, newname, &new_path,
4089 					(how & LOOKUP_REVAL));
4090 	error = PTR_ERR(new_dentry);
4091 	if (IS_ERR(new_dentry))
4092 		goto out;
4093 
4094 	error = -EXDEV;
4095 	if (old_path.mnt != new_path.mnt)
4096 		goto out_dput;
4097 	error = may_linkat(&old_path);
4098 	if (unlikely(error))
4099 		goto out_dput;
4100 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
4101 	if (error)
4102 		goto out_dput;
4103 	error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4104 out_dput:
4105 	done_path_create(&new_path, new_dentry);
4106 	if (delegated_inode) {
4107 		error = break_deleg_wait(&delegated_inode);
4108 		if (!error) {
4109 			path_put(&old_path);
4110 			goto retry;
4111 		}
4112 	}
4113 	if (retry_estale(error, how)) {
4114 		path_put(&old_path);
4115 		how |= LOOKUP_REVAL;
4116 		goto retry;
4117 	}
4118 out:
4119 	path_put(&old_path);
4120 
4121 	return error;
4122 }
4123 
4124 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4125 {
4126 	return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4127 }
4128 
4129 /**
4130  * vfs_rename - rename a filesystem object
4131  * @old_dir:	parent of source
4132  * @old_dentry:	source
4133  * @new_dir:	parent of destination
4134  * @new_dentry:	destination
4135  * @delegated_inode: returns an inode needing a delegation break
4136  * @flags:	rename flags
4137  *
4138  * The caller must hold multiple mutexes--see lock_rename()).
4139  *
4140  * If vfs_rename discovers a delegation in need of breaking at either
4141  * the source or destination, it will return -EWOULDBLOCK and return a
4142  * reference to the inode in delegated_inode.  The caller should then
4143  * break the delegation and retry.  Because breaking a delegation may
4144  * take a long time, the caller should drop all locks before doing
4145  * so.
4146  *
4147  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4148  * be appropriate for callers that expect the underlying filesystem not
4149  * to be NFS exported.
4150  *
4151  * The worst of all namespace operations - renaming directory. "Perverted"
4152  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4153  * Problems:
4154  *	a) we can get into loop creation.
4155  *	b) race potential - two innocent renames can create a loop together.
4156  *	   That's where 4.4 screws up. Current fix: serialization on
4157  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4158  *	   story.
4159  *	c) we have to lock _four_ objects - parents and victim (if it exists),
4160  *	   and source (if it is not a directory).
4161  *	   And that - after we got ->i_mutex on parents (until then we don't know
4162  *	   whether the target exists).  Solution: try to be smart with locking
4163  *	   order for inodes.  We rely on the fact that tree topology may change
4164  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
4165  *	   move will be locked.  Thus we can rank directories by the tree
4166  *	   (ancestors first) and rank all non-directories after them.
4167  *	   That works since everybody except rename does "lock parent, lookup,
4168  *	   lock child" and rename is under ->s_vfs_rename_mutex.
4169  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
4170  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
4171  *	   we'd better make sure that there's no link(2) for them.
4172  *	d) conversion from fhandle to dentry may come in the wrong moment - when
4173  *	   we are removing the target. Solution: we will have to grab ->i_mutex
4174  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4175  *	   ->i_mutex on parents, which works but leads to some truly excessive
4176  *	   locking].
4177  */
4178 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4179 	       struct inode *new_dir, struct dentry *new_dentry,
4180 	       struct inode **delegated_inode, unsigned int flags)
4181 {
4182 	int error;
4183 	bool is_dir = d_is_dir(old_dentry);
4184 	const unsigned char *old_name;
4185 	struct inode *source = old_dentry->d_inode;
4186 	struct inode *target = new_dentry->d_inode;
4187 	bool new_is_dir = false;
4188 	unsigned max_links = new_dir->i_sb->s_max_links;
4189 
4190 	if (source == target)
4191 		return 0;
4192 
4193 	error = may_delete(old_dir, old_dentry, is_dir);
4194 	if (error)
4195 		return error;
4196 
4197 	if (!target) {
4198 		error = may_create(new_dir, new_dentry);
4199 	} else {
4200 		new_is_dir = d_is_dir(new_dentry);
4201 
4202 		if (!(flags & RENAME_EXCHANGE))
4203 			error = may_delete(new_dir, new_dentry, is_dir);
4204 		else
4205 			error = may_delete(new_dir, new_dentry, new_is_dir);
4206 	}
4207 	if (error)
4208 		return error;
4209 
4210 	if (!old_dir->i_op->rename && !old_dir->i_op->rename2)
4211 		return -EPERM;
4212 
4213 	if (flags && !old_dir->i_op->rename2)
4214 		return -EINVAL;
4215 
4216 	/*
4217 	 * If we are going to change the parent - check write permissions,
4218 	 * we'll need to flip '..'.
4219 	 */
4220 	if (new_dir != old_dir) {
4221 		if (is_dir) {
4222 			error = inode_permission(source, MAY_WRITE);
4223 			if (error)
4224 				return error;
4225 		}
4226 		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4227 			error = inode_permission(target, MAY_WRITE);
4228 			if (error)
4229 				return error;
4230 		}
4231 	}
4232 
4233 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4234 				      flags);
4235 	if (error)
4236 		return error;
4237 
4238 	old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4239 	dget(new_dentry);
4240 	if (!is_dir || (flags & RENAME_EXCHANGE))
4241 		lock_two_nondirectories(source, target);
4242 	else if (target)
4243 		mutex_lock(&target->i_mutex);
4244 
4245 	error = -EBUSY;
4246 	if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4247 		goto out;
4248 
4249 	if (max_links && new_dir != old_dir) {
4250 		error = -EMLINK;
4251 		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4252 			goto out;
4253 		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4254 		    old_dir->i_nlink >= max_links)
4255 			goto out;
4256 	}
4257 	if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4258 		shrink_dcache_parent(new_dentry);
4259 	if (!is_dir) {
4260 		error = try_break_deleg(source, delegated_inode);
4261 		if (error)
4262 			goto out;
4263 	}
4264 	if (target && !new_is_dir) {
4265 		error = try_break_deleg(target, delegated_inode);
4266 		if (error)
4267 			goto out;
4268 	}
4269 	if (!old_dir->i_op->rename2) {
4270 		error = old_dir->i_op->rename(old_dir, old_dentry,
4271 					      new_dir, new_dentry);
4272 	} else {
4273 		WARN_ON(old_dir->i_op->rename != NULL);
4274 		error = old_dir->i_op->rename2(old_dir, old_dentry,
4275 					       new_dir, new_dentry, flags);
4276 	}
4277 	if (error)
4278 		goto out;
4279 
4280 	if (!(flags & RENAME_EXCHANGE) && target) {
4281 		if (is_dir)
4282 			target->i_flags |= S_DEAD;
4283 		dont_mount(new_dentry);
4284 		detach_mounts(new_dentry);
4285 	}
4286 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4287 		if (!(flags & RENAME_EXCHANGE))
4288 			d_move(old_dentry, new_dentry);
4289 		else
4290 			d_exchange(old_dentry, new_dentry);
4291 	}
4292 out:
4293 	if (!is_dir || (flags & RENAME_EXCHANGE))
4294 		unlock_two_nondirectories(source, target);
4295 	else if (target)
4296 		mutex_unlock(&target->i_mutex);
4297 	dput(new_dentry);
4298 	if (!error) {
4299 		fsnotify_move(old_dir, new_dir, old_name, is_dir,
4300 			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4301 		if (flags & RENAME_EXCHANGE) {
4302 			fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4303 				      new_is_dir, NULL, new_dentry);
4304 		}
4305 	}
4306 	fsnotify_oldname_free(old_name);
4307 
4308 	return error;
4309 }
4310 EXPORT_SYMBOL(vfs_rename);
4311 
4312 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4313 		int, newdfd, const char __user *, newname, unsigned int, flags)
4314 {
4315 	struct dentry *old_dentry, *new_dentry;
4316 	struct dentry *trap;
4317 	struct path old_path, new_path;
4318 	struct qstr old_last, new_last;
4319 	int old_type, new_type;
4320 	struct inode *delegated_inode = NULL;
4321 	struct filename *from;
4322 	struct filename *to;
4323 	unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4324 	bool should_retry = false;
4325 	int error;
4326 
4327 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4328 		return -EINVAL;
4329 
4330 	if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4331 	    (flags & RENAME_EXCHANGE))
4332 		return -EINVAL;
4333 
4334 	if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4335 		return -EPERM;
4336 
4337 	if (flags & RENAME_EXCHANGE)
4338 		target_flags = 0;
4339 
4340 retry:
4341 	from = user_path_parent(olddfd, oldname,
4342 				&old_path, &old_last, &old_type, lookup_flags);
4343 	if (IS_ERR(from)) {
4344 		error = PTR_ERR(from);
4345 		goto exit;
4346 	}
4347 
4348 	to = user_path_parent(newdfd, newname,
4349 				&new_path, &new_last, &new_type, lookup_flags);
4350 	if (IS_ERR(to)) {
4351 		error = PTR_ERR(to);
4352 		goto exit1;
4353 	}
4354 
4355 	error = -EXDEV;
4356 	if (old_path.mnt != new_path.mnt)
4357 		goto exit2;
4358 
4359 	error = -EBUSY;
4360 	if (old_type != LAST_NORM)
4361 		goto exit2;
4362 
4363 	if (flags & RENAME_NOREPLACE)
4364 		error = -EEXIST;
4365 	if (new_type != LAST_NORM)
4366 		goto exit2;
4367 
4368 	error = mnt_want_write(old_path.mnt);
4369 	if (error)
4370 		goto exit2;
4371 
4372 retry_deleg:
4373 	trap = lock_rename(new_path.dentry, old_path.dentry);
4374 
4375 	old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4376 	error = PTR_ERR(old_dentry);
4377 	if (IS_ERR(old_dentry))
4378 		goto exit3;
4379 	/* source must exist */
4380 	error = -ENOENT;
4381 	if (d_is_negative(old_dentry))
4382 		goto exit4;
4383 	new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4384 	error = PTR_ERR(new_dentry);
4385 	if (IS_ERR(new_dentry))
4386 		goto exit4;
4387 	error = -EEXIST;
4388 	if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4389 		goto exit5;
4390 	if (flags & RENAME_EXCHANGE) {
4391 		error = -ENOENT;
4392 		if (d_is_negative(new_dentry))
4393 			goto exit5;
4394 
4395 		if (!d_is_dir(new_dentry)) {
4396 			error = -ENOTDIR;
4397 			if (new_last.name[new_last.len])
4398 				goto exit5;
4399 		}
4400 	}
4401 	/* unless the source is a directory trailing slashes give -ENOTDIR */
4402 	if (!d_is_dir(old_dentry)) {
4403 		error = -ENOTDIR;
4404 		if (old_last.name[old_last.len])
4405 			goto exit5;
4406 		if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4407 			goto exit5;
4408 	}
4409 	/* source should not be ancestor of target */
4410 	error = -EINVAL;
4411 	if (old_dentry == trap)
4412 		goto exit5;
4413 	/* target should not be an ancestor of source */
4414 	if (!(flags & RENAME_EXCHANGE))
4415 		error = -ENOTEMPTY;
4416 	if (new_dentry == trap)
4417 		goto exit5;
4418 
4419 	error = security_path_rename(&old_path, old_dentry,
4420 				     &new_path, new_dentry, flags);
4421 	if (error)
4422 		goto exit5;
4423 	error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4424 			   new_path.dentry->d_inode, new_dentry,
4425 			   &delegated_inode, flags);
4426 exit5:
4427 	dput(new_dentry);
4428 exit4:
4429 	dput(old_dentry);
4430 exit3:
4431 	unlock_rename(new_path.dentry, old_path.dentry);
4432 	if (delegated_inode) {
4433 		error = break_deleg_wait(&delegated_inode);
4434 		if (!error)
4435 			goto retry_deleg;
4436 	}
4437 	mnt_drop_write(old_path.mnt);
4438 exit2:
4439 	if (retry_estale(error, lookup_flags))
4440 		should_retry = true;
4441 	path_put(&new_path);
4442 	putname(to);
4443 exit1:
4444 	path_put(&old_path);
4445 	putname(from);
4446 	if (should_retry) {
4447 		should_retry = false;
4448 		lookup_flags |= LOOKUP_REVAL;
4449 		goto retry;
4450 	}
4451 exit:
4452 	return error;
4453 }
4454 
4455 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4456 		int, newdfd, const char __user *, newname)
4457 {
4458 	return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4459 }
4460 
4461 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4462 {
4463 	return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4464 }
4465 
4466 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4467 {
4468 	int error = may_create(dir, dentry);
4469 	if (error)
4470 		return error;
4471 
4472 	if (!dir->i_op->mknod)
4473 		return -EPERM;
4474 
4475 	return dir->i_op->mknod(dir, dentry,
4476 				S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4477 }
4478 EXPORT_SYMBOL(vfs_whiteout);
4479 
4480 int readlink_copy(char __user *buffer, int buflen, const char *link)
4481 {
4482 	int len = PTR_ERR(link);
4483 	if (IS_ERR(link))
4484 		goto out;
4485 
4486 	len = strlen(link);
4487 	if (len > (unsigned) buflen)
4488 		len = buflen;
4489 	if (copy_to_user(buffer, link, len))
4490 		len = -EFAULT;
4491 out:
4492 	return len;
4493 }
4494 EXPORT_SYMBOL(readlink_copy);
4495 
4496 /*
4497  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
4498  * have ->follow_link() touching nd only in nd_set_link().  Using (or not
4499  * using) it for any given inode is up to filesystem.
4500  */
4501 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4502 {
4503 	void *cookie;
4504 	struct inode *inode = d_inode(dentry);
4505 	const char *link = inode->i_link;
4506 	int res;
4507 
4508 	if (!link) {
4509 		link = inode->i_op->follow_link(dentry, &cookie);
4510 		if (IS_ERR(link))
4511 			return PTR_ERR(link);
4512 	}
4513 	res = readlink_copy(buffer, buflen, link);
4514 	if (inode->i_op->put_link)
4515 		inode->i_op->put_link(inode, cookie);
4516 	return res;
4517 }
4518 EXPORT_SYMBOL(generic_readlink);
4519 
4520 /* get the link contents into pagecache */
4521 static char *page_getlink(struct dentry * dentry, struct page **ppage)
4522 {
4523 	char *kaddr;
4524 	struct page *page;
4525 	struct address_space *mapping = dentry->d_inode->i_mapping;
4526 	page = read_mapping_page(mapping, 0, NULL);
4527 	if (IS_ERR(page))
4528 		return (char*)page;
4529 	*ppage = page;
4530 	kaddr = kmap(page);
4531 	nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
4532 	return kaddr;
4533 }
4534 
4535 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4536 {
4537 	struct page *page = NULL;
4538 	int res = readlink_copy(buffer, buflen, page_getlink(dentry, &page));
4539 	if (page) {
4540 		kunmap(page);
4541 		page_cache_release(page);
4542 	}
4543 	return res;
4544 }
4545 EXPORT_SYMBOL(page_readlink);
4546 
4547 const char *page_follow_link_light(struct dentry *dentry, void **cookie)
4548 {
4549 	struct page *page = NULL;
4550 	char *res = page_getlink(dentry, &page);
4551 	if (!IS_ERR(res))
4552 		*cookie = page;
4553 	return res;
4554 }
4555 EXPORT_SYMBOL(page_follow_link_light);
4556 
4557 void page_put_link(struct inode *unused, void *cookie)
4558 {
4559 	struct page *page = cookie;
4560 	kunmap(page);
4561 	page_cache_release(page);
4562 }
4563 EXPORT_SYMBOL(page_put_link);
4564 
4565 /*
4566  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4567  */
4568 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4569 {
4570 	struct address_space *mapping = inode->i_mapping;
4571 	struct page *page;
4572 	void *fsdata;
4573 	int err;
4574 	char *kaddr;
4575 	unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4576 	if (nofs)
4577 		flags |= AOP_FLAG_NOFS;
4578 
4579 retry:
4580 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
4581 				flags, &page, &fsdata);
4582 	if (err)
4583 		goto fail;
4584 
4585 	kaddr = kmap_atomic(page);
4586 	memcpy(kaddr, symname, len-1);
4587 	kunmap_atomic(kaddr);
4588 
4589 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4590 							page, fsdata);
4591 	if (err < 0)
4592 		goto fail;
4593 	if (err < len-1)
4594 		goto retry;
4595 
4596 	mark_inode_dirty(inode);
4597 	return 0;
4598 fail:
4599 	return err;
4600 }
4601 EXPORT_SYMBOL(__page_symlink);
4602 
4603 int page_symlink(struct inode *inode, const char *symname, int len)
4604 {
4605 	return __page_symlink(inode, symname, len,
4606 			!(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
4607 }
4608 EXPORT_SYMBOL(page_symlink);
4609 
4610 const struct inode_operations page_symlink_inode_operations = {
4611 	.readlink	= generic_readlink,
4612 	.follow_link	= page_follow_link_light,
4613 	.put_link	= page_put_link,
4614 };
4615 EXPORT_SYMBOL(page_symlink_inode_operations);
4616