xref: /openbmc/linux/fs/namei.c (revision e9246c87)
1 /*
2  *  linux/fs/namei.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * Some corrections by tytso.
9  */
10 
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12  * lookup logic.
13  */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15  */
16 
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <asm/uaccess.h>
39 
40 #include "internal.h"
41 #include "mount.h"
42 
43 /* [Feb-1997 T. Schoebel-Theuer]
44  * Fundamental changes in the pathname lookup mechanisms (namei)
45  * were necessary because of omirr.  The reason is that omirr needs
46  * to know the _real_ pathname, not the user-supplied one, in case
47  * of symlinks (and also when transname replacements occur).
48  *
49  * The new code replaces the old recursive symlink resolution with
50  * an iterative one (in case of non-nested symlink chains).  It does
51  * this with calls to <fs>_follow_link().
52  * As a side effect, dir_namei(), _namei() and follow_link() are now
53  * replaced with a single function lookup_dentry() that can handle all
54  * the special cases of the former code.
55  *
56  * With the new dcache, the pathname is stored at each inode, at least as
57  * long as the refcount of the inode is positive.  As a side effect, the
58  * size of the dcache depends on the inode cache and thus is dynamic.
59  *
60  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
61  * resolution to correspond with current state of the code.
62  *
63  * Note that the symlink resolution is not *completely* iterative.
64  * There is still a significant amount of tail- and mid- recursion in
65  * the algorithm.  Also, note that <fs>_readlink() is not used in
66  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
67  * may return different results than <fs>_follow_link().  Many virtual
68  * filesystems (including /proc) exhibit this behavior.
69  */
70 
71 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
72  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
73  * and the name already exists in form of a symlink, try to create the new
74  * name indicated by the symlink. The old code always complained that the
75  * name already exists, due to not following the symlink even if its target
76  * is nonexistent.  The new semantics affects also mknod() and link() when
77  * the name is a symlink pointing to a non-existent name.
78  *
79  * I don't know which semantics is the right one, since I have no access
80  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
81  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
82  * "old" one. Personally, I think the new semantics is much more logical.
83  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
84  * file does succeed in both HP-UX and SunOs, but not in Solaris
85  * and in the old Linux semantics.
86  */
87 
88 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
89  * semantics.  See the comments in "open_namei" and "do_link" below.
90  *
91  * [10-Sep-98 Alan Modra] Another symlink change.
92  */
93 
94 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
95  *	inside the path - always follow.
96  *	in the last component in creation/removal/renaming - never follow.
97  *	if LOOKUP_FOLLOW passed - follow.
98  *	if the pathname has trailing slashes - follow.
99  *	otherwise - don't follow.
100  * (applied in that order).
101  *
102  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
103  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
104  * During the 2.4 we need to fix the userland stuff depending on it -
105  * hopefully we will be able to get rid of that wart in 2.5. So far only
106  * XEmacs seems to be relying on it...
107  */
108 /*
109  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
110  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
111  * any extra contention...
112  */
113 
114 /* In order to reduce some races, while at the same time doing additional
115  * checking and hopefully speeding things up, we copy filenames to the
116  * kernel data space before using them..
117  *
118  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
119  * PATH_MAX includes the nul terminator --RR.
120  */
121 void final_putname(struct filename *name)
122 {
123 	if (name->separate) {
124 		__putname(name->name);
125 		kfree(name);
126 	} else {
127 		__putname(name);
128 	}
129 }
130 
131 #define EMBEDDED_NAME_MAX	(PATH_MAX - sizeof(struct filename))
132 
133 static struct filename *
134 getname_flags(const char __user *filename, int flags, int *empty)
135 {
136 	struct filename *result, *err;
137 	int len;
138 	long max;
139 	char *kname;
140 
141 	result = audit_reusename(filename);
142 	if (result)
143 		return result;
144 
145 	result = __getname();
146 	if (unlikely(!result))
147 		return ERR_PTR(-ENOMEM);
148 
149 	/*
150 	 * First, try to embed the struct filename inside the names_cache
151 	 * allocation
152 	 */
153 	kname = (char *)result + sizeof(*result);
154 	result->name = kname;
155 	result->separate = false;
156 	max = EMBEDDED_NAME_MAX;
157 
158 recopy:
159 	len = strncpy_from_user(kname, filename, max);
160 	if (unlikely(len < 0)) {
161 		err = ERR_PTR(len);
162 		goto error;
163 	}
164 
165 	/*
166 	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
167 	 * separate struct filename so we can dedicate the entire
168 	 * names_cache allocation for the pathname, and re-do the copy from
169 	 * userland.
170 	 */
171 	if (len == EMBEDDED_NAME_MAX && max == EMBEDDED_NAME_MAX) {
172 		kname = (char *)result;
173 
174 		result = kzalloc(sizeof(*result), GFP_KERNEL);
175 		if (!result) {
176 			err = ERR_PTR(-ENOMEM);
177 			result = (struct filename *)kname;
178 			goto error;
179 		}
180 		result->name = kname;
181 		result->separate = true;
182 		max = PATH_MAX;
183 		goto recopy;
184 	}
185 
186 	/* The empty path is special. */
187 	if (unlikely(!len)) {
188 		if (empty)
189 			*empty = 1;
190 		err = ERR_PTR(-ENOENT);
191 		if (!(flags & LOOKUP_EMPTY))
192 			goto error;
193 	}
194 
195 	err = ERR_PTR(-ENAMETOOLONG);
196 	if (unlikely(len >= PATH_MAX))
197 		goto error;
198 
199 	result->uptr = filename;
200 	result->aname = NULL;
201 	audit_getname(result);
202 	return result;
203 
204 error:
205 	final_putname(result);
206 	return err;
207 }
208 
209 struct filename *
210 getname(const char __user * filename)
211 {
212 	return getname_flags(filename, 0, NULL);
213 }
214 
215 /*
216  * The "getname_kernel()" interface doesn't do pathnames longer
217  * than EMBEDDED_NAME_MAX. Deal with it - you're a kernel user.
218  */
219 struct filename *
220 getname_kernel(const char * filename)
221 {
222 	struct filename *result;
223 	char *kname;
224 	int len;
225 
226 	len = strlen(filename);
227 	if (len >= EMBEDDED_NAME_MAX)
228 		return ERR_PTR(-ENAMETOOLONG);
229 
230 	result = __getname();
231 	if (unlikely(!result))
232 		return ERR_PTR(-ENOMEM);
233 
234 	kname = (char *)result + sizeof(*result);
235 	result->name = kname;
236 	result->uptr = NULL;
237 	result->aname = NULL;
238 	result->separate = false;
239 
240 	strlcpy(kname, filename, EMBEDDED_NAME_MAX);
241 	return result;
242 }
243 
244 #ifdef CONFIG_AUDITSYSCALL
245 void putname(struct filename *name)
246 {
247 	if (unlikely(!audit_dummy_context()))
248 		return audit_putname(name);
249 	final_putname(name);
250 }
251 #endif
252 
253 static int check_acl(struct inode *inode, int mask)
254 {
255 #ifdef CONFIG_FS_POSIX_ACL
256 	struct posix_acl *acl;
257 
258 	if (mask & MAY_NOT_BLOCK) {
259 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
260 	        if (!acl)
261 	                return -EAGAIN;
262 		/* no ->get_acl() calls in RCU mode... */
263 		if (acl == ACL_NOT_CACHED)
264 			return -ECHILD;
265 	        return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
266 	}
267 
268 	acl = get_acl(inode, ACL_TYPE_ACCESS);
269 	if (IS_ERR(acl))
270 		return PTR_ERR(acl);
271 	if (acl) {
272 	        int error = posix_acl_permission(inode, acl, mask);
273 	        posix_acl_release(acl);
274 	        return error;
275 	}
276 #endif
277 
278 	return -EAGAIN;
279 }
280 
281 /*
282  * This does the basic permission checking
283  */
284 static int acl_permission_check(struct inode *inode, int mask)
285 {
286 	unsigned int mode = inode->i_mode;
287 
288 	if (likely(uid_eq(current_fsuid(), inode->i_uid)))
289 		mode >>= 6;
290 	else {
291 		if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
292 			int error = check_acl(inode, mask);
293 			if (error != -EAGAIN)
294 				return error;
295 		}
296 
297 		if (in_group_p(inode->i_gid))
298 			mode >>= 3;
299 	}
300 
301 	/*
302 	 * If the DACs are ok we don't need any capability check.
303 	 */
304 	if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
305 		return 0;
306 	return -EACCES;
307 }
308 
309 /**
310  * generic_permission -  check for access rights on a Posix-like filesystem
311  * @inode:	inode to check access rights for
312  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
313  *
314  * Used to check for read/write/execute permissions on a file.
315  * We use "fsuid" for this, letting us set arbitrary permissions
316  * for filesystem access without changing the "normal" uids which
317  * are used for other things.
318  *
319  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
320  * request cannot be satisfied (eg. requires blocking or too much complexity).
321  * It would then be called again in ref-walk mode.
322  */
323 int generic_permission(struct inode *inode, int mask)
324 {
325 	int ret;
326 
327 	/*
328 	 * Do the basic permission checks.
329 	 */
330 	ret = acl_permission_check(inode, mask);
331 	if (ret != -EACCES)
332 		return ret;
333 
334 	if (S_ISDIR(inode->i_mode)) {
335 		/* DACs are overridable for directories */
336 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
337 			return 0;
338 		if (!(mask & MAY_WRITE))
339 			if (capable_wrt_inode_uidgid(inode,
340 						     CAP_DAC_READ_SEARCH))
341 				return 0;
342 		return -EACCES;
343 	}
344 	/*
345 	 * Read/write DACs are always overridable.
346 	 * Executable DACs are overridable when there is
347 	 * at least one exec bit set.
348 	 */
349 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
350 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
351 			return 0;
352 
353 	/*
354 	 * Searching includes executable on directories, else just read.
355 	 */
356 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
357 	if (mask == MAY_READ)
358 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
359 			return 0;
360 
361 	return -EACCES;
362 }
363 EXPORT_SYMBOL(generic_permission);
364 
365 /*
366  * We _really_ want to just do "generic_permission()" without
367  * even looking at the inode->i_op values. So we keep a cache
368  * flag in inode->i_opflags, that says "this has not special
369  * permission function, use the fast case".
370  */
371 static inline int do_inode_permission(struct inode *inode, int mask)
372 {
373 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
374 		if (likely(inode->i_op->permission))
375 			return inode->i_op->permission(inode, mask);
376 
377 		/* This gets set once for the inode lifetime */
378 		spin_lock(&inode->i_lock);
379 		inode->i_opflags |= IOP_FASTPERM;
380 		spin_unlock(&inode->i_lock);
381 	}
382 	return generic_permission(inode, mask);
383 }
384 
385 /**
386  * __inode_permission - Check for access rights to a given inode
387  * @inode: Inode to check permission on
388  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
389  *
390  * Check for read/write/execute permissions on an inode.
391  *
392  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
393  *
394  * This does not check for a read-only file system.  You probably want
395  * inode_permission().
396  */
397 int __inode_permission(struct inode *inode, int mask)
398 {
399 	int retval;
400 
401 	if (unlikely(mask & MAY_WRITE)) {
402 		/*
403 		 * Nobody gets write access to an immutable file.
404 		 */
405 		if (IS_IMMUTABLE(inode))
406 			return -EACCES;
407 	}
408 
409 	retval = do_inode_permission(inode, mask);
410 	if (retval)
411 		return retval;
412 
413 	retval = devcgroup_inode_permission(inode, mask);
414 	if (retval)
415 		return retval;
416 
417 	return security_inode_permission(inode, mask);
418 }
419 
420 /**
421  * sb_permission - Check superblock-level permissions
422  * @sb: Superblock of inode to check permission on
423  * @inode: Inode to check permission on
424  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
425  *
426  * Separate out file-system wide checks from inode-specific permission checks.
427  */
428 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
429 {
430 	if (unlikely(mask & MAY_WRITE)) {
431 		umode_t mode = inode->i_mode;
432 
433 		/* Nobody gets write access to a read-only fs. */
434 		if ((sb->s_flags & MS_RDONLY) &&
435 		    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
436 			return -EROFS;
437 	}
438 	return 0;
439 }
440 
441 /**
442  * inode_permission - Check for access rights to a given inode
443  * @inode: Inode to check permission on
444  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
445  *
446  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
447  * this, letting us set arbitrary permissions for filesystem access without
448  * changing the "normal" UIDs which are used for other things.
449  *
450  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
451  */
452 int inode_permission(struct inode *inode, int mask)
453 {
454 	int retval;
455 
456 	retval = sb_permission(inode->i_sb, inode, mask);
457 	if (retval)
458 		return retval;
459 	return __inode_permission(inode, mask);
460 }
461 EXPORT_SYMBOL(inode_permission);
462 
463 /**
464  * path_get - get a reference to a path
465  * @path: path to get the reference to
466  *
467  * Given a path increment the reference count to the dentry and the vfsmount.
468  */
469 void path_get(const struct path *path)
470 {
471 	mntget(path->mnt);
472 	dget(path->dentry);
473 }
474 EXPORT_SYMBOL(path_get);
475 
476 /**
477  * path_put - put a reference to a path
478  * @path: path to put the reference to
479  *
480  * Given a path decrement the reference count to the dentry and the vfsmount.
481  */
482 void path_put(const struct path *path)
483 {
484 	dput(path->dentry);
485 	mntput(path->mnt);
486 }
487 EXPORT_SYMBOL(path_put);
488 
489 /*
490  * Path walking has 2 modes, rcu-walk and ref-walk (see
491  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
492  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
493  * normal reference counts on dentries and vfsmounts to transition to rcu-walk
494  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
495  * got stuck, so ref-walk may continue from there. If this is not successful
496  * (eg. a seqcount has changed), then failure is returned and it's up to caller
497  * to restart the path walk from the beginning in ref-walk mode.
498  */
499 
500 /**
501  * unlazy_walk - try to switch to ref-walk mode.
502  * @nd: nameidata pathwalk data
503  * @dentry: child of nd->path.dentry or NULL
504  * Returns: 0 on success, -ECHILD on failure
505  *
506  * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
507  * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
508  * @nd or NULL.  Must be called from rcu-walk context.
509  */
510 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
511 {
512 	struct fs_struct *fs = current->fs;
513 	struct dentry *parent = nd->path.dentry;
514 
515 	BUG_ON(!(nd->flags & LOOKUP_RCU));
516 
517 	/*
518 	 * After legitimizing the bastards, terminate_walk()
519 	 * will do the right thing for non-RCU mode, and all our
520 	 * subsequent exit cases should rcu_read_unlock()
521 	 * before returning.  Do vfsmount first; if dentry
522 	 * can't be legitimized, just set nd->path.dentry to NULL
523 	 * and rely on dput(NULL) being a no-op.
524 	 */
525 	if (!legitimize_mnt(nd->path.mnt, nd->m_seq))
526 		return -ECHILD;
527 	nd->flags &= ~LOOKUP_RCU;
528 
529 	if (!lockref_get_not_dead(&parent->d_lockref)) {
530 		nd->path.dentry = NULL;
531 		goto out;
532 	}
533 
534 	/*
535 	 * For a negative lookup, the lookup sequence point is the parents
536 	 * sequence point, and it only needs to revalidate the parent dentry.
537 	 *
538 	 * For a positive lookup, we need to move both the parent and the
539 	 * dentry from the RCU domain to be properly refcounted. And the
540 	 * sequence number in the dentry validates *both* dentry counters,
541 	 * since we checked the sequence number of the parent after we got
542 	 * the child sequence number. So we know the parent must still
543 	 * be valid if the child sequence number is still valid.
544 	 */
545 	if (!dentry) {
546 		if (read_seqcount_retry(&parent->d_seq, nd->seq))
547 			goto out;
548 		BUG_ON(nd->inode != parent->d_inode);
549 	} else {
550 		if (!lockref_get_not_dead(&dentry->d_lockref))
551 			goto out;
552 		if (read_seqcount_retry(&dentry->d_seq, nd->seq))
553 			goto drop_dentry;
554 	}
555 
556 	/*
557 	 * Sequence counts matched. Now make sure that the root is
558 	 * still valid and get it if required.
559 	 */
560 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
561 		spin_lock(&fs->lock);
562 		if (nd->root.mnt != fs->root.mnt || nd->root.dentry != fs->root.dentry)
563 			goto unlock_and_drop_dentry;
564 		path_get(&nd->root);
565 		spin_unlock(&fs->lock);
566 	}
567 
568 	rcu_read_unlock();
569 	return 0;
570 
571 unlock_and_drop_dentry:
572 	spin_unlock(&fs->lock);
573 drop_dentry:
574 	rcu_read_unlock();
575 	dput(dentry);
576 	goto drop_root_mnt;
577 out:
578 	rcu_read_unlock();
579 drop_root_mnt:
580 	if (!(nd->flags & LOOKUP_ROOT))
581 		nd->root.mnt = NULL;
582 	return -ECHILD;
583 }
584 
585 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
586 {
587 	return dentry->d_op->d_revalidate(dentry, flags);
588 }
589 
590 /**
591  * complete_walk - successful completion of path walk
592  * @nd:  pointer nameidata
593  *
594  * If we had been in RCU mode, drop out of it and legitimize nd->path.
595  * Revalidate the final result, unless we'd already done that during
596  * the path walk or the filesystem doesn't ask for it.  Return 0 on
597  * success, -error on failure.  In case of failure caller does not
598  * need to drop nd->path.
599  */
600 static int complete_walk(struct nameidata *nd)
601 {
602 	struct dentry *dentry = nd->path.dentry;
603 	int status;
604 
605 	if (nd->flags & LOOKUP_RCU) {
606 		nd->flags &= ~LOOKUP_RCU;
607 		if (!(nd->flags & LOOKUP_ROOT))
608 			nd->root.mnt = NULL;
609 
610 		if (!legitimize_mnt(nd->path.mnt, nd->m_seq)) {
611 			rcu_read_unlock();
612 			return -ECHILD;
613 		}
614 		if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) {
615 			rcu_read_unlock();
616 			mntput(nd->path.mnt);
617 			return -ECHILD;
618 		}
619 		if (read_seqcount_retry(&dentry->d_seq, nd->seq)) {
620 			rcu_read_unlock();
621 			dput(dentry);
622 			mntput(nd->path.mnt);
623 			return -ECHILD;
624 		}
625 		rcu_read_unlock();
626 	}
627 
628 	if (likely(!(nd->flags & LOOKUP_JUMPED)))
629 		return 0;
630 
631 	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
632 		return 0;
633 
634 	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
635 	if (status > 0)
636 		return 0;
637 
638 	if (!status)
639 		status = -ESTALE;
640 
641 	path_put(&nd->path);
642 	return status;
643 }
644 
645 static __always_inline void set_root(struct nameidata *nd)
646 {
647 	get_fs_root(current->fs, &nd->root);
648 }
649 
650 static int link_path_walk(const char *, struct nameidata *);
651 
652 static __always_inline unsigned set_root_rcu(struct nameidata *nd)
653 {
654 	struct fs_struct *fs = current->fs;
655 	unsigned seq, res;
656 
657 	do {
658 		seq = read_seqcount_begin(&fs->seq);
659 		nd->root = fs->root;
660 		res = __read_seqcount_begin(&nd->root.dentry->d_seq);
661 	} while (read_seqcount_retry(&fs->seq, seq));
662 	return res;
663 }
664 
665 static void path_put_conditional(struct path *path, struct nameidata *nd)
666 {
667 	dput(path->dentry);
668 	if (path->mnt != nd->path.mnt)
669 		mntput(path->mnt);
670 }
671 
672 static inline void path_to_nameidata(const struct path *path,
673 					struct nameidata *nd)
674 {
675 	if (!(nd->flags & LOOKUP_RCU)) {
676 		dput(nd->path.dentry);
677 		if (nd->path.mnt != path->mnt)
678 			mntput(nd->path.mnt);
679 	}
680 	nd->path.mnt = path->mnt;
681 	nd->path.dentry = path->dentry;
682 }
683 
684 /*
685  * Helper to directly jump to a known parsed path from ->follow_link,
686  * caller must have taken a reference to path beforehand.
687  */
688 void nd_jump_link(struct nameidata *nd, struct path *path)
689 {
690 	path_put(&nd->path);
691 
692 	nd->path = *path;
693 	nd->inode = nd->path.dentry->d_inode;
694 	nd->flags |= LOOKUP_JUMPED;
695 }
696 
697 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
698 {
699 	struct inode *inode = link->dentry->d_inode;
700 	if (inode->i_op->put_link)
701 		inode->i_op->put_link(link->dentry, nd, cookie);
702 	path_put(link);
703 }
704 
705 int sysctl_protected_symlinks __read_mostly = 0;
706 int sysctl_protected_hardlinks __read_mostly = 0;
707 
708 /**
709  * may_follow_link - Check symlink following for unsafe situations
710  * @link: The path of the symlink
711  * @nd: nameidata pathwalk data
712  *
713  * In the case of the sysctl_protected_symlinks sysctl being enabled,
714  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
715  * in a sticky world-writable directory. This is to protect privileged
716  * processes from failing races against path names that may change out
717  * from under them by way of other users creating malicious symlinks.
718  * It will permit symlinks to be followed only when outside a sticky
719  * world-writable directory, or when the uid of the symlink and follower
720  * match, or when the directory owner matches the symlink's owner.
721  *
722  * Returns 0 if following the symlink is allowed, -ve on error.
723  */
724 static inline int may_follow_link(struct path *link, struct nameidata *nd)
725 {
726 	const struct inode *inode;
727 	const struct inode *parent;
728 
729 	if (!sysctl_protected_symlinks)
730 		return 0;
731 
732 	/* Allowed if owner and follower match. */
733 	inode = link->dentry->d_inode;
734 	if (uid_eq(current_cred()->fsuid, inode->i_uid))
735 		return 0;
736 
737 	/* Allowed if parent directory not sticky and world-writable. */
738 	parent = nd->path.dentry->d_inode;
739 	if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
740 		return 0;
741 
742 	/* Allowed if parent directory and link owner match. */
743 	if (uid_eq(parent->i_uid, inode->i_uid))
744 		return 0;
745 
746 	audit_log_link_denied("follow_link", link);
747 	path_put_conditional(link, nd);
748 	path_put(&nd->path);
749 	return -EACCES;
750 }
751 
752 /**
753  * safe_hardlink_source - Check for safe hardlink conditions
754  * @inode: the source inode to hardlink from
755  *
756  * Return false if at least one of the following conditions:
757  *    - inode is not a regular file
758  *    - inode is setuid
759  *    - inode is setgid and group-exec
760  *    - access failure for read and write
761  *
762  * Otherwise returns true.
763  */
764 static bool safe_hardlink_source(struct inode *inode)
765 {
766 	umode_t mode = inode->i_mode;
767 
768 	/* Special files should not get pinned to the filesystem. */
769 	if (!S_ISREG(mode))
770 		return false;
771 
772 	/* Setuid files should not get pinned to the filesystem. */
773 	if (mode & S_ISUID)
774 		return false;
775 
776 	/* Executable setgid files should not get pinned to the filesystem. */
777 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
778 		return false;
779 
780 	/* Hardlinking to unreadable or unwritable sources is dangerous. */
781 	if (inode_permission(inode, MAY_READ | MAY_WRITE))
782 		return false;
783 
784 	return true;
785 }
786 
787 /**
788  * may_linkat - Check permissions for creating a hardlink
789  * @link: the source to hardlink from
790  *
791  * Block hardlink when all of:
792  *  - sysctl_protected_hardlinks enabled
793  *  - fsuid does not match inode
794  *  - hardlink source is unsafe (see safe_hardlink_source() above)
795  *  - not CAP_FOWNER
796  *
797  * Returns 0 if successful, -ve on error.
798  */
799 static int may_linkat(struct path *link)
800 {
801 	const struct cred *cred;
802 	struct inode *inode;
803 
804 	if (!sysctl_protected_hardlinks)
805 		return 0;
806 
807 	cred = current_cred();
808 	inode = link->dentry->d_inode;
809 
810 	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
811 	 * otherwise, it must be a safe source.
812 	 */
813 	if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) ||
814 	    capable(CAP_FOWNER))
815 		return 0;
816 
817 	audit_log_link_denied("linkat", link);
818 	return -EPERM;
819 }
820 
821 static __always_inline int
822 follow_link(struct path *link, struct nameidata *nd, void **p)
823 {
824 	struct dentry *dentry = link->dentry;
825 	int error;
826 	char *s;
827 
828 	BUG_ON(nd->flags & LOOKUP_RCU);
829 
830 	if (link->mnt == nd->path.mnt)
831 		mntget(link->mnt);
832 
833 	error = -ELOOP;
834 	if (unlikely(current->total_link_count >= 40))
835 		goto out_put_nd_path;
836 
837 	cond_resched();
838 	current->total_link_count++;
839 
840 	touch_atime(link);
841 	nd_set_link(nd, NULL);
842 
843 	error = security_inode_follow_link(link->dentry, nd);
844 	if (error)
845 		goto out_put_nd_path;
846 
847 	nd->last_type = LAST_BIND;
848 	*p = dentry->d_inode->i_op->follow_link(dentry, nd);
849 	error = PTR_ERR(*p);
850 	if (IS_ERR(*p))
851 		goto out_put_nd_path;
852 
853 	error = 0;
854 	s = nd_get_link(nd);
855 	if (s) {
856 		if (unlikely(IS_ERR(s))) {
857 			path_put(&nd->path);
858 			put_link(nd, link, *p);
859 			return PTR_ERR(s);
860 		}
861 		if (*s == '/') {
862 			if (!nd->root.mnt)
863 				set_root(nd);
864 			path_put(&nd->path);
865 			nd->path = nd->root;
866 			path_get(&nd->root);
867 			nd->flags |= LOOKUP_JUMPED;
868 		}
869 		nd->inode = nd->path.dentry->d_inode;
870 		error = link_path_walk(s, nd);
871 		if (unlikely(error))
872 			put_link(nd, link, *p);
873 	}
874 
875 	return error;
876 
877 out_put_nd_path:
878 	*p = NULL;
879 	path_put(&nd->path);
880 	path_put(link);
881 	return error;
882 }
883 
884 static int follow_up_rcu(struct path *path)
885 {
886 	struct mount *mnt = real_mount(path->mnt);
887 	struct mount *parent;
888 	struct dentry *mountpoint;
889 
890 	parent = mnt->mnt_parent;
891 	if (&parent->mnt == path->mnt)
892 		return 0;
893 	mountpoint = mnt->mnt_mountpoint;
894 	path->dentry = mountpoint;
895 	path->mnt = &parent->mnt;
896 	return 1;
897 }
898 
899 /*
900  * follow_up - Find the mountpoint of path's vfsmount
901  *
902  * Given a path, find the mountpoint of its source file system.
903  * Replace @path with the path of the mountpoint in the parent mount.
904  * Up is towards /.
905  *
906  * Return 1 if we went up a level and 0 if we were already at the
907  * root.
908  */
909 int follow_up(struct path *path)
910 {
911 	struct mount *mnt = real_mount(path->mnt);
912 	struct mount *parent;
913 	struct dentry *mountpoint;
914 
915 	read_seqlock_excl(&mount_lock);
916 	parent = mnt->mnt_parent;
917 	if (parent == mnt) {
918 		read_sequnlock_excl(&mount_lock);
919 		return 0;
920 	}
921 	mntget(&parent->mnt);
922 	mountpoint = dget(mnt->mnt_mountpoint);
923 	read_sequnlock_excl(&mount_lock);
924 	dput(path->dentry);
925 	path->dentry = mountpoint;
926 	mntput(path->mnt);
927 	path->mnt = &parent->mnt;
928 	return 1;
929 }
930 EXPORT_SYMBOL(follow_up);
931 
932 /*
933  * Perform an automount
934  * - return -EISDIR to tell follow_managed() to stop and return the path we
935  *   were called with.
936  */
937 static int follow_automount(struct path *path, unsigned flags,
938 			    bool *need_mntput)
939 {
940 	struct vfsmount *mnt;
941 	int err;
942 
943 	if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
944 		return -EREMOTE;
945 
946 	/* We don't want to mount if someone's just doing a stat -
947 	 * unless they're stat'ing a directory and appended a '/' to
948 	 * the name.
949 	 *
950 	 * We do, however, want to mount if someone wants to open or
951 	 * create a file of any type under the mountpoint, wants to
952 	 * traverse through the mountpoint or wants to open the
953 	 * mounted directory.  Also, autofs may mark negative dentries
954 	 * as being automount points.  These will need the attentions
955 	 * of the daemon to instantiate them before they can be used.
956 	 */
957 	if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
958 		     LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
959 	    path->dentry->d_inode)
960 		return -EISDIR;
961 
962 	current->total_link_count++;
963 	if (current->total_link_count >= 40)
964 		return -ELOOP;
965 
966 	mnt = path->dentry->d_op->d_automount(path);
967 	if (IS_ERR(mnt)) {
968 		/*
969 		 * The filesystem is allowed to return -EISDIR here to indicate
970 		 * it doesn't want to automount.  For instance, autofs would do
971 		 * this so that its userspace daemon can mount on this dentry.
972 		 *
973 		 * However, we can only permit this if it's a terminal point in
974 		 * the path being looked up; if it wasn't then the remainder of
975 		 * the path is inaccessible and we should say so.
976 		 */
977 		if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
978 			return -EREMOTE;
979 		return PTR_ERR(mnt);
980 	}
981 
982 	if (!mnt) /* mount collision */
983 		return 0;
984 
985 	if (!*need_mntput) {
986 		/* lock_mount() may release path->mnt on error */
987 		mntget(path->mnt);
988 		*need_mntput = true;
989 	}
990 	err = finish_automount(mnt, path);
991 
992 	switch (err) {
993 	case -EBUSY:
994 		/* Someone else made a mount here whilst we were busy */
995 		return 0;
996 	case 0:
997 		path_put(path);
998 		path->mnt = mnt;
999 		path->dentry = dget(mnt->mnt_root);
1000 		return 0;
1001 	default:
1002 		return err;
1003 	}
1004 
1005 }
1006 
1007 /*
1008  * Handle a dentry that is managed in some way.
1009  * - Flagged for transit management (autofs)
1010  * - Flagged as mountpoint
1011  * - Flagged as automount point
1012  *
1013  * This may only be called in refwalk mode.
1014  *
1015  * Serialization is taken care of in namespace.c
1016  */
1017 static int follow_managed(struct path *path, unsigned flags)
1018 {
1019 	struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1020 	unsigned managed;
1021 	bool need_mntput = false;
1022 	int ret = 0;
1023 
1024 	/* Given that we're not holding a lock here, we retain the value in a
1025 	 * local variable for each dentry as we look at it so that we don't see
1026 	 * the components of that value change under us */
1027 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1028 	       managed &= DCACHE_MANAGED_DENTRY,
1029 	       unlikely(managed != 0)) {
1030 		/* Allow the filesystem to manage the transit without i_mutex
1031 		 * being held. */
1032 		if (managed & DCACHE_MANAGE_TRANSIT) {
1033 			BUG_ON(!path->dentry->d_op);
1034 			BUG_ON(!path->dentry->d_op->d_manage);
1035 			ret = path->dentry->d_op->d_manage(path->dentry, false);
1036 			if (ret < 0)
1037 				break;
1038 		}
1039 
1040 		/* Transit to a mounted filesystem. */
1041 		if (managed & DCACHE_MOUNTED) {
1042 			struct vfsmount *mounted = lookup_mnt(path);
1043 			if (mounted) {
1044 				dput(path->dentry);
1045 				if (need_mntput)
1046 					mntput(path->mnt);
1047 				path->mnt = mounted;
1048 				path->dentry = dget(mounted->mnt_root);
1049 				need_mntput = true;
1050 				continue;
1051 			}
1052 
1053 			/* Something is mounted on this dentry in another
1054 			 * namespace and/or whatever was mounted there in this
1055 			 * namespace got unmounted before lookup_mnt() could
1056 			 * get it */
1057 		}
1058 
1059 		/* Handle an automount point */
1060 		if (managed & DCACHE_NEED_AUTOMOUNT) {
1061 			ret = follow_automount(path, flags, &need_mntput);
1062 			if (ret < 0)
1063 				break;
1064 			continue;
1065 		}
1066 
1067 		/* We didn't change the current path point */
1068 		break;
1069 	}
1070 
1071 	if (need_mntput && path->mnt == mnt)
1072 		mntput(path->mnt);
1073 	if (ret == -EISDIR)
1074 		ret = 0;
1075 	return ret < 0 ? ret : need_mntput;
1076 }
1077 
1078 int follow_down_one(struct path *path)
1079 {
1080 	struct vfsmount *mounted;
1081 
1082 	mounted = lookup_mnt(path);
1083 	if (mounted) {
1084 		dput(path->dentry);
1085 		mntput(path->mnt);
1086 		path->mnt = mounted;
1087 		path->dentry = dget(mounted->mnt_root);
1088 		return 1;
1089 	}
1090 	return 0;
1091 }
1092 EXPORT_SYMBOL(follow_down_one);
1093 
1094 static inline int managed_dentry_rcu(struct dentry *dentry)
1095 {
1096 	return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1097 		dentry->d_op->d_manage(dentry, true) : 0;
1098 }
1099 
1100 /*
1101  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1102  * we meet a managed dentry that would need blocking.
1103  */
1104 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1105 			       struct inode **inode)
1106 {
1107 	for (;;) {
1108 		struct mount *mounted;
1109 		/*
1110 		 * Don't forget we might have a non-mountpoint managed dentry
1111 		 * that wants to block transit.
1112 		 */
1113 		switch (managed_dentry_rcu(path->dentry)) {
1114 		case -ECHILD:
1115 		default:
1116 			return false;
1117 		case -EISDIR:
1118 			return true;
1119 		case 0:
1120 			break;
1121 		}
1122 
1123 		if (!d_mountpoint(path->dentry))
1124 			return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1125 
1126 		mounted = __lookup_mnt(path->mnt, path->dentry);
1127 		if (!mounted)
1128 			break;
1129 		path->mnt = &mounted->mnt;
1130 		path->dentry = mounted->mnt.mnt_root;
1131 		nd->flags |= LOOKUP_JUMPED;
1132 		nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1133 		/*
1134 		 * Update the inode too. We don't need to re-check the
1135 		 * dentry sequence number here after this d_inode read,
1136 		 * because a mount-point is always pinned.
1137 		 */
1138 		*inode = path->dentry->d_inode;
1139 	}
1140 	return !read_seqretry(&mount_lock, nd->m_seq) &&
1141 		!(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1142 }
1143 
1144 static int follow_dotdot_rcu(struct nameidata *nd)
1145 {
1146 	struct inode *inode = nd->inode;
1147 	if (!nd->root.mnt)
1148 		set_root_rcu(nd);
1149 
1150 	while (1) {
1151 		if (nd->path.dentry == nd->root.dentry &&
1152 		    nd->path.mnt == nd->root.mnt) {
1153 			break;
1154 		}
1155 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1156 			struct dentry *old = nd->path.dentry;
1157 			struct dentry *parent = old->d_parent;
1158 			unsigned seq;
1159 
1160 			inode = parent->d_inode;
1161 			seq = read_seqcount_begin(&parent->d_seq);
1162 			if (read_seqcount_retry(&old->d_seq, nd->seq))
1163 				goto failed;
1164 			nd->path.dentry = parent;
1165 			nd->seq = seq;
1166 			break;
1167 		}
1168 		if (!follow_up_rcu(&nd->path))
1169 			break;
1170 		inode = nd->path.dentry->d_inode;
1171 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1172 	}
1173 	while (d_mountpoint(nd->path.dentry)) {
1174 		struct mount *mounted;
1175 		mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1176 		if (!mounted)
1177 			break;
1178 		nd->path.mnt = &mounted->mnt;
1179 		nd->path.dentry = mounted->mnt.mnt_root;
1180 		inode = nd->path.dentry->d_inode;
1181 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1182 		if (read_seqretry(&mount_lock, nd->m_seq))
1183 			goto failed;
1184 	}
1185 	nd->inode = inode;
1186 	return 0;
1187 
1188 failed:
1189 	nd->flags &= ~LOOKUP_RCU;
1190 	if (!(nd->flags & LOOKUP_ROOT))
1191 		nd->root.mnt = NULL;
1192 	rcu_read_unlock();
1193 	return -ECHILD;
1194 }
1195 
1196 /*
1197  * Follow down to the covering mount currently visible to userspace.  At each
1198  * point, the filesystem owning that dentry may be queried as to whether the
1199  * caller is permitted to proceed or not.
1200  */
1201 int follow_down(struct path *path)
1202 {
1203 	unsigned managed;
1204 	int ret;
1205 
1206 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1207 	       unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1208 		/* Allow the filesystem to manage the transit without i_mutex
1209 		 * being held.
1210 		 *
1211 		 * We indicate to the filesystem if someone is trying to mount
1212 		 * something here.  This gives autofs the chance to deny anyone
1213 		 * other than its daemon the right to mount on its
1214 		 * superstructure.
1215 		 *
1216 		 * The filesystem may sleep at this point.
1217 		 */
1218 		if (managed & DCACHE_MANAGE_TRANSIT) {
1219 			BUG_ON(!path->dentry->d_op);
1220 			BUG_ON(!path->dentry->d_op->d_manage);
1221 			ret = path->dentry->d_op->d_manage(
1222 				path->dentry, false);
1223 			if (ret < 0)
1224 				return ret == -EISDIR ? 0 : ret;
1225 		}
1226 
1227 		/* Transit to a mounted filesystem. */
1228 		if (managed & DCACHE_MOUNTED) {
1229 			struct vfsmount *mounted = lookup_mnt(path);
1230 			if (!mounted)
1231 				break;
1232 			dput(path->dentry);
1233 			mntput(path->mnt);
1234 			path->mnt = mounted;
1235 			path->dentry = dget(mounted->mnt_root);
1236 			continue;
1237 		}
1238 
1239 		/* Don't handle automount points here */
1240 		break;
1241 	}
1242 	return 0;
1243 }
1244 EXPORT_SYMBOL(follow_down);
1245 
1246 /*
1247  * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1248  */
1249 static void follow_mount(struct path *path)
1250 {
1251 	while (d_mountpoint(path->dentry)) {
1252 		struct vfsmount *mounted = lookup_mnt(path);
1253 		if (!mounted)
1254 			break;
1255 		dput(path->dentry);
1256 		mntput(path->mnt);
1257 		path->mnt = mounted;
1258 		path->dentry = dget(mounted->mnt_root);
1259 	}
1260 }
1261 
1262 static void follow_dotdot(struct nameidata *nd)
1263 {
1264 	if (!nd->root.mnt)
1265 		set_root(nd);
1266 
1267 	while(1) {
1268 		struct dentry *old = nd->path.dentry;
1269 
1270 		if (nd->path.dentry == nd->root.dentry &&
1271 		    nd->path.mnt == nd->root.mnt) {
1272 			break;
1273 		}
1274 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1275 			/* rare case of legitimate dget_parent()... */
1276 			nd->path.dentry = dget_parent(nd->path.dentry);
1277 			dput(old);
1278 			break;
1279 		}
1280 		if (!follow_up(&nd->path))
1281 			break;
1282 	}
1283 	follow_mount(&nd->path);
1284 	nd->inode = nd->path.dentry->d_inode;
1285 }
1286 
1287 /*
1288  * This looks up the name in dcache, possibly revalidates the old dentry and
1289  * allocates a new one if not found or not valid.  In the need_lookup argument
1290  * returns whether i_op->lookup is necessary.
1291  *
1292  * dir->d_inode->i_mutex must be held
1293  */
1294 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1295 				    unsigned int flags, bool *need_lookup)
1296 {
1297 	struct dentry *dentry;
1298 	int error;
1299 
1300 	*need_lookup = false;
1301 	dentry = d_lookup(dir, name);
1302 	if (dentry) {
1303 		if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1304 			error = d_revalidate(dentry, flags);
1305 			if (unlikely(error <= 0)) {
1306 				if (error < 0) {
1307 					dput(dentry);
1308 					return ERR_PTR(error);
1309 				} else {
1310 					d_invalidate(dentry);
1311 					dput(dentry);
1312 					dentry = NULL;
1313 				}
1314 			}
1315 		}
1316 	}
1317 
1318 	if (!dentry) {
1319 		dentry = d_alloc(dir, name);
1320 		if (unlikely(!dentry))
1321 			return ERR_PTR(-ENOMEM);
1322 
1323 		*need_lookup = true;
1324 	}
1325 	return dentry;
1326 }
1327 
1328 /*
1329  * Call i_op->lookup on the dentry.  The dentry must be negative and
1330  * unhashed.
1331  *
1332  * dir->d_inode->i_mutex must be held
1333  */
1334 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1335 				  unsigned int flags)
1336 {
1337 	struct dentry *old;
1338 
1339 	/* Don't create child dentry for a dead directory. */
1340 	if (unlikely(IS_DEADDIR(dir))) {
1341 		dput(dentry);
1342 		return ERR_PTR(-ENOENT);
1343 	}
1344 
1345 	old = dir->i_op->lookup(dir, dentry, flags);
1346 	if (unlikely(old)) {
1347 		dput(dentry);
1348 		dentry = old;
1349 	}
1350 	return dentry;
1351 }
1352 
1353 static struct dentry *__lookup_hash(struct qstr *name,
1354 		struct dentry *base, unsigned int flags)
1355 {
1356 	bool need_lookup;
1357 	struct dentry *dentry;
1358 
1359 	dentry = lookup_dcache(name, base, flags, &need_lookup);
1360 	if (!need_lookup)
1361 		return dentry;
1362 
1363 	return lookup_real(base->d_inode, dentry, flags);
1364 }
1365 
1366 /*
1367  *  It's more convoluted than I'd like it to be, but... it's still fairly
1368  *  small and for now I'd prefer to have fast path as straight as possible.
1369  *  It _is_ time-critical.
1370  */
1371 static int lookup_fast(struct nameidata *nd,
1372 		       struct path *path, struct inode **inode)
1373 {
1374 	struct vfsmount *mnt = nd->path.mnt;
1375 	struct dentry *dentry, *parent = nd->path.dentry;
1376 	int need_reval = 1;
1377 	int status = 1;
1378 	int err;
1379 
1380 	/*
1381 	 * Rename seqlock is not required here because in the off chance
1382 	 * of a false negative due to a concurrent rename, we're going to
1383 	 * do the non-racy lookup, below.
1384 	 */
1385 	if (nd->flags & LOOKUP_RCU) {
1386 		unsigned seq;
1387 		dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1388 		if (!dentry)
1389 			goto unlazy;
1390 
1391 		/*
1392 		 * This sequence count validates that the inode matches
1393 		 * the dentry name information from lookup.
1394 		 */
1395 		*inode = dentry->d_inode;
1396 		if (read_seqcount_retry(&dentry->d_seq, seq))
1397 			return -ECHILD;
1398 
1399 		/*
1400 		 * This sequence count validates that the parent had no
1401 		 * changes while we did the lookup of the dentry above.
1402 		 *
1403 		 * The memory barrier in read_seqcount_begin of child is
1404 		 *  enough, we can use __read_seqcount_retry here.
1405 		 */
1406 		if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1407 			return -ECHILD;
1408 		nd->seq = seq;
1409 
1410 		if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1411 			status = d_revalidate(dentry, nd->flags);
1412 			if (unlikely(status <= 0)) {
1413 				if (status != -ECHILD)
1414 					need_reval = 0;
1415 				goto unlazy;
1416 			}
1417 		}
1418 		path->mnt = mnt;
1419 		path->dentry = dentry;
1420 		if (likely(__follow_mount_rcu(nd, path, inode)))
1421 			return 0;
1422 unlazy:
1423 		if (unlazy_walk(nd, dentry))
1424 			return -ECHILD;
1425 	} else {
1426 		dentry = __d_lookup(parent, &nd->last);
1427 	}
1428 
1429 	if (unlikely(!dentry))
1430 		goto need_lookup;
1431 
1432 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1433 		status = d_revalidate(dentry, nd->flags);
1434 	if (unlikely(status <= 0)) {
1435 		if (status < 0) {
1436 			dput(dentry);
1437 			return status;
1438 		}
1439 		d_invalidate(dentry);
1440 		dput(dentry);
1441 		goto need_lookup;
1442 	}
1443 
1444 	path->mnt = mnt;
1445 	path->dentry = dentry;
1446 	err = follow_managed(path, nd->flags);
1447 	if (unlikely(err < 0)) {
1448 		path_put_conditional(path, nd);
1449 		return err;
1450 	}
1451 	if (err)
1452 		nd->flags |= LOOKUP_JUMPED;
1453 	*inode = path->dentry->d_inode;
1454 	return 0;
1455 
1456 need_lookup:
1457 	return 1;
1458 }
1459 
1460 /* Fast lookup failed, do it the slow way */
1461 static int lookup_slow(struct nameidata *nd, struct path *path)
1462 {
1463 	struct dentry *dentry, *parent;
1464 	int err;
1465 
1466 	parent = nd->path.dentry;
1467 	BUG_ON(nd->inode != parent->d_inode);
1468 
1469 	mutex_lock(&parent->d_inode->i_mutex);
1470 	dentry = __lookup_hash(&nd->last, parent, nd->flags);
1471 	mutex_unlock(&parent->d_inode->i_mutex);
1472 	if (IS_ERR(dentry))
1473 		return PTR_ERR(dentry);
1474 	path->mnt = nd->path.mnt;
1475 	path->dentry = dentry;
1476 	err = follow_managed(path, nd->flags);
1477 	if (unlikely(err < 0)) {
1478 		path_put_conditional(path, nd);
1479 		return err;
1480 	}
1481 	if (err)
1482 		nd->flags |= LOOKUP_JUMPED;
1483 	return 0;
1484 }
1485 
1486 static inline int may_lookup(struct nameidata *nd)
1487 {
1488 	if (nd->flags & LOOKUP_RCU) {
1489 		int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1490 		if (err != -ECHILD)
1491 			return err;
1492 		if (unlazy_walk(nd, NULL))
1493 			return -ECHILD;
1494 	}
1495 	return inode_permission(nd->inode, MAY_EXEC);
1496 }
1497 
1498 static inline int handle_dots(struct nameidata *nd, int type)
1499 {
1500 	if (type == LAST_DOTDOT) {
1501 		if (nd->flags & LOOKUP_RCU) {
1502 			if (follow_dotdot_rcu(nd))
1503 				return -ECHILD;
1504 		} else
1505 			follow_dotdot(nd);
1506 	}
1507 	return 0;
1508 }
1509 
1510 static void terminate_walk(struct nameidata *nd)
1511 {
1512 	if (!(nd->flags & LOOKUP_RCU)) {
1513 		path_put(&nd->path);
1514 	} else {
1515 		nd->flags &= ~LOOKUP_RCU;
1516 		if (!(nd->flags & LOOKUP_ROOT))
1517 			nd->root.mnt = NULL;
1518 		rcu_read_unlock();
1519 	}
1520 }
1521 
1522 /*
1523  * Do we need to follow links? We _really_ want to be able
1524  * to do this check without having to look at inode->i_op,
1525  * so we keep a cache of "no, this doesn't need follow_link"
1526  * for the common case.
1527  */
1528 static inline int should_follow_link(struct dentry *dentry, int follow)
1529 {
1530 	return unlikely(d_is_symlink(dentry)) ? follow : 0;
1531 }
1532 
1533 static inline int walk_component(struct nameidata *nd, struct path *path,
1534 		int follow)
1535 {
1536 	struct inode *inode;
1537 	int err;
1538 	/*
1539 	 * "." and ".." are special - ".." especially so because it has
1540 	 * to be able to know about the current root directory and
1541 	 * parent relationships.
1542 	 */
1543 	if (unlikely(nd->last_type != LAST_NORM))
1544 		return handle_dots(nd, nd->last_type);
1545 	err = lookup_fast(nd, path, &inode);
1546 	if (unlikely(err)) {
1547 		if (err < 0)
1548 			goto out_err;
1549 
1550 		err = lookup_slow(nd, path);
1551 		if (err < 0)
1552 			goto out_err;
1553 
1554 		inode = path->dentry->d_inode;
1555 	}
1556 	err = -ENOENT;
1557 	if (!inode || d_is_negative(path->dentry))
1558 		goto out_path_put;
1559 
1560 	if (should_follow_link(path->dentry, follow)) {
1561 		if (nd->flags & LOOKUP_RCU) {
1562 			if (unlikely(unlazy_walk(nd, path->dentry))) {
1563 				err = -ECHILD;
1564 				goto out_err;
1565 			}
1566 		}
1567 		BUG_ON(inode != path->dentry->d_inode);
1568 		return 1;
1569 	}
1570 	path_to_nameidata(path, nd);
1571 	nd->inode = inode;
1572 	return 0;
1573 
1574 out_path_put:
1575 	path_to_nameidata(path, nd);
1576 out_err:
1577 	terminate_walk(nd);
1578 	return err;
1579 }
1580 
1581 /*
1582  * This limits recursive symlink follows to 8, while
1583  * limiting consecutive symlinks to 40.
1584  *
1585  * Without that kind of total limit, nasty chains of consecutive
1586  * symlinks can cause almost arbitrarily long lookups.
1587  */
1588 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1589 {
1590 	int res;
1591 
1592 	if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1593 		path_put_conditional(path, nd);
1594 		path_put(&nd->path);
1595 		return -ELOOP;
1596 	}
1597 	BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1598 
1599 	nd->depth++;
1600 	current->link_count++;
1601 
1602 	do {
1603 		struct path link = *path;
1604 		void *cookie;
1605 
1606 		res = follow_link(&link, nd, &cookie);
1607 		if (res)
1608 			break;
1609 		res = walk_component(nd, path, LOOKUP_FOLLOW);
1610 		put_link(nd, &link, cookie);
1611 	} while (res > 0);
1612 
1613 	current->link_count--;
1614 	nd->depth--;
1615 	return res;
1616 }
1617 
1618 /*
1619  * We can do the critical dentry name comparison and hashing
1620  * operations one word at a time, but we are limited to:
1621  *
1622  * - Architectures with fast unaligned word accesses. We could
1623  *   do a "get_unaligned()" if this helps and is sufficiently
1624  *   fast.
1625  *
1626  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1627  *   do not trap on the (extremely unlikely) case of a page
1628  *   crossing operation.
1629  *
1630  * - Furthermore, we need an efficient 64-bit compile for the
1631  *   64-bit case in order to generate the "number of bytes in
1632  *   the final mask". Again, that could be replaced with a
1633  *   efficient population count instruction or similar.
1634  */
1635 #ifdef CONFIG_DCACHE_WORD_ACCESS
1636 
1637 #include <asm/word-at-a-time.h>
1638 
1639 #ifdef CONFIG_64BIT
1640 
1641 static inline unsigned int fold_hash(unsigned long hash)
1642 {
1643 	return hash_64(hash, 32);
1644 }
1645 
1646 #else	/* 32-bit case */
1647 
1648 #define fold_hash(x) (x)
1649 
1650 #endif
1651 
1652 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1653 {
1654 	unsigned long a, mask;
1655 	unsigned long hash = 0;
1656 
1657 	for (;;) {
1658 		a = load_unaligned_zeropad(name);
1659 		if (len < sizeof(unsigned long))
1660 			break;
1661 		hash += a;
1662 		hash *= 9;
1663 		name += sizeof(unsigned long);
1664 		len -= sizeof(unsigned long);
1665 		if (!len)
1666 			goto done;
1667 	}
1668 	mask = bytemask_from_count(len);
1669 	hash += mask & a;
1670 done:
1671 	return fold_hash(hash);
1672 }
1673 EXPORT_SYMBOL(full_name_hash);
1674 
1675 /*
1676  * Calculate the length and hash of the path component, and
1677  * return the "hash_len" as the result.
1678  */
1679 static inline u64 hash_name(const char *name)
1680 {
1681 	unsigned long a, b, adata, bdata, mask, hash, len;
1682 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1683 
1684 	hash = a = 0;
1685 	len = -sizeof(unsigned long);
1686 	do {
1687 		hash = (hash + a) * 9;
1688 		len += sizeof(unsigned long);
1689 		a = load_unaligned_zeropad(name+len);
1690 		b = a ^ REPEAT_BYTE('/');
1691 	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1692 
1693 	adata = prep_zero_mask(a, adata, &constants);
1694 	bdata = prep_zero_mask(b, bdata, &constants);
1695 
1696 	mask = create_zero_mask(adata | bdata);
1697 
1698 	hash += a & zero_bytemask(mask);
1699 	len += find_zero(mask);
1700 	return hashlen_create(fold_hash(hash), len);
1701 }
1702 
1703 #else
1704 
1705 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1706 {
1707 	unsigned long hash = init_name_hash();
1708 	while (len--)
1709 		hash = partial_name_hash(*name++, hash);
1710 	return end_name_hash(hash);
1711 }
1712 EXPORT_SYMBOL(full_name_hash);
1713 
1714 /*
1715  * We know there's a real path component here of at least
1716  * one character.
1717  */
1718 static inline u64 hash_name(const char *name)
1719 {
1720 	unsigned long hash = init_name_hash();
1721 	unsigned long len = 0, c;
1722 
1723 	c = (unsigned char)*name;
1724 	do {
1725 		len++;
1726 		hash = partial_name_hash(c, hash);
1727 		c = (unsigned char)name[len];
1728 	} while (c && c != '/');
1729 	return hashlen_create(end_name_hash(hash), len);
1730 }
1731 
1732 #endif
1733 
1734 /*
1735  * Name resolution.
1736  * This is the basic name resolution function, turning a pathname into
1737  * the final dentry. We expect 'base' to be positive and a directory.
1738  *
1739  * Returns 0 and nd will have valid dentry and mnt on success.
1740  * Returns error and drops reference to input namei data on failure.
1741  */
1742 static int link_path_walk(const char *name, struct nameidata *nd)
1743 {
1744 	struct path next;
1745 	int err;
1746 
1747 	while (*name=='/')
1748 		name++;
1749 	if (!*name)
1750 		return 0;
1751 
1752 	/* At this point we know we have a real path component. */
1753 	for(;;) {
1754 		u64 hash_len;
1755 		int type;
1756 
1757 		err = may_lookup(nd);
1758  		if (err)
1759 			break;
1760 
1761 		hash_len = hash_name(name);
1762 
1763 		type = LAST_NORM;
1764 		if (name[0] == '.') switch (hashlen_len(hash_len)) {
1765 			case 2:
1766 				if (name[1] == '.') {
1767 					type = LAST_DOTDOT;
1768 					nd->flags |= LOOKUP_JUMPED;
1769 				}
1770 				break;
1771 			case 1:
1772 				type = LAST_DOT;
1773 		}
1774 		if (likely(type == LAST_NORM)) {
1775 			struct dentry *parent = nd->path.dentry;
1776 			nd->flags &= ~LOOKUP_JUMPED;
1777 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1778 				struct qstr this = { { .hash_len = hash_len }, .name = name };
1779 				err = parent->d_op->d_hash(parent, &this);
1780 				if (err < 0)
1781 					break;
1782 				hash_len = this.hash_len;
1783 				name = this.name;
1784 			}
1785 		}
1786 
1787 		nd->last.hash_len = hash_len;
1788 		nd->last.name = name;
1789 		nd->last_type = type;
1790 
1791 		name += hashlen_len(hash_len);
1792 		if (!*name)
1793 			return 0;
1794 		/*
1795 		 * If it wasn't NUL, we know it was '/'. Skip that
1796 		 * slash, and continue until no more slashes.
1797 		 */
1798 		do {
1799 			name++;
1800 		} while (unlikely(*name == '/'));
1801 		if (!*name)
1802 			return 0;
1803 
1804 		err = walk_component(nd, &next, LOOKUP_FOLLOW);
1805 		if (err < 0)
1806 			return err;
1807 
1808 		if (err) {
1809 			err = nested_symlink(&next, nd);
1810 			if (err)
1811 				return err;
1812 		}
1813 		if (!d_can_lookup(nd->path.dentry)) {
1814 			err = -ENOTDIR;
1815 			break;
1816 		}
1817 	}
1818 	terminate_walk(nd);
1819 	return err;
1820 }
1821 
1822 static int path_init(int dfd, const char *name, unsigned int flags,
1823 		     struct nameidata *nd, struct file **fp)
1824 {
1825 	int retval = 0;
1826 
1827 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
1828 	nd->flags = flags | LOOKUP_JUMPED;
1829 	nd->depth = 0;
1830 	if (flags & LOOKUP_ROOT) {
1831 		struct dentry *root = nd->root.dentry;
1832 		struct inode *inode = root->d_inode;
1833 		if (*name) {
1834 			if (!d_can_lookup(root))
1835 				return -ENOTDIR;
1836 			retval = inode_permission(inode, MAY_EXEC);
1837 			if (retval)
1838 				return retval;
1839 		}
1840 		nd->path = nd->root;
1841 		nd->inode = inode;
1842 		if (flags & LOOKUP_RCU) {
1843 			rcu_read_lock();
1844 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1845 			nd->m_seq = read_seqbegin(&mount_lock);
1846 		} else {
1847 			path_get(&nd->path);
1848 		}
1849 		return 0;
1850 	}
1851 
1852 	nd->root.mnt = NULL;
1853 
1854 	nd->m_seq = read_seqbegin(&mount_lock);
1855 	if (*name=='/') {
1856 		if (flags & LOOKUP_RCU) {
1857 			rcu_read_lock();
1858 			nd->seq = set_root_rcu(nd);
1859 		} else {
1860 			set_root(nd);
1861 			path_get(&nd->root);
1862 		}
1863 		nd->path = nd->root;
1864 	} else if (dfd == AT_FDCWD) {
1865 		if (flags & LOOKUP_RCU) {
1866 			struct fs_struct *fs = current->fs;
1867 			unsigned seq;
1868 
1869 			rcu_read_lock();
1870 
1871 			do {
1872 				seq = read_seqcount_begin(&fs->seq);
1873 				nd->path = fs->pwd;
1874 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1875 			} while (read_seqcount_retry(&fs->seq, seq));
1876 		} else {
1877 			get_fs_pwd(current->fs, &nd->path);
1878 		}
1879 	} else {
1880 		/* Caller must check execute permissions on the starting path component */
1881 		struct fd f = fdget_raw(dfd);
1882 		struct dentry *dentry;
1883 
1884 		if (!f.file)
1885 			return -EBADF;
1886 
1887 		dentry = f.file->f_path.dentry;
1888 
1889 		if (*name) {
1890 			if (!d_can_lookup(dentry)) {
1891 				fdput(f);
1892 				return -ENOTDIR;
1893 			}
1894 		}
1895 
1896 		nd->path = f.file->f_path;
1897 		if (flags & LOOKUP_RCU) {
1898 			if (f.flags & FDPUT_FPUT)
1899 				*fp = f.file;
1900 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1901 			rcu_read_lock();
1902 		} else {
1903 			path_get(&nd->path);
1904 			fdput(f);
1905 		}
1906 	}
1907 
1908 	nd->inode = nd->path.dentry->d_inode;
1909 	if (!(flags & LOOKUP_RCU))
1910 		return 0;
1911 	if (likely(!read_seqcount_retry(&nd->path.dentry->d_seq, nd->seq)))
1912 		return 0;
1913 	if (!(nd->flags & LOOKUP_ROOT))
1914 		nd->root.mnt = NULL;
1915 	rcu_read_unlock();
1916 	return -ECHILD;
1917 }
1918 
1919 static inline int lookup_last(struct nameidata *nd, struct path *path)
1920 {
1921 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1922 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1923 
1924 	nd->flags &= ~LOOKUP_PARENT;
1925 	return walk_component(nd, path, nd->flags & LOOKUP_FOLLOW);
1926 }
1927 
1928 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1929 static int path_lookupat(int dfd, const char *name,
1930 				unsigned int flags, struct nameidata *nd)
1931 {
1932 	struct file *base = NULL;
1933 	struct path path;
1934 	int err;
1935 
1936 	/*
1937 	 * Path walking is largely split up into 2 different synchronisation
1938 	 * schemes, rcu-walk and ref-walk (explained in
1939 	 * Documentation/filesystems/path-lookup.txt). These share much of the
1940 	 * path walk code, but some things particularly setup, cleanup, and
1941 	 * following mounts are sufficiently divergent that functions are
1942 	 * duplicated. Typically there is a function foo(), and its RCU
1943 	 * analogue, foo_rcu().
1944 	 *
1945 	 * -ECHILD is the error number of choice (just to avoid clashes) that
1946 	 * is returned if some aspect of an rcu-walk fails. Such an error must
1947 	 * be handled by restarting a traditional ref-walk (which will always
1948 	 * be able to complete).
1949 	 */
1950 	err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1951 
1952 	if (unlikely(err))
1953 		goto out;
1954 
1955 	current->total_link_count = 0;
1956 	err = link_path_walk(name, nd);
1957 
1958 	if (!err && !(flags & LOOKUP_PARENT)) {
1959 		err = lookup_last(nd, &path);
1960 		while (err > 0) {
1961 			void *cookie;
1962 			struct path link = path;
1963 			err = may_follow_link(&link, nd);
1964 			if (unlikely(err))
1965 				break;
1966 			nd->flags |= LOOKUP_PARENT;
1967 			err = follow_link(&link, nd, &cookie);
1968 			if (err)
1969 				break;
1970 			err = lookup_last(nd, &path);
1971 			put_link(nd, &link, cookie);
1972 		}
1973 	}
1974 
1975 	if (!err)
1976 		err = complete_walk(nd);
1977 
1978 	if (!err && nd->flags & LOOKUP_DIRECTORY) {
1979 		if (!d_can_lookup(nd->path.dentry)) {
1980 			path_put(&nd->path);
1981 			err = -ENOTDIR;
1982 		}
1983 	}
1984 
1985 out:
1986 	if (base)
1987 		fput(base);
1988 
1989 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1990 		path_put(&nd->root);
1991 		nd->root.mnt = NULL;
1992 	}
1993 	return err;
1994 }
1995 
1996 static int filename_lookup(int dfd, struct filename *name,
1997 				unsigned int flags, struct nameidata *nd)
1998 {
1999 	int retval = path_lookupat(dfd, name->name, flags | LOOKUP_RCU, nd);
2000 	if (unlikely(retval == -ECHILD))
2001 		retval = path_lookupat(dfd, name->name, flags, nd);
2002 	if (unlikely(retval == -ESTALE))
2003 		retval = path_lookupat(dfd, name->name,
2004 						flags | LOOKUP_REVAL, nd);
2005 
2006 	if (likely(!retval))
2007 		audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT);
2008 	return retval;
2009 }
2010 
2011 static int do_path_lookup(int dfd, const char *name,
2012 				unsigned int flags, struct nameidata *nd)
2013 {
2014 	struct filename filename = { .name = name };
2015 
2016 	return filename_lookup(dfd, &filename, flags, nd);
2017 }
2018 
2019 /* does lookup, returns the object with parent locked */
2020 struct dentry *kern_path_locked(const char *name, struct path *path)
2021 {
2022 	struct nameidata nd;
2023 	struct dentry *d;
2024 	int err = do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, &nd);
2025 	if (err)
2026 		return ERR_PTR(err);
2027 	if (nd.last_type != LAST_NORM) {
2028 		path_put(&nd.path);
2029 		return ERR_PTR(-EINVAL);
2030 	}
2031 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2032 	d = __lookup_hash(&nd.last, nd.path.dentry, 0);
2033 	if (IS_ERR(d)) {
2034 		mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2035 		path_put(&nd.path);
2036 		return d;
2037 	}
2038 	*path = nd.path;
2039 	return d;
2040 }
2041 
2042 int kern_path(const char *name, unsigned int flags, struct path *path)
2043 {
2044 	struct nameidata nd;
2045 	int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
2046 	if (!res)
2047 		*path = nd.path;
2048 	return res;
2049 }
2050 EXPORT_SYMBOL(kern_path);
2051 
2052 /**
2053  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2054  * @dentry:  pointer to dentry of the base directory
2055  * @mnt: pointer to vfs mount of the base directory
2056  * @name: pointer to file name
2057  * @flags: lookup flags
2058  * @path: pointer to struct path to fill
2059  */
2060 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2061 		    const char *name, unsigned int flags,
2062 		    struct path *path)
2063 {
2064 	struct nameidata nd;
2065 	int err;
2066 	nd.root.dentry = dentry;
2067 	nd.root.mnt = mnt;
2068 	BUG_ON(flags & LOOKUP_PARENT);
2069 	/* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
2070 	err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
2071 	if (!err)
2072 		*path = nd.path;
2073 	return err;
2074 }
2075 EXPORT_SYMBOL(vfs_path_lookup);
2076 
2077 /*
2078  * Restricted form of lookup. Doesn't follow links, single-component only,
2079  * needs parent already locked. Doesn't follow mounts.
2080  * SMP-safe.
2081  */
2082 static struct dentry *lookup_hash(struct nameidata *nd)
2083 {
2084 	return __lookup_hash(&nd->last, nd->path.dentry, nd->flags);
2085 }
2086 
2087 /**
2088  * lookup_one_len - filesystem helper to lookup single pathname component
2089  * @name:	pathname component to lookup
2090  * @base:	base directory to lookup from
2091  * @len:	maximum length @len should be interpreted to
2092  *
2093  * Note that this routine is purely a helper for filesystem usage and should
2094  * not be called by generic code.  Also note that by using this function the
2095  * nameidata argument is passed to the filesystem methods and a filesystem
2096  * using this helper needs to be prepared for that.
2097  */
2098 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2099 {
2100 	struct qstr this;
2101 	unsigned int c;
2102 	int err;
2103 
2104 	WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2105 
2106 	this.name = name;
2107 	this.len = len;
2108 	this.hash = full_name_hash(name, len);
2109 	if (!len)
2110 		return ERR_PTR(-EACCES);
2111 
2112 	if (unlikely(name[0] == '.')) {
2113 		if (len < 2 || (len == 2 && name[1] == '.'))
2114 			return ERR_PTR(-EACCES);
2115 	}
2116 
2117 	while (len--) {
2118 		c = *(const unsigned char *)name++;
2119 		if (c == '/' || c == '\0')
2120 			return ERR_PTR(-EACCES);
2121 	}
2122 	/*
2123 	 * See if the low-level filesystem might want
2124 	 * to use its own hash..
2125 	 */
2126 	if (base->d_flags & DCACHE_OP_HASH) {
2127 		int err = base->d_op->d_hash(base, &this);
2128 		if (err < 0)
2129 			return ERR_PTR(err);
2130 	}
2131 
2132 	err = inode_permission(base->d_inode, MAY_EXEC);
2133 	if (err)
2134 		return ERR_PTR(err);
2135 
2136 	return __lookup_hash(&this, base, 0);
2137 }
2138 EXPORT_SYMBOL(lookup_one_len);
2139 
2140 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2141 		 struct path *path, int *empty)
2142 {
2143 	struct nameidata nd;
2144 	struct filename *tmp = getname_flags(name, flags, empty);
2145 	int err = PTR_ERR(tmp);
2146 	if (!IS_ERR(tmp)) {
2147 
2148 		BUG_ON(flags & LOOKUP_PARENT);
2149 
2150 		err = filename_lookup(dfd, tmp, flags, &nd);
2151 		putname(tmp);
2152 		if (!err)
2153 			*path = nd.path;
2154 	}
2155 	return err;
2156 }
2157 
2158 int user_path_at(int dfd, const char __user *name, unsigned flags,
2159 		 struct path *path)
2160 {
2161 	return user_path_at_empty(dfd, name, flags, path, NULL);
2162 }
2163 EXPORT_SYMBOL(user_path_at);
2164 
2165 /*
2166  * NB: most callers don't do anything directly with the reference to the
2167  *     to struct filename, but the nd->last pointer points into the name string
2168  *     allocated by getname. So we must hold the reference to it until all
2169  *     path-walking is complete.
2170  */
2171 static struct filename *
2172 user_path_parent(int dfd, const char __user *path, struct nameidata *nd,
2173 		 unsigned int flags)
2174 {
2175 	struct filename *s = getname(path);
2176 	int error;
2177 
2178 	/* only LOOKUP_REVAL is allowed in extra flags */
2179 	flags &= LOOKUP_REVAL;
2180 
2181 	if (IS_ERR(s))
2182 		return s;
2183 
2184 	error = filename_lookup(dfd, s, flags | LOOKUP_PARENT, nd);
2185 	if (error) {
2186 		putname(s);
2187 		return ERR_PTR(error);
2188 	}
2189 
2190 	return s;
2191 }
2192 
2193 /**
2194  * mountpoint_last - look up last component for umount
2195  * @nd:   pathwalk nameidata - currently pointing at parent directory of "last"
2196  * @path: pointer to container for result
2197  *
2198  * This is a special lookup_last function just for umount. In this case, we
2199  * need to resolve the path without doing any revalidation.
2200  *
2201  * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2202  * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2203  * in almost all cases, this lookup will be served out of the dcache. The only
2204  * cases where it won't are if nd->last refers to a symlink or the path is
2205  * bogus and it doesn't exist.
2206  *
2207  * Returns:
2208  * -error: if there was an error during lookup. This includes -ENOENT if the
2209  *         lookup found a negative dentry. The nd->path reference will also be
2210  *         put in this case.
2211  *
2212  * 0:      if we successfully resolved nd->path and found it to not to be a
2213  *         symlink that needs to be followed. "path" will also be populated.
2214  *         The nd->path reference will also be put.
2215  *
2216  * 1:      if we successfully resolved nd->last and found it to be a symlink
2217  *         that needs to be followed. "path" will be populated with the path
2218  *         to the link, and nd->path will *not* be put.
2219  */
2220 static int
2221 mountpoint_last(struct nameidata *nd, struct path *path)
2222 {
2223 	int error = 0;
2224 	struct dentry *dentry;
2225 	struct dentry *dir = nd->path.dentry;
2226 
2227 	/* If we're in rcuwalk, drop out of it to handle last component */
2228 	if (nd->flags & LOOKUP_RCU) {
2229 		if (unlazy_walk(nd, NULL)) {
2230 			error = -ECHILD;
2231 			goto out;
2232 		}
2233 	}
2234 
2235 	nd->flags &= ~LOOKUP_PARENT;
2236 
2237 	if (unlikely(nd->last_type != LAST_NORM)) {
2238 		error = handle_dots(nd, nd->last_type);
2239 		if (error)
2240 			goto out;
2241 		dentry = dget(nd->path.dentry);
2242 		goto done;
2243 	}
2244 
2245 	mutex_lock(&dir->d_inode->i_mutex);
2246 	dentry = d_lookup(dir, &nd->last);
2247 	if (!dentry) {
2248 		/*
2249 		 * No cached dentry. Mounted dentries are pinned in the cache,
2250 		 * so that means that this dentry is probably a symlink or the
2251 		 * path doesn't actually point to a mounted dentry.
2252 		 */
2253 		dentry = d_alloc(dir, &nd->last);
2254 		if (!dentry) {
2255 			error = -ENOMEM;
2256 			mutex_unlock(&dir->d_inode->i_mutex);
2257 			goto out;
2258 		}
2259 		dentry = lookup_real(dir->d_inode, dentry, nd->flags);
2260 		error = PTR_ERR(dentry);
2261 		if (IS_ERR(dentry)) {
2262 			mutex_unlock(&dir->d_inode->i_mutex);
2263 			goto out;
2264 		}
2265 	}
2266 	mutex_unlock(&dir->d_inode->i_mutex);
2267 
2268 done:
2269 	if (!dentry->d_inode || d_is_negative(dentry)) {
2270 		error = -ENOENT;
2271 		dput(dentry);
2272 		goto out;
2273 	}
2274 	path->dentry = dentry;
2275 	path->mnt = nd->path.mnt;
2276 	if (should_follow_link(dentry, nd->flags & LOOKUP_FOLLOW))
2277 		return 1;
2278 	mntget(path->mnt);
2279 	follow_mount(path);
2280 	error = 0;
2281 out:
2282 	terminate_walk(nd);
2283 	return error;
2284 }
2285 
2286 /**
2287  * path_mountpoint - look up a path to be umounted
2288  * @dfd:	directory file descriptor to start walk from
2289  * @name:	full pathname to walk
2290  * @path:	pointer to container for result
2291  * @flags:	lookup flags
2292  *
2293  * Look up the given name, but don't attempt to revalidate the last component.
2294  * Returns 0 and "path" will be valid on success; Returns error otherwise.
2295  */
2296 static int
2297 path_mountpoint(int dfd, const char *name, struct path *path, unsigned int flags)
2298 {
2299 	struct file *base = NULL;
2300 	struct nameidata nd;
2301 	int err;
2302 
2303 	err = path_init(dfd, name, flags | LOOKUP_PARENT, &nd, &base);
2304 	if (unlikely(err))
2305 		goto out;
2306 
2307 	current->total_link_count = 0;
2308 	err = link_path_walk(name, &nd);
2309 	if (err)
2310 		goto out;
2311 
2312 	err = mountpoint_last(&nd, path);
2313 	while (err > 0) {
2314 		void *cookie;
2315 		struct path link = *path;
2316 		err = may_follow_link(&link, &nd);
2317 		if (unlikely(err))
2318 			break;
2319 		nd.flags |= LOOKUP_PARENT;
2320 		err = follow_link(&link, &nd, &cookie);
2321 		if (err)
2322 			break;
2323 		err = mountpoint_last(&nd, path);
2324 		put_link(&nd, &link, cookie);
2325 	}
2326 out:
2327 	if (base)
2328 		fput(base);
2329 
2330 	if (nd.root.mnt && !(nd.flags & LOOKUP_ROOT))
2331 		path_put(&nd.root);
2332 
2333 	return err;
2334 }
2335 
2336 static int
2337 filename_mountpoint(int dfd, struct filename *s, struct path *path,
2338 			unsigned int flags)
2339 {
2340 	int error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_RCU);
2341 	if (unlikely(error == -ECHILD))
2342 		error = path_mountpoint(dfd, s->name, path, flags);
2343 	if (unlikely(error == -ESTALE))
2344 		error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_REVAL);
2345 	if (likely(!error))
2346 		audit_inode(s, path->dentry, 0);
2347 	return error;
2348 }
2349 
2350 /**
2351  * user_path_mountpoint_at - lookup a path from userland in order to umount it
2352  * @dfd:	directory file descriptor
2353  * @name:	pathname from userland
2354  * @flags:	lookup flags
2355  * @path:	pointer to container to hold result
2356  *
2357  * A umount is a special case for path walking. We're not actually interested
2358  * in the inode in this situation, and ESTALE errors can be a problem. We
2359  * simply want track down the dentry and vfsmount attached at the mountpoint
2360  * and avoid revalidating the last component.
2361  *
2362  * Returns 0 and populates "path" on success.
2363  */
2364 int
2365 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2366 			struct path *path)
2367 {
2368 	struct filename *s = getname(name);
2369 	int error;
2370 	if (IS_ERR(s))
2371 		return PTR_ERR(s);
2372 	error = filename_mountpoint(dfd, s, path, flags);
2373 	putname(s);
2374 	return error;
2375 }
2376 
2377 int
2378 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2379 			unsigned int flags)
2380 {
2381 	struct filename s = {.name = name};
2382 	return filename_mountpoint(dfd, &s, path, flags);
2383 }
2384 EXPORT_SYMBOL(kern_path_mountpoint);
2385 
2386 /*
2387  * It's inline, so penalty for filesystems that don't use sticky bit is
2388  * minimal.
2389  */
2390 static inline int check_sticky(struct inode *dir, struct inode *inode)
2391 {
2392 	kuid_t fsuid = current_fsuid();
2393 
2394 	if (!(dir->i_mode & S_ISVTX))
2395 		return 0;
2396 	if (uid_eq(inode->i_uid, fsuid))
2397 		return 0;
2398 	if (uid_eq(dir->i_uid, fsuid))
2399 		return 0;
2400 	return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2401 }
2402 
2403 /*
2404  *	Check whether we can remove a link victim from directory dir, check
2405  *  whether the type of victim is right.
2406  *  1. We can't do it if dir is read-only (done in permission())
2407  *  2. We should have write and exec permissions on dir
2408  *  3. We can't remove anything from append-only dir
2409  *  4. We can't do anything with immutable dir (done in permission())
2410  *  5. If the sticky bit on dir is set we should either
2411  *	a. be owner of dir, or
2412  *	b. be owner of victim, or
2413  *	c. have CAP_FOWNER capability
2414  *  6. If the victim is append-only or immutable we can't do antyhing with
2415  *     links pointing to it.
2416  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2417  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2418  *  9. We can't remove a root or mountpoint.
2419  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2420  *     nfs_async_unlink().
2421  */
2422 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2423 {
2424 	struct inode *inode = victim->d_inode;
2425 	int error;
2426 
2427 	if (d_is_negative(victim))
2428 		return -ENOENT;
2429 	BUG_ON(!inode);
2430 
2431 	BUG_ON(victim->d_parent->d_inode != dir);
2432 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2433 
2434 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2435 	if (error)
2436 		return error;
2437 	if (IS_APPEND(dir))
2438 		return -EPERM;
2439 
2440 	if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2441 	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2442 		return -EPERM;
2443 	if (isdir) {
2444 		if (!d_is_dir(victim))
2445 			return -ENOTDIR;
2446 		if (IS_ROOT(victim))
2447 			return -EBUSY;
2448 	} else if (d_is_dir(victim))
2449 		return -EISDIR;
2450 	if (IS_DEADDIR(dir))
2451 		return -ENOENT;
2452 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2453 		return -EBUSY;
2454 	return 0;
2455 }
2456 
2457 /*	Check whether we can create an object with dentry child in directory
2458  *  dir.
2459  *  1. We can't do it if child already exists (open has special treatment for
2460  *     this case, but since we are inlined it's OK)
2461  *  2. We can't do it if dir is read-only (done in permission())
2462  *  3. We should have write and exec permissions on dir
2463  *  4. We can't do it if dir is immutable (done in permission())
2464  */
2465 static inline int may_create(struct inode *dir, struct dentry *child)
2466 {
2467 	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2468 	if (child->d_inode)
2469 		return -EEXIST;
2470 	if (IS_DEADDIR(dir))
2471 		return -ENOENT;
2472 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2473 }
2474 
2475 /*
2476  * p1 and p2 should be directories on the same fs.
2477  */
2478 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2479 {
2480 	struct dentry *p;
2481 
2482 	if (p1 == p2) {
2483 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2484 		return NULL;
2485 	}
2486 
2487 	mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2488 
2489 	p = d_ancestor(p2, p1);
2490 	if (p) {
2491 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2492 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2493 		return p;
2494 	}
2495 
2496 	p = d_ancestor(p1, p2);
2497 	if (p) {
2498 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2499 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2500 		return p;
2501 	}
2502 
2503 	mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2504 	mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2505 	return NULL;
2506 }
2507 EXPORT_SYMBOL(lock_rename);
2508 
2509 void unlock_rename(struct dentry *p1, struct dentry *p2)
2510 {
2511 	mutex_unlock(&p1->d_inode->i_mutex);
2512 	if (p1 != p2) {
2513 		mutex_unlock(&p2->d_inode->i_mutex);
2514 		mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2515 	}
2516 }
2517 EXPORT_SYMBOL(unlock_rename);
2518 
2519 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2520 		bool want_excl)
2521 {
2522 	int error = may_create(dir, dentry);
2523 	if (error)
2524 		return error;
2525 
2526 	if (!dir->i_op->create)
2527 		return -EACCES;	/* shouldn't it be ENOSYS? */
2528 	mode &= S_IALLUGO;
2529 	mode |= S_IFREG;
2530 	error = security_inode_create(dir, dentry, mode);
2531 	if (error)
2532 		return error;
2533 	error = dir->i_op->create(dir, dentry, mode, want_excl);
2534 	if (!error)
2535 		fsnotify_create(dir, dentry);
2536 	return error;
2537 }
2538 EXPORT_SYMBOL(vfs_create);
2539 
2540 static int may_open(struct path *path, int acc_mode, int flag)
2541 {
2542 	struct dentry *dentry = path->dentry;
2543 	struct inode *inode = dentry->d_inode;
2544 	int error;
2545 
2546 	/* O_PATH? */
2547 	if (!acc_mode)
2548 		return 0;
2549 
2550 	if (!inode)
2551 		return -ENOENT;
2552 
2553 	switch (inode->i_mode & S_IFMT) {
2554 	case S_IFLNK:
2555 		return -ELOOP;
2556 	case S_IFDIR:
2557 		if (acc_mode & MAY_WRITE)
2558 			return -EISDIR;
2559 		break;
2560 	case S_IFBLK:
2561 	case S_IFCHR:
2562 		if (path->mnt->mnt_flags & MNT_NODEV)
2563 			return -EACCES;
2564 		/*FALLTHRU*/
2565 	case S_IFIFO:
2566 	case S_IFSOCK:
2567 		flag &= ~O_TRUNC;
2568 		break;
2569 	}
2570 
2571 	error = inode_permission(inode, acc_mode);
2572 	if (error)
2573 		return error;
2574 
2575 	/*
2576 	 * An append-only file must be opened in append mode for writing.
2577 	 */
2578 	if (IS_APPEND(inode)) {
2579 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2580 			return -EPERM;
2581 		if (flag & O_TRUNC)
2582 			return -EPERM;
2583 	}
2584 
2585 	/* O_NOATIME can only be set by the owner or superuser */
2586 	if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2587 		return -EPERM;
2588 
2589 	return 0;
2590 }
2591 
2592 static int handle_truncate(struct file *filp)
2593 {
2594 	struct path *path = &filp->f_path;
2595 	struct inode *inode = path->dentry->d_inode;
2596 	int error = get_write_access(inode);
2597 	if (error)
2598 		return error;
2599 	/*
2600 	 * Refuse to truncate files with mandatory locks held on them.
2601 	 */
2602 	error = locks_verify_locked(filp);
2603 	if (!error)
2604 		error = security_path_truncate(path);
2605 	if (!error) {
2606 		error = do_truncate(path->dentry, 0,
2607 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2608 				    filp);
2609 	}
2610 	put_write_access(inode);
2611 	return error;
2612 }
2613 
2614 static inline int open_to_namei_flags(int flag)
2615 {
2616 	if ((flag & O_ACCMODE) == 3)
2617 		flag--;
2618 	return flag;
2619 }
2620 
2621 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2622 {
2623 	int error = security_path_mknod(dir, dentry, mode, 0);
2624 	if (error)
2625 		return error;
2626 
2627 	error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2628 	if (error)
2629 		return error;
2630 
2631 	return security_inode_create(dir->dentry->d_inode, dentry, mode);
2632 }
2633 
2634 /*
2635  * Attempt to atomically look up, create and open a file from a negative
2636  * dentry.
2637  *
2638  * Returns 0 if successful.  The file will have been created and attached to
2639  * @file by the filesystem calling finish_open().
2640  *
2641  * Returns 1 if the file was looked up only or didn't need creating.  The
2642  * caller will need to perform the open themselves.  @path will have been
2643  * updated to point to the new dentry.  This may be negative.
2644  *
2645  * Returns an error code otherwise.
2646  */
2647 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2648 			struct path *path, struct file *file,
2649 			const struct open_flags *op,
2650 			bool got_write, bool need_lookup,
2651 			int *opened)
2652 {
2653 	struct inode *dir =  nd->path.dentry->d_inode;
2654 	unsigned open_flag = open_to_namei_flags(op->open_flag);
2655 	umode_t mode;
2656 	int error;
2657 	int acc_mode;
2658 	int create_error = 0;
2659 	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2660 	bool excl;
2661 
2662 	BUG_ON(dentry->d_inode);
2663 
2664 	/* Don't create child dentry for a dead directory. */
2665 	if (unlikely(IS_DEADDIR(dir))) {
2666 		error = -ENOENT;
2667 		goto out;
2668 	}
2669 
2670 	mode = op->mode;
2671 	if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2672 		mode &= ~current_umask();
2673 
2674 	excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT);
2675 	if (excl)
2676 		open_flag &= ~O_TRUNC;
2677 
2678 	/*
2679 	 * Checking write permission is tricky, bacuse we don't know if we are
2680 	 * going to actually need it: O_CREAT opens should work as long as the
2681 	 * file exists.  But checking existence breaks atomicity.  The trick is
2682 	 * to check access and if not granted clear O_CREAT from the flags.
2683 	 *
2684 	 * Another problem is returing the "right" error value (e.g. for an
2685 	 * O_EXCL open we want to return EEXIST not EROFS).
2686 	 */
2687 	if (((open_flag & (O_CREAT | O_TRUNC)) ||
2688 	    (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2689 		if (!(open_flag & O_CREAT)) {
2690 			/*
2691 			 * No O_CREATE -> atomicity not a requirement -> fall
2692 			 * back to lookup + open
2693 			 */
2694 			goto no_open;
2695 		} else if (open_flag & (O_EXCL | O_TRUNC)) {
2696 			/* Fall back and fail with the right error */
2697 			create_error = -EROFS;
2698 			goto no_open;
2699 		} else {
2700 			/* No side effects, safe to clear O_CREAT */
2701 			create_error = -EROFS;
2702 			open_flag &= ~O_CREAT;
2703 		}
2704 	}
2705 
2706 	if (open_flag & O_CREAT) {
2707 		error = may_o_create(&nd->path, dentry, mode);
2708 		if (error) {
2709 			create_error = error;
2710 			if (open_flag & O_EXCL)
2711 				goto no_open;
2712 			open_flag &= ~O_CREAT;
2713 		}
2714 	}
2715 
2716 	if (nd->flags & LOOKUP_DIRECTORY)
2717 		open_flag |= O_DIRECTORY;
2718 
2719 	file->f_path.dentry = DENTRY_NOT_SET;
2720 	file->f_path.mnt = nd->path.mnt;
2721 	error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2722 				      opened);
2723 	if (error < 0) {
2724 		if (create_error && error == -ENOENT)
2725 			error = create_error;
2726 		goto out;
2727 	}
2728 
2729 	if (error) {	/* returned 1, that is */
2730 		if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2731 			error = -EIO;
2732 			goto out;
2733 		}
2734 		if (file->f_path.dentry) {
2735 			dput(dentry);
2736 			dentry = file->f_path.dentry;
2737 		}
2738 		if (*opened & FILE_CREATED)
2739 			fsnotify_create(dir, dentry);
2740 		if (!dentry->d_inode) {
2741 			WARN_ON(*opened & FILE_CREATED);
2742 			if (create_error) {
2743 				error = create_error;
2744 				goto out;
2745 			}
2746 		} else {
2747 			if (excl && !(*opened & FILE_CREATED)) {
2748 				error = -EEXIST;
2749 				goto out;
2750 			}
2751 		}
2752 		goto looked_up;
2753 	}
2754 
2755 	/*
2756 	 * We didn't have the inode before the open, so check open permission
2757 	 * here.
2758 	 */
2759 	acc_mode = op->acc_mode;
2760 	if (*opened & FILE_CREATED) {
2761 		WARN_ON(!(open_flag & O_CREAT));
2762 		fsnotify_create(dir, dentry);
2763 		acc_mode = MAY_OPEN;
2764 	}
2765 	error = may_open(&file->f_path, acc_mode, open_flag);
2766 	if (error)
2767 		fput(file);
2768 
2769 out:
2770 	dput(dentry);
2771 	return error;
2772 
2773 no_open:
2774 	if (need_lookup) {
2775 		dentry = lookup_real(dir, dentry, nd->flags);
2776 		if (IS_ERR(dentry))
2777 			return PTR_ERR(dentry);
2778 
2779 		if (create_error) {
2780 			int open_flag = op->open_flag;
2781 
2782 			error = create_error;
2783 			if ((open_flag & O_EXCL)) {
2784 				if (!dentry->d_inode)
2785 					goto out;
2786 			} else if (!dentry->d_inode) {
2787 				goto out;
2788 			} else if ((open_flag & O_TRUNC) &&
2789 				   S_ISREG(dentry->d_inode->i_mode)) {
2790 				goto out;
2791 			}
2792 			/* will fail later, go on to get the right error */
2793 		}
2794 	}
2795 looked_up:
2796 	path->dentry = dentry;
2797 	path->mnt = nd->path.mnt;
2798 	return 1;
2799 }
2800 
2801 /*
2802  * Look up and maybe create and open the last component.
2803  *
2804  * Must be called with i_mutex held on parent.
2805  *
2806  * Returns 0 if the file was successfully atomically created (if necessary) and
2807  * opened.  In this case the file will be returned attached to @file.
2808  *
2809  * Returns 1 if the file was not completely opened at this time, though lookups
2810  * and creations will have been performed and the dentry returned in @path will
2811  * be positive upon return if O_CREAT was specified.  If O_CREAT wasn't
2812  * specified then a negative dentry may be returned.
2813  *
2814  * An error code is returned otherwise.
2815  *
2816  * FILE_CREATE will be set in @*opened if the dentry was created and will be
2817  * cleared otherwise prior to returning.
2818  */
2819 static int lookup_open(struct nameidata *nd, struct path *path,
2820 			struct file *file,
2821 			const struct open_flags *op,
2822 			bool got_write, int *opened)
2823 {
2824 	struct dentry *dir = nd->path.dentry;
2825 	struct inode *dir_inode = dir->d_inode;
2826 	struct dentry *dentry;
2827 	int error;
2828 	bool need_lookup;
2829 
2830 	*opened &= ~FILE_CREATED;
2831 	dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2832 	if (IS_ERR(dentry))
2833 		return PTR_ERR(dentry);
2834 
2835 	/* Cached positive dentry: will open in f_op->open */
2836 	if (!need_lookup && dentry->d_inode)
2837 		goto out_no_open;
2838 
2839 	if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2840 		return atomic_open(nd, dentry, path, file, op, got_write,
2841 				   need_lookup, opened);
2842 	}
2843 
2844 	if (need_lookup) {
2845 		BUG_ON(dentry->d_inode);
2846 
2847 		dentry = lookup_real(dir_inode, dentry, nd->flags);
2848 		if (IS_ERR(dentry))
2849 			return PTR_ERR(dentry);
2850 	}
2851 
2852 	/* Negative dentry, just create the file */
2853 	if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2854 		umode_t mode = op->mode;
2855 		if (!IS_POSIXACL(dir->d_inode))
2856 			mode &= ~current_umask();
2857 		/*
2858 		 * This write is needed to ensure that a
2859 		 * rw->ro transition does not occur between
2860 		 * the time when the file is created and when
2861 		 * a permanent write count is taken through
2862 		 * the 'struct file' in finish_open().
2863 		 */
2864 		if (!got_write) {
2865 			error = -EROFS;
2866 			goto out_dput;
2867 		}
2868 		*opened |= FILE_CREATED;
2869 		error = security_path_mknod(&nd->path, dentry, mode, 0);
2870 		if (error)
2871 			goto out_dput;
2872 		error = vfs_create(dir->d_inode, dentry, mode,
2873 				   nd->flags & LOOKUP_EXCL);
2874 		if (error)
2875 			goto out_dput;
2876 	}
2877 out_no_open:
2878 	path->dentry = dentry;
2879 	path->mnt = nd->path.mnt;
2880 	return 1;
2881 
2882 out_dput:
2883 	dput(dentry);
2884 	return error;
2885 }
2886 
2887 /*
2888  * Handle the last step of open()
2889  */
2890 static int do_last(struct nameidata *nd, struct path *path,
2891 		   struct file *file, const struct open_flags *op,
2892 		   int *opened, struct filename *name)
2893 {
2894 	struct dentry *dir = nd->path.dentry;
2895 	int open_flag = op->open_flag;
2896 	bool will_truncate = (open_flag & O_TRUNC) != 0;
2897 	bool got_write = false;
2898 	int acc_mode = op->acc_mode;
2899 	struct inode *inode;
2900 	bool symlink_ok = false;
2901 	struct path save_parent = { .dentry = NULL, .mnt = NULL };
2902 	bool retried = false;
2903 	int error;
2904 
2905 	nd->flags &= ~LOOKUP_PARENT;
2906 	nd->flags |= op->intent;
2907 
2908 	if (nd->last_type != LAST_NORM) {
2909 		error = handle_dots(nd, nd->last_type);
2910 		if (error)
2911 			return error;
2912 		goto finish_open;
2913 	}
2914 
2915 	if (!(open_flag & O_CREAT)) {
2916 		if (nd->last.name[nd->last.len])
2917 			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2918 		if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2919 			symlink_ok = true;
2920 		/* we _can_ be in RCU mode here */
2921 		error = lookup_fast(nd, path, &inode);
2922 		if (likely(!error))
2923 			goto finish_lookup;
2924 
2925 		if (error < 0)
2926 			goto out;
2927 
2928 		BUG_ON(nd->inode != dir->d_inode);
2929 	} else {
2930 		/* create side of things */
2931 		/*
2932 		 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
2933 		 * has been cleared when we got to the last component we are
2934 		 * about to look up
2935 		 */
2936 		error = complete_walk(nd);
2937 		if (error)
2938 			return error;
2939 
2940 		audit_inode(name, dir, LOOKUP_PARENT);
2941 		error = -EISDIR;
2942 		/* trailing slashes? */
2943 		if (nd->last.name[nd->last.len])
2944 			goto out;
2945 	}
2946 
2947 retry_lookup:
2948 	if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
2949 		error = mnt_want_write(nd->path.mnt);
2950 		if (!error)
2951 			got_write = true;
2952 		/*
2953 		 * do _not_ fail yet - we might not need that or fail with
2954 		 * a different error; let lookup_open() decide; we'll be
2955 		 * dropping this one anyway.
2956 		 */
2957 	}
2958 	mutex_lock(&dir->d_inode->i_mutex);
2959 	error = lookup_open(nd, path, file, op, got_write, opened);
2960 	mutex_unlock(&dir->d_inode->i_mutex);
2961 
2962 	if (error <= 0) {
2963 		if (error)
2964 			goto out;
2965 
2966 		if ((*opened & FILE_CREATED) ||
2967 		    !S_ISREG(file_inode(file)->i_mode))
2968 			will_truncate = false;
2969 
2970 		audit_inode(name, file->f_path.dentry, 0);
2971 		goto opened;
2972 	}
2973 
2974 	if (*opened & FILE_CREATED) {
2975 		/* Don't check for write permission, don't truncate */
2976 		open_flag &= ~O_TRUNC;
2977 		will_truncate = false;
2978 		acc_mode = MAY_OPEN;
2979 		path_to_nameidata(path, nd);
2980 		goto finish_open_created;
2981 	}
2982 
2983 	/*
2984 	 * create/update audit record if it already exists.
2985 	 */
2986 	if (d_is_positive(path->dentry))
2987 		audit_inode(name, path->dentry, 0);
2988 
2989 	/*
2990 	 * If atomic_open() acquired write access it is dropped now due to
2991 	 * possible mount and symlink following (this might be optimized away if
2992 	 * necessary...)
2993 	 */
2994 	if (got_write) {
2995 		mnt_drop_write(nd->path.mnt);
2996 		got_write = false;
2997 	}
2998 
2999 	error = -EEXIST;
3000 	if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))
3001 		goto exit_dput;
3002 
3003 	error = follow_managed(path, nd->flags);
3004 	if (error < 0)
3005 		goto exit_dput;
3006 
3007 	if (error)
3008 		nd->flags |= LOOKUP_JUMPED;
3009 
3010 	BUG_ON(nd->flags & LOOKUP_RCU);
3011 	inode = path->dentry->d_inode;
3012 finish_lookup:
3013 	/* we _can_ be in RCU mode here */
3014 	error = -ENOENT;
3015 	if (!inode || d_is_negative(path->dentry)) {
3016 		path_to_nameidata(path, nd);
3017 		goto out;
3018 	}
3019 
3020 	if (should_follow_link(path->dentry, !symlink_ok)) {
3021 		if (nd->flags & LOOKUP_RCU) {
3022 			if (unlikely(unlazy_walk(nd, path->dentry))) {
3023 				error = -ECHILD;
3024 				goto out;
3025 			}
3026 		}
3027 		BUG_ON(inode != path->dentry->d_inode);
3028 		return 1;
3029 	}
3030 
3031 	if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) {
3032 		path_to_nameidata(path, nd);
3033 	} else {
3034 		save_parent.dentry = nd->path.dentry;
3035 		save_parent.mnt = mntget(path->mnt);
3036 		nd->path.dentry = path->dentry;
3037 
3038 	}
3039 	nd->inode = inode;
3040 	/* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
3041 finish_open:
3042 	error = complete_walk(nd);
3043 	if (error) {
3044 		path_put(&save_parent);
3045 		return error;
3046 	}
3047 	audit_inode(name, nd->path.dentry, 0);
3048 	error = -EISDIR;
3049 	if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3050 		goto out;
3051 	error = -ENOTDIR;
3052 	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3053 		goto out;
3054 	if (!S_ISREG(nd->inode->i_mode))
3055 		will_truncate = false;
3056 
3057 	if (will_truncate) {
3058 		error = mnt_want_write(nd->path.mnt);
3059 		if (error)
3060 			goto out;
3061 		got_write = true;
3062 	}
3063 finish_open_created:
3064 	error = may_open(&nd->path, acc_mode, open_flag);
3065 	if (error)
3066 		goto out;
3067 	file->f_path.mnt = nd->path.mnt;
3068 	error = finish_open(file, nd->path.dentry, NULL, opened);
3069 	if (error) {
3070 		if (error == -EOPENSTALE)
3071 			goto stale_open;
3072 		goto out;
3073 	}
3074 opened:
3075 	error = open_check_o_direct(file);
3076 	if (error)
3077 		goto exit_fput;
3078 	error = ima_file_check(file, op->acc_mode, *opened);
3079 	if (error)
3080 		goto exit_fput;
3081 
3082 	if (will_truncate) {
3083 		error = handle_truncate(file);
3084 		if (error)
3085 			goto exit_fput;
3086 	}
3087 out:
3088 	if (got_write)
3089 		mnt_drop_write(nd->path.mnt);
3090 	path_put(&save_parent);
3091 	terminate_walk(nd);
3092 	return error;
3093 
3094 exit_dput:
3095 	path_put_conditional(path, nd);
3096 	goto out;
3097 exit_fput:
3098 	fput(file);
3099 	goto out;
3100 
3101 stale_open:
3102 	/* If no saved parent or already retried then can't retry */
3103 	if (!save_parent.dentry || retried)
3104 		goto out;
3105 
3106 	BUG_ON(save_parent.dentry != dir);
3107 	path_put(&nd->path);
3108 	nd->path = save_parent;
3109 	nd->inode = dir->d_inode;
3110 	save_parent.mnt = NULL;
3111 	save_parent.dentry = NULL;
3112 	if (got_write) {
3113 		mnt_drop_write(nd->path.mnt);
3114 		got_write = false;
3115 	}
3116 	retried = true;
3117 	goto retry_lookup;
3118 }
3119 
3120 static int do_tmpfile(int dfd, struct filename *pathname,
3121 		struct nameidata *nd, int flags,
3122 		const struct open_flags *op,
3123 		struct file *file, int *opened)
3124 {
3125 	static const struct qstr name = QSTR_INIT("/", 1);
3126 	struct dentry *dentry, *child;
3127 	struct inode *dir;
3128 	int error = path_lookupat(dfd, pathname->name,
3129 				  flags | LOOKUP_DIRECTORY, nd);
3130 	if (unlikely(error))
3131 		return error;
3132 	error = mnt_want_write(nd->path.mnt);
3133 	if (unlikely(error))
3134 		goto out;
3135 	/* we want directory to be writable */
3136 	error = inode_permission(nd->inode, MAY_WRITE | MAY_EXEC);
3137 	if (error)
3138 		goto out2;
3139 	dentry = nd->path.dentry;
3140 	dir = dentry->d_inode;
3141 	if (!dir->i_op->tmpfile) {
3142 		error = -EOPNOTSUPP;
3143 		goto out2;
3144 	}
3145 	child = d_alloc(dentry, &name);
3146 	if (unlikely(!child)) {
3147 		error = -ENOMEM;
3148 		goto out2;
3149 	}
3150 	nd->flags &= ~LOOKUP_DIRECTORY;
3151 	nd->flags |= op->intent;
3152 	dput(nd->path.dentry);
3153 	nd->path.dentry = child;
3154 	error = dir->i_op->tmpfile(dir, nd->path.dentry, op->mode);
3155 	if (error)
3156 		goto out2;
3157 	audit_inode(pathname, nd->path.dentry, 0);
3158 	error = may_open(&nd->path, op->acc_mode, op->open_flag);
3159 	if (error)
3160 		goto out2;
3161 	file->f_path.mnt = nd->path.mnt;
3162 	error = finish_open(file, nd->path.dentry, NULL, opened);
3163 	if (error)
3164 		goto out2;
3165 	error = open_check_o_direct(file);
3166 	if (error) {
3167 		fput(file);
3168 	} else if (!(op->open_flag & O_EXCL)) {
3169 		struct inode *inode = file_inode(file);
3170 		spin_lock(&inode->i_lock);
3171 		inode->i_state |= I_LINKABLE;
3172 		spin_unlock(&inode->i_lock);
3173 	}
3174 out2:
3175 	mnt_drop_write(nd->path.mnt);
3176 out:
3177 	path_put(&nd->path);
3178 	return error;
3179 }
3180 
3181 static struct file *path_openat(int dfd, struct filename *pathname,
3182 		struct nameidata *nd, const struct open_flags *op, int flags)
3183 {
3184 	struct file *base = NULL;
3185 	struct file *file;
3186 	struct path path;
3187 	int opened = 0;
3188 	int error;
3189 
3190 	file = get_empty_filp();
3191 	if (IS_ERR(file))
3192 		return file;
3193 
3194 	file->f_flags = op->open_flag;
3195 
3196 	if (unlikely(file->f_flags & __O_TMPFILE)) {
3197 		error = do_tmpfile(dfd, pathname, nd, flags, op, file, &opened);
3198 		goto out;
3199 	}
3200 
3201 	error = path_init(dfd, pathname->name, flags | LOOKUP_PARENT, nd, &base);
3202 	if (unlikely(error))
3203 		goto out;
3204 
3205 	current->total_link_count = 0;
3206 	error = link_path_walk(pathname->name, nd);
3207 	if (unlikely(error))
3208 		goto out;
3209 
3210 	error = do_last(nd, &path, file, op, &opened, pathname);
3211 	while (unlikely(error > 0)) { /* trailing symlink */
3212 		struct path link = path;
3213 		void *cookie;
3214 		if (!(nd->flags & LOOKUP_FOLLOW)) {
3215 			path_put_conditional(&path, nd);
3216 			path_put(&nd->path);
3217 			error = -ELOOP;
3218 			break;
3219 		}
3220 		error = may_follow_link(&link, nd);
3221 		if (unlikely(error))
3222 			break;
3223 		nd->flags |= LOOKUP_PARENT;
3224 		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3225 		error = follow_link(&link, nd, &cookie);
3226 		if (unlikely(error))
3227 			break;
3228 		error = do_last(nd, &path, file, op, &opened, pathname);
3229 		put_link(nd, &link, cookie);
3230 	}
3231 out:
3232 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
3233 		path_put(&nd->root);
3234 	if (base)
3235 		fput(base);
3236 	if (!(opened & FILE_OPENED)) {
3237 		BUG_ON(!error);
3238 		put_filp(file);
3239 	}
3240 	if (unlikely(error)) {
3241 		if (error == -EOPENSTALE) {
3242 			if (flags & LOOKUP_RCU)
3243 				error = -ECHILD;
3244 			else
3245 				error = -ESTALE;
3246 		}
3247 		file = ERR_PTR(error);
3248 	}
3249 	return file;
3250 }
3251 
3252 struct file *do_filp_open(int dfd, struct filename *pathname,
3253 		const struct open_flags *op)
3254 {
3255 	struct nameidata nd;
3256 	int flags = op->lookup_flags;
3257 	struct file *filp;
3258 
3259 	filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
3260 	if (unlikely(filp == ERR_PTR(-ECHILD)))
3261 		filp = path_openat(dfd, pathname, &nd, op, flags);
3262 	if (unlikely(filp == ERR_PTR(-ESTALE)))
3263 		filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
3264 	return filp;
3265 }
3266 
3267 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3268 		const char *name, const struct open_flags *op)
3269 {
3270 	struct nameidata nd;
3271 	struct file *file;
3272 	struct filename filename = { .name = name };
3273 	int flags = op->lookup_flags | LOOKUP_ROOT;
3274 
3275 	nd.root.mnt = mnt;
3276 	nd.root.dentry = dentry;
3277 
3278 	if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3279 		return ERR_PTR(-ELOOP);
3280 
3281 	file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_RCU);
3282 	if (unlikely(file == ERR_PTR(-ECHILD)))
3283 		file = path_openat(-1, &filename, &nd, op, flags);
3284 	if (unlikely(file == ERR_PTR(-ESTALE)))
3285 		file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_REVAL);
3286 	return file;
3287 }
3288 
3289 struct dentry *kern_path_create(int dfd, const char *pathname,
3290 				struct path *path, unsigned int lookup_flags)
3291 {
3292 	struct dentry *dentry = ERR_PTR(-EEXIST);
3293 	struct nameidata nd;
3294 	int err2;
3295 	int error;
3296 	bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3297 
3298 	/*
3299 	 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3300 	 * other flags passed in are ignored!
3301 	 */
3302 	lookup_flags &= LOOKUP_REVAL;
3303 
3304 	error = do_path_lookup(dfd, pathname, LOOKUP_PARENT|lookup_flags, &nd);
3305 	if (error)
3306 		return ERR_PTR(error);
3307 
3308 	/*
3309 	 * Yucky last component or no last component at all?
3310 	 * (foo/., foo/.., /////)
3311 	 */
3312 	if (nd.last_type != LAST_NORM)
3313 		goto out;
3314 	nd.flags &= ~LOOKUP_PARENT;
3315 	nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3316 
3317 	/* don't fail immediately if it's r/o, at least try to report other errors */
3318 	err2 = mnt_want_write(nd.path.mnt);
3319 	/*
3320 	 * Do the final lookup.
3321 	 */
3322 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3323 	dentry = lookup_hash(&nd);
3324 	if (IS_ERR(dentry))
3325 		goto unlock;
3326 
3327 	error = -EEXIST;
3328 	if (d_is_positive(dentry))
3329 		goto fail;
3330 
3331 	/*
3332 	 * Special case - lookup gave negative, but... we had foo/bar/
3333 	 * From the vfs_mknod() POV we just have a negative dentry -
3334 	 * all is fine. Let's be bastards - you had / on the end, you've
3335 	 * been asking for (non-existent) directory. -ENOENT for you.
3336 	 */
3337 	if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
3338 		error = -ENOENT;
3339 		goto fail;
3340 	}
3341 	if (unlikely(err2)) {
3342 		error = err2;
3343 		goto fail;
3344 	}
3345 	*path = nd.path;
3346 	return dentry;
3347 fail:
3348 	dput(dentry);
3349 	dentry = ERR_PTR(error);
3350 unlock:
3351 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3352 	if (!err2)
3353 		mnt_drop_write(nd.path.mnt);
3354 out:
3355 	path_put(&nd.path);
3356 	return dentry;
3357 }
3358 EXPORT_SYMBOL(kern_path_create);
3359 
3360 void done_path_create(struct path *path, struct dentry *dentry)
3361 {
3362 	dput(dentry);
3363 	mutex_unlock(&path->dentry->d_inode->i_mutex);
3364 	mnt_drop_write(path->mnt);
3365 	path_put(path);
3366 }
3367 EXPORT_SYMBOL(done_path_create);
3368 
3369 struct dentry *user_path_create(int dfd, const char __user *pathname,
3370 				struct path *path, unsigned int lookup_flags)
3371 {
3372 	struct filename *tmp = getname(pathname);
3373 	struct dentry *res;
3374 	if (IS_ERR(tmp))
3375 		return ERR_CAST(tmp);
3376 	res = kern_path_create(dfd, tmp->name, path, lookup_flags);
3377 	putname(tmp);
3378 	return res;
3379 }
3380 EXPORT_SYMBOL(user_path_create);
3381 
3382 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3383 {
3384 	int error = may_create(dir, dentry);
3385 
3386 	if (error)
3387 		return error;
3388 
3389 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3390 		return -EPERM;
3391 
3392 	if (!dir->i_op->mknod)
3393 		return -EPERM;
3394 
3395 	error = devcgroup_inode_mknod(mode, dev);
3396 	if (error)
3397 		return error;
3398 
3399 	error = security_inode_mknod(dir, dentry, mode, dev);
3400 	if (error)
3401 		return error;
3402 
3403 	error = dir->i_op->mknod(dir, dentry, mode, dev);
3404 	if (!error)
3405 		fsnotify_create(dir, dentry);
3406 	return error;
3407 }
3408 EXPORT_SYMBOL(vfs_mknod);
3409 
3410 static int may_mknod(umode_t mode)
3411 {
3412 	switch (mode & S_IFMT) {
3413 	case S_IFREG:
3414 	case S_IFCHR:
3415 	case S_IFBLK:
3416 	case S_IFIFO:
3417 	case S_IFSOCK:
3418 	case 0: /* zero mode translates to S_IFREG */
3419 		return 0;
3420 	case S_IFDIR:
3421 		return -EPERM;
3422 	default:
3423 		return -EINVAL;
3424 	}
3425 }
3426 
3427 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3428 		unsigned, dev)
3429 {
3430 	struct dentry *dentry;
3431 	struct path path;
3432 	int error;
3433 	unsigned int lookup_flags = 0;
3434 
3435 	error = may_mknod(mode);
3436 	if (error)
3437 		return error;
3438 retry:
3439 	dentry = user_path_create(dfd, filename, &path, lookup_flags);
3440 	if (IS_ERR(dentry))
3441 		return PTR_ERR(dentry);
3442 
3443 	if (!IS_POSIXACL(path.dentry->d_inode))
3444 		mode &= ~current_umask();
3445 	error = security_path_mknod(&path, dentry, mode, dev);
3446 	if (error)
3447 		goto out;
3448 	switch (mode & S_IFMT) {
3449 		case 0: case S_IFREG:
3450 			error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3451 			break;
3452 		case S_IFCHR: case S_IFBLK:
3453 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3454 					new_decode_dev(dev));
3455 			break;
3456 		case S_IFIFO: case S_IFSOCK:
3457 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3458 			break;
3459 	}
3460 out:
3461 	done_path_create(&path, dentry);
3462 	if (retry_estale(error, lookup_flags)) {
3463 		lookup_flags |= LOOKUP_REVAL;
3464 		goto retry;
3465 	}
3466 	return error;
3467 }
3468 
3469 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3470 {
3471 	return sys_mknodat(AT_FDCWD, filename, mode, dev);
3472 }
3473 
3474 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3475 {
3476 	int error = may_create(dir, dentry);
3477 	unsigned max_links = dir->i_sb->s_max_links;
3478 
3479 	if (error)
3480 		return error;
3481 
3482 	if (!dir->i_op->mkdir)
3483 		return -EPERM;
3484 
3485 	mode &= (S_IRWXUGO|S_ISVTX);
3486 	error = security_inode_mkdir(dir, dentry, mode);
3487 	if (error)
3488 		return error;
3489 
3490 	if (max_links && dir->i_nlink >= max_links)
3491 		return -EMLINK;
3492 
3493 	error = dir->i_op->mkdir(dir, dentry, mode);
3494 	if (!error)
3495 		fsnotify_mkdir(dir, dentry);
3496 	return error;
3497 }
3498 EXPORT_SYMBOL(vfs_mkdir);
3499 
3500 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3501 {
3502 	struct dentry *dentry;
3503 	struct path path;
3504 	int error;
3505 	unsigned int lookup_flags = LOOKUP_DIRECTORY;
3506 
3507 retry:
3508 	dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3509 	if (IS_ERR(dentry))
3510 		return PTR_ERR(dentry);
3511 
3512 	if (!IS_POSIXACL(path.dentry->d_inode))
3513 		mode &= ~current_umask();
3514 	error = security_path_mkdir(&path, dentry, mode);
3515 	if (!error)
3516 		error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3517 	done_path_create(&path, dentry);
3518 	if (retry_estale(error, lookup_flags)) {
3519 		lookup_flags |= LOOKUP_REVAL;
3520 		goto retry;
3521 	}
3522 	return error;
3523 }
3524 
3525 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3526 {
3527 	return sys_mkdirat(AT_FDCWD, pathname, mode);
3528 }
3529 
3530 /*
3531  * The dentry_unhash() helper will try to drop the dentry early: we
3532  * should have a usage count of 1 if we're the only user of this
3533  * dentry, and if that is true (possibly after pruning the dcache),
3534  * then we drop the dentry now.
3535  *
3536  * A low-level filesystem can, if it choses, legally
3537  * do a
3538  *
3539  *	if (!d_unhashed(dentry))
3540  *		return -EBUSY;
3541  *
3542  * if it cannot handle the case of removing a directory
3543  * that is still in use by something else..
3544  */
3545 void dentry_unhash(struct dentry *dentry)
3546 {
3547 	shrink_dcache_parent(dentry);
3548 	spin_lock(&dentry->d_lock);
3549 	if (dentry->d_lockref.count == 1)
3550 		__d_drop(dentry);
3551 	spin_unlock(&dentry->d_lock);
3552 }
3553 EXPORT_SYMBOL(dentry_unhash);
3554 
3555 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3556 {
3557 	int error = may_delete(dir, dentry, 1);
3558 
3559 	if (error)
3560 		return error;
3561 
3562 	if (!dir->i_op->rmdir)
3563 		return -EPERM;
3564 
3565 	dget(dentry);
3566 	mutex_lock(&dentry->d_inode->i_mutex);
3567 
3568 	error = -EBUSY;
3569 	if (is_local_mountpoint(dentry))
3570 		goto out;
3571 
3572 	error = security_inode_rmdir(dir, dentry);
3573 	if (error)
3574 		goto out;
3575 
3576 	shrink_dcache_parent(dentry);
3577 	error = dir->i_op->rmdir(dir, dentry);
3578 	if (error)
3579 		goto out;
3580 
3581 	dentry->d_inode->i_flags |= S_DEAD;
3582 	dont_mount(dentry);
3583 	detach_mounts(dentry);
3584 
3585 out:
3586 	mutex_unlock(&dentry->d_inode->i_mutex);
3587 	dput(dentry);
3588 	if (!error)
3589 		d_delete(dentry);
3590 	return error;
3591 }
3592 EXPORT_SYMBOL(vfs_rmdir);
3593 
3594 static long do_rmdir(int dfd, const char __user *pathname)
3595 {
3596 	int error = 0;
3597 	struct filename *name;
3598 	struct dentry *dentry;
3599 	struct nameidata nd;
3600 	unsigned int lookup_flags = 0;
3601 retry:
3602 	name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3603 	if (IS_ERR(name))
3604 		return PTR_ERR(name);
3605 
3606 	switch(nd.last_type) {
3607 	case LAST_DOTDOT:
3608 		error = -ENOTEMPTY;
3609 		goto exit1;
3610 	case LAST_DOT:
3611 		error = -EINVAL;
3612 		goto exit1;
3613 	case LAST_ROOT:
3614 		error = -EBUSY;
3615 		goto exit1;
3616 	}
3617 
3618 	nd.flags &= ~LOOKUP_PARENT;
3619 	error = mnt_want_write(nd.path.mnt);
3620 	if (error)
3621 		goto exit1;
3622 
3623 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3624 	dentry = lookup_hash(&nd);
3625 	error = PTR_ERR(dentry);
3626 	if (IS_ERR(dentry))
3627 		goto exit2;
3628 	if (!dentry->d_inode) {
3629 		error = -ENOENT;
3630 		goto exit3;
3631 	}
3632 	error = security_path_rmdir(&nd.path, dentry);
3633 	if (error)
3634 		goto exit3;
3635 	error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
3636 exit3:
3637 	dput(dentry);
3638 exit2:
3639 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3640 	mnt_drop_write(nd.path.mnt);
3641 exit1:
3642 	path_put(&nd.path);
3643 	putname(name);
3644 	if (retry_estale(error, lookup_flags)) {
3645 		lookup_flags |= LOOKUP_REVAL;
3646 		goto retry;
3647 	}
3648 	return error;
3649 }
3650 
3651 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3652 {
3653 	return do_rmdir(AT_FDCWD, pathname);
3654 }
3655 
3656 /**
3657  * vfs_unlink - unlink a filesystem object
3658  * @dir:	parent directory
3659  * @dentry:	victim
3660  * @delegated_inode: returns victim inode, if the inode is delegated.
3661  *
3662  * The caller must hold dir->i_mutex.
3663  *
3664  * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3665  * return a reference to the inode in delegated_inode.  The caller
3666  * should then break the delegation on that inode and retry.  Because
3667  * breaking a delegation may take a long time, the caller should drop
3668  * dir->i_mutex before doing so.
3669  *
3670  * Alternatively, a caller may pass NULL for delegated_inode.  This may
3671  * be appropriate for callers that expect the underlying filesystem not
3672  * to be NFS exported.
3673  */
3674 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3675 {
3676 	struct inode *target = dentry->d_inode;
3677 	int error = may_delete(dir, dentry, 0);
3678 
3679 	if (error)
3680 		return error;
3681 
3682 	if (!dir->i_op->unlink)
3683 		return -EPERM;
3684 
3685 	mutex_lock(&target->i_mutex);
3686 	if (is_local_mountpoint(dentry))
3687 		error = -EBUSY;
3688 	else {
3689 		error = security_inode_unlink(dir, dentry);
3690 		if (!error) {
3691 			error = try_break_deleg(target, delegated_inode);
3692 			if (error)
3693 				goto out;
3694 			error = dir->i_op->unlink(dir, dentry);
3695 			if (!error) {
3696 				dont_mount(dentry);
3697 				detach_mounts(dentry);
3698 			}
3699 		}
3700 	}
3701 out:
3702 	mutex_unlock(&target->i_mutex);
3703 
3704 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
3705 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3706 		fsnotify_link_count(target);
3707 		d_delete(dentry);
3708 	}
3709 
3710 	return error;
3711 }
3712 EXPORT_SYMBOL(vfs_unlink);
3713 
3714 /*
3715  * Make sure that the actual truncation of the file will occur outside its
3716  * directory's i_mutex.  Truncate can take a long time if there is a lot of
3717  * writeout happening, and we don't want to prevent access to the directory
3718  * while waiting on the I/O.
3719  */
3720 static long do_unlinkat(int dfd, const char __user *pathname)
3721 {
3722 	int error;
3723 	struct filename *name;
3724 	struct dentry *dentry;
3725 	struct nameidata nd;
3726 	struct inode *inode = NULL;
3727 	struct inode *delegated_inode = NULL;
3728 	unsigned int lookup_flags = 0;
3729 retry:
3730 	name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3731 	if (IS_ERR(name))
3732 		return PTR_ERR(name);
3733 
3734 	error = -EISDIR;
3735 	if (nd.last_type != LAST_NORM)
3736 		goto exit1;
3737 
3738 	nd.flags &= ~LOOKUP_PARENT;
3739 	error = mnt_want_write(nd.path.mnt);
3740 	if (error)
3741 		goto exit1;
3742 retry_deleg:
3743 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3744 	dentry = lookup_hash(&nd);
3745 	error = PTR_ERR(dentry);
3746 	if (!IS_ERR(dentry)) {
3747 		/* Why not before? Because we want correct error value */
3748 		if (nd.last.name[nd.last.len])
3749 			goto slashes;
3750 		inode = dentry->d_inode;
3751 		if (d_is_negative(dentry))
3752 			goto slashes;
3753 		ihold(inode);
3754 		error = security_path_unlink(&nd.path, dentry);
3755 		if (error)
3756 			goto exit2;
3757 		error = vfs_unlink(nd.path.dentry->d_inode, dentry, &delegated_inode);
3758 exit2:
3759 		dput(dentry);
3760 	}
3761 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3762 	if (inode)
3763 		iput(inode);	/* truncate the inode here */
3764 	inode = NULL;
3765 	if (delegated_inode) {
3766 		error = break_deleg_wait(&delegated_inode);
3767 		if (!error)
3768 			goto retry_deleg;
3769 	}
3770 	mnt_drop_write(nd.path.mnt);
3771 exit1:
3772 	path_put(&nd.path);
3773 	putname(name);
3774 	if (retry_estale(error, lookup_flags)) {
3775 		lookup_flags |= LOOKUP_REVAL;
3776 		inode = NULL;
3777 		goto retry;
3778 	}
3779 	return error;
3780 
3781 slashes:
3782 	if (d_is_negative(dentry))
3783 		error = -ENOENT;
3784 	else if (d_is_dir(dentry))
3785 		error = -EISDIR;
3786 	else
3787 		error = -ENOTDIR;
3788 	goto exit2;
3789 }
3790 
3791 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3792 {
3793 	if ((flag & ~AT_REMOVEDIR) != 0)
3794 		return -EINVAL;
3795 
3796 	if (flag & AT_REMOVEDIR)
3797 		return do_rmdir(dfd, pathname);
3798 
3799 	return do_unlinkat(dfd, pathname);
3800 }
3801 
3802 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3803 {
3804 	return do_unlinkat(AT_FDCWD, pathname);
3805 }
3806 
3807 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3808 {
3809 	int error = may_create(dir, dentry);
3810 
3811 	if (error)
3812 		return error;
3813 
3814 	if (!dir->i_op->symlink)
3815 		return -EPERM;
3816 
3817 	error = security_inode_symlink(dir, dentry, oldname);
3818 	if (error)
3819 		return error;
3820 
3821 	error = dir->i_op->symlink(dir, dentry, oldname);
3822 	if (!error)
3823 		fsnotify_create(dir, dentry);
3824 	return error;
3825 }
3826 EXPORT_SYMBOL(vfs_symlink);
3827 
3828 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3829 		int, newdfd, const char __user *, newname)
3830 {
3831 	int error;
3832 	struct filename *from;
3833 	struct dentry *dentry;
3834 	struct path path;
3835 	unsigned int lookup_flags = 0;
3836 
3837 	from = getname(oldname);
3838 	if (IS_ERR(from))
3839 		return PTR_ERR(from);
3840 retry:
3841 	dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3842 	error = PTR_ERR(dentry);
3843 	if (IS_ERR(dentry))
3844 		goto out_putname;
3845 
3846 	error = security_path_symlink(&path, dentry, from->name);
3847 	if (!error)
3848 		error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3849 	done_path_create(&path, dentry);
3850 	if (retry_estale(error, lookup_flags)) {
3851 		lookup_flags |= LOOKUP_REVAL;
3852 		goto retry;
3853 	}
3854 out_putname:
3855 	putname(from);
3856 	return error;
3857 }
3858 
3859 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3860 {
3861 	return sys_symlinkat(oldname, AT_FDCWD, newname);
3862 }
3863 
3864 /**
3865  * vfs_link - create a new link
3866  * @old_dentry:	object to be linked
3867  * @dir:	new parent
3868  * @new_dentry:	where to create the new link
3869  * @delegated_inode: returns inode needing a delegation break
3870  *
3871  * The caller must hold dir->i_mutex
3872  *
3873  * If vfs_link discovers a delegation on the to-be-linked file in need
3874  * of breaking, it will return -EWOULDBLOCK and return a reference to the
3875  * inode in delegated_inode.  The caller should then break the delegation
3876  * and retry.  Because breaking a delegation may take a long time, the
3877  * caller should drop the i_mutex before doing so.
3878  *
3879  * Alternatively, a caller may pass NULL for delegated_inode.  This may
3880  * be appropriate for callers that expect the underlying filesystem not
3881  * to be NFS exported.
3882  */
3883 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
3884 {
3885 	struct inode *inode = old_dentry->d_inode;
3886 	unsigned max_links = dir->i_sb->s_max_links;
3887 	int error;
3888 
3889 	if (!inode)
3890 		return -ENOENT;
3891 
3892 	error = may_create(dir, new_dentry);
3893 	if (error)
3894 		return error;
3895 
3896 	if (dir->i_sb != inode->i_sb)
3897 		return -EXDEV;
3898 
3899 	/*
3900 	 * A link to an append-only or immutable file cannot be created.
3901 	 */
3902 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3903 		return -EPERM;
3904 	if (!dir->i_op->link)
3905 		return -EPERM;
3906 	if (S_ISDIR(inode->i_mode))
3907 		return -EPERM;
3908 
3909 	error = security_inode_link(old_dentry, dir, new_dentry);
3910 	if (error)
3911 		return error;
3912 
3913 	mutex_lock(&inode->i_mutex);
3914 	/* Make sure we don't allow creating hardlink to an unlinked file */
3915 	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
3916 		error =  -ENOENT;
3917 	else if (max_links && inode->i_nlink >= max_links)
3918 		error = -EMLINK;
3919 	else {
3920 		error = try_break_deleg(inode, delegated_inode);
3921 		if (!error)
3922 			error = dir->i_op->link(old_dentry, dir, new_dentry);
3923 	}
3924 
3925 	if (!error && (inode->i_state & I_LINKABLE)) {
3926 		spin_lock(&inode->i_lock);
3927 		inode->i_state &= ~I_LINKABLE;
3928 		spin_unlock(&inode->i_lock);
3929 	}
3930 	mutex_unlock(&inode->i_mutex);
3931 	if (!error)
3932 		fsnotify_link(dir, inode, new_dentry);
3933 	return error;
3934 }
3935 EXPORT_SYMBOL(vfs_link);
3936 
3937 /*
3938  * Hardlinks are often used in delicate situations.  We avoid
3939  * security-related surprises by not following symlinks on the
3940  * newname.  --KAB
3941  *
3942  * We don't follow them on the oldname either to be compatible
3943  * with linux 2.0, and to avoid hard-linking to directories
3944  * and other special files.  --ADM
3945  */
3946 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3947 		int, newdfd, const char __user *, newname, int, flags)
3948 {
3949 	struct dentry *new_dentry;
3950 	struct path old_path, new_path;
3951 	struct inode *delegated_inode = NULL;
3952 	int how = 0;
3953 	int error;
3954 
3955 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
3956 		return -EINVAL;
3957 	/*
3958 	 * To use null names we require CAP_DAC_READ_SEARCH
3959 	 * This ensures that not everyone will be able to create
3960 	 * handlink using the passed filedescriptor.
3961 	 */
3962 	if (flags & AT_EMPTY_PATH) {
3963 		if (!capable(CAP_DAC_READ_SEARCH))
3964 			return -ENOENT;
3965 		how = LOOKUP_EMPTY;
3966 	}
3967 
3968 	if (flags & AT_SYMLINK_FOLLOW)
3969 		how |= LOOKUP_FOLLOW;
3970 retry:
3971 	error = user_path_at(olddfd, oldname, how, &old_path);
3972 	if (error)
3973 		return error;
3974 
3975 	new_dentry = user_path_create(newdfd, newname, &new_path,
3976 					(how & LOOKUP_REVAL));
3977 	error = PTR_ERR(new_dentry);
3978 	if (IS_ERR(new_dentry))
3979 		goto out;
3980 
3981 	error = -EXDEV;
3982 	if (old_path.mnt != new_path.mnt)
3983 		goto out_dput;
3984 	error = may_linkat(&old_path);
3985 	if (unlikely(error))
3986 		goto out_dput;
3987 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
3988 	if (error)
3989 		goto out_dput;
3990 	error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
3991 out_dput:
3992 	done_path_create(&new_path, new_dentry);
3993 	if (delegated_inode) {
3994 		error = break_deleg_wait(&delegated_inode);
3995 		if (!error) {
3996 			path_put(&old_path);
3997 			goto retry;
3998 		}
3999 	}
4000 	if (retry_estale(error, how)) {
4001 		path_put(&old_path);
4002 		how |= LOOKUP_REVAL;
4003 		goto retry;
4004 	}
4005 out:
4006 	path_put(&old_path);
4007 
4008 	return error;
4009 }
4010 
4011 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4012 {
4013 	return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4014 }
4015 
4016 /**
4017  * vfs_rename - rename a filesystem object
4018  * @old_dir:	parent of source
4019  * @old_dentry:	source
4020  * @new_dir:	parent of destination
4021  * @new_dentry:	destination
4022  * @delegated_inode: returns an inode needing a delegation break
4023  * @flags:	rename flags
4024  *
4025  * The caller must hold multiple mutexes--see lock_rename()).
4026  *
4027  * If vfs_rename discovers a delegation in need of breaking at either
4028  * the source or destination, it will return -EWOULDBLOCK and return a
4029  * reference to the inode in delegated_inode.  The caller should then
4030  * break the delegation and retry.  Because breaking a delegation may
4031  * take a long time, the caller should drop all locks before doing
4032  * so.
4033  *
4034  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4035  * be appropriate for callers that expect the underlying filesystem not
4036  * to be NFS exported.
4037  *
4038  * The worst of all namespace operations - renaming directory. "Perverted"
4039  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4040  * Problems:
4041  *	a) we can get into loop creation.
4042  *	b) race potential - two innocent renames can create a loop together.
4043  *	   That's where 4.4 screws up. Current fix: serialization on
4044  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4045  *	   story.
4046  *	c) we have to lock _four_ objects - parents and victim (if it exists),
4047  *	   and source (if it is not a directory).
4048  *	   And that - after we got ->i_mutex on parents (until then we don't know
4049  *	   whether the target exists).  Solution: try to be smart with locking
4050  *	   order for inodes.  We rely on the fact that tree topology may change
4051  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
4052  *	   move will be locked.  Thus we can rank directories by the tree
4053  *	   (ancestors first) and rank all non-directories after them.
4054  *	   That works since everybody except rename does "lock parent, lookup,
4055  *	   lock child" and rename is under ->s_vfs_rename_mutex.
4056  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
4057  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
4058  *	   we'd better make sure that there's no link(2) for them.
4059  *	d) conversion from fhandle to dentry may come in the wrong moment - when
4060  *	   we are removing the target. Solution: we will have to grab ->i_mutex
4061  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4062  *	   ->i_mutex on parents, which works but leads to some truly excessive
4063  *	   locking].
4064  */
4065 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4066 	       struct inode *new_dir, struct dentry *new_dentry,
4067 	       struct inode **delegated_inode, unsigned int flags)
4068 {
4069 	int error;
4070 	bool is_dir = d_is_dir(old_dentry);
4071 	const unsigned char *old_name;
4072 	struct inode *source = old_dentry->d_inode;
4073 	struct inode *target = new_dentry->d_inode;
4074 	bool new_is_dir = false;
4075 	unsigned max_links = new_dir->i_sb->s_max_links;
4076 
4077 	if (source == target)
4078 		return 0;
4079 
4080 	error = may_delete(old_dir, old_dentry, is_dir);
4081 	if (error)
4082 		return error;
4083 
4084 	if (!target) {
4085 		error = may_create(new_dir, new_dentry);
4086 	} else {
4087 		new_is_dir = d_is_dir(new_dentry);
4088 
4089 		if (!(flags & RENAME_EXCHANGE))
4090 			error = may_delete(new_dir, new_dentry, is_dir);
4091 		else
4092 			error = may_delete(new_dir, new_dentry, new_is_dir);
4093 	}
4094 	if (error)
4095 		return error;
4096 
4097 	if (!old_dir->i_op->rename && !old_dir->i_op->rename2)
4098 		return -EPERM;
4099 
4100 	if (flags && !old_dir->i_op->rename2)
4101 		return -EINVAL;
4102 
4103 	/*
4104 	 * If we are going to change the parent - check write permissions,
4105 	 * we'll need to flip '..'.
4106 	 */
4107 	if (new_dir != old_dir) {
4108 		if (is_dir) {
4109 			error = inode_permission(source, MAY_WRITE);
4110 			if (error)
4111 				return error;
4112 		}
4113 		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4114 			error = inode_permission(target, MAY_WRITE);
4115 			if (error)
4116 				return error;
4117 		}
4118 	}
4119 
4120 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4121 				      flags);
4122 	if (error)
4123 		return error;
4124 
4125 	old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4126 	dget(new_dentry);
4127 	if (!is_dir || (flags & RENAME_EXCHANGE))
4128 		lock_two_nondirectories(source, target);
4129 	else if (target)
4130 		mutex_lock(&target->i_mutex);
4131 
4132 	error = -EBUSY;
4133 	if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4134 		goto out;
4135 
4136 	if (max_links && new_dir != old_dir) {
4137 		error = -EMLINK;
4138 		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4139 			goto out;
4140 		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4141 		    old_dir->i_nlink >= max_links)
4142 			goto out;
4143 	}
4144 	if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4145 		shrink_dcache_parent(new_dentry);
4146 	if (!is_dir) {
4147 		error = try_break_deleg(source, delegated_inode);
4148 		if (error)
4149 			goto out;
4150 	}
4151 	if (target && !new_is_dir) {
4152 		error = try_break_deleg(target, delegated_inode);
4153 		if (error)
4154 			goto out;
4155 	}
4156 	if (!old_dir->i_op->rename2) {
4157 		error = old_dir->i_op->rename(old_dir, old_dentry,
4158 					      new_dir, new_dentry);
4159 	} else {
4160 		WARN_ON(old_dir->i_op->rename != NULL);
4161 		error = old_dir->i_op->rename2(old_dir, old_dentry,
4162 					       new_dir, new_dentry, flags);
4163 	}
4164 	if (error)
4165 		goto out;
4166 
4167 	if (!(flags & RENAME_EXCHANGE) && target) {
4168 		if (is_dir)
4169 			target->i_flags |= S_DEAD;
4170 		dont_mount(new_dentry);
4171 		detach_mounts(new_dentry);
4172 	}
4173 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4174 		if (!(flags & RENAME_EXCHANGE))
4175 			d_move(old_dentry, new_dentry);
4176 		else
4177 			d_exchange(old_dentry, new_dentry);
4178 	}
4179 out:
4180 	if (!is_dir || (flags & RENAME_EXCHANGE))
4181 		unlock_two_nondirectories(source, target);
4182 	else if (target)
4183 		mutex_unlock(&target->i_mutex);
4184 	dput(new_dentry);
4185 	if (!error) {
4186 		fsnotify_move(old_dir, new_dir, old_name, is_dir,
4187 			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4188 		if (flags & RENAME_EXCHANGE) {
4189 			fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4190 				      new_is_dir, NULL, new_dentry);
4191 		}
4192 	}
4193 	fsnotify_oldname_free(old_name);
4194 
4195 	return error;
4196 }
4197 EXPORT_SYMBOL(vfs_rename);
4198 
4199 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4200 		int, newdfd, const char __user *, newname, unsigned int, flags)
4201 {
4202 	struct dentry *old_dir, *new_dir;
4203 	struct dentry *old_dentry, *new_dentry;
4204 	struct dentry *trap;
4205 	struct nameidata oldnd, newnd;
4206 	struct inode *delegated_inode = NULL;
4207 	struct filename *from;
4208 	struct filename *to;
4209 	unsigned int lookup_flags = 0;
4210 	bool should_retry = false;
4211 	int error;
4212 
4213 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE))
4214 		return -EINVAL;
4215 
4216 	if ((flags & RENAME_NOREPLACE) && (flags & RENAME_EXCHANGE))
4217 		return -EINVAL;
4218 
4219 retry:
4220 	from = user_path_parent(olddfd, oldname, &oldnd, lookup_flags);
4221 	if (IS_ERR(from)) {
4222 		error = PTR_ERR(from);
4223 		goto exit;
4224 	}
4225 
4226 	to = user_path_parent(newdfd, newname, &newnd, lookup_flags);
4227 	if (IS_ERR(to)) {
4228 		error = PTR_ERR(to);
4229 		goto exit1;
4230 	}
4231 
4232 	error = -EXDEV;
4233 	if (oldnd.path.mnt != newnd.path.mnt)
4234 		goto exit2;
4235 
4236 	old_dir = oldnd.path.dentry;
4237 	error = -EBUSY;
4238 	if (oldnd.last_type != LAST_NORM)
4239 		goto exit2;
4240 
4241 	new_dir = newnd.path.dentry;
4242 	if (flags & RENAME_NOREPLACE)
4243 		error = -EEXIST;
4244 	if (newnd.last_type != LAST_NORM)
4245 		goto exit2;
4246 
4247 	error = mnt_want_write(oldnd.path.mnt);
4248 	if (error)
4249 		goto exit2;
4250 
4251 	oldnd.flags &= ~LOOKUP_PARENT;
4252 	newnd.flags &= ~LOOKUP_PARENT;
4253 	if (!(flags & RENAME_EXCHANGE))
4254 		newnd.flags |= LOOKUP_RENAME_TARGET;
4255 
4256 retry_deleg:
4257 	trap = lock_rename(new_dir, old_dir);
4258 
4259 	old_dentry = lookup_hash(&oldnd);
4260 	error = PTR_ERR(old_dentry);
4261 	if (IS_ERR(old_dentry))
4262 		goto exit3;
4263 	/* source must exist */
4264 	error = -ENOENT;
4265 	if (d_is_negative(old_dentry))
4266 		goto exit4;
4267 	new_dentry = lookup_hash(&newnd);
4268 	error = PTR_ERR(new_dentry);
4269 	if (IS_ERR(new_dentry))
4270 		goto exit4;
4271 	error = -EEXIST;
4272 	if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4273 		goto exit5;
4274 	if (flags & RENAME_EXCHANGE) {
4275 		error = -ENOENT;
4276 		if (d_is_negative(new_dentry))
4277 			goto exit5;
4278 
4279 		if (!d_is_dir(new_dentry)) {
4280 			error = -ENOTDIR;
4281 			if (newnd.last.name[newnd.last.len])
4282 				goto exit5;
4283 		}
4284 	}
4285 	/* unless the source is a directory trailing slashes give -ENOTDIR */
4286 	if (!d_is_dir(old_dentry)) {
4287 		error = -ENOTDIR;
4288 		if (oldnd.last.name[oldnd.last.len])
4289 			goto exit5;
4290 		if (!(flags & RENAME_EXCHANGE) && newnd.last.name[newnd.last.len])
4291 			goto exit5;
4292 	}
4293 	/* source should not be ancestor of target */
4294 	error = -EINVAL;
4295 	if (old_dentry == trap)
4296 		goto exit5;
4297 	/* target should not be an ancestor of source */
4298 	if (!(flags & RENAME_EXCHANGE))
4299 		error = -ENOTEMPTY;
4300 	if (new_dentry == trap)
4301 		goto exit5;
4302 
4303 	error = security_path_rename(&oldnd.path, old_dentry,
4304 				     &newnd.path, new_dentry, flags);
4305 	if (error)
4306 		goto exit5;
4307 	error = vfs_rename(old_dir->d_inode, old_dentry,
4308 			   new_dir->d_inode, new_dentry,
4309 			   &delegated_inode, flags);
4310 exit5:
4311 	dput(new_dentry);
4312 exit4:
4313 	dput(old_dentry);
4314 exit3:
4315 	unlock_rename(new_dir, old_dir);
4316 	if (delegated_inode) {
4317 		error = break_deleg_wait(&delegated_inode);
4318 		if (!error)
4319 			goto retry_deleg;
4320 	}
4321 	mnt_drop_write(oldnd.path.mnt);
4322 exit2:
4323 	if (retry_estale(error, lookup_flags))
4324 		should_retry = true;
4325 	path_put(&newnd.path);
4326 	putname(to);
4327 exit1:
4328 	path_put(&oldnd.path);
4329 	putname(from);
4330 	if (should_retry) {
4331 		should_retry = false;
4332 		lookup_flags |= LOOKUP_REVAL;
4333 		goto retry;
4334 	}
4335 exit:
4336 	return error;
4337 }
4338 
4339 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4340 		int, newdfd, const char __user *, newname)
4341 {
4342 	return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4343 }
4344 
4345 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4346 {
4347 	return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4348 }
4349 
4350 int readlink_copy(char __user *buffer, int buflen, const char *link)
4351 {
4352 	int len = PTR_ERR(link);
4353 	if (IS_ERR(link))
4354 		goto out;
4355 
4356 	len = strlen(link);
4357 	if (len > (unsigned) buflen)
4358 		len = buflen;
4359 	if (copy_to_user(buffer, link, len))
4360 		len = -EFAULT;
4361 out:
4362 	return len;
4363 }
4364 EXPORT_SYMBOL(readlink_copy);
4365 
4366 /*
4367  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
4368  * have ->follow_link() touching nd only in nd_set_link().  Using (or not
4369  * using) it for any given inode is up to filesystem.
4370  */
4371 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4372 {
4373 	struct nameidata nd;
4374 	void *cookie;
4375 	int res;
4376 
4377 	nd.depth = 0;
4378 	cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
4379 	if (IS_ERR(cookie))
4380 		return PTR_ERR(cookie);
4381 
4382 	res = readlink_copy(buffer, buflen, nd_get_link(&nd));
4383 	if (dentry->d_inode->i_op->put_link)
4384 		dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
4385 	return res;
4386 }
4387 EXPORT_SYMBOL(generic_readlink);
4388 
4389 /* get the link contents into pagecache */
4390 static char *page_getlink(struct dentry * dentry, struct page **ppage)
4391 {
4392 	char *kaddr;
4393 	struct page *page;
4394 	struct address_space *mapping = dentry->d_inode->i_mapping;
4395 	page = read_mapping_page(mapping, 0, NULL);
4396 	if (IS_ERR(page))
4397 		return (char*)page;
4398 	*ppage = page;
4399 	kaddr = kmap(page);
4400 	nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
4401 	return kaddr;
4402 }
4403 
4404 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4405 {
4406 	struct page *page = NULL;
4407 	int res = readlink_copy(buffer, buflen, page_getlink(dentry, &page));
4408 	if (page) {
4409 		kunmap(page);
4410 		page_cache_release(page);
4411 	}
4412 	return res;
4413 }
4414 EXPORT_SYMBOL(page_readlink);
4415 
4416 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
4417 {
4418 	struct page *page = NULL;
4419 	nd_set_link(nd, page_getlink(dentry, &page));
4420 	return page;
4421 }
4422 EXPORT_SYMBOL(page_follow_link_light);
4423 
4424 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
4425 {
4426 	struct page *page = cookie;
4427 
4428 	if (page) {
4429 		kunmap(page);
4430 		page_cache_release(page);
4431 	}
4432 }
4433 EXPORT_SYMBOL(page_put_link);
4434 
4435 /*
4436  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4437  */
4438 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4439 {
4440 	struct address_space *mapping = inode->i_mapping;
4441 	struct page *page;
4442 	void *fsdata;
4443 	int err;
4444 	char *kaddr;
4445 	unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4446 	if (nofs)
4447 		flags |= AOP_FLAG_NOFS;
4448 
4449 retry:
4450 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
4451 				flags, &page, &fsdata);
4452 	if (err)
4453 		goto fail;
4454 
4455 	kaddr = kmap_atomic(page);
4456 	memcpy(kaddr, symname, len-1);
4457 	kunmap_atomic(kaddr);
4458 
4459 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4460 							page, fsdata);
4461 	if (err < 0)
4462 		goto fail;
4463 	if (err < len-1)
4464 		goto retry;
4465 
4466 	mark_inode_dirty(inode);
4467 	return 0;
4468 fail:
4469 	return err;
4470 }
4471 EXPORT_SYMBOL(__page_symlink);
4472 
4473 int page_symlink(struct inode *inode, const char *symname, int len)
4474 {
4475 	return __page_symlink(inode, symname, len,
4476 			!(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
4477 }
4478 EXPORT_SYMBOL(page_symlink);
4479 
4480 const struct inode_operations page_symlink_inode_operations = {
4481 	.readlink	= generic_readlink,
4482 	.follow_link	= page_follow_link_light,
4483 	.put_link	= page_put_link,
4484 };
4485 EXPORT_SYMBOL(page_symlink_inode_operations);
4486