1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/namei.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * Some corrections by tytso. 10 */ 11 12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 13 * lookup logic. 14 */ 15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 16 */ 17 18 #include <linux/init.h> 19 #include <linux/export.h> 20 #include <linux/kernel.h> 21 #include <linux/slab.h> 22 #include <linux/fs.h> 23 #include <linux/namei.h> 24 #include <linux/pagemap.h> 25 #include <linux/fsnotify.h> 26 #include <linux/personality.h> 27 #include <linux/security.h> 28 #include <linux/ima.h> 29 #include <linux/syscalls.h> 30 #include <linux/mount.h> 31 #include <linux/audit.h> 32 #include <linux/capability.h> 33 #include <linux/file.h> 34 #include <linux/fcntl.h> 35 #include <linux/device_cgroup.h> 36 #include <linux/fs_struct.h> 37 #include <linux/posix_acl.h> 38 #include <linux/hash.h> 39 #include <linux/bitops.h> 40 #include <linux/init_task.h> 41 #include <linux/uaccess.h> 42 43 #include "internal.h" 44 #include "mount.h" 45 46 /* [Feb-1997 T. Schoebel-Theuer] 47 * Fundamental changes in the pathname lookup mechanisms (namei) 48 * were necessary because of omirr. The reason is that omirr needs 49 * to know the _real_ pathname, not the user-supplied one, in case 50 * of symlinks (and also when transname replacements occur). 51 * 52 * The new code replaces the old recursive symlink resolution with 53 * an iterative one (in case of non-nested symlink chains). It does 54 * this with calls to <fs>_follow_link(). 55 * As a side effect, dir_namei(), _namei() and follow_link() are now 56 * replaced with a single function lookup_dentry() that can handle all 57 * the special cases of the former code. 58 * 59 * With the new dcache, the pathname is stored at each inode, at least as 60 * long as the refcount of the inode is positive. As a side effect, the 61 * size of the dcache depends on the inode cache and thus is dynamic. 62 * 63 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 64 * resolution to correspond with current state of the code. 65 * 66 * Note that the symlink resolution is not *completely* iterative. 67 * There is still a significant amount of tail- and mid- recursion in 68 * the algorithm. Also, note that <fs>_readlink() is not used in 69 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 70 * may return different results than <fs>_follow_link(). Many virtual 71 * filesystems (including /proc) exhibit this behavior. 72 */ 73 74 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 75 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 76 * and the name already exists in form of a symlink, try to create the new 77 * name indicated by the symlink. The old code always complained that the 78 * name already exists, due to not following the symlink even if its target 79 * is nonexistent. The new semantics affects also mknod() and link() when 80 * the name is a symlink pointing to a non-existent name. 81 * 82 * I don't know which semantics is the right one, since I have no access 83 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 84 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 85 * "old" one. Personally, I think the new semantics is much more logical. 86 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 87 * file does succeed in both HP-UX and SunOs, but not in Solaris 88 * and in the old Linux semantics. 89 */ 90 91 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 92 * semantics. See the comments in "open_namei" and "do_link" below. 93 * 94 * [10-Sep-98 Alan Modra] Another symlink change. 95 */ 96 97 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 98 * inside the path - always follow. 99 * in the last component in creation/removal/renaming - never follow. 100 * if LOOKUP_FOLLOW passed - follow. 101 * if the pathname has trailing slashes - follow. 102 * otherwise - don't follow. 103 * (applied in that order). 104 * 105 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 106 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 107 * During the 2.4 we need to fix the userland stuff depending on it - 108 * hopefully we will be able to get rid of that wart in 2.5. So far only 109 * XEmacs seems to be relying on it... 110 */ 111 /* 112 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 113 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 114 * any extra contention... 115 */ 116 117 /* In order to reduce some races, while at the same time doing additional 118 * checking and hopefully speeding things up, we copy filenames to the 119 * kernel data space before using them.. 120 * 121 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 122 * PATH_MAX includes the nul terminator --RR. 123 */ 124 125 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname)) 126 127 struct filename * 128 getname_flags(const char __user *filename, int flags, int *empty) 129 { 130 struct filename *result; 131 char *kname; 132 int len; 133 134 result = audit_reusename(filename); 135 if (result) 136 return result; 137 138 result = __getname(); 139 if (unlikely(!result)) 140 return ERR_PTR(-ENOMEM); 141 142 /* 143 * First, try to embed the struct filename inside the names_cache 144 * allocation 145 */ 146 kname = (char *)result->iname; 147 result->name = kname; 148 149 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX); 150 if (unlikely(len < 0)) { 151 __putname(result); 152 return ERR_PTR(len); 153 } 154 155 /* 156 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a 157 * separate struct filename so we can dedicate the entire 158 * names_cache allocation for the pathname, and re-do the copy from 159 * userland. 160 */ 161 if (unlikely(len == EMBEDDED_NAME_MAX)) { 162 const size_t size = offsetof(struct filename, iname[1]); 163 kname = (char *)result; 164 165 /* 166 * size is chosen that way we to guarantee that 167 * result->iname[0] is within the same object and that 168 * kname can't be equal to result->iname, no matter what. 169 */ 170 result = kzalloc(size, GFP_KERNEL); 171 if (unlikely(!result)) { 172 __putname(kname); 173 return ERR_PTR(-ENOMEM); 174 } 175 result->name = kname; 176 len = strncpy_from_user(kname, filename, PATH_MAX); 177 if (unlikely(len < 0)) { 178 __putname(kname); 179 kfree(result); 180 return ERR_PTR(len); 181 } 182 if (unlikely(len == PATH_MAX)) { 183 __putname(kname); 184 kfree(result); 185 return ERR_PTR(-ENAMETOOLONG); 186 } 187 } 188 189 result->refcnt = 1; 190 /* The empty path is special. */ 191 if (unlikely(!len)) { 192 if (empty) 193 *empty = 1; 194 if (!(flags & LOOKUP_EMPTY)) { 195 putname(result); 196 return ERR_PTR(-ENOENT); 197 } 198 } 199 200 result->uptr = filename; 201 result->aname = NULL; 202 audit_getname(result); 203 return result; 204 } 205 206 struct filename * 207 getname(const char __user * filename) 208 { 209 return getname_flags(filename, 0, NULL); 210 } 211 212 struct filename * 213 getname_kernel(const char * filename) 214 { 215 struct filename *result; 216 int len = strlen(filename) + 1; 217 218 result = __getname(); 219 if (unlikely(!result)) 220 return ERR_PTR(-ENOMEM); 221 222 if (len <= EMBEDDED_NAME_MAX) { 223 result->name = (char *)result->iname; 224 } else if (len <= PATH_MAX) { 225 const size_t size = offsetof(struct filename, iname[1]); 226 struct filename *tmp; 227 228 tmp = kmalloc(size, GFP_KERNEL); 229 if (unlikely(!tmp)) { 230 __putname(result); 231 return ERR_PTR(-ENOMEM); 232 } 233 tmp->name = (char *)result; 234 result = tmp; 235 } else { 236 __putname(result); 237 return ERR_PTR(-ENAMETOOLONG); 238 } 239 memcpy((char *)result->name, filename, len); 240 result->uptr = NULL; 241 result->aname = NULL; 242 result->refcnt = 1; 243 audit_getname(result); 244 245 return result; 246 } 247 248 void putname(struct filename *name) 249 { 250 BUG_ON(name->refcnt <= 0); 251 252 if (--name->refcnt > 0) 253 return; 254 255 if (name->name != name->iname) { 256 __putname(name->name); 257 kfree(name); 258 } else 259 __putname(name); 260 } 261 262 static int check_acl(struct inode *inode, int mask) 263 { 264 #ifdef CONFIG_FS_POSIX_ACL 265 struct posix_acl *acl; 266 267 if (mask & MAY_NOT_BLOCK) { 268 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS); 269 if (!acl) 270 return -EAGAIN; 271 /* no ->get_acl() calls in RCU mode... */ 272 if (is_uncached_acl(acl)) 273 return -ECHILD; 274 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK); 275 } 276 277 acl = get_acl(inode, ACL_TYPE_ACCESS); 278 if (IS_ERR(acl)) 279 return PTR_ERR(acl); 280 if (acl) { 281 int error = posix_acl_permission(inode, acl, mask); 282 posix_acl_release(acl); 283 return error; 284 } 285 #endif 286 287 return -EAGAIN; 288 } 289 290 /* 291 * This does the basic permission checking 292 */ 293 static int acl_permission_check(struct inode *inode, int mask) 294 { 295 unsigned int mode = inode->i_mode; 296 297 if (likely(uid_eq(current_fsuid(), inode->i_uid))) 298 mode >>= 6; 299 else { 300 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) { 301 int error = check_acl(inode, mask); 302 if (error != -EAGAIN) 303 return error; 304 } 305 306 if (in_group_p(inode->i_gid)) 307 mode >>= 3; 308 } 309 310 /* 311 * If the DACs are ok we don't need any capability check. 312 */ 313 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 314 return 0; 315 return -EACCES; 316 } 317 318 /** 319 * generic_permission - check for access rights on a Posix-like filesystem 320 * @inode: inode to check access rights for 321 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...) 322 * 323 * Used to check for read/write/execute permissions on a file. 324 * We use "fsuid" for this, letting us set arbitrary permissions 325 * for filesystem access without changing the "normal" uids which 326 * are used for other things. 327 * 328 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk 329 * request cannot be satisfied (eg. requires blocking or too much complexity). 330 * It would then be called again in ref-walk mode. 331 */ 332 int generic_permission(struct inode *inode, int mask) 333 { 334 int ret; 335 336 /* 337 * Do the basic permission checks. 338 */ 339 ret = acl_permission_check(inode, mask); 340 if (ret != -EACCES) 341 return ret; 342 343 if (S_ISDIR(inode->i_mode)) { 344 /* DACs are overridable for directories */ 345 if (!(mask & MAY_WRITE)) 346 if (capable_wrt_inode_uidgid(inode, 347 CAP_DAC_READ_SEARCH)) 348 return 0; 349 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE)) 350 return 0; 351 return -EACCES; 352 } 353 354 /* 355 * Searching includes executable on directories, else just read. 356 */ 357 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 358 if (mask == MAY_READ) 359 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH)) 360 return 0; 361 /* 362 * Read/write DACs are always overridable. 363 * Executable DACs are overridable when there is 364 * at least one exec bit set. 365 */ 366 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO)) 367 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE)) 368 return 0; 369 370 return -EACCES; 371 } 372 EXPORT_SYMBOL(generic_permission); 373 374 /* 375 * We _really_ want to just do "generic_permission()" without 376 * even looking at the inode->i_op values. So we keep a cache 377 * flag in inode->i_opflags, that says "this has not special 378 * permission function, use the fast case". 379 */ 380 static inline int do_inode_permission(struct inode *inode, int mask) 381 { 382 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) { 383 if (likely(inode->i_op->permission)) 384 return inode->i_op->permission(inode, mask); 385 386 /* This gets set once for the inode lifetime */ 387 spin_lock(&inode->i_lock); 388 inode->i_opflags |= IOP_FASTPERM; 389 spin_unlock(&inode->i_lock); 390 } 391 return generic_permission(inode, mask); 392 } 393 394 /** 395 * sb_permission - Check superblock-level permissions 396 * @sb: Superblock of inode to check permission on 397 * @inode: Inode to check permission on 398 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 399 * 400 * Separate out file-system wide checks from inode-specific permission checks. 401 */ 402 static int sb_permission(struct super_block *sb, struct inode *inode, int mask) 403 { 404 if (unlikely(mask & MAY_WRITE)) { 405 umode_t mode = inode->i_mode; 406 407 /* Nobody gets write access to a read-only fs. */ 408 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 409 return -EROFS; 410 } 411 return 0; 412 } 413 414 /** 415 * inode_permission - Check for access rights to a given inode 416 * @inode: Inode to check permission on 417 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 418 * 419 * Check for read/write/execute permissions on an inode. We use fs[ug]id for 420 * this, letting us set arbitrary permissions for filesystem access without 421 * changing the "normal" UIDs which are used for other things. 422 * 423 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 424 */ 425 int inode_permission(struct inode *inode, int mask) 426 { 427 int retval; 428 429 retval = sb_permission(inode->i_sb, inode, mask); 430 if (retval) 431 return retval; 432 433 if (unlikely(mask & MAY_WRITE)) { 434 /* 435 * Nobody gets write access to an immutable file. 436 */ 437 if (IS_IMMUTABLE(inode)) 438 return -EPERM; 439 440 /* 441 * Updating mtime will likely cause i_uid and i_gid to be 442 * written back improperly if their true value is unknown 443 * to the vfs. 444 */ 445 if (HAS_UNMAPPED_ID(inode)) 446 return -EACCES; 447 } 448 449 retval = do_inode_permission(inode, mask); 450 if (retval) 451 return retval; 452 453 retval = devcgroup_inode_permission(inode, mask); 454 if (retval) 455 return retval; 456 457 return security_inode_permission(inode, mask); 458 } 459 EXPORT_SYMBOL(inode_permission); 460 461 /** 462 * path_get - get a reference to a path 463 * @path: path to get the reference to 464 * 465 * Given a path increment the reference count to the dentry and the vfsmount. 466 */ 467 void path_get(const struct path *path) 468 { 469 mntget(path->mnt); 470 dget(path->dentry); 471 } 472 EXPORT_SYMBOL(path_get); 473 474 /** 475 * path_put - put a reference to a path 476 * @path: path to put the reference to 477 * 478 * Given a path decrement the reference count to the dentry and the vfsmount. 479 */ 480 void path_put(const struct path *path) 481 { 482 dput(path->dentry); 483 mntput(path->mnt); 484 } 485 EXPORT_SYMBOL(path_put); 486 487 #define EMBEDDED_LEVELS 2 488 struct nameidata { 489 struct path path; 490 struct qstr last; 491 struct path root; 492 struct inode *inode; /* path.dentry.d_inode */ 493 unsigned int flags; 494 unsigned seq, m_seq; 495 int last_type; 496 unsigned depth; 497 int total_link_count; 498 struct saved { 499 struct path link; 500 struct delayed_call done; 501 const char *name; 502 unsigned seq; 503 } *stack, internal[EMBEDDED_LEVELS]; 504 struct filename *name; 505 struct nameidata *saved; 506 struct inode *link_inode; 507 unsigned root_seq; 508 int dfd; 509 } __randomize_layout; 510 511 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name) 512 { 513 struct nameidata *old = current->nameidata; 514 p->stack = p->internal; 515 p->dfd = dfd; 516 p->name = name; 517 p->total_link_count = old ? old->total_link_count : 0; 518 p->saved = old; 519 current->nameidata = p; 520 } 521 522 static void restore_nameidata(void) 523 { 524 struct nameidata *now = current->nameidata, *old = now->saved; 525 526 current->nameidata = old; 527 if (old) 528 old->total_link_count = now->total_link_count; 529 if (now->stack != now->internal) 530 kfree(now->stack); 531 } 532 533 static int __nd_alloc_stack(struct nameidata *nd) 534 { 535 struct saved *p; 536 537 if (nd->flags & LOOKUP_RCU) { 538 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved), 539 GFP_ATOMIC); 540 if (unlikely(!p)) 541 return -ECHILD; 542 } else { 543 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved), 544 GFP_KERNEL); 545 if (unlikely(!p)) 546 return -ENOMEM; 547 } 548 memcpy(p, nd->internal, sizeof(nd->internal)); 549 nd->stack = p; 550 return 0; 551 } 552 553 /** 554 * path_connected - Verify that a path->dentry is below path->mnt.mnt_root 555 * @path: nameidate to verify 556 * 557 * Rename can sometimes move a file or directory outside of a bind 558 * mount, path_connected allows those cases to be detected. 559 */ 560 static bool path_connected(const struct path *path) 561 { 562 struct vfsmount *mnt = path->mnt; 563 struct super_block *sb = mnt->mnt_sb; 564 565 /* Bind mounts and multi-root filesystems can have disconnected paths */ 566 if (!(sb->s_iflags & SB_I_MULTIROOT) && (mnt->mnt_root == sb->s_root)) 567 return true; 568 569 return is_subdir(path->dentry, mnt->mnt_root); 570 } 571 572 static inline int nd_alloc_stack(struct nameidata *nd) 573 { 574 if (likely(nd->depth != EMBEDDED_LEVELS)) 575 return 0; 576 if (likely(nd->stack != nd->internal)) 577 return 0; 578 return __nd_alloc_stack(nd); 579 } 580 581 static void drop_links(struct nameidata *nd) 582 { 583 int i = nd->depth; 584 while (i--) { 585 struct saved *last = nd->stack + i; 586 do_delayed_call(&last->done); 587 clear_delayed_call(&last->done); 588 } 589 } 590 591 static void terminate_walk(struct nameidata *nd) 592 { 593 drop_links(nd); 594 if (!(nd->flags & LOOKUP_RCU)) { 595 int i; 596 path_put(&nd->path); 597 for (i = 0; i < nd->depth; i++) 598 path_put(&nd->stack[i].link); 599 if (nd->flags & LOOKUP_ROOT_GRABBED) { 600 path_put(&nd->root); 601 nd->flags &= ~LOOKUP_ROOT_GRABBED; 602 } 603 } else { 604 nd->flags &= ~LOOKUP_RCU; 605 rcu_read_unlock(); 606 } 607 nd->depth = 0; 608 } 609 610 /* path_put is needed afterwards regardless of success or failure */ 611 static bool legitimize_path(struct nameidata *nd, 612 struct path *path, unsigned seq) 613 { 614 int res = __legitimize_mnt(path->mnt, nd->m_seq); 615 if (unlikely(res)) { 616 if (res > 0) 617 path->mnt = NULL; 618 path->dentry = NULL; 619 return false; 620 } 621 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) { 622 path->dentry = NULL; 623 return false; 624 } 625 return !read_seqcount_retry(&path->dentry->d_seq, seq); 626 } 627 628 static bool legitimize_links(struct nameidata *nd) 629 { 630 int i; 631 for (i = 0; i < nd->depth; i++) { 632 struct saved *last = nd->stack + i; 633 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) { 634 drop_links(nd); 635 nd->depth = i + 1; 636 return false; 637 } 638 } 639 return true; 640 } 641 642 static bool legitimize_root(struct nameidata *nd) 643 { 644 if (!nd->root.mnt || (nd->flags & LOOKUP_ROOT)) 645 return true; 646 nd->flags |= LOOKUP_ROOT_GRABBED; 647 return legitimize_path(nd, &nd->root, nd->root_seq); 648 } 649 650 /* 651 * Path walking has 2 modes, rcu-walk and ref-walk (see 652 * Documentation/filesystems/path-lookup.txt). In situations when we can't 653 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab 654 * normal reference counts on dentries and vfsmounts to transition to ref-walk 655 * mode. Refcounts are grabbed at the last known good point before rcu-walk 656 * got stuck, so ref-walk may continue from there. If this is not successful 657 * (eg. a seqcount has changed), then failure is returned and it's up to caller 658 * to restart the path walk from the beginning in ref-walk mode. 659 */ 660 661 /** 662 * unlazy_walk - try to switch to ref-walk mode. 663 * @nd: nameidata pathwalk data 664 * Returns: 0 on success, -ECHILD on failure 665 * 666 * unlazy_walk attempts to legitimize the current nd->path and nd->root 667 * for ref-walk mode. 668 * Must be called from rcu-walk context. 669 * Nothing should touch nameidata between unlazy_walk() failure and 670 * terminate_walk(). 671 */ 672 static int unlazy_walk(struct nameidata *nd) 673 { 674 struct dentry *parent = nd->path.dentry; 675 676 BUG_ON(!(nd->flags & LOOKUP_RCU)); 677 678 nd->flags &= ~LOOKUP_RCU; 679 if (unlikely(!legitimize_links(nd))) 680 goto out1; 681 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq))) 682 goto out; 683 if (unlikely(!legitimize_root(nd))) 684 goto out; 685 rcu_read_unlock(); 686 BUG_ON(nd->inode != parent->d_inode); 687 return 0; 688 689 out1: 690 nd->path.mnt = NULL; 691 nd->path.dentry = NULL; 692 out: 693 rcu_read_unlock(); 694 return -ECHILD; 695 } 696 697 /** 698 * unlazy_child - try to switch to ref-walk mode. 699 * @nd: nameidata pathwalk data 700 * @dentry: child of nd->path.dentry 701 * @seq: seq number to check dentry against 702 * Returns: 0 on success, -ECHILD on failure 703 * 704 * unlazy_child attempts to legitimize the current nd->path, nd->root and dentry 705 * for ref-walk mode. @dentry must be a path found by a do_lookup call on 706 * @nd. Must be called from rcu-walk context. 707 * Nothing should touch nameidata between unlazy_child() failure and 708 * terminate_walk(). 709 */ 710 static int unlazy_child(struct nameidata *nd, struct dentry *dentry, unsigned seq) 711 { 712 BUG_ON(!(nd->flags & LOOKUP_RCU)); 713 714 nd->flags &= ~LOOKUP_RCU; 715 if (unlikely(!legitimize_links(nd))) 716 goto out2; 717 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq))) 718 goto out2; 719 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref))) 720 goto out1; 721 722 /* 723 * We need to move both the parent and the dentry from the RCU domain 724 * to be properly refcounted. And the sequence number in the dentry 725 * validates *both* dentry counters, since we checked the sequence 726 * number of the parent after we got the child sequence number. So we 727 * know the parent must still be valid if the child sequence number is 728 */ 729 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) 730 goto out; 731 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) 732 goto out_dput; 733 /* 734 * Sequence counts matched. Now make sure that the root is 735 * still valid and get it if required. 736 */ 737 if (unlikely(!legitimize_root(nd))) 738 goto out_dput; 739 rcu_read_unlock(); 740 return 0; 741 742 out2: 743 nd->path.mnt = NULL; 744 out1: 745 nd->path.dentry = NULL; 746 out: 747 rcu_read_unlock(); 748 return -ECHILD; 749 out_dput: 750 rcu_read_unlock(); 751 dput(dentry); 752 return -ECHILD; 753 } 754 755 static inline int d_revalidate(struct dentry *dentry, unsigned int flags) 756 { 757 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) 758 return dentry->d_op->d_revalidate(dentry, flags); 759 else 760 return 1; 761 } 762 763 /** 764 * complete_walk - successful completion of path walk 765 * @nd: pointer nameidata 766 * 767 * If we had been in RCU mode, drop out of it and legitimize nd->path. 768 * Revalidate the final result, unless we'd already done that during 769 * the path walk or the filesystem doesn't ask for it. Return 0 on 770 * success, -error on failure. In case of failure caller does not 771 * need to drop nd->path. 772 */ 773 static int complete_walk(struct nameidata *nd) 774 { 775 struct dentry *dentry = nd->path.dentry; 776 int status; 777 778 if (nd->flags & LOOKUP_RCU) { 779 if (!(nd->flags & LOOKUP_ROOT)) 780 nd->root.mnt = NULL; 781 if (unlikely(unlazy_walk(nd))) 782 return -ECHILD; 783 } 784 785 if (likely(!(nd->flags & LOOKUP_JUMPED))) 786 return 0; 787 788 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE))) 789 return 0; 790 791 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags); 792 if (status > 0) 793 return 0; 794 795 if (!status) 796 status = -ESTALE; 797 798 return status; 799 } 800 801 static void set_root(struct nameidata *nd) 802 { 803 struct fs_struct *fs = current->fs; 804 805 if (nd->flags & LOOKUP_RCU) { 806 unsigned seq; 807 808 do { 809 seq = read_seqcount_begin(&fs->seq); 810 nd->root = fs->root; 811 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq); 812 } while (read_seqcount_retry(&fs->seq, seq)); 813 } else { 814 get_fs_root(fs, &nd->root); 815 nd->flags |= LOOKUP_ROOT_GRABBED; 816 } 817 } 818 819 static void path_put_conditional(struct path *path, struct nameidata *nd) 820 { 821 dput(path->dentry); 822 if (path->mnt != nd->path.mnt) 823 mntput(path->mnt); 824 } 825 826 static inline void path_to_nameidata(const struct path *path, 827 struct nameidata *nd) 828 { 829 if (!(nd->flags & LOOKUP_RCU)) { 830 dput(nd->path.dentry); 831 if (nd->path.mnt != path->mnt) 832 mntput(nd->path.mnt); 833 } 834 nd->path.mnt = path->mnt; 835 nd->path.dentry = path->dentry; 836 } 837 838 static int nd_jump_root(struct nameidata *nd) 839 { 840 if (nd->flags & LOOKUP_RCU) { 841 struct dentry *d; 842 nd->path = nd->root; 843 d = nd->path.dentry; 844 nd->inode = d->d_inode; 845 nd->seq = nd->root_seq; 846 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq))) 847 return -ECHILD; 848 } else { 849 path_put(&nd->path); 850 nd->path = nd->root; 851 path_get(&nd->path); 852 nd->inode = nd->path.dentry->d_inode; 853 } 854 nd->flags |= LOOKUP_JUMPED; 855 return 0; 856 } 857 858 /* 859 * Helper to directly jump to a known parsed path from ->get_link, 860 * caller must have taken a reference to path beforehand. 861 */ 862 void nd_jump_link(struct path *path) 863 { 864 struct nameidata *nd = current->nameidata; 865 path_put(&nd->path); 866 867 nd->path = *path; 868 nd->inode = nd->path.dentry->d_inode; 869 nd->flags |= LOOKUP_JUMPED; 870 } 871 872 static inline void put_link(struct nameidata *nd) 873 { 874 struct saved *last = nd->stack + --nd->depth; 875 do_delayed_call(&last->done); 876 if (!(nd->flags & LOOKUP_RCU)) 877 path_put(&last->link); 878 } 879 880 int sysctl_protected_symlinks __read_mostly = 0; 881 int sysctl_protected_hardlinks __read_mostly = 0; 882 int sysctl_protected_fifos __read_mostly; 883 int sysctl_protected_regular __read_mostly; 884 885 /** 886 * may_follow_link - Check symlink following for unsafe situations 887 * @nd: nameidata pathwalk data 888 * 889 * In the case of the sysctl_protected_symlinks sysctl being enabled, 890 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is 891 * in a sticky world-writable directory. This is to protect privileged 892 * processes from failing races against path names that may change out 893 * from under them by way of other users creating malicious symlinks. 894 * It will permit symlinks to be followed only when outside a sticky 895 * world-writable directory, or when the uid of the symlink and follower 896 * match, or when the directory owner matches the symlink's owner. 897 * 898 * Returns 0 if following the symlink is allowed, -ve on error. 899 */ 900 static inline int may_follow_link(struct nameidata *nd) 901 { 902 const struct inode *inode; 903 const struct inode *parent; 904 kuid_t puid; 905 906 if (!sysctl_protected_symlinks) 907 return 0; 908 909 /* Allowed if owner and follower match. */ 910 inode = nd->link_inode; 911 if (uid_eq(current_cred()->fsuid, inode->i_uid)) 912 return 0; 913 914 /* Allowed if parent directory not sticky and world-writable. */ 915 parent = nd->inode; 916 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH)) 917 return 0; 918 919 /* Allowed if parent directory and link owner match. */ 920 puid = parent->i_uid; 921 if (uid_valid(puid) && uid_eq(puid, inode->i_uid)) 922 return 0; 923 924 if (nd->flags & LOOKUP_RCU) 925 return -ECHILD; 926 927 audit_inode(nd->name, nd->stack[0].link.dentry, 0); 928 audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link"); 929 return -EACCES; 930 } 931 932 /** 933 * safe_hardlink_source - Check for safe hardlink conditions 934 * @inode: the source inode to hardlink from 935 * 936 * Return false if at least one of the following conditions: 937 * - inode is not a regular file 938 * - inode is setuid 939 * - inode is setgid and group-exec 940 * - access failure for read and write 941 * 942 * Otherwise returns true. 943 */ 944 static bool safe_hardlink_source(struct inode *inode) 945 { 946 umode_t mode = inode->i_mode; 947 948 /* Special files should not get pinned to the filesystem. */ 949 if (!S_ISREG(mode)) 950 return false; 951 952 /* Setuid files should not get pinned to the filesystem. */ 953 if (mode & S_ISUID) 954 return false; 955 956 /* Executable setgid files should not get pinned to the filesystem. */ 957 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) 958 return false; 959 960 /* Hardlinking to unreadable or unwritable sources is dangerous. */ 961 if (inode_permission(inode, MAY_READ | MAY_WRITE)) 962 return false; 963 964 return true; 965 } 966 967 /** 968 * may_linkat - Check permissions for creating a hardlink 969 * @link: the source to hardlink from 970 * 971 * Block hardlink when all of: 972 * - sysctl_protected_hardlinks enabled 973 * - fsuid does not match inode 974 * - hardlink source is unsafe (see safe_hardlink_source() above) 975 * - not CAP_FOWNER in a namespace with the inode owner uid mapped 976 * 977 * Returns 0 if successful, -ve on error. 978 */ 979 static int may_linkat(struct path *link) 980 { 981 struct inode *inode = link->dentry->d_inode; 982 983 /* Inode writeback is not safe when the uid or gid are invalid. */ 984 if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid)) 985 return -EOVERFLOW; 986 987 if (!sysctl_protected_hardlinks) 988 return 0; 989 990 /* Source inode owner (or CAP_FOWNER) can hardlink all they like, 991 * otherwise, it must be a safe source. 992 */ 993 if (safe_hardlink_source(inode) || inode_owner_or_capable(inode)) 994 return 0; 995 996 audit_log_path_denied(AUDIT_ANOM_LINK, "linkat"); 997 return -EPERM; 998 } 999 1000 /** 1001 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory 1002 * should be allowed, or not, on files that already 1003 * exist. 1004 * @dir_mode: mode bits of directory 1005 * @dir_uid: owner of directory 1006 * @inode: the inode of the file to open 1007 * 1008 * Block an O_CREAT open of a FIFO (or a regular file) when: 1009 * - sysctl_protected_fifos (or sysctl_protected_regular) is enabled 1010 * - the file already exists 1011 * - we are in a sticky directory 1012 * - we don't own the file 1013 * - the owner of the directory doesn't own the file 1014 * - the directory is world writable 1015 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2 1016 * the directory doesn't have to be world writable: being group writable will 1017 * be enough. 1018 * 1019 * Returns 0 if the open is allowed, -ve on error. 1020 */ 1021 static int may_create_in_sticky(umode_t dir_mode, kuid_t dir_uid, 1022 struct inode * const inode) 1023 { 1024 if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) || 1025 (!sysctl_protected_regular && S_ISREG(inode->i_mode)) || 1026 likely(!(dir_mode & S_ISVTX)) || 1027 uid_eq(inode->i_uid, dir_uid) || 1028 uid_eq(current_fsuid(), inode->i_uid)) 1029 return 0; 1030 1031 if (likely(dir_mode & 0002) || 1032 (dir_mode & 0020 && 1033 ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) || 1034 (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) { 1035 const char *operation = S_ISFIFO(inode->i_mode) ? 1036 "sticky_create_fifo" : 1037 "sticky_create_regular"; 1038 audit_log_path_denied(AUDIT_ANOM_CREAT, operation); 1039 return -EACCES; 1040 } 1041 return 0; 1042 } 1043 1044 static __always_inline 1045 const char *get_link(struct nameidata *nd) 1046 { 1047 struct saved *last = nd->stack + nd->depth - 1; 1048 struct dentry *dentry = last->link.dentry; 1049 struct inode *inode = nd->link_inode; 1050 int error; 1051 const char *res; 1052 1053 if (!(nd->flags & LOOKUP_RCU)) { 1054 touch_atime(&last->link); 1055 cond_resched(); 1056 } else if (atime_needs_update(&last->link, inode)) { 1057 if (unlikely(unlazy_walk(nd))) 1058 return ERR_PTR(-ECHILD); 1059 touch_atime(&last->link); 1060 } 1061 1062 error = security_inode_follow_link(dentry, inode, 1063 nd->flags & LOOKUP_RCU); 1064 if (unlikely(error)) 1065 return ERR_PTR(error); 1066 1067 nd->last_type = LAST_BIND; 1068 res = READ_ONCE(inode->i_link); 1069 if (!res) { 1070 const char * (*get)(struct dentry *, struct inode *, 1071 struct delayed_call *); 1072 get = inode->i_op->get_link; 1073 if (nd->flags & LOOKUP_RCU) { 1074 res = get(NULL, inode, &last->done); 1075 if (res == ERR_PTR(-ECHILD)) { 1076 if (unlikely(unlazy_walk(nd))) 1077 return ERR_PTR(-ECHILD); 1078 res = get(dentry, inode, &last->done); 1079 } 1080 } else { 1081 res = get(dentry, inode, &last->done); 1082 } 1083 if (IS_ERR_OR_NULL(res)) 1084 return res; 1085 } 1086 if (*res == '/') { 1087 if (!nd->root.mnt) 1088 set_root(nd); 1089 if (unlikely(nd_jump_root(nd))) 1090 return ERR_PTR(-ECHILD); 1091 while (unlikely(*++res == '/')) 1092 ; 1093 } 1094 if (!*res) 1095 res = NULL; 1096 return res; 1097 } 1098 1099 /* 1100 * follow_up - Find the mountpoint of path's vfsmount 1101 * 1102 * Given a path, find the mountpoint of its source file system. 1103 * Replace @path with the path of the mountpoint in the parent mount. 1104 * Up is towards /. 1105 * 1106 * Return 1 if we went up a level and 0 if we were already at the 1107 * root. 1108 */ 1109 int follow_up(struct path *path) 1110 { 1111 struct mount *mnt = real_mount(path->mnt); 1112 struct mount *parent; 1113 struct dentry *mountpoint; 1114 1115 read_seqlock_excl(&mount_lock); 1116 parent = mnt->mnt_parent; 1117 if (parent == mnt) { 1118 read_sequnlock_excl(&mount_lock); 1119 return 0; 1120 } 1121 mntget(&parent->mnt); 1122 mountpoint = dget(mnt->mnt_mountpoint); 1123 read_sequnlock_excl(&mount_lock); 1124 dput(path->dentry); 1125 path->dentry = mountpoint; 1126 mntput(path->mnt); 1127 path->mnt = &parent->mnt; 1128 return 1; 1129 } 1130 EXPORT_SYMBOL(follow_up); 1131 1132 /* 1133 * Perform an automount 1134 * - return -EISDIR to tell follow_managed() to stop and return the path we 1135 * were called with. 1136 */ 1137 static int follow_automount(struct path *path, struct nameidata *nd, 1138 bool *need_mntput) 1139 { 1140 struct vfsmount *mnt; 1141 int err; 1142 1143 if (!path->dentry->d_op || !path->dentry->d_op->d_automount) 1144 return -EREMOTE; 1145 1146 /* We don't want to mount if someone's just doing a stat - 1147 * unless they're stat'ing a directory and appended a '/' to 1148 * the name. 1149 * 1150 * We do, however, want to mount if someone wants to open or 1151 * create a file of any type under the mountpoint, wants to 1152 * traverse through the mountpoint or wants to open the 1153 * mounted directory. Also, autofs may mark negative dentries 1154 * as being automount points. These will need the attentions 1155 * of the daemon to instantiate them before they can be used. 1156 */ 1157 if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY | 1158 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) && 1159 path->dentry->d_inode) 1160 return -EISDIR; 1161 1162 nd->total_link_count++; 1163 if (nd->total_link_count >= 40) 1164 return -ELOOP; 1165 1166 mnt = path->dentry->d_op->d_automount(path); 1167 if (IS_ERR(mnt)) { 1168 /* 1169 * The filesystem is allowed to return -EISDIR here to indicate 1170 * it doesn't want to automount. For instance, autofs would do 1171 * this so that its userspace daemon can mount on this dentry. 1172 * 1173 * However, we can only permit this if it's a terminal point in 1174 * the path being looked up; if it wasn't then the remainder of 1175 * the path is inaccessible and we should say so. 1176 */ 1177 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT)) 1178 return -EREMOTE; 1179 return PTR_ERR(mnt); 1180 } 1181 1182 if (!mnt) /* mount collision */ 1183 return 0; 1184 1185 if (!*need_mntput) { 1186 /* lock_mount() may release path->mnt on error */ 1187 mntget(path->mnt); 1188 *need_mntput = true; 1189 } 1190 err = finish_automount(mnt, path); 1191 1192 switch (err) { 1193 case -EBUSY: 1194 /* Someone else made a mount here whilst we were busy */ 1195 return 0; 1196 case 0: 1197 path_put(path); 1198 path->mnt = mnt; 1199 path->dentry = dget(mnt->mnt_root); 1200 return 0; 1201 default: 1202 return err; 1203 } 1204 1205 } 1206 1207 /* 1208 * Handle a dentry that is managed in some way. 1209 * - Flagged for transit management (autofs) 1210 * - Flagged as mountpoint 1211 * - Flagged as automount point 1212 * 1213 * This may only be called in refwalk mode. 1214 * On success path->dentry is known positive. 1215 * 1216 * Serialization is taken care of in namespace.c 1217 */ 1218 static int follow_managed(struct path *path, struct nameidata *nd) 1219 { 1220 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */ 1221 unsigned flags; 1222 bool need_mntput = false; 1223 int ret = 0; 1224 1225 /* Given that we're not holding a lock here, we retain the value in a 1226 * local variable for each dentry as we look at it so that we don't see 1227 * the components of that value change under us */ 1228 while (flags = smp_load_acquire(&path->dentry->d_flags), 1229 unlikely(flags & DCACHE_MANAGED_DENTRY)) { 1230 /* Allow the filesystem to manage the transit without i_mutex 1231 * being held. */ 1232 if (flags & DCACHE_MANAGE_TRANSIT) { 1233 BUG_ON(!path->dentry->d_op); 1234 BUG_ON(!path->dentry->d_op->d_manage); 1235 ret = path->dentry->d_op->d_manage(path, false); 1236 flags = smp_load_acquire(&path->dentry->d_flags); 1237 if (ret < 0) 1238 break; 1239 } 1240 1241 /* Transit to a mounted filesystem. */ 1242 if (flags & DCACHE_MOUNTED) { 1243 struct vfsmount *mounted = lookup_mnt(path); 1244 if (mounted) { 1245 dput(path->dentry); 1246 if (need_mntput) 1247 mntput(path->mnt); 1248 path->mnt = mounted; 1249 path->dentry = dget(mounted->mnt_root); 1250 need_mntput = true; 1251 continue; 1252 } 1253 1254 /* Something is mounted on this dentry in another 1255 * namespace and/or whatever was mounted there in this 1256 * namespace got unmounted before lookup_mnt() could 1257 * get it */ 1258 } 1259 1260 /* Handle an automount point */ 1261 if (flags & DCACHE_NEED_AUTOMOUNT) { 1262 ret = follow_automount(path, nd, &need_mntput); 1263 if (ret < 0) 1264 break; 1265 continue; 1266 } 1267 1268 /* We didn't change the current path point */ 1269 break; 1270 } 1271 1272 if (need_mntput && path->mnt == mnt) 1273 mntput(path->mnt); 1274 if (need_mntput) 1275 nd->flags |= LOOKUP_JUMPED; 1276 if (ret == -EISDIR || !ret) 1277 ret = 1; 1278 if (ret > 0 && unlikely(d_flags_negative(flags))) 1279 ret = -ENOENT; 1280 if (unlikely(ret < 0)) 1281 path_put_conditional(path, nd); 1282 return ret; 1283 } 1284 1285 int follow_down_one(struct path *path) 1286 { 1287 struct vfsmount *mounted; 1288 1289 mounted = lookup_mnt(path); 1290 if (mounted) { 1291 dput(path->dentry); 1292 mntput(path->mnt); 1293 path->mnt = mounted; 1294 path->dentry = dget(mounted->mnt_root); 1295 return 1; 1296 } 1297 return 0; 1298 } 1299 EXPORT_SYMBOL(follow_down_one); 1300 1301 static inline int managed_dentry_rcu(const struct path *path) 1302 { 1303 return (path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) ? 1304 path->dentry->d_op->d_manage(path, true) : 0; 1305 } 1306 1307 /* 1308 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if 1309 * we meet a managed dentry that would need blocking. 1310 */ 1311 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path, 1312 struct inode **inode, unsigned *seqp) 1313 { 1314 for (;;) { 1315 struct mount *mounted; 1316 /* 1317 * Don't forget we might have a non-mountpoint managed dentry 1318 * that wants to block transit. 1319 */ 1320 switch (managed_dentry_rcu(path)) { 1321 case -ECHILD: 1322 default: 1323 return false; 1324 case -EISDIR: 1325 return true; 1326 case 0: 1327 break; 1328 } 1329 1330 if (!d_mountpoint(path->dentry)) 1331 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT); 1332 1333 mounted = __lookup_mnt(path->mnt, path->dentry); 1334 if (!mounted) 1335 break; 1336 path->mnt = &mounted->mnt; 1337 path->dentry = mounted->mnt.mnt_root; 1338 nd->flags |= LOOKUP_JUMPED; 1339 *seqp = read_seqcount_begin(&path->dentry->d_seq); 1340 /* 1341 * Update the inode too. We don't need to re-check the 1342 * dentry sequence number here after this d_inode read, 1343 * because a mount-point is always pinned. 1344 */ 1345 *inode = path->dentry->d_inode; 1346 } 1347 return !read_seqretry(&mount_lock, nd->m_seq) && 1348 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT); 1349 } 1350 1351 static int follow_dotdot_rcu(struct nameidata *nd) 1352 { 1353 struct inode *inode = nd->inode; 1354 1355 while (1) { 1356 if (path_equal(&nd->path, &nd->root)) 1357 break; 1358 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1359 struct dentry *old = nd->path.dentry; 1360 struct dentry *parent = old->d_parent; 1361 unsigned seq; 1362 1363 inode = parent->d_inode; 1364 seq = read_seqcount_begin(&parent->d_seq); 1365 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq))) 1366 return -ECHILD; 1367 nd->path.dentry = parent; 1368 nd->seq = seq; 1369 if (unlikely(!path_connected(&nd->path))) 1370 return -ENOENT; 1371 break; 1372 } else { 1373 struct mount *mnt = real_mount(nd->path.mnt); 1374 struct mount *mparent = mnt->mnt_parent; 1375 struct dentry *mountpoint = mnt->mnt_mountpoint; 1376 struct inode *inode2 = mountpoint->d_inode; 1377 unsigned seq = read_seqcount_begin(&mountpoint->d_seq); 1378 if (unlikely(read_seqretry(&mount_lock, nd->m_seq))) 1379 return -ECHILD; 1380 if (&mparent->mnt == nd->path.mnt) 1381 break; 1382 /* we know that mountpoint was pinned */ 1383 nd->path.dentry = mountpoint; 1384 nd->path.mnt = &mparent->mnt; 1385 inode = inode2; 1386 nd->seq = seq; 1387 } 1388 } 1389 while (unlikely(d_mountpoint(nd->path.dentry))) { 1390 struct mount *mounted; 1391 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry); 1392 if (unlikely(read_seqretry(&mount_lock, nd->m_seq))) 1393 return -ECHILD; 1394 if (!mounted) 1395 break; 1396 nd->path.mnt = &mounted->mnt; 1397 nd->path.dentry = mounted->mnt.mnt_root; 1398 inode = nd->path.dentry->d_inode; 1399 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 1400 } 1401 nd->inode = inode; 1402 return 0; 1403 } 1404 1405 /* 1406 * Follow down to the covering mount currently visible to userspace. At each 1407 * point, the filesystem owning that dentry may be queried as to whether the 1408 * caller is permitted to proceed or not. 1409 */ 1410 int follow_down(struct path *path) 1411 { 1412 unsigned managed; 1413 int ret; 1414 1415 while (managed = READ_ONCE(path->dentry->d_flags), 1416 unlikely(managed & DCACHE_MANAGED_DENTRY)) { 1417 /* Allow the filesystem to manage the transit without i_mutex 1418 * being held. 1419 * 1420 * We indicate to the filesystem if someone is trying to mount 1421 * something here. This gives autofs the chance to deny anyone 1422 * other than its daemon the right to mount on its 1423 * superstructure. 1424 * 1425 * The filesystem may sleep at this point. 1426 */ 1427 if (managed & DCACHE_MANAGE_TRANSIT) { 1428 BUG_ON(!path->dentry->d_op); 1429 BUG_ON(!path->dentry->d_op->d_manage); 1430 ret = path->dentry->d_op->d_manage(path, false); 1431 if (ret < 0) 1432 return ret == -EISDIR ? 0 : ret; 1433 } 1434 1435 /* Transit to a mounted filesystem. */ 1436 if (managed & DCACHE_MOUNTED) { 1437 struct vfsmount *mounted = lookup_mnt(path); 1438 if (!mounted) 1439 break; 1440 dput(path->dentry); 1441 mntput(path->mnt); 1442 path->mnt = mounted; 1443 path->dentry = dget(mounted->mnt_root); 1444 continue; 1445 } 1446 1447 /* Don't handle automount points here */ 1448 break; 1449 } 1450 return 0; 1451 } 1452 EXPORT_SYMBOL(follow_down); 1453 1454 /* 1455 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot() 1456 */ 1457 static void follow_mount(struct path *path) 1458 { 1459 while (d_mountpoint(path->dentry)) { 1460 struct vfsmount *mounted = lookup_mnt(path); 1461 if (!mounted) 1462 break; 1463 dput(path->dentry); 1464 mntput(path->mnt); 1465 path->mnt = mounted; 1466 path->dentry = dget(mounted->mnt_root); 1467 } 1468 } 1469 1470 static int path_parent_directory(struct path *path) 1471 { 1472 struct dentry *old = path->dentry; 1473 /* rare case of legitimate dget_parent()... */ 1474 path->dentry = dget_parent(path->dentry); 1475 dput(old); 1476 if (unlikely(!path_connected(path))) 1477 return -ENOENT; 1478 return 0; 1479 } 1480 1481 static int follow_dotdot(struct nameidata *nd) 1482 { 1483 while(1) { 1484 if (path_equal(&nd->path, &nd->root)) 1485 break; 1486 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1487 int ret = path_parent_directory(&nd->path); 1488 if (ret) 1489 return ret; 1490 break; 1491 } 1492 if (!follow_up(&nd->path)) 1493 break; 1494 } 1495 follow_mount(&nd->path); 1496 nd->inode = nd->path.dentry->d_inode; 1497 return 0; 1498 } 1499 1500 /* 1501 * This looks up the name in dcache and possibly revalidates the found dentry. 1502 * NULL is returned if the dentry does not exist in the cache. 1503 */ 1504 static struct dentry *lookup_dcache(const struct qstr *name, 1505 struct dentry *dir, 1506 unsigned int flags) 1507 { 1508 struct dentry *dentry = d_lookup(dir, name); 1509 if (dentry) { 1510 int error = d_revalidate(dentry, flags); 1511 if (unlikely(error <= 0)) { 1512 if (!error) 1513 d_invalidate(dentry); 1514 dput(dentry); 1515 return ERR_PTR(error); 1516 } 1517 } 1518 return dentry; 1519 } 1520 1521 /* 1522 * Parent directory has inode locked exclusive. This is one 1523 * and only case when ->lookup() gets called on non in-lookup 1524 * dentries - as the matter of fact, this only gets called 1525 * when directory is guaranteed to have no in-lookup children 1526 * at all. 1527 */ 1528 static struct dentry *__lookup_hash(const struct qstr *name, 1529 struct dentry *base, unsigned int flags) 1530 { 1531 struct dentry *dentry = lookup_dcache(name, base, flags); 1532 struct dentry *old; 1533 struct inode *dir = base->d_inode; 1534 1535 if (dentry) 1536 return dentry; 1537 1538 /* Don't create child dentry for a dead directory. */ 1539 if (unlikely(IS_DEADDIR(dir))) 1540 return ERR_PTR(-ENOENT); 1541 1542 dentry = d_alloc(base, name); 1543 if (unlikely(!dentry)) 1544 return ERR_PTR(-ENOMEM); 1545 1546 old = dir->i_op->lookup(dir, dentry, flags); 1547 if (unlikely(old)) { 1548 dput(dentry); 1549 dentry = old; 1550 } 1551 return dentry; 1552 } 1553 1554 static int lookup_fast(struct nameidata *nd, 1555 struct path *path, struct inode **inode, 1556 unsigned *seqp) 1557 { 1558 struct vfsmount *mnt = nd->path.mnt; 1559 struct dentry *dentry, *parent = nd->path.dentry; 1560 int status = 1; 1561 int err; 1562 1563 /* 1564 * Rename seqlock is not required here because in the off chance 1565 * of a false negative due to a concurrent rename, the caller is 1566 * going to fall back to non-racy lookup. 1567 */ 1568 if (nd->flags & LOOKUP_RCU) { 1569 unsigned seq; 1570 bool negative; 1571 dentry = __d_lookup_rcu(parent, &nd->last, &seq); 1572 if (unlikely(!dentry)) { 1573 if (unlazy_walk(nd)) 1574 return -ECHILD; 1575 return 0; 1576 } 1577 1578 /* 1579 * This sequence count validates that the inode matches 1580 * the dentry name information from lookup. 1581 */ 1582 *inode = d_backing_inode(dentry); 1583 negative = d_is_negative(dentry); 1584 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) 1585 return -ECHILD; 1586 1587 /* 1588 * This sequence count validates that the parent had no 1589 * changes while we did the lookup of the dentry above. 1590 * 1591 * The memory barrier in read_seqcount_begin of child is 1592 * enough, we can use __read_seqcount_retry here. 1593 */ 1594 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq))) 1595 return -ECHILD; 1596 1597 *seqp = seq; 1598 status = d_revalidate(dentry, nd->flags); 1599 if (likely(status > 0)) { 1600 /* 1601 * Note: do negative dentry check after revalidation in 1602 * case that drops it. 1603 */ 1604 if (unlikely(negative)) 1605 return -ENOENT; 1606 path->mnt = mnt; 1607 path->dentry = dentry; 1608 if (likely(__follow_mount_rcu(nd, path, inode, seqp))) 1609 return 1; 1610 } 1611 if (unlazy_child(nd, dentry, seq)) 1612 return -ECHILD; 1613 if (unlikely(status == -ECHILD)) 1614 /* we'd been told to redo it in non-rcu mode */ 1615 status = d_revalidate(dentry, nd->flags); 1616 } else { 1617 dentry = __d_lookup(parent, &nd->last); 1618 if (unlikely(!dentry)) 1619 return 0; 1620 status = d_revalidate(dentry, nd->flags); 1621 } 1622 if (unlikely(status <= 0)) { 1623 if (!status) 1624 d_invalidate(dentry); 1625 dput(dentry); 1626 return status; 1627 } 1628 1629 path->mnt = mnt; 1630 path->dentry = dentry; 1631 err = follow_managed(path, nd); 1632 if (likely(err > 0)) 1633 *inode = d_backing_inode(path->dentry); 1634 return err; 1635 } 1636 1637 /* Fast lookup failed, do it the slow way */ 1638 static struct dentry *__lookup_slow(const struct qstr *name, 1639 struct dentry *dir, 1640 unsigned int flags) 1641 { 1642 struct dentry *dentry, *old; 1643 struct inode *inode = dir->d_inode; 1644 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 1645 1646 /* Don't go there if it's already dead */ 1647 if (unlikely(IS_DEADDIR(inode))) 1648 return ERR_PTR(-ENOENT); 1649 again: 1650 dentry = d_alloc_parallel(dir, name, &wq); 1651 if (IS_ERR(dentry)) 1652 return dentry; 1653 if (unlikely(!d_in_lookup(dentry))) { 1654 int error = d_revalidate(dentry, flags); 1655 if (unlikely(error <= 0)) { 1656 if (!error) { 1657 d_invalidate(dentry); 1658 dput(dentry); 1659 goto again; 1660 } 1661 dput(dentry); 1662 dentry = ERR_PTR(error); 1663 } 1664 } else { 1665 old = inode->i_op->lookup(inode, dentry, flags); 1666 d_lookup_done(dentry); 1667 if (unlikely(old)) { 1668 dput(dentry); 1669 dentry = old; 1670 } 1671 } 1672 return dentry; 1673 } 1674 1675 static struct dentry *lookup_slow(const struct qstr *name, 1676 struct dentry *dir, 1677 unsigned int flags) 1678 { 1679 struct inode *inode = dir->d_inode; 1680 struct dentry *res; 1681 inode_lock_shared(inode); 1682 res = __lookup_slow(name, dir, flags); 1683 inode_unlock_shared(inode); 1684 return res; 1685 } 1686 1687 static inline int may_lookup(struct nameidata *nd) 1688 { 1689 if (nd->flags & LOOKUP_RCU) { 1690 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK); 1691 if (err != -ECHILD) 1692 return err; 1693 if (unlazy_walk(nd)) 1694 return -ECHILD; 1695 } 1696 return inode_permission(nd->inode, MAY_EXEC); 1697 } 1698 1699 static inline int handle_dots(struct nameidata *nd, int type) 1700 { 1701 if (type == LAST_DOTDOT) { 1702 if (!nd->root.mnt) 1703 set_root(nd); 1704 if (nd->flags & LOOKUP_RCU) { 1705 return follow_dotdot_rcu(nd); 1706 } else 1707 return follow_dotdot(nd); 1708 } 1709 return 0; 1710 } 1711 1712 static int pick_link(struct nameidata *nd, struct path *link, 1713 struct inode *inode, unsigned seq) 1714 { 1715 int error; 1716 struct saved *last; 1717 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) { 1718 path_to_nameidata(link, nd); 1719 return -ELOOP; 1720 } 1721 if (!(nd->flags & LOOKUP_RCU)) { 1722 if (link->mnt == nd->path.mnt) 1723 mntget(link->mnt); 1724 } 1725 error = nd_alloc_stack(nd); 1726 if (unlikely(error)) { 1727 if (error == -ECHILD) { 1728 if (unlikely(!legitimize_path(nd, link, seq))) { 1729 drop_links(nd); 1730 nd->depth = 0; 1731 nd->flags &= ~LOOKUP_RCU; 1732 nd->path.mnt = NULL; 1733 nd->path.dentry = NULL; 1734 rcu_read_unlock(); 1735 } else if (likely(unlazy_walk(nd)) == 0) 1736 error = nd_alloc_stack(nd); 1737 } 1738 if (error) { 1739 path_put(link); 1740 return error; 1741 } 1742 } 1743 1744 last = nd->stack + nd->depth++; 1745 last->link = *link; 1746 clear_delayed_call(&last->done); 1747 nd->link_inode = inode; 1748 last->seq = seq; 1749 return 1; 1750 } 1751 1752 enum {WALK_FOLLOW = 1, WALK_MORE = 2}; 1753 1754 /* 1755 * Do we need to follow links? We _really_ want to be able 1756 * to do this check without having to look at inode->i_op, 1757 * so we keep a cache of "no, this doesn't need follow_link" 1758 * for the common case. 1759 */ 1760 static inline int step_into(struct nameidata *nd, struct path *path, 1761 int flags, struct inode *inode, unsigned seq) 1762 { 1763 if (!(flags & WALK_MORE) && nd->depth) 1764 put_link(nd); 1765 if (likely(!d_is_symlink(path->dentry)) || 1766 !(flags & WALK_FOLLOW || nd->flags & LOOKUP_FOLLOW)) { 1767 /* not a symlink or should not follow */ 1768 path_to_nameidata(path, nd); 1769 nd->inode = inode; 1770 nd->seq = seq; 1771 return 0; 1772 } 1773 /* make sure that d_is_symlink above matches inode */ 1774 if (nd->flags & LOOKUP_RCU) { 1775 if (read_seqcount_retry(&path->dentry->d_seq, seq)) 1776 return -ECHILD; 1777 } 1778 return pick_link(nd, path, inode, seq); 1779 } 1780 1781 static int walk_component(struct nameidata *nd, int flags) 1782 { 1783 struct path path; 1784 struct inode *inode; 1785 unsigned seq; 1786 int err; 1787 /* 1788 * "." and ".." are special - ".." especially so because it has 1789 * to be able to know about the current root directory and 1790 * parent relationships. 1791 */ 1792 if (unlikely(nd->last_type != LAST_NORM)) { 1793 err = handle_dots(nd, nd->last_type); 1794 if (!(flags & WALK_MORE) && nd->depth) 1795 put_link(nd); 1796 return err; 1797 } 1798 err = lookup_fast(nd, &path, &inode, &seq); 1799 if (unlikely(err <= 0)) { 1800 if (err < 0) 1801 return err; 1802 path.dentry = lookup_slow(&nd->last, nd->path.dentry, 1803 nd->flags); 1804 if (IS_ERR(path.dentry)) 1805 return PTR_ERR(path.dentry); 1806 1807 path.mnt = nd->path.mnt; 1808 err = follow_managed(&path, nd); 1809 if (unlikely(err < 0)) 1810 return err; 1811 1812 seq = 0; /* we are already out of RCU mode */ 1813 inode = d_backing_inode(path.dentry); 1814 } 1815 1816 return step_into(nd, &path, flags, inode, seq); 1817 } 1818 1819 /* 1820 * We can do the critical dentry name comparison and hashing 1821 * operations one word at a time, but we are limited to: 1822 * 1823 * - Architectures with fast unaligned word accesses. We could 1824 * do a "get_unaligned()" if this helps and is sufficiently 1825 * fast. 1826 * 1827 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we 1828 * do not trap on the (extremely unlikely) case of a page 1829 * crossing operation. 1830 * 1831 * - Furthermore, we need an efficient 64-bit compile for the 1832 * 64-bit case in order to generate the "number of bytes in 1833 * the final mask". Again, that could be replaced with a 1834 * efficient population count instruction or similar. 1835 */ 1836 #ifdef CONFIG_DCACHE_WORD_ACCESS 1837 1838 #include <asm/word-at-a-time.h> 1839 1840 #ifdef HASH_MIX 1841 1842 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */ 1843 1844 #elif defined(CONFIG_64BIT) 1845 /* 1846 * Register pressure in the mixing function is an issue, particularly 1847 * on 32-bit x86, but almost any function requires one state value and 1848 * one temporary. Instead, use a function designed for two state values 1849 * and no temporaries. 1850 * 1851 * This function cannot create a collision in only two iterations, so 1852 * we have two iterations to achieve avalanche. In those two iterations, 1853 * we have six layers of mixing, which is enough to spread one bit's 1854 * influence out to 2^6 = 64 state bits. 1855 * 1856 * Rotate constants are scored by considering either 64 one-bit input 1857 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the 1858 * probability of that delta causing a change to each of the 128 output 1859 * bits, using a sample of random initial states. 1860 * 1861 * The Shannon entropy of the computed probabilities is then summed 1862 * to produce a score. Ideally, any input change has a 50% chance of 1863 * toggling any given output bit. 1864 * 1865 * Mixing scores (in bits) for (12,45): 1866 * Input delta: 1-bit 2-bit 1867 * 1 round: 713.3 42542.6 1868 * 2 rounds: 2753.7 140389.8 1869 * 3 rounds: 5954.1 233458.2 1870 * 4 rounds: 7862.6 256672.2 1871 * Perfect: 8192 258048 1872 * (64*128) (64*63/2 * 128) 1873 */ 1874 #define HASH_MIX(x, y, a) \ 1875 ( x ^= (a), \ 1876 y ^= x, x = rol64(x,12),\ 1877 x += y, y = rol64(y,45),\ 1878 y *= 9 ) 1879 1880 /* 1881 * Fold two longs into one 32-bit hash value. This must be fast, but 1882 * latency isn't quite as critical, as there is a fair bit of additional 1883 * work done before the hash value is used. 1884 */ 1885 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 1886 { 1887 y ^= x * GOLDEN_RATIO_64; 1888 y *= GOLDEN_RATIO_64; 1889 return y >> 32; 1890 } 1891 1892 #else /* 32-bit case */ 1893 1894 /* 1895 * Mixing scores (in bits) for (7,20): 1896 * Input delta: 1-bit 2-bit 1897 * 1 round: 330.3 9201.6 1898 * 2 rounds: 1246.4 25475.4 1899 * 3 rounds: 1907.1 31295.1 1900 * 4 rounds: 2042.3 31718.6 1901 * Perfect: 2048 31744 1902 * (32*64) (32*31/2 * 64) 1903 */ 1904 #define HASH_MIX(x, y, a) \ 1905 ( x ^= (a), \ 1906 y ^= x, x = rol32(x, 7),\ 1907 x += y, y = rol32(y,20),\ 1908 y *= 9 ) 1909 1910 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 1911 { 1912 /* Use arch-optimized multiply if one exists */ 1913 return __hash_32(y ^ __hash_32(x)); 1914 } 1915 1916 #endif 1917 1918 /* 1919 * Return the hash of a string of known length. This is carfully 1920 * designed to match hash_name(), which is the more critical function. 1921 * In particular, we must end by hashing a final word containing 0..7 1922 * payload bytes, to match the way that hash_name() iterates until it 1923 * finds the delimiter after the name. 1924 */ 1925 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 1926 { 1927 unsigned long a, x = 0, y = (unsigned long)salt; 1928 1929 for (;;) { 1930 if (!len) 1931 goto done; 1932 a = load_unaligned_zeropad(name); 1933 if (len < sizeof(unsigned long)) 1934 break; 1935 HASH_MIX(x, y, a); 1936 name += sizeof(unsigned long); 1937 len -= sizeof(unsigned long); 1938 } 1939 x ^= a & bytemask_from_count(len); 1940 done: 1941 return fold_hash(x, y); 1942 } 1943 EXPORT_SYMBOL(full_name_hash); 1944 1945 /* Return the "hash_len" (hash and length) of a null-terminated string */ 1946 u64 hashlen_string(const void *salt, const char *name) 1947 { 1948 unsigned long a = 0, x = 0, y = (unsigned long)salt; 1949 unsigned long adata, mask, len; 1950 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 1951 1952 len = 0; 1953 goto inside; 1954 1955 do { 1956 HASH_MIX(x, y, a); 1957 len += sizeof(unsigned long); 1958 inside: 1959 a = load_unaligned_zeropad(name+len); 1960 } while (!has_zero(a, &adata, &constants)); 1961 1962 adata = prep_zero_mask(a, adata, &constants); 1963 mask = create_zero_mask(adata); 1964 x ^= a & zero_bytemask(mask); 1965 1966 return hashlen_create(fold_hash(x, y), len + find_zero(mask)); 1967 } 1968 EXPORT_SYMBOL(hashlen_string); 1969 1970 /* 1971 * Calculate the length and hash of the path component, and 1972 * return the "hash_len" as the result. 1973 */ 1974 static inline u64 hash_name(const void *salt, const char *name) 1975 { 1976 unsigned long a = 0, b, x = 0, y = (unsigned long)salt; 1977 unsigned long adata, bdata, mask, len; 1978 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 1979 1980 len = 0; 1981 goto inside; 1982 1983 do { 1984 HASH_MIX(x, y, a); 1985 len += sizeof(unsigned long); 1986 inside: 1987 a = load_unaligned_zeropad(name+len); 1988 b = a ^ REPEAT_BYTE('/'); 1989 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants))); 1990 1991 adata = prep_zero_mask(a, adata, &constants); 1992 bdata = prep_zero_mask(b, bdata, &constants); 1993 mask = create_zero_mask(adata | bdata); 1994 x ^= a & zero_bytemask(mask); 1995 1996 return hashlen_create(fold_hash(x, y), len + find_zero(mask)); 1997 } 1998 1999 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */ 2000 2001 /* Return the hash of a string of known length */ 2002 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 2003 { 2004 unsigned long hash = init_name_hash(salt); 2005 while (len--) 2006 hash = partial_name_hash((unsigned char)*name++, hash); 2007 return end_name_hash(hash); 2008 } 2009 EXPORT_SYMBOL(full_name_hash); 2010 2011 /* Return the "hash_len" (hash and length) of a null-terminated string */ 2012 u64 hashlen_string(const void *salt, const char *name) 2013 { 2014 unsigned long hash = init_name_hash(salt); 2015 unsigned long len = 0, c; 2016 2017 c = (unsigned char)*name; 2018 while (c) { 2019 len++; 2020 hash = partial_name_hash(c, hash); 2021 c = (unsigned char)name[len]; 2022 } 2023 return hashlen_create(end_name_hash(hash), len); 2024 } 2025 EXPORT_SYMBOL(hashlen_string); 2026 2027 /* 2028 * We know there's a real path component here of at least 2029 * one character. 2030 */ 2031 static inline u64 hash_name(const void *salt, const char *name) 2032 { 2033 unsigned long hash = init_name_hash(salt); 2034 unsigned long len = 0, c; 2035 2036 c = (unsigned char)*name; 2037 do { 2038 len++; 2039 hash = partial_name_hash(c, hash); 2040 c = (unsigned char)name[len]; 2041 } while (c && c != '/'); 2042 return hashlen_create(end_name_hash(hash), len); 2043 } 2044 2045 #endif 2046 2047 /* 2048 * Name resolution. 2049 * This is the basic name resolution function, turning a pathname into 2050 * the final dentry. We expect 'base' to be positive and a directory. 2051 * 2052 * Returns 0 and nd will have valid dentry and mnt on success. 2053 * Returns error and drops reference to input namei data on failure. 2054 */ 2055 static int link_path_walk(const char *name, struct nameidata *nd) 2056 { 2057 int err; 2058 2059 if (IS_ERR(name)) 2060 return PTR_ERR(name); 2061 while (*name=='/') 2062 name++; 2063 if (!*name) 2064 return 0; 2065 2066 /* At this point we know we have a real path component. */ 2067 for(;;) { 2068 u64 hash_len; 2069 int type; 2070 2071 err = may_lookup(nd); 2072 if (err) 2073 return err; 2074 2075 hash_len = hash_name(nd->path.dentry, name); 2076 2077 type = LAST_NORM; 2078 if (name[0] == '.') switch (hashlen_len(hash_len)) { 2079 case 2: 2080 if (name[1] == '.') { 2081 type = LAST_DOTDOT; 2082 nd->flags |= LOOKUP_JUMPED; 2083 } 2084 break; 2085 case 1: 2086 type = LAST_DOT; 2087 } 2088 if (likely(type == LAST_NORM)) { 2089 struct dentry *parent = nd->path.dentry; 2090 nd->flags &= ~LOOKUP_JUMPED; 2091 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { 2092 struct qstr this = { { .hash_len = hash_len }, .name = name }; 2093 err = parent->d_op->d_hash(parent, &this); 2094 if (err < 0) 2095 return err; 2096 hash_len = this.hash_len; 2097 name = this.name; 2098 } 2099 } 2100 2101 nd->last.hash_len = hash_len; 2102 nd->last.name = name; 2103 nd->last_type = type; 2104 2105 name += hashlen_len(hash_len); 2106 if (!*name) 2107 goto OK; 2108 /* 2109 * If it wasn't NUL, we know it was '/'. Skip that 2110 * slash, and continue until no more slashes. 2111 */ 2112 do { 2113 name++; 2114 } while (unlikely(*name == '/')); 2115 if (unlikely(!*name)) { 2116 OK: 2117 /* pathname body, done */ 2118 if (!nd->depth) 2119 return 0; 2120 name = nd->stack[nd->depth - 1].name; 2121 /* trailing symlink, done */ 2122 if (!name) 2123 return 0; 2124 /* last component of nested symlink */ 2125 err = walk_component(nd, WALK_FOLLOW); 2126 } else { 2127 /* not the last component */ 2128 err = walk_component(nd, WALK_FOLLOW | WALK_MORE); 2129 } 2130 if (err < 0) 2131 return err; 2132 2133 if (err) { 2134 const char *s = get_link(nd); 2135 2136 if (IS_ERR(s)) 2137 return PTR_ERR(s); 2138 err = 0; 2139 if (unlikely(!s)) { 2140 /* jumped */ 2141 put_link(nd); 2142 } else { 2143 nd->stack[nd->depth - 1].name = name; 2144 name = s; 2145 continue; 2146 } 2147 } 2148 if (unlikely(!d_can_lookup(nd->path.dentry))) { 2149 if (nd->flags & LOOKUP_RCU) { 2150 if (unlazy_walk(nd)) 2151 return -ECHILD; 2152 } 2153 return -ENOTDIR; 2154 } 2155 } 2156 } 2157 2158 /* must be paired with terminate_walk() */ 2159 static const char *path_init(struct nameidata *nd, unsigned flags) 2160 { 2161 const char *s = nd->name->name; 2162 2163 if (!*s) 2164 flags &= ~LOOKUP_RCU; 2165 if (flags & LOOKUP_RCU) 2166 rcu_read_lock(); 2167 2168 nd->last_type = LAST_ROOT; /* if there are only slashes... */ 2169 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT; 2170 nd->depth = 0; 2171 if (flags & LOOKUP_ROOT) { 2172 struct dentry *root = nd->root.dentry; 2173 struct inode *inode = root->d_inode; 2174 if (*s && unlikely(!d_can_lookup(root))) 2175 return ERR_PTR(-ENOTDIR); 2176 nd->path = nd->root; 2177 nd->inode = inode; 2178 if (flags & LOOKUP_RCU) { 2179 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 2180 nd->root_seq = nd->seq; 2181 nd->m_seq = read_seqbegin(&mount_lock); 2182 } else { 2183 path_get(&nd->path); 2184 } 2185 return s; 2186 } 2187 2188 nd->root.mnt = NULL; 2189 nd->path.mnt = NULL; 2190 nd->path.dentry = NULL; 2191 2192 nd->m_seq = read_seqbegin(&mount_lock); 2193 if (*s == '/') { 2194 set_root(nd); 2195 if (likely(!nd_jump_root(nd))) 2196 return s; 2197 return ERR_PTR(-ECHILD); 2198 } else if (nd->dfd == AT_FDCWD) { 2199 if (flags & LOOKUP_RCU) { 2200 struct fs_struct *fs = current->fs; 2201 unsigned seq; 2202 2203 do { 2204 seq = read_seqcount_begin(&fs->seq); 2205 nd->path = fs->pwd; 2206 nd->inode = nd->path.dentry->d_inode; 2207 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 2208 } while (read_seqcount_retry(&fs->seq, seq)); 2209 } else { 2210 get_fs_pwd(current->fs, &nd->path); 2211 nd->inode = nd->path.dentry->d_inode; 2212 } 2213 return s; 2214 } else { 2215 /* Caller must check execute permissions on the starting path component */ 2216 struct fd f = fdget_raw(nd->dfd); 2217 struct dentry *dentry; 2218 2219 if (!f.file) 2220 return ERR_PTR(-EBADF); 2221 2222 dentry = f.file->f_path.dentry; 2223 2224 if (*s && unlikely(!d_can_lookup(dentry))) { 2225 fdput(f); 2226 return ERR_PTR(-ENOTDIR); 2227 } 2228 2229 nd->path = f.file->f_path; 2230 if (flags & LOOKUP_RCU) { 2231 nd->inode = nd->path.dentry->d_inode; 2232 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 2233 } else { 2234 path_get(&nd->path); 2235 nd->inode = nd->path.dentry->d_inode; 2236 } 2237 fdput(f); 2238 return s; 2239 } 2240 } 2241 2242 static const char *trailing_symlink(struct nameidata *nd) 2243 { 2244 const char *s; 2245 int error = may_follow_link(nd); 2246 if (unlikely(error)) 2247 return ERR_PTR(error); 2248 nd->flags |= LOOKUP_PARENT; 2249 nd->stack[0].name = NULL; 2250 s = get_link(nd); 2251 return s ? s : ""; 2252 } 2253 2254 static inline int lookup_last(struct nameidata *nd) 2255 { 2256 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len]) 2257 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 2258 2259 nd->flags &= ~LOOKUP_PARENT; 2260 return walk_component(nd, 0); 2261 } 2262 2263 static int handle_lookup_down(struct nameidata *nd) 2264 { 2265 struct path path = nd->path; 2266 struct inode *inode = nd->inode; 2267 unsigned seq = nd->seq; 2268 int err; 2269 2270 if (nd->flags & LOOKUP_RCU) { 2271 /* 2272 * don't bother with unlazy_walk on failure - we are 2273 * at the very beginning of walk, so we lose nothing 2274 * if we simply redo everything in non-RCU mode 2275 */ 2276 if (unlikely(!__follow_mount_rcu(nd, &path, &inode, &seq))) 2277 return -ECHILD; 2278 } else { 2279 dget(path.dentry); 2280 err = follow_managed(&path, nd); 2281 if (unlikely(err < 0)) 2282 return err; 2283 inode = d_backing_inode(path.dentry); 2284 seq = 0; 2285 } 2286 path_to_nameidata(&path, nd); 2287 nd->inode = inode; 2288 nd->seq = seq; 2289 return 0; 2290 } 2291 2292 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2293 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path) 2294 { 2295 const char *s = path_init(nd, flags); 2296 int err; 2297 2298 if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) { 2299 err = handle_lookup_down(nd); 2300 if (unlikely(err < 0)) 2301 s = ERR_PTR(err); 2302 } 2303 2304 while (!(err = link_path_walk(s, nd)) 2305 && ((err = lookup_last(nd)) > 0)) { 2306 s = trailing_symlink(nd); 2307 } 2308 if (!err) 2309 err = complete_walk(nd); 2310 2311 if (!err && nd->flags & LOOKUP_DIRECTORY) 2312 if (!d_can_lookup(nd->path.dentry)) 2313 err = -ENOTDIR; 2314 if (!err) { 2315 *path = nd->path; 2316 nd->path.mnt = NULL; 2317 nd->path.dentry = NULL; 2318 } 2319 terminate_walk(nd); 2320 return err; 2321 } 2322 2323 int filename_lookup(int dfd, struct filename *name, unsigned flags, 2324 struct path *path, struct path *root) 2325 { 2326 int retval; 2327 struct nameidata nd; 2328 if (IS_ERR(name)) 2329 return PTR_ERR(name); 2330 if (unlikely(root)) { 2331 nd.root = *root; 2332 flags |= LOOKUP_ROOT; 2333 } 2334 set_nameidata(&nd, dfd, name); 2335 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path); 2336 if (unlikely(retval == -ECHILD)) 2337 retval = path_lookupat(&nd, flags, path); 2338 if (unlikely(retval == -ESTALE)) 2339 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path); 2340 2341 if (likely(!retval)) 2342 audit_inode(name, path->dentry, 0); 2343 restore_nameidata(); 2344 putname(name); 2345 return retval; 2346 } 2347 2348 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2349 static int path_parentat(struct nameidata *nd, unsigned flags, 2350 struct path *parent) 2351 { 2352 const char *s = path_init(nd, flags); 2353 int err = link_path_walk(s, nd); 2354 if (!err) 2355 err = complete_walk(nd); 2356 if (!err) { 2357 *parent = nd->path; 2358 nd->path.mnt = NULL; 2359 nd->path.dentry = NULL; 2360 } 2361 terminate_walk(nd); 2362 return err; 2363 } 2364 2365 static struct filename *filename_parentat(int dfd, struct filename *name, 2366 unsigned int flags, struct path *parent, 2367 struct qstr *last, int *type) 2368 { 2369 int retval; 2370 struct nameidata nd; 2371 2372 if (IS_ERR(name)) 2373 return name; 2374 set_nameidata(&nd, dfd, name); 2375 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent); 2376 if (unlikely(retval == -ECHILD)) 2377 retval = path_parentat(&nd, flags, parent); 2378 if (unlikely(retval == -ESTALE)) 2379 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent); 2380 if (likely(!retval)) { 2381 *last = nd.last; 2382 *type = nd.last_type; 2383 audit_inode(name, parent->dentry, AUDIT_INODE_PARENT); 2384 } else { 2385 putname(name); 2386 name = ERR_PTR(retval); 2387 } 2388 restore_nameidata(); 2389 return name; 2390 } 2391 2392 /* does lookup, returns the object with parent locked */ 2393 struct dentry *kern_path_locked(const char *name, struct path *path) 2394 { 2395 struct filename *filename; 2396 struct dentry *d; 2397 struct qstr last; 2398 int type; 2399 2400 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path, 2401 &last, &type); 2402 if (IS_ERR(filename)) 2403 return ERR_CAST(filename); 2404 if (unlikely(type != LAST_NORM)) { 2405 path_put(path); 2406 putname(filename); 2407 return ERR_PTR(-EINVAL); 2408 } 2409 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 2410 d = __lookup_hash(&last, path->dentry, 0); 2411 if (IS_ERR(d)) { 2412 inode_unlock(path->dentry->d_inode); 2413 path_put(path); 2414 } 2415 putname(filename); 2416 return d; 2417 } 2418 2419 int kern_path(const char *name, unsigned int flags, struct path *path) 2420 { 2421 return filename_lookup(AT_FDCWD, getname_kernel(name), 2422 flags, path, NULL); 2423 } 2424 EXPORT_SYMBOL(kern_path); 2425 2426 /** 2427 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 2428 * @dentry: pointer to dentry of the base directory 2429 * @mnt: pointer to vfs mount of the base directory 2430 * @name: pointer to file name 2431 * @flags: lookup flags 2432 * @path: pointer to struct path to fill 2433 */ 2434 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 2435 const char *name, unsigned int flags, 2436 struct path *path) 2437 { 2438 struct path root = {.mnt = mnt, .dentry = dentry}; 2439 /* the first argument of filename_lookup() is ignored with root */ 2440 return filename_lookup(AT_FDCWD, getname_kernel(name), 2441 flags , path, &root); 2442 } 2443 EXPORT_SYMBOL(vfs_path_lookup); 2444 2445 static int lookup_one_len_common(const char *name, struct dentry *base, 2446 int len, struct qstr *this) 2447 { 2448 this->name = name; 2449 this->len = len; 2450 this->hash = full_name_hash(base, name, len); 2451 if (!len) 2452 return -EACCES; 2453 2454 if (unlikely(name[0] == '.')) { 2455 if (len < 2 || (len == 2 && name[1] == '.')) 2456 return -EACCES; 2457 } 2458 2459 while (len--) { 2460 unsigned int c = *(const unsigned char *)name++; 2461 if (c == '/' || c == '\0') 2462 return -EACCES; 2463 } 2464 /* 2465 * See if the low-level filesystem might want 2466 * to use its own hash.. 2467 */ 2468 if (base->d_flags & DCACHE_OP_HASH) { 2469 int err = base->d_op->d_hash(base, this); 2470 if (err < 0) 2471 return err; 2472 } 2473 2474 return inode_permission(base->d_inode, MAY_EXEC); 2475 } 2476 2477 /** 2478 * try_lookup_one_len - filesystem helper to lookup single pathname component 2479 * @name: pathname component to lookup 2480 * @base: base directory to lookup from 2481 * @len: maximum length @len should be interpreted to 2482 * 2483 * Look up a dentry by name in the dcache, returning NULL if it does not 2484 * currently exist. The function does not try to create a dentry. 2485 * 2486 * Note that this routine is purely a helper for filesystem usage and should 2487 * not be called by generic code. 2488 * 2489 * The caller must hold base->i_mutex. 2490 */ 2491 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len) 2492 { 2493 struct qstr this; 2494 int err; 2495 2496 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2497 2498 err = lookup_one_len_common(name, base, len, &this); 2499 if (err) 2500 return ERR_PTR(err); 2501 2502 return lookup_dcache(&this, base, 0); 2503 } 2504 EXPORT_SYMBOL(try_lookup_one_len); 2505 2506 /** 2507 * lookup_one_len - filesystem helper to lookup single pathname component 2508 * @name: pathname component to lookup 2509 * @base: base directory to lookup from 2510 * @len: maximum length @len should be interpreted to 2511 * 2512 * Note that this routine is purely a helper for filesystem usage and should 2513 * not be called by generic code. 2514 * 2515 * The caller must hold base->i_mutex. 2516 */ 2517 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 2518 { 2519 struct dentry *dentry; 2520 struct qstr this; 2521 int err; 2522 2523 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2524 2525 err = lookup_one_len_common(name, base, len, &this); 2526 if (err) 2527 return ERR_PTR(err); 2528 2529 dentry = lookup_dcache(&this, base, 0); 2530 return dentry ? dentry : __lookup_slow(&this, base, 0); 2531 } 2532 EXPORT_SYMBOL(lookup_one_len); 2533 2534 /** 2535 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component 2536 * @name: pathname component to lookup 2537 * @base: base directory to lookup from 2538 * @len: maximum length @len should be interpreted to 2539 * 2540 * Note that this routine is purely a helper for filesystem usage and should 2541 * not be called by generic code. 2542 * 2543 * Unlike lookup_one_len, it should be called without the parent 2544 * i_mutex held, and will take the i_mutex itself if necessary. 2545 */ 2546 struct dentry *lookup_one_len_unlocked(const char *name, 2547 struct dentry *base, int len) 2548 { 2549 struct qstr this; 2550 int err; 2551 struct dentry *ret; 2552 2553 err = lookup_one_len_common(name, base, len, &this); 2554 if (err) 2555 return ERR_PTR(err); 2556 2557 ret = lookup_dcache(&this, base, 0); 2558 if (!ret) 2559 ret = lookup_slow(&this, base, 0); 2560 return ret; 2561 } 2562 EXPORT_SYMBOL(lookup_one_len_unlocked); 2563 2564 /* 2565 * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT) 2566 * on negatives. Returns known positive or ERR_PTR(); that's what 2567 * most of the users want. Note that pinned negative with unlocked parent 2568 * _can_ become positive at any time, so callers of lookup_one_len_unlocked() 2569 * need to be very careful; pinned positives have ->d_inode stable, so 2570 * this one avoids such problems. 2571 */ 2572 struct dentry *lookup_positive_unlocked(const char *name, 2573 struct dentry *base, int len) 2574 { 2575 struct dentry *ret = lookup_one_len_unlocked(name, base, len); 2576 if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) { 2577 dput(ret); 2578 ret = ERR_PTR(-ENOENT); 2579 } 2580 return ret; 2581 } 2582 EXPORT_SYMBOL(lookup_positive_unlocked); 2583 2584 #ifdef CONFIG_UNIX98_PTYS 2585 int path_pts(struct path *path) 2586 { 2587 /* Find something mounted on "pts" in the same directory as 2588 * the input path. 2589 */ 2590 struct dentry *child, *parent; 2591 struct qstr this; 2592 int ret; 2593 2594 ret = path_parent_directory(path); 2595 if (ret) 2596 return ret; 2597 2598 parent = path->dentry; 2599 this.name = "pts"; 2600 this.len = 3; 2601 child = d_hash_and_lookup(parent, &this); 2602 if (!child) 2603 return -ENOENT; 2604 2605 path->dentry = child; 2606 dput(parent); 2607 follow_mount(path); 2608 return 0; 2609 } 2610 #endif 2611 2612 int user_path_at_empty(int dfd, const char __user *name, unsigned flags, 2613 struct path *path, int *empty) 2614 { 2615 return filename_lookup(dfd, getname_flags(name, flags, empty), 2616 flags, path, NULL); 2617 } 2618 EXPORT_SYMBOL(user_path_at_empty); 2619 2620 /** 2621 * path_mountpoint - look up a path to be umounted 2622 * @nd: lookup context 2623 * @flags: lookup flags 2624 * @path: pointer to container for result 2625 * 2626 * Look up the given name, but don't attempt to revalidate the last component. 2627 * Returns 0 and "path" will be valid on success; Returns error otherwise. 2628 */ 2629 static int 2630 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path) 2631 { 2632 const char *s = path_init(nd, flags); 2633 int err; 2634 2635 while (!(err = link_path_walk(s, nd)) && 2636 (err = lookup_last(nd)) > 0) { 2637 s = trailing_symlink(nd); 2638 } 2639 if (!err && (nd->flags & LOOKUP_RCU)) 2640 err = unlazy_walk(nd); 2641 if (!err) 2642 err = handle_lookup_down(nd); 2643 if (!err) { 2644 *path = nd->path; 2645 nd->path.mnt = NULL; 2646 nd->path.dentry = NULL; 2647 } 2648 terminate_walk(nd); 2649 return err; 2650 } 2651 2652 static int 2653 filename_mountpoint(int dfd, struct filename *name, struct path *path, 2654 unsigned int flags) 2655 { 2656 struct nameidata nd; 2657 int error; 2658 if (IS_ERR(name)) 2659 return PTR_ERR(name); 2660 set_nameidata(&nd, dfd, name); 2661 error = path_mountpoint(&nd, flags | LOOKUP_RCU, path); 2662 if (unlikely(error == -ECHILD)) 2663 error = path_mountpoint(&nd, flags, path); 2664 if (unlikely(error == -ESTALE)) 2665 error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path); 2666 if (likely(!error)) 2667 audit_inode(name, path->dentry, AUDIT_INODE_NOEVAL); 2668 restore_nameidata(); 2669 putname(name); 2670 return error; 2671 } 2672 2673 /** 2674 * user_path_mountpoint_at - lookup a path from userland in order to umount it 2675 * @dfd: directory file descriptor 2676 * @name: pathname from userland 2677 * @flags: lookup flags 2678 * @path: pointer to container to hold result 2679 * 2680 * A umount is a special case for path walking. We're not actually interested 2681 * in the inode in this situation, and ESTALE errors can be a problem. We 2682 * simply want track down the dentry and vfsmount attached at the mountpoint 2683 * and avoid revalidating the last component. 2684 * 2685 * Returns 0 and populates "path" on success. 2686 */ 2687 int 2688 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags, 2689 struct path *path) 2690 { 2691 return filename_mountpoint(dfd, getname(name), path, flags); 2692 } 2693 2694 int 2695 kern_path_mountpoint(int dfd, const char *name, struct path *path, 2696 unsigned int flags) 2697 { 2698 return filename_mountpoint(dfd, getname_kernel(name), path, flags); 2699 } 2700 EXPORT_SYMBOL(kern_path_mountpoint); 2701 2702 int __check_sticky(struct inode *dir, struct inode *inode) 2703 { 2704 kuid_t fsuid = current_fsuid(); 2705 2706 if (uid_eq(inode->i_uid, fsuid)) 2707 return 0; 2708 if (uid_eq(dir->i_uid, fsuid)) 2709 return 0; 2710 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER); 2711 } 2712 EXPORT_SYMBOL(__check_sticky); 2713 2714 /* 2715 * Check whether we can remove a link victim from directory dir, check 2716 * whether the type of victim is right. 2717 * 1. We can't do it if dir is read-only (done in permission()) 2718 * 2. We should have write and exec permissions on dir 2719 * 3. We can't remove anything from append-only dir 2720 * 4. We can't do anything with immutable dir (done in permission()) 2721 * 5. If the sticky bit on dir is set we should either 2722 * a. be owner of dir, or 2723 * b. be owner of victim, or 2724 * c. have CAP_FOWNER capability 2725 * 6. If the victim is append-only or immutable we can't do antyhing with 2726 * links pointing to it. 2727 * 7. If the victim has an unknown uid or gid we can't change the inode. 2728 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR. 2729 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR. 2730 * 10. We can't remove a root or mountpoint. 2731 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by 2732 * nfs_async_unlink(). 2733 */ 2734 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir) 2735 { 2736 struct inode *inode = d_backing_inode(victim); 2737 int error; 2738 2739 if (d_is_negative(victim)) 2740 return -ENOENT; 2741 BUG_ON(!inode); 2742 2743 BUG_ON(victim->d_parent->d_inode != dir); 2744 2745 /* Inode writeback is not safe when the uid or gid are invalid. */ 2746 if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid)) 2747 return -EOVERFLOW; 2748 2749 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 2750 2751 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 2752 if (error) 2753 return error; 2754 if (IS_APPEND(dir)) 2755 return -EPERM; 2756 2757 if (check_sticky(dir, inode) || IS_APPEND(inode) || 2758 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode)) 2759 return -EPERM; 2760 if (isdir) { 2761 if (!d_is_dir(victim)) 2762 return -ENOTDIR; 2763 if (IS_ROOT(victim)) 2764 return -EBUSY; 2765 } else if (d_is_dir(victim)) 2766 return -EISDIR; 2767 if (IS_DEADDIR(dir)) 2768 return -ENOENT; 2769 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 2770 return -EBUSY; 2771 return 0; 2772 } 2773 2774 /* Check whether we can create an object with dentry child in directory 2775 * dir. 2776 * 1. We can't do it if child already exists (open has special treatment for 2777 * this case, but since we are inlined it's OK) 2778 * 2. We can't do it if dir is read-only (done in permission()) 2779 * 3. We can't do it if the fs can't represent the fsuid or fsgid. 2780 * 4. We should have write and exec permissions on dir 2781 * 5. We can't do it if dir is immutable (done in permission()) 2782 */ 2783 static inline int may_create(struct inode *dir, struct dentry *child) 2784 { 2785 struct user_namespace *s_user_ns; 2786 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE); 2787 if (child->d_inode) 2788 return -EEXIST; 2789 if (IS_DEADDIR(dir)) 2790 return -ENOENT; 2791 s_user_ns = dir->i_sb->s_user_ns; 2792 if (!kuid_has_mapping(s_user_ns, current_fsuid()) || 2793 !kgid_has_mapping(s_user_ns, current_fsgid())) 2794 return -EOVERFLOW; 2795 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 2796 } 2797 2798 /* 2799 * p1 and p2 should be directories on the same fs. 2800 */ 2801 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 2802 { 2803 struct dentry *p; 2804 2805 if (p1 == p2) { 2806 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2807 return NULL; 2808 } 2809 2810 mutex_lock(&p1->d_sb->s_vfs_rename_mutex); 2811 2812 p = d_ancestor(p2, p1); 2813 if (p) { 2814 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT); 2815 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD); 2816 return p; 2817 } 2818 2819 p = d_ancestor(p1, p2); 2820 if (p) { 2821 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2822 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD); 2823 return p; 2824 } 2825 2826 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2827 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2); 2828 return NULL; 2829 } 2830 EXPORT_SYMBOL(lock_rename); 2831 2832 void unlock_rename(struct dentry *p1, struct dentry *p2) 2833 { 2834 inode_unlock(p1->d_inode); 2835 if (p1 != p2) { 2836 inode_unlock(p2->d_inode); 2837 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex); 2838 } 2839 } 2840 EXPORT_SYMBOL(unlock_rename); 2841 2842 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2843 bool want_excl) 2844 { 2845 int error = may_create(dir, dentry); 2846 if (error) 2847 return error; 2848 2849 if (!dir->i_op->create) 2850 return -EACCES; /* shouldn't it be ENOSYS? */ 2851 mode &= S_IALLUGO; 2852 mode |= S_IFREG; 2853 error = security_inode_create(dir, dentry, mode); 2854 if (error) 2855 return error; 2856 error = dir->i_op->create(dir, dentry, mode, want_excl); 2857 if (!error) 2858 fsnotify_create(dir, dentry); 2859 return error; 2860 } 2861 EXPORT_SYMBOL(vfs_create); 2862 2863 int vfs_mkobj(struct dentry *dentry, umode_t mode, 2864 int (*f)(struct dentry *, umode_t, void *), 2865 void *arg) 2866 { 2867 struct inode *dir = dentry->d_parent->d_inode; 2868 int error = may_create(dir, dentry); 2869 if (error) 2870 return error; 2871 2872 mode &= S_IALLUGO; 2873 mode |= S_IFREG; 2874 error = security_inode_create(dir, dentry, mode); 2875 if (error) 2876 return error; 2877 error = f(dentry, mode, arg); 2878 if (!error) 2879 fsnotify_create(dir, dentry); 2880 return error; 2881 } 2882 EXPORT_SYMBOL(vfs_mkobj); 2883 2884 bool may_open_dev(const struct path *path) 2885 { 2886 return !(path->mnt->mnt_flags & MNT_NODEV) && 2887 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV); 2888 } 2889 2890 static int may_open(const struct path *path, int acc_mode, int flag) 2891 { 2892 struct dentry *dentry = path->dentry; 2893 struct inode *inode = dentry->d_inode; 2894 int error; 2895 2896 if (!inode) 2897 return -ENOENT; 2898 2899 switch (inode->i_mode & S_IFMT) { 2900 case S_IFLNK: 2901 return -ELOOP; 2902 case S_IFDIR: 2903 if (acc_mode & MAY_WRITE) 2904 return -EISDIR; 2905 break; 2906 case S_IFBLK: 2907 case S_IFCHR: 2908 if (!may_open_dev(path)) 2909 return -EACCES; 2910 /*FALLTHRU*/ 2911 case S_IFIFO: 2912 case S_IFSOCK: 2913 flag &= ~O_TRUNC; 2914 break; 2915 } 2916 2917 error = inode_permission(inode, MAY_OPEN | acc_mode); 2918 if (error) 2919 return error; 2920 2921 /* 2922 * An append-only file must be opened in append mode for writing. 2923 */ 2924 if (IS_APPEND(inode)) { 2925 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 2926 return -EPERM; 2927 if (flag & O_TRUNC) 2928 return -EPERM; 2929 } 2930 2931 /* O_NOATIME can only be set by the owner or superuser */ 2932 if (flag & O_NOATIME && !inode_owner_or_capable(inode)) 2933 return -EPERM; 2934 2935 return 0; 2936 } 2937 2938 static int handle_truncate(struct file *filp) 2939 { 2940 const struct path *path = &filp->f_path; 2941 struct inode *inode = path->dentry->d_inode; 2942 int error = get_write_access(inode); 2943 if (error) 2944 return error; 2945 /* 2946 * Refuse to truncate files with mandatory locks held on them. 2947 */ 2948 error = locks_verify_locked(filp); 2949 if (!error) 2950 error = security_path_truncate(path); 2951 if (!error) { 2952 error = do_truncate(path->dentry, 0, 2953 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 2954 filp); 2955 } 2956 put_write_access(inode); 2957 return error; 2958 } 2959 2960 static inline int open_to_namei_flags(int flag) 2961 { 2962 if ((flag & O_ACCMODE) == 3) 2963 flag--; 2964 return flag; 2965 } 2966 2967 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode) 2968 { 2969 struct user_namespace *s_user_ns; 2970 int error = security_path_mknod(dir, dentry, mode, 0); 2971 if (error) 2972 return error; 2973 2974 s_user_ns = dir->dentry->d_sb->s_user_ns; 2975 if (!kuid_has_mapping(s_user_ns, current_fsuid()) || 2976 !kgid_has_mapping(s_user_ns, current_fsgid())) 2977 return -EOVERFLOW; 2978 2979 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC); 2980 if (error) 2981 return error; 2982 2983 return security_inode_create(dir->dentry->d_inode, dentry, mode); 2984 } 2985 2986 /* 2987 * Attempt to atomically look up, create and open a file from a negative 2988 * dentry. 2989 * 2990 * Returns 0 if successful. The file will have been created and attached to 2991 * @file by the filesystem calling finish_open(). 2992 * 2993 * If the file was looked up only or didn't need creating, FMODE_OPENED won't 2994 * be set. The caller will need to perform the open themselves. @path will 2995 * have been updated to point to the new dentry. This may be negative. 2996 * 2997 * Returns an error code otherwise. 2998 */ 2999 static int atomic_open(struct nameidata *nd, struct dentry *dentry, 3000 struct path *path, struct file *file, 3001 const struct open_flags *op, 3002 int open_flag, umode_t mode) 3003 { 3004 struct dentry *const DENTRY_NOT_SET = (void *) -1UL; 3005 struct inode *dir = nd->path.dentry->d_inode; 3006 int error; 3007 3008 if (!(~open_flag & (O_EXCL | O_CREAT))) /* both O_EXCL and O_CREAT */ 3009 open_flag &= ~O_TRUNC; 3010 3011 if (nd->flags & LOOKUP_DIRECTORY) 3012 open_flag |= O_DIRECTORY; 3013 3014 file->f_path.dentry = DENTRY_NOT_SET; 3015 file->f_path.mnt = nd->path.mnt; 3016 error = dir->i_op->atomic_open(dir, dentry, file, 3017 open_to_namei_flags(open_flag), mode); 3018 d_lookup_done(dentry); 3019 if (!error) { 3020 if (file->f_mode & FMODE_OPENED) { 3021 /* 3022 * We didn't have the inode before the open, so check open 3023 * permission here. 3024 */ 3025 int acc_mode = op->acc_mode; 3026 if (file->f_mode & FMODE_CREATED) { 3027 WARN_ON(!(open_flag & O_CREAT)); 3028 fsnotify_create(dir, dentry); 3029 acc_mode = 0; 3030 } 3031 error = may_open(&file->f_path, acc_mode, open_flag); 3032 if (WARN_ON(error > 0)) 3033 error = -EINVAL; 3034 } else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) { 3035 error = -EIO; 3036 } else { 3037 if (file->f_path.dentry) { 3038 dput(dentry); 3039 dentry = file->f_path.dentry; 3040 } 3041 if (file->f_mode & FMODE_CREATED) 3042 fsnotify_create(dir, dentry); 3043 if (unlikely(d_is_negative(dentry))) { 3044 error = -ENOENT; 3045 } else { 3046 path->dentry = dentry; 3047 path->mnt = nd->path.mnt; 3048 return 0; 3049 } 3050 } 3051 } 3052 dput(dentry); 3053 return error; 3054 } 3055 3056 /* 3057 * Look up and maybe create and open the last component. 3058 * 3059 * Must be called with parent locked (exclusive in O_CREAT case). 3060 * 3061 * Returns 0 on success, that is, if 3062 * the file was successfully atomically created (if necessary) and opened, or 3063 * the file was not completely opened at this time, though lookups and 3064 * creations were performed. 3065 * These case are distinguished by presence of FMODE_OPENED on file->f_mode. 3066 * In the latter case dentry returned in @path might be negative if O_CREAT 3067 * hadn't been specified. 3068 * 3069 * An error code is returned on failure. 3070 */ 3071 static int lookup_open(struct nameidata *nd, struct path *path, 3072 struct file *file, 3073 const struct open_flags *op, 3074 bool got_write) 3075 { 3076 struct dentry *dir = nd->path.dentry; 3077 struct inode *dir_inode = dir->d_inode; 3078 int open_flag = op->open_flag; 3079 struct dentry *dentry; 3080 int error, create_error = 0; 3081 umode_t mode = op->mode; 3082 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 3083 3084 if (unlikely(IS_DEADDIR(dir_inode))) 3085 return -ENOENT; 3086 3087 file->f_mode &= ~FMODE_CREATED; 3088 dentry = d_lookup(dir, &nd->last); 3089 for (;;) { 3090 if (!dentry) { 3091 dentry = d_alloc_parallel(dir, &nd->last, &wq); 3092 if (IS_ERR(dentry)) 3093 return PTR_ERR(dentry); 3094 } 3095 if (d_in_lookup(dentry)) 3096 break; 3097 3098 error = d_revalidate(dentry, nd->flags); 3099 if (likely(error > 0)) 3100 break; 3101 if (error) 3102 goto out_dput; 3103 d_invalidate(dentry); 3104 dput(dentry); 3105 dentry = NULL; 3106 } 3107 if (dentry->d_inode) { 3108 /* Cached positive dentry: will open in f_op->open */ 3109 goto out_no_open; 3110 } 3111 3112 /* 3113 * Checking write permission is tricky, bacuse we don't know if we are 3114 * going to actually need it: O_CREAT opens should work as long as the 3115 * file exists. But checking existence breaks atomicity. The trick is 3116 * to check access and if not granted clear O_CREAT from the flags. 3117 * 3118 * Another problem is returing the "right" error value (e.g. for an 3119 * O_EXCL open we want to return EEXIST not EROFS). 3120 */ 3121 if (open_flag & O_CREAT) { 3122 if (!IS_POSIXACL(dir->d_inode)) 3123 mode &= ~current_umask(); 3124 if (unlikely(!got_write)) { 3125 create_error = -EROFS; 3126 open_flag &= ~O_CREAT; 3127 if (open_flag & (O_EXCL | O_TRUNC)) 3128 goto no_open; 3129 /* No side effects, safe to clear O_CREAT */ 3130 } else { 3131 create_error = may_o_create(&nd->path, dentry, mode); 3132 if (create_error) { 3133 open_flag &= ~O_CREAT; 3134 if (open_flag & O_EXCL) 3135 goto no_open; 3136 } 3137 } 3138 } else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) && 3139 unlikely(!got_write)) { 3140 /* 3141 * No O_CREATE -> atomicity not a requirement -> fall 3142 * back to lookup + open 3143 */ 3144 goto no_open; 3145 } 3146 3147 if (dir_inode->i_op->atomic_open) { 3148 error = atomic_open(nd, dentry, path, file, op, open_flag, 3149 mode); 3150 if (unlikely(error == -ENOENT) && create_error) 3151 error = create_error; 3152 return error; 3153 } 3154 3155 no_open: 3156 if (d_in_lookup(dentry)) { 3157 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry, 3158 nd->flags); 3159 d_lookup_done(dentry); 3160 if (unlikely(res)) { 3161 if (IS_ERR(res)) { 3162 error = PTR_ERR(res); 3163 goto out_dput; 3164 } 3165 dput(dentry); 3166 dentry = res; 3167 } 3168 } 3169 3170 /* Negative dentry, just create the file */ 3171 if (!dentry->d_inode && (open_flag & O_CREAT)) { 3172 file->f_mode |= FMODE_CREATED; 3173 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE); 3174 if (!dir_inode->i_op->create) { 3175 error = -EACCES; 3176 goto out_dput; 3177 } 3178 error = dir_inode->i_op->create(dir_inode, dentry, mode, 3179 open_flag & O_EXCL); 3180 if (error) 3181 goto out_dput; 3182 fsnotify_create(dir_inode, dentry); 3183 } 3184 if (unlikely(create_error) && !dentry->d_inode) { 3185 error = create_error; 3186 goto out_dput; 3187 } 3188 out_no_open: 3189 path->dentry = dentry; 3190 path->mnt = nd->path.mnt; 3191 return 0; 3192 3193 out_dput: 3194 dput(dentry); 3195 return error; 3196 } 3197 3198 /* 3199 * Handle the last step of open() 3200 */ 3201 static int do_last(struct nameidata *nd, 3202 struct file *file, const struct open_flags *op) 3203 { 3204 struct dentry *dir = nd->path.dentry; 3205 kuid_t dir_uid = dir->d_inode->i_uid; 3206 umode_t dir_mode = dir->d_inode->i_mode; 3207 int open_flag = op->open_flag; 3208 bool will_truncate = (open_flag & O_TRUNC) != 0; 3209 bool got_write = false; 3210 int acc_mode = op->acc_mode; 3211 unsigned seq; 3212 struct inode *inode; 3213 struct path path; 3214 int error; 3215 3216 nd->flags &= ~LOOKUP_PARENT; 3217 nd->flags |= op->intent; 3218 3219 if (nd->last_type != LAST_NORM) { 3220 error = handle_dots(nd, nd->last_type); 3221 if (unlikely(error)) 3222 return error; 3223 goto finish_open; 3224 } 3225 3226 if (!(open_flag & O_CREAT)) { 3227 if (nd->last.name[nd->last.len]) 3228 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 3229 /* we _can_ be in RCU mode here */ 3230 error = lookup_fast(nd, &path, &inode, &seq); 3231 if (likely(error > 0)) 3232 goto finish_lookup; 3233 3234 if (error < 0) 3235 return error; 3236 3237 BUG_ON(nd->inode != dir->d_inode); 3238 BUG_ON(nd->flags & LOOKUP_RCU); 3239 } else { 3240 /* create side of things */ 3241 /* 3242 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED 3243 * has been cleared when we got to the last component we are 3244 * about to look up 3245 */ 3246 error = complete_walk(nd); 3247 if (error) 3248 return error; 3249 3250 audit_inode(nd->name, dir, AUDIT_INODE_PARENT); 3251 /* trailing slashes? */ 3252 if (unlikely(nd->last.name[nd->last.len])) 3253 return -EISDIR; 3254 } 3255 3256 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) { 3257 error = mnt_want_write(nd->path.mnt); 3258 if (!error) 3259 got_write = true; 3260 /* 3261 * do _not_ fail yet - we might not need that or fail with 3262 * a different error; let lookup_open() decide; we'll be 3263 * dropping this one anyway. 3264 */ 3265 } 3266 if (open_flag & O_CREAT) 3267 inode_lock(dir->d_inode); 3268 else 3269 inode_lock_shared(dir->d_inode); 3270 error = lookup_open(nd, &path, file, op, got_write); 3271 if (open_flag & O_CREAT) 3272 inode_unlock(dir->d_inode); 3273 else 3274 inode_unlock_shared(dir->d_inode); 3275 3276 if (error) 3277 goto out; 3278 3279 if (file->f_mode & FMODE_OPENED) { 3280 if ((file->f_mode & FMODE_CREATED) || 3281 !S_ISREG(file_inode(file)->i_mode)) 3282 will_truncate = false; 3283 3284 audit_inode(nd->name, file->f_path.dentry, 0); 3285 goto opened; 3286 } 3287 3288 if (file->f_mode & FMODE_CREATED) { 3289 /* Don't check for write permission, don't truncate */ 3290 open_flag &= ~O_TRUNC; 3291 will_truncate = false; 3292 acc_mode = 0; 3293 path_to_nameidata(&path, nd); 3294 goto finish_open_created; 3295 } 3296 3297 /* 3298 * If atomic_open() acquired write access it is dropped now due to 3299 * possible mount and symlink following (this might be optimized away if 3300 * necessary...) 3301 */ 3302 if (got_write) { 3303 mnt_drop_write(nd->path.mnt); 3304 got_write = false; 3305 } 3306 3307 error = follow_managed(&path, nd); 3308 if (unlikely(error < 0)) 3309 return error; 3310 3311 /* 3312 * create/update audit record if it already exists. 3313 */ 3314 audit_inode(nd->name, path.dentry, 0); 3315 3316 if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) { 3317 path_to_nameidata(&path, nd); 3318 return -EEXIST; 3319 } 3320 3321 seq = 0; /* out of RCU mode, so the value doesn't matter */ 3322 inode = d_backing_inode(path.dentry); 3323 finish_lookup: 3324 error = step_into(nd, &path, 0, inode, seq); 3325 if (unlikely(error)) 3326 return error; 3327 finish_open: 3328 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */ 3329 error = complete_walk(nd); 3330 if (error) 3331 return error; 3332 audit_inode(nd->name, nd->path.dentry, 0); 3333 if (open_flag & O_CREAT) { 3334 error = -EISDIR; 3335 if (d_is_dir(nd->path.dentry)) 3336 goto out; 3337 error = may_create_in_sticky(dir_mode, dir_uid, 3338 d_backing_inode(nd->path.dentry)); 3339 if (unlikely(error)) 3340 goto out; 3341 } 3342 error = -ENOTDIR; 3343 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry)) 3344 goto out; 3345 if (!d_is_reg(nd->path.dentry)) 3346 will_truncate = false; 3347 3348 if (will_truncate) { 3349 error = mnt_want_write(nd->path.mnt); 3350 if (error) 3351 goto out; 3352 got_write = true; 3353 } 3354 finish_open_created: 3355 error = may_open(&nd->path, acc_mode, open_flag); 3356 if (error) 3357 goto out; 3358 BUG_ON(file->f_mode & FMODE_OPENED); /* once it's opened, it's opened */ 3359 error = vfs_open(&nd->path, file); 3360 if (error) 3361 goto out; 3362 opened: 3363 error = ima_file_check(file, op->acc_mode); 3364 if (!error && will_truncate) 3365 error = handle_truncate(file); 3366 out: 3367 if (unlikely(error > 0)) { 3368 WARN_ON(1); 3369 error = -EINVAL; 3370 } 3371 if (got_write) 3372 mnt_drop_write(nd->path.mnt); 3373 return error; 3374 } 3375 3376 struct dentry *vfs_tmpfile(struct dentry *dentry, umode_t mode, int open_flag) 3377 { 3378 struct dentry *child = NULL; 3379 struct inode *dir = dentry->d_inode; 3380 struct inode *inode; 3381 int error; 3382 3383 /* we want directory to be writable */ 3384 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 3385 if (error) 3386 goto out_err; 3387 error = -EOPNOTSUPP; 3388 if (!dir->i_op->tmpfile) 3389 goto out_err; 3390 error = -ENOMEM; 3391 child = d_alloc(dentry, &slash_name); 3392 if (unlikely(!child)) 3393 goto out_err; 3394 error = dir->i_op->tmpfile(dir, child, mode); 3395 if (error) 3396 goto out_err; 3397 error = -ENOENT; 3398 inode = child->d_inode; 3399 if (unlikely(!inode)) 3400 goto out_err; 3401 if (!(open_flag & O_EXCL)) { 3402 spin_lock(&inode->i_lock); 3403 inode->i_state |= I_LINKABLE; 3404 spin_unlock(&inode->i_lock); 3405 } 3406 ima_post_create_tmpfile(inode); 3407 return child; 3408 3409 out_err: 3410 dput(child); 3411 return ERR_PTR(error); 3412 } 3413 EXPORT_SYMBOL(vfs_tmpfile); 3414 3415 static int do_tmpfile(struct nameidata *nd, unsigned flags, 3416 const struct open_flags *op, 3417 struct file *file) 3418 { 3419 struct dentry *child; 3420 struct path path; 3421 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path); 3422 if (unlikely(error)) 3423 return error; 3424 error = mnt_want_write(path.mnt); 3425 if (unlikely(error)) 3426 goto out; 3427 child = vfs_tmpfile(path.dentry, op->mode, op->open_flag); 3428 error = PTR_ERR(child); 3429 if (IS_ERR(child)) 3430 goto out2; 3431 dput(path.dentry); 3432 path.dentry = child; 3433 audit_inode(nd->name, child, 0); 3434 /* Don't check for other permissions, the inode was just created */ 3435 error = may_open(&path, 0, op->open_flag); 3436 if (error) 3437 goto out2; 3438 file->f_path.mnt = path.mnt; 3439 error = finish_open(file, child, NULL); 3440 out2: 3441 mnt_drop_write(path.mnt); 3442 out: 3443 path_put(&path); 3444 return error; 3445 } 3446 3447 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file) 3448 { 3449 struct path path; 3450 int error = path_lookupat(nd, flags, &path); 3451 if (!error) { 3452 audit_inode(nd->name, path.dentry, 0); 3453 error = vfs_open(&path, file); 3454 path_put(&path); 3455 } 3456 return error; 3457 } 3458 3459 static struct file *path_openat(struct nameidata *nd, 3460 const struct open_flags *op, unsigned flags) 3461 { 3462 struct file *file; 3463 int error; 3464 3465 file = alloc_empty_file(op->open_flag, current_cred()); 3466 if (IS_ERR(file)) 3467 return file; 3468 3469 if (unlikely(file->f_flags & __O_TMPFILE)) { 3470 error = do_tmpfile(nd, flags, op, file); 3471 } else if (unlikely(file->f_flags & O_PATH)) { 3472 error = do_o_path(nd, flags, file); 3473 } else { 3474 const char *s = path_init(nd, flags); 3475 while (!(error = link_path_walk(s, nd)) && 3476 (error = do_last(nd, file, op)) > 0) { 3477 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL); 3478 s = trailing_symlink(nd); 3479 } 3480 terminate_walk(nd); 3481 } 3482 if (likely(!error)) { 3483 if (likely(file->f_mode & FMODE_OPENED)) 3484 return file; 3485 WARN_ON(1); 3486 error = -EINVAL; 3487 } 3488 fput(file); 3489 if (error == -EOPENSTALE) { 3490 if (flags & LOOKUP_RCU) 3491 error = -ECHILD; 3492 else 3493 error = -ESTALE; 3494 } 3495 return ERR_PTR(error); 3496 } 3497 3498 struct file *do_filp_open(int dfd, struct filename *pathname, 3499 const struct open_flags *op) 3500 { 3501 struct nameidata nd; 3502 int flags = op->lookup_flags; 3503 struct file *filp; 3504 3505 set_nameidata(&nd, dfd, pathname); 3506 filp = path_openat(&nd, op, flags | LOOKUP_RCU); 3507 if (unlikely(filp == ERR_PTR(-ECHILD))) 3508 filp = path_openat(&nd, op, flags); 3509 if (unlikely(filp == ERR_PTR(-ESTALE))) 3510 filp = path_openat(&nd, op, flags | LOOKUP_REVAL); 3511 restore_nameidata(); 3512 return filp; 3513 } 3514 3515 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt, 3516 const char *name, const struct open_flags *op) 3517 { 3518 struct nameidata nd; 3519 struct file *file; 3520 struct filename *filename; 3521 int flags = op->lookup_flags | LOOKUP_ROOT; 3522 3523 nd.root.mnt = mnt; 3524 nd.root.dentry = dentry; 3525 3526 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN) 3527 return ERR_PTR(-ELOOP); 3528 3529 filename = getname_kernel(name); 3530 if (IS_ERR(filename)) 3531 return ERR_CAST(filename); 3532 3533 set_nameidata(&nd, -1, filename); 3534 file = path_openat(&nd, op, flags | LOOKUP_RCU); 3535 if (unlikely(file == ERR_PTR(-ECHILD))) 3536 file = path_openat(&nd, op, flags); 3537 if (unlikely(file == ERR_PTR(-ESTALE))) 3538 file = path_openat(&nd, op, flags | LOOKUP_REVAL); 3539 restore_nameidata(); 3540 putname(filename); 3541 return file; 3542 } 3543 3544 static struct dentry *filename_create(int dfd, struct filename *name, 3545 struct path *path, unsigned int lookup_flags) 3546 { 3547 struct dentry *dentry = ERR_PTR(-EEXIST); 3548 struct qstr last; 3549 int type; 3550 int err2; 3551 int error; 3552 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY); 3553 3554 /* 3555 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any 3556 * other flags passed in are ignored! 3557 */ 3558 lookup_flags &= LOOKUP_REVAL; 3559 3560 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type); 3561 if (IS_ERR(name)) 3562 return ERR_CAST(name); 3563 3564 /* 3565 * Yucky last component or no last component at all? 3566 * (foo/., foo/.., /////) 3567 */ 3568 if (unlikely(type != LAST_NORM)) 3569 goto out; 3570 3571 /* don't fail immediately if it's r/o, at least try to report other errors */ 3572 err2 = mnt_want_write(path->mnt); 3573 /* 3574 * Do the final lookup. 3575 */ 3576 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL; 3577 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 3578 dentry = __lookup_hash(&last, path->dentry, lookup_flags); 3579 if (IS_ERR(dentry)) 3580 goto unlock; 3581 3582 error = -EEXIST; 3583 if (d_is_positive(dentry)) 3584 goto fail; 3585 3586 /* 3587 * Special case - lookup gave negative, but... we had foo/bar/ 3588 * From the vfs_mknod() POV we just have a negative dentry - 3589 * all is fine. Let's be bastards - you had / on the end, you've 3590 * been asking for (non-existent) directory. -ENOENT for you. 3591 */ 3592 if (unlikely(!is_dir && last.name[last.len])) { 3593 error = -ENOENT; 3594 goto fail; 3595 } 3596 if (unlikely(err2)) { 3597 error = err2; 3598 goto fail; 3599 } 3600 putname(name); 3601 return dentry; 3602 fail: 3603 dput(dentry); 3604 dentry = ERR_PTR(error); 3605 unlock: 3606 inode_unlock(path->dentry->d_inode); 3607 if (!err2) 3608 mnt_drop_write(path->mnt); 3609 out: 3610 path_put(path); 3611 putname(name); 3612 return dentry; 3613 } 3614 3615 struct dentry *kern_path_create(int dfd, const char *pathname, 3616 struct path *path, unsigned int lookup_flags) 3617 { 3618 return filename_create(dfd, getname_kernel(pathname), 3619 path, lookup_flags); 3620 } 3621 EXPORT_SYMBOL(kern_path_create); 3622 3623 void done_path_create(struct path *path, struct dentry *dentry) 3624 { 3625 dput(dentry); 3626 inode_unlock(path->dentry->d_inode); 3627 mnt_drop_write(path->mnt); 3628 path_put(path); 3629 } 3630 EXPORT_SYMBOL(done_path_create); 3631 3632 inline struct dentry *user_path_create(int dfd, const char __user *pathname, 3633 struct path *path, unsigned int lookup_flags) 3634 { 3635 return filename_create(dfd, getname(pathname), path, lookup_flags); 3636 } 3637 EXPORT_SYMBOL(user_path_create); 3638 3639 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 3640 { 3641 int error = may_create(dir, dentry); 3642 3643 if (error) 3644 return error; 3645 3646 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD)) 3647 return -EPERM; 3648 3649 if (!dir->i_op->mknod) 3650 return -EPERM; 3651 3652 error = devcgroup_inode_mknod(mode, dev); 3653 if (error) 3654 return error; 3655 3656 error = security_inode_mknod(dir, dentry, mode, dev); 3657 if (error) 3658 return error; 3659 3660 error = dir->i_op->mknod(dir, dentry, mode, dev); 3661 if (!error) 3662 fsnotify_create(dir, dentry); 3663 return error; 3664 } 3665 EXPORT_SYMBOL(vfs_mknod); 3666 3667 static int may_mknod(umode_t mode) 3668 { 3669 switch (mode & S_IFMT) { 3670 case S_IFREG: 3671 case S_IFCHR: 3672 case S_IFBLK: 3673 case S_IFIFO: 3674 case S_IFSOCK: 3675 case 0: /* zero mode translates to S_IFREG */ 3676 return 0; 3677 case S_IFDIR: 3678 return -EPERM; 3679 default: 3680 return -EINVAL; 3681 } 3682 } 3683 3684 long do_mknodat(int dfd, const char __user *filename, umode_t mode, 3685 unsigned int dev) 3686 { 3687 struct dentry *dentry; 3688 struct path path; 3689 int error; 3690 unsigned int lookup_flags = 0; 3691 3692 error = may_mknod(mode); 3693 if (error) 3694 return error; 3695 retry: 3696 dentry = user_path_create(dfd, filename, &path, lookup_flags); 3697 if (IS_ERR(dentry)) 3698 return PTR_ERR(dentry); 3699 3700 if (!IS_POSIXACL(path.dentry->d_inode)) 3701 mode &= ~current_umask(); 3702 error = security_path_mknod(&path, dentry, mode, dev); 3703 if (error) 3704 goto out; 3705 switch (mode & S_IFMT) { 3706 case 0: case S_IFREG: 3707 error = vfs_create(path.dentry->d_inode,dentry,mode,true); 3708 if (!error) 3709 ima_post_path_mknod(dentry); 3710 break; 3711 case S_IFCHR: case S_IFBLK: 3712 error = vfs_mknod(path.dentry->d_inode,dentry,mode, 3713 new_decode_dev(dev)); 3714 break; 3715 case S_IFIFO: case S_IFSOCK: 3716 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0); 3717 break; 3718 } 3719 out: 3720 done_path_create(&path, dentry); 3721 if (retry_estale(error, lookup_flags)) { 3722 lookup_flags |= LOOKUP_REVAL; 3723 goto retry; 3724 } 3725 return error; 3726 } 3727 3728 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode, 3729 unsigned int, dev) 3730 { 3731 return do_mknodat(dfd, filename, mode, dev); 3732 } 3733 3734 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev) 3735 { 3736 return do_mknodat(AT_FDCWD, filename, mode, dev); 3737 } 3738 3739 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 3740 { 3741 int error = may_create(dir, dentry); 3742 unsigned max_links = dir->i_sb->s_max_links; 3743 3744 if (error) 3745 return error; 3746 3747 if (!dir->i_op->mkdir) 3748 return -EPERM; 3749 3750 mode &= (S_IRWXUGO|S_ISVTX); 3751 error = security_inode_mkdir(dir, dentry, mode); 3752 if (error) 3753 return error; 3754 3755 if (max_links && dir->i_nlink >= max_links) 3756 return -EMLINK; 3757 3758 error = dir->i_op->mkdir(dir, dentry, mode); 3759 if (!error) 3760 fsnotify_mkdir(dir, dentry); 3761 return error; 3762 } 3763 EXPORT_SYMBOL(vfs_mkdir); 3764 3765 long do_mkdirat(int dfd, const char __user *pathname, umode_t mode) 3766 { 3767 struct dentry *dentry; 3768 struct path path; 3769 int error; 3770 unsigned int lookup_flags = LOOKUP_DIRECTORY; 3771 3772 retry: 3773 dentry = user_path_create(dfd, pathname, &path, lookup_flags); 3774 if (IS_ERR(dentry)) 3775 return PTR_ERR(dentry); 3776 3777 if (!IS_POSIXACL(path.dentry->d_inode)) 3778 mode &= ~current_umask(); 3779 error = security_path_mkdir(&path, dentry, mode); 3780 if (!error) 3781 error = vfs_mkdir(path.dentry->d_inode, dentry, mode); 3782 done_path_create(&path, dentry); 3783 if (retry_estale(error, lookup_flags)) { 3784 lookup_flags |= LOOKUP_REVAL; 3785 goto retry; 3786 } 3787 return error; 3788 } 3789 3790 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode) 3791 { 3792 return do_mkdirat(dfd, pathname, mode); 3793 } 3794 3795 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode) 3796 { 3797 return do_mkdirat(AT_FDCWD, pathname, mode); 3798 } 3799 3800 int vfs_rmdir(struct inode *dir, struct dentry *dentry) 3801 { 3802 int error = may_delete(dir, dentry, 1); 3803 3804 if (error) 3805 return error; 3806 3807 if (!dir->i_op->rmdir) 3808 return -EPERM; 3809 3810 dget(dentry); 3811 inode_lock(dentry->d_inode); 3812 3813 error = -EBUSY; 3814 if (is_local_mountpoint(dentry)) 3815 goto out; 3816 3817 error = security_inode_rmdir(dir, dentry); 3818 if (error) 3819 goto out; 3820 3821 error = dir->i_op->rmdir(dir, dentry); 3822 if (error) 3823 goto out; 3824 3825 shrink_dcache_parent(dentry); 3826 dentry->d_inode->i_flags |= S_DEAD; 3827 dont_mount(dentry); 3828 detach_mounts(dentry); 3829 fsnotify_rmdir(dir, dentry); 3830 3831 out: 3832 inode_unlock(dentry->d_inode); 3833 dput(dentry); 3834 if (!error) 3835 d_delete(dentry); 3836 return error; 3837 } 3838 EXPORT_SYMBOL(vfs_rmdir); 3839 3840 long do_rmdir(int dfd, const char __user *pathname) 3841 { 3842 int error = 0; 3843 struct filename *name; 3844 struct dentry *dentry; 3845 struct path path; 3846 struct qstr last; 3847 int type; 3848 unsigned int lookup_flags = 0; 3849 retry: 3850 name = filename_parentat(dfd, getname(pathname), lookup_flags, 3851 &path, &last, &type); 3852 if (IS_ERR(name)) 3853 return PTR_ERR(name); 3854 3855 switch (type) { 3856 case LAST_DOTDOT: 3857 error = -ENOTEMPTY; 3858 goto exit1; 3859 case LAST_DOT: 3860 error = -EINVAL; 3861 goto exit1; 3862 case LAST_ROOT: 3863 error = -EBUSY; 3864 goto exit1; 3865 } 3866 3867 error = mnt_want_write(path.mnt); 3868 if (error) 3869 goto exit1; 3870 3871 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 3872 dentry = __lookup_hash(&last, path.dentry, lookup_flags); 3873 error = PTR_ERR(dentry); 3874 if (IS_ERR(dentry)) 3875 goto exit2; 3876 if (!dentry->d_inode) { 3877 error = -ENOENT; 3878 goto exit3; 3879 } 3880 error = security_path_rmdir(&path, dentry); 3881 if (error) 3882 goto exit3; 3883 error = vfs_rmdir(path.dentry->d_inode, dentry); 3884 exit3: 3885 dput(dentry); 3886 exit2: 3887 inode_unlock(path.dentry->d_inode); 3888 mnt_drop_write(path.mnt); 3889 exit1: 3890 path_put(&path); 3891 putname(name); 3892 if (retry_estale(error, lookup_flags)) { 3893 lookup_flags |= LOOKUP_REVAL; 3894 goto retry; 3895 } 3896 return error; 3897 } 3898 3899 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 3900 { 3901 return do_rmdir(AT_FDCWD, pathname); 3902 } 3903 3904 /** 3905 * vfs_unlink - unlink a filesystem object 3906 * @dir: parent directory 3907 * @dentry: victim 3908 * @delegated_inode: returns victim inode, if the inode is delegated. 3909 * 3910 * The caller must hold dir->i_mutex. 3911 * 3912 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and 3913 * return a reference to the inode in delegated_inode. The caller 3914 * should then break the delegation on that inode and retry. Because 3915 * breaking a delegation may take a long time, the caller should drop 3916 * dir->i_mutex before doing so. 3917 * 3918 * Alternatively, a caller may pass NULL for delegated_inode. This may 3919 * be appropriate for callers that expect the underlying filesystem not 3920 * to be NFS exported. 3921 */ 3922 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode) 3923 { 3924 struct inode *target = dentry->d_inode; 3925 int error = may_delete(dir, dentry, 0); 3926 3927 if (error) 3928 return error; 3929 3930 if (!dir->i_op->unlink) 3931 return -EPERM; 3932 3933 inode_lock(target); 3934 if (is_local_mountpoint(dentry)) 3935 error = -EBUSY; 3936 else { 3937 error = security_inode_unlink(dir, dentry); 3938 if (!error) { 3939 error = try_break_deleg(target, delegated_inode); 3940 if (error) 3941 goto out; 3942 error = dir->i_op->unlink(dir, dentry); 3943 if (!error) { 3944 dont_mount(dentry); 3945 detach_mounts(dentry); 3946 fsnotify_unlink(dir, dentry); 3947 } 3948 } 3949 } 3950 out: 3951 inode_unlock(target); 3952 3953 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 3954 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) { 3955 fsnotify_link_count(target); 3956 d_delete(dentry); 3957 } 3958 3959 return error; 3960 } 3961 EXPORT_SYMBOL(vfs_unlink); 3962 3963 /* 3964 * Make sure that the actual truncation of the file will occur outside its 3965 * directory's i_mutex. Truncate can take a long time if there is a lot of 3966 * writeout happening, and we don't want to prevent access to the directory 3967 * while waiting on the I/O. 3968 */ 3969 long do_unlinkat(int dfd, struct filename *name) 3970 { 3971 int error; 3972 struct dentry *dentry; 3973 struct path path; 3974 struct qstr last; 3975 int type; 3976 struct inode *inode = NULL; 3977 struct inode *delegated_inode = NULL; 3978 unsigned int lookup_flags = 0; 3979 retry: 3980 name = filename_parentat(dfd, name, lookup_flags, &path, &last, &type); 3981 if (IS_ERR(name)) 3982 return PTR_ERR(name); 3983 3984 error = -EISDIR; 3985 if (type != LAST_NORM) 3986 goto exit1; 3987 3988 error = mnt_want_write(path.mnt); 3989 if (error) 3990 goto exit1; 3991 retry_deleg: 3992 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 3993 dentry = __lookup_hash(&last, path.dentry, lookup_flags); 3994 error = PTR_ERR(dentry); 3995 if (!IS_ERR(dentry)) { 3996 /* Why not before? Because we want correct error value */ 3997 if (last.name[last.len]) 3998 goto slashes; 3999 inode = dentry->d_inode; 4000 if (d_is_negative(dentry)) 4001 goto slashes; 4002 ihold(inode); 4003 error = security_path_unlink(&path, dentry); 4004 if (error) 4005 goto exit2; 4006 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode); 4007 exit2: 4008 dput(dentry); 4009 } 4010 inode_unlock(path.dentry->d_inode); 4011 if (inode) 4012 iput(inode); /* truncate the inode here */ 4013 inode = NULL; 4014 if (delegated_inode) { 4015 error = break_deleg_wait(&delegated_inode); 4016 if (!error) 4017 goto retry_deleg; 4018 } 4019 mnt_drop_write(path.mnt); 4020 exit1: 4021 path_put(&path); 4022 if (retry_estale(error, lookup_flags)) { 4023 lookup_flags |= LOOKUP_REVAL; 4024 inode = NULL; 4025 goto retry; 4026 } 4027 putname(name); 4028 return error; 4029 4030 slashes: 4031 if (d_is_negative(dentry)) 4032 error = -ENOENT; 4033 else if (d_is_dir(dentry)) 4034 error = -EISDIR; 4035 else 4036 error = -ENOTDIR; 4037 goto exit2; 4038 } 4039 4040 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 4041 { 4042 if ((flag & ~AT_REMOVEDIR) != 0) 4043 return -EINVAL; 4044 4045 if (flag & AT_REMOVEDIR) 4046 return do_rmdir(dfd, pathname); 4047 4048 return do_unlinkat(dfd, getname(pathname)); 4049 } 4050 4051 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 4052 { 4053 return do_unlinkat(AT_FDCWD, getname(pathname)); 4054 } 4055 4056 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname) 4057 { 4058 int error = may_create(dir, dentry); 4059 4060 if (error) 4061 return error; 4062 4063 if (!dir->i_op->symlink) 4064 return -EPERM; 4065 4066 error = security_inode_symlink(dir, dentry, oldname); 4067 if (error) 4068 return error; 4069 4070 error = dir->i_op->symlink(dir, dentry, oldname); 4071 if (!error) 4072 fsnotify_create(dir, dentry); 4073 return error; 4074 } 4075 EXPORT_SYMBOL(vfs_symlink); 4076 4077 long do_symlinkat(const char __user *oldname, int newdfd, 4078 const char __user *newname) 4079 { 4080 int error; 4081 struct filename *from; 4082 struct dentry *dentry; 4083 struct path path; 4084 unsigned int lookup_flags = 0; 4085 4086 from = getname(oldname); 4087 if (IS_ERR(from)) 4088 return PTR_ERR(from); 4089 retry: 4090 dentry = user_path_create(newdfd, newname, &path, lookup_flags); 4091 error = PTR_ERR(dentry); 4092 if (IS_ERR(dentry)) 4093 goto out_putname; 4094 4095 error = security_path_symlink(&path, dentry, from->name); 4096 if (!error) 4097 error = vfs_symlink(path.dentry->d_inode, dentry, from->name); 4098 done_path_create(&path, dentry); 4099 if (retry_estale(error, lookup_flags)) { 4100 lookup_flags |= LOOKUP_REVAL; 4101 goto retry; 4102 } 4103 out_putname: 4104 putname(from); 4105 return error; 4106 } 4107 4108 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 4109 int, newdfd, const char __user *, newname) 4110 { 4111 return do_symlinkat(oldname, newdfd, newname); 4112 } 4113 4114 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 4115 { 4116 return do_symlinkat(oldname, AT_FDCWD, newname); 4117 } 4118 4119 /** 4120 * vfs_link - create a new link 4121 * @old_dentry: object to be linked 4122 * @dir: new parent 4123 * @new_dentry: where to create the new link 4124 * @delegated_inode: returns inode needing a delegation break 4125 * 4126 * The caller must hold dir->i_mutex 4127 * 4128 * If vfs_link discovers a delegation on the to-be-linked file in need 4129 * of breaking, it will return -EWOULDBLOCK and return a reference to the 4130 * inode in delegated_inode. The caller should then break the delegation 4131 * and retry. Because breaking a delegation may take a long time, the 4132 * caller should drop the i_mutex before doing so. 4133 * 4134 * Alternatively, a caller may pass NULL for delegated_inode. This may 4135 * be appropriate for callers that expect the underlying filesystem not 4136 * to be NFS exported. 4137 */ 4138 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode) 4139 { 4140 struct inode *inode = old_dentry->d_inode; 4141 unsigned max_links = dir->i_sb->s_max_links; 4142 int error; 4143 4144 if (!inode) 4145 return -ENOENT; 4146 4147 error = may_create(dir, new_dentry); 4148 if (error) 4149 return error; 4150 4151 if (dir->i_sb != inode->i_sb) 4152 return -EXDEV; 4153 4154 /* 4155 * A link to an append-only or immutable file cannot be created. 4156 */ 4157 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 4158 return -EPERM; 4159 /* 4160 * Updating the link count will likely cause i_uid and i_gid to 4161 * be writen back improperly if their true value is unknown to 4162 * the vfs. 4163 */ 4164 if (HAS_UNMAPPED_ID(inode)) 4165 return -EPERM; 4166 if (!dir->i_op->link) 4167 return -EPERM; 4168 if (S_ISDIR(inode->i_mode)) 4169 return -EPERM; 4170 4171 error = security_inode_link(old_dentry, dir, new_dentry); 4172 if (error) 4173 return error; 4174 4175 inode_lock(inode); 4176 /* Make sure we don't allow creating hardlink to an unlinked file */ 4177 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE)) 4178 error = -ENOENT; 4179 else if (max_links && inode->i_nlink >= max_links) 4180 error = -EMLINK; 4181 else { 4182 error = try_break_deleg(inode, delegated_inode); 4183 if (!error) 4184 error = dir->i_op->link(old_dentry, dir, new_dentry); 4185 } 4186 4187 if (!error && (inode->i_state & I_LINKABLE)) { 4188 spin_lock(&inode->i_lock); 4189 inode->i_state &= ~I_LINKABLE; 4190 spin_unlock(&inode->i_lock); 4191 } 4192 inode_unlock(inode); 4193 if (!error) 4194 fsnotify_link(dir, inode, new_dentry); 4195 return error; 4196 } 4197 EXPORT_SYMBOL(vfs_link); 4198 4199 /* 4200 * Hardlinks are often used in delicate situations. We avoid 4201 * security-related surprises by not following symlinks on the 4202 * newname. --KAB 4203 * 4204 * We don't follow them on the oldname either to be compatible 4205 * with linux 2.0, and to avoid hard-linking to directories 4206 * and other special files. --ADM 4207 */ 4208 int do_linkat(int olddfd, const char __user *oldname, int newdfd, 4209 const char __user *newname, int flags) 4210 { 4211 struct dentry *new_dentry; 4212 struct path old_path, new_path; 4213 struct inode *delegated_inode = NULL; 4214 int how = 0; 4215 int error; 4216 4217 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) 4218 return -EINVAL; 4219 /* 4220 * To use null names we require CAP_DAC_READ_SEARCH 4221 * This ensures that not everyone will be able to create 4222 * handlink using the passed filedescriptor. 4223 */ 4224 if (flags & AT_EMPTY_PATH) { 4225 if (!capable(CAP_DAC_READ_SEARCH)) 4226 return -ENOENT; 4227 how = LOOKUP_EMPTY; 4228 } 4229 4230 if (flags & AT_SYMLINK_FOLLOW) 4231 how |= LOOKUP_FOLLOW; 4232 retry: 4233 error = user_path_at(olddfd, oldname, how, &old_path); 4234 if (error) 4235 return error; 4236 4237 new_dentry = user_path_create(newdfd, newname, &new_path, 4238 (how & LOOKUP_REVAL)); 4239 error = PTR_ERR(new_dentry); 4240 if (IS_ERR(new_dentry)) 4241 goto out; 4242 4243 error = -EXDEV; 4244 if (old_path.mnt != new_path.mnt) 4245 goto out_dput; 4246 error = may_linkat(&old_path); 4247 if (unlikely(error)) 4248 goto out_dput; 4249 error = security_path_link(old_path.dentry, &new_path, new_dentry); 4250 if (error) 4251 goto out_dput; 4252 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode); 4253 out_dput: 4254 done_path_create(&new_path, new_dentry); 4255 if (delegated_inode) { 4256 error = break_deleg_wait(&delegated_inode); 4257 if (!error) { 4258 path_put(&old_path); 4259 goto retry; 4260 } 4261 } 4262 if (retry_estale(error, how)) { 4263 path_put(&old_path); 4264 how |= LOOKUP_REVAL; 4265 goto retry; 4266 } 4267 out: 4268 path_put(&old_path); 4269 4270 return error; 4271 } 4272 4273 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 4274 int, newdfd, const char __user *, newname, int, flags) 4275 { 4276 return do_linkat(olddfd, oldname, newdfd, newname, flags); 4277 } 4278 4279 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 4280 { 4281 return do_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 4282 } 4283 4284 /** 4285 * vfs_rename - rename a filesystem object 4286 * @old_dir: parent of source 4287 * @old_dentry: source 4288 * @new_dir: parent of destination 4289 * @new_dentry: destination 4290 * @delegated_inode: returns an inode needing a delegation break 4291 * @flags: rename flags 4292 * 4293 * The caller must hold multiple mutexes--see lock_rename()). 4294 * 4295 * If vfs_rename discovers a delegation in need of breaking at either 4296 * the source or destination, it will return -EWOULDBLOCK and return a 4297 * reference to the inode in delegated_inode. The caller should then 4298 * break the delegation and retry. Because breaking a delegation may 4299 * take a long time, the caller should drop all locks before doing 4300 * so. 4301 * 4302 * Alternatively, a caller may pass NULL for delegated_inode. This may 4303 * be appropriate for callers that expect the underlying filesystem not 4304 * to be NFS exported. 4305 * 4306 * The worst of all namespace operations - renaming directory. "Perverted" 4307 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 4308 * Problems: 4309 * 4310 * a) we can get into loop creation. 4311 * b) race potential - two innocent renames can create a loop together. 4312 * That's where 4.4 screws up. Current fix: serialization on 4313 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 4314 * story. 4315 * c) we have to lock _four_ objects - parents and victim (if it exists), 4316 * and source (if it is not a directory). 4317 * And that - after we got ->i_mutex on parents (until then we don't know 4318 * whether the target exists). Solution: try to be smart with locking 4319 * order for inodes. We rely on the fact that tree topology may change 4320 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 4321 * move will be locked. Thus we can rank directories by the tree 4322 * (ancestors first) and rank all non-directories after them. 4323 * That works since everybody except rename does "lock parent, lookup, 4324 * lock child" and rename is under ->s_vfs_rename_mutex. 4325 * HOWEVER, it relies on the assumption that any object with ->lookup() 4326 * has no more than 1 dentry. If "hybrid" objects will ever appear, 4327 * we'd better make sure that there's no link(2) for them. 4328 * d) conversion from fhandle to dentry may come in the wrong moment - when 4329 * we are removing the target. Solution: we will have to grab ->i_mutex 4330 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 4331 * ->i_mutex on parents, which works but leads to some truly excessive 4332 * locking]. 4333 */ 4334 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry, 4335 struct inode *new_dir, struct dentry *new_dentry, 4336 struct inode **delegated_inode, unsigned int flags) 4337 { 4338 int error; 4339 bool is_dir = d_is_dir(old_dentry); 4340 struct inode *source = old_dentry->d_inode; 4341 struct inode *target = new_dentry->d_inode; 4342 bool new_is_dir = false; 4343 unsigned max_links = new_dir->i_sb->s_max_links; 4344 struct name_snapshot old_name; 4345 4346 if (source == target) 4347 return 0; 4348 4349 error = may_delete(old_dir, old_dentry, is_dir); 4350 if (error) 4351 return error; 4352 4353 if (!target) { 4354 error = may_create(new_dir, new_dentry); 4355 } else { 4356 new_is_dir = d_is_dir(new_dentry); 4357 4358 if (!(flags & RENAME_EXCHANGE)) 4359 error = may_delete(new_dir, new_dentry, is_dir); 4360 else 4361 error = may_delete(new_dir, new_dentry, new_is_dir); 4362 } 4363 if (error) 4364 return error; 4365 4366 if (!old_dir->i_op->rename) 4367 return -EPERM; 4368 4369 /* 4370 * If we are going to change the parent - check write permissions, 4371 * we'll need to flip '..'. 4372 */ 4373 if (new_dir != old_dir) { 4374 if (is_dir) { 4375 error = inode_permission(source, MAY_WRITE); 4376 if (error) 4377 return error; 4378 } 4379 if ((flags & RENAME_EXCHANGE) && new_is_dir) { 4380 error = inode_permission(target, MAY_WRITE); 4381 if (error) 4382 return error; 4383 } 4384 } 4385 4386 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry, 4387 flags); 4388 if (error) 4389 return error; 4390 4391 take_dentry_name_snapshot(&old_name, old_dentry); 4392 dget(new_dentry); 4393 if (!is_dir || (flags & RENAME_EXCHANGE)) 4394 lock_two_nondirectories(source, target); 4395 else if (target) 4396 inode_lock(target); 4397 4398 error = -EBUSY; 4399 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry)) 4400 goto out; 4401 4402 if (max_links && new_dir != old_dir) { 4403 error = -EMLINK; 4404 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links) 4405 goto out; 4406 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir && 4407 old_dir->i_nlink >= max_links) 4408 goto out; 4409 } 4410 if (!is_dir) { 4411 error = try_break_deleg(source, delegated_inode); 4412 if (error) 4413 goto out; 4414 } 4415 if (target && !new_is_dir) { 4416 error = try_break_deleg(target, delegated_inode); 4417 if (error) 4418 goto out; 4419 } 4420 error = old_dir->i_op->rename(old_dir, old_dentry, 4421 new_dir, new_dentry, flags); 4422 if (error) 4423 goto out; 4424 4425 if (!(flags & RENAME_EXCHANGE) && target) { 4426 if (is_dir) { 4427 shrink_dcache_parent(new_dentry); 4428 target->i_flags |= S_DEAD; 4429 } 4430 dont_mount(new_dentry); 4431 detach_mounts(new_dentry); 4432 } 4433 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) { 4434 if (!(flags & RENAME_EXCHANGE)) 4435 d_move(old_dentry, new_dentry); 4436 else 4437 d_exchange(old_dentry, new_dentry); 4438 } 4439 out: 4440 if (!is_dir || (flags & RENAME_EXCHANGE)) 4441 unlock_two_nondirectories(source, target); 4442 else if (target) 4443 inode_unlock(target); 4444 dput(new_dentry); 4445 if (!error) { 4446 fsnotify_move(old_dir, new_dir, &old_name.name, is_dir, 4447 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry); 4448 if (flags & RENAME_EXCHANGE) { 4449 fsnotify_move(new_dir, old_dir, &old_dentry->d_name, 4450 new_is_dir, NULL, new_dentry); 4451 } 4452 } 4453 release_dentry_name_snapshot(&old_name); 4454 4455 return error; 4456 } 4457 EXPORT_SYMBOL(vfs_rename); 4458 4459 static int do_renameat2(int olddfd, const char __user *oldname, int newdfd, 4460 const char __user *newname, unsigned int flags) 4461 { 4462 struct dentry *old_dentry, *new_dentry; 4463 struct dentry *trap; 4464 struct path old_path, new_path; 4465 struct qstr old_last, new_last; 4466 int old_type, new_type; 4467 struct inode *delegated_inode = NULL; 4468 struct filename *from; 4469 struct filename *to; 4470 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET; 4471 bool should_retry = false; 4472 int error; 4473 4474 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 4475 return -EINVAL; 4476 4477 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) && 4478 (flags & RENAME_EXCHANGE)) 4479 return -EINVAL; 4480 4481 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD)) 4482 return -EPERM; 4483 4484 if (flags & RENAME_EXCHANGE) 4485 target_flags = 0; 4486 4487 retry: 4488 from = filename_parentat(olddfd, getname(oldname), lookup_flags, 4489 &old_path, &old_last, &old_type); 4490 if (IS_ERR(from)) { 4491 error = PTR_ERR(from); 4492 goto exit; 4493 } 4494 4495 to = filename_parentat(newdfd, getname(newname), lookup_flags, 4496 &new_path, &new_last, &new_type); 4497 if (IS_ERR(to)) { 4498 error = PTR_ERR(to); 4499 goto exit1; 4500 } 4501 4502 error = -EXDEV; 4503 if (old_path.mnt != new_path.mnt) 4504 goto exit2; 4505 4506 error = -EBUSY; 4507 if (old_type != LAST_NORM) 4508 goto exit2; 4509 4510 if (flags & RENAME_NOREPLACE) 4511 error = -EEXIST; 4512 if (new_type != LAST_NORM) 4513 goto exit2; 4514 4515 error = mnt_want_write(old_path.mnt); 4516 if (error) 4517 goto exit2; 4518 4519 retry_deleg: 4520 trap = lock_rename(new_path.dentry, old_path.dentry); 4521 4522 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags); 4523 error = PTR_ERR(old_dentry); 4524 if (IS_ERR(old_dentry)) 4525 goto exit3; 4526 /* source must exist */ 4527 error = -ENOENT; 4528 if (d_is_negative(old_dentry)) 4529 goto exit4; 4530 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags); 4531 error = PTR_ERR(new_dentry); 4532 if (IS_ERR(new_dentry)) 4533 goto exit4; 4534 error = -EEXIST; 4535 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry)) 4536 goto exit5; 4537 if (flags & RENAME_EXCHANGE) { 4538 error = -ENOENT; 4539 if (d_is_negative(new_dentry)) 4540 goto exit5; 4541 4542 if (!d_is_dir(new_dentry)) { 4543 error = -ENOTDIR; 4544 if (new_last.name[new_last.len]) 4545 goto exit5; 4546 } 4547 } 4548 /* unless the source is a directory trailing slashes give -ENOTDIR */ 4549 if (!d_is_dir(old_dentry)) { 4550 error = -ENOTDIR; 4551 if (old_last.name[old_last.len]) 4552 goto exit5; 4553 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len]) 4554 goto exit5; 4555 } 4556 /* source should not be ancestor of target */ 4557 error = -EINVAL; 4558 if (old_dentry == trap) 4559 goto exit5; 4560 /* target should not be an ancestor of source */ 4561 if (!(flags & RENAME_EXCHANGE)) 4562 error = -ENOTEMPTY; 4563 if (new_dentry == trap) 4564 goto exit5; 4565 4566 error = security_path_rename(&old_path, old_dentry, 4567 &new_path, new_dentry, flags); 4568 if (error) 4569 goto exit5; 4570 error = vfs_rename(old_path.dentry->d_inode, old_dentry, 4571 new_path.dentry->d_inode, new_dentry, 4572 &delegated_inode, flags); 4573 exit5: 4574 dput(new_dentry); 4575 exit4: 4576 dput(old_dentry); 4577 exit3: 4578 unlock_rename(new_path.dentry, old_path.dentry); 4579 if (delegated_inode) { 4580 error = break_deleg_wait(&delegated_inode); 4581 if (!error) 4582 goto retry_deleg; 4583 } 4584 mnt_drop_write(old_path.mnt); 4585 exit2: 4586 if (retry_estale(error, lookup_flags)) 4587 should_retry = true; 4588 path_put(&new_path); 4589 putname(to); 4590 exit1: 4591 path_put(&old_path); 4592 putname(from); 4593 if (should_retry) { 4594 should_retry = false; 4595 lookup_flags |= LOOKUP_REVAL; 4596 goto retry; 4597 } 4598 exit: 4599 return error; 4600 } 4601 4602 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname, 4603 int, newdfd, const char __user *, newname, unsigned int, flags) 4604 { 4605 return do_renameat2(olddfd, oldname, newdfd, newname, flags); 4606 } 4607 4608 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 4609 int, newdfd, const char __user *, newname) 4610 { 4611 return do_renameat2(olddfd, oldname, newdfd, newname, 0); 4612 } 4613 4614 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 4615 { 4616 return do_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 4617 } 4618 4619 int vfs_whiteout(struct inode *dir, struct dentry *dentry) 4620 { 4621 int error = may_create(dir, dentry); 4622 if (error) 4623 return error; 4624 4625 if (!dir->i_op->mknod) 4626 return -EPERM; 4627 4628 return dir->i_op->mknod(dir, dentry, 4629 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 4630 } 4631 EXPORT_SYMBOL(vfs_whiteout); 4632 4633 int readlink_copy(char __user *buffer, int buflen, const char *link) 4634 { 4635 int len = PTR_ERR(link); 4636 if (IS_ERR(link)) 4637 goto out; 4638 4639 len = strlen(link); 4640 if (len > (unsigned) buflen) 4641 len = buflen; 4642 if (copy_to_user(buffer, link, len)) 4643 len = -EFAULT; 4644 out: 4645 return len; 4646 } 4647 4648 /** 4649 * vfs_readlink - copy symlink body into userspace buffer 4650 * @dentry: dentry on which to get symbolic link 4651 * @buffer: user memory pointer 4652 * @buflen: size of buffer 4653 * 4654 * Does not touch atime. That's up to the caller if necessary 4655 * 4656 * Does not call security hook. 4657 */ 4658 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4659 { 4660 struct inode *inode = d_inode(dentry); 4661 DEFINE_DELAYED_CALL(done); 4662 const char *link; 4663 int res; 4664 4665 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) { 4666 if (unlikely(inode->i_op->readlink)) 4667 return inode->i_op->readlink(dentry, buffer, buflen); 4668 4669 if (!d_is_symlink(dentry)) 4670 return -EINVAL; 4671 4672 spin_lock(&inode->i_lock); 4673 inode->i_opflags |= IOP_DEFAULT_READLINK; 4674 spin_unlock(&inode->i_lock); 4675 } 4676 4677 link = READ_ONCE(inode->i_link); 4678 if (!link) { 4679 link = inode->i_op->get_link(dentry, inode, &done); 4680 if (IS_ERR(link)) 4681 return PTR_ERR(link); 4682 } 4683 res = readlink_copy(buffer, buflen, link); 4684 do_delayed_call(&done); 4685 return res; 4686 } 4687 EXPORT_SYMBOL(vfs_readlink); 4688 4689 /** 4690 * vfs_get_link - get symlink body 4691 * @dentry: dentry on which to get symbolic link 4692 * @done: caller needs to free returned data with this 4693 * 4694 * Calls security hook and i_op->get_link() on the supplied inode. 4695 * 4696 * It does not touch atime. That's up to the caller if necessary. 4697 * 4698 * Does not work on "special" symlinks like /proc/$$/fd/N 4699 */ 4700 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done) 4701 { 4702 const char *res = ERR_PTR(-EINVAL); 4703 struct inode *inode = d_inode(dentry); 4704 4705 if (d_is_symlink(dentry)) { 4706 res = ERR_PTR(security_inode_readlink(dentry)); 4707 if (!res) 4708 res = inode->i_op->get_link(dentry, inode, done); 4709 } 4710 return res; 4711 } 4712 EXPORT_SYMBOL(vfs_get_link); 4713 4714 /* get the link contents into pagecache */ 4715 const char *page_get_link(struct dentry *dentry, struct inode *inode, 4716 struct delayed_call *callback) 4717 { 4718 char *kaddr; 4719 struct page *page; 4720 struct address_space *mapping = inode->i_mapping; 4721 4722 if (!dentry) { 4723 page = find_get_page(mapping, 0); 4724 if (!page) 4725 return ERR_PTR(-ECHILD); 4726 if (!PageUptodate(page)) { 4727 put_page(page); 4728 return ERR_PTR(-ECHILD); 4729 } 4730 } else { 4731 page = read_mapping_page(mapping, 0, NULL); 4732 if (IS_ERR(page)) 4733 return (char*)page; 4734 } 4735 set_delayed_call(callback, page_put_link, page); 4736 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM); 4737 kaddr = page_address(page); 4738 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1); 4739 return kaddr; 4740 } 4741 4742 EXPORT_SYMBOL(page_get_link); 4743 4744 void page_put_link(void *arg) 4745 { 4746 put_page(arg); 4747 } 4748 EXPORT_SYMBOL(page_put_link); 4749 4750 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4751 { 4752 DEFINE_DELAYED_CALL(done); 4753 int res = readlink_copy(buffer, buflen, 4754 page_get_link(dentry, d_inode(dentry), 4755 &done)); 4756 do_delayed_call(&done); 4757 return res; 4758 } 4759 EXPORT_SYMBOL(page_readlink); 4760 4761 /* 4762 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS 4763 */ 4764 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs) 4765 { 4766 struct address_space *mapping = inode->i_mapping; 4767 struct page *page; 4768 void *fsdata; 4769 int err; 4770 unsigned int flags = 0; 4771 if (nofs) 4772 flags |= AOP_FLAG_NOFS; 4773 4774 retry: 4775 err = pagecache_write_begin(NULL, mapping, 0, len-1, 4776 flags, &page, &fsdata); 4777 if (err) 4778 goto fail; 4779 4780 memcpy(page_address(page), symname, len-1); 4781 4782 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1, 4783 page, fsdata); 4784 if (err < 0) 4785 goto fail; 4786 if (err < len-1) 4787 goto retry; 4788 4789 mark_inode_dirty(inode); 4790 return 0; 4791 fail: 4792 return err; 4793 } 4794 EXPORT_SYMBOL(__page_symlink); 4795 4796 int page_symlink(struct inode *inode, const char *symname, int len) 4797 { 4798 return __page_symlink(inode, symname, len, 4799 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS)); 4800 } 4801 EXPORT_SYMBOL(page_symlink); 4802 4803 const struct inode_operations page_symlink_inode_operations = { 4804 .get_link = page_get_link, 4805 }; 4806 EXPORT_SYMBOL(page_symlink_inode_operations); 4807