xref: /openbmc/linux/fs/namei.c (revision e7253313)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/namei.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * Some corrections by tytso.
10  */
11 
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13  * lookup logic.
14  */
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
16  */
17 
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
22 #include <linux/fs.h>
23 #include <linux/namei.h>
24 #include <linux/pagemap.h>
25 #include <linux/fsnotify.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/ima.h>
29 #include <linux/syscalls.h>
30 #include <linux/mount.h>
31 #include <linux/audit.h>
32 #include <linux/capability.h>
33 #include <linux/file.h>
34 #include <linux/fcntl.h>
35 #include <linux/device_cgroup.h>
36 #include <linux/fs_struct.h>
37 #include <linux/posix_acl.h>
38 #include <linux/hash.h>
39 #include <linux/bitops.h>
40 #include <linux/init_task.h>
41 #include <linux/uaccess.h>
42 
43 #include "internal.h"
44 #include "mount.h"
45 
46 /* [Feb-1997 T. Schoebel-Theuer]
47  * Fundamental changes in the pathname lookup mechanisms (namei)
48  * were necessary because of omirr.  The reason is that omirr needs
49  * to know the _real_ pathname, not the user-supplied one, in case
50  * of symlinks (and also when transname replacements occur).
51  *
52  * The new code replaces the old recursive symlink resolution with
53  * an iterative one (in case of non-nested symlink chains).  It does
54  * this with calls to <fs>_follow_link().
55  * As a side effect, dir_namei(), _namei() and follow_link() are now
56  * replaced with a single function lookup_dentry() that can handle all
57  * the special cases of the former code.
58  *
59  * With the new dcache, the pathname is stored at each inode, at least as
60  * long as the refcount of the inode is positive.  As a side effect, the
61  * size of the dcache depends on the inode cache and thus is dynamic.
62  *
63  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
64  * resolution to correspond with current state of the code.
65  *
66  * Note that the symlink resolution is not *completely* iterative.
67  * There is still a significant amount of tail- and mid- recursion in
68  * the algorithm.  Also, note that <fs>_readlink() is not used in
69  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
70  * may return different results than <fs>_follow_link().  Many virtual
71  * filesystems (including /proc) exhibit this behavior.
72  */
73 
74 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
75  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
76  * and the name already exists in form of a symlink, try to create the new
77  * name indicated by the symlink. The old code always complained that the
78  * name already exists, due to not following the symlink even if its target
79  * is nonexistent.  The new semantics affects also mknod() and link() when
80  * the name is a symlink pointing to a non-existent name.
81  *
82  * I don't know which semantics is the right one, since I have no access
83  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
84  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
85  * "old" one. Personally, I think the new semantics is much more logical.
86  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
87  * file does succeed in both HP-UX and SunOs, but not in Solaris
88  * and in the old Linux semantics.
89  */
90 
91 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
92  * semantics.  See the comments in "open_namei" and "do_link" below.
93  *
94  * [10-Sep-98 Alan Modra] Another symlink change.
95  */
96 
97 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
98  *	inside the path - always follow.
99  *	in the last component in creation/removal/renaming - never follow.
100  *	if LOOKUP_FOLLOW passed - follow.
101  *	if the pathname has trailing slashes - follow.
102  *	otherwise - don't follow.
103  * (applied in that order).
104  *
105  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
106  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
107  * During the 2.4 we need to fix the userland stuff depending on it -
108  * hopefully we will be able to get rid of that wart in 2.5. So far only
109  * XEmacs seems to be relying on it...
110  */
111 /*
112  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
113  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
114  * any extra contention...
115  */
116 
117 /* In order to reduce some races, while at the same time doing additional
118  * checking and hopefully speeding things up, we copy filenames to the
119  * kernel data space before using them..
120  *
121  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
122  * PATH_MAX includes the nul terminator --RR.
123  */
124 
125 #define EMBEDDED_NAME_MAX	(PATH_MAX - offsetof(struct filename, iname))
126 
127 struct filename *
128 getname_flags(const char __user *filename, int flags, int *empty)
129 {
130 	struct filename *result;
131 	char *kname;
132 	int len;
133 
134 	result = audit_reusename(filename);
135 	if (result)
136 		return result;
137 
138 	result = __getname();
139 	if (unlikely(!result))
140 		return ERR_PTR(-ENOMEM);
141 
142 	/*
143 	 * First, try to embed the struct filename inside the names_cache
144 	 * allocation
145 	 */
146 	kname = (char *)result->iname;
147 	result->name = kname;
148 
149 	len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
150 	if (unlikely(len < 0)) {
151 		__putname(result);
152 		return ERR_PTR(len);
153 	}
154 
155 	/*
156 	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
157 	 * separate struct filename so we can dedicate the entire
158 	 * names_cache allocation for the pathname, and re-do the copy from
159 	 * userland.
160 	 */
161 	if (unlikely(len == EMBEDDED_NAME_MAX)) {
162 		const size_t size = offsetof(struct filename, iname[1]);
163 		kname = (char *)result;
164 
165 		/*
166 		 * size is chosen that way we to guarantee that
167 		 * result->iname[0] is within the same object and that
168 		 * kname can't be equal to result->iname, no matter what.
169 		 */
170 		result = kzalloc(size, GFP_KERNEL);
171 		if (unlikely(!result)) {
172 			__putname(kname);
173 			return ERR_PTR(-ENOMEM);
174 		}
175 		result->name = kname;
176 		len = strncpy_from_user(kname, filename, PATH_MAX);
177 		if (unlikely(len < 0)) {
178 			__putname(kname);
179 			kfree(result);
180 			return ERR_PTR(len);
181 		}
182 		if (unlikely(len == PATH_MAX)) {
183 			__putname(kname);
184 			kfree(result);
185 			return ERR_PTR(-ENAMETOOLONG);
186 		}
187 	}
188 
189 	result->refcnt = 1;
190 	/* The empty path is special. */
191 	if (unlikely(!len)) {
192 		if (empty)
193 			*empty = 1;
194 		if (!(flags & LOOKUP_EMPTY)) {
195 			putname(result);
196 			return ERR_PTR(-ENOENT);
197 		}
198 	}
199 
200 	result->uptr = filename;
201 	result->aname = NULL;
202 	audit_getname(result);
203 	return result;
204 }
205 
206 struct filename *
207 getname(const char __user * filename)
208 {
209 	return getname_flags(filename, 0, NULL);
210 }
211 
212 struct filename *
213 getname_kernel(const char * filename)
214 {
215 	struct filename *result;
216 	int len = strlen(filename) + 1;
217 
218 	result = __getname();
219 	if (unlikely(!result))
220 		return ERR_PTR(-ENOMEM);
221 
222 	if (len <= EMBEDDED_NAME_MAX) {
223 		result->name = (char *)result->iname;
224 	} else if (len <= PATH_MAX) {
225 		const size_t size = offsetof(struct filename, iname[1]);
226 		struct filename *tmp;
227 
228 		tmp = kmalloc(size, GFP_KERNEL);
229 		if (unlikely(!tmp)) {
230 			__putname(result);
231 			return ERR_PTR(-ENOMEM);
232 		}
233 		tmp->name = (char *)result;
234 		result = tmp;
235 	} else {
236 		__putname(result);
237 		return ERR_PTR(-ENAMETOOLONG);
238 	}
239 	memcpy((char *)result->name, filename, len);
240 	result->uptr = NULL;
241 	result->aname = NULL;
242 	result->refcnt = 1;
243 	audit_getname(result);
244 
245 	return result;
246 }
247 
248 void putname(struct filename *name)
249 {
250 	BUG_ON(name->refcnt <= 0);
251 
252 	if (--name->refcnt > 0)
253 		return;
254 
255 	if (name->name != name->iname) {
256 		__putname(name->name);
257 		kfree(name);
258 	} else
259 		__putname(name);
260 }
261 
262 static int check_acl(struct inode *inode, int mask)
263 {
264 #ifdef CONFIG_FS_POSIX_ACL
265 	struct posix_acl *acl;
266 
267 	if (mask & MAY_NOT_BLOCK) {
268 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
269 	        if (!acl)
270 	                return -EAGAIN;
271 		/* no ->get_acl() calls in RCU mode... */
272 		if (is_uncached_acl(acl))
273 			return -ECHILD;
274 	        return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
275 	}
276 
277 	acl = get_acl(inode, ACL_TYPE_ACCESS);
278 	if (IS_ERR(acl))
279 		return PTR_ERR(acl);
280 	if (acl) {
281 	        int error = posix_acl_permission(inode, acl, mask);
282 	        posix_acl_release(acl);
283 	        return error;
284 	}
285 #endif
286 
287 	return -EAGAIN;
288 }
289 
290 /*
291  * This does the basic permission checking
292  */
293 static int acl_permission_check(struct inode *inode, int mask)
294 {
295 	unsigned int mode = inode->i_mode;
296 
297 	if (likely(uid_eq(current_fsuid(), inode->i_uid)))
298 		mode >>= 6;
299 	else {
300 		if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
301 			int error = check_acl(inode, mask);
302 			if (error != -EAGAIN)
303 				return error;
304 		}
305 
306 		if (in_group_p(inode->i_gid))
307 			mode >>= 3;
308 	}
309 
310 	/*
311 	 * If the DACs are ok we don't need any capability check.
312 	 */
313 	if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
314 		return 0;
315 	return -EACCES;
316 }
317 
318 /**
319  * generic_permission -  check for access rights on a Posix-like filesystem
320  * @inode:	inode to check access rights for
321  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
322  *
323  * Used to check for read/write/execute permissions on a file.
324  * We use "fsuid" for this, letting us set arbitrary permissions
325  * for filesystem access without changing the "normal" uids which
326  * are used for other things.
327  *
328  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
329  * request cannot be satisfied (eg. requires blocking or too much complexity).
330  * It would then be called again in ref-walk mode.
331  */
332 int generic_permission(struct inode *inode, int mask)
333 {
334 	int ret;
335 
336 	/*
337 	 * Do the basic permission checks.
338 	 */
339 	ret = acl_permission_check(inode, mask);
340 	if (ret != -EACCES)
341 		return ret;
342 
343 	if (S_ISDIR(inode->i_mode)) {
344 		/* DACs are overridable for directories */
345 		if (!(mask & MAY_WRITE))
346 			if (capable_wrt_inode_uidgid(inode,
347 						     CAP_DAC_READ_SEARCH))
348 				return 0;
349 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
350 			return 0;
351 		return -EACCES;
352 	}
353 
354 	/*
355 	 * Searching includes executable on directories, else just read.
356 	 */
357 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
358 	if (mask == MAY_READ)
359 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
360 			return 0;
361 	/*
362 	 * Read/write DACs are always overridable.
363 	 * Executable DACs are overridable when there is
364 	 * at least one exec bit set.
365 	 */
366 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
367 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
368 			return 0;
369 
370 	return -EACCES;
371 }
372 EXPORT_SYMBOL(generic_permission);
373 
374 /*
375  * We _really_ want to just do "generic_permission()" without
376  * even looking at the inode->i_op values. So we keep a cache
377  * flag in inode->i_opflags, that says "this has not special
378  * permission function, use the fast case".
379  */
380 static inline int do_inode_permission(struct inode *inode, int mask)
381 {
382 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
383 		if (likely(inode->i_op->permission))
384 			return inode->i_op->permission(inode, mask);
385 
386 		/* This gets set once for the inode lifetime */
387 		spin_lock(&inode->i_lock);
388 		inode->i_opflags |= IOP_FASTPERM;
389 		spin_unlock(&inode->i_lock);
390 	}
391 	return generic_permission(inode, mask);
392 }
393 
394 /**
395  * sb_permission - Check superblock-level permissions
396  * @sb: Superblock of inode to check permission on
397  * @inode: Inode to check permission on
398  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
399  *
400  * Separate out file-system wide checks from inode-specific permission checks.
401  */
402 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
403 {
404 	if (unlikely(mask & MAY_WRITE)) {
405 		umode_t mode = inode->i_mode;
406 
407 		/* Nobody gets write access to a read-only fs. */
408 		if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
409 			return -EROFS;
410 	}
411 	return 0;
412 }
413 
414 /**
415  * inode_permission - Check for access rights to a given inode
416  * @inode: Inode to check permission on
417  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
418  *
419  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
420  * this, letting us set arbitrary permissions for filesystem access without
421  * changing the "normal" UIDs which are used for other things.
422  *
423  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
424  */
425 int inode_permission(struct inode *inode, int mask)
426 {
427 	int retval;
428 
429 	retval = sb_permission(inode->i_sb, inode, mask);
430 	if (retval)
431 		return retval;
432 
433 	if (unlikely(mask & MAY_WRITE)) {
434 		/*
435 		 * Nobody gets write access to an immutable file.
436 		 */
437 		if (IS_IMMUTABLE(inode))
438 			return -EPERM;
439 
440 		/*
441 		 * Updating mtime will likely cause i_uid and i_gid to be
442 		 * written back improperly if their true value is unknown
443 		 * to the vfs.
444 		 */
445 		if (HAS_UNMAPPED_ID(inode))
446 			return -EACCES;
447 	}
448 
449 	retval = do_inode_permission(inode, mask);
450 	if (retval)
451 		return retval;
452 
453 	retval = devcgroup_inode_permission(inode, mask);
454 	if (retval)
455 		return retval;
456 
457 	return security_inode_permission(inode, mask);
458 }
459 EXPORT_SYMBOL(inode_permission);
460 
461 /**
462  * path_get - get a reference to a path
463  * @path: path to get the reference to
464  *
465  * Given a path increment the reference count to the dentry and the vfsmount.
466  */
467 void path_get(const struct path *path)
468 {
469 	mntget(path->mnt);
470 	dget(path->dentry);
471 }
472 EXPORT_SYMBOL(path_get);
473 
474 /**
475  * path_put - put a reference to a path
476  * @path: path to put the reference to
477  *
478  * Given a path decrement the reference count to the dentry and the vfsmount.
479  */
480 void path_put(const struct path *path)
481 {
482 	dput(path->dentry);
483 	mntput(path->mnt);
484 }
485 EXPORT_SYMBOL(path_put);
486 
487 #define EMBEDDED_LEVELS 2
488 struct nameidata {
489 	struct path	path;
490 	struct qstr	last;
491 	struct path	root;
492 	struct inode	*inode; /* path.dentry.d_inode */
493 	unsigned int	flags;
494 	unsigned	seq, m_seq;
495 	int		last_type;
496 	unsigned	depth;
497 	int		total_link_count;
498 	struct saved {
499 		struct path link;
500 		struct delayed_call done;
501 		const char *name;
502 		unsigned seq;
503 	} *stack, internal[EMBEDDED_LEVELS];
504 	struct filename	*name;
505 	struct nameidata *saved;
506 	struct inode	*link_inode;
507 	unsigned	root_seq;
508 	int		dfd;
509 } __randomize_layout;
510 
511 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
512 {
513 	struct nameidata *old = current->nameidata;
514 	p->stack = p->internal;
515 	p->dfd = dfd;
516 	p->name = name;
517 	p->total_link_count = old ? old->total_link_count : 0;
518 	p->saved = old;
519 	current->nameidata = p;
520 }
521 
522 static void restore_nameidata(void)
523 {
524 	struct nameidata *now = current->nameidata, *old = now->saved;
525 
526 	current->nameidata = old;
527 	if (old)
528 		old->total_link_count = now->total_link_count;
529 	if (now->stack != now->internal)
530 		kfree(now->stack);
531 }
532 
533 static int __nd_alloc_stack(struct nameidata *nd)
534 {
535 	struct saved *p;
536 
537 	if (nd->flags & LOOKUP_RCU) {
538 		p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
539 				  GFP_ATOMIC);
540 		if (unlikely(!p))
541 			return -ECHILD;
542 	} else {
543 		p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
544 				  GFP_KERNEL);
545 		if (unlikely(!p))
546 			return -ENOMEM;
547 	}
548 	memcpy(p, nd->internal, sizeof(nd->internal));
549 	nd->stack = p;
550 	return 0;
551 }
552 
553 /**
554  * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
555  * @path: nameidate to verify
556  *
557  * Rename can sometimes move a file or directory outside of a bind
558  * mount, path_connected allows those cases to be detected.
559  */
560 static bool path_connected(const struct path *path)
561 {
562 	struct vfsmount *mnt = path->mnt;
563 	struct super_block *sb = mnt->mnt_sb;
564 
565 	/* Bind mounts and multi-root filesystems can have disconnected paths */
566 	if (!(sb->s_iflags & SB_I_MULTIROOT) && (mnt->mnt_root == sb->s_root))
567 		return true;
568 
569 	return is_subdir(path->dentry, mnt->mnt_root);
570 }
571 
572 static inline int nd_alloc_stack(struct nameidata *nd)
573 {
574 	if (likely(nd->depth != EMBEDDED_LEVELS))
575 		return 0;
576 	if (likely(nd->stack != nd->internal))
577 		return 0;
578 	return __nd_alloc_stack(nd);
579 }
580 
581 static void drop_links(struct nameidata *nd)
582 {
583 	int i = nd->depth;
584 	while (i--) {
585 		struct saved *last = nd->stack + i;
586 		do_delayed_call(&last->done);
587 		clear_delayed_call(&last->done);
588 	}
589 }
590 
591 static void terminate_walk(struct nameidata *nd)
592 {
593 	drop_links(nd);
594 	if (!(nd->flags & LOOKUP_RCU)) {
595 		int i;
596 		path_put(&nd->path);
597 		for (i = 0; i < nd->depth; i++)
598 			path_put(&nd->stack[i].link);
599 		if (nd->flags & LOOKUP_ROOT_GRABBED) {
600 			path_put(&nd->root);
601 			nd->flags &= ~LOOKUP_ROOT_GRABBED;
602 		}
603 	} else {
604 		nd->flags &= ~LOOKUP_RCU;
605 		rcu_read_unlock();
606 	}
607 	nd->depth = 0;
608 }
609 
610 /* path_put is needed afterwards regardless of success or failure */
611 static bool legitimize_path(struct nameidata *nd,
612 			    struct path *path, unsigned seq)
613 {
614 	int res = __legitimize_mnt(path->mnt, nd->m_seq);
615 	if (unlikely(res)) {
616 		if (res > 0)
617 			path->mnt = NULL;
618 		path->dentry = NULL;
619 		return false;
620 	}
621 	if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
622 		path->dentry = NULL;
623 		return false;
624 	}
625 	return !read_seqcount_retry(&path->dentry->d_seq, seq);
626 }
627 
628 static bool legitimize_links(struct nameidata *nd)
629 {
630 	int i;
631 	for (i = 0; i < nd->depth; i++) {
632 		struct saved *last = nd->stack + i;
633 		if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
634 			drop_links(nd);
635 			nd->depth = i + 1;
636 			return false;
637 		}
638 	}
639 	return true;
640 }
641 
642 static bool legitimize_root(struct nameidata *nd)
643 {
644 	if (!nd->root.mnt || (nd->flags & LOOKUP_ROOT))
645 		return true;
646 	nd->flags |= LOOKUP_ROOT_GRABBED;
647 	return legitimize_path(nd, &nd->root, nd->root_seq);
648 }
649 
650 /*
651  * Path walking has 2 modes, rcu-walk and ref-walk (see
652  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
653  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
654  * normal reference counts on dentries and vfsmounts to transition to ref-walk
655  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
656  * got stuck, so ref-walk may continue from there. If this is not successful
657  * (eg. a seqcount has changed), then failure is returned and it's up to caller
658  * to restart the path walk from the beginning in ref-walk mode.
659  */
660 
661 /**
662  * unlazy_walk - try to switch to ref-walk mode.
663  * @nd: nameidata pathwalk data
664  * Returns: 0 on success, -ECHILD on failure
665  *
666  * unlazy_walk attempts to legitimize the current nd->path and nd->root
667  * for ref-walk mode.
668  * Must be called from rcu-walk context.
669  * Nothing should touch nameidata between unlazy_walk() failure and
670  * terminate_walk().
671  */
672 static int unlazy_walk(struct nameidata *nd)
673 {
674 	struct dentry *parent = nd->path.dentry;
675 
676 	BUG_ON(!(nd->flags & LOOKUP_RCU));
677 
678 	nd->flags &= ~LOOKUP_RCU;
679 	if (unlikely(!legitimize_links(nd)))
680 		goto out1;
681 	if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
682 		goto out;
683 	if (unlikely(!legitimize_root(nd)))
684 		goto out;
685 	rcu_read_unlock();
686 	BUG_ON(nd->inode != parent->d_inode);
687 	return 0;
688 
689 out1:
690 	nd->path.mnt = NULL;
691 	nd->path.dentry = NULL;
692 out:
693 	rcu_read_unlock();
694 	return -ECHILD;
695 }
696 
697 /**
698  * unlazy_child - try to switch to ref-walk mode.
699  * @nd: nameidata pathwalk data
700  * @dentry: child of nd->path.dentry
701  * @seq: seq number to check dentry against
702  * Returns: 0 on success, -ECHILD on failure
703  *
704  * unlazy_child attempts to legitimize the current nd->path, nd->root and dentry
705  * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
706  * @nd.  Must be called from rcu-walk context.
707  * Nothing should touch nameidata between unlazy_child() failure and
708  * terminate_walk().
709  */
710 static int unlazy_child(struct nameidata *nd, struct dentry *dentry, unsigned seq)
711 {
712 	BUG_ON(!(nd->flags & LOOKUP_RCU));
713 
714 	nd->flags &= ~LOOKUP_RCU;
715 	if (unlikely(!legitimize_links(nd)))
716 		goto out2;
717 	if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
718 		goto out2;
719 	if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
720 		goto out1;
721 
722 	/*
723 	 * We need to move both the parent and the dentry from the RCU domain
724 	 * to be properly refcounted. And the sequence number in the dentry
725 	 * validates *both* dentry counters, since we checked the sequence
726 	 * number of the parent after we got the child sequence number. So we
727 	 * know the parent must still be valid if the child sequence number is
728 	 */
729 	if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
730 		goto out;
731 	if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
732 		goto out_dput;
733 	/*
734 	 * Sequence counts matched. Now make sure that the root is
735 	 * still valid and get it if required.
736 	 */
737 	if (unlikely(!legitimize_root(nd)))
738 		goto out_dput;
739 	rcu_read_unlock();
740 	return 0;
741 
742 out2:
743 	nd->path.mnt = NULL;
744 out1:
745 	nd->path.dentry = NULL;
746 out:
747 	rcu_read_unlock();
748 	return -ECHILD;
749 out_dput:
750 	rcu_read_unlock();
751 	dput(dentry);
752 	return -ECHILD;
753 }
754 
755 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
756 {
757 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
758 		return dentry->d_op->d_revalidate(dentry, flags);
759 	else
760 		return 1;
761 }
762 
763 /**
764  * complete_walk - successful completion of path walk
765  * @nd:  pointer nameidata
766  *
767  * If we had been in RCU mode, drop out of it and legitimize nd->path.
768  * Revalidate the final result, unless we'd already done that during
769  * the path walk or the filesystem doesn't ask for it.  Return 0 on
770  * success, -error on failure.  In case of failure caller does not
771  * need to drop nd->path.
772  */
773 static int complete_walk(struct nameidata *nd)
774 {
775 	struct dentry *dentry = nd->path.dentry;
776 	int status;
777 
778 	if (nd->flags & LOOKUP_RCU) {
779 		if (!(nd->flags & LOOKUP_ROOT))
780 			nd->root.mnt = NULL;
781 		if (unlikely(unlazy_walk(nd)))
782 			return -ECHILD;
783 	}
784 
785 	if (likely(!(nd->flags & LOOKUP_JUMPED)))
786 		return 0;
787 
788 	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
789 		return 0;
790 
791 	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
792 	if (status > 0)
793 		return 0;
794 
795 	if (!status)
796 		status = -ESTALE;
797 
798 	return status;
799 }
800 
801 static void set_root(struct nameidata *nd)
802 {
803 	struct fs_struct *fs = current->fs;
804 
805 	if (nd->flags & LOOKUP_RCU) {
806 		unsigned seq;
807 
808 		do {
809 			seq = read_seqcount_begin(&fs->seq);
810 			nd->root = fs->root;
811 			nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
812 		} while (read_seqcount_retry(&fs->seq, seq));
813 	} else {
814 		get_fs_root(fs, &nd->root);
815 		nd->flags |= LOOKUP_ROOT_GRABBED;
816 	}
817 }
818 
819 static void path_put_conditional(struct path *path, struct nameidata *nd)
820 {
821 	dput(path->dentry);
822 	if (path->mnt != nd->path.mnt)
823 		mntput(path->mnt);
824 }
825 
826 static inline void path_to_nameidata(const struct path *path,
827 					struct nameidata *nd)
828 {
829 	if (!(nd->flags & LOOKUP_RCU)) {
830 		dput(nd->path.dentry);
831 		if (nd->path.mnt != path->mnt)
832 			mntput(nd->path.mnt);
833 	}
834 	nd->path.mnt = path->mnt;
835 	nd->path.dentry = path->dentry;
836 }
837 
838 static int nd_jump_root(struct nameidata *nd)
839 {
840 	if (nd->flags & LOOKUP_RCU) {
841 		struct dentry *d;
842 		nd->path = nd->root;
843 		d = nd->path.dentry;
844 		nd->inode = d->d_inode;
845 		nd->seq = nd->root_seq;
846 		if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
847 			return -ECHILD;
848 	} else {
849 		path_put(&nd->path);
850 		nd->path = nd->root;
851 		path_get(&nd->path);
852 		nd->inode = nd->path.dentry->d_inode;
853 	}
854 	nd->flags |= LOOKUP_JUMPED;
855 	return 0;
856 }
857 
858 /*
859  * Helper to directly jump to a known parsed path from ->get_link,
860  * caller must have taken a reference to path beforehand.
861  */
862 void nd_jump_link(struct path *path)
863 {
864 	struct nameidata *nd = current->nameidata;
865 	path_put(&nd->path);
866 
867 	nd->path = *path;
868 	nd->inode = nd->path.dentry->d_inode;
869 	nd->flags |= LOOKUP_JUMPED;
870 }
871 
872 static inline void put_link(struct nameidata *nd)
873 {
874 	struct saved *last = nd->stack + --nd->depth;
875 	do_delayed_call(&last->done);
876 	if (!(nd->flags & LOOKUP_RCU))
877 		path_put(&last->link);
878 }
879 
880 int sysctl_protected_symlinks __read_mostly = 0;
881 int sysctl_protected_hardlinks __read_mostly = 0;
882 int sysctl_protected_fifos __read_mostly;
883 int sysctl_protected_regular __read_mostly;
884 
885 /**
886  * may_follow_link - Check symlink following for unsafe situations
887  * @nd: nameidata pathwalk data
888  *
889  * In the case of the sysctl_protected_symlinks sysctl being enabled,
890  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
891  * in a sticky world-writable directory. This is to protect privileged
892  * processes from failing races against path names that may change out
893  * from under them by way of other users creating malicious symlinks.
894  * It will permit symlinks to be followed only when outside a sticky
895  * world-writable directory, or when the uid of the symlink and follower
896  * match, or when the directory owner matches the symlink's owner.
897  *
898  * Returns 0 if following the symlink is allowed, -ve on error.
899  */
900 static inline int may_follow_link(struct nameidata *nd)
901 {
902 	const struct inode *inode;
903 	const struct inode *parent;
904 	kuid_t puid;
905 
906 	if (!sysctl_protected_symlinks)
907 		return 0;
908 
909 	/* Allowed if owner and follower match. */
910 	inode = nd->link_inode;
911 	if (uid_eq(current_cred()->fsuid, inode->i_uid))
912 		return 0;
913 
914 	/* Allowed if parent directory not sticky and world-writable. */
915 	parent = nd->inode;
916 	if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
917 		return 0;
918 
919 	/* Allowed if parent directory and link owner match. */
920 	puid = parent->i_uid;
921 	if (uid_valid(puid) && uid_eq(puid, inode->i_uid))
922 		return 0;
923 
924 	if (nd->flags & LOOKUP_RCU)
925 		return -ECHILD;
926 
927 	audit_inode(nd->name, nd->stack[0].link.dentry, 0);
928 	audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link");
929 	return -EACCES;
930 }
931 
932 /**
933  * safe_hardlink_source - Check for safe hardlink conditions
934  * @inode: the source inode to hardlink from
935  *
936  * Return false if at least one of the following conditions:
937  *    - inode is not a regular file
938  *    - inode is setuid
939  *    - inode is setgid and group-exec
940  *    - access failure for read and write
941  *
942  * Otherwise returns true.
943  */
944 static bool safe_hardlink_source(struct inode *inode)
945 {
946 	umode_t mode = inode->i_mode;
947 
948 	/* Special files should not get pinned to the filesystem. */
949 	if (!S_ISREG(mode))
950 		return false;
951 
952 	/* Setuid files should not get pinned to the filesystem. */
953 	if (mode & S_ISUID)
954 		return false;
955 
956 	/* Executable setgid files should not get pinned to the filesystem. */
957 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
958 		return false;
959 
960 	/* Hardlinking to unreadable or unwritable sources is dangerous. */
961 	if (inode_permission(inode, MAY_READ | MAY_WRITE))
962 		return false;
963 
964 	return true;
965 }
966 
967 /**
968  * may_linkat - Check permissions for creating a hardlink
969  * @link: the source to hardlink from
970  *
971  * Block hardlink when all of:
972  *  - sysctl_protected_hardlinks enabled
973  *  - fsuid does not match inode
974  *  - hardlink source is unsafe (see safe_hardlink_source() above)
975  *  - not CAP_FOWNER in a namespace with the inode owner uid mapped
976  *
977  * Returns 0 if successful, -ve on error.
978  */
979 static int may_linkat(struct path *link)
980 {
981 	struct inode *inode = link->dentry->d_inode;
982 
983 	/* Inode writeback is not safe when the uid or gid are invalid. */
984 	if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
985 		return -EOVERFLOW;
986 
987 	if (!sysctl_protected_hardlinks)
988 		return 0;
989 
990 	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
991 	 * otherwise, it must be a safe source.
992 	 */
993 	if (safe_hardlink_source(inode) || inode_owner_or_capable(inode))
994 		return 0;
995 
996 	audit_log_path_denied(AUDIT_ANOM_LINK, "linkat");
997 	return -EPERM;
998 }
999 
1000 /**
1001  * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1002  *			  should be allowed, or not, on files that already
1003  *			  exist.
1004  * @dir_mode: mode bits of directory
1005  * @dir_uid: owner of directory
1006  * @inode: the inode of the file to open
1007  *
1008  * Block an O_CREAT open of a FIFO (or a regular file) when:
1009  *   - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1010  *   - the file already exists
1011  *   - we are in a sticky directory
1012  *   - we don't own the file
1013  *   - the owner of the directory doesn't own the file
1014  *   - the directory is world writable
1015  * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1016  * the directory doesn't have to be world writable: being group writable will
1017  * be enough.
1018  *
1019  * Returns 0 if the open is allowed, -ve on error.
1020  */
1021 static int may_create_in_sticky(umode_t dir_mode, kuid_t dir_uid,
1022 				struct inode * const inode)
1023 {
1024 	if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) ||
1025 	    (!sysctl_protected_regular && S_ISREG(inode->i_mode)) ||
1026 	    likely(!(dir_mode & S_ISVTX)) ||
1027 	    uid_eq(inode->i_uid, dir_uid) ||
1028 	    uid_eq(current_fsuid(), inode->i_uid))
1029 		return 0;
1030 
1031 	if (likely(dir_mode & 0002) ||
1032 	    (dir_mode & 0020 &&
1033 	     ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) ||
1034 	      (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) {
1035 		const char *operation = S_ISFIFO(inode->i_mode) ?
1036 					"sticky_create_fifo" :
1037 					"sticky_create_regular";
1038 		audit_log_path_denied(AUDIT_ANOM_CREAT, operation);
1039 		return -EACCES;
1040 	}
1041 	return 0;
1042 }
1043 
1044 static __always_inline
1045 const char *get_link(struct nameidata *nd)
1046 {
1047 	struct saved *last = nd->stack + nd->depth - 1;
1048 	struct dentry *dentry = last->link.dentry;
1049 	struct inode *inode = nd->link_inode;
1050 	int error;
1051 	const char *res;
1052 
1053 	if (!(nd->flags & LOOKUP_RCU)) {
1054 		touch_atime(&last->link);
1055 		cond_resched();
1056 	} else if (atime_needs_update(&last->link, inode)) {
1057 		if (unlikely(unlazy_walk(nd)))
1058 			return ERR_PTR(-ECHILD);
1059 		touch_atime(&last->link);
1060 	}
1061 
1062 	error = security_inode_follow_link(dentry, inode,
1063 					   nd->flags & LOOKUP_RCU);
1064 	if (unlikely(error))
1065 		return ERR_PTR(error);
1066 
1067 	nd->last_type = LAST_BIND;
1068 	res = READ_ONCE(inode->i_link);
1069 	if (!res) {
1070 		const char * (*get)(struct dentry *, struct inode *,
1071 				struct delayed_call *);
1072 		get = inode->i_op->get_link;
1073 		if (nd->flags & LOOKUP_RCU) {
1074 			res = get(NULL, inode, &last->done);
1075 			if (res == ERR_PTR(-ECHILD)) {
1076 				if (unlikely(unlazy_walk(nd)))
1077 					return ERR_PTR(-ECHILD);
1078 				res = get(dentry, inode, &last->done);
1079 			}
1080 		} else {
1081 			res = get(dentry, inode, &last->done);
1082 		}
1083 		if (IS_ERR_OR_NULL(res))
1084 			return res;
1085 	}
1086 	if (*res == '/') {
1087 		if (!nd->root.mnt)
1088 			set_root(nd);
1089 		if (unlikely(nd_jump_root(nd)))
1090 			return ERR_PTR(-ECHILD);
1091 		while (unlikely(*++res == '/'))
1092 			;
1093 	}
1094 	if (!*res)
1095 		res = NULL;
1096 	return res;
1097 }
1098 
1099 /*
1100  * follow_up - Find the mountpoint of path's vfsmount
1101  *
1102  * Given a path, find the mountpoint of its source file system.
1103  * Replace @path with the path of the mountpoint in the parent mount.
1104  * Up is towards /.
1105  *
1106  * Return 1 if we went up a level and 0 if we were already at the
1107  * root.
1108  */
1109 int follow_up(struct path *path)
1110 {
1111 	struct mount *mnt = real_mount(path->mnt);
1112 	struct mount *parent;
1113 	struct dentry *mountpoint;
1114 
1115 	read_seqlock_excl(&mount_lock);
1116 	parent = mnt->mnt_parent;
1117 	if (parent == mnt) {
1118 		read_sequnlock_excl(&mount_lock);
1119 		return 0;
1120 	}
1121 	mntget(&parent->mnt);
1122 	mountpoint = dget(mnt->mnt_mountpoint);
1123 	read_sequnlock_excl(&mount_lock);
1124 	dput(path->dentry);
1125 	path->dentry = mountpoint;
1126 	mntput(path->mnt);
1127 	path->mnt = &parent->mnt;
1128 	return 1;
1129 }
1130 EXPORT_SYMBOL(follow_up);
1131 
1132 /*
1133  * Perform an automount
1134  * - return -EISDIR to tell follow_managed() to stop and return the path we
1135  *   were called with.
1136  */
1137 static int follow_automount(struct path *path, struct nameidata *nd,
1138 			    bool *need_mntput)
1139 {
1140 	struct vfsmount *mnt;
1141 	int err;
1142 
1143 	if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1144 		return -EREMOTE;
1145 
1146 	/* We don't want to mount if someone's just doing a stat -
1147 	 * unless they're stat'ing a directory and appended a '/' to
1148 	 * the name.
1149 	 *
1150 	 * We do, however, want to mount if someone wants to open or
1151 	 * create a file of any type under the mountpoint, wants to
1152 	 * traverse through the mountpoint or wants to open the
1153 	 * mounted directory.  Also, autofs may mark negative dentries
1154 	 * as being automount points.  These will need the attentions
1155 	 * of the daemon to instantiate them before they can be used.
1156 	 */
1157 	if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1158 			   LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1159 	    path->dentry->d_inode)
1160 		return -EISDIR;
1161 
1162 	nd->total_link_count++;
1163 	if (nd->total_link_count >= 40)
1164 		return -ELOOP;
1165 
1166 	mnt = path->dentry->d_op->d_automount(path);
1167 	if (IS_ERR(mnt)) {
1168 		/*
1169 		 * The filesystem is allowed to return -EISDIR here to indicate
1170 		 * it doesn't want to automount.  For instance, autofs would do
1171 		 * this so that its userspace daemon can mount on this dentry.
1172 		 *
1173 		 * However, we can only permit this if it's a terminal point in
1174 		 * the path being looked up; if it wasn't then the remainder of
1175 		 * the path is inaccessible and we should say so.
1176 		 */
1177 		if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1178 			return -EREMOTE;
1179 		return PTR_ERR(mnt);
1180 	}
1181 
1182 	if (!mnt) /* mount collision */
1183 		return 0;
1184 
1185 	if (!*need_mntput) {
1186 		/* lock_mount() may release path->mnt on error */
1187 		mntget(path->mnt);
1188 		*need_mntput = true;
1189 	}
1190 	err = finish_automount(mnt, path);
1191 
1192 	switch (err) {
1193 	case -EBUSY:
1194 		/* Someone else made a mount here whilst we were busy */
1195 		return 0;
1196 	case 0:
1197 		path_put(path);
1198 		path->mnt = mnt;
1199 		path->dentry = dget(mnt->mnt_root);
1200 		return 0;
1201 	default:
1202 		return err;
1203 	}
1204 
1205 }
1206 
1207 /*
1208  * Handle a dentry that is managed in some way.
1209  * - Flagged for transit management (autofs)
1210  * - Flagged as mountpoint
1211  * - Flagged as automount point
1212  *
1213  * This may only be called in refwalk mode.
1214  * On success path->dentry is known positive.
1215  *
1216  * Serialization is taken care of in namespace.c
1217  */
1218 static int follow_managed(struct path *path, struct nameidata *nd)
1219 {
1220 	struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1221 	unsigned flags;
1222 	bool need_mntput = false;
1223 	int ret = 0;
1224 
1225 	/* Given that we're not holding a lock here, we retain the value in a
1226 	 * local variable for each dentry as we look at it so that we don't see
1227 	 * the components of that value change under us */
1228 	while (flags = smp_load_acquire(&path->dentry->d_flags),
1229 	       unlikely(flags & DCACHE_MANAGED_DENTRY)) {
1230 		/* Allow the filesystem to manage the transit without i_mutex
1231 		 * being held. */
1232 		if (flags & DCACHE_MANAGE_TRANSIT) {
1233 			BUG_ON(!path->dentry->d_op);
1234 			BUG_ON(!path->dentry->d_op->d_manage);
1235 			ret = path->dentry->d_op->d_manage(path, false);
1236 			flags = smp_load_acquire(&path->dentry->d_flags);
1237 			if (ret < 0)
1238 				break;
1239 		}
1240 
1241 		/* Transit to a mounted filesystem. */
1242 		if (flags & DCACHE_MOUNTED) {
1243 			struct vfsmount *mounted = lookup_mnt(path);
1244 			if (mounted) {
1245 				dput(path->dentry);
1246 				if (need_mntput)
1247 					mntput(path->mnt);
1248 				path->mnt = mounted;
1249 				path->dentry = dget(mounted->mnt_root);
1250 				need_mntput = true;
1251 				continue;
1252 			}
1253 
1254 			/* Something is mounted on this dentry in another
1255 			 * namespace and/or whatever was mounted there in this
1256 			 * namespace got unmounted before lookup_mnt() could
1257 			 * get it */
1258 		}
1259 
1260 		/* Handle an automount point */
1261 		if (flags & DCACHE_NEED_AUTOMOUNT) {
1262 			ret = follow_automount(path, nd, &need_mntput);
1263 			if (ret < 0)
1264 				break;
1265 			continue;
1266 		}
1267 
1268 		/* We didn't change the current path point */
1269 		break;
1270 	}
1271 
1272 	if (need_mntput && path->mnt == mnt)
1273 		mntput(path->mnt);
1274 	if (need_mntput)
1275 		nd->flags |= LOOKUP_JUMPED;
1276 	if (ret == -EISDIR || !ret)
1277 		ret = 1;
1278 	if (ret > 0 && unlikely(d_flags_negative(flags)))
1279 		ret = -ENOENT;
1280 	if (unlikely(ret < 0))
1281 		path_put_conditional(path, nd);
1282 	return ret;
1283 }
1284 
1285 int follow_down_one(struct path *path)
1286 {
1287 	struct vfsmount *mounted;
1288 
1289 	mounted = lookup_mnt(path);
1290 	if (mounted) {
1291 		dput(path->dentry);
1292 		mntput(path->mnt);
1293 		path->mnt = mounted;
1294 		path->dentry = dget(mounted->mnt_root);
1295 		return 1;
1296 	}
1297 	return 0;
1298 }
1299 EXPORT_SYMBOL(follow_down_one);
1300 
1301 static inline int managed_dentry_rcu(const struct path *path)
1302 {
1303 	return (path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1304 		path->dentry->d_op->d_manage(path, true) : 0;
1305 }
1306 
1307 /*
1308  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1309  * we meet a managed dentry that would need blocking.
1310  */
1311 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1312 			       struct inode **inode, unsigned *seqp)
1313 {
1314 	for (;;) {
1315 		struct mount *mounted;
1316 		/*
1317 		 * Don't forget we might have a non-mountpoint managed dentry
1318 		 * that wants to block transit.
1319 		 */
1320 		switch (managed_dentry_rcu(path)) {
1321 		case -ECHILD:
1322 		default:
1323 			return false;
1324 		case -EISDIR:
1325 			return true;
1326 		case 0:
1327 			break;
1328 		}
1329 
1330 		if (!d_mountpoint(path->dentry))
1331 			return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1332 
1333 		mounted = __lookup_mnt(path->mnt, path->dentry);
1334 		if (!mounted)
1335 			break;
1336 		path->mnt = &mounted->mnt;
1337 		path->dentry = mounted->mnt.mnt_root;
1338 		nd->flags |= LOOKUP_JUMPED;
1339 		*seqp = read_seqcount_begin(&path->dentry->d_seq);
1340 		/*
1341 		 * Update the inode too. We don't need to re-check the
1342 		 * dentry sequence number here after this d_inode read,
1343 		 * because a mount-point is always pinned.
1344 		 */
1345 		*inode = path->dentry->d_inode;
1346 	}
1347 	return !read_seqretry(&mount_lock, nd->m_seq) &&
1348 		!(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1349 }
1350 
1351 static int follow_dotdot_rcu(struct nameidata *nd)
1352 {
1353 	struct inode *inode = nd->inode;
1354 
1355 	while (1) {
1356 		if (path_equal(&nd->path, &nd->root))
1357 			break;
1358 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1359 			struct dentry *old = nd->path.dentry;
1360 			struct dentry *parent = old->d_parent;
1361 			unsigned seq;
1362 
1363 			inode = parent->d_inode;
1364 			seq = read_seqcount_begin(&parent->d_seq);
1365 			if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1366 				return -ECHILD;
1367 			nd->path.dentry = parent;
1368 			nd->seq = seq;
1369 			if (unlikely(!path_connected(&nd->path)))
1370 				return -ENOENT;
1371 			break;
1372 		} else {
1373 			struct mount *mnt = real_mount(nd->path.mnt);
1374 			struct mount *mparent = mnt->mnt_parent;
1375 			struct dentry *mountpoint = mnt->mnt_mountpoint;
1376 			struct inode *inode2 = mountpoint->d_inode;
1377 			unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1378 			if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1379 				return -ECHILD;
1380 			if (&mparent->mnt == nd->path.mnt)
1381 				break;
1382 			/* we know that mountpoint was pinned */
1383 			nd->path.dentry = mountpoint;
1384 			nd->path.mnt = &mparent->mnt;
1385 			inode = inode2;
1386 			nd->seq = seq;
1387 		}
1388 	}
1389 	while (unlikely(d_mountpoint(nd->path.dentry))) {
1390 		struct mount *mounted;
1391 		mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1392 		if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1393 			return -ECHILD;
1394 		if (!mounted)
1395 			break;
1396 		nd->path.mnt = &mounted->mnt;
1397 		nd->path.dentry = mounted->mnt.mnt_root;
1398 		inode = nd->path.dentry->d_inode;
1399 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1400 	}
1401 	nd->inode = inode;
1402 	return 0;
1403 }
1404 
1405 /*
1406  * Follow down to the covering mount currently visible to userspace.  At each
1407  * point, the filesystem owning that dentry may be queried as to whether the
1408  * caller is permitted to proceed or not.
1409  */
1410 int follow_down(struct path *path)
1411 {
1412 	unsigned managed;
1413 	int ret;
1414 
1415 	while (managed = READ_ONCE(path->dentry->d_flags),
1416 	       unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1417 		/* Allow the filesystem to manage the transit without i_mutex
1418 		 * being held.
1419 		 *
1420 		 * We indicate to the filesystem if someone is trying to mount
1421 		 * something here.  This gives autofs the chance to deny anyone
1422 		 * other than its daemon the right to mount on its
1423 		 * superstructure.
1424 		 *
1425 		 * The filesystem may sleep at this point.
1426 		 */
1427 		if (managed & DCACHE_MANAGE_TRANSIT) {
1428 			BUG_ON(!path->dentry->d_op);
1429 			BUG_ON(!path->dentry->d_op->d_manage);
1430 			ret = path->dentry->d_op->d_manage(path, false);
1431 			if (ret < 0)
1432 				return ret == -EISDIR ? 0 : ret;
1433 		}
1434 
1435 		/* Transit to a mounted filesystem. */
1436 		if (managed & DCACHE_MOUNTED) {
1437 			struct vfsmount *mounted = lookup_mnt(path);
1438 			if (!mounted)
1439 				break;
1440 			dput(path->dentry);
1441 			mntput(path->mnt);
1442 			path->mnt = mounted;
1443 			path->dentry = dget(mounted->mnt_root);
1444 			continue;
1445 		}
1446 
1447 		/* Don't handle automount points here */
1448 		break;
1449 	}
1450 	return 0;
1451 }
1452 EXPORT_SYMBOL(follow_down);
1453 
1454 /*
1455  * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1456  */
1457 static void follow_mount(struct path *path)
1458 {
1459 	while (d_mountpoint(path->dentry)) {
1460 		struct vfsmount *mounted = lookup_mnt(path);
1461 		if (!mounted)
1462 			break;
1463 		dput(path->dentry);
1464 		mntput(path->mnt);
1465 		path->mnt = mounted;
1466 		path->dentry = dget(mounted->mnt_root);
1467 	}
1468 }
1469 
1470 static int path_parent_directory(struct path *path)
1471 {
1472 	struct dentry *old = path->dentry;
1473 	/* rare case of legitimate dget_parent()... */
1474 	path->dentry = dget_parent(path->dentry);
1475 	dput(old);
1476 	if (unlikely(!path_connected(path)))
1477 		return -ENOENT;
1478 	return 0;
1479 }
1480 
1481 static int follow_dotdot(struct nameidata *nd)
1482 {
1483 	while(1) {
1484 		if (path_equal(&nd->path, &nd->root))
1485 			break;
1486 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1487 			int ret = path_parent_directory(&nd->path);
1488 			if (ret)
1489 				return ret;
1490 			break;
1491 		}
1492 		if (!follow_up(&nd->path))
1493 			break;
1494 	}
1495 	follow_mount(&nd->path);
1496 	nd->inode = nd->path.dentry->d_inode;
1497 	return 0;
1498 }
1499 
1500 /*
1501  * This looks up the name in dcache and possibly revalidates the found dentry.
1502  * NULL is returned if the dentry does not exist in the cache.
1503  */
1504 static struct dentry *lookup_dcache(const struct qstr *name,
1505 				    struct dentry *dir,
1506 				    unsigned int flags)
1507 {
1508 	struct dentry *dentry = d_lookup(dir, name);
1509 	if (dentry) {
1510 		int error = d_revalidate(dentry, flags);
1511 		if (unlikely(error <= 0)) {
1512 			if (!error)
1513 				d_invalidate(dentry);
1514 			dput(dentry);
1515 			return ERR_PTR(error);
1516 		}
1517 	}
1518 	return dentry;
1519 }
1520 
1521 /*
1522  * Parent directory has inode locked exclusive.  This is one
1523  * and only case when ->lookup() gets called on non in-lookup
1524  * dentries - as the matter of fact, this only gets called
1525  * when directory is guaranteed to have no in-lookup children
1526  * at all.
1527  */
1528 static struct dentry *__lookup_hash(const struct qstr *name,
1529 		struct dentry *base, unsigned int flags)
1530 {
1531 	struct dentry *dentry = lookup_dcache(name, base, flags);
1532 	struct dentry *old;
1533 	struct inode *dir = base->d_inode;
1534 
1535 	if (dentry)
1536 		return dentry;
1537 
1538 	/* Don't create child dentry for a dead directory. */
1539 	if (unlikely(IS_DEADDIR(dir)))
1540 		return ERR_PTR(-ENOENT);
1541 
1542 	dentry = d_alloc(base, name);
1543 	if (unlikely(!dentry))
1544 		return ERR_PTR(-ENOMEM);
1545 
1546 	old = dir->i_op->lookup(dir, dentry, flags);
1547 	if (unlikely(old)) {
1548 		dput(dentry);
1549 		dentry = old;
1550 	}
1551 	return dentry;
1552 }
1553 
1554 static int lookup_fast(struct nameidata *nd,
1555 		       struct path *path, struct inode **inode,
1556 		       unsigned *seqp)
1557 {
1558 	struct vfsmount *mnt = nd->path.mnt;
1559 	struct dentry *dentry, *parent = nd->path.dentry;
1560 	int status = 1;
1561 	int err;
1562 
1563 	/*
1564 	 * Rename seqlock is not required here because in the off chance
1565 	 * of a false negative due to a concurrent rename, the caller is
1566 	 * going to fall back to non-racy lookup.
1567 	 */
1568 	if (nd->flags & LOOKUP_RCU) {
1569 		unsigned seq;
1570 		bool negative;
1571 		dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1572 		if (unlikely(!dentry)) {
1573 			if (unlazy_walk(nd))
1574 				return -ECHILD;
1575 			return 0;
1576 		}
1577 
1578 		/*
1579 		 * This sequence count validates that the inode matches
1580 		 * the dentry name information from lookup.
1581 		 */
1582 		*inode = d_backing_inode(dentry);
1583 		negative = d_is_negative(dentry);
1584 		if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1585 			return -ECHILD;
1586 
1587 		/*
1588 		 * This sequence count validates that the parent had no
1589 		 * changes while we did the lookup of the dentry above.
1590 		 *
1591 		 * The memory barrier in read_seqcount_begin of child is
1592 		 *  enough, we can use __read_seqcount_retry here.
1593 		 */
1594 		if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1595 			return -ECHILD;
1596 
1597 		*seqp = seq;
1598 		status = d_revalidate(dentry, nd->flags);
1599 		if (likely(status > 0)) {
1600 			/*
1601 			 * Note: do negative dentry check after revalidation in
1602 			 * case that drops it.
1603 			 */
1604 			if (unlikely(negative))
1605 				return -ENOENT;
1606 			path->mnt = mnt;
1607 			path->dentry = dentry;
1608 			if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1609 				return 1;
1610 		}
1611 		if (unlazy_child(nd, dentry, seq))
1612 			return -ECHILD;
1613 		if (unlikely(status == -ECHILD))
1614 			/* we'd been told to redo it in non-rcu mode */
1615 			status = d_revalidate(dentry, nd->flags);
1616 	} else {
1617 		dentry = __d_lookup(parent, &nd->last);
1618 		if (unlikely(!dentry))
1619 			return 0;
1620 		status = d_revalidate(dentry, nd->flags);
1621 	}
1622 	if (unlikely(status <= 0)) {
1623 		if (!status)
1624 			d_invalidate(dentry);
1625 		dput(dentry);
1626 		return status;
1627 	}
1628 
1629 	path->mnt = mnt;
1630 	path->dentry = dentry;
1631 	err = follow_managed(path, nd);
1632 	if (likely(err > 0))
1633 		*inode = d_backing_inode(path->dentry);
1634 	return err;
1635 }
1636 
1637 /* Fast lookup failed, do it the slow way */
1638 static struct dentry *__lookup_slow(const struct qstr *name,
1639 				    struct dentry *dir,
1640 				    unsigned int flags)
1641 {
1642 	struct dentry *dentry, *old;
1643 	struct inode *inode = dir->d_inode;
1644 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1645 
1646 	/* Don't go there if it's already dead */
1647 	if (unlikely(IS_DEADDIR(inode)))
1648 		return ERR_PTR(-ENOENT);
1649 again:
1650 	dentry = d_alloc_parallel(dir, name, &wq);
1651 	if (IS_ERR(dentry))
1652 		return dentry;
1653 	if (unlikely(!d_in_lookup(dentry))) {
1654 		int error = d_revalidate(dentry, flags);
1655 		if (unlikely(error <= 0)) {
1656 			if (!error) {
1657 				d_invalidate(dentry);
1658 				dput(dentry);
1659 				goto again;
1660 			}
1661 			dput(dentry);
1662 			dentry = ERR_PTR(error);
1663 		}
1664 	} else {
1665 		old = inode->i_op->lookup(inode, dentry, flags);
1666 		d_lookup_done(dentry);
1667 		if (unlikely(old)) {
1668 			dput(dentry);
1669 			dentry = old;
1670 		}
1671 	}
1672 	return dentry;
1673 }
1674 
1675 static struct dentry *lookup_slow(const struct qstr *name,
1676 				  struct dentry *dir,
1677 				  unsigned int flags)
1678 {
1679 	struct inode *inode = dir->d_inode;
1680 	struct dentry *res;
1681 	inode_lock_shared(inode);
1682 	res = __lookup_slow(name, dir, flags);
1683 	inode_unlock_shared(inode);
1684 	return res;
1685 }
1686 
1687 static inline int may_lookup(struct nameidata *nd)
1688 {
1689 	if (nd->flags & LOOKUP_RCU) {
1690 		int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1691 		if (err != -ECHILD)
1692 			return err;
1693 		if (unlazy_walk(nd))
1694 			return -ECHILD;
1695 	}
1696 	return inode_permission(nd->inode, MAY_EXEC);
1697 }
1698 
1699 static inline int handle_dots(struct nameidata *nd, int type)
1700 {
1701 	if (type == LAST_DOTDOT) {
1702 		if (!nd->root.mnt)
1703 			set_root(nd);
1704 		if (nd->flags & LOOKUP_RCU) {
1705 			return follow_dotdot_rcu(nd);
1706 		} else
1707 			return follow_dotdot(nd);
1708 	}
1709 	return 0;
1710 }
1711 
1712 static int pick_link(struct nameidata *nd, struct path *link,
1713 		     struct inode *inode, unsigned seq)
1714 {
1715 	int error;
1716 	struct saved *last;
1717 	if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1718 		path_to_nameidata(link, nd);
1719 		return -ELOOP;
1720 	}
1721 	if (!(nd->flags & LOOKUP_RCU)) {
1722 		if (link->mnt == nd->path.mnt)
1723 			mntget(link->mnt);
1724 	}
1725 	error = nd_alloc_stack(nd);
1726 	if (unlikely(error)) {
1727 		if (error == -ECHILD) {
1728 			if (unlikely(!legitimize_path(nd, link, seq))) {
1729 				drop_links(nd);
1730 				nd->depth = 0;
1731 				nd->flags &= ~LOOKUP_RCU;
1732 				nd->path.mnt = NULL;
1733 				nd->path.dentry = NULL;
1734 				rcu_read_unlock();
1735 			} else if (likely(unlazy_walk(nd)) == 0)
1736 				error = nd_alloc_stack(nd);
1737 		}
1738 		if (error) {
1739 			path_put(link);
1740 			return error;
1741 		}
1742 	}
1743 
1744 	last = nd->stack + nd->depth++;
1745 	last->link = *link;
1746 	clear_delayed_call(&last->done);
1747 	nd->link_inode = inode;
1748 	last->seq = seq;
1749 	return 1;
1750 }
1751 
1752 enum {WALK_FOLLOW = 1, WALK_MORE = 2};
1753 
1754 /*
1755  * Do we need to follow links? We _really_ want to be able
1756  * to do this check without having to look at inode->i_op,
1757  * so we keep a cache of "no, this doesn't need follow_link"
1758  * for the common case.
1759  */
1760 static inline int step_into(struct nameidata *nd, struct path *path,
1761 			    int flags, struct inode *inode, unsigned seq)
1762 {
1763 	if (!(flags & WALK_MORE) && nd->depth)
1764 		put_link(nd);
1765 	if (likely(!d_is_symlink(path->dentry)) ||
1766 	   !(flags & WALK_FOLLOW || nd->flags & LOOKUP_FOLLOW)) {
1767 		/* not a symlink or should not follow */
1768 		path_to_nameidata(path, nd);
1769 		nd->inode = inode;
1770 		nd->seq = seq;
1771 		return 0;
1772 	}
1773 	/* make sure that d_is_symlink above matches inode */
1774 	if (nd->flags & LOOKUP_RCU) {
1775 		if (read_seqcount_retry(&path->dentry->d_seq, seq))
1776 			return -ECHILD;
1777 	}
1778 	return pick_link(nd, path, inode, seq);
1779 }
1780 
1781 static int walk_component(struct nameidata *nd, int flags)
1782 {
1783 	struct path path;
1784 	struct inode *inode;
1785 	unsigned seq;
1786 	int err;
1787 	/*
1788 	 * "." and ".." are special - ".." especially so because it has
1789 	 * to be able to know about the current root directory and
1790 	 * parent relationships.
1791 	 */
1792 	if (unlikely(nd->last_type != LAST_NORM)) {
1793 		err = handle_dots(nd, nd->last_type);
1794 		if (!(flags & WALK_MORE) && nd->depth)
1795 			put_link(nd);
1796 		return err;
1797 	}
1798 	err = lookup_fast(nd, &path, &inode, &seq);
1799 	if (unlikely(err <= 0)) {
1800 		if (err < 0)
1801 			return err;
1802 		path.dentry = lookup_slow(&nd->last, nd->path.dentry,
1803 					  nd->flags);
1804 		if (IS_ERR(path.dentry))
1805 			return PTR_ERR(path.dentry);
1806 
1807 		path.mnt = nd->path.mnt;
1808 		err = follow_managed(&path, nd);
1809 		if (unlikely(err < 0))
1810 			return err;
1811 
1812 		seq = 0;	/* we are already out of RCU mode */
1813 		inode = d_backing_inode(path.dentry);
1814 	}
1815 
1816 	return step_into(nd, &path, flags, inode, seq);
1817 }
1818 
1819 /*
1820  * We can do the critical dentry name comparison and hashing
1821  * operations one word at a time, but we are limited to:
1822  *
1823  * - Architectures with fast unaligned word accesses. We could
1824  *   do a "get_unaligned()" if this helps and is sufficiently
1825  *   fast.
1826  *
1827  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1828  *   do not trap on the (extremely unlikely) case of a page
1829  *   crossing operation.
1830  *
1831  * - Furthermore, we need an efficient 64-bit compile for the
1832  *   64-bit case in order to generate the "number of bytes in
1833  *   the final mask". Again, that could be replaced with a
1834  *   efficient population count instruction or similar.
1835  */
1836 #ifdef CONFIG_DCACHE_WORD_ACCESS
1837 
1838 #include <asm/word-at-a-time.h>
1839 
1840 #ifdef HASH_MIX
1841 
1842 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1843 
1844 #elif defined(CONFIG_64BIT)
1845 /*
1846  * Register pressure in the mixing function is an issue, particularly
1847  * on 32-bit x86, but almost any function requires one state value and
1848  * one temporary.  Instead, use a function designed for two state values
1849  * and no temporaries.
1850  *
1851  * This function cannot create a collision in only two iterations, so
1852  * we have two iterations to achieve avalanche.  In those two iterations,
1853  * we have six layers of mixing, which is enough to spread one bit's
1854  * influence out to 2^6 = 64 state bits.
1855  *
1856  * Rotate constants are scored by considering either 64 one-bit input
1857  * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
1858  * probability of that delta causing a change to each of the 128 output
1859  * bits, using a sample of random initial states.
1860  *
1861  * The Shannon entropy of the computed probabilities is then summed
1862  * to produce a score.  Ideally, any input change has a 50% chance of
1863  * toggling any given output bit.
1864  *
1865  * Mixing scores (in bits) for (12,45):
1866  * Input delta: 1-bit      2-bit
1867  * 1 round:     713.3    42542.6
1868  * 2 rounds:   2753.7   140389.8
1869  * 3 rounds:   5954.1   233458.2
1870  * 4 rounds:   7862.6   256672.2
1871  * Perfect:    8192     258048
1872  *            (64*128) (64*63/2 * 128)
1873  */
1874 #define HASH_MIX(x, y, a)	\
1875 	(	x ^= (a),	\
1876 	y ^= x,	x = rol64(x,12),\
1877 	x += y,	y = rol64(y,45),\
1878 	y *= 9			)
1879 
1880 /*
1881  * Fold two longs into one 32-bit hash value.  This must be fast, but
1882  * latency isn't quite as critical, as there is a fair bit of additional
1883  * work done before the hash value is used.
1884  */
1885 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1886 {
1887 	y ^= x * GOLDEN_RATIO_64;
1888 	y *= GOLDEN_RATIO_64;
1889 	return y >> 32;
1890 }
1891 
1892 #else	/* 32-bit case */
1893 
1894 /*
1895  * Mixing scores (in bits) for (7,20):
1896  * Input delta: 1-bit      2-bit
1897  * 1 round:     330.3     9201.6
1898  * 2 rounds:   1246.4    25475.4
1899  * 3 rounds:   1907.1    31295.1
1900  * 4 rounds:   2042.3    31718.6
1901  * Perfect:    2048      31744
1902  *            (32*64)   (32*31/2 * 64)
1903  */
1904 #define HASH_MIX(x, y, a)	\
1905 	(	x ^= (a),	\
1906 	y ^= x,	x = rol32(x, 7),\
1907 	x += y,	y = rol32(y,20),\
1908 	y *= 9			)
1909 
1910 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1911 {
1912 	/* Use arch-optimized multiply if one exists */
1913 	return __hash_32(y ^ __hash_32(x));
1914 }
1915 
1916 #endif
1917 
1918 /*
1919  * Return the hash of a string of known length.  This is carfully
1920  * designed to match hash_name(), which is the more critical function.
1921  * In particular, we must end by hashing a final word containing 0..7
1922  * payload bytes, to match the way that hash_name() iterates until it
1923  * finds the delimiter after the name.
1924  */
1925 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1926 {
1927 	unsigned long a, x = 0, y = (unsigned long)salt;
1928 
1929 	for (;;) {
1930 		if (!len)
1931 			goto done;
1932 		a = load_unaligned_zeropad(name);
1933 		if (len < sizeof(unsigned long))
1934 			break;
1935 		HASH_MIX(x, y, a);
1936 		name += sizeof(unsigned long);
1937 		len -= sizeof(unsigned long);
1938 	}
1939 	x ^= a & bytemask_from_count(len);
1940 done:
1941 	return fold_hash(x, y);
1942 }
1943 EXPORT_SYMBOL(full_name_hash);
1944 
1945 /* Return the "hash_len" (hash and length) of a null-terminated string */
1946 u64 hashlen_string(const void *salt, const char *name)
1947 {
1948 	unsigned long a = 0, x = 0, y = (unsigned long)salt;
1949 	unsigned long adata, mask, len;
1950 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1951 
1952 	len = 0;
1953 	goto inside;
1954 
1955 	do {
1956 		HASH_MIX(x, y, a);
1957 		len += sizeof(unsigned long);
1958 inside:
1959 		a = load_unaligned_zeropad(name+len);
1960 	} while (!has_zero(a, &adata, &constants));
1961 
1962 	adata = prep_zero_mask(a, adata, &constants);
1963 	mask = create_zero_mask(adata);
1964 	x ^= a & zero_bytemask(mask);
1965 
1966 	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1967 }
1968 EXPORT_SYMBOL(hashlen_string);
1969 
1970 /*
1971  * Calculate the length and hash of the path component, and
1972  * return the "hash_len" as the result.
1973  */
1974 static inline u64 hash_name(const void *salt, const char *name)
1975 {
1976 	unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
1977 	unsigned long adata, bdata, mask, len;
1978 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1979 
1980 	len = 0;
1981 	goto inside;
1982 
1983 	do {
1984 		HASH_MIX(x, y, a);
1985 		len += sizeof(unsigned long);
1986 inside:
1987 		a = load_unaligned_zeropad(name+len);
1988 		b = a ^ REPEAT_BYTE('/');
1989 	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1990 
1991 	adata = prep_zero_mask(a, adata, &constants);
1992 	bdata = prep_zero_mask(b, bdata, &constants);
1993 	mask = create_zero_mask(adata | bdata);
1994 	x ^= a & zero_bytemask(mask);
1995 
1996 	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1997 }
1998 
1999 #else	/* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2000 
2001 /* Return the hash of a string of known length */
2002 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2003 {
2004 	unsigned long hash = init_name_hash(salt);
2005 	while (len--)
2006 		hash = partial_name_hash((unsigned char)*name++, hash);
2007 	return end_name_hash(hash);
2008 }
2009 EXPORT_SYMBOL(full_name_hash);
2010 
2011 /* Return the "hash_len" (hash and length) of a null-terminated string */
2012 u64 hashlen_string(const void *salt, const char *name)
2013 {
2014 	unsigned long hash = init_name_hash(salt);
2015 	unsigned long len = 0, c;
2016 
2017 	c = (unsigned char)*name;
2018 	while (c) {
2019 		len++;
2020 		hash = partial_name_hash(c, hash);
2021 		c = (unsigned char)name[len];
2022 	}
2023 	return hashlen_create(end_name_hash(hash), len);
2024 }
2025 EXPORT_SYMBOL(hashlen_string);
2026 
2027 /*
2028  * We know there's a real path component here of at least
2029  * one character.
2030  */
2031 static inline u64 hash_name(const void *salt, const char *name)
2032 {
2033 	unsigned long hash = init_name_hash(salt);
2034 	unsigned long len = 0, c;
2035 
2036 	c = (unsigned char)*name;
2037 	do {
2038 		len++;
2039 		hash = partial_name_hash(c, hash);
2040 		c = (unsigned char)name[len];
2041 	} while (c && c != '/');
2042 	return hashlen_create(end_name_hash(hash), len);
2043 }
2044 
2045 #endif
2046 
2047 /*
2048  * Name resolution.
2049  * This is the basic name resolution function, turning a pathname into
2050  * the final dentry. We expect 'base' to be positive and a directory.
2051  *
2052  * Returns 0 and nd will have valid dentry and mnt on success.
2053  * Returns error and drops reference to input namei data on failure.
2054  */
2055 static int link_path_walk(const char *name, struct nameidata *nd)
2056 {
2057 	int err;
2058 
2059 	if (IS_ERR(name))
2060 		return PTR_ERR(name);
2061 	while (*name=='/')
2062 		name++;
2063 	if (!*name)
2064 		return 0;
2065 
2066 	/* At this point we know we have a real path component. */
2067 	for(;;) {
2068 		u64 hash_len;
2069 		int type;
2070 
2071 		err = may_lookup(nd);
2072 		if (err)
2073 			return err;
2074 
2075 		hash_len = hash_name(nd->path.dentry, name);
2076 
2077 		type = LAST_NORM;
2078 		if (name[0] == '.') switch (hashlen_len(hash_len)) {
2079 			case 2:
2080 				if (name[1] == '.') {
2081 					type = LAST_DOTDOT;
2082 					nd->flags |= LOOKUP_JUMPED;
2083 				}
2084 				break;
2085 			case 1:
2086 				type = LAST_DOT;
2087 		}
2088 		if (likely(type == LAST_NORM)) {
2089 			struct dentry *parent = nd->path.dentry;
2090 			nd->flags &= ~LOOKUP_JUMPED;
2091 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2092 				struct qstr this = { { .hash_len = hash_len }, .name = name };
2093 				err = parent->d_op->d_hash(parent, &this);
2094 				if (err < 0)
2095 					return err;
2096 				hash_len = this.hash_len;
2097 				name = this.name;
2098 			}
2099 		}
2100 
2101 		nd->last.hash_len = hash_len;
2102 		nd->last.name = name;
2103 		nd->last_type = type;
2104 
2105 		name += hashlen_len(hash_len);
2106 		if (!*name)
2107 			goto OK;
2108 		/*
2109 		 * If it wasn't NUL, we know it was '/'. Skip that
2110 		 * slash, and continue until no more slashes.
2111 		 */
2112 		do {
2113 			name++;
2114 		} while (unlikely(*name == '/'));
2115 		if (unlikely(!*name)) {
2116 OK:
2117 			/* pathname body, done */
2118 			if (!nd->depth)
2119 				return 0;
2120 			name = nd->stack[nd->depth - 1].name;
2121 			/* trailing symlink, done */
2122 			if (!name)
2123 				return 0;
2124 			/* last component of nested symlink */
2125 			err = walk_component(nd, WALK_FOLLOW);
2126 		} else {
2127 			/* not the last component */
2128 			err = walk_component(nd, WALK_FOLLOW | WALK_MORE);
2129 		}
2130 		if (err < 0)
2131 			return err;
2132 
2133 		if (err) {
2134 			const char *s = get_link(nd);
2135 
2136 			if (IS_ERR(s))
2137 				return PTR_ERR(s);
2138 			err = 0;
2139 			if (unlikely(!s)) {
2140 				/* jumped */
2141 				put_link(nd);
2142 			} else {
2143 				nd->stack[nd->depth - 1].name = name;
2144 				name = s;
2145 				continue;
2146 			}
2147 		}
2148 		if (unlikely(!d_can_lookup(nd->path.dentry))) {
2149 			if (nd->flags & LOOKUP_RCU) {
2150 				if (unlazy_walk(nd))
2151 					return -ECHILD;
2152 			}
2153 			return -ENOTDIR;
2154 		}
2155 	}
2156 }
2157 
2158 /* must be paired with terminate_walk() */
2159 static const char *path_init(struct nameidata *nd, unsigned flags)
2160 {
2161 	const char *s = nd->name->name;
2162 
2163 	if (!*s)
2164 		flags &= ~LOOKUP_RCU;
2165 	if (flags & LOOKUP_RCU)
2166 		rcu_read_lock();
2167 
2168 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
2169 	nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
2170 	nd->depth = 0;
2171 	if (flags & LOOKUP_ROOT) {
2172 		struct dentry *root = nd->root.dentry;
2173 		struct inode *inode = root->d_inode;
2174 		if (*s && unlikely(!d_can_lookup(root)))
2175 			return ERR_PTR(-ENOTDIR);
2176 		nd->path = nd->root;
2177 		nd->inode = inode;
2178 		if (flags & LOOKUP_RCU) {
2179 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2180 			nd->root_seq = nd->seq;
2181 			nd->m_seq = read_seqbegin(&mount_lock);
2182 		} else {
2183 			path_get(&nd->path);
2184 		}
2185 		return s;
2186 	}
2187 
2188 	nd->root.mnt = NULL;
2189 	nd->path.mnt = NULL;
2190 	nd->path.dentry = NULL;
2191 
2192 	nd->m_seq = read_seqbegin(&mount_lock);
2193 	if (*s == '/') {
2194 		set_root(nd);
2195 		if (likely(!nd_jump_root(nd)))
2196 			return s;
2197 		return ERR_PTR(-ECHILD);
2198 	} else if (nd->dfd == AT_FDCWD) {
2199 		if (flags & LOOKUP_RCU) {
2200 			struct fs_struct *fs = current->fs;
2201 			unsigned seq;
2202 
2203 			do {
2204 				seq = read_seqcount_begin(&fs->seq);
2205 				nd->path = fs->pwd;
2206 				nd->inode = nd->path.dentry->d_inode;
2207 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2208 			} while (read_seqcount_retry(&fs->seq, seq));
2209 		} else {
2210 			get_fs_pwd(current->fs, &nd->path);
2211 			nd->inode = nd->path.dentry->d_inode;
2212 		}
2213 		return s;
2214 	} else {
2215 		/* Caller must check execute permissions on the starting path component */
2216 		struct fd f = fdget_raw(nd->dfd);
2217 		struct dentry *dentry;
2218 
2219 		if (!f.file)
2220 			return ERR_PTR(-EBADF);
2221 
2222 		dentry = f.file->f_path.dentry;
2223 
2224 		if (*s && unlikely(!d_can_lookup(dentry))) {
2225 			fdput(f);
2226 			return ERR_PTR(-ENOTDIR);
2227 		}
2228 
2229 		nd->path = f.file->f_path;
2230 		if (flags & LOOKUP_RCU) {
2231 			nd->inode = nd->path.dentry->d_inode;
2232 			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2233 		} else {
2234 			path_get(&nd->path);
2235 			nd->inode = nd->path.dentry->d_inode;
2236 		}
2237 		fdput(f);
2238 		return s;
2239 	}
2240 }
2241 
2242 static const char *trailing_symlink(struct nameidata *nd)
2243 {
2244 	const char *s;
2245 	int error = may_follow_link(nd);
2246 	if (unlikely(error))
2247 		return ERR_PTR(error);
2248 	nd->flags |= LOOKUP_PARENT;
2249 	nd->stack[0].name = NULL;
2250 	s = get_link(nd);
2251 	return s ? s : "";
2252 }
2253 
2254 static inline int lookup_last(struct nameidata *nd)
2255 {
2256 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2257 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2258 
2259 	nd->flags &= ~LOOKUP_PARENT;
2260 	return walk_component(nd, 0);
2261 }
2262 
2263 static int handle_lookup_down(struct nameidata *nd)
2264 {
2265 	struct path path = nd->path;
2266 	struct inode *inode = nd->inode;
2267 	unsigned seq = nd->seq;
2268 	int err;
2269 
2270 	if (nd->flags & LOOKUP_RCU) {
2271 		/*
2272 		 * don't bother with unlazy_walk on failure - we are
2273 		 * at the very beginning of walk, so we lose nothing
2274 		 * if we simply redo everything in non-RCU mode
2275 		 */
2276 		if (unlikely(!__follow_mount_rcu(nd, &path, &inode, &seq)))
2277 			return -ECHILD;
2278 	} else {
2279 		dget(path.dentry);
2280 		err = follow_managed(&path, nd);
2281 		if (unlikely(err < 0))
2282 			return err;
2283 		inode = d_backing_inode(path.dentry);
2284 		seq = 0;
2285 	}
2286 	path_to_nameidata(&path, nd);
2287 	nd->inode = inode;
2288 	nd->seq = seq;
2289 	return 0;
2290 }
2291 
2292 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2293 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2294 {
2295 	const char *s = path_init(nd, flags);
2296 	int err;
2297 
2298 	if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2299 		err = handle_lookup_down(nd);
2300 		if (unlikely(err < 0))
2301 			s = ERR_PTR(err);
2302 	}
2303 
2304 	while (!(err = link_path_walk(s, nd))
2305 		&& ((err = lookup_last(nd)) > 0)) {
2306 		s = trailing_symlink(nd);
2307 	}
2308 	if (!err)
2309 		err = complete_walk(nd);
2310 
2311 	if (!err && nd->flags & LOOKUP_DIRECTORY)
2312 		if (!d_can_lookup(nd->path.dentry))
2313 			err = -ENOTDIR;
2314 	if (!err) {
2315 		*path = nd->path;
2316 		nd->path.mnt = NULL;
2317 		nd->path.dentry = NULL;
2318 	}
2319 	terminate_walk(nd);
2320 	return err;
2321 }
2322 
2323 int filename_lookup(int dfd, struct filename *name, unsigned flags,
2324 		    struct path *path, struct path *root)
2325 {
2326 	int retval;
2327 	struct nameidata nd;
2328 	if (IS_ERR(name))
2329 		return PTR_ERR(name);
2330 	if (unlikely(root)) {
2331 		nd.root = *root;
2332 		flags |= LOOKUP_ROOT;
2333 	}
2334 	set_nameidata(&nd, dfd, name);
2335 	retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2336 	if (unlikely(retval == -ECHILD))
2337 		retval = path_lookupat(&nd, flags, path);
2338 	if (unlikely(retval == -ESTALE))
2339 		retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2340 
2341 	if (likely(!retval))
2342 		audit_inode(name, path->dentry, 0);
2343 	restore_nameidata();
2344 	putname(name);
2345 	return retval;
2346 }
2347 
2348 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2349 static int path_parentat(struct nameidata *nd, unsigned flags,
2350 				struct path *parent)
2351 {
2352 	const char *s = path_init(nd, flags);
2353 	int err = link_path_walk(s, nd);
2354 	if (!err)
2355 		err = complete_walk(nd);
2356 	if (!err) {
2357 		*parent = nd->path;
2358 		nd->path.mnt = NULL;
2359 		nd->path.dentry = NULL;
2360 	}
2361 	terminate_walk(nd);
2362 	return err;
2363 }
2364 
2365 static struct filename *filename_parentat(int dfd, struct filename *name,
2366 				unsigned int flags, struct path *parent,
2367 				struct qstr *last, int *type)
2368 {
2369 	int retval;
2370 	struct nameidata nd;
2371 
2372 	if (IS_ERR(name))
2373 		return name;
2374 	set_nameidata(&nd, dfd, name);
2375 	retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2376 	if (unlikely(retval == -ECHILD))
2377 		retval = path_parentat(&nd, flags, parent);
2378 	if (unlikely(retval == -ESTALE))
2379 		retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2380 	if (likely(!retval)) {
2381 		*last = nd.last;
2382 		*type = nd.last_type;
2383 		audit_inode(name, parent->dentry, AUDIT_INODE_PARENT);
2384 	} else {
2385 		putname(name);
2386 		name = ERR_PTR(retval);
2387 	}
2388 	restore_nameidata();
2389 	return name;
2390 }
2391 
2392 /* does lookup, returns the object with parent locked */
2393 struct dentry *kern_path_locked(const char *name, struct path *path)
2394 {
2395 	struct filename *filename;
2396 	struct dentry *d;
2397 	struct qstr last;
2398 	int type;
2399 
2400 	filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2401 				    &last, &type);
2402 	if (IS_ERR(filename))
2403 		return ERR_CAST(filename);
2404 	if (unlikely(type != LAST_NORM)) {
2405 		path_put(path);
2406 		putname(filename);
2407 		return ERR_PTR(-EINVAL);
2408 	}
2409 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2410 	d = __lookup_hash(&last, path->dentry, 0);
2411 	if (IS_ERR(d)) {
2412 		inode_unlock(path->dentry->d_inode);
2413 		path_put(path);
2414 	}
2415 	putname(filename);
2416 	return d;
2417 }
2418 
2419 int kern_path(const char *name, unsigned int flags, struct path *path)
2420 {
2421 	return filename_lookup(AT_FDCWD, getname_kernel(name),
2422 			       flags, path, NULL);
2423 }
2424 EXPORT_SYMBOL(kern_path);
2425 
2426 /**
2427  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2428  * @dentry:  pointer to dentry of the base directory
2429  * @mnt: pointer to vfs mount of the base directory
2430  * @name: pointer to file name
2431  * @flags: lookup flags
2432  * @path: pointer to struct path to fill
2433  */
2434 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2435 		    const char *name, unsigned int flags,
2436 		    struct path *path)
2437 {
2438 	struct path root = {.mnt = mnt, .dentry = dentry};
2439 	/* the first argument of filename_lookup() is ignored with root */
2440 	return filename_lookup(AT_FDCWD, getname_kernel(name),
2441 			       flags , path, &root);
2442 }
2443 EXPORT_SYMBOL(vfs_path_lookup);
2444 
2445 static int lookup_one_len_common(const char *name, struct dentry *base,
2446 				 int len, struct qstr *this)
2447 {
2448 	this->name = name;
2449 	this->len = len;
2450 	this->hash = full_name_hash(base, name, len);
2451 	if (!len)
2452 		return -EACCES;
2453 
2454 	if (unlikely(name[0] == '.')) {
2455 		if (len < 2 || (len == 2 && name[1] == '.'))
2456 			return -EACCES;
2457 	}
2458 
2459 	while (len--) {
2460 		unsigned int c = *(const unsigned char *)name++;
2461 		if (c == '/' || c == '\0')
2462 			return -EACCES;
2463 	}
2464 	/*
2465 	 * See if the low-level filesystem might want
2466 	 * to use its own hash..
2467 	 */
2468 	if (base->d_flags & DCACHE_OP_HASH) {
2469 		int err = base->d_op->d_hash(base, this);
2470 		if (err < 0)
2471 			return err;
2472 	}
2473 
2474 	return inode_permission(base->d_inode, MAY_EXEC);
2475 }
2476 
2477 /**
2478  * try_lookup_one_len - filesystem helper to lookup single pathname component
2479  * @name:	pathname component to lookup
2480  * @base:	base directory to lookup from
2481  * @len:	maximum length @len should be interpreted to
2482  *
2483  * Look up a dentry by name in the dcache, returning NULL if it does not
2484  * currently exist.  The function does not try to create a dentry.
2485  *
2486  * Note that this routine is purely a helper for filesystem usage and should
2487  * not be called by generic code.
2488  *
2489  * The caller must hold base->i_mutex.
2490  */
2491 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
2492 {
2493 	struct qstr this;
2494 	int err;
2495 
2496 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2497 
2498 	err = lookup_one_len_common(name, base, len, &this);
2499 	if (err)
2500 		return ERR_PTR(err);
2501 
2502 	return lookup_dcache(&this, base, 0);
2503 }
2504 EXPORT_SYMBOL(try_lookup_one_len);
2505 
2506 /**
2507  * lookup_one_len - filesystem helper to lookup single pathname component
2508  * @name:	pathname component to lookup
2509  * @base:	base directory to lookup from
2510  * @len:	maximum length @len should be interpreted to
2511  *
2512  * Note that this routine is purely a helper for filesystem usage and should
2513  * not be called by generic code.
2514  *
2515  * The caller must hold base->i_mutex.
2516  */
2517 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2518 {
2519 	struct dentry *dentry;
2520 	struct qstr this;
2521 	int err;
2522 
2523 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2524 
2525 	err = lookup_one_len_common(name, base, len, &this);
2526 	if (err)
2527 		return ERR_PTR(err);
2528 
2529 	dentry = lookup_dcache(&this, base, 0);
2530 	return dentry ? dentry : __lookup_slow(&this, base, 0);
2531 }
2532 EXPORT_SYMBOL(lookup_one_len);
2533 
2534 /**
2535  * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2536  * @name:	pathname component to lookup
2537  * @base:	base directory to lookup from
2538  * @len:	maximum length @len should be interpreted to
2539  *
2540  * Note that this routine is purely a helper for filesystem usage and should
2541  * not be called by generic code.
2542  *
2543  * Unlike lookup_one_len, it should be called without the parent
2544  * i_mutex held, and will take the i_mutex itself if necessary.
2545  */
2546 struct dentry *lookup_one_len_unlocked(const char *name,
2547 				       struct dentry *base, int len)
2548 {
2549 	struct qstr this;
2550 	int err;
2551 	struct dentry *ret;
2552 
2553 	err = lookup_one_len_common(name, base, len, &this);
2554 	if (err)
2555 		return ERR_PTR(err);
2556 
2557 	ret = lookup_dcache(&this, base, 0);
2558 	if (!ret)
2559 		ret = lookup_slow(&this, base, 0);
2560 	return ret;
2561 }
2562 EXPORT_SYMBOL(lookup_one_len_unlocked);
2563 
2564 /*
2565  * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT)
2566  * on negatives.  Returns known positive or ERR_PTR(); that's what
2567  * most of the users want.  Note that pinned negative with unlocked parent
2568  * _can_ become positive at any time, so callers of lookup_one_len_unlocked()
2569  * need to be very careful; pinned positives have ->d_inode stable, so
2570  * this one avoids such problems.
2571  */
2572 struct dentry *lookup_positive_unlocked(const char *name,
2573 				       struct dentry *base, int len)
2574 {
2575 	struct dentry *ret = lookup_one_len_unlocked(name, base, len);
2576 	if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
2577 		dput(ret);
2578 		ret = ERR_PTR(-ENOENT);
2579 	}
2580 	return ret;
2581 }
2582 EXPORT_SYMBOL(lookup_positive_unlocked);
2583 
2584 #ifdef CONFIG_UNIX98_PTYS
2585 int path_pts(struct path *path)
2586 {
2587 	/* Find something mounted on "pts" in the same directory as
2588 	 * the input path.
2589 	 */
2590 	struct dentry *child, *parent;
2591 	struct qstr this;
2592 	int ret;
2593 
2594 	ret = path_parent_directory(path);
2595 	if (ret)
2596 		return ret;
2597 
2598 	parent = path->dentry;
2599 	this.name = "pts";
2600 	this.len = 3;
2601 	child = d_hash_and_lookup(parent, &this);
2602 	if (!child)
2603 		return -ENOENT;
2604 
2605 	path->dentry = child;
2606 	dput(parent);
2607 	follow_mount(path);
2608 	return 0;
2609 }
2610 #endif
2611 
2612 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2613 		 struct path *path, int *empty)
2614 {
2615 	return filename_lookup(dfd, getname_flags(name, flags, empty),
2616 			       flags, path, NULL);
2617 }
2618 EXPORT_SYMBOL(user_path_at_empty);
2619 
2620 /**
2621  * path_mountpoint - look up a path to be umounted
2622  * @nd:		lookup context
2623  * @flags:	lookup flags
2624  * @path:	pointer to container for result
2625  *
2626  * Look up the given name, but don't attempt to revalidate the last component.
2627  * Returns 0 and "path" will be valid on success; Returns error otherwise.
2628  */
2629 static int
2630 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2631 {
2632 	const char *s = path_init(nd, flags);
2633 	int err;
2634 
2635 	while (!(err = link_path_walk(s, nd)) &&
2636 		(err = lookup_last(nd)) > 0) {
2637 		s = trailing_symlink(nd);
2638 	}
2639 	if (!err && (nd->flags & LOOKUP_RCU))
2640 		err = unlazy_walk(nd);
2641 	if (!err)
2642 		err = handle_lookup_down(nd);
2643 	if (!err) {
2644 		*path = nd->path;
2645 		nd->path.mnt = NULL;
2646 		nd->path.dentry = NULL;
2647 	}
2648 	terminate_walk(nd);
2649 	return err;
2650 }
2651 
2652 static int
2653 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2654 			unsigned int flags)
2655 {
2656 	struct nameidata nd;
2657 	int error;
2658 	if (IS_ERR(name))
2659 		return PTR_ERR(name);
2660 	set_nameidata(&nd, dfd, name);
2661 	error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2662 	if (unlikely(error == -ECHILD))
2663 		error = path_mountpoint(&nd, flags, path);
2664 	if (unlikely(error == -ESTALE))
2665 		error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2666 	if (likely(!error))
2667 		audit_inode(name, path->dentry, AUDIT_INODE_NOEVAL);
2668 	restore_nameidata();
2669 	putname(name);
2670 	return error;
2671 }
2672 
2673 /**
2674  * user_path_mountpoint_at - lookup a path from userland in order to umount it
2675  * @dfd:	directory file descriptor
2676  * @name:	pathname from userland
2677  * @flags:	lookup flags
2678  * @path:	pointer to container to hold result
2679  *
2680  * A umount is a special case for path walking. We're not actually interested
2681  * in the inode in this situation, and ESTALE errors can be a problem. We
2682  * simply want track down the dentry and vfsmount attached at the mountpoint
2683  * and avoid revalidating the last component.
2684  *
2685  * Returns 0 and populates "path" on success.
2686  */
2687 int
2688 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2689 			struct path *path)
2690 {
2691 	return filename_mountpoint(dfd, getname(name), path, flags);
2692 }
2693 
2694 int
2695 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2696 			unsigned int flags)
2697 {
2698 	return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2699 }
2700 EXPORT_SYMBOL(kern_path_mountpoint);
2701 
2702 int __check_sticky(struct inode *dir, struct inode *inode)
2703 {
2704 	kuid_t fsuid = current_fsuid();
2705 
2706 	if (uid_eq(inode->i_uid, fsuid))
2707 		return 0;
2708 	if (uid_eq(dir->i_uid, fsuid))
2709 		return 0;
2710 	return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2711 }
2712 EXPORT_SYMBOL(__check_sticky);
2713 
2714 /*
2715  *	Check whether we can remove a link victim from directory dir, check
2716  *  whether the type of victim is right.
2717  *  1. We can't do it if dir is read-only (done in permission())
2718  *  2. We should have write and exec permissions on dir
2719  *  3. We can't remove anything from append-only dir
2720  *  4. We can't do anything with immutable dir (done in permission())
2721  *  5. If the sticky bit on dir is set we should either
2722  *	a. be owner of dir, or
2723  *	b. be owner of victim, or
2724  *	c. have CAP_FOWNER capability
2725  *  6. If the victim is append-only or immutable we can't do antyhing with
2726  *     links pointing to it.
2727  *  7. If the victim has an unknown uid or gid we can't change the inode.
2728  *  8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2729  *  9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2730  * 10. We can't remove a root or mountpoint.
2731  * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2732  *     nfs_async_unlink().
2733  */
2734 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2735 {
2736 	struct inode *inode = d_backing_inode(victim);
2737 	int error;
2738 
2739 	if (d_is_negative(victim))
2740 		return -ENOENT;
2741 	BUG_ON(!inode);
2742 
2743 	BUG_ON(victim->d_parent->d_inode != dir);
2744 
2745 	/* Inode writeback is not safe when the uid or gid are invalid. */
2746 	if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
2747 		return -EOVERFLOW;
2748 
2749 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2750 
2751 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2752 	if (error)
2753 		return error;
2754 	if (IS_APPEND(dir))
2755 		return -EPERM;
2756 
2757 	if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2758 	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode))
2759 		return -EPERM;
2760 	if (isdir) {
2761 		if (!d_is_dir(victim))
2762 			return -ENOTDIR;
2763 		if (IS_ROOT(victim))
2764 			return -EBUSY;
2765 	} else if (d_is_dir(victim))
2766 		return -EISDIR;
2767 	if (IS_DEADDIR(dir))
2768 		return -ENOENT;
2769 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2770 		return -EBUSY;
2771 	return 0;
2772 }
2773 
2774 /*	Check whether we can create an object with dentry child in directory
2775  *  dir.
2776  *  1. We can't do it if child already exists (open has special treatment for
2777  *     this case, but since we are inlined it's OK)
2778  *  2. We can't do it if dir is read-only (done in permission())
2779  *  3. We can't do it if the fs can't represent the fsuid or fsgid.
2780  *  4. We should have write and exec permissions on dir
2781  *  5. We can't do it if dir is immutable (done in permission())
2782  */
2783 static inline int may_create(struct inode *dir, struct dentry *child)
2784 {
2785 	struct user_namespace *s_user_ns;
2786 	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2787 	if (child->d_inode)
2788 		return -EEXIST;
2789 	if (IS_DEADDIR(dir))
2790 		return -ENOENT;
2791 	s_user_ns = dir->i_sb->s_user_ns;
2792 	if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2793 	    !kgid_has_mapping(s_user_ns, current_fsgid()))
2794 		return -EOVERFLOW;
2795 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2796 }
2797 
2798 /*
2799  * p1 and p2 should be directories on the same fs.
2800  */
2801 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2802 {
2803 	struct dentry *p;
2804 
2805 	if (p1 == p2) {
2806 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2807 		return NULL;
2808 	}
2809 
2810 	mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2811 
2812 	p = d_ancestor(p2, p1);
2813 	if (p) {
2814 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2815 		inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2816 		return p;
2817 	}
2818 
2819 	p = d_ancestor(p1, p2);
2820 	if (p) {
2821 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2822 		inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2823 		return p;
2824 	}
2825 
2826 	inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2827 	inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2828 	return NULL;
2829 }
2830 EXPORT_SYMBOL(lock_rename);
2831 
2832 void unlock_rename(struct dentry *p1, struct dentry *p2)
2833 {
2834 	inode_unlock(p1->d_inode);
2835 	if (p1 != p2) {
2836 		inode_unlock(p2->d_inode);
2837 		mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2838 	}
2839 }
2840 EXPORT_SYMBOL(unlock_rename);
2841 
2842 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2843 		bool want_excl)
2844 {
2845 	int error = may_create(dir, dentry);
2846 	if (error)
2847 		return error;
2848 
2849 	if (!dir->i_op->create)
2850 		return -EACCES;	/* shouldn't it be ENOSYS? */
2851 	mode &= S_IALLUGO;
2852 	mode |= S_IFREG;
2853 	error = security_inode_create(dir, dentry, mode);
2854 	if (error)
2855 		return error;
2856 	error = dir->i_op->create(dir, dentry, mode, want_excl);
2857 	if (!error)
2858 		fsnotify_create(dir, dentry);
2859 	return error;
2860 }
2861 EXPORT_SYMBOL(vfs_create);
2862 
2863 int vfs_mkobj(struct dentry *dentry, umode_t mode,
2864 		int (*f)(struct dentry *, umode_t, void *),
2865 		void *arg)
2866 {
2867 	struct inode *dir = dentry->d_parent->d_inode;
2868 	int error = may_create(dir, dentry);
2869 	if (error)
2870 		return error;
2871 
2872 	mode &= S_IALLUGO;
2873 	mode |= S_IFREG;
2874 	error = security_inode_create(dir, dentry, mode);
2875 	if (error)
2876 		return error;
2877 	error = f(dentry, mode, arg);
2878 	if (!error)
2879 		fsnotify_create(dir, dentry);
2880 	return error;
2881 }
2882 EXPORT_SYMBOL(vfs_mkobj);
2883 
2884 bool may_open_dev(const struct path *path)
2885 {
2886 	return !(path->mnt->mnt_flags & MNT_NODEV) &&
2887 		!(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
2888 }
2889 
2890 static int may_open(const struct path *path, int acc_mode, int flag)
2891 {
2892 	struct dentry *dentry = path->dentry;
2893 	struct inode *inode = dentry->d_inode;
2894 	int error;
2895 
2896 	if (!inode)
2897 		return -ENOENT;
2898 
2899 	switch (inode->i_mode & S_IFMT) {
2900 	case S_IFLNK:
2901 		return -ELOOP;
2902 	case S_IFDIR:
2903 		if (acc_mode & MAY_WRITE)
2904 			return -EISDIR;
2905 		break;
2906 	case S_IFBLK:
2907 	case S_IFCHR:
2908 		if (!may_open_dev(path))
2909 			return -EACCES;
2910 		/*FALLTHRU*/
2911 	case S_IFIFO:
2912 	case S_IFSOCK:
2913 		flag &= ~O_TRUNC;
2914 		break;
2915 	}
2916 
2917 	error = inode_permission(inode, MAY_OPEN | acc_mode);
2918 	if (error)
2919 		return error;
2920 
2921 	/*
2922 	 * An append-only file must be opened in append mode for writing.
2923 	 */
2924 	if (IS_APPEND(inode)) {
2925 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2926 			return -EPERM;
2927 		if (flag & O_TRUNC)
2928 			return -EPERM;
2929 	}
2930 
2931 	/* O_NOATIME can only be set by the owner or superuser */
2932 	if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2933 		return -EPERM;
2934 
2935 	return 0;
2936 }
2937 
2938 static int handle_truncate(struct file *filp)
2939 {
2940 	const struct path *path = &filp->f_path;
2941 	struct inode *inode = path->dentry->d_inode;
2942 	int error = get_write_access(inode);
2943 	if (error)
2944 		return error;
2945 	/*
2946 	 * Refuse to truncate files with mandatory locks held on them.
2947 	 */
2948 	error = locks_verify_locked(filp);
2949 	if (!error)
2950 		error = security_path_truncate(path);
2951 	if (!error) {
2952 		error = do_truncate(path->dentry, 0,
2953 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2954 				    filp);
2955 	}
2956 	put_write_access(inode);
2957 	return error;
2958 }
2959 
2960 static inline int open_to_namei_flags(int flag)
2961 {
2962 	if ((flag & O_ACCMODE) == 3)
2963 		flag--;
2964 	return flag;
2965 }
2966 
2967 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode)
2968 {
2969 	struct user_namespace *s_user_ns;
2970 	int error = security_path_mknod(dir, dentry, mode, 0);
2971 	if (error)
2972 		return error;
2973 
2974 	s_user_ns = dir->dentry->d_sb->s_user_ns;
2975 	if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2976 	    !kgid_has_mapping(s_user_ns, current_fsgid()))
2977 		return -EOVERFLOW;
2978 
2979 	error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2980 	if (error)
2981 		return error;
2982 
2983 	return security_inode_create(dir->dentry->d_inode, dentry, mode);
2984 }
2985 
2986 /*
2987  * Attempt to atomically look up, create and open a file from a negative
2988  * dentry.
2989  *
2990  * Returns 0 if successful.  The file will have been created and attached to
2991  * @file by the filesystem calling finish_open().
2992  *
2993  * If the file was looked up only or didn't need creating, FMODE_OPENED won't
2994  * be set.  The caller will need to perform the open themselves.  @path will
2995  * have been updated to point to the new dentry.  This may be negative.
2996  *
2997  * Returns an error code otherwise.
2998  */
2999 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
3000 			struct path *path, struct file *file,
3001 			const struct open_flags *op,
3002 			int open_flag, umode_t mode)
3003 {
3004 	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3005 	struct inode *dir =  nd->path.dentry->d_inode;
3006 	int error;
3007 
3008 	if (!(~open_flag & (O_EXCL | O_CREAT)))	/* both O_EXCL and O_CREAT */
3009 		open_flag &= ~O_TRUNC;
3010 
3011 	if (nd->flags & LOOKUP_DIRECTORY)
3012 		open_flag |= O_DIRECTORY;
3013 
3014 	file->f_path.dentry = DENTRY_NOT_SET;
3015 	file->f_path.mnt = nd->path.mnt;
3016 	error = dir->i_op->atomic_open(dir, dentry, file,
3017 				       open_to_namei_flags(open_flag), mode);
3018 	d_lookup_done(dentry);
3019 	if (!error) {
3020 		if (file->f_mode & FMODE_OPENED) {
3021 			/*
3022 			 * We didn't have the inode before the open, so check open
3023 			 * permission here.
3024 			 */
3025 			int acc_mode = op->acc_mode;
3026 			if (file->f_mode & FMODE_CREATED) {
3027 				WARN_ON(!(open_flag & O_CREAT));
3028 				fsnotify_create(dir, dentry);
3029 				acc_mode = 0;
3030 			}
3031 			error = may_open(&file->f_path, acc_mode, open_flag);
3032 			if (WARN_ON(error > 0))
3033 				error = -EINVAL;
3034 		} else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3035 			error = -EIO;
3036 		} else {
3037 			if (file->f_path.dentry) {
3038 				dput(dentry);
3039 				dentry = file->f_path.dentry;
3040 			}
3041 			if (file->f_mode & FMODE_CREATED)
3042 				fsnotify_create(dir, dentry);
3043 			if (unlikely(d_is_negative(dentry))) {
3044 				error = -ENOENT;
3045 			} else {
3046 				path->dentry = dentry;
3047 				path->mnt = nd->path.mnt;
3048 				return 0;
3049 			}
3050 		}
3051 	}
3052 	dput(dentry);
3053 	return error;
3054 }
3055 
3056 /*
3057  * Look up and maybe create and open the last component.
3058  *
3059  * Must be called with parent locked (exclusive in O_CREAT case).
3060  *
3061  * Returns 0 on success, that is, if
3062  *  the file was successfully atomically created (if necessary) and opened, or
3063  *  the file was not completely opened at this time, though lookups and
3064  *  creations were performed.
3065  * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3066  * In the latter case dentry returned in @path might be negative if O_CREAT
3067  * hadn't been specified.
3068  *
3069  * An error code is returned on failure.
3070  */
3071 static int lookup_open(struct nameidata *nd, struct path *path,
3072 			struct file *file,
3073 			const struct open_flags *op,
3074 			bool got_write)
3075 {
3076 	struct dentry *dir = nd->path.dentry;
3077 	struct inode *dir_inode = dir->d_inode;
3078 	int open_flag = op->open_flag;
3079 	struct dentry *dentry;
3080 	int error, create_error = 0;
3081 	umode_t mode = op->mode;
3082 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3083 
3084 	if (unlikely(IS_DEADDIR(dir_inode)))
3085 		return -ENOENT;
3086 
3087 	file->f_mode &= ~FMODE_CREATED;
3088 	dentry = d_lookup(dir, &nd->last);
3089 	for (;;) {
3090 		if (!dentry) {
3091 			dentry = d_alloc_parallel(dir, &nd->last, &wq);
3092 			if (IS_ERR(dentry))
3093 				return PTR_ERR(dentry);
3094 		}
3095 		if (d_in_lookup(dentry))
3096 			break;
3097 
3098 		error = d_revalidate(dentry, nd->flags);
3099 		if (likely(error > 0))
3100 			break;
3101 		if (error)
3102 			goto out_dput;
3103 		d_invalidate(dentry);
3104 		dput(dentry);
3105 		dentry = NULL;
3106 	}
3107 	if (dentry->d_inode) {
3108 		/* Cached positive dentry: will open in f_op->open */
3109 		goto out_no_open;
3110 	}
3111 
3112 	/*
3113 	 * Checking write permission is tricky, bacuse we don't know if we are
3114 	 * going to actually need it: O_CREAT opens should work as long as the
3115 	 * file exists.  But checking existence breaks atomicity.  The trick is
3116 	 * to check access and if not granted clear O_CREAT from the flags.
3117 	 *
3118 	 * Another problem is returing the "right" error value (e.g. for an
3119 	 * O_EXCL open we want to return EEXIST not EROFS).
3120 	 */
3121 	if (open_flag & O_CREAT) {
3122 		if (!IS_POSIXACL(dir->d_inode))
3123 			mode &= ~current_umask();
3124 		if (unlikely(!got_write)) {
3125 			create_error = -EROFS;
3126 			open_flag &= ~O_CREAT;
3127 			if (open_flag & (O_EXCL | O_TRUNC))
3128 				goto no_open;
3129 			/* No side effects, safe to clear O_CREAT */
3130 		} else {
3131 			create_error = may_o_create(&nd->path, dentry, mode);
3132 			if (create_error) {
3133 				open_flag &= ~O_CREAT;
3134 				if (open_flag & O_EXCL)
3135 					goto no_open;
3136 			}
3137 		}
3138 	} else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) &&
3139 		   unlikely(!got_write)) {
3140 		/*
3141 		 * No O_CREATE -> atomicity not a requirement -> fall
3142 		 * back to lookup + open
3143 		 */
3144 		goto no_open;
3145 	}
3146 
3147 	if (dir_inode->i_op->atomic_open) {
3148 		error = atomic_open(nd, dentry, path, file, op, open_flag,
3149 				    mode);
3150 		if (unlikely(error == -ENOENT) && create_error)
3151 			error = create_error;
3152 		return error;
3153 	}
3154 
3155 no_open:
3156 	if (d_in_lookup(dentry)) {
3157 		struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3158 							     nd->flags);
3159 		d_lookup_done(dentry);
3160 		if (unlikely(res)) {
3161 			if (IS_ERR(res)) {
3162 				error = PTR_ERR(res);
3163 				goto out_dput;
3164 			}
3165 			dput(dentry);
3166 			dentry = res;
3167 		}
3168 	}
3169 
3170 	/* Negative dentry, just create the file */
3171 	if (!dentry->d_inode && (open_flag & O_CREAT)) {
3172 		file->f_mode |= FMODE_CREATED;
3173 		audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3174 		if (!dir_inode->i_op->create) {
3175 			error = -EACCES;
3176 			goto out_dput;
3177 		}
3178 		error = dir_inode->i_op->create(dir_inode, dentry, mode,
3179 						open_flag & O_EXCL);
3180 		if (error)
3181 			goto out_dput;
3182 		fsnotify_create(dir_inode, dentry);
3183 	}
3184 	if (unlikely(create_error) && !dentry->d_inode) {
3185 		error = create_error;
3186 		goto out_dput;
3187 	}
3188 out_no_open:
3189 	path->dentry = dentry;
3190 	path->mnt = nd->path.mnt;
3191 	return 0;
3192 
3193 out_dput:
3194 	dput(dentry);
3195 	return error;
3196 }
3197 
3198 /*
3199  * Handle the last step of open()
3200  */
3201 static int do_last(struct nameidata *nd,
3202 		   struct file *file, const struct open_flags *op)
3203 {
3204 	struct dentry *dir = nd->path.dentry;
3205 	kuid_t dir_uid = dir->d_inode->i_uid;
3206 	umode_t dir_mode = dir->d_inode->i_mode;
3207 	int open_flag = op->open_flag;
3208 	bool will_truncate = (open_flag & O_TRUNC) != 0;
3209 	bool got_write = false;
3210 	int acc_mode = op->acc_mode;
3211 	unsigned seq;
3212 	struct inode *inode;
3213 	struct path path;
3214 	int error;
3215 
3216 	nd->flags &= ~LOOKUP_PARENT;
3217 	nd->flags |= op->intent;
3218 
3219 	if (nd->last_type != LAST_NORM) {
3220 		error = handle_dots(nd, nd->last_type);
3221 		if (unlikely(error))
3222 			return error;
3223 		goto finish_open;
3224 	}
3225 
3226 	if (!(open_flag & O_CREAT)) {
3227 		if (nd->last.name[nd->last.len])
3228 			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3229 		/* we _can_ be in RCU mode here */
3230 		error = lookup_fast(nd, &path, &inode, &seq);
3231 		if (likely(error > 0))
3232 			goto finish_lookup;
3233 
3234 		if (error < 0)
3235 			return error;
3236 
3237 		BUG_ON(nd->inode != dir->d_inode);
3238 		BUG_ON(nd->flags & LOOKUP_RCU);
3239 	} else {
3240 		/* create side of things */
3241 		/*
3242 		 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3243 		 * has been cleared when we got to the last component we are
3244 		 * about to look up
3245 		 */
3246 		error = complete_walk(nd);
3247 		if (error)
3248 			return error;
3249 
3250 		audit_inode(nd->name, dir, AUDIT_INODE_PARENT);
3251 		/* trailing slashes? */
3252 		if (unlikely(nd->last.name[nd->last.len]))
3253 			return -EISDIR;
3254 	}
3255 
3256 	if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3257 		error = mnt_want_write(nd->path.mnt);
3258 		if (!error)
3259 			got_write = true;
3260 		/*
3261 		 * do _not_ fail yet - we might not need that or fail with
3262 		 * a different error; let lookup_open() decide; we'll be
3263 		 * dropping this one anyway.
3264 		 */
3265 	}
3266 	if (open_flag & O_CREAT)
3267 		inode_lock(dir->d_inode);
3268 	else
3269 		inode_lock_shared(dir->d_inode);
3270 	error = lookup_open(nd, &path, file, op, got_write);
3271 	if (open_flag & O_CREAT)
3272 		inode_unlock(dir->d_inode);
3273 	else
3274 		inode_unlock_shared(dir->d_inode);
3275 
3276 	if (error)
3277 		goto out;
3278 
3279 	if (file->f_mode & FMODE_OPENED) {
3280 		if ((file->f_mode & FMODE_CREATED) ||
3281 		    !S_ISREG(file_inode(file)->i_mode))
3282 			will_truncate = false;
3283 
3284 		audit_inode(nd->name, file->f_path.dentry, 0);
3285 		goto opened;
3286 	}
3287 
3288 	if (file->f_mode & FMODE_CREATED) {
3289 		/* Don't check for write permission, don't truncate */
3290 		open_flag &= ~O_TRUNC;
3291 		will_truncate = false;
3292 		acc_mode = 0;
3293 		path_to_nameidata(&path, nd);
3294 		goto finish_open_created;
3295 	}
3296 
3297 	/*
3298 	 * If atomic_open() acquired write access it is dropped now due to
3299 	 * possible mount and symlink following (this might be optimized away if
3300 	 * necessary...)
3301 	 */
3302 	if (got_write) {
3303 		mnt_drop_write(nd->path.mnt);
3304 		got_write = false;
3305 	}
3306 
3307 	error = follow_managed(&path, nd);
3308 	if (unlikely(error < 0))
3309 		return error;
3310 
3311 	/*
3312 	 * create/update audit record if it already exists.
3313 	 */
3314 	audit_inode(nd->name, path.dentry, 0);
3315 
3316 	if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3317 		path_to_nameidata(&path, nd);
3318 		return -EEXIST;
3319 	}
3320 
3321 	seq = 0;	/* out of RCU mode, so the value doesn't matter */
3322 	inode = d_backing_inode(path.dentry);
3323 finish_lookup:
3324 	error = step_into(nd, &path, 0, inode, seq);
3325 	if (unlikely(error))
3326 		return error;
3327 finish_open:
3328 	/* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
3329 	error = complete_walk(nd);
3330 	if (error)
3331 		return error;
3332 	audit_inode(nd->name, nd->path.dentry, 0);
3333 	if (open_flag & O_CREAT) {
3334 		error = -EISDIR;
3335 		if (d_is_dir(nd->path.dentry))
3336 			goto out;
3337 		error = may_create_in_sticky(dir_mode, dir_uid,
3338 					     d_backing_inode(nd->path.dentry));
3339 		if (unlikely(error))
3340 			goto out;
3341 	}
3342 	error = -ENOTDIR;
3343 	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3344 		goto out;
3345 	if (!d_is_reg(nd->path.dentry))
3346 		will_truncate = false;
3347 
3348 	if (will_truncate) {
3349 		error = mnt_want_write(nd->path.mnt);
3350 		if (error)
3351 			goto out;
3352 		got_write = true;
3353 	}
3354 finish_open_created:
3355 	error = may_open(&nd->path, acc_mode, open_flag);
3356 	if (error)
3357 		goto out;
3358 	BUG_ON(file->f_mode & FMODE_OPENED); /* once it's opened, it's opened */
3359 	error = vfs_open(&nd->path, file);
3360 	if (error)
3361 		goto out;
3362 opened:
3363 	error = ima_file_check(file, op->acc_mode);
3364 	if (!error && will_truncate)
3365 		error = handle_truncate(file);
3366 out:
3367 	if (unlikely(error > 0)) {
3368 		WARN_ON(1);
3369 		error = -EINVAL;
3370 	}
3371 	if (got_write)
3372 		mnt_drop_write(nd->path.mnt);
3373 	return error;
3374 }
3375 
3376 struct dentry *vfs_tmpfile(struct dentry *dentry, umode_t mode, int open_flag)
3377 {
3378 	struct dentry *child = NULL;
3379 	struct inode *dir = dentry->d_inode;
3380 	struct inode *inode;
3381 	int error;
3382 
3383 	/* we want directory to be writable */
3384 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3385 	if (error)
3386 		goto out_err;
3387 	error = -EOPNOTSUPP;
3388 	if (!dir->i_op->tmpfile)
3389 		goto out_err;
3390 	error = -ENOMEM;
3391 	child = d_alloc(dentry, &slash_name);
3392 	if (unlikely(!child))
3393 		goto out_err;
3394 	error = dir->i_op->tmpfile(dir, child, mode);
3395 	if (error)
3396 		goto out_err;
3397 	error = -ENOENT;
3398 	inode = child->d_inode;
3399 	if (unlikely(!inode))
3400 		goto out_err;
3401 	if (!(open_flag & O_EXCL)) {
3402 		spin_lock(&inode->i_lock);
3403 		inode->i_state |= I_LINKABLE;
3404 		spin_unlock(&inode->i_lock);
3405 	}
3406 	ima_post_create_tmpfile(inode);
3407 	return child;
3408 
3409 out_err:
3410 	dput(child);
3411 	return ERR_PTR(error);
3412 }
3413 EXPORT_SYMBOL(vfs_tmpfile);
3414 
3415 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3416 		const struct open_flags *op,
3417 		struct file *file)
3418 {
3419 	struct dentry *child;
3420 	struct path path;
3421 	int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3422 	if (unlikely(error))
3423 		return error;
3424 	error = mnt_want_write(path.mnt);
3425 	if (unlikely(error))
3426 		goto out;
3427 	child = vfs_tmpfile(path.dentry, op->mode, op->open_flag);
3428 	error = PTR_ERR(child);
3429 	if (IS_ERR(child))
3430 		goto out2;
3431 	dput(path.dentry);
3432 	path.dentry = child;
3433 	audit_inode(nd->name, child, 0);
3434 	/* Don't check for other permissions, the inode was just created */
3435 	error = may_open(&path, 0, op->open_flag);
3436 	if (error)
3437 		goto out2;
3438 	file->f_path.mnt = path.mnt;
3439 	error = finish_open(file, child, NULL);
3440 out2:
3441 	mnt_drop_write(path.mnt);
3442 out:
3443 	path_put(&path);
3444 	return error;
3445 }
3446 
3447 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3448 {
3449 	struct path path;
3450 	int error = path_lookupat(nd, flags, &path);
3451 	if (!error) {
3452 		audit_inode(nd->name, path.dentry, 0);
3453 		error = vfs_open(&path, file);
3454 		path_put(&path);
3455 	}
3456 	return error;
3457 }
3458 
3459 static struct file *path_openat(struct nameidata *nd,
3460 			const struct open_flags *op, unsigned flags)
3461 {
3462 	struct file *file;
3463 	int error;
3464 
3465 	file = alloc_empty_file(op->open_flag, current_cred());
3466 	if (IS_ERR(file))
3467 		return file;
3468 
3469 	if (unlikely(file->f_flags & __O_TMPFILE)) {
3470 		error = do_tmpfile(nd, flags, op, file);
3471 	} else if (unlikely(file->f_flags & O_PATH)) {
3472 		error = do_o_path(nd, flags, file);
3473 	} else {
3474 		const char *s = path_init(nd, flags);
3475 		while (!(error = link_path_walk(s, nd)) &&
3476 			(error = do_last(nd, file, op)) > 0) {
3477 			nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3478 			s = trailing_symlink(nd);
3479 		}
3480 		terminate_walk(nd);
3481 	}
3482 	if (likely(!error)) {
3483 		if (likely(file->f_mode & FMODE_OPENED))
3484 			return file;
3485 		WARN_ON(1);
3486 		error = -EINVAL;
3487 	}
3488 	fput(file);
3489 	if (error == -EOPENSTALE) {
3490 		if (flags & LOOKUP_RCU)
3491 			error = -ECHILD;
3492 		else
3493 			error = -ESTALE;
3494 	}
3495 	return ERR_PTR(error);
3496 }
3497 
3498 struct file *do_filp_open(int dfd, struct filename *pathname,
3499 		const struct open_flags *op)
3500 {
3501 	struct nameidata nd;
3502 	int flags = op->lookup_flags;
3503 	struct file *filp;
3504 
3505 	set_nameidata(&nd, dfd, pathname);
3506 	filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3507 	if (unlikely(filp == ERR_PTR(-ECHILD)))
3508 		filp = path_openat(&nd, op, flags);
3509 	if (unlikely(filp == ERR_PTR(-ESTALE)))
3510 		filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3511 	restore_nameidata();
3512 	return filp;
3513 }
3514 
3515 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3516 		const char *name, const struct open_flags *op)
3517 {
3518 	struct nameidata nd;
3519 	struct file *file;
3520 	struct filename *filename;
3521 	int flags = op->lookup_flags | LOOKUP_ROOT;
3522 
3523 	nd.root.mnt = mnt;
3524 	nd.root.dentry = dentry;
3525 
3526 	if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3527 		return ERR_PTR(-ELOOP);
3528 
3529 	filename = getname_kernel(name);
3530 	if (IS_ERR(filename))
3531 		return ERR_CAST(filename);
3532 
3533 	set_nameidata(&nd, -1, filename);
3534 	file = path_openat(&nd, op, flags | LOOKUP_RCU);
3535 	if (unlikely(file == ERR_PTR(-ECHILD)))
3536 		file = path_openat(&nd, op, flags);
3537 	if (unlikely(file == ERR_PTR(-ESTALE)))
3538 		file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3539 	restore_nameidata();
3540 	putname(filename);
3541 	return file;
3542 }
3543 
3544 static struct dentry *filename_create(int dfd, struct filename *name,
3545 				struct path *path, unsigned int lookup_flags)
3546 {
3547 	struct dentry *dentry = ERR_PTR(-EEXIST);
3548 	struct qstr last;
3549 	int type;
3550 	int err2;
3551 	int error;
3552 	bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3553 
3554 	/*
3555 	 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3556 	 * other flags passed in are ignored!
3557 	 */
3558 	lookup_flags &= LOOKUP_REVAL;
3559 
3560 	name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3561 	if (IS_ERR(name))
3562 		return ERR_CAST(name);
3563 
3564 	/*
3565 	 * Yucky last component or no last component at all?
3566 	 * (foo/., foo/.., /////)
3567 	 */
3568 	if (unlikely(type != LAST_NORM))
3569 		goto out;
3570 
3571 	/* don't fail immediately if it's r/o, at least try to report other errors */
3572 	err2 = mnt_want_write(path->mnt);
3573 	/*
3574 	 * Do the final lookup.
3575 	 */
3576 	lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3577 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3578 	dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3579 	if (IS_ERR(dentry))
3580 		goto unlock;
3581 
3582 	error = -EEXIST;
3583 	if (d_is_positive(dentry))
3584 		goto fail;
3585 
3586 	/*
3587 	 * Special case - lookup gave negative, but... we had foo/bar/
3588 	 * From the vfs_mknod() POV we just have a negative dentry -
3589 	 * all is fine. Let's be bastards - you had / on the end, you've
3590 	 * been asking for (non-existent) directory. -ENOENT for you.
3591 	 */
3592 	if (unlikely(!is_dir && last.name[last.len])) {
3593 		error = -ENOENT;
3594 		goto fail;
3595 	}
3596 	if (unlikely(err2)) {
3597 		error = err2;
3598 		goto fail;
3599 	}
3600 	putname(name);
3601 	return dentry;
3602 fail:
3603 	dput(dentry);
3604 	dentry = ERR_PTR(error);
3605 unlock:
3606 	inode_unlock(path->dentry->d_inode);
3607 	if (!err2)
3608 		mnt_drop_write(path->mnt);
3609 out:
3610 	path_put(path);
3611 	putname(name);
3612 	return dentry;
3613 }
3614 
3615 struct dentry *kern_path_create(int dfd, const char *pathname,
3616 				struct path *path, unsigned int lookup_flags)
3617 {
3618 	return filename_create(dfd, getname_kernel(pathname),
3619 				path, lookup_flags);
3620 }
3621 EXPORT_SYMBOL(kern_path_create);
3622 
3623 void done_path_create(struct path *path, struct dentry *dentry)
3624 {
3625 	dput(dentry);
3626 	inode_unlock(path->dentry->d_inode);
3627 	mnt_drop_write(path->mnt);
3628 	path_put(path);
3629 }
3630 EXPORT_SYMBOL(done_path_create);
3631 
3632 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3633 				struct path *path, unsigned int lookup_flags)
3634 {
3635 	return filename_create(dfd, getname(pathname), path, lookup_flags);
3636 }
3637 EXPORT_SYMBOL(user_path_create);
3638 
3639 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3640 {
3641 	int error = may_create(dir, dentry);
3642 
3643 	if (error)
3644 		return error;
3645 
3646 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3647 		return -EPERM;
3648 
3649 	if (!dir->i_op->mknod)
3650 		return -EPERM;
3651 
3652 	error = devcgroup_inode_mknod(mode, dev);
3653 	if (error)
3654 		return error;
3655 
3656 	error = security_inode_mknod(dir, dentry, mode, dev);
3657 	if (error)
3658 		return error;
3659 
3660 	error = dir->i_op->mknod(dir, dentry, mode, dev);
3661 	if (!error)
3662 		fsnotify_create(dir, dentry);
3663 	return error;
3664 }
3665 EXPORT_SYMBOL(vfs_mknod);
3666 
3667 static int may_mknod(umode_t mode)
3668 {
3669 	switch (mode & S_IFMT) {
3670 	case S_IFREG:
3671 	case S_IFCHR:
3672 	case S_IFBLK:
3673 	case S_IFIFO:
3674 	case S_IFSOCK:
3675 	case 0: /* zero mode translates to S_IFREG */
3676 		return 0;
3677 	case S_IFDIR:
3678 		return -EPERM;
3679 	default:
3680 		return -EINVAL;
3681 	}
3682 }
3683 
3684 long do_mknodat(int dfd, const char __user *filename, umode_t mode,
3685 		unsigned int dev)
3686 {
3687 	struct dentry *dentry;
3688 	struct path path;
3689 	int error;
3690 	unsigned int lookup_flags = 0;
3691 
3692 	error = may_mknod(mode);
3693 	if (error)
3694 		return error;
3695 retry:
3696 	dentry = user_path_create(dfd, filename, &path, lookup_flags);
3697 	if (IS_ERR(dentry))
3698 		return PTR_ERR(dentry);
3699 
3700 	if (!IS_POSIXACL(path.dentry->d_inode))
3701 		mode &= ~current_umask();
3702 	error = security_path_mknod(&path, dentry, mode, dev);
3703 	if (error)
3704 		goto out;
3705 	switch (mode & S_IFMT) {
3706 		case 0: case S_IFREG:
3707 			error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3708 			if (!error)
3709 				ima_post_path_mknod(dentry);
3710 			break;
3711 		case S_IFCHR: case S_IFBLK:
3712 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3713 					new_decode_dev(dev));
3714 			break;
3715 		case S_IFIFO: case S_IFSOCK:
3716 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3717 			break;
3718 	}
3719 out:
3720 	done_path_create(&path, dentry);
3721 	if (retry_estale(error, lookup_flags)) {
3722 		lookup_flags |= LOOKUP_REVAL;
3723 		goto retry;
3724 	}
3725 	return error;
3726 }
3727 
3728 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3729 		unsigned int, dev)
3730 {
3731 	return do_mknodat(dfd, filename, mode, dev);
3732 }
3733 
3734 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3735 {
3736 	return do_mknodat(AT_FDCWD, filename, mode, dev);
3737 }
3738 
3739 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3740 {
3741 	int error = may_create(dir, dentry);
3742 	unsigned max_links = dir->i_sb->s_max_links;
3743 
3744 	if (error)
3745 		return error;
3746 
3747 	if (!dir->i_op->mkdir)
3748 		return -EPERM;
3749 
3750 	mode &= (S_IRWXUGO|S_ISVTX);
3751 	error = security_inode_mkdir(dir, dentry, mode);
3752 	if (error)
3753 		return error;
3754 
3755 	if (max_links && dir->i_nlink >= max_links)
3756 		return -EMLINK;
3757 
3758 	error = dir->i_op->mkdir(dir, dentry, mode);
3759 	if (!error)
3760 		fsnotify_mkdir(dir, dentry);
3761 	return error;
3762 }
3763 EXPORT_SYMBOL(vfs_mkdir);
3764 
3765 long do_mkdirat(int dfd, const char __user *pathname, umode_t mode)
3766 {
3767 	struct dentry *dentry;
3768 	struct path path;
3769 	int error;
3770 	unsigned int lookup_flags = LOOKUP_DIRECTORY;
3771 
3772 retry:
3773 	dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3774 	if (IS_ERR(dentry))
3775 		return PTR_ERR(dentry);
3776 
3777 	if (!IS_POSIXACL(path.dentry->d_inode))
3778 		mode &= ~current_umask();
3779 	error = security_path_mkdir(&path, dentry, mode);
3780 	if (!error)
3781 		error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3782 	done_path_create(&path, dentry);
3783 	if (retry_estale(error, lookup_flags)) {
3784 		lookup_flags |= LOOKUP_REVAL;
3785 		goto retry;
3786 	}
3787 	return error;
3788 }
3789 
3790 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3791 {
3792 	return do_mkdirat(dfd, pathname, mode);
3793 }
3794 
3795 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3796 {
3797 	return do_mkdirat(AT_FDCWD, pathname, mode);
3798 }
3799 
3800 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3801 {
3802 	int error = may_delete(dir, dentry, 1);
3803 
3804 	if (error)
3805 		return error;
3806 
3807 	if (!dir->i_op->rmdir)
3808 		return -EPERM;
3809 
3810 	dget(dentry);
3811 	inode_lock(dentry->d_inode);
3812 
3813 	error = -EBUSY;
3814 	if (is_local_mountpoint(dentry))
3815 		goto out;
3816 
3817 	error = security_inode_rmdir(dir, dentry);
3818 	if (error)
3819 		goto out;
3820 
3821 	error = dir->i_op->rmdir(dir, dentry);
3822 	if (error)
3823 		goto out;
3824 
3825 	shrink_dcache_parent(dentry);
3826 	dentry->d_inode->i_flags |= S_DEAD;
3827 	dont_mount(dentry);
3828 	detach_mounts(dentry);
3829 	fsnotify_rmdir(dir, dentry);
3830 
3831 out:
3832 	inode_unlock(dentry->d_inode);
3833 	dput(dentry);
3834 	if (!error)
3835 		d_delete(dentry);
3836 	return error;
3837 }
3838 EXPORT_SYMBOL(vfs_rmdir);
3839 
3840 long do_rmdir(int dfd, const char __user *pathname)
3841 {
3842 	int error = 0;
3843 	struct filename *name;
3844 	struct dentry *dentry;
3845 	struct path path;
3846 	struct qstr last;
3847 	int type;
3848 	unsigned int lookup_flags = 0;
3849 retry:
3850 	name = filename_parentat(dfd, getname(pathname), lookup_flags,
3851 				&path, &last, &type);
3852 	if (IS_ERR(name))
3853 		return PTR_ERR(name);
3854 
3855 	switch (type) {
3856 	case LAST_DOTDOT:
3857 		error = -ENOTEMPTY;
3858 		goto exit1;
3859 	case LAST_DOT:
3860 		error = -EINVAL;
3861 		goto exit1;
3862 	case LAST_ROOT:
3863 		error = -EBUSY;
3864 		goto exit1;
3865 	}
3866 
3867 	error = mnt_want_write(path.mnt);
3868 	if (error)
3869 		goto exit1;
3870 
3871 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3872 	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3873 	error = PTR_ERR(dentry);
3874 	if (IS_ERR(dentry))
3875 		goto exit2;
3876 	if (!dentry->d_inode) {
3877 		error = -ENOENT;
3878 		goto exit3;
3879 	}
3880 	error = security_path_rmdir(&path, dentry);
3881 	if (error)
3882 		goto exit3;
3883 	error = vfs_rmdir(path.dentry->d_inode, dentry);
3884 exit3:
3885 	dput(dentry);
3886 exit2:
3887 	inode_unlock(path.dentry->d_inode);
3888 	mnt_drop_write(path.mnt);
3889 exit1:
3890 	path_put(&path);
3891 	putname(name);
3892 	if (retry_estale(error, lookup_flags)) {
3893 		lookup_flags |= LOOKUP_REVAL;
3894 		goto retry;
3895 	}
3896 	return error;
3897 }
3898 
3899 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3900 {
3901 	return do_rmdir(AT_FDCWD, pathname);
3902 }
3903 
3904 /**
3905  * vfs_unlink - unlink a filesystem object
3906  * @dir:	parent directory
3907  * @dentry:	victim
3908  * @delegated_inode: returns victim inode, if the inode is delegated.
3909  *
3910  * The caller must hold dir->i_mutex.
3911  *
3912  * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3913  * return a reference to the inode in delegated_inode.  The caller
3914  * should then break the delegation on that inode and retry.  Because
3915  * breaking a delegation may take a long time, the caller should drop
3916  * dir->i_mutex before doing so.
3917  *
3918  * Alternatively, a caller may pass NULL for delegated_inode.  This may
3919  * be appropriate for callers that expect the underlying filesystem not
3920  * to be NFS exported.
3921  */
3922 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3923 {
3924 	struct inode *target = dentry->d_inode;
3925 	int error = may_delete(dir, dentry, 0);
3926 
3927 	if (error)
3928 		return error;
3929 
3930 	if (!dir->i_op->unlink)
3931 		return -EPERM;
3932 
3933 	inode_lock(target);
3934 	if (is_local_mountpoint(dentry))
3935 		error = -EBUSY;
3936 	else {
3937 		error = security_inode_unlink(dir, dentry);
3938 		if (!error) {
3939 			error = try_break_deleg(target, delegated_inode);
3940 			if (error)
3941 				goto out;
3942 			error = dir->i_op->unlink(dir, dentry);
3943 			if (!error) {
3944 				dont_mount(dentry);
3945 				detach_mounts(dentry);
3946 				fsnotify_unlink(dir, dentry);
3947 			}
3948 		}
3949 	}
3950 out:
3951 	inode_unlock(target);
3952 
3953 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
3954 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3955 		fsnotify_link_count(target);
3956 		d_delete(dentry);
3957 	}
3958 
3959 	return error;
3960 }
3961 EXPORT_SYMBOL(vfs_unlink);
3962 
3963 /*
3964  * Make sure that the actual truncation of the file will occur outside its
3965  * directory's i_mutex.  Truncate can take a long time if there is a lot of
3966  * writeout happening, and we don't want to prevent access to the directory
3967  * while waiting on the I/O.
3968  */
3969 long do_unlinkat(int dfd, struct filename *name)
3970 {
3971 	int error;
3972 	struct dentry *dentry;
3973 	struct path path;
3974 	struct qstr last;
3975 	int type;
3976 	struct inode *inode = NULL;
3977 	struct inode *delegated_inode = NULL;
3978 	unsigned int lookup_flags = 0;
3979 retry:
3980 	name = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
3981 	if (IS_ERR(name))
3982 		return PTR_ERR(name);
3983 
3984 	error = -EISDIR;
3985 	if (type != LAST_NORM)
3986 		goto exit1;
3987 
3988 	error = mnt_want_write(path.mnt);
3989 	if (error)
3990 		goto exit1;
3991 retry_deleg:
3992 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3993 	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3994 	error = PTR_ERR(dentry);
3995 	if (!IS_ERR(dentry)) {
3996 		/* Why not before? Because we want correct error value */
3997 		if (last.name[last.len])
3998 			goto slashes;
3999 		inode = dentry->d_inode;
4000 		if (d_is_negative(dentry))
4001 			goto slashes;
4002 		ihold(inode);
4003 		error = security_path_unlink(&path, dentry);
4004 		if (error)
4005 			goto exit2;
4006 		error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
4007 exit2:
4008 		dput(dentry);
4009 	}
4010 	inode_unlock(path.dentry->d_inode);
4011 	if (inode)
4012 		iput(inode);	/* truncate the inode here */
4013 	inode = NULL;
4014 	if (delegated_inode) {
4015 		error = break_deleg_wait(&delegated_inode);
4016 		if (!error)
4017 			goto retry_deleg;
4018 	}
4019 	mnt_drop_write(path.mnt);
4020 exit1:
4021 	path_put(&path);
4022 	if (retry_estale(error, lookup_flags)) {
4023 		lookup_flags |= LOOKUP_REVAL;
4024 		inode = NULL;
4025 		goto retry;
4026 	}
4027 	putname(name);
4028 	return error;
4029 
4030 slashes:
4031 	if (d_is_negative(dentry))
4032 		error = -ENOENT;
4033 	else if (d_is_dir(dentry))
4034 		error = -EISDIR;
4035 	else
4036 		error = -ENOTDIR;
4037 	goto exit2;
4038 }
4039 
4040 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4041 {
4042 	if ((flag & ~AT_REMOVEDIR) != 0)
4043 		return -EINVAL;
4044 
4045 	if (flag & AT_REMOVEDIR)
4046 		return do_rmdir(dfd, pathname);
4047 
4048 	return do_unlinkat(dfd, getname(pathname));
4049 }
4050 
4051 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4052 {
4053 	return do_unlinkat(AT_FDCWD, getname(pathname));
4054 }
4055 
4056 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
4057 {
4058 	int error = may_create(dir, dentry);
4059 
4060 	if (error)
4061 		return error;
4062 
4063 	if (!dir->i_op->symlink)
4064 		return -EPERM;
4065 
4066 	error = security_inode_symlink(dir, dentry, oldname);
4067 	if (error)
4068 		return error;
4069 
4070 	error = dir->i_op->symlink(dir, dentry, oldname);
4071 	if (!error)
4072 		fsnotify_create(dir, dentry);
4073 	return error;
4074 }
4075 EXPORT_SYMBOL(vfs_symlink);
4076 
4077 long do_symlinkat(const char __user *oldname, int newdfd,
4078 		  const char __user *newname)
4079 {
4080 	int error;
4081 	struct filename *from;
4082 	struct dentry *dentry;
4083 	struct path path;
4084 	unsigned int lookup_flags = 0;
4085 
4086 	from = getname(oldname);
4087 	if (IS_ERR(from))
4088 		return PTR_ERR(from);
4089 retry:
4090 	dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4091 	error = PTR_ERR(dentry);
4092 	if (IS_ERR(dentry))
4093 		goto out_putname;
4094 
4095 	error = security_path_symlink(&path, dentry, from->name);
4096 	if (!error)
4097 		error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
4098 	done_path_create(&path, dentry);
4099 	if (retry_estale(error, lookup_flags)) {
4100 		lookup_flags |= LOOKUP_REVAL;
4101 		goto retry;
4102 	}
4103 out_putname:
4104 	putname(from);
4105 	return error;
4106 }
4107 
4108 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4109 		int, newdfd, const char __user *, newname)
4110 {
4111 	return do_symlinkat(oldname, newdfd, newname);
4112 }
4113 
4114 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4115 {
4116 	return do_symlinkat(oldname, AT_FDCWD, newname);
4117 }
4118 
4119 /**
4120  * vfs_link - create a new link
4121  * @old_dentry:	object to be linked
4122  * @dir:	new parent
4123  * @new_dentry:	where to create the new link
4124  * @delegated_inode: returns inode needing a delegation break
4125  *
4126  * The caller must hold dir->i_mutex
4127  *
4128  * If vfs_link discovers a delegation on the to-be-linked file in need
4129  * of breaking, it will return -EWOULDBLOCK and return a reference to the
4130  * inode in delegated_inode.  The caller should then break the delegation
4131  * and retry.  Because breaking a delegation may take a long time, the
4132  * caller should drop the i_mutex before doing so.
4133  *
4134  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4135  * be appropriate for callers that expect the underlying filesystem not
4136  * to be NFS exported.
4137  */
4138 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4139 {
4140 	struct inode *inode = old_dentry->d_inode;
4141 	unsigned max_links = dir->i_sb->s_max_links;
4142 	int error;
4143 
4144 	if (!inode)
4145 		return -ENOENT;
4146 
4147 	error = may_create(dir, new_dentry);
4148 	if (error)
4149 		return error;
4150 
4151 	if (dir->i_sb != inode->i_sb)
4152 		return -EXDEV;
4153 
4154 	/*
4155 	 * A link to an append-only or immutable file cannot be created.
4156 	 */
4157 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4158 		return -EPERM;
4159 	/*
4160 	 * Updating the link count will likely cause i_uid and i_gid to
4161 	 * be writen back improperly if their true value is unknown to
4162 	 * the vfs.
4163 	 */
4164 	if (HAS_UNMAPPED_ID(inode))
4165 		return -EPERM;
4166 	if (!dir->i_op->link)
4167 		return -EPERM;
4168 	if (S_ISDIR(inode->i_mode))
4169 		return -EPERM;
4170 
4171 	error = security_inode_link(old_dentry, dir, new_dentry);
4172 	if (error)
4173 		return error;
4174 
4175 	inode_lock(inode);
4176 	/* Make sure we don't allow creating hardlink to an unlinked file */
4177 	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4178 		error =  -ENOENT;
4179 	else if (max_links && inode->i_nlink >= max_links)
4180 		error = -EMLINK;
4181 	else {
4182 		error = try_break_deleg(inode, delegated_inode);
4183 		if (!error)
4184 			error = dir->i_op->link(old_dentry, dir, new_dentry);
4185 	}
4186 
4187 	if (!error && (inode->i_state & I_LINKABLE)) {
4188 		spin_lock(&inode->i_lock);
4189 		inode->i_state &= ~I_LINKABLE;
4190 		spin_unlock(&inode->i_lock);
4191 	}
4192 	inode_unlock(inode);
4193 	if (!error)
4194 		fsnotify_link(dir, inode, new_dentry);
4195 	return error;
4196 }
4197 EXPORT_SYMBOL(vfs_link);
4198 
4199 /*
4200  * Hardlinks are often used in delicate situations.  We avoid
4201  * security-related surprises by not following symlinks on the
4202  * newname.  --KAB
4203  *
4204  * We don't follow them on the oldname either to be compatible
4205  * with linux 2.0, and to avoid hard-linking to directories
4206  * and other special files.  --ADM
4207  */
4208 int do_linkat(int olddfd, const char __user *oldname, int newdfd,
4209 	      const char __user *newname, int flags)
4210 {
4211 	struct dentry *new_dentry;
4212 	struct path old_path, new_path;
4213 	struct inode *delegated_inode = NULL;
4214 	int how = 0;
4215 	int error;
4216 
4217 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4218 		return -EINVAL;
4219 	/*
4220 	 * To use null names we require CAP_DAC_READ_SEARCH
4221 	 * This ensures that not everyone will be able to create
4222 	 * handlink using the passed filedescriptor.
4223 	 */
4224 	if (flags & AT_EMPTY_PATH) {
4225 		if (!capable(CAP_DAC_READ_SEARCH))
4226 			return -ENOENT;
4227 		how = LOOKUP_EMPTY;
4228 	}
4229 
4230 	if (flags & AT_SYMLINK_FOLLOW)
4231 		how |= LOOKUP_FOLLOW;
4232 retry:
4233 	error = user_path_at(olddfd, oldname, how, &old_path);
4234 	if (error)
4235 		return error;
4236 
4237 	new_dentry = user_path_create(newdfd, newname, &new_path,
4238 					(how & LOOKUP_REVAL));
4239 	error = PTR_ERR(new_dentry);
4240 	if (IS_ERR(new_dentry))
4241 		goto out;
4242 
4243 	error = -EXDEV;
4244 	if (old_path.mnt != new_path.mnt)
4245 		goto out_dput;
4246 	error = may_linkat(&old_path);
4247 	if (unlikely(error))
4248 		goto out_dput;
4249 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
4250 	if (error)
4251 		goto out_dput;
4252 	error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4253 out_dput:
4254 	done_path_create(&new_path, new_dentry);
4255 	if (delegated_inode) {
4256 		error = break_deleg_wait(&delegated_inode);
4257 		if (!error) {
4258 			path_put(&old_path);
4259 			goto retry;
4260 		}
4261 	}
4262 	if (retry_estale(error, how)) {
4263 		path_put(&old_path);
4264 		how |= LOOKUP_REVAL;
4265 		goto retry;
4266 	}
4267 out:
4268 	path_put(&old_path);
4269 
4270 	return error;
4271 }
4272 
4273 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4274 		int, newdfd, const char __user *, newname, int, flags)
4275 {
4276 	return do_linkat(olddfd, oldname, newdfd, newname, flags);
4277 }
4278 
4279 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4280 {
4281 	return do_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4282 }
4283 
4284 /**
4285  * vfs_rename - rename a filesystem object
4286  * @old_dir:	parent of source
4287  * @old_dentry:	source
4288  * @new_dir:	parent of destination
4289  * @new_dentry:	destination
4290  * @delegated_inode: returns an inode needing a delegation break
4291  * @flags:	rename flags
4292  *
4293  * The caller must hold multiple mutexes--see lock_rename()).
4294  *
4295  * If vfs_rename discovers a delegation in need of breaking at either
4296  * the source or destination, it will return -EWOULDBLOCK and return a
4297  * reference to the inode in delegated_inode.  The caller should then
4298  * break the delegation and retry.  Because breaking a delegation may
4299  * take a long time, the caller should drop all locks before doing
4300  * so.
4301  *
4302  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4303  * be appropriate for callers that expect the underlying filesystem not
4304  * to be NFS exported.
4305  *
4306  * The worst of all namespace operations - renaming directory. "Perverted"
4307  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4308  * Problems:
4309  *
4310  *	a) we can get into loop creation.
4311  *	b) race potential - two innocent renames can create a loop together.
4312  *	   That's where 4.4 screws up. Current fix: serialization on
4313  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4314  *	   story.
4315  *	c) we have to lock _four_ objects - parents and victim (if it exists),
4316  *	   and source (if it is not a directory).
4317  *	   And that - after we got ->i_mutex on parents (until then we don't know
4318  *	   whether the target exists).  Solution: try to be smart with locking
4319  *	   order for inodes.  We rely on the fact that tree topology may change
4320  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
4321  *	   move will be locked.  Thus we can rank directories by the tree
4322  *	   (ancestors first) and rank all non-directories after them.
4323  *	   That works since everybody except rename does "lock parent, lookup,
4324  *	   lock child" and rename is under ->s_vfs_rename_mutex.
4325  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
4326  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
4327  *	   we'd better make sure that there's no link(2) for them.
4328  *	d) conversion from fhandle to dentry may come in the wrong moment - when
4329  *	   we are removing the target. Solution: we will have to grab ->i_mutex
4330  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4331  *	   ->i_mutex on parents, which works but leads to some truly excessive
4332  *	   locking].
4333  */
4334 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4335 	       struct inode *new_dir, struct dentry *new_dentry,
4336 	       struct inode **delegated_inode, unsigned int flags)
4337 {
4338 	int error;
4339 	bool is_dir = d_is_dir(old_dentry);
4340 	struct inode *source = old_dentry->d_inode;
4341 	struct inode *target = new_dentry->d_inode;
4342 	bool new_is_dir = false;
4343 	unsigned max_links = new_dir->i_sb->s_max_links;
4344 	struct name_snapshot old_name;
4345 
4346 	if (source == target)
4347 		return 0;
4348 
4349 	error = may_delete(old_dir, old_dentry, is_dir);
4350 	if (error)
4351 		return error;
4352 
4353 	if (!target) {
4354 		error = may_create(new_dir, new_dentry);
4355 	} else {
4356 		new_is_dir = d_is_dir(new_dentry);
4357 
4358 		if (!(flags & RENAME_EXCHANGE))
4359 			error = may_delete(new_dir, new_dentry, is_dir);
4360 		else
4361 			error = may_delete(new_dir, new_dentry, new_is_dir);
4362 	}
4363 	if (error)
4364 		return error;
4365 
4366 	if (!old_dir->i_op->rename)
4367 		return -EPERM;
4368 
4369 	/*
4370 	 * If we are going to change the parent - check write permissions,
4371 	 * we'll need to flip '..'.
4372 	 */
4373 	if (new_dir != old_dir) {
4374 		if (is_dir) {
4375 			error = inode_permission(source, MAY_WRITE);
4376 			if (error)
4377 				return error;
4378 		}
4379 		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4380 			error = inode_permission(target, MAY_WRITE);
4381 			if (error)
4382 				return error;
4383 		}
4384 	}
4385 
4386 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4387 				      flags);
4388 	if (error)
4389 		return error;
4390 
4391 	take_dentry_name_snapshot(&old_name, old_dentry);
4392 	dget(new_dentry);
4393 	if (!is_dir || (flags & RENAME_EXCHANGE))
4394 		lock_two_nondirectories(source, target);
4395 	else if (target)
4396 		inode_lock(target);
4397 
4398 	error = -EBUSY;
4399 	if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4400 		goto out;
4401 
4402 	if (max_links && new_dir != old_dir) {
4403 		error = -EMLINK;
4404 		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4405 			goto out;
4406 		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4407 		    old_dir->i_nlink >= max_links)
4408 			goto out;
4409 	}
4410 	if (!is_dir) {
4411 		error = try_break_deleg(source, delegated_inode);
4412 		if (error)
4413 			goto out;
4414 	}
4415 	if (target && !new_is_dir) {
4416 		error = try_break_deleg(target, delegated_inode);
4417 		if (error)
4418 			goto out;
4419 	}
4420 	error = old_dir->i_op->rename(old_dir, old_dentry,
4421 				       new_dir, new_dentry, flags);
4422 	if (error)
4423 		goto out;
4424 
4425 	if (!(flags & RENAME_EXCHANGE) && target) {
4426 		if (is_dir) {
4427 			shrink_dcache_parent(new_dentry);
4428 			target->i_flags |= S_DEAD;
4429 		}
4430 		dont_mount(new_dentry);
4431 		detach_mounts(new_dentry);
4432 	}
4433 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4434 		if (!(flags & RENAME_EXCHANGE))
4435 			d_move(old_dentry, new_dentry);
4436 		else
4437 			d_exchange(old_dentry, new_dentry);
4438 	}
4439 out:
4440 	if (!is_dir || (flags & RENAME_EXCHANGE))
4441 		unlock_two_nondirectories(source, target);
4442 	else if (target)
4443 		inode_unlock(target);
4444 	dput(new_dentry);
4445 	if (!error) {
4446 		fsnotify_move(old_dir, new_dir, &old_name.name, is_dir,
4447 			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4448 		if (flags & RENAME_EXCHANGE) {
4449 			fsnotify_move(new_dir, old_dir, &old_dentry->d_name,
4450 				      new_is_dir, NULL, new_dentry);
4451 		}
4452 	}
4453 	release_dentry_name_snapshot(&old_name);
4454 
4455 	return error;
4456 }
4457 EXPORT_SYMBOL(vfs_rename);
4458 
4459 static int do_renameat2(int olddfd, const char __user *oldname, int newdfd,
4460 			const char __user *newname, unsigned int flags)
4461 {
4462 	struct dentry *old_dentry, *new_dentry;
4463 	struct dentry *trap;
4464 	struct path old_path, new_path;
4465 	struct qstr old_last, new_last;
4466 	int old_type, new_type;
4467 	struct inode *delegated_inode = NULL;
4468 	struct filename *from;
4469 	struct filename *to;
4470 	unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4471 	bool should_retry = false;
4472 	int error;
4473 
4474 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4475 		return -EINVAL;
4476 
4477 	if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4478 	    (flags & RENAME_EXCHANGE))
4479 		return -EINVAL;
4480 
4481 	if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4482 		return -EPERM;
4483 
4484 	if (flags & RENAME_EXCHANGE)
4485 		target_flags = 0;
4486 
4487 retry:
4488 	from = filename_parentat(olddfd, getname(oldname), lookup_flags,
4489 				&old_path, &old_last, &old_type);
4490 	if (IS_ERR(from)) {
4491 		error = PTR_ERR(from);
4492 		goto exit;
4493 	}
4494 
4495 	to = filename_parentat(newdfd, getname(newname), lookup_flags,
4496 				&new_path, &new_last, &new_type);
4497 	if (IS_ERR(to)) {
4498 		error = PTR_ERR(to);
4499 		goto exit1;
4500 	}
4501 
4502 	error = -EXDEV;
4503 	if (old_path.mnt != new_path.mnt)
4504 		goto exit2;
4505 
4506 	error = -EBUSY;
4507 	if (old_type != LAST_NORM)
4508 		goto exit2;
4509 
4510 	if (flags & RENAME_NOREPLACE)
4511 		error = -EEXIST;
4512 	if (new_type != LAST_NORM)
4513 		goto exit2;
4514 
4515 	error = mnt_want_write(old_path.mnt);
4516 	if (error)
4517 		goto exit2;
4518 
4519 retry_deleg:
4520 	trap = lock_rename(new_path.dentry, old_path.dentry);
4521 
4522 	old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4523 	error = PTR_ERR(old_dentry);
4524 	if (IS_ERR(old_dentry))
4525 		goto exit3;
4526 	/* source must exist */
4527 	error = -ENOENT;
4528 	if (d_is_negative(old_dentry))
4529 		goto exit4;
4530 	new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4531 	error = PTR_ERR(new_dentry);
4532 	if (IS_ERR(new_dentry))
4533 		goto exit4;
4534 	error = -EEXIST;
4535 	if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4536 		goto exit5;
4537 	if (flags & RENAME_EXCHANGE) {
4538 		error = -ENOENT;
4539 		if (d_is_negative(new_dentry))
4540 			goto exit5;
4541 
4542 		if (!d_is_dir(new_dentry)) {
4543 			error = -ENOTDIR;
4544 			if (new_last.name[new_last.len])
4545 				goto exit5;
4546 		}
4547 	}
4548 	/* unless the source is a directory trailing slashes give -ENOTDIR */
4549 	if (!d_is_dir(old_dentry)) {
4550 		error = -ENOTDIR;
4551 		if (old_last.name[old_last.len])
4552 			goto exit5;
4553 		if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4554 			goto exit5;
4555 	}
4556 	/* source should not be ancestor of target */
4557 	error = -EINVAL;
4558 	if (old_dentry == trap)
4559 		goto exit5;
4560 	/* target should not be an ancestor of source */
4561 	if (!(flags & RENAME_EXCHANGE))
4562 		error = -ENOTEMPTY;
4563 	if (new_dentry == trap)
4564 		goto exit5;
4565 
4566 	error = security_path_rename(&old_path, old_dentry,
4567 				     &new_path, new_dentry, flags);
4568 	if (error)
4569 		goto exit5;
4570 	error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4571 			   new_path.dentry->d_inode, new_dentry,
4572 			   &delegated_inode, flags);
4573 exit5:
4574 	dput(new_dentry);
4575 exit4:
4576 	dput(old_dentry);
4577 exit3:
4578 	unlock_rename(new_path.dentry, old_path.dentry);
4579 	if (delegated_inode) {
4580 		error = break_deleg_wait(&delegated_inode);
4581 		if (!error)
4582 			goto retry_deleg;
4583 	}
4584 	mnt_drop_write(old_path.mnt);
4585 exit2:
4586 	if (retry_estale(error, lookup_flags))
4587 		should_retry = true;
4588 	path_put(&new_path);
4589 	putname(to);
4590 exit1:
4591 	path_put(&old_path);
4592 	putname(from);
4593 	if (should_retry) {
4594 		should_retry = false;
4595 		lookup_flags |= LOOKUP_REVAL;
4596 		goto retry;
4597 	}
4598 exit:
4599 	return error;
4600 }
4601 
4602 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4603 		int, newdfd, const char __user *, newname, unsigned int, flags)
4604 {
4605 	return do_renameat2(olddfd, oldname, newdfd, newname, flags);
4606 }
4607 
4608 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4609 		int, newdfd, const char __user *, newname)
4610 {
4611 	return do_renameat2(olddfd, oldname, newdfd, newname, 0);
4612 }
4613 
4614 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4615 {
4616 	return do_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4617 }
4618 
4619 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4620 {
4621 	int error = may_create(dir, dentry);
4622 	if (error)
4623 		return error;
4624 
4625 	if (!dir->i_op->mknod)
4626 		return -EPERM;
4627 
4628 	return dir->i_op->mknod(dir, dentry,
4629 				S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4630 }
4631 EXPORT_SYMBOL(vfs_whiteout);
4632 
4633 int readlink_copy(char __user *buffer, int buflen, const char *link)
4634 {
4635 	int len = PTR_ERR(link);
4636 	if (IS_ERR(link))
4637 		goto out;
4638 
4639 	len = strlen(link);
4640 	if (len > (unsigned) buflen)
4641 		len = buflen;
4642 	if (copy_to_user(buffer, link, len))
4643 		len = -EFAULT;
4644 out:
4645 	return len;
4646 }
4647 
4648 /**
4649  * vfs_readlink - copy symlink body into userspace buffer
4650  * @dentry: dentry on which to get symbolic link
4651  * @buffer: user memory pointer
4652  * @buflen: size of buffer
4653  *
4654  * Does not touch atime.  That's up to the caller if necessary
4655  *
4656  * Does not call security hook.
4657  */
4658 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4659 {
4660 	struct inode *inode = d_inode(dentry);
4661 	DEFINE_DELAYED_CALL(done);
4662 	const char *link;
4663 	int res;
4664 
4665 	if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
4666 		if (unlikely(inode->i_op->readlink))
4667 			return inode->i_op->readlink(dentry, buffer, buflen);
4668 
4669 		if (!d_is_symlink(dentry))
4670 			return -EINVAL;
4671 
4672 		spin_lock(&inode->i_lock);
4673 		inode->i_opflags |= IOP_DEFAULT_READLINK;
4674 		spin_unlock(&inode->i_lock);
4675 	}
4676 
4677 	link = READ_ONCE(inode->i_link);
4678 	if (!link) {
4679 		link = inode->i_op->get_link(dentry, inode, &done);
4680 		if (IS_ERR(link))
4681 			return PTR_ERR(link);
4682 	}
4683 	res = readlink_copy(buffer, buflen, link);
4684 	do_delayed_call(&done);
4685 	return res;
4686 }
4687 EXPORT_SYMBOL(vfs_readlink);
4688 
4689 /**
4690  * vfs_get_link - get symlink body
4691  * @dentry: dentry on which to get symbolic link
4692  * @done: caller needs to free returned data with this
4693  *
4694  * Calls security hook and i_op->get_link() on the supplied inode.
4695  *
4696  * It does not touch atime.  That's up to the caller if necessary.
4697  *
4698  * Does not work on "special" symlinks like /proc/$$/fd/N
4699  */
4700 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
4701 {
4702 	const char *res = ERR_PTR(-EINVAL);
4703 	struct inode *inode = d_inode(dentry);
4704 
4705 	if (d_is_symlink(dentry)) {
4706 		res = ERR_PTR(security_inode_readlink(dentry));
4707 		if (!res)
4708 			res = inode->i_op->get_link(dentry, inode, done);
4709 	}
4710 	return res;
4711 }
4712 EXPORT_SYMBOL(vfs_get_link);
4713 
4714 /* get the link contents into pagecache */
4715 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4716 			  struct delayed_call *callback)
4717 {
4718 	char *kaddr;
4719 	struct page *page;
4720 	struct address_space *mapping = inode->i_mapping;
4721 
4722 	if (!dentry) {
4723 		page = find_get_page(mapping, 0);
4724 		if (!page)
4725 			return ERR_PTR(-ECHILD);
4726 		if (!PageUptodate(page)) {
4727 			put_page(page);
4728 			return ERR_PTR(-ECHILD);
4729 		}
4730 	} else {
4731 		page = read_mapping_page(mapping, 0, NULL);
4732 		if (IS_ERR(page))
4733 			return (char*)page;
4734 	}
4735 	set_delayed_call(callback, page_put_link, page);
4736 	BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4737 	kaddr = page_address(page);
4738 	nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4739 	return kaddr;
4740 }
4741 
4742 EXPORT_SYMBOL(page_get_link);
4743 
4744 void page_put_link(void *arg)
4745 {
4746 	put_page(arg);
4747 }
4748 EXPORT_SYMBOL(page_put_link);
4749 
4750 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4751 {
4752 	DEFINE_DELAYED_CALL(done);
4753 	int res = readlink_copy(buffer, buflen,
4754 				page_get_link(dentry, d_inode(dentry),
4755 					      &done));
4756 	do_delayed_call(&done);
4757 	return res;
4758 }
4759 EXPORT_SYMBOL(page_readlink);
4760 
4761 /*
4762  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4763  */
4764 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4765 {
4766 	struct address_space *mapping = inode->i_mapping;
4767 	struct page *page;
4768 	void *fsdata;
4769 	int err;
4770 	unsigned int flags = 0;
4771 	if (nofs)
4772 		flags |= AOP_FLAG_NOFS;
4773 
4774 retry:
4775 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
4776 				flags, &page, &fsdata);
4777 	if (err)
4778 		goto fail;
4779 
4780 	memcpy(page_address(page), symname, len-1);
4781 
4782 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4783 							page, fsdata);
4784 	if (err < 0)
4785 		goto fail;
4786 	if (err < len-1)
4787 		goto retry;
4788 
4789 	mark_inode_dirty(inode);
4790 	return 0;
4791 fail:
4792 	return err;
4793 }
4794 EXPORT_SYMBOL(__page_symlink);
4795 
4796 int page_symlink(struct inode *inode, const char *symname, int len)
4797 {
4798 	return __page_symlink(inode, symname, len,
4799 			!mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4800 }
4801 EXPORT_SYMBOL(page_symlink);
4802 
4803 const struct inode_operations page_symlink_inode_operations = {
4804 	.get_link	= page_get_link,
4805 };
4806 EXPORT_SYMBOL(page_symlink_inode_operations);
4807