xref: /openbmc/linux/fs/namei.c (revision e6dec923)
1 /*
2  *  linux/fs/namei.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * Some corrections by tytso.
9  */
10 
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12  * lookup logic.
13  */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15  */
16 
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <linux/bitops.h>
39 #include <linux/init_task.h>
40 #include <linux/uaccess.h>
41 
42 #include "internal.h"
43 #include "mount.h"
44 
45 /* [Feb-1997 T. Schoebel-Theuer]
46  * Fundamental changes in the pathname lookup mechanisms (namei)
47  * were necessary because of omirr.  The reason is that omirr needs
48  * to know the _real_ pathname, not the user-supplied one, in case
49  * of symlinks (and also when transname replacements occur).
50  *
51  * The new code replaces the old recursive symlink resolution with
52  * an iterative one (in case of non-nested symlink chains).  It does
53  * this with calls to <fs>_follow_link().
54  * As a side effect, dir_namei(), _namei() and follow_link() are now
55  * replaced with a single function lookup_dentry() that can handle all
56  * the special cases of the former code.
57  *
58  * With the new dcache, the pathname is stored at each inode, at least as
59  * long as the refcount of the inode is positive.  As a side effect, the
60  * size of the dcache depends on the inode cache and thus is dynamic.
61  *
62  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
63  * resolution to correspond with current state of the code.
64  *
65  * Note that the symlink resolution is not *completely* iterative.
66  * There is still a significant amount of tail- and mid- recursion in
67  * the algorithm.  Also, note that <fs>_readlink() is not used in
68  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
69  * may return different results than <fs>_follow_link().  Many virtual
70  * filesystems (including /proc) exhibit this behavior.
71  */
72 
73 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
74  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
75  * and the name already exists in form of a symlink, try to create the new
76  * name indicated by the symlink. The old code always complained that the
77  * name already exists, due to not following the symlink even if its target
78  * is nonexistent.  The new semantics affects also mknod() and link() when
79  * the name is a symlink pointing to a non-existent name.
80  *
81  * I don't know which semantics is the right one, since I have no access
82  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
83  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
84  * "old" one. Personally, I think the new semantics is much more logical.
85  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
86  * file does succeed in both HP-UX and SunOs, but not in Solaris
87  * and in the old Linux semantics.
88  */
89 
90 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
91  * semantics.  See the comments in "open_namei" and "do_link" below.
92  *
93  * [10-Sep-98 Alan Modra] Another symlink change.
94  */
95 
96 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
97  *	inside the path - always follow.
98  *	in the last component in creation/removal/renaming - never follow.
99  *	if LOOKUP_FOLLOW passed - follow.
100  *	if the pathname has trailing slashes - follow.
101  *	otherwise - don't follow.
102  * (applied in that order).
103  *
104  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
105  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
106  * During the 2.4 we need to fix the userland stuff depending on it -
107  * hopefully we will be able to get rid of that wart in 2.5. So far only
108  * XEmacs seems to be relying on it...
109  */
110 /*
111  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
112  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
113  * any extra contention...
114  */
115 
116 /* In order to reduce some races, while at the same time doing additional
117  * checking and hopefully speeding things up, we copy filenames to the
118  * kernel data space before using them..
119  *
120  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
121  * PATH_MAX includes the nul terminator --RR.
122  */
123 
124 #define EMBEDDED_NAME_MAX	(PATH_MAX - offsetof(struct filename, iname))
125 
126 struct filename *
127 getname_flags(const char __user *filename, int flags, int *empty)
128 {
129 	struct filename *result;
130 	char *kname;
131 	int len;
132 
133 	result = audit_reusename(filename);
134 	if (result)
135 		return result;
136 
137 	result = __getname();
138 	if (unlikely(!result))
139 		return ERR_PTR(-ENOMEM);
140 
141 	/*
142 	 * First, try to embed the struct filename inside the names_cache
143 	 * allocation
144 	 */
145 	kname = (char *)result->iname;
146 	result->name = kname;
147 
148 	len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
149 	if (unlikely(len < 0)) {
150 		__putname(result);
151 		return ERR_PTR(len);
152 	}
153 
154 	/*
155 	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
156 	 * separate struct filename so we can dedicate the entire
157 	 * names_cache allocation for the pathname, and re-do the copy from
158 	 * userland.
159 	 */
160 	if (unlikely(len == EMBEDDED_NAME_MAX)) {
161 		const size_t size = offsetof(struct filename, iname[1]);
162 		kname = (char *)result;
163 
164 		/*
165 		 * size is chosen that way we to guarantee that
166 		 * result->iname[0] is within the same object and that
167 		 * kname can't be equal to result->iname, no matter what.
168 		 */
169 		result = kzalloc(size, GFP_KERNEL);
170 		if (unlikely(!result)) {
171 			__putname(kname);
172 			return ERR_PTR(-ENOMEM);
173 		}
174 		result->name = kname;
175 		len = strncpy_from_user(kname, filename, PATH_MAX);
176 		if (unlikely(len < 0)) {
177 			__putname(kname);
178 			kfree(result);
179 			return ERR_PTR(len);
180 		}
181 		if (unlikely(len == PATH_MAX)) {
182 			__putname(kname);
183 			kfree(result);
184 			return ERR_PTR(-ENAMETOOLONG);
185 		}
186 	}
187 
188 	result->refcnt = 1;
189 	/* The empty path is special. */
190 	if (unlikely(!len)) {
191 		if (empty)
192 			*empty = 1;
193 		if (!(flags & LOOKUP_EMPTY)) {
194 			putname(result);
195 			return ERR_PTR(-ENOENT);
196 		}
197 	}
198 
199 	result->uptr = filename;
200 	result->aname = NULL;
201 	audit_getname(result);
202 	return result;
203 }
204 
205 struct filename *
206 getname(const char __user * filename)
207 {
208 	return getname_flags(filename, 0, NULL);
209 }
210 
211 struct filename *
212 getname_kernel(const char * filename)
213 {
214 	struct filename *result;
215 	int len = strlen(filename) + 1;
216 
217 	result = __getname();
218 	if (unlikely(!result))
219 		return ERR_PTR(-ENOMEM);
220 
221 	if (len <= EMBEDDED_NAME_MAX) {
222 		result->name = (char *)result->iname;
223 	} else if (len <= PATH_MAX) {
224 		struct filename *tmp;
225 
226 		tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
227 		if (unlikely(!tmp)) {
228 			__putname(result);
229 			return ERR_PTR(-ENOMEM);
230 		}
231 		tmp->name = (char *)result;
232 		result = tmp;
233 	} else {
234 		__putname(result);
235 		return ERR_PTR(-ENAMETOOLONG);
236 	}
237 	memcpy((char *)result->name, filename, len);
238 	result->uptr = NULL;
239 	result->aname = NULL;
240 	result->refcnt = 1;
241 	audit_getname(result);
242 
243 	return result;
244 }
245 
246 void putname(struct filename *name)
247 {
248 	BUG_ON(name->refcnt <= 0);
249 
250 	if (--name->refcnt > 0)
251 		return;
252 
253 	if (name->name != name->iname) {
254 		__putname(name->name);
255 		kfree(name);
256 	} else
257 		__putname(name);
258 }
259 
260 static int check_acl(struct inode *inode, int mask)
261 {
262 #ifdef CONFIG_FS_POSIX_ACL
263 	struct posix_acl *acl;
264 
265 	if (mask & MAY_NOT_BLOCK) {
266 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
267 	        if (!acl)
268 	                return -EAGAIN;
269 		/* no ->get_acl() calls in RCU mode... */
270 		if (is_uncached_acl(acl))
271 			return -ECHILD;
272 	        return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
273 	}
274 
275 	acl = get_acl(inode, ACL_TYPE_ACCESS);
276 	if (IS_ERR(acl))
277 		return PTR_ERR(acl);
278 	if (acl) {
279 	        int error = posix_acl_permission(inode, acl, mask);
280 	        posix_acl_release(acl);
281 	        return error;
282 	}
283 #endif
284 
285 	return -EAGAIN;
286 }
287 
288 /*
289  * This does the basic permission checking
290  */
291 static int acl_permission_check(struct inode *inode, int mask)
292 {
293 	unsigned int mode = inode->i_mode;
294 
295 	if (likely(uid_eq(current_fsuid(), inode->i_uid)))
296 		mode >>= 6;
297 	else {
298 		if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
299 			int error = check_acl(inode, mask);
300 			if (error != -EAGAIN)
301 				return error;
302 		}
303 
304 		if (in_group_p(inode->i_gid))
305 			mode >>= 3;
306 	}
307 
308 	/*
309 	 * If the DACs are ok we don't need any capability check.
310 	 */
311 	if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
312 		return 0;
313 	return -EACCES;
314 }
315 
316 /**
317  * generic_permission -  check for access rights on a Posix-like filesystem
318  * @inode:	inode to check access rights for
319  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
320  *
321  * Used to check for read/write/execute permissions on a file.
322  * We use "fsuid" for this, letting us set arbitrary permissions
323  * for filesystem access without changing the "normal" uids which
324  * are used for other things.
325  *
326  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
327  * request cannot be satisfied (eg. requires blocking or too much complexity).
328  * It would then be called again in ref-walk mode.
329  */
330 int generic_permission(struct inode *inode, int mask)
331 {
332 	int ret;
333 
334 	/*
335 	 * Do the basic permission checks.
336 	 */
337 	ret = acl_permission_check(inode, mask);
338 	if (ret != -EACCES)
339 		return ret;
340 
341 	if (S_ISDIR(inode->i_mode)) {
342 		/* DACs are overridable for directories */
343 		if (!(mask & MAY_WRITE))
344 			if (capable_wrt_inode_uidgid(inode,
345 						     CAP_DAC_READ_SEARCH))
346 				return 0;
347 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
348 			return 0;
349 		return -EACCES;
350 	}
351 
352 	/*
353 	 * Searching includes executable on directories, else just read.
354 	 */
355 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
356 	if (mask == MAY_READ)
357 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
358 			return 0;
359 	/*
360 	 * Read/write DACs are always overridable.
361 	 * Executable DACs are overridable when there is
362 	 * at least one exec bit set.
363 	 */
364 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
365 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
366 			return 0;
367 
368 	return -EACCES;
369 }
370 EXPORT_SYMBOL(generic_permission);
371 
372 /*
373  * We _really_ want to just do "generic_permission()" without
374  * even looking at the inode->i_op values. So we keep a cache
375  * flag in inode->i_opflags, that says "this has not special
376  * permission function, use the fast case".
377  */
378 static inline int do_inode_permission(struct inode *inode, int mask)
379 {
380 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
381 		if (likely(inode->i_op->permission))
382 			return inode->i_op->permission(inode, mask);
383 
384 		/* This gets set once for the inode lifetime */
385 		spin_lock(&inode->i_lock);
386 		inode->i_opflags |= IOP_FASTPERM;
387 		spin_unlock(&inode->i_lock);
388 	}
389 	return generic_permission(inode, mask);
390 }
391 
392 /**
393  * __inode_permission - Check for access rights to a given inode
394  * @inode: Inode to check permission on
395  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
396  *
397  * Check for read/write/execute permissions on an inode.
398  *
399  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
400  *
401  * This does not check for a read-only file system.  You probably want
402  * inode_permission().
403  */
404 int __inode_permission(struct inode *inode, int mask)
405 {
406 	int retval;
407 
408 	if (unlikely(mask & MAY_WRITE)) {
409 		/*
410 		 * Nobody gets write access to an immutable file.
411 		 */
412 		if (IS_IMMUTABLE(inode))
413 			return -EPERM;
414 
415 		/*
416 		 * Updating mtime will likely cause i_uid and i_gid to be
417 		 * written back improperly if their true value is unknown
418 		 * to the vfs.
419 		 */
420 		if (HAS_UNMAPPED_ID(inode))
421 			return -EACCES;
422 	}
423 
424 	retval = do_inode_permission(inode, mask);
425 	if (retval)
426 		return retval;
427 
428 	retval = devcgroup_inode_permission(inode, mask);
429 	if (retval)
430 		return retval;
431 
432 	return security_inode_permission(inode, mask);
433 }
434 EXPORT_SYMBOL(__inode_permission);
435 
436 /**
437  * sb_permission - Check superblock-level permissions
438  * @sb: Superblock of inode to check permission on
439  * @inode: Inode to check permission on
440  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
441  *
442  * Separate out file-system wide checks from inode-specific permission checks.
443  */
444 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
445 {
446 	if (unlikely(mask & MAY_WRITE)) {
447 		umode_t mode = inode->i_mode;
448 
449 		/* Nobody gets write access to a read-only fs. */
450 		if ((sb->s_flags & MS_RDONLY) &&
451 		    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
452 			return -EROFS;
453 	}
454 	return 0;
455 }
456 
457 /**
458  * inode_permission - Check for access rights to a given inode
459  * @inode: Inode to check permission on
460  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
461  *
462  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
463  * this, letting us set arbitrary permissions for filesystem access without
464  * changing the "normal" UIDs which are used for other things.
465  *
466  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
467  */
468 int inode_permission(struct inode *inode, int mask)
469 {
470 	int retval;
471 
472 	retval = sb_permission(inode->i_sb, inode, mask);
473 	if (retval)
474 		return retval;
475 	return __inode_permission(inode, mask);
476 }
477 EXPORT_SYMBOL(inode_permission);
478 
479 /**
480  * path_get - get a reference to a path
481  * @path: path to get the reference to
482  *
483  * Given a path increment the reference count to the dentry and the vfsmount.
484  */
485 void path_get(const struct path *path)
486 {
487 	mntget(path->mnt);
488 	dget(path->dentry);
489 }
490 EXPORT_SYMBOL(path_get);
491 
492 /**
493  * path_put - put a reference to a path
494  * @path: path to put the reference to
495  *
496  * Given a path decrement the reference count to the dentry and the vfsmount.
497  */
498 void path_put(const struct path *path)
499 {
500 	dput(path->dentry);
501 	mntput(path->mnt);
502 }
503 EXPORT_SYMBOL(path_put);
504 
505 #define EMBEDDED_LEVELS 2
506 struct nameidata {
507 	struct path	path;
508 	struct qstr	last;
509 	struct path	root;
510 	struct inode	*inode; /* path.dentry.d_inode */
511 	unsigned int	flags;
512 	unsigned	seq, m_seq;
513 	int		last_type;
514 	unsigned	depth;
515 	int		total_link_count;
516 	struct saved {
517 		struct path link;
518 		struct delayed_call done;
519 		const char *name;
520 		unsigned seq;
521 	} *stack, internal[EMBEDDED_LEVELS];
522 	struct filename	*name;
523 	struct nameidata *saved;
524 	struct inode	*link_inode;
525 	unsigned	root_seq;
526 	int		dfd;
527 } __randomize_layout;
528 
529 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
530 {
531 	struct nameidata *old = current->nameidata;
532 	p->stack = p->internal;
533 	p->dfd = dfd;
534 	p->name = name;
535 	p->total_link_count = old ? old->total_link_count : 0;
536 	p->saved = old;
537 	current->nameidata = p;
538 }
539 
540 static void restore_nameidata(void)
541 {
542 	struct nameidata *now = current->nameidata, *old = now->saved;
543 
544 	current->nameidata = old;
545 	if (old)
546 		old->total_link_count = now->total_link_count;
547 	if (now->stack != now->internal)
548 		kfree(now->stack);
549 }
550 
551 static int __nd_alloc_stack(struct nameidata *nd)
552 {
553 	struct saved *p;
554 
555 	if (nd->flags & LOOKUP_RCU) {
556 		p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
557 				  GFP_ATOMIC);
558 		if (unlikely(!p))
559 			return -ECHILD;
560 	} else {
561 		p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
562 				  GFP_KERNEL);
563 		if (unlikely(!p))
564 			return -ENOMEM;
565 	}
566 	memcpy(p, nd->internal, sizeof(nd->internal));
567 	nd->stack = p;
568 	return 0;
569 }
570 
571 /**
572  * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
573  * @path: nameidate to verify
574  *
575  * Rename can sometimes move a file or directory outside of a bind
576  * mount, path_connected allows those cases to be detected.
577  */
578 static bool path_connected(const struct path *path)
579 {
580 	struct vfsmount *mnt = path->mnt;
581 
582 	/* Only bind mounts can have disconnected paths */
583 	if (mnt->mnt_root == mnt->mnt_sb->s_root)
584 		return true;
585 
586 	return is_subdir(path->dentry, mnt->mnt_root);
587 }
588 
589 static inline int nd_alloc_stack(struct nameidata *nd)
590 {
591 	if (likely(nd->depth != EMBEDDED_LEVELS))
592 		return 0;
593 	if (likely(nd->stack != nd->internal))
594 		return 0;
595 	return __nd_alloc_stack(nd);
596 }
597 
598 static void drop_links(struct nameidata *nd)
599 {
600 	int i = nd->depth;
601 	while (i--) {
602 		struct saved *last = nd->stack + i;
603 		do_delayed_call(&last->done);
604 		clear_delayed_call(&last->done);
605 	}
606 }
607 
608 static void terminate_walk(struct nameidata *nd)
609 {
610 	drop_links(nd);
611 	if (!(nd->flags & LOOKUP_RCU)) {
612 		int i;
613 		path_put(&nd->path);
614 		for (i = 0; i < nd->depth; i++)
615 			path_put(&nd->stack[i].link);
616 		if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
617 			path_put(&nd->root);
618 			nd->root.mnt = NULL;
619 		}
620 	} else {
621 		nd->flags &= ~LOOKUP_RCU;
622 		if (!(nd->flags & LOOKUP_ROOT))
623 			nd->root.mnt = NULL;
624 		rcu_read_unlock();
625 	}
626 	nd->depth = 0;
627 }
628 
629 /* path_put is needed afterwards regardless of success or failure */
630 static bool legitimize_path(struct nameidata *nd,
631 			    struct path *path, unsigned seq)
632 {
633 	int res = __legitimize_mnt(path->mnt, nd->m_seq);
634 	if (unlikely(res)) {
635 		if (res > 0)
636 			path->mnt = NULL;
637 		path->dentry = NULL;
638 		return false;
639 	}
640 	if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
641 		path->dentry = NULL;
642 		return false;
643 	}
644 	return !read_seqcount_retry(&path->dentry->d_seq, seq);
645 }
646 
647 static bool legitimize_links(struct nameidata *nd)
648 {
649 	int i;
650 	for (i = 0; i < nd->depth; i++) {
651 		struct saved *last = nd->stack + i;
652 		if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
653 			drop_links(nd);
654 			nd->depth = i + 1;
655 			return false;
656 		}
657 	}
658 	return true;
659 }
660 
661 /*
662  * Path walking has 2 modes, rcu-walk and ref-walk (see
663  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
664  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
665  * normal reference counts on dentries and vfsmounts to transition to ref-walk
666  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
667  * got stuck, so ref-walk may continue from there. If this is not successful
668  * (eg. a seqcount has changed), then failure is returned and it's up to caller
669  * to restart the path walk from the beginning in ref-walk mode.
670  */
671 
672 /**
673  * unlazy_walk - try to switch to ref-walk mode.
674  * @nd: nameidata pathwalk data
675  * Returns: 0 on success, -ECHILD on failure
676  *
677  * unlazy_walk attempts to legitimize the current nd->path and nd->root
678  * for ref-walk mode.
679  * Must be called from rcu-walk context.
680  * Nothing should touch nameidata between unlazy_walk() failure and
681  * terminate_walk().
682  */
683 static int unlazy_walk(struct nameidata *nd)
684 {
685 	struct dentry *parent = nd->path.dentry;
686 
687 	BUG_ON(!(nd->flags & LOOKUP_RCU));
688 
689 	nd->flags &= ~LOOKUP_RCU;
690 	if (unlikely(!legitimize_links(nd)))
691 		goto out2;
692 	if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
693 		goto out1;
694 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
695 		if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq)))
696 			goto out;
697 	}
698 	rcu_read_unlock();
699 	BUG_ON(nd->inode != parent->d_inode);
700 	return 0;
701 
702 out2:
703 	nd->path.mnt = NULL;
704 	nd->path.dentry = NULL;
705 out1:
706 	if (!(nd->flags & LOOKUP_ROOT))
707 		nd->root.mnt = NULL;
708 out:
709 	rcu_read_unlock();
710 	return -ECHILD;
711 }
712 
713 /**
714  * unlazy_child - try to switch to ref-walk mode.
715  * @nd: nameidata pathwalk data
716  * @dentry: child of nd->path.dentry
717  * @seq: seq number to check dentry against
718  * Returns: 0 on success, -ECHILD on failure
719  *
720  * unlazy_child attempts to legitimize the current nd->path, nd->root and dentry
721  * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
722  * @nd.  Must be called from rcu-walk context.
723  * Nothing should touch nameidata between unlazy_child() failure and
724  * terminate_walk().
725  */
726 static int unlazy_child(struct nameidata *nd, struct dentry *dentry, unsigned seq)
727 {
728 	BUG_ON(!(nd->flags & LOOKUP_RCU));
729 
730 	nd->flags &= ~LOOKUP_RCU;
731 	if (unlikely(!legitimize_links(nd)))
732 		goto out2;
733 	if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
734 		goto out2;
735 	if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
736 		goto out1;
737 
738 	/*
739 	 * We need to move both the parent and the dentry from the RCU domain
740 	 * to be properly refcounted. And the sequence number in the dentry
741 	 * validates *both* dentry counters, since we checked the sequence
742 	 * number of the parent after we got the child sequence number. So we
743 	 * know the parent must still be valid if the child sequence number is
744 	 */
745 	if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
746 		goto out;
747 	if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) {
748 		rcu_read_unlock();
749 		dput(dentry);
750 		goto drop_root_mnt;
751 	}
752 	/*
753 	 * Sequence counts matched. Now make sure that the root is
754 	 * still valid and get it if required.
755 	 */
756 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
757 		if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) {
758 			rcu_read_unlock();
759 			dput(dentry);
760 			return -ECHILD;
761 		}
762 	}
763 
764 	rcu_read_unlock();
765 	return 0;
766 
767 out2:
768 	nd->path.mnt = NULL;
769 out1:
770 	nd->path.dentry = NULL;
771 out:
772 	rcu_read_unlock();
773 drop_root_mnt:
774 	if (!(nd->flags & LOOKUP_ROOT))
775 		nd->root.mnt = NULL;
776 	return -ECHILD;
777 }
778 
779 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
780 {
781 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
782 		return dentry->d_op->d_revalidate(dentry, flags);
783 	else
784 		return 1;
785 }
786 
787 /**
788  * complete_walk - successful completion of path walk
789  * @nd:  pointer nameidata
790  *
791  * If we had been in RCU mode, drop out of it and legitimize nd->path.
792  * Revalidate the final result, unless we'd already done that during
793  * the path walk or the filesystem doesn't ask for it.  Return 0 on
794  * success, -error on failure.  In case of failure caller does not
795  * need to drop nd->path.
796  */
797 static int complete_walk(struct nameidata *nd)
798 {
799 	struct dentry *dentry = nd->path.dentry;
800 	int status;
801 
802 	if (nd->flags & LOOKUP_RCU) {
803 		if (!(nd->flags & LOOKUP_ROOT))
804 			nd->root.mnt = NULL;
805 		if (unlikely(unlazy_walk(nd)))
806 			return -ECHILD;
807 	}
808 
809 	if (likely(!(nd->flags & LOOKUP_JUMPED)))
810 		return 0;
811 
812 	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
813 		return 0;
814 
815 	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
816 	if (status > 0)
817 		return 0;
818 
819 	if (!status)
820 		status = -ESTALE;
821 
822 	return status;
823 }
824 
825 static void set_root(struct nameidata *nd)
826 {
827 	struct fs_struct *fs = current->fs;
828 
829 	if (nd->flags & LOOKUP_RCU) {
830 		unsigned seq;
831 
832 		do {
833 			seq = read_seqcount_begin(&fs->seq);
834 			nd->root = fs->root;
835 			nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
836 		} while (read_seqcount_retry(&fs->seq, seq));
837 	} else {
838 		get_fs_root(fs, &nd->root);
839 	}
840 }
841 
842 static void path_put_conditional(struct path *path, struct nameidata *nd)
843 {
844 	dput(path->dentry);
845 	if (path->mnt != nd->path.mnt)
846 		mntput(path->mnt);
847 }
848 
849 static inline void path_to_nameidata(const struct path *path,
850 					struct nameidata *nd)
851 {
852 	if (!(nd->flags & LOOKUP_RCU)) {
853 		dput(nd->path.dentry);
854 		if (nd->path.mnt != path->mnt)
855 			mntput(nd->path.mnt);
856 	}
857 	nd->path.mnt = path->mnt;
858 	nd->path.dentry = path->dentry;
859 }
860 
861 static int nd_jump_root(struct nameidata *nd)
862 {
863 	if (nd->flags & LOOKUP_RCU) {
864 		struct dentry *d;
865 		nd->path = nd->root;
866 		d = nd->path.dentry;
867 		nd->inode = d->d_inode;
868 		nd->seq = nd->root_seq;
869 		if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
870 			return -ECHILD;
871 	} else {
872 		path_put(&nd->path);
873 		nd->path = nd->root;
874 		path_get(&nd->path);
875 		nd->inode = nd->path.dentry->d_inode;
876 	}
877 	nd->flags |= LOOKUP_JUMPED;
878 	return 0;
879 }
880 
881 /*
882  * Helper to directly jump to a known parsed path from ->get_link,
883  * caller must have taken a reference to path beforehand.
884  */
885 void nd_jump_link(struct path *path)
886 {
887 	struct nameidata *nd = current->nameidata;
888 	path_put(&nd->path);
889 
890 	nd->path = *path;
891 	nd->inode = nd->path.dentry->d_inode;
892 	nd->flags |= LOOKUP_JUMPED;
893 }
894 
895 static inline void put_link(struct nameidata *nd)
896 {
897 	struct saved *last = nd->stack + --nd->depth;
898 	do_delayed_call(&last->done);
899 	if (!(nd->flags & LOOKUP_RCU))
900 		path_put(&last->link);
901 }
902 
903 int sysctl_protected_symlinks __read_mostly = 0;
904 int sysctl_protected_hardlinks __read_mostly = 0;
905 
906 /**
907  * may_follow_link - Check symlink following for unsafe situations
908  * @nd: nameidata pathwalk data
909  *
910  * In the case of the sysctl_protected_symlinks sysctl being enabled,
911  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
912  * in a sticky world-writable directory. This is to protect privileged
913  * processes from failing races against path names that may change out
914  * from under them by way of other users creating malicious symlinks.
915  * It will permit symlinks to be followed only when outside a sticky
916  * world-writable directory, or when the uid of the symlink and follower
917  * match, or when the directory owner matches the symlink's owner.
918  *
919  * Returns 0 if following the symlink is allowed, -ve on error.
920  */
921 static inline int may_follow_link(struct nameidata *nd)
922 {
923 	const struct inode *inode;
924 	const struct inode *parent;
925 	kuid_t puid;
926 
927 	if (!sysctl_protected_symlinks)
928 		return 0;
929 
930 	/* Allowed if owner and follower match. */
931 	inode = nd->link_inode;
932 	if (uid_eq(current_cred()->fsuid, inode->i_uid))
933 		return 0;
934 
935 	/* Allowed if parent directory not sticky and world-writable. */
936 	parent = nd->inode;
937 	if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
938 		return 0;
939 
940 	/* Allowed if parent directory and link owner match. */
941 	puid = parent->i_uid;
942 	if (uid_valid(puid) && uid_eq(puid, inode->i_uid))
943 		return 0;
944 
945 	if (nd->flags & LOOKUP_RCU)
946 		return -ECHILD;
947 
948 	audit_log_link_denied("follow_link", &nd->stack[0].link);
949 	return -EACCES;
950 }
951 
952 /**
953  * safe_hardlink_source - Check for safe hardlink conditions
954  * @inode: the source inode to hardlink from
955  *
956  * Return false if at least one of the following conditions:
957  *    - inode is not a regular file
958  *    - inode is setuid
959  *    - inode is setgid and group-exec
960  *    - access failure for read and write
961  *
962  * Otherwise returns true.
963  */
964 static bool safe_hardlink_source(struct inode *inode)
965 {
966 	umode_t mode = inode->i_mode;
967 
968 	/* Special files should not get pinned to the filesystem. */
969 	if (!S_ISREG(mode))
970 		return false;
971 
972 	/* Setuid files should not get pinned to the filesystem. */
973 	if (mode & S_ISUID)
974 		return false;
975 
976 	/* Executable setgid files should not get pinned to the filesystem. */
977 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
978 		return false;
979 
980 	/* Hardlinking to unreadable or unwritable sources is dangerous. */
981 	if (inode_permission(inode, MAY_READ | MAY_WRITE))
982 		return false;
983 
984 	return true;
985 }
986 
987 /**
988  * may_linkat - Check permissions for creating a hardlink
989  * @link: the source to hardlink from
990  *
991  * Block hardlink when all of:
992  *  - sysctl_protected_hardlinks enabled
993  *  - fsuid does not match inode
994  *  - hardlink source is unsafe (see safe_hardlink_source() above)
995  *  - not CAP_FOWNER in a namespace with the inode owner uid mapped
996  *
997  * Returns 0 if successful, -ve on error.
998  */
999 static int may_linkat(struct path *link)
1000 {
1001 	struct inode *inode;
1002 
1003 	if (!sysctl_protected_hardlinks)
1004 		return 0;
1005 
1006 	inode = link->dentry->d_inode;
1007 
1008 	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1009 	 * otherwise, it must be a safe source.
1010 	 */
1011 	if (safe_hardlink_source(inode) || inode_owner_or_capable(inode))
1012 		return 0;
1013 
1014 	audit_log_link_denied("linkat", link);
1015 	return -EPERM;
1016 }
1017 
1018 static __always_inline
1019 const char *get_link(struct nameidata *nd)
1020 {
1021 	struct saved *last = nd->stack + nd->depth - 1;
1022 	struct dentry *dentry = last->link.dentry;
1023 	struct inode *inode = nd->link_inode;
1024 	int error;
1025 	const char *res;
1026 
1027 	if (!(nd->flags & LOOKUP_RCU)) {
1028 		touch_atime(&last->link);
1029 		cond_resched();
1030 	} else if (atime_needs_update_rcu(&last->link, inode)) {
1031 		if (unlikely(unlazy_walk(nd)))
1032 			return ERR_PTR(-ECHILD);
1033 		touch_atime(&last->link);
1034 	}
1035 
1036 	error = security_inode_follow_link(dentry, inode,
1037 					   nd->flags & LOOKUP_RCU);
1038 	if (unlikely(error))
1039 		return ERR_PTR(error);
1040 
1041 	nd->last_type = LAST_BIND;
1042 	res = inode->i_link;
1043 	if (!res) {
1044 		const char * (*get)(struct dentry *, struct inode *,
1045 				struct delayed_call *);
1046 		get = inode->i_op->get_link;
1047 		if (nd->flags & LOOKUP_RCU) {
1048 			res = get(NULL, inode, &last->done);
1049 			if (res == ERR_PTR(-ECHILD)) {
1050 				if (unlikely(unlazy_walk(nd)))
1051 					return ERR_PTR(-ECHILD);
1052 				res = get(dentry, inode, &last->done);
1053 			}
1054 		} else {
1055 			res = get(dentry, inode, &last->done);
1056 		}
1057 		if (IS_ERR_OR_NULL(res))
1058 			return res;
1059 	}
1060 	if (*res == '/') {
1061 		if (!nd->root.mnt)
1062 			set_root(nd);
1063 		if (unlikely(nd_jump_root(nd)))
1064 			return ERR_PTR(-ECHILD);
1065 		while (unlikely(*++res == '/'))
1066 			;
1067 	}
1068 	if (!*res)
1069 		res = NULL;
1070 	return res;
1071 }
1072 
1073 /*
1074  * follow_up - Find the mountpoint of path's vfsmount
1075  *
1076  * Given a path, find the mountpoint of its source file system.
1077  * Replace @path with the path of the mountpoint in the parent mount.
1078  * Up is towards /.
1079  *
1080  * Return 1 if we went up a level and 0 if we were already at the
1081  * root.
1082  */
1083 int follow_up(struct path *path)
1084 {
1085 	struct mount *mnt = real_mount(path->mnt);
1086 	struct mount *parent;
1087 	struct dentry *mountpoint;
1088 
1089 	read_seqlock_excl(&mount_lock);
1090 	parent = mnt->mnt_parent;
1091 	if (parent == mnt) {
1092 		read_sequnlock_excl(&mount_lock);
1093 		return 0;
1094 	}
1095 	mntget(&parent->mnt);
1096 	mountpoint = dget(mnt->mnt_mountpoint);
1097 	read_sequnlock_excl(&mount_lock);
1098 	dput(path->dentry);
1099 	path->dentry = mountpoint;
1100 	mntput(path->mnt);
1101 	path->mnt = &parent->mnt;
1102 	return 1;
1103 }
1104 EXPORT_SYMBOL(follow_up);
1105 
1106 /*
1107  * Perform an automount
1108  * - return -EISDIR to tell follow_managed() to stop and return the path we
1109  *   were called with.
1110  */
1111 static int follow_automount(struct path *path, struct nameidata *nd,
1112 			    bool *need_mntput)
1113 {
1114 	struct vfsmount *mnt;
1115 	int err;
1116 
1117 	if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1118 		return -EREMOTE;
1119 
1120 	/* We don't want to mount if someone's just doing a stat -
1121 	 * unless they're stat'ing a directory and appended a '/' to
1122 	 * the name.
1123 	 *
1124 	 * We do, however, want to mount if someone wants to open or
1125 	 * create a file of any type under the mountpoint, wants to
1126 	 * traverse through the mountpoint or wants to open the
1127 	 * mounted directory.  Also, autofs may mark negative dentries
1128 	 * as being automount points.  These will need the attentions
1129 	 * of the daemon to instantiate them before they can be used.
1130 	 */
1131 	if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1132 			   LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1133 	    path->dentry->d_inode)
1134 		return -EISDIR;
1135 
1136 	if (path->dentry->d_sb->s_user_ns != &init_user_ns)
1137 		return -EACCES;
1138 
1139 	nd->total_link_count++;
1140 	if (nd->total_link_count >= 40)
1141 		return -ELOOP;
1142 
1143 	mnt = path->dentry->d_op->d_automount(path);
1144 	if (IS_ERR(mnt)) {
1145 		/*
1146 		 * The filesystem is allowed to return -EISDIR here to indicate
1147 		 * it doesn't want to automount.  For instance, autofs would do
1148 		 * this so that its userspace daemon can mount on this dentry.
1149 		 *
1150 		 * However, we can only permit this if it's a terminal point in
1151 		 * the path being looked up; if it wasn't then the remainder of
1152 		 * the path is inaccessible and we should say so.
1153 		 */
1154 		if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1155 			return -EREMOTE;
1156 		return PTR_ERR(mnt);
1157 	}
1158 
1159 	if (!mnt) /* mount collision */
1160 		return 0;
1161 
1162 	if (!*need_mntput) {
1163 		/* lock_mount() may release path->mnt on error */
1164 		mntget(path->mnt);
1165 		*need_mntput = true;
1166 	}
1167 	err = finish_automount(mnt, path);
1168 
1169 	switch (err) {
1170 	case -EBUSY:
1171 		/* Someone else made a mount here whilst we were busy */
1172 		return 0;
1173 	case 0:
1174 		path_put(path);
1175 		path->mnt = mnt;
1176 		path->dentry = dget(mnt->mnt_root);
1177 		return 0;
1178 	default:
1179 		return err;
1180 	}
1181 
1182 }
1183 
1184 /*
1185  * Handle a dentry that is managed in some way.
1186  * - Flagged for transit management (autofs)
1187  * - Flagged as mountpoint
1188  * - Flagged as automount point
1189  *
1190  * This may only be called in refwalk mode.
1191  *
1192  * Serialization is taken care of in namespace.c
1193  */
1194 static int follow_managed(struct path *path, struct nameidata *nd)
1195 {
1196 	struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1197 	unsigned managed;
1198 	bool need_mntput = false;
1199 	int ret = 0;
1200 
1201 	/* Given that we're not holding a lock here, we retain the value in a
1202 	 * local variable for each dentry as we look at it so that we don't see
1203 	 * the components of that value change under us */
1204 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1205 	       managed &= DCACHE_MANAGED_DENTRY,
1206 	       unlikely(managed != 0)) {
1207 		/* Allow the filesystem to manage the transit without i_mutex
1208 		 * being held. */
1209 		if (managed & DCACHE_MANAGE_TRANSIT) {
1210 			BUG_ON(!path->dentry->d_op);
1211 			BUG_ON(!path->dentry->d_op->d_manage);
1212 			ret = path->dentry->d_op->d_manage(path, false);
1213 			if (ret < 0)
1214 				break;
1215 		}
1216 
1217 		/* Transit to a mounted filesystem. */
1218 		if (managed & DCACHE_MOUNTED) {
1219 			struct vfsmount *mounted = lookup_mnt(path);
1220 			if (mounted) {
1221 				dput(path->dentry);
1222 				if (need_mntput)
1223 					mntput(path->mnt);
1224 				path->mnt = mounted;
1225 				path->dentry = dget(mounted->mnt_root);
1226 				need_mntput = true;
1227 				continue;
1228 			}
1229 
1230 			/* Something is mounted on this dentry in another
1231 			 * namespace and/or whatever was mounted there in this
1232 			 * namespace got unmounted before lookup_mnt() could
1233 			 * get it */
1234 		}
1235 
1236 		/* Handle an automount point */
1237 		if (managed & DCACHE_NEED_AUTOMOUNT) {
1238 			ret = follow_automount(path, nd, &need_mntput);
1239 			if (ret < 0)
1240 				break;
1241 			continue;
1242 		}
1243 
1244 		/* We didn't change the current path point */
1245 		break;
1246 	}
1247 
1248 	if (need_mntput && path->mnt == mnt)
1249 		mntput(path->mnt);
1250 	if (ret == -EISDIR || !ret)
1251 		ret = 1;
1252 	if (need_mntput)
1253 		nd->flags |= LOOKUP_JUMPED;
1254 	if (unlikely(ret < 0))
1255 		path_put_conditional(path, nd);
1256 	return ret;
1257 }
1258 
1259 int follow_down_one(struct path *path)
1260 {
1261 	struct vfsmount *mounted;
1262 
1263 	mounted = lookup_mnt(path);
1264 	if (mounted) {
1265 		dput(path->dentry);
1266 		mntput(path->mnt);
1267 		path->mnt = mounted;
1268 		path->dentry = dget(mounted->mnt_root);
1269 		return 1;
1270 	}
1271 	return 0;
1272 }
1273 EXPORT_SYMBOL(follow_down_one);
1274 
1275 static inline int managed_dentry_rcu(const struct path *path)
1276 {
1277 	return (path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1278 		path->dentry->d_op->d_manage(path, true) : 0;
1279 }
1280 
1281 /*
1282  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1283  * we meet a managed dentry that would need blocking.
1284  */
1285 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1286 			       struct inode **inode, unsigned *seqp)
1287 {
1288 	for (;;) {
1289 		struct mount *mounted;
1290 		/*
1291 		 * Don't forget we might have a non-mountpoint managed dentry
1292 		 * that wants to block transit.
1293 		 */
1294 		switch (managed_dentry_rcu(path)) {
1295 		case -ECHILD:
1296 		default:
1297 			return false;
1298 		case -EISDIR:
1299 			return true;
1300 		case 0:
1301 			break;
1302 		}
1303 
1304 		if (!d_mountpoint(path->dentry))
1305 			return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1306 
1307 		mounted = __lookup_mnt(path->mnt, path->dentry);
1308 		if (!mounted)
1309 			break;
1310 		path->mnt = &mounted->mnt;
1311 		path->dentry = mounted->mnt.mnt_root;
1312 		nd->flags |= LOOKUP_JUMPED;
1313 		*seqp = read_seqcount_begin(&path->dentry->d_seq);
1314 		/*
1315 		 * Update the inode too. We don't need to re-check the
1316 		 * dentry sequence number here after this d_inode read,
1317 		 * because a mount-point is always pinned.
1318 		 */
1319 		*inode = path->dentry->d_inode;
1320 	}
1321 	return !read_seqretry(&mount_lock, nd->m_seq) &&
1322 		!(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1323 }
1324 
1325 static int follow_dotdot_rcu(struct nameidata *nd)
1326 {
1327 	struct inode *inode = nd->inode;
1328 
1329 	while (1) {
1330 		if (path_equal(&nd->path, &nd->root))
1331 			break;
1332 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1333 			struct dentry *old = nd->path.dentry;
1334 			struct dentry *parent = old->d_parent;
1335 			unsigned seq;
1336 
1337 			inode = parent->d_inode;
1338 			seq = read_seqcount_begin(&parent->d_seq);
1339 			if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1340 				return -ECHILD;
1341 			nd->path.dentry = parent;
1342 			nd->seq = seq;
1343 			if (unlikely(!path_connected(&nd->path)))
1344 				return -ENOENT;
1345 			break;
1346 		} else {
1347 			struct mount *mnt = real_mount(nd->path.mnt);
1348 			struct mount *mparent = mnt->mnt_parent;
1349 			struct dentry *mountpoint = mnt->mnt_mountpoint;
1350 			struct inode *inode2 = mountpoint->d_inode;
1351 			unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1352 			if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1353 				return -ECHILD;
1354 			if (&mparent->mnt == nd->path.mnt)
1355 				break;
1356 			/* we know that mountpoint was pinned */
1357 			nd->path.dentry = mountpoint;
1358 			nd->path.mnt = &mparent->mnt;
1359 			inode = inode2;
1360 			nd->seq = seq;
1361 		}
1362 	}
1363 	while (unlikely(d_mountpoint(nd->path.dentry))) {
1364 		struct mount *mounted;
1365 		mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1366 		if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1367 			return -ECHILD;
1368 		if (!mounted)
1369 			break;
1370 		nd->path.mnt = &mounted->mnt;
1371 		nd->path.dentry = mounted->mnt.mnt_root;
1372 		inode = nd->path.dentry->d_inode;
1373 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1374 	}
1375 	nd->inode = inode;
1376 	return 0;
1377 }
1378 
1379 /*
1380  * Follow down to the covering mount currently visible to userspace.  At each
1381  * point, the filesystem owning that dentry may be queried as to whether the
1382  * caller is permitted to proceed or not.
1383  */
1384 int follow_down(struct path *path)
1385 {
1386 	unsigned managed;
1387 	int ret;
1388 
1389 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1390 	       unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1391 		/* Allow the filesystem to manage the transit without i_mutex
1392 		 * being held.
1393 		 *
1394 		 * We indicate to the filesystem if someone is trying to mount
1395 		 * something here.  This gives autofs the chance to deny anyone
1396 		 * other than its daemon the right to mount on its
1397 		 * superstructure.
1398 		 *
1399 		 * The filesystem may sleep at this point.
1400 		 */
1401 		if (managed & DCACHE_MANAGE_TRANSIT) {
1402 			BUG_ON(!path->dentry->d_op);
1403 			BUG_ON(!path->dentry->d_op->d_manage);
1404 			ret = path->dentry->d_op->d_manage(path, false);
1405 			if (ret < 0)
1406 				return ret == -EISDIR ? 0 : ret;
1407 		}
1408 
1409 		/* Transit to a mounted filesystem. */
1410 		if (managed & DCACHE_MOUNTED) {
1411 			struct vfsmount *mounted = lookup_mnt(path);
1412 			if (!mounted)
1413 				break;
1414 			dput(path->dentry);
1415 			mntput(path->mnt);
1416 			path->mnt = mounted;
1417 			path->dentry = dget(mounted->mnt_root);
1418 			continue;
1419 		}
1420 
1421 		/* Don't handle automount points here */
1422 		break;
1423 	}
1424 	return 0;
1425 }
1426 EXPORT_SYMBOL(follow_down);
1427 
1428 /*
1429  * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1430  */
1431 static void follow_mount(struct path *path)
1432 {
1433 	while (d_mountpoint(path->dentry)) {
1434 		struct vfsmount *mounted = lookup_mnt(path);
1435 		if (!mounted)
1436 			break;
1437 		dput(path->dentry);
1438 		mntput(path->mnt);
1439 		path->mnt = mounted;
1440 		path->dentry = dget(mounted->mnt_root);
1441 	}
1442 }
1443 
1444 static int path_parent_directory(struct path *path)
1445 {
1446 	struct dentry *old = path->dentry;
1447 	/* rare case of legitimate dget_parent()... */
1448 	path->dentry = dget_parent(path->dentry);
1449 	dput(old);
1450 	if (unlikely(!path_connected(path)))
1451 		return -ENOENT;
1452 	return 0;
1453 }
1454 
1455 static int follow_dotdot(struct nameidata *nd)
1456 {
1457 	while(1) {
1458 		if (nd->path.dentry == nd->root.dentry &&
1459 		    nd->path.mnt == nd->root.mnt) {
1460 			break;
1461 		}
1462 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1463 			int ret = path_parent_directory(&nd->path);
1464 			if (ret)
1465 				return ret;
1466 			break;
1467 		}
1468 		if (!follow_up(&nd->path))
1469 			break;
1470 	}
1471 	follow_mount(&nd->path);
1472 	nd->inode = nd->path.dentry->d_inode;
1473 	return 0;
1474 }
1475 
1476 /*
1477  * This looks up the name in dcache and possibly revalidates the found dentry.
1478  * NULL is returned if the dentry does not exist in the cache.
1479  */
1480 static struct dentry *lookup_dcache(const struct qstr *name,
1481 				    struct dentry *dir,
1482 				    unsigned int flags)
1483 {
1484 	struct dentry *dentry = d_lookup(dir, name);
1485 	if (dentry) {
1486 		int error = d_revalidate(dentry, flags);
1487 		if (unlikely(error <= 0)) {
1488 			if (!error)
1489 				d_invalidate(dentry);
1490 			dput(dentry);
1491 			return ERR_PTR(error);
1492 		}
1493 	}
1494 	return dentry;
1495 }
1496 
1497 /*
1498  * Call i_op->lookup on the dentry.  The dentry must be negative and
1499  * unhashed.
1500  *
1501  * dir->d_inode->i_mutex must be held
1502  */
1503 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1504 				  unsigned int flags)
1505 {
1506 	struct dentry *old;
1507 
1508 	/* Don't create child dentry for a dead directory. */
1509 	if (unlikely(IS_DEADDIR(dir))) {
1510 		dput(dentry);
1511 		return ERR_PTR(-ENOENT);
1512 	}
1513 
1514 	old = dir->i_op->lookup(dir, dentry, flags);
1515 	if (unlikely(old)) {
1516 		dput(dentry);
1517 		dentry = old;
1518 	}
1519 	return dentry;
1520 }
1521 
1522 static struct dentry *__lookup_hash(const struct qstr *name,
1523 		struct dentry *base, unsigned int flags)
1524 {
1525 	struct dentry *dentry = lookup_dcache(name, base, flags);
1526 
1527 	if (dentry)
1528 		return dentry;
1529 
1530 	dentry = d_alloc(base, name);
1531 	if (unlikely(!dentry))
1532 		return ERR_PTR(-ENOMEM);
1533 
1534 	return lookup_real(base->d_inode, dentry, flags);
1535 }
1536 
1537 static int lookup_fast(struct nameidata *nd,
1538 		       struct path *path, struct inode **inode,
1539 		       unsigned *seqp)
1540 {
1541 	struct vfsmount *mnt = nd->path.mnt;
1542 	struct dentry *dentry, *parent = nd->path.dentry;
1543 	int status = 1;
1544 	int err;
1545 
1546 	/*
1547 	 * Rename seqlock is not required here because in the off chance
1548 	 * of a false negative due to a concurrent rename, the caller is
1549 	 * going to fall back to non-racy lookup.
1550 	 */
1551 	if (nd->flags & LOOKUP_RCU) {
1552 		unsigned seq;
1553 		bool negative;
1554 		dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1555 		if (unlikely(!dentry)) {
1556 			if (unlazy_walk(nd))
1557 				return -ECHILD;
1558 			return 0;
1559 		}
1560 
1561 		/*
1562 		 * This sequence count validates that the inode matches
1563 		 * the dentry name information from lookup.
1564 		 */
1565 		*inode = d_backing_inode(dentry);
1566 		negative = d_is_negative(dentry);
1567 		if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1568 			return -ECHILD;
1569 
1570 		/*
1571 		 * This sequence count validates that the parent had no
1572 		 * changes while we did the lookup of the dentry above.
1573 		 *
1574 		 * The memory barrier in read_seqcount_begin of child is
1575 		 *  enough, we can use __read_seqcount_retry here.
1576 		 */
1577 		if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1578 			return -ECHILD;
1579 
1580 		*seqp = seq;
1581 		status = d_revalidate(dentry, nd->flags);
1582 		if (likely(status > 0)) {
1583 			/*
1584 			 * Note: do negative dentry check after revalidation in
1585 			 * case that drops it.
1586 			 */
1587 			if (unlikely(negative))
1588 				return -ENOENT;
1589 			path->mnt = mnt;
1590 			path->dentry = dentry;
1591 			if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1592 				return 1;
1593 		}
1594 		if (unlazy_child(nd, dentry, seq))
1595 			return -ECHILD;
1596 		if (unlikely(status == -ECHILD))
1597 			/* we'd been told to redo it in non-rcu mode */
1598 			status = d_revalidate(dentry, nd->flags);
1599 	} else {
1600 		dentry = __d_lookup(parent, &nd->last);
1601 		if (unlikely(!dentry))
1602 			return 0;
1603 		status = d_revalidate(dentry, nd->flags);
1604 	}
1605 	if (unlikely(status <= 0)) {
1606 		if (!status)
1607 			d_invalidate(dentry);
1608 		dput(dentry);
1609 		return status;
1610 	}
1611 	if (unlikely(d_is_negative(dentry))) {
1612 		dput(dentry);
1613 		return -ENOENT;
1614 	}
1615 
1616 	path->mnt = mnt;
1617 	path->dentry = dentry;
1618 	err = follow_managed(path, nd);
1619 	if (likely(err > 0))
1620 		*inode = d_backing_inode(path->dentry);
1621 	return err;
1622 }
1623 
1624 /* Fast lookup failed, do it the slow way */
1625 static struct dentry *lookup_slow(const struct qstr *name,
1626 				  struct dentry *dir,
1627 				  unsigned int flags)
1628 {
1629 	struct dentry *dentry = ERR_PTR(-ENOENT), *old;
1630 	struct inode *inode = dir->d_inode;
1631 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1632 
1633 	inode_lock_shared(inode);
1634 	/* Don't go there if it's already dead */
1635 	if (unlikely(IS_DEADDIR(inode)))
1636 		goto out;
1637 again:
1638 	dentry = d_alloc_parallel(dir, name, &wq);
1639 	if (IS_ERR(dentry))
1640 		goto out;
1641 	if (unlikely(!d_in_lookup(dentry))) {
1642 		if (!(flags & LOOKUP_NO_REVAL)) {
1643 			int error = d_revalidate(dentry, flags);
1644 			if (unlikely(error <= 0)) {
1645 				if (!error) {
1646 					d_invalidate(dentry);
1647 					dput(dentry);
1648 					goto again;
1649 				}
1650 				dput(dentry);
1651 				dentry = ERR_PTR(error);
1652 			}
1653 		}
1654 	} else {
1655 		old = inode->i_op->lookup(inode, dentry, flags);
1656 		d_lookup_done(dentry);
1657 		if (unlikely(old)) {
1658 			dput(dentry);
1659 			dentry = old;
1660 		}
1661 	}
1662 out:
1663 	inode_unlock_shared(inode);
1664 	return dentry;
1665 }
1666 
1667 static inline int may_lookup(struct nameidata *nd)
1668 {
1669 	if (nd->flags & LOOKUP_RCU) {
1670 		int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1671 		if (err != -ECHILD)
1672 			return err;
1673 		if (unlazy_walk(nd))
1674 			return -ECHILD;
1675 	}
1676 	return inode_permission(nd->inode, MAY_EXEC);
1677 }
1678 
1679 static inline int handle_dots(struct nameidata *nd, int type)
1680 {
1681 	if (type == LAST_DOTDOT) {
1682 		if (!nd->root.mnt)
1683 			set_root(nd);
1684 		if (nd->flags & LOOKUP_RCU) {
1685 			return follow_dotdot_rcu(nd);
1686 		} else
1687 			return follow_dotdot(nd);
1688 	}
1689 	return 0;
1690 }
1691 
1692 static int pick_link(struct nameidata *nd, struct path *link,
1693 		     struct inode *inode, unsigned seq)
1694 {
1695 	int error;
1696 	struct saved *last;
1697 	if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1698 		path_to_nameidata(link, nd);
1699 		return -ELOOP;
1700 	}
1701 	if (!(nd->flags & LOOKUP_RCU)) {
1702 		if (link->mnt == nd->path.mnt)
1703 			mntget(link->mnt);
1704 	}
1705 	error = nd_alloc_stack(nd);
1706 	if (unlikely(error)) {
1707 		if (error == -ECHILD) {
1708 			if (unlikely(!legitimize_path(nd, link, seq))) {
1709 				drop_links(nd);
1710 				nd->depth = 0;
1711 				nd->flags &= ~LOOKUP_RCU;
1712 				nd->path.mnt = NULL;
1713 				nd->path.dentry = NULL;
1714 				if (!(nd->flags & LOOKUP_ROOT))
1715 					nd->root.mnt = NULL;
1716 				rcu_read_unlock();
1717 			} else if (likely(unlazy_walk(nd)) == 0)
1718 				error = nd_alloc_stack(nd);
1719 		}
1720 		if (error) {
1721 			path_put(link);
1722 			return error;
1723 		}
1724 	}
1725 
1726 	last = nd->stack + nd->depth++;
1727 	last->link = *link;
1728 	clear_delayed_call(&last->done);
1729 	nd->link_inode = inode;
1730 	last->seq = seq;
1731 	return 1;
1732 }
1733 
1734 enum {WALK_FOLLOW = 1, WALK_MORE = 2};
1735 
1736 /*
1737  * Do we need to follow links? We _really_ want to be able
1738  * to do this check without having to look at inode->i_op,
1739  * so we keep a cache of "no, this doesn't need follow_link"
1740  * for the common case.
1741  */
1742 static inline int step_into(struct nameidata *nd, struct path *path,
1743 			    int flags, struct inode *inode, unsigned seq)
1744 {
1745 	if (!(flags & WALK_MORE) && nd->depth)
1746 		put_link(nd);
1747 	if (likely(!d_is_symlink(path->dentry)) ||
1748 	   !(flags & WALK_FOLLOW || nd->flags & LOOKUP_FOLLOW)) {
1749 		/* not a symlink or should not follow */
1750 		path_to_nameidata(path, nd);
1751 		nd->inode = inode;
1752 		nd->seq = seq;
1753 		return 0;
1754 	}
1755 	/* make sure that d_is_symlink above matches inode */
1756 	if (nd->flags & LOOKUP_RCU) {
1757 		if (read_seqcount_retry(&path->dentry->d_seq, seq))
1758 			return -ECHILD;
1759 	}
1760 	return pick_link(nd, path, inode, seq);
1761 }
1762 
1763 static int walk_component(struct nameidata *nd, int flags)
1764 {
1765 	struct path path;
1766 	struct inode *inode;
1767 	unsigned seq;
1768 	int err;
1769 	/*
1770 	 * "." and ".." are special - ".." especially so because it has
1771 	 * to be able to know about the current root directory and
1772 	 * parent relationships.
1773 	 */
1774 	if (unlikely(nd->last_type != LAST_NORM)) {
1775 		err = handle_dots(nd, nd->last_type);
1776 		if (!(flags & WALK_MORE) && nd->depth)
1777 			put_link(nd);
1778 		return err;
1779 	}
1780 	err = lookup_fast(nd, &path, &inode, &seq);
1781 	if (unlikely(err <= 0)) {
1782 		if (err < 0)
1783 			return err;
1784 		path.dentry = lookup_slow(&nd->last, nd->path.dentry,
1785 					  nd->flags);
1786 		if (IS_ERR(path.dentry))
1787 			return PTR_ERR(path.dentry);
1788 
1789 		path.mnt = nd->path.mnt;
1790 		err = follow_managed(&path, nd);
1791 		if (unlikely(err < 0))
1792 			return err;
1793 
1794 		if (unlikely(d_is_negative(path.dentry))) {
1795 			path_to_nameidata(&path, nd);
1796 			return -ENOENT;
1797 		}
1798 
1799 		seq = 0;	/* we are already out of RCU mode */
1800 		inode = d_backing_inode(path.dentry);
1801 	}
1802 
1803 	return step_into(nd, &path, flags, inode, seq);
1804 }
1805 
1806 /*
1807  * We can do the critical dentry name comparison and hashing
1808  * operations one word at a time, but we are limited to:
1809  *
1810  * - Architectures with fast unaligned word accesses. We could
1811  *   do a "get_unaligned()" if this helps and is sufficiently
1812  *   fast.
1813  *
1814  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1815  *   do not trap on the (extremely unlikely) case of a page
1816  *   crossing operation.
1817  *
1818  * - Furthermore, we need an efficient 64-bit compile for the
1819  *   64-bit case in order to generate the "number of bytes in
1820  *   the final mask". Again, that could be replaced with a
1821  *   efficient population count instruction or similar.
1822  */
1823 #ifdef CONFIG_DCACHE_WORD_ACCESS
1824 
1825 #include <asm/word-at-a-time.h>
1826 
1827 #ifdef HASH_MIX
1828 
1829 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1830 
1831 #elif defined(CONFIG_64BIT)
1832 /*
1833  * Register pressure in the mixing function is an issue, particularly
1834  * on 32-bit x86, but almost any function requires one state value and
1835  * one temporary.  Instead, use a function designed for two state values
1836  * and no temporaries.
1837  *
1838  * This function cannot create a collision in only two iterations, so
1839  * we have two iterations to achieve avalanche.  In those two iterations,
1840  * we have six layers of mixing, which is enough to spread one bit's
1841  * influence out to 2^6 = 64 state bits.
1842  *
1843  * Rotate constants are scored by considering either 64 one-bit input
1844  * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
1845  * probability of that delta causing a change to each of the 128 output
1846  * bits, using a sample of random initial states.
1847  *
1848  * The Shannon entropy of the computed probabilities is then summed
1849  * to produce a score.  Ideally, any input change has a 50% chance of
1850  * toggling any given output bit.
1851  *
1852  * Mixing scores (in bits) for (12,45):
1853  * Input delta: 1-bit      2-bit
1854  * 1 round:     713.3    42542.6
1855  * 2 rounds:   2753.7   140389.8
1856  * 3 rounds:   5954.1   233458.2
1857  * 4 rounds:   7862.6   256672.2
1858  * Perfect:    8192     258048
1859  *            (64*128) (64*63/2 * 128)
1860  */
1861 #define HASH_MIX(x, y, a)	\
1862 	(	x ^= (a),	\
1863 	y ^= x,	x = rol64(x,12),\
1864 	x += y,	y = rol64(y,45),\
1865 	y *= 9			)
1866 
1867 /*
1868  * Fold two longs into one 32-bit hash value.  This must be fast, but
1869  * latency isn't quite as critical, as there is a fair bit of additional
1870  * work done before the hash value is used.
1871  */
1872 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1873 {
1874 	y ^= x * GOLDEN_RATIO_64;
1875 	y *= GOLDEN_RATIO_64;
1876 	return y >> 32;
1877 }
1878 
1879 #else	/* 32-bit case */
1880 
1881 /*
1882  * Mixing scores (in bits) for (7,20):
1883  * Input delta: 1-bit      2-bit
1884  * 1 round:     330.3     9201.6
1885  * 2 rounds:   1246.4    25475.4
1886  * 3 rounds:   1907.1    31295.1
1887  * 4 rounds:   2042.3    31718.6
1888  * Perfect:    2048      31744
1889  *            (32*64)   (32*31/2 * 64)
1890  */
1891 #define HASH_MIX(x, y, a)	\
1892 	(	x ^= (a),	\
1893 	y ^= x,	x = rol32(x, 7),\
1894 	x += y,	y = rol32(y,20),\
1895 	y *= 9			)
1896 
1897 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1898 {
1899 	/* Use arch-optimized multiply if one exists */
1900 	return __hash_32(y ^ __hash_32(x));
1901 }
1902 
1903 #endif
1904 
1905 /*
1906  * Return the hash of a string of known length.  This is carfully
1907  * designed to match hash_name(), which is the more critical function.
1908  * In particular, we must end by hashing a final word containing 0..7
1909  * payload bytes, to match the way that hash_name() iterates until it
1910  * finds the delimiter after the name.
1911  */
1912 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1913 {
1914 	unsigned long a, x = 0, y = (unsigned long)salt;
1915 
1916 	for (;;) {
1917 		if (!len)
1918 			goto done;
1919 		a = load_unaligned_zeropad(name);
1920 		if (len < sizeof(unsigned long))
1921 			break;
1922 		HASH_MIX(x, y, a);
1923 		name += sizeof(unsigned long);
1924 		len -= sizeof(unsigned long);
1925 	}
1926 	x ^= a & bytemask_from_count(len);
1927 done:
1928 	return fold_hash(x, y);
1929 }
1930 EXPORT_SYMBOL(full_name_hash);
1931 
1932 /* Return the "hash_len" (hash and length) of a null-terminated string */
1933 u64 hashlen_string(const void *salt, const char *name)
1934 {
1935 	unsigned long a = 0, x = 0, y = (unsigned long)salt;
1936 	unsigned long adata, mask, len;
1937 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1938 
1939 	len = 0;
1940 	goto inside;
1941 
1942 	do {
1943 		HASH_MIX(x, y, a);
1944 		len += sizeof(unsigned long);
1945 inside:
1946 		a = load_unaligned_zeropad(name+len);
1947 	} while (!has_zero(a, &adata, &constants));
1948 
1949 	adata = prep_zero_mask(a, adata, &constants);
1950 	mask = create_zero_mask(adata);
1951 	x ^= a & zero_bytemask(mask);
1952 
1953 	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1954 }
1955 EXPORT_SYMBOL(hashlen_string);
1956 
1957 /*
1958  * Calculate the length and hash of the path component, and
1959  * return the "hash_len" as the result.
1960  */
1961 static inline u64 hash_name(const void *salt, const char *name)
1962 {
1963 	unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
1964 	unsigned long adata, bdata, mask, len;
1965 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1966 
1967 	len = 0;
1968 	goto inside;
1969 
1970 	do {
1971 		HASH_MIX(x, y, a);
1972 		len += sizeof(unsigned long);
1973 inside:
1974 		a = load_unaligned_zeropad(name+len);
1975 		b = a ^ REPEAT_BYTE('/');
1976 	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1977 
1978 	adata = prep_zero_mask(a, adata, &constants);
1979 	bdata = prep_zero_mask(b, bdata, &constants);
1980 	mask = create_zero_mask(adata | bdata);
1981 	x ^= a & zero_bytemask(mask);
1982 
1983 	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1984 }
1985 
1986 #else	/* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
1987 
1988 /* Return the hash of a string of known length */
1989 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1990 {
1991 	unsigned long hash = init_name_hash(salt);
1992 	while (len--)
1993 		hash = partial_name_hash((unsigned char)*name++, hash);
1994 	return end_name_hash(hash);
1995 }
1996 EXPORT_SYMBOL(full_name_hash);
1997 
1998 /* Return the "hash_len" (hash and length) of a null-terminated string */
1999 u64 hashlen_string(const void *salt, const char *name)
2000 {
2001 	unsigned long hash = init_name_hash(salt);
2002 	unsigned long len = 0, c;
2003 
2004 	c = (unsigned char)*name;
2005 	while (c) {
2006 		len++;
2007 		hash = partial_name_hash(c, hash);
2008 		c = (unsigned char)name[len];
2009 	}
2010 	return hashlen_create(end_name_hash(hash), len);
2011 }
2012 EXPORT_SYMBOL(hashlen_string);
2013 
2014 /*
2015  * We know there's a real path component here of at least
2016  * one character.
2017  */
2018 static inline u64 hash_name(const void *salt, const char *name)
2019 {
2020 	unsigned long hash = init_name_hash(salt);
2021 	unsigned long len = 0, c;
2022 
2023 	c = (unsigned char)*name;
2024 	do {
2025 		len++;
2026 		hash = partial_name_hash(c, hash);
2027 		c = (unsigned char)name[len];
2028 	} while (c && c != '/');
2029 	return hashlen_create(end_name_hash(hash), len);
2030 }
2031 
2032 #endif
2033 
2034 /*
2035  * Name resolution.
2036  * This is the basic name resolution function, turning a pathname into
2037  * the final dentry. We expect 'base' to be positive and a directory.
2038  *
2039  * Returns 0 and nd will have valid dentry and mnt on success.
2040  * Returns error and drops reference to input namei data on failure.
2041  */
2042 static int link_path_walk(const char *name, struct nameidata *nd)
2043 {
2044 	int err;
2045 
2046 	while (*name=='/')
2047 		name++;
2048 	if (!*name)
2049 		return 0;
2050 
2051 	/* At this point we know we have a real path component. */
2052 	for(;;) {
2053 		u64 hash_len;
2054 		int type;
2055 
2056 		err = may_lookup(nd);
2057 		if (err)
2058 			return err;
2059 
2060 		hash_len = hash_name(nd->path.dentry, name);
2061 
2062 		type = LAST_NORM;
2063 		if (name[0] == '.') switch (hashlen_len(hash_len)) {
2064 			case 2:
2065 				if (name[1] == '.') {
2066 					type = LAST_DOTDOT;
2067 					nd->flags |= LOOKUP_JUMPED;
2068 				}
2069 				break;
2070 			case 1:
2071 				type = LAST_DOT;
2072 		}
2073 		if (likely(type == LAST_NORM)) {
2074 			struct dentry *parent = nd->path.dentry;
2075 			nd->flags &= ~LOOKUP_JUMPED;
2076 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2077 				struct qstr this = { { .hash_len = hash_len }, .name = name };
2078 				err = parent->d_op->d_hash(parent, &this);
2079 				if (err < 0)
2080 					return err;
2081 				hash_len = this.hash_len;
2082 				name = this.name;
2083 			}
2084 		}
2085 
2086 		nd->last.hash_len = hash_len;
2087 		nd->last.name = name;
2088 		nd->last_type = type;
2089 
2090 		name += hashlen_len(hash_len);
2091 		if (!*name)
2092 			goto OK;
2093 		/*
2094 		 * If it wasn't NUL, we know it was '/'. Skip that
2095 		 * slash, and continue until no more slashes.
2096 		 */
2097 		do {
2098 			name++;
2099 		} while (unlikely(*name == '/'));
2100 		if (unlikely(!*name)) {
2101 OK:
2102 			/* pathname body, done */
2103 			if (!nd->depth)
2104 				return 0;
2105 			name = nd->stack[nd->depth - 1].name;
2106 			/* trailing symlink, done */
2107 			if (!name)
2108 				return 0;
2109 			/* last component of nested symlink */
2110 			err = walk_component(nd, WALK_FOLLOW);
2111 		} else {
2112 			/* not the last component */
2113 			err = walk_component(nd, WALK_FOLLOW | WALK_MORE);
2114 		}
2115 		if (err < 0)
2116 			return err;
2117 
2118 		if (err) {
2119 			const char *s = get_link(nd);
2120 
2121 			if (IS_ERR(s))
2122 				return PTR_ERR(s);
2123 			err = 0;
2124 			if (unlikely(!s)) {
2125 				/* jumped */
2126 				put_link(nd);
2127 			} else {
2128 				nd->stack[nd->depth - 1].name = name;
2129 				name = s;
2130 				continue;
2131 			}
2132 		}
2133 		if (unlikely(!d_can_lookup(nd->path.dentry))) {
2134 			if (nd->flags & LOOKUP_RCU) {
2135 				if (unlazy_walk(nd))
2136 					return -ECHILD;
2137 			}
2138 			return -ENOTDIR;
2139 		}
2140 	}
2141 }
2142 
2143 static const char *path_init(struct nameidata *nd, unsigned flags)
2144 {
2145 	const char *s = nd->name->name;
2146 
2147 	if (!*s)
2148 		flags &= ~LOOKUP_RCU;
2149 
2150 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
2151 	nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
2152 	nd->depth = 0;
2153 	if (flags & LOOKUP_ROOT) {
2154 		struct dentry *root = nd->root.dentry;
2155 		struct inode *inode = root->d_inode;
2156 		if (*s && unlikely(!d_can_lookup(root)))
2157 			return ERR_PTR(-ENOTDIR);
2158 		nd->path = nd->root;
2159 		nd->inode = inode;
2160 		if (flags & LOOKUP_RCU) {
2161 			rcu_read_lock();
2162 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2163 			nd->root_seq = nd->seq;
2164 			nd->m_seq = read_seqbegin(&mount_lock);
2165 		} else {
2166 			path_get(&nd->path);
2167 		}
2168 		return s;
2169 	}
2170 
2171 	nd->root.mnt = NULL;
2172 	nd->path.mnt = NULL;
2173 	nd->path.dentry = NULL;
2174 
2175 	nd->m_seq = read_seqbegin(&mount_lock);
2176 	if (*s == '/') {
2177 		if (flags & LOOKUP_RCU)
2178 			rcu_read_lock();
2179 		set_root(nd);
2180 		if (likely(!nd_jump_root(nd)))
2181 			return s;
2182 		nd->root.mnt = NULL;
2183 		rcu_read_unlock();
2184 		return ERR_PTR(-ECHILD);
2185 	} else if (nd->dfd == AT_FDCWD) {
2186 		if (flags & LOOKUP_RCU) {
2187 			struct fs_struct *fs = current->fs;
2188 			unsigned seq;
2189 
2190 			rcu_read_lock();
2191 
2192 			do {
2193 				seq = read_seqcount_begin(&fs->seq);
2194 				nd->path = fs->pwd;
2195 				nd->inode = nd->path.dentry->d_inode;
2196 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2197 			} while (read_seqcount_retry(&fs->seq, seq));
2198 		} else {
2199 			get_fs_pwd(current->fs, &nd->path);
2200 			nd->inode = nd->path.dentry->d_inode;
2201 		}
2202 		return s;
2203 	} else {
2204 		/* Caller must check execute permissions on the starting path component */
2205 		struct fd f = fdget_raw(nd->dfd);
2206 		struct dentry *dentry;
2207 
2208 		if (!f.file)
2209 			return ERR_PTR(-EBADF);
2210 
2211 		dentry = f.file->f_path.dentry;
2212 
2213 		if (*s) {
2214 			if (!d_can_lookup(dentry)) {
2215 				fdput(f);
2216 				return ERR_PTR(-ENOTDIR);
2217 			}
2218 		}
2219 
2220 		nd->path = f.file->f_path;
2221 		if (flags & LOOKUP_RCU) {
2222 			rcu_read_lock();
2223 			nd->inode = nd->path.dentry->d_inode;
2224 			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2225 		} else {
2226 			path_get(&nd->path);
2227 			nd->inode = nd->path.dentry->d_inode;
2228 		}
2229 		fdput(f);
2230 		return s;
2231 	}
2232 }
2233 
2234 static const char *trailing_symlink(struct nameidata *nd)
2235 {
2236 	const char *s;
2237 	int error = may_follow_link(nd);
2238 	if (unlikely(error))
2239 		return ERR_PTR(error);
2240 	nd->flags |= LOOKUP_PARENT;
2241 	nd->stack[0].name = NULL;
2242 	s = get_link(nd);
2243 	return s ? s : "";
2244 }
2245 
2246 static inline int lookup_last(struct nameidata *nd)
2247 {
2248 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2249 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2250 
2251 	nd->flags &= ~LOOKUP_PARENT;
2252 	return walk_component(nd, 0);
2253 }
2254 
2255 static int handle_lookup_down(struct nameidata *nd)
2256 {
2257 	struct path path = nd->path;
2258 	struct inode *inode = nd->inode;
2259 	unsigned seq = nd->seq;
2260 	int err;
2261 
2262 	if (nd->flags & LOOKUP_RCU) {
2263 		/*
2264 		 * don't bother with unlazy_walk on failure - we are
2265 		 * at the very beginning of walk, so we lose nothing
2266 		 * if we simply redo everything in non-RCU mode
2267 		 */
2268 		if (unlikely(!__follow_mount_rcu(nd, &path, &inode, &seq)))
2269 			return -ECHILD;
2270 	} else {
2271 		dget(path.dentry);
2272 		err = follow_managed(&path, nd);
2273 		if (unlikely(err < 0))
2274 			return err;
2275 		inode = d_backing_inode(path.dentry);
2276 		seq = 0;
2277 	}
2278 	path_to_nameidata(&path, nd);
2279 	nd->inode = inode;
2280 	nd->seq = seq;
2281 	return 0;
2282 }
2283 
2284 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2285 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2286 {
2287 	const char *s = path_init(nd, flags);
2288 	int err;
2289 
2290 	if (IS_ERR(s))
2291 		return PTR_ERR(s);
2292 
2293 	if (unlikely(flags & LOOKUP_DOWN)) {
2294 		err = handle_lookup_down(nd);
2295 		if (unlikely(err < 0)) {
2296 			terminate_walk(nd);
2297 			return err;
2298 		}
2299 	}
2300 
2301 	while (!(err = link_path_walk(s, nd))
2302 		&& ((err = lookup_last(nd)) > 0)) {
2303 		s = trailing_symlink(nd);
2304 		if (IS_ERR(s)) {
2305 			err = PTR_ERR(s);
2306 			break;
2307 		}
2308 	}
2309 	if (!err)
2310 		err = complete_walk(nd);
2311 
2312 	if (!err && nd->flags & LOOKUP_DIRECTORY)
2313 		if (!d_can_lookup(nd->path.dentry))
2314 			err = -ENOTDIR;
2315 	if (!err) {
2316 		*path = nd->path;
2317 		nd->path.mnt = NULL;
2318 		nd->path.dentry = NULL;
2319 	}
2320 	terminate_walk(nd);
2321 	return err;
2322 }
2323 
2324 static int filename_lookup(int dfd, struct filename *name, unsigned flags,
2325 			   struct path *path, struct path *root)
2326 {
2327 	int retval;
2328 	struct nameidata nd;
2329 	if (IS_ERR(name))
2330 		return PTR_ERR(name);
2331 	if (unlikely(root)) {
2332 		nd.root = *root;
2333 		flags |= LOOKUP_ROOT;
2334 	}
2335 	set_nameidata(&nd, dfd, name);
2336 	retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2337 	if (unlikely(retval == -ECHILD))
2338 		retval = path_lookupat(&nd, flags, path);
2339 	if (unlikely(retval == -ESTALE))
2340 		retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2341 
2342 	if (likely(!retval))
2343 		audit_inode(name, path->dentry, flags & LOOKUP_PARENT);
2344 	restore_nameidata();
2345 	putname(name);
2346 	return retval;
2347 }
2348 
2349 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2350 static int path_parentat(struct nameidata *nd, unsigned flags,
2351 				struct path *parent)
2352 {
2353 	const char *s = path_init(nd, flags);
2354 	int err;
2355 	if (IS_ERR(s))
2356 		return PTR_ERR(s);
2357 	err = link_path_walk(s, nd);
2358 	if (!err)
2359 		err = complete_walk(nd);
2360 	if (!err) {
2361 		*parent = nd->path;
2362 		nd->path.mnt = NULL;
2363 		nd->path.dentry = NULL;
2364 	}
2365 	terminate_walk(nd);
2366 	return err;
2367 }
2368 
2369 static struct filename *filename_parentat(int dfd, struct filename *name,
2370 				unsigned int flags, struct path *parent,
2371 				struct qstr *last, int *type)
2372 {
2373 	int retval;
2374 	struct nameidata nd;
2375 
2376 	if (IS_ERR(name))
2377 		return name;
2378 	set_nameidata(&nd, dfd, name);
2379 	retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2380 	if (unlikely(retval == -ECHILD))
2381 		retval = path_parentat(&nd, flags, parent);
2382 	if (unlikely(retval == -ESTALE))
2383 		retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2384 	if (likely(!retval)) {
2385 		*last = nd.last;
2386 		*type = nd.last_type;
2387 		audit_inode(name, parent->dentry, LOOKUP_PARENT);
2388 	} else {
2389 		putname(name);
2390 		name = ERR_PTR(retval);
2391 	}
2392 	restore_nameidata();
2393 	return name;
2394 }
2395 
2396 /* does lookup, returns the object with parent locked */
2397 struct dentry *kern_path_locked(const char *name, struct path *path)
2398 {
2399 	struct filename *filename;
2400 	struct dentry *d;
2401 	struct qstr last;
2402 	int type;
2403 
2404 	filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2405 				    &last, &type);
2406 	if (IS_ERR(filename))
2407 		return ERR_CAST(filename);
2408 	if (unlikely(type != LAST_NORM)) {
2409 		path_put(path);
2410 		putname(filename);
2411 		return ERR_PTR(-EINVAL);
2412 	}
2413 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2414 	d = __lookup_hash(&last, path->dentry, 0);
2415 	if (IS_ERR(d)) {
2416 		inode_unlock(path->dentry->d_inode);
2417 		path_put(path);
2418 	}
2419 	putname(filename);
2420 	return d;
2421 }
2422 
2423 int kern_path(const char *name, unsigned int flags, struct path *path)
2424 {
2425 	return filename_lookup(AT_FDCWD, getname_kernel(name),
2426 			       flags, path, NULL);
2427 }
2428 EXPORT_SYMBOL(kern_path);
2429 
2430 /**
2431  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2432  * @dentry:  pointer to dentry of the base directory
2433  * @mnt: pointer to vfs mount of the base directory
2434  * @name: pointer to file name
2435  * @flags: lookup flags
2436  * @path: pointer to struct path to fill
2437  */
2438 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2439 		    const char *name, unsigned int flags,
2440 		    struct path *path)
2441 {
2442 	struct path root = {.mnt = mnt, .dentry = dentry};
2443 	/* the first argument of filename_lookup() is ignored with root */
2444 	return filename_lookup(AT_FDCWD, getname_kernel(name),
2445 			       flags , path, &root);
2446 }
2447 EXPORT_SYMBOL(vfs_path_lookup);
2448 
2449 /**
2450  * lookup_one_len - filesystem helper to lookup single pathname component
2451  * @name:	pathname component to lookup
2452  * @base:	base directory to lookup from
2453  * @len:	maximum length @len should be interpreted to
2454  *
2455  * Note that this routine is purely a helper for filesystem usage and should
2456  * not be called by generic code.
2457  *
2458  * The caller must hold base->i_mutex.
2459  */
2460 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2461 {
2462 	struct qstr this;
2463 	unsigned int c;
2464 	int err;
2465 
2466 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2467 
2468 	this.name = name;
2469 	this.len = len;
2470 	this.hash = full_name_hash(base, name, len);
2471 	if (!len)
2472 		return ERR_PTR(-EACCES);
2473 
2474 	if (unlikely(name[0] == '.')) {
2475 		if (len < 2 || (len == 2 && name[1] == '.'))
2476 			return ERR_PTR(-EACCES);
2477 	}
2478 
2479 	while (len--) {
2480 		c = *(const unsigned char *)name++;
2481 		if (c == '/' || c == '\0')
2482 			return ERR_PTR(-EACCES);
2483 	}
2484 	/*
2485 	 * See if the low-level filesystem might want
2486 	 * to use its own hash..
2487 	 */
2488 	if (base->d_flags & DCACHE_OP_HASH) {
2489 		int err = base->d_op->d_hash(base, &this);
2490 		if (err < 0)
2491 			return ERR_PTR(err);
2492 	}
2493 
2494 	err = inode_permission(base->d_inode, MAY_EXEC);
2495 	if (err)
2496 		return ERR_PTR(err);
2497 
2498 	return __lookup_hash(&this, base, 0);
2499 }
2500 EXPORT_SYMBOL(lookup_one_len);
2501 
2502 /**
2503  * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2504  * @name:	pathname component to lookup
2505  * @base:	base directory to lookup from
2506  * @len:	maximum length @len should be interpreted to
2507  *
2508  * Note that this routine is purely a helper for filesystem usage and should
2509  * not be called by generic code.
2510  *
2511  * Unlike lookup_one_len, it should be called without the parent
2512  * i_mutex held, and will take the i_mutex itself if necessary.
2513  */
2514 struct dentry *lookup_one_len_unlocked(const char *name,
2515 				       struct dentry *base, int len)
2516 {
2517 	struct qstr this;
2518 	unsigned int c;
2519 	int err;
2520 	struct dentry *ret;
2521 
2522 	this.name = name;
2523 	this.len = len;
2524 	this.hash = full_name_hash(base, name, len);
2525 	if (!len)
2526 		return ERR_PTR(-EACCES);
2527 
2528 	if (unlikely(name[0] == '.')) {
2529 		if (len < 2 || (len == 2 && name[1] == '.'))
2530 			return ERR_PTR(-EACCES);
2531 	}
2532 
2533 	while (len--) {
2534 		c = *(const unsigned char *)name++;
2535 		if (c == '/' || c == '\0')
2536 			return ERR_PTR(-EACCES);
2537 	}
2538 	/*
2539 	 * See if the low-level filesystem might want
2540 	 * to use its own hash..
2541 	 */
2542 	if (base->d_flags & DCACHE_OP_HASH) {
2543 		int err = base->d_op->d_hash(base, &this);
2544 		if (err < 0)
2545 			return ERR_PTR(err);
2546 	}
2547 
2548 	err = inode_permission(base->d_inode, MAY_EXEC);
2549 	if (err)
2550 		return ERR_PTR(err);
2551 
2552 	ret = lookup_dcache(&this, base, 0);
2553 	if (!ret)
2554 		ret = lookup_slow(&this, base, 0);
2555 	return ret;
2556 }
2557 EXPORT_SYMBOL(lookup_one_len_unlocked);
2558 
2559 #ifdef CONFIG_UNIX98_PTYS
2560 int path_pts(struct path *path)
2561 {
2562 	/* Find something mounted on "pts" in the same directory as
2563 	 * the input path.
2564 	 */
2565 	struct dentry *child, *parent;
2566 	struct qstr this;
2567 	int ret;
2568 
2569 	ret = path_parent_directory(path);
2570 	if (ret)
2571 		return ret;
2572 
2573 	parent = path->dentry;
2574 	this.name = "pts";
2575 	this.len = 3;
2576 	child = d_hash_and_lookup(parent, &this);
2577 	if (!child)
2578 		return -ENOENT;
2579 
2580 	path->dentry = child;
2581 	dput(parent);
2582 	follow_mount(path);
2583 	return 0;
2584 }
2585 #endif
2586 
2587 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2588 		 struct path *path, int *empty)
2589 {
2590 	return filename_lookup(dfd, getname_flags(name, flags, empty),
2591 			       flags, path, NULL);
2592 }
2593 EXPORT_SYMBOL(user_path_at_empty);
2594 
2595 /**
2596  * mountpoint_last - look up last component for umount
2597  * @nd:   pathwalk nameidata - currently pointing at parent directory of "last"
2598  *
2599  * This is a special lookup_last function just for umount. In this case, we
2600  * need to resolve the path without doing any revalidation.
2601  *
2602  * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2603  * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2604  * in almost all cases, this lookup will be served out of the dcache. The only
2605  * cases where it won't are if nd->last refers to a symlink or the path is
2606  * bogus and it doesn't exist.
2607  *
2608  * Returns:
2609  * -error: if there was an error during lookup. This includes -ENOENT if the
2610  *         lookup found a negative dentry.
2611  *
2612  * 0:      if we successfully resolved nd->last and found it to not to be a
2613  *         symlink that needs to be followed.
2614  *
2615  * 1:      if we successfully resolved nd->last and found it to be a symlink
2616  *         that needs to be followed.
2617  */
2618 static int
2619 mountpoint_last(struct nameidata *nd)
2620 {
2621 	int error = 0;
2622 	struct dentry *dir = nd->path.dentry;
2623 	struct path path;
2624 
2625 	/* If we're in rcuwalk, drop out of it to handle last component */
2626 	if (nd->flags & LOOKUP_RCU) {
2627 		if (unlazy_walk(nd))
2628 			return -ECHILD;
2629 	}
2630 
2631 	nd->flags &= ~LOOKUP_PARENT;
2632 
2633 	if (unlikely(nd->last_type != LAST_NORM)) {
2634 		error = handle_dots(nd, nd->last_type);
2635 		if (error)
2636 			return error;
2637 		path.dentry = dget(nd->path.dentry);
2638 	} else {
2639 		path.dentry = d_lookup(dir, &nd->last);
2640 		if (!path.dentry) {
2641 			/*
2642 			 * No cached dentry. Mounted dentries are pinned in the
2643 			 * cache, so that means that this dentry is probably
2644 			 * a symlink or the path doesn't actually point
2645 			 * to a mounted dentry.
2646 			 */
2647 			path.dentry = lookup_slow(&nd->last, dir,
2648 					     nd->flags | LOOKUP_NO_REVAL);
2649 			if (IS_ERR(path.dentry))
2650 				return PTR_ERR(path.dentry);
2651 		}
2652 	}
2653 	if (d_is_negative(path.dentry)) {
2654 		dput(path.dentry);
2655 		return -ENOENT;
2656 	}
2657 	path.mnt = nd->path.mnt;
2658 	return step_into(nd, &path, 0, d_backing_inode(path.dentry), 0);
2659 }
2660 
2661 /**
2662  * path_mountpoint - look up a path to be umounted
2663  * @nd:		lookup context
2664  * @flags:	lookup flags
2665  * @path:	pointer to container for result
2666  *
2667  * Look up the given name, but don't attempt to revalidate the last component.
2668  * Returns 0 and "path" will be valid on success; Returns error otherwise.
2669  */
2670 static int
2671 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2672 {
2673 	const char *s = path_init(nd, flags);
2674 	int err;
2675 	if (IS_ERR(s))
2676 		return PTR_ERR(s);
2677 	while (!(err = link_path_walk(s, nd)) &&
2678 		(err = mountpoint_last(nd)) > 0) {
2679 		s = trailing_symlink(nd);
2680 		if (IS_ERR(s)) {
2681 			err = PTR_ERR(s);
2682 			break;
2683 		}
2684 	}
2685 	if (!err) {
2686 		*path = nd->path;
2687 		nd->path.mnt = NULL;
2688 		nd->path.dentry = NULL;
2689 		follow_mount(path);
2690 	}
2691 	terminate_walk(nd);
2692 	return err;
2693 }
2694 
2695 static int
2696 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2697 			unsigned int flags)
2698 {
2699 	struct nameidata nd;
2700 	int error;
2701 	if (IS_ERR(name))
2702 		return PTR_ERR(name);
2703 	set_nameidata(&nd, dfd, name);
2704 	error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2705 	if (unlikely(error == -ECHILD))
2706 		error = path_mountpoint(&nd, flags, path);
2707 	if (unlikely(error == -ESTALE))
2708 		error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2709 	if (likely(!error))
2710 		audit_inode(name, path->dentry, 0);
2711 	restore_nameidata();
2712 	putname(name);
2713 	return error;
2714 }
2715 
2716 /**
2717  * user_path_mountpoint_at - lookup a path from userland in order to umount it
2718  * @dfd:	directory file descriptor
2719  * @name:	pathname from userland
2720  * @flags:	lookup flags
2721  * @path:	pointer to container to hold result
2722  *
2723  * A umount is a special case for path walking. We're not actually interested
2724  * in the inode in this situation, and ESTALE errors can be a problem. We
2725  * simply want track down the dentry and vfsmount attached at the mountpoint
2726  * and avoid revalidating the last component.
2727  *
2728  * Returns 0 and populates "path" on success.
2729  */
2730 int
2731 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2732 			struct path *path)
2733 {
2734 	return filename_mountpoint(dfd, getname(name), path, flags);
2735 }
2736 
2737 int
2738 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2739 			unsigned int flags)
2740 {
2741 	return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2742 }
2743 EXPORT_SYMBOL(kern_path_mountpoint);
2744 
2745 int __check_sticky(struct inode *dir, struct inode *inode)
2746 {
2747 	kuid_t fsuid = current_fsuid();
2748 
2749 	if (uid_eq(inode->i_uid, fsuid))
2750 		return 0;
2751 	if (uid_eq(dir->i_uid, fsuid))
2752 		return 0;
2753 	return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2754 }
2755 EXPORT_SYMBOL(__check_sticky);
2756 
2757 /*
2758  *	Check whether we can remove a link victim from directory dir, check
2759  *  whether the type of victim is right.
2760  *  1. We can't do it if dir is read-only (done in permission())
2761  *  2. We should have write and exec permissions on dir
2762  *  3. We can't remove anything from append-only dir
2763  *  4. We can't do anything with immutable dir (done in permission())
2764  *  5. If the sticky bit on dir is set we should either
2765  *	a. be owner of dir, or
2766  *	b. be owner of victim, or
2767  *	c. have CAP_FOWNER capability
2768  *  6. If the victim is append-only or immutable we can't do antyhing with
2769  *     links pointing to it.
2770  *  7. If the victim has an unknown uid or gid we can't change the inode.
2771  *  8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2772  *  9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2773  * 10. We can't remove a root or mountpoint.
2774  * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2775  *     nfs_async_unlink().
2776  */
2777 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2778 {
2779 	struct inode *inode = d_backing_inode(victim);
2780 	int error;
2781 
2782 	if (d_is_negative(victim))
2783 		return -ENOENT;
2784 	BUG_ON(!inode);
2785 
2786 	BUG_ON(victim->d_parent->d_inode != dir);
2787 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2788 
2789 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2790 	if (error)
2791 		return error;
2792 	if (IS_APPEND(dir))
2793 		return -EPERM;
2794 
2795 	if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2796 	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode))
2797 		return -EPERM;
2798 	if (isdir) {
2799 		if (!d_is_dir(victim))
2800 			return -ENOTDIR;
2801 		if (IS_ROOT(victim))
2802 			return -EBUSY;
2803 	} else if (d_is_dir(victim))
2804 		return -EISDIR;
2805 	if (IS_DEADDIR(dir))
2806 		return -ENOENT;
2807 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2808 		return -EBUSY;
2809 	return 0;
2810 }
2811 
2812 /*	Check whether we can create an object with dentry child in directory
2813  *  dir.
2814  *  1. We can't do it if child already exists (open has special treatment for
2815  *     this case, but since we are inlined it's OK)
2816  *  2. We can't do it if dir is read-only (done in permission())
2817  *  3. We can't do it if the fs can't represent the fsuid or fsgid.
2818  *  4. We should have write and exec permissions on dir
2819  *  5. We can't do it if dir is immutable (done in permission())
2820  */
2821 static inline int may_create(struct inode *dir, struct dentry *child)
2822 {
2823 	struct user_namespace *s_user_ns;
2824 	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2825 	if (child->d_inode)
2826 		return -EEXIST;
2827 	if (IS_DEADDIR(dir))
2828 		return -ENOENT;
2829 	s_user_ns = dir->i_sb->s_user_ns;
2830 	if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2831 	    !kgid_has_mapping(s_user_ns, current_fsgid()))
2832 		return -EOVERFLOW;
2833 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2834 }
2835 
2836 /*
2837  * p1 and p2 should be directories on the same fs.
2838  */
2839 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2840 {
2841 	struct dentry *p;
2842 
2843 	if (p1 == p2) {
2844 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2845 		return NULL;
2846 	}
2847 
2848 	mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2849 
2850 	p = d_ancestor(p2, p1);
2851 	if (p) {
2852 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2853 		inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2854 		return p;
2855 	}
2856 
2857 	p = d_ancestor(p1, p2);
2858 	if (p) {
2859 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2860 		inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2861 		return p;
2862 	}
2863 
2864 	inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2865 	inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2866 	return NULL;
2867 }
2868 EXPORT_SYMBOL(lock_rename);
2869 
2870 void unlock_rename(struct dentry *p1, struct dentry *p2)
2871 {
2872 	inode_unlock(p1->d_inode);
2873 	if (p1 != p2) {
2874 		inode_unlock(p2->d_inode);
2875 		mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2876 	}
2877 }
2878 EXPORT_SYMBOL(unlock_rename);
2879 
2880 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2881 		bool want_excl)
2882 {
2883 	int error = may_create(dir, dentry);
2884 	if (error)
2885 		return error;
2886 
2887 	if (!dir->i_op->create)
2888 		return -EACCES;	/* shouldn't it be ENOSYS? */
2889 	mode &= S_IALLUGO;
2890 	mode |= S_IFREG;
2891 	error = security_inode_create(dir, dentry, mode);
2892 	if (error)
2893 		return error;
2894 	error = dir->i_op->create(dir, dentry, mode, want_excl);
2895 	if (!error)
2896 		fsnotify_create(dir, dentry);
2897 	return error;
2898 }
2899 EXPORT_SYMBOL(vfs_create);
2900 
2901 bool may_open_dev(const struct path *path)
2902 {
2903 	return !(path->mnt->mnt_flags & MNT_NODEV) &&
2904 		!(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
2905 }
2906 
2907 static int may_open(const struct path *path, int acc_mode, int flag)
2908 {
2909 	struct dentry *dentry = path->dentry;
2910 	struct inode *inode = dentry->d_inode;
2911 	int error;
2912 
2913 	if (!inode)
2914 		return -ENOENT;
2915 
2916 	switch (inode->i_mode & S_IFMT) {
2917 	case S_IFLNK:
2918 		return -ELOOP;
2919 	case S_IFDIR:
2920 		if (acc_mode & MAY_WRITE)
2921 			return -EISDIR;
2922 		break;
2923 	case S_IFBLK:
2924 	case S_IFCHR:
2925 		if (!may_open_dev(path))
2926 			return -EACCES;
2927 		/*FALLTHRU*/
2928 	case S_IFIFO:
2929 	case S_IFSOCK:
2930 		flag &= ~O_TRUNC;
2931 		break;
2932 	}
2933 
2934 	error = inode_permission(inode, MAY_OPEN | acc_mode);
2935 	if (error)
2936 		return error;
2937 
2938 	/*
2939 	 * An append-only file must be opened in append mode for writing.
2940 	 */
2941 	if (IS_APPEND(inode)) {
2942 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2943 			return -EPERM;
2944 		if (flag & O_TRUNC)
2945 			return -EPERM;
2946 	}
2947 
2948 	/* O_NOATIME can only be set by the owner or superuser */
2949 	if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2950 		return -EPERM;
2951 
2952 	return 0;
2953 }
2954 
2955 static int handle_truncate(struct file *filp)
2956 {
2957 	const struct path *path = &filp->f_path;
2958 	struct inode *inode = path->dentry->d_inode;
2959 	int error = get_write_access(inode);
2960 	if (error)
2961 		return error;
2962 	/*
2963 	 * Refuse to truncate files with mandatory locks held on them.
2964 	 */
2965 	error = locks_verify_locked(filp);
2966 	if (!error)
2967 		error = security_path_truncate(path);
2968 	if (!error) {
2969 		error = do_truncate(path->dentry, 0,
2970 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2971 				    filp);
2972 	}
2973 	put_write_access(inode);
2974 	return error;
2975 }
2976 
2977 static inline int open_to_namei_flags(int flag)
2978 {
2979 	if ((flag & O_ACCMODE) == 3)
2980 		flag--;
2981 	return flag;
2982 }
2983 
2984 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode)
2985 {
2986 	struct user_namespace *s_user_ns;
2987 	int error = security_path_mknod(dir, dentry, mode, 0);
2988 	if (error)
2989 		return error;
2990 
2991 	s_user_ns = dir->dentry->d_sb->s_user_ns;
2992 	if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2993 	    !kgid_has_mapping(s_user_ns, current_fsgid()))
2994 		return -EOVERFLOW;
2995 
2996 	error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2997 	if (error)
2998 		return error;
2999 
3000 	return security_inode_create(dir->dentry->d_inode, dentry, mode);
3001 }
3002 
3003 /*
3004  * Attempt to atomically look up, create and open a file from a negative
3005  * dentry.
3006  *
3007  * Returns 0 if successful.  The file will have been created and attached to
3008  * @file by the filesystem calling finish_open().
3009  *
3010  * Returns 1 if the file was looked up only or didn't need creating.  The
3011  * caller will need to perform the open themselves.  @path will have been
3012  * updated to point to the new dentry.  This may be negative.
3013  *
3014  * Returns an error code otherwise.
3015  */
3016 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
3017 			struct path *path, struct file *file,
3018 			const struct open_flags *op,
3019 			int open_flag, umode_t mode,
3020 			int *opened)
3021 {
3022 	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3023 	struct inode *dir =  nd->path.dentry->d_inode;
3024 	int error;
3025 
3026 	if (!(~open_flag & (O_EXCL | O_CREAT)))	/* both O_EXCL and O_CREAT */
3027 		open_flag &= ~O_TRUNC;
3028 
3029 	if (nd->flags & LOOKUP_DIRECTORY)
3030 		open_flag |= O_DIRECTORY;
3031 
3032 	file->f_path.dentry = DENTRY_NOT_SET;
3033 	file->f_path.mnt = nd->path.mnt;
3034 	error = dir->i_op->atomic_open(dir, dentry, file,
3035 				       open_to_namei_flags(open_flag),
3036 				       mode, opened);
3037 	d_lookup_done(dentry);
3038 	if (!error) {
3039 		/*
3040 		 * We didn't have the inode before the open, so check open
3041 		 * permission here.
3042 		 */
3043 		int acc_mode = op->acc_mode;
3044 		if (*opened & FILE_CREATED) {
3045 			WARN_ON(!(open_flag & O_CREAT));
3046 			fsnotify_create(dir, dentry);
3047 			acc_mode = 0;
3048 		}
3049 		error = may_open(&file->f_path, acc_mode, open_flag);
3050 		if (WARN_ON(error > 0))
3051 			error = -EINVAL;
3052 	} else if (error > 0) {
3053 		if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3054 			error = -EIO;
3055 		} else {
3056 			if (file->f_path.dentry) {
3057 				dput(dentry);
3058 				dentry = file->f_path.dentry;
3059 			}
3060 			if (*opened & FILE_CREATED)
3061 				fsnotify_create(dir, dentry);
3062 			if (unlikely(d_is_negative(dentry))) {
3063 				error = -ENOENT;
3064 			} else {
3065 				path->dentry = dentry;
3066 				path->mnt = nd->path.mnt;
3067 				return 1;
3068 			}
3069 		}
3070 	}
3071 	dput(dentry);
3072 	return error;
3073 }
3074 
3075 /*
3076  * Look up and maybe create and open the last component.
3077  *
3078  * Must be called with i_mutex held on parent.
3079  *
3080  * Returns 0 if the file was successfully atomically created (if necessary) and
3081  * opened.  In this case the file will be returned attached to @file.
3082  *
3083  * Returns 1 if the file was not completely opened at this time, though lookups
3084  * and creations will have been performed and the dentry returned in @path will
3085  * be positive upon return if O_CREAT was specified.  If O_CREAT wasn't
3086  * specified then a negative dentry may be returned.
3087  *
3088  * An error code is returned otherwise.
3089  *
3090  * FILE_CREATE will be set in @*opened if the dentry was created and will be
3091  * cleared otherwise prior to returning.
3092  */
3093 static int lookup_open(struct nameidata *nd, struct path *path,
3094 			struct file *file,
3095 			const struct open_flags *op,
3096 			bool got_write, int *opened)
3097 {
3098 	struct dentry *dir = nd->path.dentry;
3099 	struct inode *dir_inode = dir->d_inode;
3100 	int open_flag = op->open_flag;
3101 	struct dentry *dentry;
3102 	int error, create_error = 0;
3103 	umode_t mode = op->mode;
3104 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3105 
3106 	if (unlikely(IS_DEADDIR(dir_inode)))
3107 		return -ENOENT;
3108 
3109 	*opened &= ~FILE_CREATED;
3110 	dentry = d_lookup(dir, &nd->last);
3111 	for (;;) {
3112 		if (!dentry) {
3113 			dentry = d_alloc_parallel(dir, &nd->last, &wq);
3114 			if (IS_ERR(dentry))
3115 				return PTR_ERR(dentry);
3116 		}
3117 		if (d_in_lookup(dentry))
3118 			break;
3119 
3120 		error = d_revalidate(dentry, nd->flags);
3121 		if (likely(error > 0))
3122 			break;
3123 		if (error)
3124 			goto out_dput;
3125 		d_invalidate(dentry);
3126 		dput(dentry);
3127 		dentry = NULL;
3128 	}
3129 	if (dentry->d_inode) {
3130 		/* Cached positive dentry: will open in f_op->open */
3131 		goto out_no_open;
3132 	}
3133 
3134 	/*
3135 	 * Checking write permission is tricky, bacuse we don't know if we are
3136 	 * going to actually need it: O_CREAT opens should work as long as the
3137 	 * file exists.  But checking existence breaks atomicity.  The trick is
3138 	 * to check access and if not granted clear O_CREAT from the flags.
3139 	 *
3140 	 * Another problem is returing the "right" error value (e.g. for an
3141 	 * O_EXCL open we want to return EEXIST not EROFS).
3142 	 */
3143 	if (open_flag & O_CREAT) {
3144 		if (!IS_POSIXACL(dir->d_inode))
3145 			mode &= ~current_umask();
3146 		if (unlikely(!got_write)) {
3147 			create_error = -EROFS;
3148 			open_flag &= ~O_CREAT;
3149 			if (open_flag & (O_EXCL | O_TRUNC))
3150 				goto no_open;
3151 			/* No side effects, safe to clear O_CREAT */
3152 		} else {
3153 			create_error = may_o_create(&nd->path, dentry, mode);
3154 			if (create_error) {
3155 				open_flag &= ~O_CREAT;
3156 				if (open_flag & O_EXCL)
3157 					goto no_open;
3158 			}
3159 		}
3160 	} else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) &&
3161 		   unlikely(!got_write)) {
3162 		/*
3163 		 * No O_CREATE -> atomicity not a requirement -> fall
3164 		 * back to lookup + open
3165 		 */
3166 		goto no_open;
3167 	}
3168 
3169 	if (dir_inode->i_op->atomic_open) {
3170 		error = atomic_open(nd, dentry, path, file, op, open_flag,
3171 				    mode, opened);
3172 		if (unlikely(error == -ENOENT) && create_error)
3173 			error = create_error;
3174 		return error;
3175 	}
3176 
3177 no_open:
3178 	if (d_in_lookup(dentry)) {
3179 		struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3180 							     nd->flags);
3181 		d_lookup_done(dentry);
3182 		if (unlikely(res)) {
3183 			if (IS_ERR(res)) {
3184 				error = PTR_ERR(res);
3185 				goto out_dput;
3186 			}
3187 			dput(dentry);
3188 			dentry = res;
3189 		}
3190 	}
3191 
3192 	/* Negative dentry, just create the file */
3193 	if (!dentry->d_inode && (open_flag & O_CREAT)) {
3194 		*opened |= FILE_CREATED;
3195 		audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3196 		if (!dir_inode->i_op->create) {
3197 			error = -EACCES;
3198 			goto out_dput;
3199 		}
3200 		error = dir_inode->i_op->create(dir_inode, dentry, mode,
3201 						open_flag & O_EXCL);
3202 		if (error)
3203 			goto out_dput;
3204 		fsnotify_create(dir_inode, dentry);
3205 	}
3206 	if (unlikely(create_error) && !dentry->d_inode) {
3207 		error = create_error;
3208 		goto out_dput;
3209 	}
3210 out_no_open:
3211 	path->dentry = dentry;
3212 	path->mnt = nd->path.mnt;
3213 	return 1;
3214 
3215 out_dput:
3216 	dput(dentry);
3217 	return error;
3218 }
3219 
3220 /*
3221  * Handle the last step of open()
3222  */
3223 static int do_last(struct nameidata *nd,
3224 		   struct file *file, const struct open_flags *op,
3225 		   int *opened)
3226 {
3227 	struct dentry *dir = nd->path.dentry;
3228 	int open_flag = op->open_flag;
3229 	bool will_truncate = (open_flag & O_TRUNC) != 0;
3230 	bool got_write = false;
3231 	int acc_mode = op->acc_mode;
3232 	unsigned seq;
3233 	struct inode *inode;
3234 	struct path path;
3235 	int error;
3236 
3237 	nd->flags &= ~LOOKUP_PARENT;
3238 	nd->flags |= op->intent;
3239 
3240 	if (nd->last_type != LAST_NORM) {
3241 		error = handle_dots(nd, nd->last_type);
3242 		if (unlikely(error))
3243 			return error;
3244 		goto finish_open;
3245 	}
3246 
3247 	if (!(open_flag & O_CREAT)) {
3248 		if (nd->last.name[nd->last.len])
3249 			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3250 		/* we _can_ be in RCU mode here */
3251 		error = lookup_fast(nd, &path, &inode, &seq);
3252 		if (likely(error > 0))
3253 			goto finish_lookup;
3254 
3255 		if (error < 0)
3256 			return error;
3257 
3258 		BUG_ON(nd->inode != dir->d_inode);
3259 		BUG_ON(nd->flags & LOOKUP_RCU);
3260 	} else {
3261 		/* create side of things */
3262 		/*
3263 		 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3264 		 * has been cleared when we got to the last component we are
3265 		 * about to look up
3266 		 */
3267 		error = complete_walk(nd);
3268 		if (error)
3269 			return error;
3270 
3271 		audit_inode(nd->name, dir, LOOKUP_PARENT);
3272 		/* trailing slashes? */
3273 		if (unlikely(nd->last.name[nd->last.len]))
3274 			return -EISDIR;
3275 	}
3276 
3277 	if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3278 		error = mnt_want_write(nd->path.mnt);
3279 		if (!error)
3280 			got_write = true;
3281 		/*
3282 		 * do _not_ fail yet - we might not need that or fail with
3283 		 * a different error; let lookup_open() decide; we'll be
3284 		 * dropping this one anyway.
3285 		 */
3286 	}
3287 	if (open_flag & O_CREAT)
3288 		inode_lock(dir->d_inode);
3289 	else
3290 		inode_lock_shared(dir->d_inode);
3291 	error = lookup_open(nd, &path, file, op, got_write, opened);
3292 	if (open_flag & O_CREAT)
3293 		inode_unlock(dir->d_inode);
3294 	else
3295 		inode_unlock_shared(dir->d_inode);
3296 
3297 	if (error <= 0) {
3298 		if (error)
3299 			goto out;
3300 
3301 		if ((*opened & FILE_CREATED) ||
3302 		    !S_ISREG(file_inode(file)->i_mode))
3303 			will_truncate = false;
3304 
3305 		audit_inode(nd->name, file->f_path.dentry, 0);
3306 		goto opened;
3307 	}
3308 
3309 	if (*opened & FILE_CREATED) {
3310 		/* Don't check for write permission, don't truncate */
3311 		open_flag &= ~O_TRUNC;
3312 		will_truncate = false;
3313 		acc_mode = 0;
3314 		path_to_nameidata(&path, nd);
3315 		goto finish_open_created;
3316 	}
3317 
3318 	/*
3319 	 * If atomic_open() acquired write access it is dropped now due to
3320 	 * possible mount and symlink following (this might be optimized away if
3321 	 * necessary...)
3322 	 */
3323 	if (got_write) {
3324 		mnt_drop_write(nd->path.mnt);
3325 		got_write = false;
3326 	}
3327 
3328 	error = follow_managed(&path, nd);
3329 	if (unlikely(error < 0))
3330 		return error;
3331 
3332 	if (unlikely(d_is_negative(path.dentry))) {
3333 		path_to_nameidata(&path, nd);
3334 		return -ENOENT;
3335 	}
3336 
3337 	/*
3338 	 * create/update audit record if it already exists.
3339 	 */
3340 	audit_inode(nd->name, path.dentry, 0);
3341 
3342 	if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3343 		path_to_nameidata(&path, nd);
3344 		return -EEXIST;
3345 	}
3346 
3347 	seq = 0;	/* out of RCU mode, so the value doesn't matter */
3348 	inode = d_backing_inode(path.dentry);
3349 finish_lookup:
3350 	error = step_into(nd, &path, 0, inode, seq);
3351 	if (unlikely(error))
3352 		return error;
3353 finish_open:
3354 	/* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
3355 	error = complete_walk(nd);
3356 	if (error)
3357 		return error;
3358 	audit_inode(nd->name, nd->path.dentry, 0);
3359 	error = -EISDIR;
3360 	if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3361 		goto out;
3362 	error = -ENOTDIR;
3363 	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3364 		goto out;
3365 	if (!d_is_reg(nd->path.dentry))
3366 		will_truncate = false;
3367 
3368 	if (will_truncate) {
3369 		error = mnt_want_write(nd->path.mnt);
3370 		if (error)
3371 			goto out;
3372 		got_write = true;
3373 	}
3374 finish_open_created:
3375 	error = may_open(&nd->path, acc_mode, open_flag);
3376 	if (error)
3377 		goto out;
3378 	BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3379 	error = vfs_open(&nd->path, file, current_cred());
3380 	if (error)
3381 		goto out;
3382 	*opened |= FILE_OPENED;
3383 opened:
3384 	error = open_check_o_direct(file);
3385 	if (!error)
3386 		error = ima_file_check(file, op->acc_mode, *opened);
3387 	if (!error && will_truncate)
3388 		error = handle_truncate(file);
3389 out:
3390 	if (unlikely(error) && (*opened & FILE_OPENED))
3391 		fput(file);
3392 	if (unlikely(error > 0)) {
3393 		WARN_ON(1);
3394 		error = -EINVAL;
3395 	}
3396 	if (got_write)
3397 		mnt_drop_write(nd->path.mnt);
3398 	return error;
3399 }
3400 
3401 struct dentry *vfs_tmpfile(struct dentry *dentry, umode_t mode, int open_flag)
3402 {
3403 	struct dentry *child = NULL;
3404 	struct inode *dir = dentry->d_inode;
3405 	struct inode *inode;
3406 	int error;
3407 
3408 	/* we want directory to be writable */
3409 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3410 	if (error)
3411 		goto out_err;
3412 	error = -EOPNOTSUPP;
3413 	if (!dir->i_op->tmpfile)
3414 		goto out_err;
3415 	error = -ENOMEM;
3416 	child = d_alloc(dentry, &slash_name);
3417 	if (unlikely(!child))
3418 		goto out_err;
3419 	error = dir->i_op->tmpfile(dir, child, mode);
3420 	if (error)
3421 		goto out_err;
3422 	error = -ENOENT;
3423 	inode = child->d_inode;
3424 	if (unlikely(!inode))
3425 		goto out_err;
3426 	if (!(open_flag & O_EXCL)) {
3427 		spin_lock(&inode->i_lock);
3428 		inode->i_state |= I_LINKABLE;
3429 		spin_unlock(&inode->i_lock);
3430 	}
3431 	return child;
3432 
3433 out_err:
3434 	dput(child);
3435 	return ERR_PTR(error);
3436 }
3437 EXPORT_SYMBOL(vfs_tmpfile);
3438 
3439 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3440 		const struct open_flags *op,
3441 		struct file *file, int *opened)
3442 {
3443 	struct dentry *child;
3444 	struct path path;
3445 	int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3446 	if (unlikely(error))
3447 		return error;
3448 	error = mnt_want_write(path.mnt);
3449 	if (unlikely(error))
3450 		goto out;
3451 	child = vfs_tmpfile(path.dentry, op->mode, op->open_flag);
3452 	error = PTR_ERR(child);
3453 	if (unlikely(IS_ERR(child)))
3454 		goto out2;
3455 	dput(path.dentry);
3456 	path.dentry = child;
3457 	audit_inode(nd->name, child, 0);
3458 	/* Don't check for other permissions, the inode was just created */
3459 	error = may_open(&path, 0, op->open_flag);
3460 	if (error)
3461 		goto out2;
3462 	file->f_path.mnt = path.mnt;
3463 	error = finish_open(file, child, NULL, opened);
3464 	if (error)
3465 		goto out2;
3466 	error = open_check_o_direct(file);
3467 	if (error)
3468 		fput(file);
3469 out2:
3470 	mnt_drop_write(path.mnt);
3471 out:
3472 	path_put(&path);
3473 	return error;
3474 }
3475 
3476 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3477 {
3478 	struct path path;
3479 	int error = path_lookupat(nd, flags, &path);
3480 	if (!error) {
3481 		audit_inode(nd->name, path.dentry, 0);
3482 		error = vfs_open(&path, file, current_cred());
3483 		path_put(&path);
3484 	}
3485 	return error;
3486 }
3487 
3488 static struct file *path_openat(struct nameidata *nd,
3489 			const struct open_flags *op, unsigned flags)
3490 {
3491 	const char *s;
3492 	struct file *file;
3493 	int opened = 0;
3494 	int error;
3495 
3496 	file = get_empty_filp();
3497 	if (IS_ERR(file))
3498 		return file;
3499 
3500 	file->f_flags = op->open_flag;
3501 
3502 	if (unlikely(file->f_flags & __O_TMPFILE)) {
3503 		error = do_tmpfile(nd, flags, op, file, &opened);
3504 		goto out2;
3505 	}
3506 
3507 	if (unlikely(file->f_flags & O_PATH)) {
3508 		error = do_o_path(nd, flags, file);
3509 		if (!error)
3510 			opened |= FILE_OPENED;
3511 		goto out2;
3512 	}
3513 
3514 	s = path_init(nd, flags);
3515 	if (IS_ERR(s)) {
3516 		put_filp(file);
3517 		return ERR_CAST(s);
3518 	}
3519 	while (!(error = link_path_walk(s, nd)) &&
3520 		(error = do_last(nd, file, op, &opened)) > 0) {
3521 		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3522 		s = trailing_symlink(nd);
3523 		if (IS_ERR(s)) {
3524 			error = PTR_ERR(s);
3525 			break;
3526 		}
3527 	}
3528 	terminate_walk(nd);
3529 out2:
3530 	if (!(opened & FILE_OPENED)) {
3531 		BUG_ON(!error);
3532 		put_filp(file);
3533 	}
3534 	if (unlikely(error)) {
3535 		if (error == -EOPENSTALE) {
3536 			if (flags & LOOKUP_RCU)
3537 				error = -ECHILD;
3538 			else
3539 				error = -ESTALE;
3540 		}
3541 		file = ERR_PTR(error);
3542 	}
3543 	return file;
3544 }
3545 
3546 struct file *do_filp_open(int dfd, struct filename *pathname,
3547 		const struct open_flags *op)
3548 {
3549 	struct nameidata nd;
3550 	int flags = op->lookup_flags;
3551 	struct file *filp;
3552 
3553 	set_nameidata(&nd, dfd, pathname);
3554 	filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3555 	if (unlikely(filp == ERR_PTR(-ECHILD)))
3556 		filp = path_openat(&nd, op, flags);
3557 	if (unlikely(filp == ERR_PTR(-ESTALE)))
3558 		filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3559 	restore_nameidata();
3560 	return filp;
3561 }
3562 
3563 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3564 		const char *name, const struct open_flags *op)
3565 {
3566 	struct nameidata nd;
3567 	struct file *file;
3568 	struct filename *filename;
3569 	int flags = op->lookup_flags | LOOKUP_ROOT;
3570 
3571 	nd.root.mnt = mnt;
3572 	nd.root.dentry = dentry;
3573 
3574 	if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3575 		return ERR_PTR(-ELOOP);
3576 
3577 	filename = getname_kernel(name);
3578 	if (IS_ERR(filename))
3579 		return ERR_CAST(filename);
3580 
3581 	set_nameidata(&nd, -1, filename);
3582 	file = path_openat(&nd, op, flags | LOOKUP_RCU);
3583 	if (unlikely(file == ERR_PTR(-ECHILD)))
3584 		file = path_openat(&nd, op, flags);
3585 	if (unlikely(file == ERR_PTR(-ESTALE)))
3586 		file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3587 	restore_nameidata();
3588 	putname(filename);
3589 	return file;
3590 }
3591 
3592 static struct dentry *filename_create(int dfd, struct filename *name,
3593 				struct path *path, unsigned int lookup_flags)
3594 {
3595 	struct dentry *dentry = ERR_PTR(-EEXIST);
3596 	struct qstr last;
3597 	int type;
3598 	int err2;
3599 	int error;
3600 	bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3601 
3602 	/*
3603 	 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3604 	 * other flags passed in are ignored!
3605 	 */
3606 	lookup_flags &= LOOKUP_REVAL;
3607 
3608 	name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3609 	if (IS_ERR(name))
3610 		return ERR_CAST(name);
3611 
3612 	/*
3613 	 * Yucky last component or no last component at all?
3614 	 * (foo/., foo/.., /////)
3615 	 */
3616 	if (unlikely(type != LAST_NORM))
3617 		goto out;
3618 
3619 	/* don't fail immediately if it's r/o, at least try to report other errors */
3620 	err2 = mnt_want_write(path->mnt);
3621 	/*
3622 	 * Do the final lookup.
3623 	 */
3624 	lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3625 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3626 	dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3627 	if (IS_ERR(dentry))
3628 		goto unlock;
3629 
3630 	error = -EEXIST;
3631 	if (d_is_positive(dentry))
3632 		goto fail;
3633 
3634 	/*
3635 	 * Special case - lookup gave negative, but... we had foo/bar/
3636 	 * From the vfs_mknod() POV we just have a negative dentry -
3637 	 * all is fine. Let's be bastards - you had / on the end, you've
3638 	 * been asking for (non-existent) directory. -ENOENT for you.
3639 	 */
3640 	if (unlikely(!is_dir && last.name[last.len])) {
3641 		error = -ENOENT;
3642 		goto fail;
3643 	}
3644 	if (unlikely(err2)) {
3645 		error = err2;
3646 		goto fail;
3647 	}
3648 	putname(name);
3649 	return dentry;
3650 fail:
3651 	dput(dentry);
3652 	dentry = ERR_PTR(error);
3653 unlock:
3654 	inode_unlock(path->dentry->d_inode);
3655 	if (!err2)
3656 		mnt_drop_write(path->mnt);
3657 out:
3658 	path_put(path);
3659 	putname(name);
3660 	return dentry;
3661 }
3662 
3663 struct dentry *kern_path_create(int dfd, const char *pathname,
3664 				struct path *path, unsigned int lookup_flags)
3665 {
3666 	return filename_create(dfd, getname_kernel(pathname),
3667 				path, lookup_flags);
3668 }
3669 EXPORT_SYMBOL(kern_path_create);
3670 
3671 void done_path_create(struct path *path, struct dentry *dentry)
3672 {
3673 	dput(dentry);
3674 	inode_unlock(path->dentry->d_inode);
3675 	mnt_drop_write(path->mnt);
3676 	path_put(path);
3677 }
3678 EXPORT_SYMBOL(done_path_create);
3679 
3680 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3681 				struct path *path, unsigned int lookup_flags)
3682 {
3683 	return filename_create(dfd, getname(pathname), path, lookup_flags);
3684 }
3685 EXPORT_SYMBOL(user_path_create);
3686 
3687 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3688 {
3689 	int error = may_create(dir, dentry);
3690 
3691 	if (error)
3692 		return error;
3693 
3694 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3695 		return -EPERM;
3696 
3697 	if (!dir->i_op->mknod)
3698 		return -EPERM;
3699 
3700 	error = devcgroup_inode_mknod(mode, dev);
3701 	if (error)
3702 		return error;
3703 
3704 	error = security_inode_mknod(dir, dentry, mode, dev);
3705 	if (error)
3706 		return error;
3707 
3708 	error = dir->i_op->mknod(dir, dentry, mode, dev);
3709 	if (!error)
3710 		fsnotify_create(dir, dentry);
3711 	return error;
3712 }
3713 EXPORT_SYMBOL(vfs_mknod);
3714 
3715 static int may_mknod(umode_t mode)
3716 {
3717 	switch (mode & S_IFMT) {
3718 	case S_IFREG:
3719 	case S_IFCHR:
3720 	case S_IFBLK:
3721 	case S_IFIFO:
3722 	case S_IFSOCK:
3723 	case 0: /* zero mode translates to S_IFREG */
3724 		return 0;
3725 	case S_IFDIR:
3726 		return -EPERM;
3727 	default:
3728 		return -EINVAL;
3729 	}
3730 }
3731 
3732 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3733 		unsigned, dev)
3734 {
3735 	struct dentry *dentry;
3736 	struct path path;
3737 	int error;
3738 	unsigned int lookup_flags = 0;
3739 
3740 	error = may_mknod(mode);
3741 	if (error)
3742 		return error;
3743 retry:
3744 	dentry = user_path_create(dfd, filename, &path, lookup_flags);
3745 	if (IS_ERR(dentry))
3746 		return PTR_ERR(dentry);
3747 
3748 	if (!IS_POSIXACL(path.dentry->d_inode))
3749 		mode &= ~current_umask();
3750 	error = security_path_mknod(&path, dentry, mode, dev);
3751 	if (error)
3752 		goto out;
3753 	switch (mode & S_IFMT) {
3754 		case 0: case S_IFREG:
3755 			error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3756 			if (!error)
3757 				ima_post_path_mknod(dentry);
3758 			break;
3759 		case S_IFCHR: case S_IFBLK:
3760 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3761 					new_decode_dev(dev));
3762 			break;
3763 		case S_IFIFO: case S_IFSOCK:
3764 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3765 			break;
3766 	}
3767 out:
3768 	done_path_create(&path, dentry);
3769 	if (retry_estale(error, lookup_flags)) {
3770 		lookup_flags |= LOOKUP_REVAL;
3771 		goto retry;
3772 	}
3773 	return error;
3774 }
3775 
3776 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3777 {
3778 	return sys_mknodat(AT_FDCWD, filename, mode, dev);
3779 }
3780 
3781 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3782 {
3783 	int error = may_create(dir, dentry);
3784 	unsigned max_links = dir->i_sb->s_max_links;
3785 
3786 	if (error)
3787 		return error;
3788 
3789 	if (!dir->i_op->mkdir)
3790 		return -EPERM;
3791 
3792 	mode &= (S_IRWXUGO|S_ISVTX);
3793 	error = security_inode_mkdir(dir, dentry, mode);
3794 	if (error)
3795 		return error;
3796 
3797 	if (max_links && dir->i_nlink >= max_links)
3798 		return -EMLINK;
3799 
3800 	error = dir->i_op->mkdir(dir, dentry, mode);
3801 	if (!error)
3802 		fsnotify_mkdir(dir, dentry);
3803 	return error;
3804 }
3805 EXPORT_SYMBOL(vfs_mkdir);
3806 
3807 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3808 {
3809 	struct dentry *dentry;
3810 	struct path path;
3811 	int error;
3812 	unsigned int lookup_flags = LOOKUP_DIRECTORY;
3813 
3814 retry:
3815 	dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3816 	if (IS_ERR(dentry))
3817 		return PTR_ERR(dentry);
3818 
3819 	if (!IS_POSIXACL(path.dentry->d_inode))
3820 		mode &= ~current_umask();
3821 	error = security_path_mkdir(&path, dentry, mode);
3822 	if (!error)
3823 		error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3824 	done_path_create(&path, dentry);
3825 	if (retry_estale(error, lookup_flags)) {
3826 		lookup_flags |= LOOKUP_REVAL;
3827 		goto retry;
3828 	}
3829 	return error;
3830 }
3831 
3832 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3833 {
3834 	return sys_mkdirat(AT_FDCWD, pathname, mode);
3835 }
3836 
3837 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3838 {
3839 	int error = may_delete(dir, dentry, 1);
3840 
3841 	if (error)
3842 		return error;
3843 
3844 	if (!dir->i_op->rmdir)
3845 		return -EPERM;
3846 
3847 	dget(dentry);
3848 	inode_lock(dentry->d_inode);
3849 
3850 	error = -EBUSY;
3851 	if (is_local_mountpoint(dentry))
3852 		goto out;
3853 
3854 	error = security_inode_rmdir(dir, dentry);
3855 	if (error)
3856 		goto out;
3857 
3858 	shrink_dcache_parent(dentry);
3859 	error = dir->i_op->rmdir(dir, dentry);
3860 	if (error)
3861 		goto out;
3862 
3863 	dentry->d_inode->i_flags |= S_DEAD;
3864 	dont_mount(dentry);
3865 	detach_mounts(dentry);
3866 
3867 out:
3868 	inode_unlock(dentry->d_inode);
3869 	dput(dentry);
3870 	if (!error)
3871 		d_delete(dentry);
3872 	return error;
3873 }
3874 EXPORT_SYMBOL(vfs_rmdir);
3875 
3876 static long do_rmdir(int dfd, const char __user *pathname)
3877 {
3878 	int error = 0;
3879 	struct filename *name;
3880 	struct dentry *dentry;
3881 	struct path path;
3882 	struct qstr last;
3883 	int type;
3884 	unsigned int lookup_flags = 0;
3885 retry:
3886 	name = filename_parentat(dfd, getname(pathname), lookup_flags,
3887 				&path, &last, &type);
3888 	if (IS_ERR(name))
3889 		return PTR_ERR(name);
3890 
3891 	switch (type) {
3892 	case LAST_DOTDOT:
3893 		error = -ENOTEMPTY;
3894 		goto exit1;
3895 	case LAST_DOT:
3896 		error = -EINVAL;
3897 		goto exit1;
3898 	case LAST_ROOT:
3899 		error = -EBUSY;
3900 		goto exit1;
3901 	}
3902 
3903 	error = mnt_want_write(path.mnt);
3904 	if (error)
3905 		goto exit1;
3906 
3907 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3908 	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3909 	error = PTR_ERR(dentry);
3910 	if (IS_ERR(dentry))
3911 		goto exit2;
3912 	if (!dentry->d_inode) {
3913 		error = -ENOENT;
3914 		goto exit3;
3915 	}
3916 	error = security_path_rmdir(&path, dentry);
3917 	if (error)
3918 		goto exit3;
3919 	error = vfs_rmdir(path.dentry->d_inode, dentry);
3920 exit3:
3921 	dput(dentry);
3922 exit2:
3923 	inode_unlock(path.dentry->d_inode);
3924 	mnt_drop_write(path.mnt);
3925 exit1:
3926 	path_put(&path);
3927 	putname(name);
3928 	if (retry_estale(error, lookup_flags)) {
3929 		lookup_flags |= LOOKUP_REVAL;
3930 		goto retry;
3931 	}
3932 	return error;
3933 }
3934 
3935 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3936 {
3937 	return do_rmdir(AT_FDCWD, pathname);
3938 }
3939 
3940 /**
3941  * vfs_unlink - unlink a filesystem object
3942  * @dir:	parent directory
3943  * @dentry:	victim
3944  * @delegated_inode: returns victim inode, if the inode is delegated.
3945  *
3946  * The caller must hold dir->i_mutex.
3947  *
3948  * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3949  * return a reference to the inode in delegated_inode.  The caller
3950  * should then break the delegation on that inode and retry.  Because
3951  * breaking a delegation may take a long time, the caller should drop
3952  * dir->i_mutex before doing so.
3953  *
3954  * Alternatively, a caller may pass NULL for delegated_inode.  This may
3955  * be appropriate for callers that expect the underlying filesystem not
3956  * to be NFS exported.
3957  */
3958 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3959 {
3960 	struct inode *target = dentry->d_inode;
3961 	int error = may_delete(dir, dentry, 0);
3962 
3963 	if (error)
3964 		return error;
3965 
3966 	if (!dir->i_op->unlink)
3967 		return -EPERM;
3968 
3969 	inode_lock(target);
3970 	if (is_local_mountpoint(dentry))
3971 		error = -EBUSY;
3972 	else {
3973 		error = security_inode_unlink(dir, dentry);
3974 		if (!error) {
3975 			error = try_break_deleg(target, delegated_inode);
3976 			if (error)
3977 				goto out;
3978 			error = dir->i_op->unlink(dir, dentry);
3979 			if (!error) {
3980 				dont_mount(dentry);
3981 				detach_mounts(dentry);
3982 			}
3983 		}
3984 	}
3985 out:
3986 	inode_unlock(target);
3987 
3988 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
3989 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3990 		fsnotify_link_count(target);
3991 		d_delete(dentry);
3992 	}
3993 
3994 	return error;
3995 }
3996 EXPORT_SYMBOL(vfs_unlink);
3997 
3998 /*
3999  * Make sure that the actual truncation of the file will occur outside its
4000  * directory's i_mutex.  Truncate can take a long time if there is a lot of
4001  * writeout happening, and we don't want to prevent access to the directory
4002  * while waiting on the I/O.
4003  */
4004 static long do_unlinkat(int dfd, const char __user *pathname)
4005 {
4006 	int error;
4007 	struct filename *name;
4008 	struct dentry *dentry;
4009 	struct path path;
4010 	struct qstr last;
4011 	int type;
4012 	struct inode *inode = NULL;
4013 	struct inode *delegated_inode = NULL;
4014 	unsigned int lookup_flags = 0;
4015 retry:
4016 	name = filename_parentat(dfd, getname(pathname), lookup_flags,
4017 				&path, &last, &type);
4018 	if (IS_ERR(name))
4019 		return PTR_ERR(name);
4020 
4021 	error = -EISDIR;
4022 	if (type != LAST_NORM)
4023 		goto exit1;
4024 
4025 	error = mnt_want_write(path.mnt);
4026 	if (error)
4027 		goto exit1;
4028 retry_deleg:
4029 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4030 	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4031 	error = PTR_ERR(dentry);
4032 	if (!IS_ERR(dentry)) {
4033 		/* Why not before? Because we want correct error value */
4034 		if (last.name[last.len])
4035 			goto slashes;
4036 		inode = dentry->d_inode;
4037 		if (d_is_negative(dentry))
4038 			goto slashes;
4039 		ihold(inode);
4040 		error = security_path_unlink(&path, dentry);
4041 		if (error)
4042 			goto exit2;
4043 		error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
4044 exit2:
4045 		dput(dentry);
4046 	}
4047 	inode_unlock(path.dentry->d_inode);
4048 	if (inode)
4049 		iput(inode);	/* truncate the inode here */
4050 	inode = NULL;
4051 	if (delegated_inode) {
4052 		error = break_deleg_wait(&delegated_inode);
4053 		if (!error)
4054 			goto retry_deleg;
4055 	}
4056 	mnt_drop_write(path.mnt);
4057 exit1:
4058 	path_put(&path);
4059 	putname(name);
4060 	if (retry_estale(error, lookup_flags)) {
4061 		lookup_flags |= LOOKUP_REVAL;
4062 		inode = NULL;
4063 		goto retry;
4064 	}
4065 	return error;
4066 
4067 slashes:
4068 	if (d_is_negative(dentry))
4069 		error = -ENOENT;
4070 	else if (d_is_dir(dentry))
4071 		error = -EISDIR;
4072 	else
4073 		error = -ENOTDIR;
4074 	goto exit2;
4075 }
4076 
4077 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4078 {
4079 	if ((flag & ~AT_REMOVEDIR) != 0)
4080 		return -EINVAL;
4081 
4082 	if (flag & AT_REMOVEDIR)
4083 		return do_rmdir(dfd, pathname);
4084 
4085 	return do_unlinkat(dfd, pathname);
4086 }
4087 
4088 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4089 {
4090 	return do_unlinkat(AT_FDCWD, pathname);
4091 }
4092 
4093 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
4094 {
4095 	int error = may_create(dir, dentry);
4096 
4097 	if (error)
4098 		return error;
4099 
4100 	if (!dir->i_op->symlink)
4101 		return -EPERM;
4102 
4103 	error = security_inode_symlink(dir, dentry, oldname);
4104 	if (error)
4105 		return error;
4106 
4107 	error = dir->i_op->symlink(dir, dentry, oldname);
4108 	if (!error)
4109 		fsnotify_create(dir, dentry);
4110 	return error;
4111 }
4112 EXPORT_SYMBOL(vfs_symlink);
4113 
4114 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4115 		int, newdfd, const char __user *, newname)
4116 {
4117 	int error;
4118 	struct filename *from;
4119 	struct dentry *dentry;
4120 	struct path path;
4121 	unsigned int lookup_flags = 0;
4122 
4123 	from = getname(oldname);
4124 	if (IS_ERR(from))
4125 		return PTR_ERR(from);
4126 retry:
4127 	dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4128 	error = PTR_ERR(dentry);
4129 	if (IS_ERR(dentry))
4130 		goto out_putname;
4131 
4132 	error = security_path_symlink(&path, dentry, from->name);
4133 	if (!error)
4134 		error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
4135 	done_path_create(&path, dentry);
4136 	if (retry_estale(error, lookup_flags)) {
4137 		lookup_flags |= LOOKUP_REVAL;
4138 		goto retry;
4139 	}
4140 out_putname:
4141 	putname(from);
4142 	return error;
4143 }
4144 
4145 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4146 {
4147 	return sys_symlinkat(oldname, AT_FDCWD, newname);
4148 }
4149 
4150 /**
4151  * vfs_link - create a new link
4152  * @old_dentry:	object to be linked
4153  * @dir:	new parent
4154  * @new_dentry:	where to create the new link
4155  * @delegated_inode: returns inode needing a delegation break
4156  *
4157  * The caller must hold dir->i_mutex
4158  *
4159  * If vfs_link discovers a delegation on the to-be-linked file in need
4160  * of breaking, it will return -EWOULDBLOCK and return a reference to the
4161  * inode in delegated_inode.  The caller should then break the delegation
4162  * and retry.  Because breaking a delegation may take a long time, the
4163  * caller should drop the i_mutex before doing so.
4164  *
4165  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4166  * be appropriate for callers that expect the underlying filesystem not
4167  * to be NFS exported.
4168  */
4169 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4170 {
4171 	struct inode *inode = old_dentry->d_inode;
4172 	unsigned max_links = dir->i_sb->s_max_links;
4173 	int error;
4174 
4175 	if (!inode)
4176 		return -ENOENT;
4177 
4178 	error = may_create(dir, new_dentry);
4179 	if (error)
4180 		return error;
4181 
4182 	if (dir->i_sb != inode->i_sb)
4183 		return -EXDEV;
4184 
4185 	/*
4186 	 * A link to an append-only or immutable file cannot be created.
4187 	 */
4188 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4189 		return -EPERM;
4190 	/*
4191 	 * Updating the link count will likely cause i_uid and i_gid to
4192 	 * be writen back improperly if their true value is unknown to
4193 	 * the vfs.
4194 	 */
4195 	if (HAS_UNMAPPED_ID(inode))
4196 		return -EPERM;
4197 	if (!dir->i_op->link)
4198 		return -EPERM;
4199 	if (S_ISDIR(inode->i_mode))
4200 		return -EPERM;
4201 
4202 	error = security_inode_link(old_dentry, dir, new_dentry);
4203 	if (error)
4204 		return error;
4205 
4206 	inode_lock(inode);
4207 	/* Make sure we don't allow creating hardlink to an unlinked file */
4208 	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4209 		error =  -ENOENT;
4210 	else if (max_links && inode->i_nlink >= max_links)
4211 		error = -EMLINK;
4212 	else {
4213 		error = try_break_deleg(inode, delegated_inode);
4214 		if (!error)
4215 			error = dir->i_op->link(old_dentry, dir, new_dentry);
4216 	}
4217 
4218 	if (!error && (inode->i_state & I_LINKABLE)) {
4219 		spin_lock(&inode->i_lock);
4220 		inode->i_state &= ~I_LINKABLE;
4221 		spin_unlock(&inode->i_lock);
4222 	}
4223 	inode_unlock(inode);
4224 	if (!error)
4225 		fsnotify_link(dir, inode, new_dentry);
4226 	return error;
4227 }
4228 EXPORT_SYMBOL(vfs_link);
4229 
4230 /*
4231  * Hardlinks are often used in delicate situations.  We avoid
4232  * security-related surprises by not following symlinks on the
4233  * newname.  --KAB
4234  *
4235  * We don't follow them on the oldname either to be compatible
4236  * with linux 2.0, and to avoid hard-linking to directories
4237  * and other special files.  --ADM
4238  */
4239 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4240 		int, newdfd, const char __user *, newname, int, flags)
4241 {
4242 	struct dentry *new_dentry;
4243 	struct path old_path, new_path;
4244 	struct inode *delegated_inode = NULL;
4245 	int how = 0;
4246 	int error;
4247 
4248 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4249 		return -EINVAL;
4250 	/*
4251 	 * To use null names we require CAP_DAC_READ_SEARCH
4252 	 * This ensures that not everyone will be able to create
4253 	 * handlink using the passed filedescriptor.
4254 	 */
4255 	if (flags & AT_EMPTY_PATH) {
4256 		if (!capable(CAP_DAC_READ_SEARCH))
4257 			return -ENOENT;
4258 		how = LOOKUP_EMPTY;
4259 	}
4260 
4261 	if (flags & AT_SYMLINK_FOLLOW)
4262 		how |= LOOKUP_FOLLOW;
4263 retry:
4264 	error = user_path_at(olddfd, oldname, how, &old_path);
4265 	if (error)
4266 		return error;
4267 
4268 	new_dentry = user_path_create(newdfd, newname, &new_path,
4269 					(how & LOOKUP_REVAL));
4270 	error = PTR_ERR(new_dentry);
4271 	if (IS_ERR(new_dentry))
4272 		goto out;
4273 
4274 	error = -EXDEV;
4275 	if (old_path.mnt != new_path.mnt)
4276 		goto out_dput;
4277 	error = may_linkat(&old_path);
4278 	if (unlikely(error))
4279 		goto out_dput;
4280 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
4281 	if (error)
4282 		goto out_dput;
4283 	error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4284 out_dput:
4285 	done_path_create(&new_path, new_dentry);
4286 	if (delegated_inode) {
4287 		error = break_deleg_wait(&delegated_inode);
4288 		if (!error) {
4289 			path_put(&old_path);
4290 			goto retry;
4291 		}
4292 	}
4293 	if (retry_estale(error, how)) {
4294 		path_put(&old_path);
4295 		how |= LOOKUP_REVAL;
4296 		goto retry;
4297 	}
4298 out:
4299 	path_put(&old_path);
4300 
4301 	return error;
4302 }
4303 
4304 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4305 {
4306 	return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4307 }
4308 
4309 /**
4310  * vfs_rename - rename a filesystem object
4311  * @old_dir:	parent of source
4312  * @old_dentry:	source
4313  * @new_dir:	parent of destination
4314  * @new_dentry:	destination
4315  * @delegated_inode: returns an inode needing a delegation break
4316  * @flags:	rename flags
4317  *
4318  * The caller must hold multiple mutexes--see lock_rename()).
4319  *
4320  * If vfs_rename discovers a delegation in need of breaking at either
4321  * the source or destination, it will return -EWOULDBLOCK and return a
4322  * reference to the inode in delegated_inode.  The caller should then
4323  * break the delegation and retry.  Because breaking a delegation may
4324  * take a long time, the caller should drop all locks before doing
4325  * so.
4326  *
4327  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4328  * be appropriate for callers that expect the underlying filesystem not
4329  * to be NFS exported.
4330  *
4331  * The worst of all namespace operations - renaming directory. "Perverted"
4332  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4333  * Problems:
4334  *
4335  *	a) we can get into loop creation.
4336  *	b) race potential - two innocent renames can create a loop together.
4337  *	   That's where 4.4 screws up. Current fix: serialization on
4338  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4339  *	   story.
4340  *	c) we have to lock _four_ objects - parents and victim (if it exists),
4341  *	   and source (if it is not a directory).
4342  *	   And that - after we got ->i_mutex on parents (until then we don't know
4343  *	   whether the target exists).  Solution: try to be smart with locking
4344  *	   order for inodes.  We rely on the fact that tree topology may change
4345  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
4346  *	   move will be locked.  Thus we can rank directories by the tree
4347  *	   (ancestors first) and rank all non-directories after them.
4348  *	   That works since everybody except rename does "lock parent, lookup,
4349  *	   lock child" and rename is under ->s_vfs_rename_mutex.
4350  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
4351  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
4352  *	   we'd better make sure that there's no link(2) for them.
4353  *	d) conversion from fhandle to dentry may come in the wrong moment - when
4354  *	   we are removing the target. Solution: we will have to grab ->i_mutex
4355  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4356  *	   ->i_mutex on parents, which works but leads to some truly excessive
4357  *	   locking].
4358  */
4359 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4360 	       struct inode *new_dir, struct dentry *new_dentry,
4361 	       struct inode **delegated_inode, unsigned int flags)
4362 {
4363 	int error;
4364 	bool is_dir = d_is_dir(old_dentry);
4365 	struct inode *source = old_dentry->d_inode;
4366 	struct inode *target = new_dentry->d_inode;
4367 	bool new_is_dir = false;
4368 	unsigned max_links = new_dir->i_sb->s_max_links;
4369 	struct name_snapshot old_name;
4370 
4371 	if (source == target)
4372 		return 0;
4373 
4374 	error = may_delete(old_dir, old_dentry, is_dir);
4375 	if (error)
4376 		return error;
4377 
4378 	if (!target) {
4379 		error = may_create(new_dir, new_dentry);
4380 	} else {
4381 		new_is_dir = d_is_dir(new_dentry);
4382 
4383 		if (!(flags & RENAME_EXCHANGE))
4384 			error = may_delete(new_dir, new_dentry, is_dir);
4385 		else
4386 			error = may_delete(new_dir, new_dentry, new_is_dir);
4387 	}
4388 	if (error)
4389 		return error;
4390 
4391 	if (!old_dir->i_op->rename)
4392 		return -EPERM;
4393 
4394 	/*
4395 	 * If we are going to change the parent - check write permissions,
4396 	 * we'll need to flip '..'.
4397 	 */
4398 	if (new_dir != old_dir) {
4399 		if (is_dir) {
4400 			error = inode_permission(source, MAY_WRITE);
4401 			if (error)
4402 				return error;
4403 		}
4404 		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4405 			error = inode_permission(target, MAY_WRITE);
4406 			if (error)
4407 				return error;
4408 		}
4409 	}
4410 
4411 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4412 				      flags);
4413 	if (error)
4414 		return error;
4415 
4416 	take_dentry_name_snapshot(&old_name, old_dentry);
4417 	dget(new_dentry);
4418 	if (!is_dir || (flags & RENAME_EXCHANGE))
4419 		lock_two_nondirectories(source, target);
4420 	else if (target)
4421 		inode_lock(target);
4422 
4423 	error = -EBUSY;
4424 	if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4425 		goto out;
4426 
4427 	if (max_links && new_dir != old_dir) {
4428 		error = -EMLINK;
4429 		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4430 			goto out;
4431 		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4432 		    old_dir->i_nlink >= max_links)
4433 			goto out;
4434 	}
4435 	if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4436 		shrink_dcache_parent(new_dentry);
4437 	if (!is_dir) {
4438 		error = try_break_deleg(source, delegated_inode);
4439 		if (error)
4440 			goto out;
4441 	}
4442 	if (target && !new_is_dir) {
4443 		error = try_break_deleg(target, delegated_inode);
4444 		if (error)
4445 			goto out;
4446 	}
4447 	error = old_dir->i_op->rename(old_dir, old_dentry,
4448 				       new_dir, new_dentry, flags);
4449 	if (error)
4450 		goto out;
4451 
4452 	if (!(flags & RENAME_EXCHANGE) && target) {
4453 		if (is_dir)
4454 			target->i_flags |= S_DEAD;
4455 		dont_mount(new_dentry);
4456 		detach_mounts(new_dentry);
4457 	}
4458 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4459 		if (!(flags & RENAME_EXCHANGE))
4460 			d_move(old_dentry, new_dentry);
4461 		else
4462 			d_exchange(old_dentry, new_dentry);
4463 	}
4464 out:
4465 	if (!is_dir || (flags & RENAME_EXCHANGE))
4466 		unlock_two_nondirectories(source, target);
4467 	else if (target)
4468 		inode_unlock(target);
4469 	dput(new_dentry);
4470 	if (!error) {
4471 		fsnotify_move(old_dir, new_dir, old_name.name, is_dir,
4472 			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4473 		if (flags & RENAME_EXCHANGE) {
4474 			fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4475 				      new_is_dir, NULL, new_dentry);
4476 		}
4477 	}
4478 	release_dentry_name_snapshot(&old_name);
4479 
4480 	return error;
4481 }
4482 EXPORT_SYMBOL(vfs_rename);
4483 
4484 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4485 		int, newdfd, const char __user *, newname, unsigned int, flags)
4486 {
4487 	struct dentry *old_dentry, *new_dentry;
4488 	struct dentry *trap;
4489 	struct path old_path, new_path;
4490 	struct qstr old_last, new_last;
4491 	int old_type, new_type;
4492 	struct inode *delegated_inode = NULL;
4493 	struct filename *from;
4494 	struct filename *to;
4495 	unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4496 	bool should_retry = false;
4497 	int error;
4498 
4499 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4500 		return -EINVAL;
4501 
4502 	if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4503 	    (flags & RENAME_EXCHANGE))
4504 		return -EINVAL;
4505 
4506 	if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4507 		return -EPERM;
4508 
4509 	if (flags & RENAME_EXCHANGE)
4510 		target_flags = 0;
4511 
4512 retry:
4513 	from = filename_parentat(olddfd, getname(oldname), lookup_flags,
4514 				&old_path, &old_last, &old_type);
4515 	if (IS_ERR(from)) {
4516 		error = PTR_ERR(from);
4517 		goto exit;
4518 	}
4519 
4520 	to = filename_parentat(newdfd, getname(newname), lookup_flags,
4521 				&new_path, &new_last, &new_type);
4522 	if (IS_ERR(to)) {
4523 		error = PTR_ERR(to);
4524 		goto exit1;
4525 	}
4526 
4527 	error = -EXDEV;
4528 	if (old_path.mnt != new_path.mnt)
4529 		goto exit2;
4530 
4531 	error = -EBUSY;
4532 	if (old_type != LAST_NORM)
4533 		goto exit2;
4534 
4535 	if (flags & RENAME_NOREPLACE)
4536 		error = -EEXIST;
4537 	if (new_type != LAST_NORM)
4538 		goto exit2;
4539 
4540 	error = mnt_want_write(old_path.mnt);
4541 	if (error)
4542 		goto exit2;
4543 
4544 retry_deleg:
4545 	trap = lock_rename(new_path.dentry, old_path.dentry);
4546 
4547 	old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4548 	error = PTR_ERR(old_dentry);
4549 	if (IS_ERR(old_dentry))
4550 		goto exit3;
4551 	/* source must exist */
4552 	error = -ENOENT;
4553 	if (d_is_negative(old_dentry))
4554 		goto exit4;
4555 	new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4556 	error = PTR_ERR(new_dentry);
4557 	if (IS_ERR(new_dentry))
4558 		goto exit4;
4559 	error = -EEXIST;
4560 	if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4561 		goto exit5;
4562 	if (flags & RENAME_EXCHANGE) {
4563 		error = -ENOENT;
4564 		if (d_is_negative(new_dentry))
4565 			goto exit5;
4566 
4567 		if (!d_is_dir(new_dentry)) {
4568 			error = -ENOTDIR;
4569 			if (new_last.name[new_last.len])
4570 				goto exit5;
4571 		}
4572 	}
4573 	/* unless the source is a directory trailing slashes give -ENOTDIR */
4574 	if (!d_is_dir(old_dentry)) {
4575 		error = -ENOTDIR;
4576 		if (old_last.name[old_last.len])
4577 			goto exit5;
4578 		if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4579 			goto exit5;
4580 	}
4581 	/* source should not be ancestor of target */
4582 	error = -EINVAL;
4583 	if (old_dentry == trap)
4584 		goto exit5;
4585 	/* target should not be an ancestor of source */
4586 	if (!(flags & RENAME_EXCHANGE))
4587 		error = -ENOTEMPTY;
4588 	if (new_dentry == trap)
4589 		goto exit5;
4590 
4591 	error = security_path_rename(&old_path, old_dentry,
4592 				     &new_path, new_dentry, flags);
4593 	if (error)
4594 		goto exit5;
4595 	error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4596 			   new_path.dentry->d_inode, new_dentry,
4597 			   &delegated_inode, flags);
4598 exit5:
4599 	dput(new_dentry);
4600 exit4:
4601 	dput(old_dentry);
4602 exit3:
4603 	unlock_rename(new_path.dentry, old_path.dentry);
4604 	if (delegated_inode) {
4605 		error = break_deleg_wait(&delegated_inode);
4606 		if (!error)
4607 			goto retry_deleg;
4608 	}
4609 	mnt_drop_write(old_path.mnt);
4610 exit2:
4611 	if (retry_estale(error, lookup_flags))
4612 		should_retry = true;
4613 	path_put(&new_path);
4614 	putname(to);
4615 exit1:
4616 	path_put(&old_path);
4617 	putname(from);
4618 	if (should_retry) {
4619 		should_retry = false;
4620 		lookup_flags |= LOOKUP_REVAL;
4621 		goto retry;
4622 	}
4623 exit:
4624 	return error;
4625 }
4626 
4627 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4628 		int, newdfd, const char __user *, newname)
4629 {
4630 	return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4631 }
4632 
4633 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4634 {
4635 	return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4636 }
4637 
4638 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4639 {
4640 	int error = may_create(dir, dentry);
4641 	if (error)
4642 		return error;
4643 
4644 	if (!dir->i_op->mknod)
4645 		return -EPERM;
4646 
4647 	return dir->i_op->mknod(dir, dentry,
4648 				S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4649 }
4650 EXPORT_SYMBOL(vfs_whiteout);
4651 
4652 int readlink_copy(char __user *buffer, int buflen, const char *link)
4653 {
4654 	int len = PTR_ERR(link);
4655 	if (IS_ERR(link))
4656 		goto out;
4657 
4658 	len = strlen(link);
4659 	if (len > (unsigned) buflen)
4660 		len = buflen;
4661 	if (copy_to_user(buffer, link, len))
4662 		len = -EFAULT;
4663 out:
4664 	return len;
4665 }
4666 
4667 /*
4668  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
4669  * have ->get_link() not calling nd_jump_link().  Using (or not using) it
4670  * for any given inode is up to filesystem.
4671  */
4672 static int generic_readlink(struct dentry *dentry, char __user *buffer,
4673 			    int buflen)
4674 {
4675 	DEFINE_DELAYED_CALL(done);
4676 	struct inode *inode = d_inode(dentry);
4677 	const char *link = inode->i_link;
4678 	int res;
4679 
4680 	if (!link) {
4681 		link = inode->i_op->get_link(dentry, inode, &done);
4682 		if (IS_ERR(link))
4683 			return PTR_ERR(link);
4684 	}
4685 	res = readlink_copy(buffer, buflen, link);
4686 	do_delayed_call(&done);
4687 	return res;
4688 }
4689 
4690 /**
4691  * vfs_readlink - copy symlink body into userspace buffer
4692  * @dentry: dentry on which to get symbolic link
4693  * @buffer: user memory pointer
4694  * @buflen: size of buffer
4695  *
4696  * Does not touch atime.  That's up to the caller if necessary
4697  *
4698  * Does not call security hook.
4699  */
4700 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4701 {
4702 	struct inode *inode = d_inode(dentry);
4703 
4704 	if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
4705 		if (unlikely(inode->i_op->readlink))
4706 			return inode->i_op->readlink(dentry, buffer, buflen);
4707 
4708 		if (!d_is_symlink(dentry))
4709 			return -EINVAL;
4710 
4711 		spin_lock(&inode->i_lock);
4712 		inode->i_opflags |= IOP_DEFAULT_READLINK;
4713 		spin_unlock(&inode->i_lock);
4714 	}
4715 
4716 	return generic_readlink(dentry, buffer, buflen);
4717 }
4718 EXPORT_SYMBOL(vfs_readlink);
4719 
4720 /**
4721  * vfs_get_link - get symlink body
4722  * @dentry: dentry on which to get symbolic link
4723  * @done: caller needs to free returned data with this
4724  *
4725  * Calls security hook and i_op->get_link() on the supplied inode.
4726  *
4727  * It does not touch atime.  That's up to the caller if necessary.
4728  *
4729  * Does not work on "special" symlinks like /proc/$$/fd/N
4730  */
4731 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
4732 {
4733 	const char *res = ERR_PTR(-EINVAL);
4734 	struct inode *inode = d_inode(dentry);
4735 
4736 	if (d_is_symlink(dentry)) {
4737 		res = ERR_PTR(security_inode_readlink(dentry));
4738 		if (!res)
4739 			res = inode->i_op->get_link(dentry, inode, done);
4740 	}
4741 	return res;
4742 }
4743 EXPORT_SYMBOL(vfs_get_link);
4744 
4745 /* get the link contents into pagecache */
4746 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4747 			  struct delayed_call *callback)
4748 {
4749 	char *kaddr;
4750 	struct page *page;
4751 	struct address_space *mapping = inode->i_mapping;
4752 
4753 	if (!dentry) {
4754 		page = find_get_page(mapping, 0);
4755 		if (!page)
4756 			return ERR_PTR(-ECHILD);
4757 		if (!PageUptodate(page)) {
4758 			put_page(page);
4759 			return ERR_PTR(-ECHILD);
4760 		}
4761 	} else {
4762 		page = read_mapping_page(mapping, 0, NULL);
4763 		if (IS_ERR(page))
4764 			return (char*)page;
4765 	}
4766 	set_delayed_call(callback, page_put_link, page);
4767 	BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4768 	kaddr = page_address(page);
4769 	nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4770 	return kaddr;
4771 }
4772 
4773 EXPORT_SYMBOL(page_get_link);
4774 
4775 void page_put_link(void *arg)
4776 {
4777 	put_page(arg);
4778 }
4779 EXPORT_SYMBOL(page_put_link);
4780 
4781 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4782 {
4783 	DEFINE_DELAYED_CALL(done);
4784 	int res = readlink_copy(buffer, buflen,
4785 				page_get_link(dentry, d_inode(dentry),
4786 					      &done));
4787 	do_delayed_call(&done);
4788 	return res;
4789 }
4790 EXPORT_SYMBOL(page_readlink);
4791 
4792 /*
4793  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4794  */
4795 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4796 {
4797 	struct address_space *mapping = inode->i_mapping;
4798 	struct page *page;
4799 	void *fsdata;
4800 	int err;
4801 	unsigned int flags = 0;
4802 	if (nofs)
4803 		flags |= AOP_FLAG_NOFS;
4804 
4805 retry:
4806 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
4807 				flags, &page, &fsdata);
4808 	if (err)
4809 		goto fail;
4810 
4811 	memcpy(page_address(page), symname, len-1);
4812 
4813 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4814 							page, fsdata);
4815 	if (err < 0)
4816 		goto fail;
4817 	if (err < len-1)
4818 		goto retry;
4819 
4820 	mark_inode_dirty(inode);
4821 	return 0;
4822 fail:
4823 	return err;
4824 }
4825 EXPORT_SYMBOL(__page_symlink);
4826 
4827 int page_symlink(struct inode *inode, const char *symname, int len)
4828 {
4829 	return __page_symlink(inode, symname, len,
4830 			!mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4831 }
4832 EXPORT_SYMBOL(page_symlink);
4833 
4834 const struct inode_operations page_symlink_inode_operations = {
4835 	.get_link	= page_get_link,
4836 };
4837 EXPORT_SYMBOL(page_symlink_inode_operations);
4838