xref: /openbmc/linux/fs/namei.c (revision e6c81cce)
1 /*
2  *  linux/fs/namei.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * Some corrections by tytso.
9  */
10 
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12  * lookup logic.
13  */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15  */
16 
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <asm/uaccess.h>
39 
40 #include "internal.h"
41 #include "mount.h"
42 
43 /* [Feb-1997 T. Schoebel-Theuer]
44  * Fundamental changes in the pathname lookup mechanisms (namei)
45  * were necessary because of omirr.  The reason is that omirr needs
46  * to know the _real_ pathname, not the user-supplied one, in case
47  * of symlinks (and also when transname replacements occur).
48  *
49  * The new code replaces the old recursive symlink resolution with
50  * an iterative one (in case of non-nested symlink chains).  It does
51  * this with calls to <fs>_follow_link().
52  * As a side effect, dir_namei(), _namei() and follow_link() are now
53  * replaced with a single function lookup_dentry() that can handle all
54  * the special cases of the former code.
55  *
56  * With the new dcache, the pathname is stored at each inode, at least as
57  * long as the refcount of the inode is positive.  As a side effect, the
58  * size of the dcache depends on the inode cache and thus is dynamic.
59  *
60  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
61  * resolution to correspond with current state of the code.
62  *
63  * Note that the symlink resolution is not *completely* iterative.
64  * There is still a significant amount of tail- and mid- recursion in
65  * the algorithm.  Also, note that <fs>_readlink() is not used in
66  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
67  * may return different results than <fs>_follow_link().  Many virtual
68  * filesystems (including /proc) exhibit this behavior.
69  */
70 
71 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
72  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
73  * and the name already exists in form of a symlink, try to create the new
74  * name indicated by the symlink. The old code always complained that the
75  * name already exists, due to not following the symlink even if its target
76  * is nonexistent.  The new semantics affects also mknod() and link() when
77  * the name is a symlink pointing to a non-existent name.
78  *
79  * I don't know which semantics is the right one, since I have no access
80  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
81  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
82  * "old" one. Personally, I think the new semantics is much more logical.
83  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
84  * file does succeed in both HP-UX and SunOs, but not in Solaris
85  * and in the old Linux semantics.
86  */
87 
88 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
89  * semantics.  See the comments in "open_namei" and "do_link" below.
90  *
91  * [10-Sep-98 Alan Modra] Another symlink change.
92  */
93 
94 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
95  *	inside the path - always follow.
96  *	in the last component in creation/removal/renaming - never follow.
97  *	if LOOKUP_FOLLOW passed - follow.
98  *	if the pathname has trailing slashes - follow.
99  *	otherwise - don't follow.
100  * (applied in that order).
101  *
102  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
103  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
104  * During the 2.4 we need to fix the userland stuff depending on it -
105  * hopefully we will be able to get rid of that wart in 2.5. So far only
106  * XEmacs seems to be relying on it...
107  */
108 /*
109  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
110  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
111  * any extra contention...
112  */
113 
114 /* In order to reduce some races, while at the same time doing additional
115  * checking and hopefully speeding things up, we copy filenames to the
116  * kernel data space before using them..
117  *
118  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
119  * PATH_MAX includes the nul terminator --RR.
120  */
121 
122 #define EMBEDDED_NAME_MAX	(PATH_MAX - offsetof(struct filename, iname))
123 
124 struct filename *
125 getname_flags(const char __user *filename, int flags, int *empty)
126 {
127 	struct filename *result;
128 	char *kname;
129 	int len;
130 
131 	result = audit_reusename(filename);
132 	if (result)
133 		return result;
134 
135 	result = __getname();
136 	if (unlikely(!result))
137 		return ERR_PTR(-ENOMEM);
138 
139 	/*
140 	 * First, try to embed the struct filename inside the names_cache
141 	 * allocation
142 	 */
143 	kname = (char *)result->iname;
144 	result->name = kname;
145 
146 	len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
147 	if (unlikely(len < 0)) {
148 		__putname(result);
149 		return ERR_PTR(len);
150 	}
151 
152 	/*
153 	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
154 	 * separate struct filename so we can dedicate the entire
155 	 * names_cache allocation for the pathname, and re-do the copy from
156 	 * userland.
157 	 */
158 	if (unlikely(len == EMBEDDED_NAME_MAX)) {
159 		const size_t size = offsetof(struct filename, iname[1]);
160 		kname = (char *)result;
161 
162 		/*
163 		 * size is chosen that way we to guarantee that
164 		 * result->iname[0] is within the same object and that
165 		 * kname can't be equal to result->iname, no matter what.
166 		 */
167 		result = kzalloc(size, GFP_KERNEL);
168 		if (unlikely(!result)) {
169 			__putname(kname);
170 			return ERR_PTR(-ENOMEM);
171 		}
172 		result->name = kname;
173 		len = strncpy_from_user(kname, filename, PATH_MAX);
174 		if (unlikely(len < 0)) {
175 			__putname(kname);
176 			kfree(result);
177 			return ERR_PTR(len);
178 		}
179 		if (unlikely(len == PATH_MAX)) {
180 			__putname(kname);
181 			kfree(result);
182 			return ERR_PTR(-ENAMETOOLONG);
183 		}
184 	}
185 
186 	result->refcnt = 1;
187 	/* The empty path is special. */
188 	if (unlikely(!len)) {
189 		if (empty)
190 			*empty = 1;
191 		if (!(flags & LOOKUP_EMPTY)) {
192 			putname(result);
193 			return ERR_PTR(-ENOENT);
194 		}
195 	}
196 
197 	result->uptr = filename;
198 	result->aname = NULL;
199 	audit_getname(result);
200 	return result;
201 }
202 
203 struct filename *
204 getname(const char __user * filename)
205 {
206 	return getname_flags(filename, 0, NULL);
207 }
208 
209 struct filename *
210 getname_kernel(const char * filename)
211 {
212 	struct filename *result;
213 	int len = strlen(filename) + 1;
214 
215 	result = __getname();
216 	if (unlikely(!result))
217 		return ERR_PTR(-ENOMEM);
218 
219 	if (len <= EMBEDDED_NAME_MAX) {
220 		result->name = (char *)result->iname;
221 	} else if (len <= PATH_MAX) {
222 		struct filename *tmp;
223 
224 		tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
225 		if (unlikely(!tmp)) {
226 			__putname(result);
227 			return ERR_PTR(-ENOMEM);
228 		}
229 		tmp->name = (char *)result;
230 		result = tmp;
231 	} else {
232 		__putname(result);
233 		return ERR_PTR(-ENAMETOOLONG);
234 	}
235 	memcpy((char *)result->name, filename, len);
236 	result->uptr = NULL;
237 	result->aname = NULL;
238 	result->refcnt = 1;
239 	audit_getname(result);
240 
241 	return result;
242 }
243 
244 void putname(struct filename *name)
245 {
246 	BUG_ON(name->refcnt <= 0);
247 
248 	if (--name->refcnt > 0)
249 		return;
250 
251 	if (name->name != name->iname) {
252 		__putname(name->name);
253 		kfree(name);
254 	} else
255 		__putname(name);
256 }
257 
258 static int check_acl(struct inode *inode, int mask)
259 {
260 #ifdef CONFIG_FS_POSIX_ACL
261 	struct posix_acl *acl;
262 
263 	if (mask & MAY_NOT_BLOCK) {
264 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
265 	        if (!acl)
266 	                return -EAGAIN;
267 		/* no ->get_acl() calls in RCU mode... */
268 		if (acl == ACL_NOT_CACHED)
269 			return -ECHILD;
270 	        return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
271 	}
272 
273 	acl = get_acl(inode, ACL_TYPE_ACCESS);
274 	if (IS_ERR(acl))
275 		return PTR_ERR(acl);
276 	if (acl) {
277 	        int error = posix_acl_permission(inode, acl, mask);
278 	        posix_acl_release(acl);
279 	        return error;
280 	}
281 #endif
282 
283 	return -EAGAIN;
284 }
285 
286 /*
287  * This does the basic permission checking
288  */
289 static int acl_permission_check(struct inode *inode, int mask)
290 {
291 	unsigned int mode = inode->i_mode;
292 
293 	if (likely(uid_eq(current_fsuid(), inode->i_uid)))
294 		mode >>= 6;
295 	else {
296 		if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
297 			int error = check_acl(inode, mask);
298 			if (error != -EAGAIN)
299 				return error;
300 		}
301 
302 		if (in_group_p(inode->i_gid))
303 			mode >>= 3;
304 	}
305 
306 	/*
307 	 * If the DACs are ok we don't need any capability check.
308 	 */
309 	if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
310 		return 0;
311 	return -EACCES;
312 }
313 
314 /**
315  * generic_permission -  check for access rights on a Posix-like filesystem
316  * @inode:	inode to check access rights for
317  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
318  *
319  * Used to check for read/write/execute permissions on a file.
320  * We use "fsuid" for this, letting us set arbitrary permissions
321  * for filesystem access without changing the "normal" uids which
322  * are used for other things.
323  *
324  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
325  * request cannot be satisfied (eg. requires blocking or too much complexity).
326  * It would then be called again in ref-walk mode.
327  */
328 int generic_permission(struct inode *inode, int mask)
329 {
330 	int ret;
331 
332 	/*
333 	 * Do the basic permission checks.
334 	 */
335 	ret = acl_permission_check(inode, mask);
336 	if (ret != -EACCES)
337 		return ret;
338 
339 	if (S_ISDIR(inode->i_mode)) {
340 		/* DACs are overridable for directories */
341 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
342 			return 0;
343 		if (!(mask & MAY_WRITE))
344 			if (capable_wrt_inode_uidgid(inode,
345 						     CAP_DAC_READ_SEARCH))
346 				return 0;
347 		return -EACCES;
348 	}
349 	/*
350 	 * Read/write DACs are always overridable.
351 	 * Executable DACs are overridable when there is
352 	 * at least one exec bit set.
353 	 */
354 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
355 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
356 			return 0;
357 
358 	/*
359 	 * Searching includes executable on directories, else just read.
360 	 */
361 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
362 	if (mask == MAY_READ)
363 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
364 			return 0;
365 
366 	return -EACCES;
367 }
368 EXPORT_SYMBOL(generic_permission);
369 
370 /*
371  * We _really_ want to just do "generic_permission()" without
372  * even looking at the inode->i_op values. So we keep a cache
373  * flag in inode->i_opflags, that says "this has not special
374  * permission function, use the fast case".
375  */
376 static inline int do_inode_permission(struct inode *inode, int mask)
377 {
378 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
379 		if (likely(inode->i_op->permission))
380 			return inode->i_op->permission(inode, mask);
381 
382 		/* This gets set once for the inode lifetime */
383 		spin_lock(&inode->i_lock);
384 		inode->i_opflags |= IOP_FASTPERM;
385 		spin_unlock(&inode->i_lock);
386 	}
387 	return generic_permission(inode, mask);
388 }
389 
390 /**
391  * __inode_permission - Check for access rights to a given inode
392  * @inode: Inode to check permission on
393  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
394  *
395  * Check for read/write/execute permissions on an inode.
396  *
397  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
398  *
399  * This does not check for a read-only file system.  You probably want
400  * inode_permission().
401  */
402 int __inode_permission(struct inode *inode, int mask)
403 {
404 	int retval;
405 
406 	if (unlikely(mask & MAY_WRITE)) {
407 		/*
408 		 * Nobody gets write access to an immutable file.
409 		 */
410 		if (IS_IMMUTABLE(inode))
411 			return -EACCES;
412 	}
413 
414 	retval = do_inode_permission(inode, mask);
415 	if (retval)
416 		return retval;
417 
418 	retval = devcgroup_inode_permission(inode, mask);
419 	if (retval)
420 		return retval;
421 
422 	return security_inode_permission(inode, mask);
423 }
424 EXPORT_SYMBOL(__inode_permission);
425 
426 /**
427  * sb_permission - Check superblock-level permissions
428  * @sb: Superblock of inode to check permission on
429  * @inode: Inode to check permission on
430  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
431  *
432  * Separate out file-system wide checks from inode-specific permission checks.
433  */
434 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
435 {
436 	if (unlikely(mask & MAY_WRITE)) {
437 		umode_t mode = inode->i_mode;
438 
439 		/* Nobody gets write access to a read-only fs. */
440 		if ((sb->s_flags & MS_RDONLY) &&
441 		    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
442 			return -EROFS;
443 	}
444 	return 0;
445 }
446 
447 /**
448  * inode_permission - Check for access rights to a given inode
449  * @inode: Inode to check permission on
450  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
451  *
452  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
453  * this, letting us set arbitrary permissions for filesystem access without
454  * changing the "normal" UIDs which are used for other things.
455  *
456  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
457  */
458 int inode_permission(struct inode *inode, int mask)
459 {
460 	int retval;
461 
462 	retval = sb_permission(inode->i_sb, inode, mask);
463 	if (retval)
464 		return retval;
465 	return __inode_permission(inode, mask);
466 }
467 EXPORT_SYMBOL(inode_permission);
468 
469 /**
470  * path_get - get a reference to a path
471  * @path: path to get the reference to
472  *
473  * Given a path increment the reference count to the dentry and the vfsmount.
474  */
475 void path_get(const struct path *path)
476 {
477 	mntget(path->mnt);
478 	dget(path->dentry);
479 }
480 EXPORT_SYMBOL(path_get);
481 
482 /**
483  * path_put - put a reference to a path
484  * @path: path to put the reference to
485  *
486  * Given a path decrement the reference count to the dentry and the vfsmount.
487  */
488 void path_put(const struct path *path)
489 {
490 	dput(path->dentry);
491 	mntput(path->mnt);
492 }
493 EXPORT_SYMBOL(path_put);
494 
495 struct nameidata {
496 	struct path	path;
497 	struct qstr	last;
498 	struct path	root;
499 	struct inode	*inode; /* path.dentry.d_inode */
500 	unsigned int	flags;
501 	unsigned	seq, m_seq;
502 	int		last_type;
503 	unsigned	depth;
504 	struct file	*base;
505 	char *saved_names[MAX_NESTED_LINKS + 1];
506 };
507 
508 /*
509  * Path walking has 2 modes, rcu-walk and ref-walk (see
510  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
511  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
512  * normal reference counts on dentries and vfsmounts to transition to rcu-walk
513  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
514  * got stuck, so ref-walk may continue from there. If this is not successful
515  * (eg. a seqcount has changed), then failure is returned and it's up to caller
516  * to restart the path walk from the beginning in ref-walk mode.
517  */
518 
519 /**
520  * unlazy_walk - try to switch to ref-walk mode.
521  * @nd: nameidata pathwalk data
522  * @dentry: child of nd->path.dentry or NULL
523  * Returns: 0 on success, -ECHILD on failure
524  *
525  * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
526  * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
527  * @nd or NULL.  Must be called from rcu-walk context.
528  */
529 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
530 {
531 	struct fs_struct *fs = current->fs;
532 	struct dentry *parent = nd->path.dentry;
533 
534 	BUG_ON(!(nd->flags & LOOKUP_RCU));
535 
536 	/*
537 	 * After legitimizing the bastards, terminate_walk()
538 	 * will do the right thing for non-RCU mode, and all our
539 	 * subsequent exit cases should rcu_read_unlock()
540 	 * before returning.  Do vfsmount first; if dentry
541 	 * can't be legitimized, just set nd->path.dentry to NULL
542 	 * and rely on dput(NULL) being a no-op.
543 	 */
544 	if (!legitimize_mnt(nd->path.mnt, nd->m_seq))
545 		return -ECHILD;
546 	nd->flags &= ~LOOKUP_RCU;
547 
548 	if (!lockref_get_not_dead(&parent->d_lockref)) {
549 		nd->path.dentry = NULL;
550 		goto out;
551 	}
552 
553 	/*
554 	 * For a negative lookup, the lookup sequence point is the parents
555 	 * sequence point, and it only needs to revalidate the parent dentry.
556 	 *
557 	 * For a positive lookup, we need to move both the parent and the
558 	 * dentry from the RCU domain to be properly refcounted. And the
559 	 * sequence number in the dentry validates *both* dentry counters,
560 	 * since we checked the sequence number of the parent after we got
561 	 * the child sequence number. So we know the parent must still
562 	 * be valid if the child sequence number is still valid.
563 	 */
564 	if (!dentry) {
565 		if (read_seqcount_retry(&parent->d_seq, nd->seq))
566 			goto out;
567 		BUG_ON(nd->inode != parent->d_inode);
568 	} else {
569 		if (!lockref_get_not_dead(&dentry->d_lockref))
570 			goto out;
571 		if (read_seqcount_retry(&dentry->d_seq, nd->seq))
572 			goto drop_dentry;
573 	}
574 
575 	/*
576 	 * Sequence counts matched. Now make sure that the root is
577 	 * still valid and get it if required.
578 	 */
579 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
580 		spin_lock(&fs->lock);
581 		if (nd->root.mnt != fs->root.mnt || nd->root.dentry != fs->root.dentry)
582 			goto unlock_and_drop_dentry;
583 		path_get(&nd->root);
584 		spin_unlock(&fs->lock);
585 	}
586 
587 	rcu_read_unlock();
588 	return 0;
589 
590 unlock_and_drop_dentry:
591 	spin_unlock(&fs->lock);
592 drop_dentry:
593 	rcu_read_unlock();
594 	dput(dentry);
595 	goto drop_root_mnt;
596 out:
597 	rcu_read_unlock();
598 drop_root_mnt:
599 	if (!(nd->flags & LOOKUP_ROOT))
600 		nd->root.mnt = NULL;
601 	return -ECHILD;
602 }
603 
604 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
605 {
606 	return dentry->d_op->d_revalidate(dentry, flags);
607 }
608 
609 /**
610  * complete_walk - successful completion of path walk
611  * @nd:  pointer nameidata
612  *
613  * If we had been in RCU mode, drop out of it and legitimize nd->path.
614  * Revalidate the final result, unless we'd already done that during
615  * the path walk or the filesystem doesn't ask for it.  Return 0 on
616  * success, -error on failure.  In case of failure caller does not
617  * need to drop nd->path.
618  */
619 static int complete_walk(struct nameidata *nd)
620 {
621 	struct dentry *dentry = nd->path.dentry;
622 	int status;
623 
624 	if (nd->flags & LOOKUP_RCU) {
625 		nd->flags &= ~LOOKUP_RCU;
626 		if (!(nd->flags & LOOKUP_ROOT))
627 			nd->root.mnt = NULL;
628 
629 		if (!legitimize_mnt(nd->path.mnt, nd->m_seq)) {
630 			rcu_read_unlock();
631 			return -ECHILD;
632 		}
633 		if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) {
634 			rcu_read_unlock();
635 			mntput(nd->path.mnt);
636 			return -ECHILD;
637 		}
638 		if (read_seqcount_retry(&dentry->d_seq, nd->seq)) {
639 			rcu_read_unlock();
640 			dput(dentry);
641 			mntput(nd->path.mnt);
642 			return -ECHILD;
643 		}
644 		rcu_read_unlock();
645 	}
646 
647 	if (likely(!(nd->flags & LOOKUP_JUMPED)))
648 		return 0;
649 
650 	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
651 		return 0;
652 
653 	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
654 	if (status > 0)
655 		return 0;
656 
657 	if (!status)
658 		status = -ESTALE;
659 
660 	path_put(&nd->path);
661 	return status;
662 }
663 
664 static __always_inline void set_root(struct nameidata *nd)
665 {
666 	get_fs_root(current->fs, &nd->root);
667 }
668 
669 static int link_path_walk(const char *, struct nameidata *);
670 
671 static __always_inline unsigned set_root_rcu(struct nameidata *nd)
672 {
673 	struct fs_struct *fs = current->fs;
674 	unsigned seq, res;
675 
676 	do {
677 		seq = read_seqcount_begin(&fs->seq);
678 		nd->root = fs->root;
679 		res = __read_seqcount_begin(&nd->root.dentry->d_seq);
680 	} while (read_seqcount_retry(&fs->seq, seq));
681 	return res;
682 }
683 
684 static void path_put_conditional(struct path *path, struct nameidata *nd)
685 {
686 	dput(path->dentry);
687 	if (path->mnt != nd->path.mnt)
688 		mntput(path->mnt);
689 }
690 
691 static inline void path_to_nameidata(const struct path *path,
692 					struct nameidata *nd)
693 {
694 	if (!(nd->flags & LOOKUP_RCU)) {
695 		dput(nd->path.dentry);
696 		if (nd->path.mnt != path->mnt)
697 			mntput(nd->path.mnt);
698 	}
699 	nd->path.mnt = path->mnt;
700 	nd->path.dentry = path->dentry;
701 }
702 
703 /*
704  * Helper to directly jump to a known parsed path from ->follow_link,
705  * caller must have taken a reference to path beforehand.
706  */
707 void nd_jump_link(struct nameidata *nd, struct path *path)
708 {
709 	path_put(&nd->path);
710 
711 	nd->path = *path;
712 	nd->inode = nd->path.dentry->d_inode;
713 	nd->flags |= LOOKUP_JUMPED;
714 }
715 
716 void nd_set_link(struct nameidata *nd, char *path)
717 {
718 	nd->saved_names[nd->depth] = path;
719 }
720 EXPORT_SYMBOL(nd_set_link);
721 
722 char *nd_get_link(struct nameidata *nd)
723 {
724 	return nd->saved_names[nd->depth];
725 }
726 EXPORT_SYMBOL(nd_get_link);
727 
728 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
729 {
730 	struct inode *inode = link->dentry->d_inode;
731 	if (inode->i_op->put_link)
732 		inode->i_op->put_link(link->dentry, nd, cookie);
733 	path_put(link);
734 }
735 
736 int sysctl_protected_symlinks __read_mostly = 0;
737 int sysctl_protected_hardlinks __read_mostly = 0;
738 
739 /**
740  * may_follow_link - Check symlink following for unsafe situations
741  * @link: The path of the symlink
742  * @nd: nameidata pathwalk data
743  *
744  * In the case of the sysctl_protected_symlinks sysctl being enabled,
745  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
746  * in a sticky world-writable directory. This is to protect privileged
747  * processes from failing races against path names that may change out
748  * from under them by way of other users creating malicious symlinks.
749  * It will permit symlinks to be followed only when outside a sticky
750  * world-writable directory, or when the uid of the symlink and follower
751  * match, or when the directory owner matches the symlink's owner.
752  *
753  * Returns 0 if following the symlink is allowed, -ve on error.
754  */
755 static inline int may_follow_link(struct path *link, struct nameidata *nd)
756 {
757 	const struct inode *inode;
758 	const struct inode *parent;
759 
760 	if (!sysctl_protected_symlinks)
761 		return 0;
762 
763 	/* Allowed if owner and follower match. */
764 	inode = link->dentry->d_inode;
765 	if (uid_eq(current_cred()->fsuid, inode->i_uid))
766 		return 0;
767 
768 	/* Allowed if parent directory not sticky and world-writable. */
769 	parent = nd->path.dentry->d_inode;
770 	if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
771 		return 0;
772 
773 	/* Allowed if parent directory and link owner match. */
774 	if (uid_eq(parent->i_uid, inode->i_uid))
775 		return 0;
776 
777 	audit_log_link_denied("follow_link", link);
778 	path_put_conditional(link, nd);
779 	path_put(&nd->path);
780 	return -EACCES;
781 }
782 
783 /**
784  * safe_hardlink_source - Check for safe hardlink conditions
785  * @inode: the source inode to hardlink from
786  *
787  * Return false if at least one of the following conditions:
788  *    - inode is not a regular file
789  *    - inode is setuid
790  *    - inode is setgid and group-exec
791  *    - access failure for read and write
792  *
793  * Otherwise returns true.
794  */
795 static bool safe_hardlink_source(struct inode *inode)
796 {
797 	umode_t mode = inode->i_mode;
798 
799 	/* Special files should not get pinned to the filesystem. */
800 	if (!S_ISREG(mode))
801 		return false;
802 
803 	/* Setuid files should not get pinned to the filesystem. */
804 	if (mode & S_ISUID)
805 		return false;
806 
807 	/* Executable setgid files should not get pinned to the filesystem. */
808 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
809 		return false;
810 
811 	/* Hardlinking to unreadable or unwritable sources is dangerous. */
812 	if (inode_permission(inode, MAY_READ | MAY_WRITE))
813 		return false;
814 
815 	return true;
816 }
817 
818 /**
819  * may_linkat - Check permissions for creating a hardlink
820  * @link: the source to hardlink from
821  *
822  * Block hardlink when all of:
823  *  - sysctl_protected_hardlinks enabled
824  *  - fsuid does not match inode
825  *  - hardlink source is unsafe (see safe_hardlink_source() above)
826  *  - not CAP_FOWNER
827  *
828  * Returns 0 if successful, -ve on error.
829  */
830 static int may_linkat(struct path *link)
831 {
832 	const struct cred *cred;
833 	struct inode *inode;
834 
835 	if (!sysctl_protected_hardlinks)
836 		return 0;
837 
838 	cred = current_cred();
839 	inode = link->dentry->d_inode;
840 
841 	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
842 	 * otherwise, it must be a safe source.
843 	 */
844 	if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) ||
845 	    capable(CAP_FOWNER))
846 		return 0;
847 
848 	audit_log_link_denied("linkat", link);
849 	return -EPERM;
850 }
851 
852 static __always_inline int
853 follow_link(struct path *link, struct nameidata *nd, void **p)
854 {
855 	struct dentry *dentry = link->dentry;
856 	int error;
857 	char *s;
858 
859 	BUG_ON(nd->flags & LOOKUP_RCU);
860 
861 	if (link->mnt == nd->path.mnt)
862 		mntget(link->mnt);
863 
864 	error = -ELOOP;
865 	if (unlikely(current->total_link_count >= 40))
866 		goto out_put_nd_path;
867 
868 	cond_resched();
869 	current->total_link_count++;
870 
871 	touch_atime(link);
872 	nd_set_link(nd, NULL);
873 
874 	error = security_inode_follow_link(link->dentry, nd);
875 	if (error)
876 		goto out_put_nd_path;
877 
878 	nd->last_type = LAST_BIND;
879 	*p = dentry->d_inode->i_op->follow_link(dentry, nd);
880 	error = PTR_ERR(*p);
881 	if (IS_ERR(*p))
882 		goto out_put_nd_path;
883 
884 	error = 0;
885 	s = nd_get_link(nd);
886 	if (s) {
887 		if (unlikely(IS_ERR(s))) {
888 			path_put(&nd->path);
889 			put_link(nd, link, *p);
890 			return PTR_ERR(s);
891 		}
892 		if (*s == '/') {
893 			if (!nd->root.mnt)
894 				set_root(nd);
895 			path_put(&nd->path);
896 			nd->path = nd->root;
897 			path_get(&nd->root);
898 			nd->flags |= LOOKUP_JUMPED;
899 		}
900 		nd->inode = nd->path.dentry->d_inode;
901 		error = link_path_walk(s, nd);
902 		if (unlikely(error))
903 			put_link(nd, link, *p);
904 	}
905 
906 	return error;
907 
908 out_put_nd_path:
909 	*p = NULL;
910 	path_put(&nd->path);
911 	path_put(link);
912 	return error;
913 }
914 
915 static int follow_up_rcu(struct path *path)
916 {
917 	struct mount *mnt = real_mount(path->mnt);
918 	struct mount *parent;
919 	struct dentry *mountpoint;
920 
921 	parent = mnt->mnt_parent;
922 	if (&parent->mnt == path->mnt)
923 		return 0;
924 	mountpoint = mnt->mnt_mountpoint;
925 	path->dentry = mountpoint;
926 	path->mnt = &parent->mnt;
927 	return 1;
928 }
929 
930 /*
931  * follow_up - Find the mountpoint of path's vfsmount
932  *
933  * Given a path, find the mountpoint of its source file system.
934  * Replace @path with the path of the mountpoint in the parent mount.
935  * Up is towards /.
936  *
937  * Return 1 if we went up a level and 0 if we were already at the
938  * root.
939  */
940 int follow_up(struct path *path)
941 {
942 	struct mount *mnt = real_mount(path->mnt);
943 	struct mount *parent;
944 	struct dentry *mountpoint;
945 
946 	read_seqlock_excl(&mount_lock);
947 	parent = mnt->mnt_parent;
948 	if (parent == mnt) {
949 		read_sequnlock_excl(&mount_lock);
950 		return 0;
951 	}
952 	mntget(&parent->mnt);
953 	mountpoint = dget(mnt->mnt_mountpoint);
954 	read_sequnlock_excl(&mount_lock);
955 	dput(path->dentry);
956 	path->dentry = mountpoint;
957 	mntput(path->mnt);
958 	path->mnt = &parent->mnt;
959 	return 1;
960 }
961 EXPORT_SYMBOL(follow_up);
962 
963 /*
964  * Perform an automount
965  * - return -EISDIR to tell follow_managed() to stop and return the path we
966  *   were called with.
967  */
968 static int follow_automount(struct path *path, unsigned flags,
969 			    bool *need_mntput)
970 {
971 	struct vfsmount *mnt;
972 	int err;
973 
974 	if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
975 		return -EREMOTE;
976 
977 	/* We don't want to mount if someone's just doing a stat -
978 	 * unless they're stat'ing a directory and appended a '/' to
979 	 * the name.
980 	 *
981 	 * We do, however, want to mount if someone wants to open or
982 	 * create a file of any type under the mountpoint, wants to
983 	 * traverse through the mountpoint or wants to open the
984 	 * mounted directory.  Also, autofs may mark negative dentries
985 	 * as being automount points.  These will need the attentions
986 	 * of the daemon to instantiate them before they can be used.
987 	 */
988 	if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
989 		     LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
990 	    path->dentry->d_inode)
991 		return -EISDIR;
992 
993 	current->total_link_count++;
994 	if (current->total_link_count >= 40)
995 		return -ELOOP;
996 
997 	mnt = path->dentry->d_op->d_automount(path);
998 	if (IS_ERR(mnt)) {
999 		/*
1000 		 * The filesystem is allowed to return -EISDIR here to indicate
1001 		 * it doesn't want to automount.  For instance, autofs would do
1002 		 * this so that its userspace daemon can mount on this dentry.
1003 		 *
1004 		 * However, we can only permit this if it's a terminal point in
1005 		 * the path being looked up; if it wasn't then the remainder of
1006 		 * the path is inaccessible and we should say so.
1007 		 */
1008 		if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
1009 			return -EREMOTE;
1010 		return PTR_ERR(mnt);
1011 	}
1012 
1013 	if (!mnt) /* mount collision */
1014 		return 0;
1015 
1016 	if (!*need_mntput) {
1017 		/* lock_mount() may release path->mnt on error */
1018 		mntget(path->mnt);
1019 		*need_mntput = true;
1020 	}
1021 	err = finish_automount(mnt, path);
1022 
1023 	switch (err) {
1024 	case -EBUSY:
1025 		/* Someone else made a mount here whilst we were busy */
1026 		return 0;
1027 	case 0:
1028 		path_put(path);
1029 		path->mnt = mnt;
1030 		path->dentry = dget(mnt->mnt_root);
1031 		return 0;
1032 	default:
1033 		return err;
1034 	}
1035 
1036 }
1037 
1038 /*
1039  * Handle a dentry that is managed in some way.
1040  * - Flagged for transit management (autofs)
1041  * - Flagged as mountpoint
1042  * - Flagged as automount point
1043  *
1044  * This may only be called in refwalk mode.
1045  *
1046  * Serialization is taken care of in namespace.c
1047  */
1048 static int follow_managed(struct path *path, unsigned flags)
1049 {
1050 	struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1051 	unsigned managed;
1052 	bool need_mntput = false;
1053 	int ret = 0;
1054 
1055 	/* Given that we're not holding a lock here, we retain the value in a
1056 	 * local variable for each dentry as we look at it so that we don't see
1057 	 * the components of that value change under us */
1058 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1059 	       managed &= DCACHE_MANAGED_DENTRY,
1060 	       unlikely(managed != 0)) {
1061 		/* Allow the filesystem to manage the transit without i_mutex
1062 		 * being held. */
1063 		if (managed & DCACHE_MANAGE_TRANSIT) {
1064 			BUG_ON(!path->dentry->d_op);
1065 			BUG_ON(!path->dentry->d_op->d_manage);
1066 			ret = path->dentry->d_op->d_manage(path->dentry, false);
1067 			if (ret < 0)
1068 				break;
1069 		}
1070 
1071 		/* Transit to a mounted filesystem. */
1072 		if (managed & DCACHE_MOUNTED) {
1073 			struct vfsmount *mounted = lookup_mnt(path);
1074 			if (mounted) {
1075 				dput(path->dentry);
1076 				if (need_mntput)
1077 					mntput(path->mnt);
1078 				path->mnt = mounted;
1079 				path->dentry = dget(mounted->mnt_root);
1080 				need_mntput = true;
1081 				continue;
1082 			}
1083 
1084 			/* Something is mounted on this dentry in another
1085 			 * namespace and/or whatever was mounted there in this
1086 			 * namespace got unmounted before lookup_mnt() could
1087 			 * get it */
1088 		}
1089 
1090 		/* Handle an automount point */
1091 		if (managed & DCACHE_NEED_AUTOMOUNT) {
1092 			ret = follow_automount(path, flags, &need_mntput);
1093 			if (ret < 0)
1094 				break;
1095 			continue;
1096 		}
1097 
1098 		/* We didn't change the current path point */
1099 		break;
1100 	}
1101 
1102 	if (need_mntput && path->mnt == mnt)
1103 		mntput(path->mnt);
1104 	if (ret == -EISDIR)
1105 		ret = 0;
1106 	return ret < 0 ? ret : need_mntput;
1107 }
1108 
1109 int follow_down_one(struct path *path)
1110 {
1111 	struct vfsmount *mounted;
1112 
1113 	mounted = lookup_mnt(path);
1114 	if (mounted) {
1115 		dput(path->dentry);
1116 		mntput(path->mnt);
1117 		path->mnt = mounted;
1118 		path->dentry = dget(mounted->mnt_root);
1119 		return 1;
1120 	}
1121 	return 0;
1122 }
1123 EXPORT_SYMBOL(follow_down_one);
1124 
1125 static inline int managed_dentry_rcu(struct dentry *dentry)
1126 {
1127 	return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1128 		dentry->d_op->d_manage(dentry, true) : 0;
1129 }
1130 
1131 /*
1132  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1133  * we meet a managed dentry that would need blocking.
1134  */
1135 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1136 			       struct inode **inode)
1137 {
1138 	for (;;) {
1139 		struct mount *mounted;
1140 		/*
1141 		 * Don't forget we might have a non-mountpoint managed dentry
1142 		 * that wants to block transit.
1143 		 */
1144 		switch (managed_dentry_rcu(path->dentry)) {
1145 		case -ECHILD:
1146 		default:
1147 			return false;
1148 		case -EISDIR:
1149 			return true;
1150 		case 0:
1151 			break;
1152 		}
1153 
1154 		if (!d_mountpoint(path->dentry))
1155 			return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1156 
1157 		mounted = __lookup_mnt(path->mnt, path->dentry);
1158 		if (!mounted)
1159 			break;
1160 		path->mnt = &mounted->mnt;
1161 		path->dentry = mounted->mnt.mnt_root;
1162 		nd->flags |= LOOKUP_JUMPED;
1163 		nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1164 		/*
1165 		 * Update the inode too. We don't need to re-check the
1166 		 * dentry sequence number here after this d_inode read,
1167 		 * because a mount-point is always pinned.
1168 		 */
1169 		*inode = path->dentry->d_inode;
1170 	}
1171 	return !read_seqretry(&mount_lock, nd->m_seq) &&
1172 		!(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1173 }
1174 
1175 static int follow_dotdot_rcu(struct nameidata *nd)
1176 {
1177 	struct inode *inode = nd->inode;
1178 	if (!nd->root.mnt)
1179 		set_root_rcu(nd);
1180 
1181 	while (1) {
1182 		if (nd->path.dentry == nd->root.dentry &&
1183 		    nd->path.mnt == nd->root.mnt) {
1184 			break;
1185 		}
1186 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1187 			struct dentry *old = nd->path.dentry;
1188 			struct dentry *parent = old->d_parent;
1189 			unsigned seq;
1190 
1191 			inode = parent->d_inode;
1192 			seq = read_seqcount_begin(&parent->d_seq);
1193 			if (read_seqcount_retry(&old->d_seq, nd->seq))
1194 				goto failed;
1195 			nd->path.dentry = parent;
1196 			nd->seq = seq;
1197 			break;
1198 		}
1199 		if (!follow_up_rcu(&nd->path))
1200 			break;
1201 		inode = nd->path.dentry->d_inode;
1202 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1203 	}
1204 	while (d_mountpoint(nd->path.dentry)) {
1205 		struct mount *mounted;
1206 		mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1207 		if (!mounted)
1208 			break;
1209 		nd->path.mnt = &mounted->mnt;
1210 		nd->path.dentry = mounted->mnt.mnt_root;
1211 		inode = nd->path.dentry->d_inode;
1212 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1213 		if (read_seqretry(&mount_lock, nd->m_seq))
1214 			goto failed;
1215 	}
1216 	nd->inode = inode;
1217 	return 0;
1218 
1219 failed:
1220 	nd->flags &= ~LOOKUP_RCU;
1221 	if (!(nd->flags & LOOKUP_ROOT))
1222 		nd->root.mnt = NULL;
1223 	rcu_read_unlock();
1224 	return -ECHILD;
1225 }
1226 
1227 /*
1228  * Follow down to the covering mount currently visible to userspace.  At each
1229  * point, the filesystem owning that dentry may be queried as to whether the
1230  * caller is permitted to proceed or not.
1231  */
1232 int follow_down(struct path *path)
1233 {
1234 	unsigned managed;
1235 	int ret;
1236 
1237 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1238 	       unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1239 		/* Allow the filesystem to manage the transit without i_mutex
1240 		 * being held.
1241 		 *
1242 		 * We indicate to the filesystem if someone is trying to mount
1243 		 * something here.  This gives autofs the chance to deny anyone
1244 		 * other than its daemon the right to mount on its
1245 		 * superstructure.
1246 		 *
1247 		 * The filesystem may sleep at this point.
1248 		 */
1249 		if (managed & DCACHE_MANAGE_TRANSIT) {
1250 			BUG_ON(!path->dentry->d_op);
1251 			BUG_ON(!path->dentry->d_op->d_manage);
1252 			ret = path->dentry->d_op->d_manage(
1253 				path->dentry, false);
1254 			if (ret < 0)
1255 				return ret == -EISDIR ? 0 : ret;
1256 		}
1257 
1258 		/* Transit to a mounted filesystem. */
1259 		if (managed & DCACHE_MOUNTED) {
1260 			struct vfsmount *mounted = lookup_mnt(path);
1261 			if (!mounted)
1262 				break;
1263 			dput(path->dentry);
1264 			mntput(path->mnt);
1265 			path->mnt = mounted;
1266 			path->dentry = dget(mounted->mnt_root);
1267 			continue;
1268 		}
1269 
1270 		/* Don't handle automount points here */
1271 		break;
1272 	}
1273 	return 0;
1274 }
1275 EXPORT_SYMBOL(follow_down);
1276 
1277 /*
1278  * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1279  */
1280 static void follow_mount(struct path *path)
1281 {
1282 	while (d_mountpoint(path->dentry)) {
1283 		struct vfsmount *mounted = lookup_mnt(path);
1284 		if (!mounted)
1285 			break;
1286 		dput(path->dentry);
1287 		mntput(path->mnt);
1288 		path->mnt = mounted;
1289 		path->dentry = dget(mounted->mnt_root);
1290 	}
1291 }
1292 
1293 static void follow_dotdot(struct nameidata *nd)
1294 {
1295 	if (!nd->root.mnt)
1296 		set_root(nd);
1297 
1298 	while(1) {
1299 		struct dentry *old = nd->path.dentry;
1300 
1301 		if (nd->path.dentry == nd->root.dentry &&
1302 		    nd->path.mnt == nd->root.mnt) {
1303 			break;
1304 		}
1305 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1306 			/* rare case of legitimate dget_parent()... */
1307 			nd->path.dentry = dget_parent(nd->path.dentry);
1308 			dput(old);
1309 			break;
1310 		}
1311 		if (!follow_up(&nd->path))
1312 			break;
1313 	}
1314 	follow_mount(&nd->path);
1315 	nd->inode = nd->path.dentry->d_inode;
1316 }
1317 
1318 /*
1319  * This looks up the name in dcache, possibly revalidates the old dentry and
1320  * allocates a new one if not found or not valid.  In the need_lookup argument
1321  * returns whether i_op->lookup is necessary.
1322  *
1323  * dir->d_inode->i_mutex must be held
1324  */
1325 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1326 				    unsigned int flags, bool *need_lookup)
1327 {
1328 	struct dentry *dentry;
1329 	int error;
1330 
1331 	*need_lookup = false;
1332 	dentry = d_lookup(dir, name);
1333 	if (dentry) {
1334 		if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1335 			error = d_revalidate(dentry, flags);
1336 			if (unlikely(error <= 0)) {
1337 				if (error < 0) {
1338 					dput(dentry);
1339 					return ERR_PTR(error);
1340 				} else {
1341 					d_invalidate(dentry);
1342 					dput(dentry);
1343 					dentry = NULL;
1344 				}
1345 			}
1346 		}
1347 	}
1348 
1349 	if (!dentry) {
1350 		dentry = d_alloc(dir, name);
1351 		if (unlikely(!dentry))
1352 			return ERR_PTR(-ENOMEM);
1353 
1354 		*need_lookup = true;
1355 	}
1356 	return dentry;
1357 }
1358 
1359 /*
1360  * Call i_op->lookup on the dentry.  The dentry must be negative and
1361  * unhashed.
1362  *
1363  * dir->d_inode->i_mutex must be held
1364  */
1365 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1366 				  unsigned int flags)
1367 {
1368 	struct dentry *old;
1369 
1370 	/* Don't create child dentry for a dead directory. */
1371 	if (unlikely(IS_DEADDIR(dir))) {
1372 		dput(dentry);
1373 		return ERR_PTR(-ENOENT);
1374 	}
1375 
1376 	old = dir->i_op->lookup(dir, dentry, flags);
1377 	if (unlikely(old)) {
1378 		dput(dentry);
1379 		dentry = old;
1380 	}
1381 	return dentry;
1382 }
1383 
1384 static struct dentry *__lookup_hash(struct qstr *name,
1385 		struct dentry *base, unsigned int flags)
1386 {
1387 	bool need_lookup;
1388 	struct dentry *dentry;
1389 
1390 	dentry = lookup_dcache(name, base, flags, &need_lookup);
1391 	if (!need_lookup)
1392 		return dentry;
1393 
1394 	return lookup_real(base->d_inode, dentry, flags);
1395 }
1396 
1397 /*
1398  *  It's more convoluted than I'd like it to be, but... it's still fairly
1399  *  small and for now I'd prefer to have fast path as straight as possible.
1400  *  It _is_ time-critical.
1401  */
1402 static int lookup_fast(struct nameidata *nd,
1403 		       struct path *path, struct inode **inode)
1404 {
1405 	struct vfsmount *mnt = nd->path.mnt;
1406 	struct dentry *dentry, *parent = nd->path.dentry;
1407 	int need_reval = 1;
1408 	int status = 1;
1409 	int err;
1410 
1411 	/*
1412 	 * Rename seqlock is not required here because in the off chance
1413 	 * of a false negative due to a concurrent rename, we're going to
1414 	 * do the non-racy lookup, below.
1415 	 */
1416 	if (nd->flags & LOOKUP_RCU) {
1417 		unsigned seq;
1418 		dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1419 		if (!dentry)
1420 			goto unlazy;
1421 
1422 		/*
1423 		 * This sequence count validates that the inode matches
1424 		 * the dentry name information from lookup.
1425 		 */
1426 		*inode = dentry->d_inode;
1427 		if (read_seqcount_retry(&dentry->d_seq, seq))
1428 			return -ECHILD;
1429 
1430 		/*
1431 		 * This sequence count validates that the parent had no
1432 		 * changes while we did the lookup of the dentry above.
1433 		 *
1434 		 * The memory barrier in read_seqcount_begin of child is
1435 		 *  enough, we can use __read_seqcount_retry here.
1436 		 */
1437 		if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1438 			return -ECHILD;
1439 		nd->seq = seq;
1440 
1441 		if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1442 			status = d_revalidate(dentry, nd->flags);
1443 			if (unlikely(status <= 0)) {
1444 				if (status != -ECHILD)
1445 					need_reval = 0;
1446 				goto unlazy;
1447 			}
1448 		}
1449 		path->mnt = mnt;
1450 		path->dentry = dentry;
1451 		if (likely(__follow_mount_rcu(nd, path, inode)))
1452 			return 0;
1453 unlazy:
1454 		if (unlazy_walk(nd, dentry))
1455 			return -ECHILD;
1456 	} else {
1457 		dentry = __d_lookup(parent, &nd->last);
1458 	}
1459 
1460 	if (unlikely(!dentry))
1461 		goto need_lookup;
1462 
1463 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1464 		status = d_revalidate(dentry, nd->flags);
1465 	if (unlikely(status <= 0)) {
1466 		if (status < 0) {
1467 			dput(dentry);
1468 			return status;
1469 		}
1470 		d_invalidate(dentry);
1471 		dput(dentry);
1472 		goto need_lookup;
1473 	}
1474 
1475 	path->mnt = mnt;
1476 	path->dentry = dentry;
1477 	err = follow_managed(path, nd->flags);
1478 	if (unlikely(err < 0)) {
1479 		path_put_conditional(path, nd);
1480 		return err;
1481 	}
1482 	if (err)
1483 		nd->flags |= LOOKUP_JUMPED;
1484 	*inode = path->dentry->d_inode;
1485 	return 0;
1486 
1487 need_lookup:
1488 	return 1;
1489 }
1490 
1491 /* Fast lookup failed, do it the slow way */
1492 static int lookup_slow(struct nameidata *nd, struct path *path)
1493 {
1494 	struct dentry *dentry, *parent;
1495 	int err;
1496 
1497 	parent = nd->path.dentry;
1498 	BUG_ON(nd->inode != parent->d_inode);
1499 
1500 	mutex_lock(&parent->d_inode->i_mutex);
1501 	dentry = __lookup_hash(&nd->last, parent, nd->flags);
1502 	mutex_unlock(&parent->d_inode->i_mutex);
1503 	if (IS_ERR(dentry))
1504 		return PTR_ERR(dentry);
1505 	path->mnt = nd->path.mnt;
1506 	path->dentry = dentry;
1507 	err = follow_managed(path, nd->flags);
1508 	if (unlikely(err < 0)) {
1509 		path_put_conditional(path, nd);
1510 		return err;
1511 	}
1512 	if (err)
1513 		nd->flags |= LOOKUP_JUMPED;
1514 	return 0;
1515 }
1516 
1517 static inline int may_lookup(struct nameidata *nd)
1518 {
1519 	if (nd->flags & LOOKUP_RCU) {
1520 		int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1521 		if (err != -ECHILD)
1522 			return err;
1523 		if (unlazy_walk(nd, NULL))
1524 			return -ECHILD;
1525 	}
1526 	return inode_permission(nd->inode, MAY_EXEC);
1527 }
1528 
1529 static inline int handle_dots(struct nameidata *nd, int type)
1530 {
1531 	if (type == LAST_DOTDOT) {
1532 		if (nd->flags & LOOKUP_RCU) {
1533 			if (follow_dotdot_rcu(nd))
1534 				return -ECHILD;
1535 		} else
1536 			follow_dotdot(nd);
1537 	}
1538 	return 0;
1539 }
1540 
1541 static void terminate_walk(struct nameidata *nd)
1542 {
1543 	if (!(nd->flags & LOOKUP_RCU)) {
1544 		path_put(&nd->path);
1545 	} else {
1546 		nd->flags &= ~LOOKUP_RCU;
1547 		if (!(nd->flags & LOOKUP_ROOT))
1548 			nd->root.mnt = NULL;
1549 		rcu_read_unlock();
1550 	}
1551 }
1552 
1553 /*
1554  * Do we need to follow links? We _really_ want to be able
1555  * to do this check without having to look at inode->i_op,
1556  * so we keep a cache of "no, this doesn't need follow_link"
1557  * for the common case.
1558  */
1559 static inline int should_follow_link(struct dentry *dentry, int follow)
1560 {
1561 	return unlikely(d_is_symlink(dentry)) ? follow : 0;
1562 }
1563 
1564 static inline int walk_component(struct nameidata *nd, struct path *path,
1565 		int follow)
1566 {
1567 	struct inode *inode;
1568 	int err;
1569 	/*
1570 	 * "." and ".." are special - ".." especially so because it has
1571 	 * to be able to know about the current root directory and
1572 	 * parent relationships.
1573 	 */
1574 	if (unlikely(nd->last_type != LAST_NORM))
1575 		return handle_dots(nd, nd->last_type);
1576 	err = lookup_fast(nd, path, &inode);
1577 	if (unlikely(err)) {
1578 		if (err < 0)
1579 			goto out_err;
1580 
1581 		err = lookup_slow(nd, path);
1582 		if (err < 0)
1583 			goto out_err;
1584 
1585 		inode = path->dentry->d_inode;
1586 	}
1587 	err = -ENOENT;
1588 	if (d_is_negative(path->dentry))
1589 		goto out_path_put;
1590 
1591 	if (should_follow_link(path->dentry, follow)) {
1592 		if (nd->flags & LOOKUP_RCU) {
1593 			if (unlikely(unlazy_walk(nd, path->dentry))) {
1594 				err = -ECHILD;
1595 				goto out_err;
1596 			}
1597 		}
1598 		BUG_ON(inode != path->dentry->d_inode);
1599 		return 1;
1600 	}
1601 	path_to_nameidata(path, nd);
1602 	nd->inode = inode;
1603 	return 0;
1604 
1605 out_path_put:
1606 	path_to_nameidata(path, nd);
1607 out_err:
1608 	terminate_walk(nd);
1609 	return err;
1610 }
1611 
1612 /*
1613  * This limits recursive symlink follows to 8, while
1614  * limiting consecutive symlinks to 40.
1615  *
1616  * Without that kind of total limit, nasty chains of consecutive
1617  * symlinks can cause almost arbitrarily long lookups.
1618  */
1619 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1620 {
1621 	int res;
1622 
1623 	if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1624 		path_put_conditional(path, nd);
1625 		path_put(&nd->path);
1626 		return -ELOOP;
1627 	}
1628 	BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1629 
1630 	nd->depth++;
1631 	current->link_count++;
1632 
1633 	do {
1634 		struct path link = *path;
1635 		void *cookie;
1636 
1637 		res = follow_link(&link, nd, &cookie);
1638 		if (res)
1639 			break;
1640 		res = walk_component(nd, path, LOOKUP_FOLLOW);
1641 		put_link(nd, &link, cookie);
1642 	} while (res > 0);
1643 
1644 	current->link_count--;
1645 	nd->depth--;
1646 	return res;
1647 }
1648 
1649 /*
1650  * We can do the critical dentry name comparison and hashing
1651  * operations one word at a time, but we are limited to:
1652  *
1653  * - Architectures with fast unaligned word accesses. We could
1654  *   do a "get_unaligned()" if this helps and is sufficiently
1655  *   fast.
1656  *
1657  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1658  *   do not trap on the (extremely unlikely) case of a page
1659  *   crossing operation.
1660  *
1661  * - Furthermore, we need an efficient 64-bit compile for the
1662  *   64-bit case in order to generate the "number of bytes in
1663  *   the final mask". Again, that could be replaced with a
1664  *   efficient population count instruction or similar.
1665  */
1666 #ifdef CONFIG_DCACHE_WORD_ACCESS
1667 
1668 #include <asm/word-at-a-time.h>
1669 
1670 #ifdef CONFIG_64BIT
1671 
1672 static inline unsigned int fold_hash(unsigned long hash)
1673 {
1674 	return hash_64(hash, 32);
1675 }
1676 
1677 #else	/* 32-bit case */
1678 
1679 #define fold_hash(x) (x)
1680 
1681 #endif
1682 
1683 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1684 {
1685 	unsigned long a, mask;
1686 	unsigned long hash = 0;
1687 
1688 	for (;;) {
1689 		a = load_unaligned_zeropad(name);
1690 		if (len < sizeof(unsigned long))
1691 			break;
1692 		hash += a;
1693 		hash *= 9;
1694 		name += sizeof(unsigned long);
1695 		len -= sizeof(unsigned long);
1696 		if (!len)
1697 			goto done;
1698 	}
1699 	mask = bytemask_from_count(len);
1700 	hash += mask & a;
1701 done:
1702 	return fold_hash(hash);
1703 }
1704 EXPORT_SYMBOL(full_name_hash);
1705 
1706 /*
1707  * Calculate the length and hash of the path component, and
1708  * return the "hash_len" as the result.
1709  */
1710 static inline u64 hash_name(const char *name)
1711 {
1712 	unsigned long a, b, adata, bdata, mask, hash, len;
1713 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1714 
1715 	hash = a = 0;
1716 	len = -sizeof(unsigned long);
1717 	do {
1718 		hash = (hash + a) * 9;
1719 		len += sizeof(unsigned long);
1720 		a = load_unaligned_zeropad(name+len);
1721 		b = a ^ REPEAT_BYTE('/');
1722 	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1723 
1724 	adata = prep_zero_mask(a, adata, &constants);
1725 	bdata = prep_zero_mask(b, bdata, &constants);
1726 
1727 	mask = create_zero_mask(adata | bdata);
1728 
1729 	hash += a & zero_bytemask(mask);
1730 	len += find_zero(mask);
1731 	return hashlen_create(fold_hash(hash), len);
1732 }
1733 
1734 #else
1735 
1736 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1737 {
1738 	unsigned long hash = init_name_hash();
1739 	while (len--)
1740 		hash = partial_name_hash(*name++, hash);
1741 	return end_name_hash(hash);
1742 }
1743 EXPORT_SYMBOL(full_name_hash);
1744 
1745 /*
1746  * We know there's a real path component here of at least
1747  * one character.
1748  */
1749 static inline u64 hash_name(const char *name)
1750 {
1751 	unsigned long hash = init_name_hash();
1752 	unsigned long len = 0, c;
1753 
1754 	c = (unsigned char)*name;
1755 	do {
1756 		len++;
1757 		hash = partial_name_hash(c, hash);
1758 		c = (unsigned char)name[len];
1759 	} while (c && c != '/');
1760 	return hashlen_create(end_name_hash(hash), len);
1761 }
1762 
1763 #endif
1764 
1765 /*
1766  * Name resolution.
1767  * This is the basic name resolution function, turning a pathname into
1768  * the final dentry. We expect 'base' to be positive and a directory.
1769  *
1770  * Returns 0 and nd will have valid dentry and mnt on success.
1771  * Returns error and drops reference to input namei data on failure.
1772  */
1773 static int link_path_walk(const char *name, struct nameidata *nd)
1774 {
1775 	struct path next;
1776 	int err;
1777 
1778 	while (*name=='/')
1779 		name++;
1780 	if (!*name)
1781 		return 0;
1782 
1783 	/* At this point we know we have a real path component. */
1784 	for(;;) {
1785 		u64 hash_len;
1786 		int type;
1787 
1788 		err = may_lookup(nd);
1789  		if (err)
1790 			break;
1791 
1792 		hash_len = hash_name(name);
1793 
1794 		type = LAST_NORM;
1795 		if (name[0] == '.') switch (hashlen_len(hash_len)) {
1796 			case 2:
1797 				if (name[1] == '.') {
1798 					type = LAST_DOTDOT;
1799 					nd->flags |= LOOKUP_JUMPED;
1800 				}
1801 				break;
1802 			case 1:
1803 				type = LAST_DOT;
1804 		}
1805 		if (likely(type == LAST_NORM)) {
1806 			struct dentry *parent = nd->path.dentry;
1807 			nd->flags &= ~LOOKUP_JUMPED;
1808 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1809 				struct qstr this = { { .hash_len = hash_len }, .name = name };
1810 				err = parent->d_op->d_hash(parent, &this);
1811 				if (err < 0)
1812 					break;
1813 				hash_len = this.hash_len;
1814 				name = this.name;
1815 			}
1816 		}
1817 
1818 		nd->last.hash_len = hash_len;
1819 		nd->last.name = name;
1820 		nd->last_type = type;
1821 
1822 		name += hashlen_len(hash_len);
1823 		if (!*name)
1824 			return 0;
1825 		/*
1826 		 * If it wasn't NUL, we know it was '/'. Skip that
1827 		 * slash, and continue until no more slashes.
1828 		 */
1829 		do {
1830 			name++;
1831 		} while (unlikely(*name == '/'));
1832 		if (!*name)
1833 			return 0;
1834 
1835 		err = walk_component(nd, &next, LOOKUP_FOLLOW);
1836 		if (err < 0)
1837 			return err;
1838 
1839 		if (err) {
1840 			err = nested_symlink(&next, nd);
1841 			if (err)
1842 				return err;
1843 		}
1844 		if (!d_can_lookup(nd->path.dentry)) {
1845 			err = -ENOTDIR;
1846 			break;
1847 		}
1848 	}
1849 	terminate_walk(nd);
1850 	return err;
1851 }
1852 
1853 static int path_init(int dfd, const struct filename *name, unsigned int flags,
1854 		     struct nameidata *nd)
1855 {
1856 	int retval = 0;
1857 	const char *s = name->name;
1858 
1859 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
1860 	nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
1861 	nd->depth = 0;
1862 	nd->base = NULL;
1863 	if (flags & LOOKUP_ROOT) {
1864 		struct dentry *root = nd->root.dentry;
1865 		struct inode *inode = root->d_inode;
1866 		if (*s) {
1867 			if (!d_can_lookup(root))
1868 				return -ENOTDIR;
1869 			retval = inode_permission(inode, MAY_EXEC);
1870 			if (retval)
1871 				return retval;
1872 		}
1873 		nd->path = nd->root;
1874 		nd->inode = inode;
1875 		if (flags & LOOKUP_RCU) {
1876 			rcu_read_lock();
1877 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1878 			nd->m_seq = read_seqbegin(&mount_lock);
1879 		} else {
1880 			path_get(&nd->path);
1881 		}
1882 		goto done;
1883 	}
1884 
1885 	nd->root.mnt = NULL;
1886 
1887 	nd->m_seq = read_seqbegin(&mount_lock);
1888 	if (*s == '/') {
1889 		if (flags & LOOKUP_RCU) {
1890 			rcu_read_lock();
1891 			nd->seq = set_root_rcu(nd);
1892 		} else {
1893 			set_root(nd);
1894 			path_get(&nd->root);
1895 		}
1896 		nd->path = nd->root;
1897 	} else if (dfd == AT_FDCWD) {
1898 		if (flags & LOOKUP_RCU) {
1899 			struct fs_struct *fs = current->fs;
1900 			unsigned seq;
1901 
1902 			rcu_read_lock();
1903 
1904 			do {
1905 				seq = read_seqcount_begin(&fs->seq);
1906 				nd->path = fs->pwd;
1907 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1908 			} while (read_seqcount_retry(&fs->seq, seq));
1909 		} else {
1910 			get_fs_pwd(current->fs, &nd->path);
1911 		}
1912 	} else {
1913 		/* Caller must check execute permissions on the starting path component */
1914 		struct fd f = fdget_raw(dfd);
1915 		struct dentry *dentry;
1916 
1917 		if (!f.file)
1918 			return -EBADF;
1919 
1920 		dentry = f.file->f_path.dentry;
1921 
1922 		if (*s) {
1923 			if (!d_can_lookup(dentry)) {
1924 				fdput(f);
1925 				return -ENOTDIR;
1926 			}
1927 		}
1928 
1929 		nd->path = f.file->f_path;
1930 		if (flags & LOOKUP_RCU) {
1931 			if (f.flags & FDPUT_FPUT)
1932 				nd->base = f.file;
1933 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1934 			rcu_read_lock();
1935 		} else {
1936 			path_get(&nd->path);
1937 			fdput(f);
1938 		}
1939 	}
1940 
1941 	nd->inode = nd->path.dentry->d_inode;
1942 	if (!(flags & LOOKUP_RCU))
1943 		goto done;
1944 	if (likely(!read_seqcount_retry(&nd->path.dentry->d_seq, nd->seq)))
1945 		goto done;
1946 	if (!(nd->flags & LOOKUP_ROOT))
1947 		nd->root.mnt = NULL;
1948 	rcu_read_unlock();
1949 	return -ECHILD;
1950 done:
1951 	current->total_link_count = 0;
1952 	return link_path_walk(s, nd);
1953 }
1954 
1955 static void path_cleanup(struct nameidata *nd)
1956 {
1957 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1958 		path_put(&nd->root);
1959 		nd->root.mnt = NULL;
1960 	}
1961 	if (unlikely(nd->base))
1962 		fput(nd->base);
1963 }
1964 
1965 static inline int lookup_last(struct nameidata *nd, struct path *path)
1966 {
1967 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1968 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1969 
1970 	nd->flags &= ~LOOKUP_PARENT;
1971 	return walk_component(nd, path, nd->flags & LOOKUP_FOLLOW);
1972 }
1973 
1974 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1975 static int path_lookupat(int dfd, const struct filename *name,
1976 				unsigned int flags, struct nameidata *nd)
1977 {
1978 	struct path path;
1979 	int err;
1980 
1981 	/*
1982 	 * Path walking is largely split up into 2 different synchronisation
1983 	 * schemes, rcu-walk and ref-walk (explained in
1984 	 * Documentation/filesystems/path-lookup.txt). These share much of the
1985 	 * path walk code, but some things particularly setup, cleanup, and
1986 	 * following mounts are sufficiently divergent that functions are
1987 	 * duplicated. Typically there is a function foo(), and its RCU
1988 	 * analogue, foo_rcu().
1989 	 *
1990 	 * -ECHILD is the error number of choice (just to avoid clashes) that
1991 	 * is returned if some aspect of an rcu-walk fails. Such an error must
1992 	 * be handled by restarting a traditional ref-walk (which will always
1993 	 * be able to complete).
1994 	 */
1995 	err = path_init(dfd, name, flags, nd);
1996 	if (!err && !(flags & LOOKUP_PARENT)) {
1997 		err = lookup_last(nd, &path);
1998 		while (err > 0) {
1999 			void *cookie;
2000 			struct path link = path;
2001 			err = may_follow_link(&link, nd);
2002 			if (unlikely(err))
2003 				break;
2004 			nd->flags |= LOOKUP_PARENT;
2005 			err = follow_link(&link, nd, &cookie);
2006 			if (err)
2007 				break;
2008 			err = lookup_last(nd, &path);
2009 			put_link(nd, &link, cookie);
2010 		}
2011 	}
2012 
2013 	if (!err)
2014 		err = complete_walk(nd);
2015 
2016 	if (!err && nd->flags & LOOKUP_DIRECTORY) {
2017 		if (!d_can_lookup(nd->path.dentry)) {
2018 			path_put(&nd->path);
2019 			err = -ENOTDIR;
2020 		}
2021 	}
2022 
2023 	path_cleanup(nd);
2024 	return err;
2025 }
2026 
2027 static int filename_lookup(int dfd, struct filename *name,
2028 				unsigned int flags, struct nameidata *nd)
2029 {
2030 	int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd);
2031 	if (unlikely(retval == -ECHILD))
2032 		retval = path_lookupat(dfd, name, flags, nd);
2033 	if (unlikely(retval == -ESTALE))
2034 		retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd);
2035 
2036 	if (likely(!retval))
2037 		audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT);
2038 	return retval;
2039 }
2040 
2041 /* does lookup, returns the object with parent locked */
2042 struct dentry *kern_path_locked(const char *name, struct path *path)
2043 {
2044 	struct filename *filename = getname_kernel(name);
2045 	struct nameidata nd;
2046 	struct dentry *d;
2047 	int err;
2048 
2049 	if (IS_ERR(filename))
2050 		return ERR_CAST(filename);
2051 
2052 	err = filename_lookup(AT_FDCWD, filename, LOOKUP_PARENT, &nd);
2053 	if (err) {
2054 		d = ERR_PTR(err);
2055 		goto out;
2056 	}
2057 	if (nd.last_type != LAST_NORM) {
2058 		path_put(&nd.path);
2059 		d = ERR_PTR(-EINVAL);
2060 		goto out;
2061 	}
2062 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2063 	d = __lookup_hash(&nd.last, nd.path.dentry, 0);
2064 	if (IS_ERR(d)) {
2065 		mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2066 		path_put(&nd.path);
2067 		goto out;
2068 	}
2069 	*path = nd.path;
2070 out:
2071 	putname(filename);
2072 	return d;
2073 }
2074 
2075 int kern_path(const char *name, unsigned int flags, struct path *path)
2076 {
2077 	struct nameidata nd;
2078 	struct filename *filename = getname_kernel(name);
2079 	int res = PTR_ERR(filename);
2080 
2081 	if (!IS_ERR(filename)) {
2082 		res = filename_lookup(AT_FDCWD, filename, flags, &nd);
2083 		putname(filename);
2084 		if (!res)
2085 			*path = nd.path;
2086 	}
2087 	return res;
2088 }
2089 EXPORT_SYMBOL(kern_path);
2090 
2091 /**
2092  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2093  * @dentry:  pointer to dentry of the base directory
2094  * @mnt: pointer to vfs mount of the base directory
2095  * @name: pointer to file name
2096  * @flags: lookup flags
2097  * @path: pointer to struct path to fill
2098  */
2099 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2100 		    const char *name, unsigned int flags,
2101 		    struct path *path)
2102 {
2103 	struct filename *filename = getname_kernel(name);
2104 	int err = PTR_ERR(filename);
2105 
2106 	BUG_ON(flags & LOOKUP_PARENT);
2107 
2108 	/* the first argument of filename_lookup() is ignored with LOOKUP_ROOT */
2109 	if (!IS_ERR(filename)) {
2110 		struct nameidata nd;
2111 		nd.root.dentry = dentry;
2112 		nd.root.mnt = mnt;
2113 		err = filename_lookup(AT_FDCWD, filename,
2114 				      flags | LOOKUP_ROOT, &nd);
2115 		if (!err)
2116 			*path = nd.path;
2117 		putname(filename);
2118 	}
2119 	return err;
2120 }
2121 EXPORT_SYMBOL(vfs_path_lookup);
2122 
2123 /*
2124  * Restricted form of lookup. Doesn't follow links, single-component only,
2125  * needs parent already locked. Doesn't follow mounts.
2126  * SMP-safe.
2127  */
2128 static struct dentry *lookup_hash(struct nameidata *nd)
2129 {
2130 	return __lookup_hash(&nd->last, nd->path.dentry, nd->flags);
2131 }
2132 
2133 /**
2134  * lookup_one_len - filesystem helper to lookup single pathname component
2135  * @name:	pathname component to lookup
2136  * @base:	base directory to lookup from
2137  * @len:	maximum length @len should be interpreted to
2138  *
2139  * Note that this routine is purely a helper for filesystem usage and should
2140  * not be called by generic code.
2141  */
2142 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2143 {
2144 	struct qstr this;
2145 	unsigned int c;
2146 	int err;
2147 
2148 	WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2149 
2150 	this.name = name;
2151 	this.len = len;
2152 	this.hash = full_name_hash(name, len);
2153 	if (!len)
2154 		return ERR_PTR(-EACCES);
2155 
2156 	if (unlikely(name[0] == '.')) {
2157 		if (len < 2 || (len == 2 && name[1] == '.'))
2158 			return ERR_PTR(-EACCES);
2159 	}
2160 
2161 	while (len--) {
2162 		c = *(const unsigned char *)name++;
2163 		if (c == '/' || c == '\0')
2164 			return ERR_PTR(-EACCES);
2165 	}
2166 	/*
2167 	 * See if the low-level filesystem might want
2168 	 * to use its own hash..
2169 	 */
2170 	if (base->d_flags & DCACHE_OP_HASH) {
2171 		int err = base->d_op->d_hash(base, &this);
2172 		if (err < 0)
2173 			return ERR_PTR(err);
2174 	}
2175 
2176 	err = inode_permission(base->d_inode, MAY_EXEC);
2177 	if (err)
2178 		return ERR_PTR(err);
2179 
2180 	return __lookup_hash(&this, base, 0);
2181 }
2182 EXPORT_SYMBOL(lookup_one_len);
2183 
2184 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2185 		 struct path *path, int *empty)
2186 {
2187 	struct nameidata nd;
2188 	struct filename *tmp = getname_flags(name, flags, empty);
2189 	int err = PTR_ERR(tmp);
2190 	if (!IS_ERR(tmp)) {
2191 
2192 		BUG_ON(flags & LOOKUP_PARENT);
2193 
2194 		err = filename_lookup(dfd, tmp, flags, &nd);
2195 		putname(tmp);
2196 		if (!err)
2197 			*path = nd.path;
2198 	}
2199 	return err;
2200 }
2201 
2202 int user_path_at(int dfd, const char __user *name, unsigned flags,
2203 		 struct path *path)
2204 {
2205 	return user_path_at_empty(dfd, name, flags, path, NULL);
2206 }
2207 EXPORT_SYMBOL(user_path_at);
2208 
2209 /*
2210  * NB: most callers don't do anything directly with the reference to the
2211  *     to struct filename, but the nd->last pointer points into the name string
2212  *     allocated by getname. So we must hold the reference to it until all
2213  *     path-walking is complete.
2214  */
2215 static struct filename *
2216 user_path_parent(int dfd, const char __user *path, struct nameidata *nd,
2217 		 unsigned int flags)
2218 {
2219 	struct filename *s = getname(path);
2220 	int error;
2221 
2222 	/* only LOOKUP_REVAL is allowed in extra flags */
2223 	flags &= LOOKUP_REVAL;
2224 
2225 	if (IS_ERR(s))
2226 		return s;
2227 
2228 	error = filename_lookup(dfd, s, flags | LOOKUP_PARENT, nd);
2229 	if (error) {
2230 		putname(s);
2231 		return ERR_PTR(error);
2232 	}
2233 
2234 	return s;
2235 }
2236 
2237 /**
2238  * mountpoint_last - look up last component for umount
2239  * @nd:   pathwalk nameidata - currently pointing at parent directory of "last"
2240  * @path: pointer to container for result
2241  *
2242  * This is a special lookup_last function just for umount. In this case, we
2243  * need to resolve the path without doing any revalidation.
2244  *
2245  * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2246  * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2247  * in almost all cases, this lookup will be served out of the dcache. The only
2248  * cases where it won't are if nd->last refers to a symlink or the path is
2249  * bogus and it doesn't exist.
2250  *
2251  * Returns:
2252  * -error: if there was an error during lookup. This includes -ENOENT if the
2253  *         lookup found a negative dentry. The nd->path reference will also be
2254  *         put in this case.
2255  *
2256  * 0:      if we successfully resolved nd->path and found it to not to be a
2257  *         symlink that needs to be followed. "path" will also be populated.
2258  *         The nd->path reference will also be put.
2259  *
2260  * 1:      if we successfully resolved nd->last and found it to be a symlink
2261  *         that needs to be followed. "path" will be populated with the path
2262  *         to the link, and nd->path will *not* be put.
2263  */
2264 static int
2265 mountpoint_last(struct nameidata *nd, struct path *path)
2266 {
2267 	int error = 0;
2268 	struct dentry *dentry;
2269 	struct dentry *dir = nd->path.dentry;
2270 
2271 	/* If we're in rcuwalk, drop out of it to handle last component */
2272 	if (nd->flags & LOOKUP_RCU) {
2273 		if (unlazy_walk(nd, NULL)) {
2274 			error = -ECHILD;
2275 			goto out;
2276 		}
2277 	}
2278 
2279 	nd->flags &= ~LOOKUP_PARENT;
2280 
2281 	if (unlikely(nd->last_type != LAST_NORM)) {
2282 		error = handle_dots(nd, nd->last_type);
2283 		if (error)
2284 			goto out;
2285 		dentry = dget(nd->path.dentry);
2286 		goto done;
2287 	}
2288 
2289 	mutex_lock(&dir->d_inode->i_mutex);
2290 	dentry = d_lookup(dir, &nd->last);
2291 	if (!dentry) {
2292 		/*
2293 		 * No cached dentry. Mounted dentries are pinned in the cache,
2294 		 * so that means that this dentry is probably a symlink or the
2295 		 * path doesn't actually point to a mounted dentry.
2296 		 */
2297 		dentry = d_alloc(dir, &nd->last);
2298 		if (!dentry) {
2299 			error = -ENOMEM;
2300 			mutex_unlock(&dir->d_inode->i_mutex);
2301 			goto out;
2302 		}
2303 		dentry = lookup_real(dir->d_inode, dentry, nd->flags);
2304 		error = PTR_ERR(dentry);
2305 		if (IS_ERR(dentry)) {
2306 			mutex_unlock(&dir->d_inode->i_mutex);
2307 			goto out;
2308 		}
2309 	}
2310 	mutex_unlock(&dir->d_inode->i_mutex);
2311 
2312 done:
2313 	if (d_is_negative(dentry)) {
2314 		error = -ENOENT;
2315 		dput(dentry);
2316 		goto out;
2317 	}
2318 	path->dentry = dentry;
2319 	path->mnt = nd->path.mnt;
2320 	if (should_follow_link(dentry, nd->flags & LOOKUP_FOLLOW))
2321 		return 1;
2322 	mntget(path->mnt);
2323 	follow_mount(path);
2324 	error = 0;
2325 out:
2326 	terminate_walk(nd);
2327 	return error;
2328 }
2329 
2330 /**
2331  * path_mountpoint - look up a path to be umounted
2332  * @dfd:	directory file descriptor to start walk from
2333  * @name:	full pathname to walk
2334  * @path:	pointer to container for result
2335  * @flags:	lookup flags
2336  *
2337  * Look up the given name, but don't attempt to revalidate the last component.
2338  * Returns 0 and "path" will be valid on success; Returns error otherwise.
2339  */
2340 static int
2341 path_mountpoint(int dfd, const struct filename *name, struct path *path,
2342 		unsigned int flags)
2343 {
2344 	struct nameidata nd;
2345 	int err;
2346 
2347 	err = path_init(dfd, name, flags, &nd);
2348 	if (unlikely(err))
2349 		goto out;
2350 
2351 	err = mountpoint_last(&nd, path);
2352 	while (err > 0) {
2353 		void *cookie;
2354 		struct path link = *path;
2355 		err = may_follow_link(&link, &nd);
2356 		if (unlikely(err))
2357 			break;
2358 		nd.flags |= LOOKUP_PARENT;
2359 		err = follow_link(&link, &nd, &cookie);
2360 		if (err)
2361 			break;
2362 		err = mountpoint_last(&nd, path);
2363 		put_link(&nd, &link, cookie);
2364 	}
2365 out:
2366 	path_cleanup(&nd);
2367 	return err;
2368 }
2369 
2370 static int
2371 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2372 			unsigned int flags)
2373 {
2374 	int error;
2375 	if (IS_ERR(name))
2376 		return PTR_ERR(name);
2377 	error = path_mountpoint(dfd, name, path, flags | LOOKUP_RCU);
2378 	if (unlikely(error == -ECHILD))
2379 		error = path_mountpoint(dfd, name, path, flags);
2380 	if (unlikely(error == -ESTALE))
2381 		error = path_mountpoint(dfd, name, path, flags | LOOKUP_REVAL);
2382 	if (likely(!error))
2383 		audit_inode(name, path->dentry, 0);
2384 	putname(name);
2385 	return error;
2386 }
2387 
2388 /**
2389  * user_path_mountpoint_at - lookup a path from userland in order to umount it
2390  * @dfd:	directory file descriptor
2391  * @name:	pathname from userland
2392  * @flags:	lookup flags
2393  * @path:	pointer to container to hold result
2394  *
2395  * A umount is a special case for path walking. We're not actually interested
2396  * in the inode in this situation, and ESTALE errors can be a problem. We
2397  * simply want track down the dentry and vfsmount attached at the mountpoint
2398  * and avoid revalidating the last component.
2399  *
2400  * Returns 0 and populates "path" on success.
2401  */
2402 int
2403 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2404 			struct path *path)
2405 {
2406 	return filename_mountpoint(dfd, getname(name), path, flags);
2407 }
2408 
2409 int
2410 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2411 			unsigned int flags)
2412 {
2413 	return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2414 }
2415 EXPORT_SYMBOL(kern_path_mountpoint);
2416 
2417 int __check_sticky(struct inode *dir, struct inode *inode)
2418 {
2419 	kuid_t fsuid = current_fsuid();
2420 
2421 	if (uid_eq(inode->i_uid, fsuid))
2422 		return 0;
2423 	if (uid_eq(dir->i_uid, fsuid))
2424 		return 0;
2425 	return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2426 }
2427 EXPORT_SYMBOL(__check_sticky);
2428 
2429 /*
2430  *	Check whether we can remove a link victim from directory dir, check
2431  *  whether the type of victim is right.
2432  *  1. We can't do it if dir is read-only (done in permission())
2433  *  2. We should have write and exec permissions on dir
2434  *  3. We can't remove anything from append-only dir
2435  *  4. We can't do anything with immutable dir (done in permission())
2436  *  5. If the sticky bit on dir is set we should either
2437  *	a. be owner of dir, or
2438  *	b. be owner of victim, or
2439  *	c. have CAP_FOWNER capability
2440  *  6. If the victim is append-only or immutable we can't do antyhing with
2441  *     links pointing to it.
2442  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2443  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2444  *  9. We can't remove a root or mountpoint.
2445  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2446  *     nfs_async_unlink().
2447  */
2448 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2449 {
2450 	struct inode *inode = victim->d_inode;
2451 	int error;
2452 
2453 	if (d_is_negative(victim))
2454 		return -ENOENT;
2455 	BUG_ON(!inode);
2456 
2457 	BUG_ON(victim->d_parent->d_inode != dir);
2458 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2459 
2460 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2461 	if (error)
2462 		return error;
2463 	if (IS_APPEND(dir))
2464 		return -EPERM;
2465 
2466 	if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2467 	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2468 		return -EPERM;
2469 	if (isdir) {
2470 		if (!d_is_dir(victim))
2471 			return -ENOTDIR;
2472 		if (IS_ROOT(victim))
2473 			return -EBUSY;
2474 	} else if (d_is_dir(victim))
2475 		return -EISDIR;
2476 	if (IS_DEADDIR(dir))
2477 		return -ENOENT;
2478 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2479 		return -EBUSY;
2480 	return 0;
2481 }
2482 
2483 /*	Check whether we can create an object with dentry child in directory
2484  *  dir.
2485  *  1. We can't do it if child already exists (open has special treatment for
2486  *     this case, but since we are inlined it's OK)
2487  *  2. We can't do it if dir is read-only (done in permission())
2488  *  3. We should have write and exec permissions on dir
2489  *  4. We can't do it if dir is immutable (done in permission())
2490  */
2491 static inline int may_create(struct inode *dir, struct dentry *child)
2492 {
2493 	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2494 	if (child->d_inode)
2495 		return -EEXIST;
2496 	if (IS_DEADDIR(dir))
2497 		return -ENOENT;
2498 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2499 }
2500 
2501 /*
2502  * p1 and p2 should be directories on the same fs.
2503  */
2504 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2505 {
2506 	struct dentry *p;
2507 
2508 	if (p1 == p2) {
2509 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2510 		return NULL;
2511 	}
2512 
2513 	mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2514 
2515 	p = d_ancestor(p2, p1);
2516 	if (p) {
2517 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2518 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2519 		return p;
2520 	}
2521 
2522 	p = d_ancestor(p1, p2);
2523 	if (p) {
2524 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2525 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2526 		return p;
2527 	}
2528 
2529 	mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2530 	mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT2);
2531 	return NULL;
2532 }
2533 EXPORT_SYMBOL(lock_rename);
2534 
2535 void unlock_rename(struct dentry *p1, struct dentry *p2)
2536 {
2537 	mutex_unlock(&p1->d_inode->i_mutex);
2538 	if (p1 != p2) {
2539 		mutex_unlock(&p2->d_inode->i_mutex);
2540 		mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2541 	}
2542 }
2543 EXPORT_SYMBOL(unlock_rename);
2544 
2545 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2546 		bool want_excl)
2547 {
2548 	int error = may_create(dir, dentry);
2549 	if (error)
2550 		return error;
2551 
2552 	if (!dir->i_op->create)
2553 		return -EACCES;	/* shouldn't it be ENOSYS? */
2554 	mode &= S_IALLUGO;
2555 	mode |= S_IFREG;
2556 	error = security_inode_create(dir, dentry, mode);
2557 	if (error)
2558 		return error;
2559 	error = dir->i_op->create(dir, dentry, mode, want_excl);
2560 	if (!error)
2561 		fsnotify_create(dir, dentry);
2562 	return error;
2563 }
2564 EXPORT_SYMBOL(vfs_create);
2565 
2566 static int may_open(struct path *path, int acc_mode, int flag)
2567 {
2568 	struct dentry *dentry = path->dentry;
2569 	struct inode *inode = dentry->d_inode;
2570 	int error;
2571 
2572 	/* O_PATH? */
2573 	if (!acc_mode)
2574 		return 0;
2575 
2576 	if (!inode)
2577 		return -ENOENT;
2578 
2579 	switch (inode->i_mode & S_IFMT) {
2580 	case S_IFLNK:
2581 		return -ELOOP;
2582 	case S_IFDIR:
2583 		if (acc_mode & MAY_WRITE)
2584 			return -EISDIR;
2585 		break;
2586 	case S_IFBLK:
2587 	case S_IFCHR:
2588 		if (path->mnt->mnt_flags & MNT_NODEV)
2589 			return -EACCES;
2590 		/*FALLTHRU*/
2591 	case S_IFIFO:
2592 	case S_IFSOCK:
2593 		flag &= ~O_TRUNC;
2594 		break;
2595 	}
2596 
2597 	error = inode_permission(inode, acc_mode);
2598 	if (error)
2599 		return error;
2600 
2601 	/*
2602 	 * An append-only file must be opened in append mode for writing.
2603 	 */
2604 	if (IS_APPEND(inode)) {
2605 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2606 			return -EPERM;
2607 		if (flag & O_TRUNC)
2608 			return -EPERM;
2609 	}
2610 
2611 	/* O_NOATIME can only be set by the owner or superuser */
2612 	if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2613 		return -EPERM;
2614 
2615 	return 0;
2616 }
2617 
2618 static int handle_truncate(struct file *filp)
2619 {
2620 	struct path *path = &filp->f_path;
2621 	struct inode *inode = path->dentry->d_inode;
2622 	int error = get_write_access(inode);
2623 	if (error)
2624 		return error;
2625 	/*
2626 	 * Refuse to truncate files with mandatory locks held on them.
2627 	 */
2628 	error = locks_verify_locked(filp);
2629 	if (!error)
2630 		error = security_path_truncate(path);
2631 	if (!error) {
2632 		error = do_truncate(path->dentry, 0,
2633 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2634 				    filp);
2635 	}
2636 	put_write_access(inode);
2637 	return error;
2638 }
2639 
2640 static inline int open_to_namei_flags(int flag)
2641 {
2642 	if ((flag & O_ACCMODE) == 3)
2643 		flag--;
2644 	return flag;
2645 }
2646 
2647 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2648 {
2649 	int error = security_path_mknod(dir, dentry, mode, 0);
2650 	if (error)
2651 		return error;
2652 
2653 	error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2654 	if (error)
2655 		return error;
2656 
2657 	return security_inode_create(dir->dentry->d_inode, dentry, mode);
2658 }
2659 
2660 /*
2661  * Attempt to atomically look up, create and open a file from a negative
2662  * dentry.
2663  *
2664  * Returns 0 if successful.  The file will have been created and attached to
2665  * @file by the filesystem calling finish_open().
2666  *
2667  * Returns 1 if the file was looked up only or didn't need creating.  The
2668  * caller will need to perform the open themselves.  @path will have been
2669  * updated to point to the new dentry.  This may be negative.
2670  *
2671  * Returns an error code otherwise.
2672  */
2673 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2674 			struct path *path, struct file *file,
2675 			const struct open_flags *op,
2676 			bool got_write, bool need_lookup,
2677 			int *opened)
2678 {
2679 	struct inode *dir =  nd->path.dentry->d_inode;
2680 	unsigned open_flag = open_to_namei_flags(op->open_flag);
2681 	umode_t mode;
2682 	int error;
2683 	int acc_mode;
2684 	int create_error = 0;
2685 	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2686 	bool excl;
2687 
2688 	BUG_ON(dentry->d_inode);
2689 
2690 	/* Don't create child dentry for a dead directory. */
2691 	if (unlikely(IS_DEADDIR(dir))) {
2692 		error = -ENOENT;
2693 		goto out;
2694 	}
2695 
2696 	mode = op->mode;
2697 	if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2698 		mode &= ~current_umask();
2699 
2700 	excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT);
2701 	if (excl)
2702 		open_flag &= ~O_TRUNC;
2703 
2704 	/*
2705 	 * Checking write permission is tricky, bacuse we don't know if we are
2706 	 * going to actually need it: O_CREAT opens should work as long as the
2707 	 * file exists.  But checking existence breaks atomicity.  The trick is
2708 	 * to check access and if not granted clear O_CREAT from the flags.
2709 	 *
2710 	 * Another problem is returing the "right" error value (e.g. for an
2711 	 * O_EXCL open we want to return EEXIST not EROFS).
2712 	 */
2713 	if (((open_flag & (O_CREAT | O_TRUNC)) ||
2714 	    (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2715 		if (!(open_flag & O_CREAT)) {
2716 			/*
2717 			 * No O_CREATE -> atomicity not a requirement -> fall
2718 			 * back to lookup + open
2719 			 */
2720 			goto no_open;
2721 		} else if (open_flag & (O_EXCL | O_TRUNC)) {
2722 			/* Fall back and fail with the right error */
2723 			create_error = -EROFS;
2724 			goto no_open;
2725 		} else {
2726 			/* No side effects, safe to clear O_CREAT */
2727 			create_error = -EROFS;
2728 			open_flag &= ~O_CREAT;
2729 		}
2730 	}
2731 
2732 	if (open_flag & O_CREAT) {
2733 		error = may_o_create(&nd->path, dentry, mode);
2734 		if (error) {
2735 			create_error = error;
2736 			if (open_flag & O_EXCL)
2737 				goto no_open;
2738 			open_flag &= ~O_CREAT;
2739 		}
2740 	}
2741 
2742 	if (nd->flags & LOOKUP_DIRECTORY)
2743 		open_flag |= O_DIRECTORY;
2744 
2745 	file->f_path.dentry = DENTRY_NOT_SET;
2746 	file->f_path.mnt = nd->path.mnt;
2747 	error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2748 				      opened);
2749 	if (error < 0) {
2750 		if (create_error && error == -ENOENT)
2751 			error = create_error;
2752 		goto out;
2753 	}
2754 
2755 	if (error) {	/* returned 1, that is */
2756 		if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2757 			error = -EIO;
2758 			goto out;
2759 		}
2760 		if (file->f_path.dentry) {
2761 			dput(dentry);
2762 			dentry = file->f_path.dentry;
2763 		}
2764 		if (*opened & FILE_CREATED)
2765 			fsnotify_create(dir, dentry);
2766 		if (!dentry->d_inode) {
2767 			WARN_ON(*opened & FILE_CREATED);
2768 			if (create_error) {
2769 				error = create_error;
2770 				goto out;
2771 			}
2772 		} else {
2773 			if (excl && !(*opened & FILE_CREATED)) {
2774 				error = -EEXIST;
2775 				goto out;
2776 			}
2777 		}
2778 		goto looked_up;
2779 	}
2780 
2781 	/*
2782 	 * We didn't have the inode before the open, so check open permission
2783 	 * here.
2784 	 */
2785 	acc_mode = op->acc_mode;
2786 	if (*opened & FILE_CREATED) {
2787 		WARN_ON(!(open_flag & O_CREAT));
2788 		fsnotify_create(dir, dentry);
2789 		acc_mode = MAY_OPEN;
2790 	}
2791 	error = may_open(&file->f_path, acc_mode, open_flag);
2792 	if (error)
2793 		fput(file);
2794 
2795 out:
2796 	dput(dentry);
2797 	return error;
2798 
2799 no_open:
2800 	if (need_lookup) {
2801 		dentry = lookup_real(dir, dentry, nd->flags);
2802 		if (IS_ERR(dentry))
2803 			return PTR_ERR(dentry);
2804 
2805 		if (create_error) {
2806 			int open_flag = op->open_flag;
2807 
2808 			error = create_error;
2809 			if ((open_flag & O_EXCL)) {
2810 				if (!dentry->d_inode)
2811 					goto out;
2812 			} else if (!dentry->d_inode) {
2813 				goto out;
2814 			} else if ((open_flag & O_TRUNC) &&
2815 				   d_is_reg(dentry)) {
2816 				goto out;
2817 			}
2818 			/* will fail later, go on to get the right error */
2819 		}
2820 	}
2821 looked_up:
2822 	path->dentry = dentry;
2823 	path->mnt = nd->path.mnt;
2824 	return 1;
2825 }
2826 
2827 /*
2828  * Look up and maybe create and open the last component.
2829  *
2830  * Must be called with i_mutex held on parent.
2831  *
2832  * Returns 0 if the file was successfully atomically created (if necessary) and
2833  * opened.  In this case the file will be returned attached to @file.
2834  *
2835  * Returns 1 if the file was not completely opened at this time, though lookups
2836  * and creations will have been performed and the dentry returned in @path will
2837  * be positive upon return if O_CREAT was specified.  If O_CREAT wasn't
2838  * specified then a negative dentry may be returned.
2839  *
2840  * An error code is returned otherwise.
2841  *
2842  * FILE_CREATE will be set in @*opened if the dentry was created and will be
2843  * cleared otherwise prior to returning.
2844  */
2845 static int lookup_open(struct nameidata *nd, struct path *path,
2846 			struct file *file,
2847 			const struct open_flags *op,
2848 			bool got_write, int *opened)
2849 {
2850 	struct dentry *dir = nd->path.dentry;
2851 	struct inode *dir_inode = dir->d_inode;
2852 	struct dentry *dentry;
2853 	int error;
2854 	bool need_lookup;
2855 
2856 	*opened &= ~FILE_CREATED;
2857 	dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2858 	if (IS_ERR(dentry))
2859 		return PTR_ERR(dentry);
2860 
2861 	/* Cached positive dentry: will open in f_op->open */
2862 	if (!need_lookup && dentry->d_inode)
2863 		goto out_no_open;
2864 
2865 	if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2866 		return atomic_open(nd, dentry, path, file, op, got_write,
2867 				   need_lookup, opened);
2868 	}
2869 
2870 	if (need_lookup) {
2871 		BUG_ON(dentry->d_inode);
2872 
2873 		dentry = lookup_real(dir_inode, dentry, nd->flags);
2874 		if (IS_ERR(dentry))
2875 			return PTR_ERR(dentry);
2876 	}
2877 
2878 	/* Negative dentry, just create the file */
2879 	if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2880 		umode_t mode = op->mode;
2881 		if (!IS_POSIXACL(dir->d_inode))
2882 			mode &= ~current_umask();
2883 		/*
2884 		 * This write is needed to ensure that a
2885 		 * rw->ro transition does not occur between
2886 		 * the time when the file is created and when
2887 		 * a permanent write count is taken through
2888 		 * the 'struct file' in finish_open().
2889 		 */
2890 		if (!got_write) {
2891 			error = -EROFS;
2892 			goto out_dput;
2893 		}
2894 		*opened |= FILE_CREATED;
2895 		error = security_path_mknod(&nd->path, dentry, mode, 0);
2896 		if (error)
2897 			goto out_dput;
2898 		error = vfs_create(dir->d_inode, dentry, mode,
2899 				   nd->flags & LOOKUP_EXCL);
2900 		if (error)
2901 			goto out_dput;
2902 	}
2903 out_no_open:
2904 	path->dentry = dentry;
2905 	path->mnt = nd->path.mnt;
2906 	return 1;
2907 
2908 out_dput:
2909 	dput(dentry);
2910 	return error;
2911 }
2912 
2913 /*
2914  * Handle the last step of open()
2915  */
2916 static int do_last(struct nameidata *nd, struct path *path,
2917 		   struct file *file, const struct open_flags *op,
2918 		   int *opened, struct filename *name)
2919 {
2920 	struct dentry *dir = nd->path.dentry;
2921 	int open_flag = op->open_flag;
2922 	bool will_truncate = (open_flag & O_TRUNC) != 0;
2923 	bool got_write = false;
2924 	int acc_mode = op->acc_mode;
2925 	struct inode *inode;
2926 	bool symlink_ok = false;
2927 	struct path save_parent = { .dentry = NULL, .mnt = NULL };
2928 	bool retried = false;
2929 	int error;
2930 
2931 	nd->flags &= ~LOOKUP_PARENT;
2932 	nd->flags |= op->intent;
2933 
2934 	if (nd->last_type != LAST_NORM) {
2935 		error = handle_dots(nd, nd->last_type);
2936 		if (error)
2937 			return error;
2938 		goto finish_open;
2939 	}
2940 
2941 	if (!(open_flag & O_CREAT)) {
2942 		if (nd->last.name[nd->last.len])
2943 			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2944 		if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2945 			symlink_ok = true;
2946 		/* we _can_ be in RCU mode here */
2947 		error = lookup_fast(nd, path, &inode);
2948 		if (likely(!error))
2949 			goto finish_lookup;
2950 
2951 		if (error < 0)
2952 			goto out;
2953 
2954 		BUG_ON(nd->inode != dir->d_inode);
2955 	} else {
2956 		/* create side of things */
2957 		/*
2958 		 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
2959 		 * has been cleared when we got to the last component we are
2960 		 * about to look up
2961 		 */
2962 		error = complete_walk(nd);
2963 		if (error)
2964 			return error;
2965 
2966 		audit_inode(name, dir, LOOKUP_PARENT);
2967 		error = -EISDIR;
2968 		/* trailing slashes? */
2969 		if (nd->last.name[nd->last.len])
2970 			goto out;
2971 	}
2972 
2973 retry_lookup:
2974 	if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
2975 		error = mnt_want_write(nd->path.mnt);
2976 		if (!error)
2977 			got_write = true;
2978 		/*
2979 		 * do _not_ fail yet - we might not need that or fail with
2980 		 * a different error; let lookup_open() decide; we'll be
2981 		 * dropping this one anyway.
2982 		 */
2983 	}
2984 	mutex_lock(&dir->d_inode->i_mutex);
2985 	error = lookup_open(nd, path, file, op, got_write, opened);
2986 	mutex_unlock(&dir->d_inode->i_mutex);
2987 
2988 	if (error <= 0) {
2989 		if (error)
2990 			goto out;
2991 
2992 		if ((*opened & FILE_CREATED) ||
2993 		    !S_ISREG(file_inode(file)->i_mode))
2994 			will_truncate = false;
2995 
2996 		audit_inode(name, file->f_path.dentry, 0);
2997 		goto opened;
2998 	}
2999 
3000 	if (*opened & FILE_CREATED) {
3001 		/* Don't check for write permission, don't truncate */
3002 		open_flag &= ~O_TRUNC;
3003 		will_truncate = false;
3004 		acc_mode = MAY_OPEN;
3005 		path_to_nameidata(path, nd);
3006 		goto finish_open_created;
3007 	}
3008 
3009 	/*
3010 	 * create/update audit record if it already exists.
3011 	 */
3012 	if (d_is_positive(path->dentry))
3013 		audit_inode(name, path->dentry, 0);
3014 
3015 	/*
3016 	 * If atomic_open() acquired write access it is dropped now due to
3017 	 * possible mount and symlink following (this might be optimized away if
3018 	 * necessary...)
3019 	 */
3020 	if (got_write) {
3021 		mnt_drop_write(nd->path.mnt);
3022 		got_write = false;
3023 	}
3024 
3025 	error = -EEXIST;
3026 	if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))
3027 		goto exit_dput;
3028 
3029 	error = follow_managed(path, nd->flags);
3030 	if (error < 0)
3031 		goto exit_dput;
3032 
3033 	if (error)
3034 		nd->flags |= LOOKUP_JUMPED;
3035 
3036 	BUG_ON(nd->flags & LOOKUP_RCU);
3037 	inode = path->dentry->d_inode;
3038 finish_lookup:
3039 	/* we _can_ be in RCU mode here */
3040 	error = -ENOENT;
3041 	if (d_is_negative(path->dentry)) {
3042 		path_to_nameidata(path, nd);
3043 		goto out;
3044 	}
3045 
3046 	if (should_follow_link(path->dentry, !symlink_ok)) {
3047 		if (nd->flags & LOOKUP_RCU) {
3048 			if (unlikely(unlazy_walk(nd, path->dentry))) {
3049 				error = -ECHILD;
3050 				goto out;
3051 			}
3052 		}
3053 		BUG_ON(inode != path->dentry->d_inode);
3054 		return 1;
3055 	}
3056 
3057 	if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) {
3058 		path_to_nameidata(path, nd);
3059 	} else {
3060 		save_parent.dentry = nd->path.dentry;
3061 		save_parent.mnt = mntget(path->mnt);
3062 		nd->path.dentry = path->dentry;
3063 
3064 	}
3065 	nd->inode = inode;
3066 	/* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
3067 finish_open:
3068 	error = complete_walk(nd);
3069 	if (error) {
3070 		path_put(&save_parent);
3071 		return error;
3072 	}
3073 	audit_inode(name, nd->path.dentry, 0);
3074 	error = -EISDIR;
3075 	if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3076 		goto out;
3077 	error = -ENOTDIR;
3078 	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3079 		goto out;
3080 	if (!d_is_reg(nd->path.dentry))
3081 		will_truncate = false;
3082 
3083 	if (will_truncate) {
3084 		error = mnt_want_write(nd->path.mnt);
3085 		if (error)
3086 			goto out;
3087 		got_write = true;
3088 	}
3089 finish_open_created:
3090 	error = may_open(&nd->path, acc_mode, open_flag);
3091 	if (error)
3092 		goto out;
3093 
3094 	BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3095 	error = vfs_open(&nd->path, file, current_cred());
3096 	if (!error) {
3097 		*opened |= FILE_OPENED;
3098 	} else {
3099 		if (error == -EOPENSTALE)
3100 			goto stale_open;
3101 		goto out;
3102 	}
3103 opened:
3104 	error = open_check_o_direct(file);
3105 	if (error)
3106 		goto exit_fput;
3107 	error = ima_file_check(file, op->acc_mode, *opened);
3108 	if (error)
3109 		goto exit_fput;
3110 
3111 	if (will_truncate) {
3112 		error = handle_truncate(file);
3113 		if (error)
3114 			goto exit_fput;
3115 	}
3116 out:
3117 	if (got_write)
3118 		mnt_drop_write(nd->path.mnt);
3119 	path_put(&save_parent);
3120 	terminate_walk(nd);
3121 	return error;
3122 
3123 exit_dput:
3124 	path_put_conditional(path, nd);
3125 	goto out;
3126 exit_fput:
3127 	fput(file);
3128 	goto out;
3129 
3130 stale_open:
3131 	/* If no saved parent or already retried then can't retry */
3132 	if (!save_parent.dentry || retried)
3133 		goto out;
3134 
3135 	BUG_ON(save_parent.dentry != dir);
3136 	path_put(&nd->path);
3137 	nd->path = save_parent;
3138 	nd->inode = dir->d_inode;
3139 	save_parent.mnt = NULL;
3140 	save_parent.dentry = NULL;
3141 	if (got_write) {
3142 		mnt_drop_write(nd->path.mnt);
3143 		got_write = false;
3144 	}
3145 	retried = true;
3146 	goto retry_lookup;
3147 }
3148 
3149 static int do_tmpfile(int dfd, struct filename *pathname,
3150 		struct nameidata *nd, int flags,
3151 		const struct open_flags *op,
3152 		struct file *file, int *opened)
3153 {
3154 	static const struct qstr name = QSTR_INIT("/", 1);
3155 	struct dentry *dentry, *child;
3156 	struct inode *dir;
3157 	int error = path_lookupat(dfd, pathname,
3158 				  flags | LOOKUP_DIRECTORY, nd);
3159 	if (unlikely(error))
3160 		return error;
3161 	error = mnt_want_write(nd->path.mnt);
3162 	if (unlikely(error))
3163 		goto out;
3164 	/* we want directory to be writable */
3165 	error = inode_permission(nd->inode, MAY_WRITE | MAY_EXEC);
3166 	if (error)
3167 		goto out2;
3168 	dentry = nd->path.dentry;
3169 	dir = dentry->d_inode;
3170 	if (!dir->i_op->tmpfile) {
3171 		error = -EOPNOTSUPP;
3172 		goto out2;
3173 	}
3174 	child = d_alloc(dentry, &name);
3175 	if (unlikely(!child)) {
3176 		error = -ENOMEM;
3177 		goto out2;
3178 	}
3179 	nd->flags &= ~LOOKUP_DIRECTORY;
3180 	nd->flags |= op->intent;
3181 	dput(nd->path.dentry);
3182 	nd->path.dentry = child;
3183 	error = dir->i_op->tmpfile(dir, nd->path.dentry, op->mode);
3184 	if (error)
3185 		goto out2;
3186 	audit_inode(pathname, nd->path.dentry, 0);
3187 	/* Don't check for other permissions, the inode was just created */
3188 	error = may_open(&nd->path, MAY_OPEN, op->open_flag);
3189 	if (error)
3190 		goto out2;
3191 	file->f_path.mnt = nd->path.mnt;
3192 	error = finish_open(file, nd->path.dentry, NULL, opened);
3193 	if (error)
3194 		goto out2;
3195 	error = open_check_o_direct(file);
3196 	if (error) {
3197 		fput(file);
3198 	} else if (!(op->open_flag & O_EXCL)) {
3199 		struct inode *inode = file_inode(file);
3200 		spin_lock(&inode->i_lock);
3201 		inode->i_state |= I_LINKABLE;
3202 		spin_unlock(&inode->i_lock);
3203 	}
3204 out2:
3205 	mnt_drop_write(nd->path.mnt);
3206 out:
3207 	path_put(&nd->path);
3208 	return error;
3209 }
3210 
3211 static struct file *path_openat(int dfd, struct filename *pathname,
3212 		struct nameidata *nd, const struct open_flags *op, int flags)
3213 {
3214 	struct file *file;
3215 	struct path path;
3216 	int opened = 0;
3217 	int error;
3218 
3219 	file = get_empty_filp();
3220 	if (IS_ERR(file))
3221 		return file;
3222 
3223 	file->f_flags = op->open_flag;
3224 
3225 	if (unlikely(file->f_flags & __O_TMPFILE)) {
3226 		error = do_tmpfile(dfd, pathname, nd, flags, op, file, &opened);
3227 		goto out;
3228 	}
3229 
3230 	error = path_init(dfd, pathname, flags, nd);
3231 	if (unlikely(error))
3232 		goto out;
3233 
3234 	error = do_last(nd, &path, file, op, &opened, pathname);
3235 	while (unlikely(error > 0)) { /* trailing symlink */
3236 		struct path link = path;
3237 		void *cookie;
3238 		if (!(nd->flags & LOOKUP_FOLLOW)) {
3239 			path_put_conditional(&path, nd);
3240 			path_put(&nd->path);
3241 			error = -ELOOP;
3242 			break;
3243 		}
3244 		error = may_follow_link(&link, nd);
3245 		if (unlikely(error))
3246 			break;
3247 		nd->flags |= LOOKUP_PARENT;
3248 		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3249 		error = follow_link(&link, nd, &cookie);
3250 		if (unlikely(error))
3251 			break;
3252 		error = do_last(nd, &path, file, op, &opened, pathname);
3253 		put_link(nd, &link, cookie);
3254 	}
3255 out:
3256 	path_cleanup(nd);
3257 	if (!(opened & FILE_OPENED)) {
3258 		BUG_ON(!error);
3259 		put_filp(file);
3260 	}
3261 	if (unlikely(error)) {
3262 		if (error == -EOPENSTALE) {
3263 			if (flags & LOOKUP_RCU)
3264 				error = -ECHILD;
3265 			else
3266 				error = -ESTALE;
3267 		}
3268 		file = ERR_PTR(error);
3269 	}
3270 	return file;
3271 }
3272 
3273 struct file *do_filp_open(int dfd, struct filename *pathname,
3274 		const struct open_flags *op)
3275 {
3276 	struct nameidata nd;
3277 	int flags = op->lookup_flags;
3278 	struct file *filp;
3279 
3280 	filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
3281 	if (unlikely(filp == ERR_PTR(-ECHILD)))
3282 		filp = path_openat(dfd, pathname, &nd, op, flags);
3283 	if (unlikely(filp == ERR_PTR(-ESTALE)))
3284 		filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
3285 	return filp;
3286 }
3287 
3288 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3289 		const char *name, const struct open_flags *op)
3290 {
3291 	struct nameidata nd;
3292 	struct file *file;
3293 	struct filename *filename;
3294 	int flags = op->lookup_flags | LOOKUP_ROOT;
3295 
3296 	nd.root.mnt = mnt;
3297 	nd.root.dentry = dentry;
3298 
3299 	if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3300 		return ERR_PTR(-ELOOP);
3301 
3302 	filename = getname_kernel(name);
3303 	if (unlikely(IS_ERR(filename)))
3304 		return ERR_CAST(filename);
3305 
3306 	file = path_openat(-1, filename, &nd, op, flags | LOOKUP_RCU);
3307 	if (unlikely(file == ERR_PTR(-ECHILD)))
3308 		file = path_openat(-1, filename, &nd, op, flags);
3309 	if (unlikely(file == ERR_PTR(-ESTALE)))
3310 		file = path_openat(-1, filename, &nd, op, flags | LOOKUP_REVAL);
3311 	putname(filename);
3312 	return file;
3313 }
3314 
3315 static struct dentry *filename_create(int dfd, struct filename *name,
3316 				struct path *path, unsigned int lookup_flags)
3317 {
3318 	struct dentry *dentry = ERR_PTR(-EEXIST);
3319 	struct nameidata nd;
3320 	int err2;
3321 	int error;
3322 	bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3323 
3324 	/*
3325 	 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3326 	 * other flags passed in are ignored!
3327 	 */
3328 	lookup_flags &= LOOKUP_REVAL;
3329 
3330 	error = filename_lookup(dfd, name, LOOKUP_PARENT|lookup_flags, &nd);
3331 	if (error)
3332 		return ERR_PTR(error);
3333 
3334 	/*
3335 	 * Yucky last component or no last component at all?
3336 	 * (foo/., foo/.., /////)
3337 	 */
3338 	if (nd.last_type != LAST_NORM)
3339 		goto out;
3340 	nd.flags &= ~LOOKUP_PARENT;
3341 	nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3342 
3343 	/* don't fail immediately if it's r/o, at least try to report other errors */
3344 	err2 = mnt_want_write(nd.path.mnt);
3345 	/*
3346 	 * Do the final lookup.
3347 	 */
3348 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3349 	dentry = lookup_hash(&nd);
3350 	if (IS_ERR(dentry))
3351 		goto unlock;
3352 
3353 	error = -EEXIST;
3354 	if (d_is_positive(dentry))
3355 		goto fail;
3356 
3357 	/*
3358 	 * Special case - lookup gave negative, but... we had foo/bar/
3359 	 * From the vfs_mknod() POV we just have a negative dentry -
3360 	 * all is fine. Let's be bastards - you had / on the end, you've
3361 	 * been asking for (non-existent) directory. -ENOENT for you.
3362 	 */
3363 	if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
3364 		error = -ENOENT;
3365 		goto fail;
3366 	}
3367 	if (unlikely(err2)) {
3368 		error = err2;
3369 		goto fail;
3370 	}
3371 	*path = nd.path;
3372 	return dentry;
3373 fail:
3374 	dput(dentry);
3375 	dentry = ERR_PTR(error);
3376 unlock:
3377 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3378 	if (!err2)
3379 		mnt_drop_write(nd.path.mnt);
3380 out:
3381 	path_put(&nd.path);
3382 	return dentry;
3383 }
3384 
3385 struct dentry *kern_path_create(int dfd, const char *pathname,
3386 				struct path *path, unsigned int lookup_flags)
3387 {
3388 	struct filename *filename = getname_kernel(pathname);
3389 	struct dentry *res;
3390 
3391 	if (IS_ERR(filename))
3392 		return ERR_CAST(filename);
3393 	res = filename_create(dfd, filename, path, lookup_flags);
3394 	putname(filename);
3395 	return res;
3396 }
3397 EXPORT_SYMBOL(kern_path_create);
3398 
3399 void done_path_create(struct path *path, struct dentry *dentry)
3400 {
3401 	dput(dentry);
3402 	mutex_unlock(&path->dentry->d_inode->i_mutex);
3403 	mnt_drop_write(path->mnt);
3404 	path_put(path);
3405 }
3406 EXPORT_SYMBOL(done_path_create);
3407 
3408 struct dentry *user_path_create(int dfd, const char __user *pathname,
3409 				struct path *path, unsigned int lookup_flags)
3410 {
3411 	struct filename *tmp = getname(pathname);
3412 	struct dentry *res;
3413 	if (IS_ERR(tmp))
3414 		return ERR_CAST(tmp);
3415 	res = filename_create(dfd, tmp, path, lookup_flags);
3416 	putname(tmp);
3417 	return res;
3418 }
3419 EXPORT_SYMBOL(user_path_create);
3420 
3421 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3422 {
3423 	int error = may_create(dir, dentry);
3424 
3425 	if (error)
3426 		return error;
3427 
3428 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3429 		return -EPERM;
3430 
3431 	if (!dir->i_op->mknod)
3432 		return -EPERM;
3433 
3434 	error = devcgroup_inode_mknod(mode, dev);
3435 	if (error)
3436 		return error;
3437 
3438 	error = security_inode_mknod(dir, dentry, mode, dev);
3439 	if (error)
3440 		return error;
3441 
3442 	error = dir->i_op->mknod(dir, dentry, mode, dev);
3443 	if (!error)
3444 		fsnotify_create(dir, dentry);
3445 	return error;
3446 }
3447 EXPORT_SYMBOL(vfs_mknod);
3448 
3449 static int may_mknod(umode_t mode)
3450 {
3451 	switch (mode & S_IFMT) {
3452 	case S_IFREG:
3453 	case S_IFCHR:
3454 	case S_IFBLK:
3455 	case S_IFIFO:
3456 	case S_IFSOCK:
3457 	case 0: /* zero mode translates to S_IFREG */
3458 		return 0;
3459 	case S_IFDIR:
3460 		return -EPERM;
3461 	default:
3462 		return -EINVAL;
3463 	}
3464 }
3465 
3466 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3467 		unsigned, dev)
3468 {
3469 	struct dentry *dentry;
3470 	struct path path;
3471 	int error;
3472 	unsigned int lookup_flags = 0;
3473 
3474 	error = may_mknod(mode);
3475 	if (error)
3476 		return error;
3477 retry:
3478 	dentry = user_path_create(dfd, filename, &path, lookup_flags);
3479 	if (IS_ERR(dentry))
3480 		return PTR_ERR(dentry);
3481 
3482 	if (!IS_POSIXACL(path.dentry->d_inode))
3483 		mode &= ~current_umask();
3484 	error = security_path_mknod(&path, dentry, mode, dev);
3485 	if (error)
3486 		goto out;
3487 	switch (mode & S_IFMT) {
3488 		case 0: case S_IFREG:
3489 			error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3490 			break;
3491 		case S_IFCHR: case S_IFBLK:
3492 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3493 					new_decode_dev(dev));
3494 			break;
3495 		case S_IFIFO: case S_IFSOCK:
3496 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3497 			break;
3498 	}
3499 out:
3500 	done_path_create(&path, dentry);
3501 	if (retry_estale(error, lookup_flags)) {
3502 		lookup_flags |= LOOKUP_REVAL;
3503 		goto retry;
3504 	}
3505 	return error;
3506 }
3507 
3508 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3509 {
3510 	return sys_mknodat(AT_FDCWD, filename, mode, dev);
3511 }
3512 
3513 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3514 {
3515 	int error = may_create(dir, dentry);
3516 	unsigned max_links = dir->i_sb->s_max_links;
3517 
3518 	if (error)
3519 		return error;
3520 
3521 	if (!dir->i_op->mkdir)
3522 		return -EPERM;
3523 
3524 	mode &= (S_IRWXUGO|S_ISVTX);
3525 	error = security_inode_mkdir(dir, dentry, mode);
3526 	if (error)
3527 		return error;
3528 
3529 	if (max_links && dir->i_nlink >= max_links)
3530 		return -EMLINK;
3531 
3532 	error = dir->i_op->mkdir(dir, dentry, mode);
3533 	if (!error)
3534 		fsnotify_mkdir(dir, dentry);
3535 	return error;
3536 }
3537 EXPORT_SYMBOL(vfs_mkdir);
3538 
3539 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3540 {
3541 	struct dentry *dentry;
3542 	struct path path;
3543 	int error;
3544 	unsigned int lookup_flags = LOOKUP_DIRECTORY;
3545 
3546 retry:
3547 	dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3548 	if (IS_ERR(dentry))
3549 		return PTR_ERR(dentry);
3550 
3551 	if (!IS_POSIXACL(path.dentry->d_inode))
3552 		mode &= ~current_umask();
3553 	error = security_path_mkdir(&path, dentry, mode);
3554 	if (!error)
3555 		error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3556 	done_path_create(&path, dentry);
3557 	if (retry_estale(error, lookup_flags)) {
3558 		lookup_flags |= LOOKUP_REVAL;
3559 		goto retry;
3560 	}
3561 	return error;
3562 }
3563 
3564 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3565 {
3566 	return sys_mkdirat(AT_FDCWD, pathname, mode);
3567 }
3568 
3569 /*
3570  * The dentry_unhash() helper will try to drop the dentry early: we
3571  * should have a usage count of 1 if we're the only user of this
3572  * dentry, and if that is true (possibly after pruning the dcache),
3573  * then we drop the dentry now.
3574  *
3575  * A low-level filesystem can, if it choses, legally
3576  * do a
3577  *
3578  *	if (!d_unhashed(dentry))
3579  *		return -EBUSY;
3580  *
3581  * if it cannot handle the case of removing a directory
3582  * that is still in use by something else..
3583  */
3584 void dentry_unhash(struct dentry *dentry)
3585 {
3586 	shrink_dcache_parent(dentry);
3587 	spin_lock(&dentry->d_lock);
3588 	if (dentry->d_lockref.count == 1)
3589 		__d_drop(dentry);
3590 	spin_unlock(&dentry->d_lock);
3591 }
3592 EXPORT_SYMBOL(dentry_unhash);
3593 
3594 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3595 {
3596 	int error = may_delete(dir, dentry, 1);
3597 
3598 	if (error)
3599 		return error;
3600 
3601 	if (!dir->i_op->rmdir)
3602 		return -EPERM;
3603 
3604 	dget(dentry);
3605 	mutex_lock(&dentry->d_inode->i_mutex);
3606 
3607 	error = -EBUSY;
3608 	if (is_local_mountpoint(dentry))
3609 		goto out;
3610 
3611 	error = security_inode_rmdir(dir, dentry);
3612 	if (error)
3613 		goto out;
3614 
3615 	shrink_dcache_parent(dentry);
3616 	error = dir->i_op->rmdir(dir, dentry);
3617 	if (error)
3618 		goto out;
3619 
3620 	dentry->d_inode->i_flags |= S_DEAD;
3621 	dont_mount(dentry);
3622 	detach_mounts(dentry);
3623 
3624 out:
3625 	mutex_unlock(&dentry->d_inode->i_mutex);
3626 	dput(dentry);
3627 	if (!error)
3628 		d_delete(dentry);
3629 	return error;
3630 }
3631 EXPORT_SYMBOL(vfs_rmdir);
3632 
3633 static long do_rmdir(int dfd, const char __user *pathname)
3634 {
3635 	int error = 0;
3636 	struct filename *name;
3637 	struct dentry *dentry;
3638 	struct nameidata nd;
3639 	unsigned int lookup_flags = 0;
3640 retry:
3641 	name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3642 	if (IS_ERR(name))
3643 		return PTR_ERR(name);
3644 
3645 	switch(nd.last_type) {
3646 	case LAST_DOTDOT:
3647 		error = -ENOTEMPTY;
3648 		goto exit1;
3649 	case LAST_DOT:
3650 		error = -EINVAL;
3651 		goto exit1;
3652 	case LAST_ROOT:
3653 		error = -EBUSY;
3654 		goto exit1;
3655 	}
3656 
3657 	nd.flags &= ~LOOKUP_PARENT;
3658 	error = mnt_want_write(nd.path.mnt);
3659 	if (error)
3660 		goto exit1;
3661 
3662 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3663 	dentry = lookup_hash(&nd);
3664 	error = PTR_ERR(dentry);
3665 	if (IS_ERR(dentry))
3666 		goto exit2;
3667 	if (!dentry->d_inode) {
3668 		error = -ENOENT;
3669 		goto exit3;
3670 	}
3671 	error = security_path_rmdir(&nd.path, dentry);
3672 	if (error)
3673 		goto exit3;
3674 	error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
3675 exit3:
3676 	dput(dentry);
3677 exit2:
3678 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3679 	mnt_drop_write(nd.path.mnt);
3680 exit1:
3681 	path_put(&nd.path);
3682 	putname(name);
3683 	if (retry_estale(error, lookup_flags)) {
3684 		lookup_flags |= LOOKUP_REVAL;
3685 		goto retry;
3686 	}
3687 	return error;
3688 }
3689 
3690 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3691 {
3692 	return do_rmdir(AT_FDCWD, pathname);
3693 }
3694 
3695 /**
3696  * vfs_unlink - unlink a filesystem object
3697  * @dir:	parent directory
3698  * @dentry:	victim
3699  * @delegated_inode: returns victim inode, if the inode is delegated.
3700  *
3701  * The caller must hold dir->i_mutex.
3702  *
3703  * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3704  * return a reference to the inode in delegated_inode.  The caller
3705  * should then break the delegation on that inode and retry.  Because
3706  * breaking a delegation may take a long time, the caller should drop
3707  * dir->i_mutex before doing so.
3708  *
3709  * Alternatively, a caller may pass NULL for delegated_inode.  This may
3710  * be appropriate for callers that expect the underlying filesystem not
3711  * to be NFS exported.
3712  */
3713 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3714 {
3715 	struct inode *target = dentry->d_inode;
3716 	int error = may_delete(dir, dentry, 0);
3717 
3718 	if (error)
3719 		return error;
3720 
3721 	if (!dir->i_op->unlink)
3722 		return -EPERM;
3723 
3724 	mutex_lock(&target->i_mutex);
3725 	if (is_local_mountpoint(dentry))
3726 		error = -EBUSY;
3727 	else {
3728 		error = security_inode_unlink(dir, dentry);
3729 		if (!error) {
3730 			error = try_break_deleg(target, delegated_inode);
3731 			if (error)
3732 				goto out;
3733 			error = dir->i_op->unlink(dir, dentry);
3734 			if (!error) {
3735 				dont_mount(dentry);
3736 				detach_mounts(dentry);
3737 			}
3738 		}
3739 	}
3740 out:
3741 	mutex_unlock(&target->i_mutex);
3742 
3743 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
3744 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3745 		fsnotify_link_count(target);
3746 		d_delete(dentry);
3747 	}
3748 
3749 	return error;
3750 }
3751 EXPORT_SYMBOL(vfs_unlink);
3752 
3753 /*
3754  * Make sure that the actual truncation of the file will occur outside its
3755  * directory's i_mutex.  Truncate can take a long time if there is a lot of
3756  * writeout happening, and we don't want to prevent access to the directory
3757  * while waiting on the I/O.
3758  */
3759 static long do_unlinkat(int dfd, const char __user *pathname)
3760 {
3761 	int error;
3762 	struct filename *name;
3763 	struct dentry *dentry;
3764 	struct nameidata nd;
3765 	struct inode *inode = NULL;
3766 	struct inode *delegated_inode = NULL;
3767 	unsigned int lookup_flags = 0;
3768 retry:
3769 	name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3770 	if (IS_ERR(name))
3771 		return PTR_ERR(name);
3772 
3773 	error = -EISDIR;
3774 	if (nd.last_type != LAST_NORM)
3775 		goto exit1;
3776 
3777 	nd.flags &= ~LOOKUP_PARENT;
3778 	error = mnt_want_write(nd.path.mnt);
3779 	if (error)
3780 		goto exit1;
3781 retry_deleg:
3782 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3783 	dentry = lookup_hash(&nd);
3784 	error = PTR_ERR(dentry);
3785 	if (!IS_ERR(dentry)) {
3786 		/* Why not before? Because we want correct error value */
3787 		if (nd.last.name[nd.last.len])
3788 			goto slashes;
3789 		inode = dentry->d_inode;
3790 		if (d_is_negative(dentry))
3791 			goto slashes;
3792 		ihold(inode);
3793 		error = security_path_unlink(&nd.path, dentry);
3794 		if (error)
3795 			goto exit2;
3796 		error = vfs_unlink(nd.path.dentry->d_inode, dentry, &delegated_inode);
3797 exit2:
3798 		dput(dentry);
3799 	}
3800 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3801 	if (inode)
3802 		iput(inode);	/* truncate the inode here */
3803 	inode = NULL;
3804 	if (delegated_inode) {
3805 		error = break_deleg_wait(&delegated_inode);
3806 		if (!error)
3807 			goto retry_deleg;
3808 	}
3809 	mnt_drop_write(nd.path.mnt);
3810 exit1:
3811 	path_put(&nd.path);
3812 	putname(name);
3813 	if (retry_estale(error, lookup_flags)) {
3814 		lookup_flags |= LOOKUP_REVAL;
3815 		inode = NULL;
3816 		goto retry;
3817 	}
3818 	return error;
3819 
3820 slashes:
3821 	if (d_is_negative(dentry))
3822 		error = -ENOENT;
3823 	else if (d_is_dir(dentry))
3824 		error = -EISDIR;
3825 	else
3826 		error = -ENOTDIR;
3827 	goto exit2;
3828 }
3829 
3830 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3831 {
3832 	if ((flag & ~AT_REMOVEDIR) != 0)
3833 		return -EINVAL;
3834 
3835 	if (flag & AT_REMOVEDIR)
3836 		return do_rmdir(dfd, pathname);
3837 
3838 	return do_unlinkat(dfd, pathname);
3839 }
3840 
3841 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3842 {
3843 	return do_unlinkat(AT_FDCWD, pathname);
3844 }
3845 
3846 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3847 {
3848 	int error = may_create(dir, dentry);
3849 
3850 	if (error)
3851 		return error;
3852 
3853 	if (!dir->i_op->symlink)
3854 		return -EPERM;
3855 
3856 	error = security_inode_symlink(dir, dentry, oldname);
3857 	if (error)
3858 		return error;
3859 
3860 	error = dir->i_op->symlink(dir, dentry, oldname);
3861 	if (!error)
3862 		fsnotify_create(dir, dentry);
3863 	return error;
3864 }
3865 EXPORT_SYMBOL(vfs_symlink);
3866 
3867 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3868 		int, newdfd, const char __user *, newname)
3869 {
3870 	int error;
3871 	struct filename *from;
3872 	struct dentry *dentry;
3873 	struct path path;
3874 	unsigned int lookup_flags = 0;
3875 
3876 	from = getname(oldname);
3877 	if (IS_ERR(from))
3878 		return PTR_ERR(from);
3879 retry:
3880 	dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3881 	error = PTR_ERR(dentry);
3882 	if (IS_ERR(dentry))
3883 		goto out_putname;
3884 
3885 	error = security_path_symlink(&path, dentry, from->name);
3886 	if (!error)
3887 		error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3888 	done_path_create(&path, dentry);
3889 	if (retry_estale(error, lookup_flags)) {
3890 		lookup_flags |= LOOKUP_REVAL;
3891 		goto retry;
3892 	}
3893 out_putname:
3894 	putname(from);
3895 	return error;
3896 }
3897 
3898 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3899 {
3900 	return sys_symlinkat(oldname, AT_FDCWD, newname);
3901 }
3902 
3903 /**
3904  * vfs_link - create a new link
3905  * @old_dentry:	object to be linked
3906  * @dir:	new parent
3907  * @new_dentry:	where to create the new link
3908  * @delegated_inode: returns inode needing a delegation break
3909  *
3910  * The caller must hold dir->i_mutex
3911  *
3912  * If vfs_link discovers a delegation on the to-be-linked file in need
3913  * of breaking, it will return -EWOULDBLOCK and return a reference to the
3914  * inode in delegated_inode.  The caller should then break the delegation
3915  * and retry.  Because breaking a delegation may take a long time, the
3916  * caller should drop the i_mutex before doing so.
3917  *
3918  * Alternatively, a caller may pass NULL for delegated_inode.  This may
3919  * be appropriate for callers that expect the underlying filesystem not
3920  * to be NFS exported.
3921  */
3922 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
3923 {
3924 	struct inode *inode = old_dentry->d_inode;
3925 	unsigned max_links = dir->i_sb->s_max_links;
3926 	int error;
3927 
3928 	if (!inode)
3929 		return -ENOENT;
3930 
3931 	error = may_create(dir, new_dentry);
3932 	if (error)
3933 		return error;
3934 
3935 	if (dir->i_sb != inode->i_sb)
3936 		return -EXDEV;
3937 
3938 	/*
3939 	 * A link to an append-only or immutable file cannot be created.
3940 	 */
3941 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3942 		return -EPERM;
3943 	if (!dir->i_op->link)
3944 		return -EPERM;
3945 	if (S_ISDIR(inode->i_mode))
3946 		return -EPERM;
3947 
3948 	error = security_inode_link(old_dentry, dir, new_dentry);
3949 	if (error)
3950 		return error;
3951 
3952 	mutex_lock(&inode->i_mutex);
3953 	/* Make sure we don't allow creating hardlink to an unlinked file */
3954 	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
3955 		error =  -ENOENT;
3956 	else if (max_links && inode->i_nlink >= max_links)
3957 		error = -EMLINK;
3958 	else {
3959 		error = try_break_deleg(inode, delegated_inode);
3960 		if (!error)
3961 			error = dir->i_op->link(old_dentry, dir, new_dentry);
3962 	}
3963 
3964 	if (!error && (inode->i_state & I_LINKABLE)) {
3965 		spin_lock(&inode->i_lock);
3966 		inode->i_state &= ~I_LINKABLE;
3967 		spin_unlock(&inode->i_lock);
3968 	}
3969 	mutex_unlock(&inode->i_mutex);
3970 	if (!error)
3971 		fsnotify_link(dir, inode, new_dentry);
3972 	return error;
3973 }
3974 EXPORT_SYMBOL(vfs_link);
3975 
3976 /*
3977  * Hardlinks are often used in delicate situations.  We avoid
3978  * security-related surprises by not following symlinks on the
3979  * newname.  --KAB
3980  *
3981  * We don't follow them on the oldname either to be compatible
3982  * with linux 2.0, and to avoid hard-linking to directories
3983  * and other special files.  --ADM
3984  */
3985 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3986 		int, newdfd, const char __user *, newname, int, flags)
3987 {
3988 	struct dentry *new_dentry;
3989 	struct path old_path, new_path;
3990 	struct inode *delegated_inode = NULL;
3991 	int how = 0;
3992 	int error;
3993 
3994 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
3995 		return -EINVAL;
3996 	/*
3997 	 * To use null names we require CAP_DAC_READ_SEARCH
3998 	 * This ensures that not everyone will be able to create
3999 	 * handlink using the passed filedescriptor.
4000 	 */
4001 	if (flags & AT_EMPTY_PATH) {
4002 		if (!capable(CAP_DAC_READ_SEARCH))
4003 			return -ENOENT;
4004 		how = LOOKUP_EMPTY;
4005 	}
4006 
4007 	if (flags & AT_SYMLINK_FOLLOW)
4008 		how |= LOOKUP_FOLLOW;
4009 retry:
4010 	error = user_path_at(olddfd, oldname, how, &old_path);
4011 	if (error)
4012 		return error;
4013 
4014 	new_dentry = user_path_create(newdfd, newname, &new_path,
4015 					(how & LOOKUP_REVAL));
4016 	error = PTR_ERR(new_dentry);
4017 	if (IS_ERR(new_dentry))
4018 		goto out;
4019 
4020 	error = -EXDEV;
4021 	if (old_path.mnt != new_path.mnt)
4022 		goto out_dput;
4023 	error = may_linkat(&old_path);
4024 	if (unlikely(error))
4025 		goto out_dput;
4026 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
4027 	if (error)
4028 		goto out_dput;
4029 	error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4030 out_dput:
4031 	done_path_create(&new_path, new_dentry);
4032 	if (delegated_inode) {
4033 		error = break_deleg_wait(&delegated_inode);
4034 		if (!error) {
4035 			path_put(&old_path);
4036 			goto retry;
4037 		}
4038 	}
4039 	if (retry_estale(error, how)) {
4040 		path_put(&old_path);
4041 		how |= LOOKUP_REVAL;
4042 		goto retry;
4043 	}
4044 out:
4045 	path_put(&old_path);
4046 
4047 	return error;
4048 }
4049 
4050 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4051 {
4052 	return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4053 }
4054 
4055 /**
4056  * vfs_rename - rename a filesystem object
4057  * @old_dir:	parent of source
4058  * @old_dentry:	source
4059  * @new_dir:	parent of destination
4060  * @new_dentry:	destination
4061  * @delegated_inode: returns an inode needing a delegation break
4062  * @flags:	rename flags
4063  *
4064  * The caller must hold multiple mutexes--see lock_rename()).
4065  *
4066  * If vfs_rename discovers a delegation in need of breaking at either
4067  * the source or destination, it will return -EWOULDBLOCK and return a
4068  * reference to the inode in delegated_inode.  The caller should then
4069  * break the delegation and retry.  Because breaking a delegation may
4070  * take a long time, the caller should drop all locks before doing
4071  * so.
4072  *
4073  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4074  * be appropriate for callers that expect the underlying filesystem not
4075  * to be NFS exported.
4076  *
4077  * The worst of all namespace operations - renaming directory. "Perverted"
4078  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4079  * Problems:
4080  *	a) we can get into loop creation.
4081  *	b) race potential - two innocent renames can create a loop together.
4082  *	   That's where 4.4 screws up. Current fix: serialization on
4083  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4084  *	   story.
4085  *	c) we have to lock _four_ objects - parents and victim (if it exists),
4086  *	   and source (if it is not a directory).
4087  *	   And that - after we got ->i_mutex on parents (until then we don't know
4088  *	   whether the target exists).  Solution: try to be smart with locking
4089  *	   order for inodes.  We rely on the fact that tree topology may change
4090  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
4091  *	   move will be locked.  Thus we can rank directories by the tree
4092  *	   (ancestors first) and rank all non-directories after them.
4093  *	   That works since everybody except rename does "lock parent, lookup,
4094  *	   lock child" and rename is under ->s_vfs_rename_mutex.
4095  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
4096  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
4097  *	   we'd better make sure that there's no link(2) for them.
4098  *	d) conversion from fhandle to dentry may come in the wrong moment - when
4099  *	   we are removing the target. Solution: we will have to grab ->i_mutex
4100  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4101  *	   ->i_mutex on parents, which works but leads to some truly excessive
4102  *	   locking].
4103  */
4104 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4105 	       struct inode *new_dir, struct dentry *new_dentry,
4106 	       struct inode **delegated_inode, unsigned int flags)
4107 {
4108 	int error;
4109 	bool is_dir = d_is_dir(old_dentry);
4110 	const unsigned char *old_name;
4111 	struct inode *source = old_dentry->d_inode;
4112 	struct inode *target = new_dentry->d_inode;
4113 	bool new_is_dir = false;
4114 	unsigned max_links = new_dir->i_sb->s_max_links;
4115 
4116 	if (source == target)
4117 		return 0;
4118 
4119 	error = may_delete(old_dir, old_dentry, is_dir);
4120 	if (error)
4121 		return error;
4122 
4123 	if (!target) {
4124 		error = may_create(new_dir, new_dentry);
4125 	} else {
4126 		new_is_dir = d_is_dir(new_dentry);
4127 
4128 		if (!(flags & RENAME_EXCHANGE))
4129 			error = may_delete(new_dir, new_dentry, is_dir);
4130 		else
4131 			error = may_delete(new_dir, new_dentry, new_is_dir);
4132 	}
4133 	if (error)
4134 		return error;
4135 
4136 	if (!old_dir->i_op->rename && !old_dir->i_op->rename2)
4137 		return -EPERM;
4138 
4139 	if (flags && !old_dir->i_op->rename2)
4140 		return -EINVAL;
4141 
4142 	/*
4143 	 * If we are going to change the parent - check write permissions,
4144 	 * we'll need to flip '..'.
4145 	 */
4146 	if (new_dir != old_dir) {
4147 		if (is_dir) {
4148 			error = inode_permission(source, MAY_WRITE);
4149 			if (error)
4150 				return error;
4151 		}
4152 		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4153 			error = inode_permission(target, MAY_WRITE);
4154 			if (error)
4155 				return error;
4156 		}
4157 	}
4158 
4159 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4160 				      flags);
4161 	if (error)
4162 		return error;
4163 
4164 	old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4165 	dget(new_dentry);
4166 	if (!is_dir || (flags & RENAME_EXCHANGE))
4167 		lock_two_nondirectories(source, target);
4168 	else if (target)
4169 		mutex_lock(&target->i_mutex);
4170 
4171 	error = -EBUSY;
4172 	if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4173 		goto out;
4174 
4175 	if (max_links && new_dir != old_dir) {
4176 		error = -EMLINK;
4177 		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4178 			goto out;
4179 		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4180 		    old_dir->i_nlink >= max_links)
4181 			goto out;
4182 	}
4183 	if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4184 		shrink_dcache_parent(new_dentry);
4185 	if (!is_dir) {
4186 		error = try_break_deleg(source, delegated_inode);
4187 		if (error)
4188 			goto out;
4189 	}
4190 	if (target && !new_is_dir) {
4191 		error = try_break_deleg(target, delegated_inode);
4192 		if (error)
4193 			goto out;
4194 	}
4195 	if (!old_dir->i_op->rename2) {
4196 		error = old_dir->i_op->rename(old_dir, old_dentry,
4197 					      new_dir, new_dentry);
4198 	} else {
4199 		WARN_ON(old_dir->i_op->rename != NULL);
4200 		error = old_dir->i_op->rename2(old_dir, old_dentry,
4201 					       new_dir, new_dentry, flags);
4202 	}
4203 	if (error)
4204 		goto out;
4205 
4206 	if (!(flags & RENAME_EXCHANGE) && target) {
4207 		if (is_dir)
4208 			target->i_flags |= S_DEAD;
4209 		dont_mount(new_dentry);
4210 		detach_mounts(new_dentry);
4211 	}
4212 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4213 		if (!(flags & RENAME_EXCHANGE))
4214 			d_move(old_dentry, new_dentry);
4215 		else
4216 			d_exchange(old_dentry, new_dentry);
4217 	}
4218 out:
4219 	if (!is_dir || (flags & RENAME_EXCHANGE))
4220 		unlock_two_nondirectories(source, target);
4221 	else if (target)
4222 		mutex_unlock(&target->i_mutex);
4223 	dput(new_dentry);
4224 	if (!error) {
4225 		fsnotify_move(old_dir, new_dir, old_name, is_dir,
4226 			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4227 		if (flags & RENAME_EXCHANGE) {
4228 			fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4229 				      new_is_dir, NULL, new_dentry);
4230 		}
4231 	}
4232 	fsnotify_oldname_free(old_name);
4233 
4234 	return error;
4235 }
4236 EXPORT_SYMBOL(vfs_rename);
4237 
4238 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4239 		int, newdfd, const char __user *, newname, unsigned int, flags)
4240 {
4241 	struct dentry *old_dir, *new_dir;
4242 	struct dentry *old_dentry, *new_dentry;
4243 	struct dentry *trap;
4244 	struct nameidata oldnd, newnd;
4245 	struct inode *delegated_inode = NULL;
4246 	struct filename *from;
4247 	struct filename *to;
4248 	unsigned int lookup_flags = 0;
4249 	bool should_retry = false;
4250 	int error;
4251 
4252 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4253 		return -EINVAL;
4254 
4255 	if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4256 	    (flags & RENAME_EXCHANGE))
4257 		return -EINVAL;
4258 
4259 	if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4260 		return -EPERM;
4261 
4262 retry:
4263 	from = user_path_parent(olddfd, oldname, &oldnd, lookup_flags);
4264 	if (IS_ERR(from)) {
4265 		error = PTR_ERR(from);
4266 		goto exit;
4267 	}
4268 
4269 	to = user_path_parent(newdfd, newname, &newnd, lookup_flags);
4270 	if (IS_ERR(to)) {
4271 		error = PTR_ERR(to);
4272 		goto exit1;
4273 	}
4274 
4275 	error = -EXDEV;
4276 	if (oldnd.path.mnt != newnd.path.mnt)
4277 		goto exit2;
4278 
4279 	old_dir = oldnd.path.dentry;
4280 	error = -EBUSY;
4281 	if (oldnd.last_type != LAST_NORM)
4282 		goto exit2;
4283 
4284 	new_dir = newnd.path.dentry;
4285 	if (flags & RENAME_NOREPLACE)
4286 		error = -EEXIST;
4287 	if (newnd.last_type != LAST_NORM)
4288 		goto exit2;
4289 
4290 	error = mnt_want_write(oldnd.path.mnt);
4291 	if (error)
4292 		goto exit2;
4293 
4294 	oldnd.flags &= ~LOOKUP_PARENT;
4295 	newnd.flags &= ~LOOKUP_PARENT;
4296 	if (!(flags & RENAME_EXCHANGE))
4297 		newnd.flags |= LOOKUP_RENAME_TARGET;
4298 
4299 retry_deleg:
4300 	trap = lock_rename(new_dir, old_dir);
4301 
4302 	old_dentry = lookup_hash(&oldnd);
4303 	error = PTR_ERR(old_dentry);
4304 	if (IS_ERR(old_dentry))
4305 		goto exit3;
4306 	/* source must exist */
4307 	error = -ENOENT;
4308 	if (d_is_negative(old_dentry))
4309 		goto exit4;
4310 	new_dentry = lookup_hash(&newnd);
4311 	error = PTR_ERR(new_dentry);
4312 	if (IS_ERR(new_dentry))
4313 		goto exit4;
4314 	error = -EEXIST;
4315 	if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4316 		goto exit5;
4317 	if (flags & RENAME_EXCHANGE) {
4318 		error = -ENOENT;
4319 		if (d_is_negative(new_dentry))
4320 			goto exit5;
4321 
4322 		if (!d_is_dir(new_dentry)) {
4323 			error = -ENOTDIR;
4324 			if (newnd.last.name[newnd.last.len])
4325 				goto exit5;
4326 		}
4327 	}
4328 	/* unless the source is a directory trailing slashes give -ENOTDIR */
4329 	if (!d_is_dir(old_dentry)) {
4330 		error = -ENOTDIR;
4331 		if (oldnd.last.name[oldnd.last.len])
4332 			goto exit5;
4333 		if (!(flags & RENAME_EXCHANGE) && newnd.last.name[newnd.last.len])
4334 			goto exit5;
4335 	}
4336 	/* source should not be ancestor of target */
4337 	error = -EINVAL;
4338 	if (old_dentry == trap)
4339 		goto exit5;
4340 	/* target should not be an ancestor of source */
4341 	if (!(flags & RENAME_EXCHANGE))
4342 		error = -ENOTEMPTY;
4343 	if (new_dentry == trap)
4344 		goto exit5;
4345 
4346 	error = security_path_rename(&oldnd.path, old_dentry,
4347 				     &newnd.path, new_dentry, flags);
4348 	if (error)
4349 		goto exit5;
4350 	error = vfs_rename(old_dir->d_inode, old_dentry,
4351 			   new_dir->d_inode, new_dentry,
4352 			   &delegated_inode, flags);
4353 exit5:
4354 	dput(new_dentry);
4355 exit4:
4356 	dput(old_dentry);
4357 exit3:
4358 	unlock_rename(new_dir, old_dir);
4359 	if (delegated_inode) {
4360 		error = break_deleg_wait(&delegated_inode);
4361 		if (!error)
4362 			goto retry_deleg;
4363 	}
4364 	mnt_drop_write(oldnd.path.mnt);
4365 exit2:
4366 	if (retry_estale(error, lookup_flags))
4367 		should_retry = true;
4368 	path_put(&newnd.path);
4369 	putname(to);
4370 exit1:
4371 	path_put(&oldnd.path);
4372 	putname(from);
4373 	if (should_retry) {
4374 		should_retry = false;
4375 		lookup_flags |= LOOKUP_REVAL;
4376 		goto retry;
4377 	}
4378 exit:
4379 	return error;
4380 }
4381 
4382 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4383 		int, newdfd, const char __user *, newname)
4384 {
4385 	return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4386 }
4387 
4388 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4389 {
4390 	return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4391 }
4392 
4393 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4394 {
4395 	int error = may_create(dir, dentry);
4396 	if (error)
4397 		return error;
4398 
4399 	if (!dir->i_op->mknod)
4400 		return -EPERM;
4401 
4402 	return dir->i_op->mknod(dir, dentry,
4403 				S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4404 }
4405 EXPORT_SYMBOL(vfs_whiteout);
4406 
4407 int readlink_copy(char __user *buffer, int buflen, const char *link)
4408 {
4409 	int len = PTR_ERR(link);
4410 	if (IS_ERR(link))
4411 		goto out;
4412 
4413 	len = strlen(link);
4414 	if (len > (unsigned) buflen)
4415 		len = buflen;
4416 	if (copy_to_user(buffer, link, len))
4417 		len = -EFAULT;
4418 out:
4419 	return len;
4420 }
4421 EXPORT_SYMBOL(readlink_copy);
4422 
4423 /*
4424  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
4425  * have ->follow_link() touching nd only in nd_set_link().  Using (or not
4426  * using) it for any given inode is up to filesystem.
4427  */
4428 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4429 {
4430 	struct nameidata nd;
4431 	void *cookie;
4432 	int res;
4433 
4434 	nd.depth = 0;
4435 	cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
4436 	if (IS_ERR(cookie))
4437 		return PTR_ERR(cookie);
4438 
4439 	res = readlink_copy(buffer, buflen, nd_get_link(&nd));
4440 	if (dentry->d_inode->i_op->put_link)
4441 		dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
4442 	return res;
4443 }
4444 EXPORT_SYMBOL(generic_readlink);
4445 
4446 /* get the link contents into pagecache */
4447 static char *page_getlink(struct dentry * dentry, struct page **ppage)
4448 {
4449 	char *kaddr;
4450 	struct page *page;
4451 	struct address_space *mapping = dentry->d_inode->i_mapping;
4452 	page = read_mapping_page(mapping, 0, NULL);
4453 	if (IS_ERR(page))
4454 		return (char*)page;
4455 	*ppage = page;
4456 	kaddr = kmap(page);
4457 	nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
4458 	return kaddr;
4459 }
4460 
4461 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4462 {
4463 	struct page *page = NULL;
4464 	int res = readlink_copy(buffer, buflen, page_getlink(dentry, &page));
4465 	if (page) {
4466 		kunmap(page);
4467 		page_cache_release(page);
4468 	}
4469 	return res;
4470 }
4471 EXPORT_SYMBOL(page_readlink);
4472 
4473 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
4474 {
4475 	struct page *page = NULL;
4476 	nd_set_link(nd, page_getlink(dentry, &page));
4477 	return page;
4478 }
4479 EXPORT_SYMBOL(page_follow_link_light);
4480 
4481 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
4482 {
4483 	struct page *page = cookie;
4484 
4485 	if (page) {
4486 		kunmap(page);
4487 		page_cache_release(page);
4488 	}
4489 }
4490 EXPORT_SYMBOL(page_put_link);
4491 
4492 /*
4493  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4494  */
4495 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4496 {
4497 	struct address_space *mapping = inode->i_mapping;
4498 	struct page *page;
4499 	void *fsdata;
4500 	int err;
4501 	char *kaddr;
4502 	unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4503 	if (nofs)
4504 		flags |= AOP_FLAG_NOFS;
4505 
4506 retry:
4507 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
4508 				flags, &page, &fsdata);
4509 	if (err)
4510 		goto fail;
4511 
4512 	kaddr = kmap_atomic(page);
4513 	memcpy(kaddr, symname, len-1);
4514 	kunmap_atomic(kaddr);
4515 
4516 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4517 							page, fsdata);
4518 	if (err < 0)
4519 		goto fail;
4520 	if (err < len-1)
4521 		goto retry;
4522 
4523 	mark_inode_dirty(inode);
4524 	return 0;
4525 fail:
4526 	return err;
4527 }
4528 EXPORT_SYMBOL(__page_symlink);
4529 
4530 int page_symlink(struct inode *inode, const char *symname, int len)
4531 {
4532 	return __page_symlink(inode, symname, len,
4533 			!(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
4534 }
4535 EXPORT_SYMBOL(page_symlink);
4536 
4537 const struct inode_operations page_symlink_inode_operations = {
4538 	.readlink	= generic_readlink,
4539 	.follow_link	= page_follow_link_light,
4540 	.put_link	= page_put_link,
4541 };
4542 EXPORT_SYMBOL(page_symlink_inode_operations);
4543