1 /* 2 * linux/fs/namei.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * Some corrections by tytso. 9 */ 10 11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 12 * lookup logic. 13 */ 14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 15 */ 16 17 #include <linux/init.h> 18 #include <linux/export.h> 19 #include <linux/kernel.h> 20 #include <linux/slab.h> 21 #include <linux/fs.h> 22 #include <linux/namei.h> 23 #include <linux/pagemap.h> 24 #include <linux/fsnotify.h> 25 #include <linux/personality.h> 26 #include <linux/security.h> 27 #include <linux/ima.h> 28 #include <linux/syscalls.h> 29 #include <linux/mount.h> 30 #include <linux/audit.h> 31 #include <linux/capability.h> 32 #include <linux/file.h> 33 #include <linux/fcntl.h> 34 #include <linux/device_cgroup.h> 35 #include <linux/fs_struct.h> 36 #include <linux/posix_acl.h> 37 #include <asm/uaccess.h> 38 39 #include "internal.h" 40 #include "mount.h" 41 42 /* [Feb-1997 T. Schoebel-Theuer] 43 * Fundamental changes in the pathname lookup mechanisms (namei) 44 * were necessary because of omirr. The reason is that omirr needs 45 * to know the _real_ pathname, not the user-supplied one, in case 46 * of symlinks (and also when transname replacements occur). 47 * 48 * The new code replaces the old recursive symlink resolution with 49 * an iterative one (in case of non-nested symlink chains). It does 50 * this with calls to <fs>_follow_link(). 51 * As a side effect, dir_namei(), _namei() and follow_link() are now 52 * replaced with a single function lookup_dentry() that can handle all 53 * the special cases of the former code. 54 * 55 * With the new dcache, the pathname is stored at each inode, at least as 56 * long as the refcount of the inode is positive. As a side effect, the 57 * size of the dcache depends on the inode cache and thus is dynamic. 58 * 59 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 60 * resolution to correspond with current state of the code. 61 * 62 * Note that the symlink resolution is not *completely* iterative. 63 * There is still a significant amount of tail- and mid- recursion in 64 * the algorithm. Also, note that <fs>_readlink() is not used in 65 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 66 * may return different results than <fs>_follow_link(). Many virtual 67 * filesystems (including /proc) exhibit this behavior. 68 */ 69 70 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 71 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 72 * and the name already exists in form of a symlink, try to create the new 73 * name indicated by the symlink. The old code always complained that the 74 * name already exists, due to not following the symlink even if its target 75 * is nonexistent. The new semantics affects also mknod() and link() when 76 * the name is a symlink pointing to a non-existent name. 77 * 78 * I don't know which semantics is the right one, since I have no access 79 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 80 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 81 * "old" one. Personally, I think the new semantics is much more logical. 82 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 83 * file does succeed in both HP-UX and SunOs, but not in Solaris 84 * and in the old Linux semantics. 85 */ 86 87 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 88 * semantics. See the comments in "open_namei" and "do_link" below. 89 * 90 * [10-Sep-98 Alan Modra] Another symlink change. 91 */ 92 93 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 94 * inside the path - always follow. 95 * in the last component in creation/removal/renaming - never follow. 96 * if LOOKUP_FOLLOW passed - follow. 97 * if the pathname has trailing slashes - follow. 98 * otherwise - don't follow. 99 * (applied in that order). 100 * 101 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 102 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 103 * During the 2.4 we need to fix the userland stuff depending on it - 104 * hopefully we will be able to get rid of that wart in 2.5. So far only 105 * XEmacs seems to be relying on it... 106 */ 107 /* 108 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 109 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 110 * any extra contention... 111 */ 112 113 /* In order to reduce some races, while at the same time doing additional 114 * checking and hopefully speeding things up, we copy filenames to the 115 * kernel data space before using them.. 116 * 117 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 118 * PATH_MAX includes the nul terminator --RR. 119 */ 120 void final_putname(struct filename *name) 121 { 122 if (name->separate) { 123 __putname(name->name); 124 kfree(name); 125 } else { 126 __putname(name); 127 } 128 } 129 130 #define EMBEDDED_NAME_MAX (PATH_MAX - sizeof(struct filename)) 131 132 static struct filename * 133 getname_flags(const char __user *filename, int flags, int *empty) 134 { 135 struct filename *result, *err; 136 int len; 137 long max; 138 char *kname; 139 140 result = audit_reusename(filename); 141 if (result) 142 return result; 143 144 result = __getname(); 145 if (unlikely(!result)) 146 return ERR_PTR(-ENOMEM); 147 148 /* 149 * First, try to embed the struct filename inside the names_cache 150 * allocation 151 */ 152 kname = (char *)result + sizeof(*result); 153 result->name = kname; 154 result->separate = false; 155 max = EMBEDDED_NAME_MAX; 156 157 recopy: 158 len = strncpy_from_user(kname, filename, max); 159 if (unlikely(len < 0)) { 160 err = ERR_PTR(len); 161 goto error; 162 } 163 164 /* 165 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a 166 * separate struct filename so we can dedicate the entire 167 * names_cache allocation for the pathname, and re-do the copy from 168 * userland. 169 */ 170 if (len == EMBEDDED_NAME_MAX && max == EMBEDDED_NAME_MAX) { 171 kname = (char *)result; 172 173 result = kzalloc(sizeof(*result), GFP_KERNEL); 174 if (!result) { 175 err = ERR_PTR(-ENOMEM); 176 result = (struct filename *)kname; 177 goto error; 178 } 179 result->name = kname; 180 result->separate = true; 181 max = PATH_MAX; 182 goto recopy; 183 } 184 185 /* The empty path is special. */ 186 if (unlikely(!len)) { 187 if (empty) 188 *empty = 1; 189 err = ERR_PTR(-ENOENT); 190 if (!(flags & LOOKUP_EMPTY)) 191 goto error; 192 } 193 194 err = ERR_PTR(-ENAMETOOLONG); 195 if (unlikely(len >= PATH_MAX)) 196 goto error; 197 198 result->uptr = filename; 199 audit_getname(result); 200 return result; 201 202 error: 203 final_putname(result); 204 return err; 205 } 206 207 struct filename * 208 getname(const char __user * filename) 209 { 210 return getname_flags(filename, 0, NULL); 211 } 212 EXPORT_SYMBOL(getname); 213 214 #ifdef CONFIG_AUDITSYSCALL 215 void putname(struct filename *name) 216 { 217 if (unlikely(!audit_dummy_context())) 218 return audit_putname(name); 219 final_putname(name); 220 } 221 #endif 222 223 static int check_acl(struct inode *inode, int mask) 224 { 225 #ifdef CONFIG_FS_POSIX_ACL 226 struct posix_acl *acl; 227 228 if (mask & MAY_NOT_BLOCK) { 229 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS); 230 if (!acl) 231 return -EAGAIN; 232 /* no ->get_acl() calls in RCU mode... */ 233 if (acl == ACL_NOT_CACHED) 234 return -ECHILD; 235 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK); 236 } 237 238 acl = get_cached_acl(inode, ACL_TYPE_ACCESS); 239 240 /* 241 * A filesystem can force a ACL callback by just never filling the 242 * ACL cache. But normally you'd fill the cache either at inode 243 * instantiation time, or on the first ->get_acl call. 244 * 245 * If the filesystem doesn't have a get_acl() function at all, we'll 246 * just create the negative cache entry. 247 */ 248 if (acl == ACL_NOT_CACHED) { 249 if (inode->i_op->get_acl) { 250 acl = inode->i_op->get_acl(inode, ACL_TYPE_ACCESS); 251 if (IS_ERR(acl)) 252 return PTR_ERR(acl); 253 } else { 254 set_cached_acl(inode, ACL_TYPE_ACCESS, NULL); 255 return -EAGAIN; 256 } 257 } 258 259 if (acl) { 260 int error = posix_acl_permission(inode, acl, mask); 261 posix_acl_release(acl); 262 return error; 263 } 264 #endif 265 266 return -EAGAIN; 267 } 268 269 /* 270 * This does the basic permission checking 271 */ 272 static int acl_permission_check(struct inode *inode, int mask) 273 { 274 unsigned int mode = inode->i_mode; 275 276 if (likely(uid_eq(current_fsuid(), inode->i_uid))) 277 mode >>= 6; 278 else { 279 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) { 280 int error = check_acl(inode, mask); 281 if (error != -EAGAIN) 282 return error; 283 } 284 285 if (in_group_p(inode->i_gid)) 286 mode >>= 3; 287 } 288 289 /* 290 * If the DACs are ok we don't need any capability check. 291 */ 292 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 293 return 0; 294 return -EACCES; 295 } 296 297 /** 298 * generic_permission - check for access rights on a Posix-like filesystem 299 * @inode: inode to check access rights for 300 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...) 301 * 302 * Used to check for read/write/execute permissions on a file. 303 * We use "fsuid" for this, letting us set arbitrary permissions 304 * for filesystem access without changing the "normal" uids which 305 * are used for other things. 306 * 307 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk 308 * request cannot be satisfied (eg. requires blocking or too much complexity). 309 * It would then be called again in ref-walk mode. 310 */ 311 int generic_permission(struct inode *inode, int mask) 312 { 313 int ret; 314 315 /* 316 * Do the basic permission checks. 317 */ 318 ret = acl_permission_check(inode, mask); 319 if (ret != -EACCES) 320 return ret; 321 322 if (S_ISDIR(inode->i_mode)) { 323 /* DACs are overridable for directories */ 324 if (inode_capable(inode, CAP_DAC_OVERRIDE)) 325 return 0; 326 if (!(mask & MAY_WRITE)) 327 if (inode_capable(inode, CAP_DAC_READ_SEARCH)) 328 return 0; 329 return -EACCES; 330 } 331 /* 332 * Read/write DACs are always overridable. 333 * Executable DACs are overridable when there is 334 * at least one exec bit set. 335 */ 336 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO)) 337 if (inode_capable(inode, CAP_DAC_OVERRIDE)) 338 return 0; 339 340 /* 341 * Searching includes executable on directories, else just read. 342 */ 343 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 344 if (mask == MAY_READ) 345 if (inode_capable(inode, CAP_DAC_READ_SEARCH)) 346 return 0; 347 348 return -EACCES; 349 } 350 351 /* 352 * We _really_ want to just do "generic_permission()" without 353 * even looking at the inode->i_op values. So we keep a cache 354 * flag in inode->i_opflags, that says "this has not special 355 * permission function, use the fast case". 356 */ 357 static inline int do_inode_permission(struct inode *inode, int mask) 358 { 359 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) { 360 if (likely(inode->i_op->permission)) 361 return inode->i_op->permission(inode, mask); 362 363 /* This gets set once for the inode lifetime */ 364 spin_lock(&inode->i_lock); 365 inode->i_opflags |= IOP_FASTPERM; 366 spin_unlock(&inode->i_lock); 367 } 368 return generic_permission(inode, mask); 369 } 370 371 /** 372 * __inode_permission - Check for access rights to a given inode 373 * @inode: Inode to check permission on 374 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 375 * 376 * Check for read/write/execute permissions on an inode. 377 * 378 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 379 * 380 * This does not check for a read-only file system. You probably want 381 * inode_permission(). 382 */ 383 int __inode_permission(struct inode *inode, int mask) 384 { 385 int retval; 386 387 if (unlikely(mask & MAY_WRITE)) { 388 /* 389 * Nobody gets write access to an immutable file. 390 */ 391 if (IS_IMMUTABLE(inode)) 392 return -EACCES; 393 } 394 395 retval = do_inode_permission(inode, mask); 396 if (retval) 397 return retval; 398 399 retval = devcgroup_inode_permission(inode, mask); 400 if (retval) 401 return retval; 402 403 return security_inode_permission(inode, mask); 404 } 405 406 /** 407 * sb_permission - Check superblock-level permissions 408 * @sb: Superblock of inode to check permission on 409 * @inode: Inode to check permission on 410 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 411 * 412 * Separate out file-system wide checks from inode-specific permission checks. 413 */ 414 static int sb_permission(struct super_block *sb, struct inode *inode, int mask) 415 { 416 if (unlikely(mask & MAY_WRITE)) { 417 umode_t mode = inode->i_mode; 418 419 /* Nobody gets write access to a read-only fs. */ 420 if ((sb->s_flags & MS_RDONLY) && 421 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 422 return -EROFS; 423 } 424 return 0; 425 } 426 427 /** 428 * inode_permission - Check for access rights to a given inode 429 * @inode: Inode to check permission on 430 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 431 * 432 * Check for read/write/execute permissions on an inode. We use fs[ug]id for 433 * this, letting us set arbitrary permissions for filesystem access without 434 * changing the "normal" UIDs which are used for other things. 435 * 436 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 437 */ 438 int inode_permission(struct inode *inode, int mask) 439 { 440 int retval; 441 442 retval = sb_permission(inode->i_sb, inode, mask); 443 if (retval) 444 return retval; 445 return __inode_permission(inode, mask); 446 } 447 448 /** 449 * path_get - get a reference to a path 450 * @path: path to get the reference to 451 * 452 * Given a path increment the reference count to the dentry and the vfsmount. 453 */ 454 void path_get(const struct path *path) 455 { 456 mntget(path->mnt); 457 dget(path->dentry); 458 } 459 EXPORT_SYMBOL(path_get); 460 461 /** 462 * path_put - put a reference to a path 463 * @path: path to put the reference to 464 * 465 * Given a path decrement the reference count to the dentry and the vfsmount. 466 */ 467 void path_put(const struct path *path) 468 { 469 dput(path->dentry); 470 mntput(path->mnt); 471 } 472 EXPORT_SYMBOL(path_put); 473 474 /* 475 * Path walking has 2 modes, rcu-walk and ref-walk (see 476 * Documentation/filesystems/path-lookup.txt). In situations when we can't 477 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab 478 * normal reference counts on dentries and vfsmounts to transition to rcu-walk 479 * mode. Refcounts are grabbed at the last known good point before rcu-walk 480 * got stuck, so ref-walk may continue from there. If this is not successful 481 * (eg. a seqcount has changed), then failure is returned and it's up to caller 482 * to restart the path walk from the beginning in ref-walk mode. 483 */ 484 485 static inline void lock_rcu_walk(void) 486 { 487 br_read_lock(&vfsmount_lock); 488 rcu_read_lock(); 489 } 490 491 static inline void unlock_rcu_walk(void) 492 { 493 rcu_read_unlock(); 494 br_read_unlock(&vfsmount_lock); 495 } 496 497 /** 498 * unlazy_walk - try to switch to ref-walk mode. 499 * @nd: nameidata pathwalk data 500 * @dentry: child of nd->path.dentry or NULL 501 * Returns: 0 on success, -ECHILD on failure 502 * 503 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry 504 * for ref-walk mode. @dentry must be a path found by a do_lookup call on 505 * @nd or NULL. Must be called from rcu-walk context. 506 */ 507 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry) 508 { 509 struct fs_struct *fs = current->fs; 510 struct dentry *parent = nd->path.dentry; 511 512 BUG_ON(!(nd->flags & LOOKUP_RCU)); 513 514 /* 515 * Get a reference to the parent first: we're 516 * going to make "path_put(nd->path)" valid in 517 * non-RCU context for "terminate_walk()". 518 * 519 * If this doesn't work, return immediately with 520 * RCU walking still active (and then we will do 521 * the RCU walk cleanup in terminate_walk()). 522 */ 523 if (!lockref_get_not_dead(&parent->d_lockref)) 524 return -ECHILD; 525 526 /* 527 * After the mntget(), we terminate_walk() will do 528 * the right thing for non-RCU mode, and all our 529 * subsequent exit cases should unlock_rcu_walk() 530 * before returning. 531 */ 532 mntget(nd->path.mnt); 533 nd->flags &= ~LOOKUP_RCU; 534 535 /* 536 * For a negative lookup, the lookup sequence point is the parents 537 * sequence point, and it only needs to revalidate the parent dentry. 538 * 539 * For a positive lookup, we need to move both the parent and the 540 * dentry from the RCU domain to be properly refcounted. And the 541 * sequence number in the dentry validates *both* dentry counters, 542 * since we checked the sequence number of the parent after we got 543 * the child sequence number. So we know the parent must still 544 * be valid if the child sequence number is still valid. 545 */ 546 if (!dentry) { 547 if (read_seqcount_retry(&parent->d_seq, nd->seq)) 548 goto out; 549 BUG_ON(nd->inode != parent->d_inode); 550 } else { 551 if (!lockref_get_not_dead(&dentry->d_lockref)) 552 goto out; 553 if (read_seqcount_retry(&dentry->d_seq, nd->seq)) 554 goto drop_dentry; 555 } 556 557 /* 558 * Sequence counts matched. Now make sure that the root is 559 * still valid and get it if required. 560 */ 561 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 562 spin_lock(&fs->lock); 563 if (nd->root.mnt != fs->root.mnt || nd->root.dentry != fs->root.dentry) 564 goto unlock_and_drop_dentry; 565 path_get(&nd->root); 566 spin_unlock(&fs->lock); 567 } 568 569 unlock_rcu_walk(); 570 return 0; 571 572 unlock_and_drop_dentry: 573 spin_unlock(&fs->lock); 574 drop_dentry: 575 unlock_rcu_walk(); 576 dput(dentry); 577 goto drop_root_mnt; 578 out: 579 unlock_rcu_walk(); 580 drop_root_mnt: 581 if (!(nd->flags & LOOKUP_ROOT)) 582 nd->root.mnt = NULL; 583 return -ECHILD; 584 } 585 586 static inline int d_revalidate(struct dentry *dentry, unsigned int flags) 587 { 588 return dentry->d_op->d_revalidate(dentry, flags); 589 } 590 591 /** 592 * complete_walk - successful completion of path walk 593 * @nd: pointer nameidata 594 * 595 * If we had been in RCU mode, drop out of it and legitimize nd->path. 596 * Revalidate the final result, unless we'd already done that during 597 * the path walk or the filesystem doesn't ask for it. Return 0 on 598 * success, -error on failure. In case of failure caller does not 599 * need to drop nd->path. 600 */ 601 static int complete_walk(struct nameidata *nd) 602 { 603 struct dentry *dentry = nd->path.dentry; 604 int status; 605 606 if (nd->flags & LOOKUP_RCU) { 607 nd->flags &= ~LOOKUP_RCU; 608 if (!(nd->flags & LOOKUP_ROOT)) 609 nd->root.mnt = NULL; 610 611 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) { 612 unlock_rcu_walk(); 613 return -ECHILD; 614 } 615 if (read_seqcount_retry(&dentry->d_seq, nd->seq)) { 616 unlock_rcu_walk(); 617 dput(dentry); 618 return -ECHILD; 619 } 620 mntget(nd->path.mnt); 621 unlock_rcu_walk(); 622 } 623 624 if (likely(!(nd->flags & LOOKUP_JUMPED))) 625 return 0; 626 627 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE))) 628 return 0; 629 630 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags); 631 if (status > 0) 632 return 0; 633 634 if (!status) 635 status = -ESTALE; 636 637 path_put(&nd->path); 638 return status; 639 } 640 641 static __always_inline void set_root(struct nameidata *nd) 642 { 643 if (!nd->root.mnt) 644 get_fs_root(current->fs, &nd->root); 645 } 646 647 static int link_path_walk(const char *, struct nameidata *); 648 649 static __always_inline void set_root_rcu(struct nameidata *nd) 650 { 651 if (!nd->root.mnt) { 652 struct fs_struct *fs = current->fs; 653 unsigned seq; 654 655 do { 656 seq = read_seqcount_begin(&fs->seq); 657 nd->root = fs->root; 658 nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq); 659 } while (read_seqcount_retry(&fs->seq, seq)); 660 } 661 } 662 663 static void path_put_conditional(struct path *path, struct nameidata *nd) 664 { 665 dput(path->dentry); 666 if (path->mnt != nd->path.mnt) 667 mntput(path->mnt); 668 } 669 670 static inline void path_to_nameidata(const struct path *path, 671 struct nameidata *nd) 672 { 673 if (!(nd->flags & LOOKUP_RCU)) { 674 dput(nd->path.dentry); 675 if (nd->path.mnt != path->mnt) 676 mntput(nd->path.mnt); 677 } 678 nd->path.mnt = path->mnt; 679 nd->path.dentry = path->dentry; 680 } 681 682 /* 683 * Helper to directly jump to a known parsed path from ->follow_link, 684 * caller must have taken a reference to path beforehand. 685 */ 686 void nd_jump_link(struct nameidata *nd, struct path *path) 687 { 688 path_put(&nd->path); 689 690 nd->path = *path; 691 nd->inode = nd->path.dentry->d_inode; 692 nd->flags |= LOOKUP_JUMPED; 693 } 694 695 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie) 696 { 697 struct inode *inode = link->dentry->d_inode; 698 if (inode->i_op->put_link) 699 inode->i_op->put_link(link->dentry, nd, cookie); 700 path_put(link); 701 } 702 703 int sysctl_protected_symlinks __read_mostly = 0; 704 int sysctl_protected_hardlinks __read_mostly = 0; 705 706 /** 707 * may_follow_link - Check symlink following for unsafe situations 708 * @link: The path of the symlink 709 * @nd: nameidata pathwalk data 710 * 711 * In the case of the sysctl_protected_symlinks sysctl being enabled, 712 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is 713 * in a sticky world-writable directory. This is to protect privileged 714 * processes from failing races against path names that may change out 715 * from under them by way of other users creating malicious symlinks. 716 * It will permit symlinks to be followed only when outside a sticky 717 * world-writable directory, or when the uid of the symlink and follower 718 * match, or when the directory owner matches the symlink's owner. 719 * 720 * Returns 0 if following the symlink is allowed, -ve on error. 721 */ 722 static inline int may_follow_link(struct path *link, struct nameidata *nd) 723 { 724 const struct inode *inode; 725 const struct inode *parent; 726 727 if (!sysctl_protected_symlinks) 728 return 0; 729 730 /* Allowed if owner and follower match. */ 731 inode = link->dentry->d_inode; 732 if (uid_eq(current_cred()->fsuid, inode->i_uid)) 733 return 0; 734 735 /* Allowed if parent directory not sticky and world-writable. */ 736 parent = nd->path.dentry->d_inode; 737 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH)) 738 return 0; 739 740 /* Allowed if parent directory and link owner match. */ 741 if (uid_eq(parent->i_uid, inode->i_uid)) 742 return 0; 743 744 audit_log_link_denied("follow_link", link); 745 path_put_conditional(link, nd); 746 path_put(&nd->path); 747 return -EACCES; 748 } 749 750 /** 751 * safe_hardlink_source - Check for safe hardlink conditions 752 * @inode: the source inode to hardlink from 753 * 754 * Return false if at least one of the following conditions: 755 * - inode is not a regular file 756 * - inode is setuid 757 * - inode is setgid and group-exec 758 * - access failure for read and write 759 * 760 * Otherwise returns true. 761 */ 762 static bool safe_hardlink_source(struct inode *inode) 763 { 764 umode_t mode = inode->i_mode; 765 766 /* Special files should not get pinned to the filesystem. */ 767 if (!S_ISREG(mode)) 768 return false; 769 770 /* Setuid files should not get pinned to the filesystem. */ 771 if (mode & S_ISUID) 772 return false; 773 774 /* Executable setgid files should not get pinned to the filesystem. */ 775 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) 776 return false; 777 778 /* Hardlinking to unreadable or unwritable sources is dangerous. */ 779 if (inode_permission(inode, MAY_READ | MAY_WRITE)) 780 return false; 781 782 return true; 783 } 784 785 /** 786 * may_linkat - Check permissions for creating a hardlink 787 * @link: the source to hardlink from 788 * 789 * Block hardlink when all of: 790 * - sysctl_protected_hardlinks enabled 791 * - fsuid does not match inode 792 * - hardlink source is unsafe (see safe_hardlink_source() above) 793 * - not CAP_FOWNER 794 * 795 * Returns 0 if successful, -ve on error. 796 */ 797 static int may_linkat(struct path *link) 798 { 799 const struct cred *cred; 800 struct inode *inode; 801 802 if (!sysctl_protected_hardlinks) 803 return 0; 804 805 cred = current_cred(); 806 inode = link->dentry->d_inode; 807 808 /* Source inode owner (or CAP_FOWNER) can hardlink all they like, 809 * otherwise, it must be a safe source. 810 */ 811 if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) || 812 capable(CAP_FOWNER)) 813 return 0; 814 815 audit_log_link_denied("linkat", link); 816 return -EPERM; 817 } 818 819 static __always_inline int 820 follow_link(struct path *link, struct nameidata *nd, void **p) 821 { 822 struct dentry *dentry = link->dentry; 823 int error; 824 char *s; 825 826 BUG_ON(nd->flags & LOOKUP_RCU); 827 828 if (link->mnt == nd->path.mnt) 829 mntget(link->mnt); 830 831 error = -ELOOP; 832 if (unlikely(current->total_link_count >= 40)) 833 goto out_put_nd_path; 834 835 cond_resched(); 836 current->total_link_count++; 837 838 touch_atime(link); 839 nd_set_link(nd, NULL); 840 841 error = security_inode_follow_link(link->dentry, nd); 842 if (error) 843 goto out_put_nd_path; 844 845 nd->last_type = LAST_BIND; 846 *p = dentry->d_inode->i_op->follow_link(dentry, nd); 847 error = PTR_ERR(*p); 848 if (IS_ERR(*p)) 849 goto out_put_nd_path; 850 851 error = 0; 852 s = nd_get_link(nd); 853 if (s) { 854 if (unlikely(IS_ERR(s))) { 855 path_put(&nd->path); 856 put_link(nd, link, *p); 857 return PTR_ERR(s); 858 } 859 if (*s == '/') { 860 set_root(nd); 861 path_put(&nd->path); 862 nd->path = nd->root; 863 path_get(&nd->root); 864 nd->flags |= LOOKUP_JUMPED; 865 } 866 nd->inode = nd->path.dentry->d_inode; 867 error = link_path_walk(s, nd); 868 if (unlikely(error)) 869 put_link(nd, link, *p); 870 } 871 872 return error; 873 874 out_put_nd_path: 875 *p = NULL; 876 path_put(&nd->path); 877 path_put(link); 878 return error; 879 } 880 881 static int follow_up_rcu(struct path *path) 882 { 883 struct mount *mnt = real_mount(path->mnt); 884 struct mount *parent; 885 struct dentry *mountpoint; 886 887 parent = mnt->mnt_parent; 888 if (&parent->mnt == path->mnt) 889 return 0; 890 mountpoint = mnt->mnt_mountpoint; 891 path->dentry = mountpoint; 892 path->mnt = &parent->mnt; 893 return 1; 894 } 895 896 /* 897 * follow_up - Find the mountpoint of path's vfsmount 898 * 899 * Given a path, find the mountpoint of its source file system. 900 * Replace @path with the path of the mountpoint in the parent mount. 901 * Up is towards /. 902 * 903 * Return 1 if we went up a level and 0 if we were already at the 904 * root. 905 */ 906 int follow_up(struct path *path) 907 { 908 struct mount *mnt = real_mount(path->mnt); 909 struct mount *parent; 910 struct dentry *mountpoint; 911 912 br_read_lock(&vfsmount_lock); 913 parent = mnt->mnt_parent; 914 if (parent == mnt) { 915 br_read_unlock(&vfsmount_lock); 916 return 0; 917 } 918 mntget(&parent->mnt); 919 mountpoint = dget(mnt->mnt_mountpoint); 920 br_read_unlock(&vfsmount_lock); 921 dput(path->dentry); 922 path->dentry = mountpoint; 923 mntput(path->mnt); 924 path->mnt = &parent->mnt; 925 return 1; 926 } 927 928 /* 929 * Perform an automount 930 * - return -EISDIR to tell follow_managed() to stop and return the path we 931 * were called with. 932 */ 933 static int follow_automount(struct path *path, unsigned flags, 934 bool *need_mntput) 935 { 936 struct vfsmount *mnt; 937 int err; 938 939 if (!path->dentry->d_op || !path->dentry->d_op->d_automount) 940 return -EREMOTE; 941 942 /* We don't want to mount if someone's just doing a stat - 943 * unless they're stat'ing a directory and appended a '/' to 944 * the name. 945 * 946 * We do, however, want to mount if someone wants to open or 947 * create a file of any type under the mountpoint, wants to 948 * traverse through the mountpoint or wants to open the 949 * mounted directory. Also, autofs may mark negative dentries 950 * as being automount points. These will need the attentions 951 * of the daemon to instantiate them before they can be used. 952 */ 953 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY | 954 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) && 955 path->dentry->d_inode) 956 return -EISDIR; 957 958 current->total_link_count++; 959 if (current->total_link_count >= 40) 960 return -ELOOP; 961 962 mnt = path->dentry->d_op->d_automount(path); 963 if (IS_ERR(mnt)) { 964 /* 965 * The filesystem is allowed to return -EISDIR here to indicate 966 * it doesn't want to automount. For instance, autofs would do 967 * this so that its userspace daemon can mount on this dentry. 968 * 969 * However, we can only permit this if it's a terminal point in 970 * the path being looked up; if it wasn't then the remainder of 971 * the path is inaccessible and we should say so. 972 */ 973 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT)) 974 return -EREMOTE; 975 return PTR_ERR(mnt); 976 } 977 978 if (!mnt) /* mount collision */ 979 return 0; 980 981 if (!*need_mntput) { 982 /* lock_mount() may release path->mnt on error */ 983 mntget(path->mnt); 984 *need_mntput = true; 985 } 986 err = finish_automount(mnt, path); 987 988 switch (err) { 989 case -EBUSY: 990 /* Someone else made a mount here whilst we were busy */ 991 return 0; 992 case 0: 993 path_put(path); 994 path->mnt = mnt; 995 path->dentry = dget(mnt->mnt_root); 996 return 0; 997 default: 998 return err; 999 } 1000 1001 } 1002 1003 /* 1004 * Handle a dentry that is managed in some way. 1005 * - Flagged for transit management (autofs) 1006 * - Flagged as mountpoint 1007 * - Flagged as automount point 1008 * 1009 * This may only be called in refwalk mode. 1010 * 1011 * Serialization is taken care of in namespace.c 1012 */ 1013 static int follow_managed(struct path *path, unsigned flags) 1014 { 1015 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */ 1016 unsigned managed; 1017 bool need_mntput = false; 1018 int ret = 0; 1019 1020 /* Given that we're not holding a lock here, we retain the value in a 1021 * local variable for each dentry as we look at it so that we don't see 1022 * the components of that value change under us */ 1023 while (managed = ACCESS_ONCE(path->dentry->d_flags), 1024 managed &= DCACHE_MANAGED_DENTRY, 1025 unlikely(managed != 0)) { 1026 /* Allow the filesystem to manage the transit without i_mutex 1027 * being held. */ 1028 if (managed & DCACHE_MANAGE_TRANSIT) { 1029 BUG_ON(!path->dentry->d_op); 1030 BUG_ON(!path->dentry->d_op->d_manage); 1031 ret = path->dentry->d_op->d_manage(path->dentry, false); 1032 if (ret < 0) 1033 break; 1034 } 1035 1036 /* Transit to a mounted filesystem. */ 1037 if (managed & DCACHE_MOUNTED) { 1038 struct vfsmount *mounted = lookup_mnt(path); 1039 if (mounted) { 1040 dput(path->dentry); 1041 if (need_mntput) 1042 mntput(path->mnt); 1043 path->mnt = mounted; 1044 path->dentry = dget(mounted->mnt_root); 1045 need_mntput = true; 1046 continue; 1047 } 1048 1049 /* Something is mounted on this dentry in another 1050 * namespace and/or whatever was mounted there in this 1051 * namespace got unmounted before we managed to get the 1052 * vfsmount_lock */ 1053 } 1054 1055 /* Handle an automount point */ 1056 if (managed & DCACHE_NEED_AUTOMOUNT) { 1057 ret = follow_automount(path, flags, &need_mntput); 1058 if (ret < 0) 1059 break; 1060 continue; 1061 } 1062 1063 /* We didn't change the current path point */ 1064 break; 1065 } 1066 1067 if (need_mntput && path->mnt == mnt) 1068 mntput(path->mnt); 1069 if (ret == -EISDIR) 1070 ret = 0; 1071 return ret < 0 ? ret : need_mntput; 1072 } 1073 1074 int follow_down_one(struct path *path) 1075 { 1076 struct vfsmount *mounted; 1077 1078 mounted = lookup_mnt(path); 1079 if (mounted) { 1080 dput(path->dentry); 1081 mntput(path->mnt); 1082 path->mnt = mounted; 1083 path->dentry = dget(mounted->mnt_root); 1084 return 1; 1085 } 1086 return 0; 1087 } 1088 1089 static inline bool managed_dentry_might_block(struct dentry *dentry) 1090 { 1091 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT && 1092 dentry->d_op->d_manage(dentry, true) < 0); 1093 } 1094 1095 /* 1096 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if 1097 * we meet a managed dentry that would need blocking. 1098 */ 1099 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path, 1100 struct inode **inode) 1101 { 1102 for (;;) { 1103 struct mount *mounted; 1104 /* 1105 * Don't forget we might have a non-mountpoint managed dentry 1106 * that wants to block transit. 1107 */ 1108 if (unlikely(managed_dentry_might_block(path->dentry))) 1109 return false; 1110 1111 if (!d_mountpoint(path->dentry)) 1112 break; 1113 1114 mounted = __lookup_mnt(path->mnt, path->dentry, 1); 1115 if (!mounted) 1116 break; 1117 path->mnt = &mounted->mnt; 1118 path->dentry = mounted->mnt.mnt_root; 1119 nd->flags |= LOOKUP_JUMPED; 1120 nd->seq = read_seqcount_begin(&path->dentry->d_seq); 1121 /* 1122 * Update the inode too. We don't need to re-check the 1123 * dentry sequence number here after this d_inode read, 1124 * because a mount-point is always pinned. 1125 */ 1126 *inode = path->dentry->d_inode; 1127 } 1128 return true; 1129 } 1130 1131 static void follow_mount_rcu(struct nameidata *nd) 1132 { 1133 while (d_mountpoint(nd->path.dentry)) { 1134 struct mount *mounted; 1135 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry, 1); 1136 if (!mounted) 1137 break; 1138 nd->path.mnt = &mounted->mnt; 1139 nd->path.dentry = mounted->mnt.mnt_root; 1140 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 1141 } 1142 } 1143 1144 static int follow_dotdot_rcu(struct nameidata *nd) 1145 { 1146 set_root_rcu(nd); 1147 1148 while (1) { 1149 if (nd->path.dentry == nd->root.dentry && 1150 nd->path.mnt == nd->root.mnt) { 1151 break; 1152 } 1153 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1154 struct dentry *old = nd->path.dentry; 1155 struct dentry *parent = old->d_parent; 1156 unsigned seq; 1157 1158 seq = read_seqcount_begin(&parent->d_seq); 1159 if (read_seqcount_retry(&old->d_seq, nd->seq)) 1160 goto failed; 1161 nd->path.dentry = parent; 1162 nd->seq = seq; 1163 break; 1164 } 1165 if (!follow_up_rcu(&nd->path)) 1166 break; 1167 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 1168 } 1169 follow_mount_rcu(nd); 1170 nd->inode = nd->path.dentry->d_inode; 1171 return 0; 1172 1173 failed: 1174 nd->flags &= ~LOOKUP_RCU; 1175 if (!(nd->flags & LOOKUP_ROOT)) 1176 nd->root.mnt = NULL; 1177 unlock_rcu_walk(); 1178 return -ECHILD; 1179 } 1180 1181 /* 1182 * Follow down to the covering mount currently visible to userspace. At each 1183 * point, the filesystem owning that dentry may be queried as to whether the 1184 * caller is permitted to proceed or not. 1185 */ 1186 int follow_down(struct path *path) 1187 { 1188 unsigned managed; 1189 int ret; 1190 1191 while (managed = ACCESS_ONCE(path->dentry->d_flags), 1192 unlikely(managed & DCACHE_MANAGED_DENTRY)) { 1193 /* Allow the filesystem to manage the transit without i_mutex 1194 * being held. 1195 * 1196 * We indicate to the filesystem if someone is trying to mount 1197 * something here. This gives autofs the chance to deny anyone 1198 * other than its daemon the right to mount on its 1199 * superstructure. 1200 * 1201 * The filesystem may sleep at this point. 1202 */ 1203 if (managed & DCACHE_MANAGE_TRANSIT) { 1204 BUG_ON(!path->dentry->d_op); 1205 BUG_ON(!path->dentry->d_op->d_manage); 1206 ret = path->dentry->d_op->d_manage( 1207 path->dentry, false); 1208 if (ret < 0) 1209 return ret == -EISDIR ? 0 : ret; 1210 } 1211 1212 /* Transit to a mounted filesystem. */ 1213 if (managed & DCACHE_MOUNTED) { 1214 struct vfsmount *mounted = lookup_mnt(path); 1215 if (!mounted) 1216 break; 1217 dput(path->dentry); 1218 mntput(path->mnt); 1219 path->mnt = mounted; 1220 path->dentry = dget(mounted->mnt_root); 1221 continue; 1222 } 1223 1224 /* Don't handle automount points here */ 1225 break; 1226 } 1227 return 0; 1228 } 1229 1230 /* 1231 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot() 1232 */ 1233 static void follow_mount(struct path *path) 1234 { 1235 while (d_mountpoint(path->dentry)) { 1236 struct vfsmount *mounted = lookup_mnt(path); 1237 if (!mounted) 1238 break; 1239 dput(path->dentry); 1240 mntput(path->mnt); 1241 path->mnt = mounted; 1242 path->dentry = dget(mounted->mnt_root); 1243 } 1244 } 1245 1246 static void follow_dotdot(struct nameidata *nd) 1247 { 1248 set_root(nd); 1249 1250 while(1) { 1251 struct dentry *old = nd->path.dentry; 1252 1253 if (nd->path.dentry == nd->root.dentry && 1254 nd->path.mnt == nd->root.mnt) { 1255 break; 1256 } 1257 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1258 /* rare case of legitimate dget_parent()... */ 1259 nd->path.dentry = dget_parent(nd->path.dentry); 1260 dput(old); 1261 break; 1262 } 1263 if (!follow_up(&nd->path)) 1264 break; 1265 } 1266 follow_mount(&nd->path); 1267 nd->inode = nd->path.dentry->d_inode; 1268 } 1269 1270 /* 1271 * This looks up the name in dcache, possibly revalidates the old dentry and 1272 * allocates a new one if not found or not valid. In the need_lookup argument 1273 * returns whether i_op->lookup is necessary. 1274 * 1275 * dir->d_inode->i_mutex must be held 1276 */ 1277 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir, 1278 unsigned int flags, bool *need_lookup) 1279 { 1280 struct dentry *dentry; 1281 int error; 1282 1283 *need_lookup = false; 1284 dentry = d_lookup(dir, name); 1285 if (dentry) { 1286 if (dentry->d_flags & DCACHE_OP_REVALIDATE) { 1287 error = d_revalidate(dentry, flags); 1288 if (unlikely(error <= 0)) { 1289 if (error < 0) { 1290 dput(dentry); 1291 return ERR_PTR(error); 1292 } else if (!d_invalidate(dentry)) { 1293 dput(dentry); 1294 dentry = NULL; 1295 } 1296 } 1297 } 1298 } 1299 1300 if (!dentry) { 1301 dentry = d_alloc(dir, name); 1302 if (unlikely(!dentry)) 1303 return ERR_PTR(-ENOMEM); 1304 1305 *need_lookup = true; 1306 } 1307 return dentry; 1308 } 1309 1310 /* 1311 * Call i_op->lookup on the dentry. The dentry must be negative but may be 1312 * hashed if it was pouplated with DCACHE_NEED_LOOKUP. 1313 * 1314 * dir->d_inode->i_mutex must be held 1315 */ 1316 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry, 1317 unsigned int flags) 1318 { 1319 struct dentry *old; 1320 1321 /* Don't create child dentry for a dead directory. */ 1322 if (unlikely(IS_DEADDIR(dir))) { 1323 dput(dentry); 1324 return ERR_PTR(-ENOENT); 1325 } 1326 1327 old = dir->i_op->lookup(dir, dentry, flags); 1328 if (unlikely(old)) { 1329 dput(dentry); 1330 dentry = old; 1331 } 1332 return dentry; 1333 } 1334 1335 static struct dentry *__lookup_hash(struct qstr *name, 1336 struct dentry *base, unsigned int flags) 1337 { 1338 bool need_lookup; 1339 struct dentry *dentry; 1340 1341 dentry = lookup_dcache(name, base, flags, &need_lookup); 1342 if (!need_lookup) 1343 return dentry; 1344 1345 return lookup_real(base->d_inode, dentry, flags); 1346 } 1347 1348 /* 1349 * It's more convoluted than I'd like it to be, but... it's still fairly 1350 * small and for now I'd prefer to have fast path as straight as possible. 1351 * It _is_ time-critical. 1352 */ 1353 static int lookup_fast(struct nameidata *nd, 1354 struct path *path, struct inode **inode) 1355 { 1356 struct vfsmount *mnt = nd->path.mnt; 1357 struct dentry *dentry, *parent = nd->path.dentry; 1358 int need_reval = 1; 1359 int status = 1; 1360 int err; 1361 1362 /* 1363 * Rename seqlock is not required here because in the off chance 1364 * of a false negative due to a concurrent rename, we're going to 1365 * do the non-racy lookup, below. 1366 */ 1367 if (nd->flags & LOOKUP_RCU) { 1368 unsigned seq; 1369 dentry = __d_lookup_rcu(parent, &nd->last, &seq); 1370 if (!dentry) 1371 goto unlazy; 1372 1373 /* 1374 * This sequence count validates that the inode matches 1375 * the dentry name information from lookup. 1376 */ 1377 *inode = dentry->d_inode; 1378 if (read_seqcount_retry(&dentry->d_seq, seq)) 1379 return -ECHILD; 1380 1381 /* 1382 * This sequence count validates that the parent had no 1383 * changes while we did the lookup of the dentry above. 1384 * 1385 * The memory barrier in read_seqcount_begin of child is 1386 * enough, we can use __read_seqcount_retry here. 1387 */ 1388 if (__read_seqcount_retry(&parent->d_seq, nd->seq)) 1389 return -ECHILD; 1390 nd->seq = seq; 1391 1392 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) { 1393 status = d_revalidate(dentry, nd->flags); 1394 if (unlikely(status <= 0)) { 1395 if (status != -ECHILD) 1396 need_reval = 0; 1397 goto unlazy; 1398 } 1399 } 1400 path->mnt = mnt; 1401 path->dentry = dentry; 1402 if (unlikely(!__follow_mount_rcu(nd, path, inode))) 1403 goto unlazy; 1404 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT)) 1405 goto unlazy; 1406 return 0; 1407 unlazy: 1408 if (unlazy_walk(nd, dentry)) 1409 return -ECHILD; 1410 } else { 1411 dentry = __d_lookup(parent, &nd->last); 1412 } 1413 1414 if (unlikely(!dentry)) 1415 goto need_lookup; 1416 1417 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval) 1418 status = d_revalidate(dentry, nd->flags); 1419 if (unlikely(status <= 0)) { 1420 if (status < 0) { 1421 dput(dentry); 1422 return status; 1423 } 1424 if (!d_invalidate(dentry)) { 1425 dput(dentry); 1426 goto need_lookup; 1427 } 1428 } 1429 1430 path->mnt = mnt; 1431 path->dentry = dentry; 1432 err = follow_managed(path, nd->flags); 1433 if (unlikely(err < 0)) { 1434 path_put_conditional(path, nd); 1435 return err; 1436 } 1437 if (err) 1438 nd->flags |= LOOKUP_JUMPED; 1439 *inode = path->dentry->d_inode; 1440 return 0; 1441 1442 need_lookup: 1443 return 1; 1444 } 1445 1446 /* Fast lookup failed, do it the slow way */ 1447 static int lookup_slow(struct nameidata *nd, struct path *path) 1448 { 1449 struct dentry *dentry, *parent; 1450 int err; 1451 1452 parent = nd->path.dentry; 1453 BUG_ON(nd->inode != parent->d_inode); 1454 1455 mutex_lock(&parent->d_inode->i_mutex); 1456 dentry = __lookup_hash(&nd->last, parent, nd->flags); 1457 mutex_unlock(&parent->d_inode->i_mutex); 1458 if (IS_ERR(dentry)) 1459 return PTR_ERR(dentry); 1460 path->mnt = nd->path.mnt; 1461 path->dentry = dentry; 1462 err = follow_managed(path, nd->flags); 1463 if (unlikely(err < 0)) { 1464 path_put_conditional(path, nd); 1465 return err; 1466 } 1467 if (err) 1468 nd->flags |= LOOKUP_JUMPED; 1469 return 0; 1470 } 1471 1472 static inline int may_lookup(struct nameidata *nd) 1473 { 1474 if (nd->flags & LOOKUP_RCU) { 1475 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK); 1476 if (err != -ECHILD) 1477 return err; 1478 if (unlazy_walk(nd, NULL)) 1479 return -ECHILD; 1480 } 1481 return inode_permission(nd->inode, MAY_EXEC); 1482 } 1483 1484 static inline int handle_dots(struct nameidata *nd, int type) 1485 { 1486 if (type == LAST_DOTDOT) { 1487 if (nd->flags & LOOKUP_RCU) { 1488 if (follow_dotdot_rcu(nd)) 1489 return -ECHILD; 1490 } else 1491 follow_dotdot(nd); 1492 } 1493 return 0; 1494 } 1495 1496 static void terminate_walk(struct nameidata *nd) 1497 { 1498 if (!(nd->flags & LOOKUP_RCU)) { 1499 path_put(&nd->path); 1500 } else { 1501 nd->flags &= ~LOOKUP_RCU; 1502 if (!(nd->flags & LOOKUP_ROOT)) 1503 nd->root.mnt = NULL; 1504 unlock_rcu_walk(); 1505 } 1506 } 1507 1508 /* 1509 * Do we need to follow links? We _really_ want to be able 1510 * to do this check without having to look at inode->i_op, 1511 * so we keep a cache of "no, this doesn't need follow_link" 1512 * for the common case. 1513 */ 1514 static inline int should_follow_link(struct inode *inode, int follow) 1515 { 1516 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) { 1517 if (likely(inode->i_op->follow_link)) 1518 return follow; 1519 1520 /* This gets set once for the inode lifetime */ 1521 spin_lock(&inode->i_lock); 1522 inode->i_opflags |= IOP_NOFOLLOW; 1523 spin_unlock(&inode->i_lock); 1524 } 1525 return 0; 1526 } 1527 1528 static inline int walk_component(struct nameidata *nd, struct path *path, 1529 int follow) 1530 { 1531 struct inode *inode; 1532 int err; 1533 /* 1534 * "." and ".." are special - ".." especially so because it has 1535 * to be able to know about the current root directory and 1536 * parent relationships. 1537 */ 1538 if (unlikely(nd->last_type != LAST_NORM)) 1539 return handle_dots(nd, nd->last_type); 1540 err = lookup_fast(nd, path, &inode); 1541 if (unlikely(err)) { 1542 if (err < 0) 1543 goto out_err; 1544 1545 err = lookup_slow(nd, path); 1546 if (err < 0) 1547 goto out_err; 1548 1549 inode = path->dentry->d_inode; 1550 } 1551 err = -ENOENT; 1552 if (!inode) 1553 goto out_path_put; 1554 1555 if (should_follow_link(inode, follow)) { 1556 if (nd->flags & LOOKUP_RCU) { 1557 if (unlikely(unlazy_walk(nd, path->dentry))) { 1558 err = -ECHILD; 1559 goto out_err; 1560 } 1561 } 1562 BUG_ON(inode != path->dentry->d_inode); 1563 return 1; 1564 } 1565 path_to_nameidata(path, nd); 1566 nd->inode = inode; 1567 return 0; 1568 1569 out_path_put: 1570 path_to_nameidata(path, nd); 1571 out_err: 1572 terminate_walk(nd); 1573 return err; 1574 } 1575 1576 /* 1577 * This limits recursive symlink follows to 8, while 1578 * limiting consecutive symlinks to 40. 1579 * 1580 * Without that kind of total limit, nasty chains of consecutive 1581 * symlinks can cause almost arbitrarily long lookups. 1582 */ 1583 static inline int nested_symlink(struct path *path, struct nameidata *nd) 1584 { 1585 int res; 1586 1587 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) { 1588 path_put_conditional(path, nd); 1589 path_put(&nd->path); 1590 return -ELOOP; 1591 } 1592 BUG_ON(nd->depth >= MAX_NESTED_LINKS); 1593 1594 nd->depth++; 1595 current->link_count++; 1596 1597 do { 1598 struct path link = *path; 1599 void *cookie; 1600 1601 res = follow_link(&link, nd, &cookie); 1602 if (res) 1603 break; 1604 res = walk_component(nd, path, LOOKUP_FOLLOW); 1605 put_link(nd, &link, cookie); 1606 } while (res > 0); 1607 1608 current->link_count--; 1609 nd->depth--; 1610 return res; 1611 } 1612 1613 /* 1614 * We really don't want to look at inode->i_op->lookup 1615 * when we don't have to. So we keep a cache bit in 1616 * the inode ->i_opflags field that says "yes, we can 1617 * do lookup on this inode". 1618 */ 1619 static inline int can_lookup(struct inode *inode) 1620 { 1621 if (likely(inode->i_opflags & IOP_LOOKUP)) 1622 return 1; 1623 if (likely(!inode->i_op->lookup)) 1624 return 0; 1625 1626 /* We do this once for the lifetime of the inode */ 1627 spin_lock(&inode->i_lock); 1628 inode->i_opflags |= IOP_LOOKUP; 1629 spin_unlock(&inode->i_lock); 1630 return 1; 1631 } 1632 1633 /* 1634 * We can do the critical dentry name comparison and hashing 1635 * operations one word at a time, but we are limited to: 1636 * 1637 * - Architectures with fast unaligned word accesses. We could 1638 * do a "get_unaligned()" if this helps and is sufficiently 1639 * fast. 1640 * 1641 * - Little-endian machines (so that we can generate the mask 1642 * of low bytes efficiently). Again, we *could* do a byte 1643 * swapping load on big-endian architectures if that is not 1644 * expensive enough to make the optimization worthless. 1645 * 1646 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we 1647 * do not trap on the (extremely unlikely) case of a page 1648 * crossing operation. 1649 * 1650 * - Furthermore, we need an efficient 64-bit compile for the 1651 * 64-bit case in order to generate the "number of bytes in 1652 * the final mask". Again, that could be replaced with a 1653 * efficient population count instruction or similar. 1654 */ 1655 #ifdef CONFIG_DCACHE_WORD_ACCESS 1656 1657 #include <asm/word-at-a-time.h> 1658 1659 #ifdef CONFIG_64BIT 1660 1661 static inline unsigned int fold_hash(unsigned long hash) 1662 { 1663 hash += hash >> (8*sizeof(int)); 1664 return hash; 1665 } 1666 1667 #else /* 32-bit case */ 1668 1669 #define fold_hash(x) (x) 1670 1671 #endif 1672 1673 unsigned int full_name_hash(const unsigned char *name, unsigned int len) 1674 { 1675 unsigned long a, mask; 1676 unsigned long hash = 0; 1677 1678 for (;;) { 1679 a = load_unaligned_zeropad(name); 1680 if (len < sizeof(unsigned long)) 1681 break; 1682 hash += a; 1683 hash *= 9; 1684 name += sizeof(unsigned long); 1685 len -= sizeof(unsigned long); 1686 if (!len) 1687 goto done; 1688 } 1689 mask = ~(~0ul << len*8); 1690 hash += mask & a; 1691 done: 1692 return fold_hash(hash); 1693 } 1694 EXPORT_SYMBOL(full_name_hash); 1695 1696 /* 1697 * Calculate the length and hash of the path component, and 1698 * return the length of the component; 1699 */ 1700 static inline unsigned long hash_name(const char *name, unsigned int *hashp) 1701 { 1702 unsigned long a, b, adata, bdata, mask, hash, len; 1703 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 1704 1705 hash = a = 0; 1706 len = -sizeof(unsigned long); 1707 do { 1708 hash = (hash + a) * 9; 1709 len += sizeof(unsigned long); 1710 a = load_unaligned_zeropad(name+len); 1711 b = a ^ REPEAT_BYTE('/'); 1712 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants))); 1713 1714 adata = prep_zero_mask(a, adata, &constants); 1715 bdata = prep_zero_mask(b, bdata, &constants); 1716 1717 mask = create_zero_mask(adata | bdata); 1718 1719 hash += a & zero_bytemask(mask); 1720 *hashp = fold_hash(hash); 1721 1722 return len + find_zero(mask); 1723 } 1724 1725 #else 1726 1727 unsigned int full_name_hash(const unsigned char *name, unsigned int len) 1728 { 1729 unsigned long hash = init_name_hash(); 1730 while (len--) 1731 hash = partial_name_hash(*name++, hash); 1732 return end_name_hash(hash); 1733 } 1734 EXPORT_SYMBOL(full_name_hash); 1735 1736 /* 1737 * We know there's a real path component here of at least 1738 * one character. 1739 */ 1740 static inline unsigned long hash_name(const char *name, unsigned int *hashp) 1741 { 1742 unsigned long hash = init_name_hash(); 1743 unsigned long len = 0, c; 1744 1745 c = (unsigned char)*name; 1746 do { 1747 len++; 1748 hash = partial_name_hash(c, hash); 1749 c = (unsigned char)name[len]; 1750 } while (c && c != '/'); 1751 *hashp = end_name_hash(hash); 1752 return len; 1753 } 1754 1755 #endif 1756 1757 /* 1758 * Name resolution. 1759 * This is the basic name resolution function, turning a pathname into 1760 * the final dentry. We expect 'base' to be positive and a directory. 1761 * 1762 * Returns 0 and nd will have valid dentry and mnt on success. 1763 * Returns error and drops reference to input namei data on failure. 1764 */ 1765 static int link_path_walk(const char *name, struct nameidata *nd) 1766 { 1767 struct path next; 1768 int err; 1769 1770 while (*name=='/') 1771 name++; 1772 if (!*name) 1773 return 0; 1774 1775 /* At this point we know we have a real path component. */ 1776 for(;;) { 1777 struct qstr this; 1778 long len; 1779 int type; 1780 1781 err = may_lookup(nd); 1782 if (err) 1783 break; 1784 1785 len = hash_name(name, &this.hash); 1786 this.name = name; 1787 this.len = len; 1788 1789 type = LAST_NORM; 1790 if (name[0] == '.') switch (len) { 1791 case 2: 1792 if (name[1] == '.') { 1793 type = LAST_DOTDOT; 1794 nd->flags |= LOOKUP_JUMPED; 1795 } 1796 break; 1797 case 1: 1798 type = LAST_DOT; 1799 } 1800 if (likely(type == LAST_NORM)) { 1801 struct dentry *parent = nd->path.dentry; 1802 nd->flags &= ~LOOKUP_JUMPED; 1803 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { 1804 err = parent->d_op->d_hash(parent, &this); 1805 if (err < 0) 1806 break; 1807 } 1808 } 1809 1810 nd->last = this; 1811 nd->last_type = type; 1812 1813 if (!name[len]) 1814 return 0; 1815 /* 1816 * If it wasn't NUL, we know it was '/'. Skip that 1817 * slash, and continue until no more slashes. 1818 */ 1819 do { 1820 len++; 1821 } while (unlikely(name[len] == '/')); 1822 if (!name[len]) 1823 return 0; 1824 1825 name += len; 1826 1827 err = walk_component(nd, &next, LOOKUP_FOLLOW); 1828 if (err < 0) 1829 return err; 1830 1831 if (err) { 1832 err = nested_symlink(&next, nd); 1833 if (err) 1834 return err; 1835 } 1836 if (!can_lookup(nd->inode)) { 1837 err = -ENOTDIR; 1838 break; 1839 } 1840 } 1841 terminate_walk(nd); 1842 return err; 1843 } 1844 1845 static int path_init(int dfd, const char *name, unsigned int flags, 1846 struct nameidata *nd, struct file **fp) 1847 { 1848 int retval = 0; 1849 1850 nd->last_type = LAST_ROOT; /* if there are only slashes... */ 1851 nd->flags = flags | LOOKUP_JUMPED; 1852 nd->depth = 0; 1853 if (flags & LOOKUP_ROOT) { 1854 struct inode *inode = nd->root.dentry->d_inode; 1855 if (*name) { 1856 if (!can_lookup(inode)) 1857 return -ENOTDIR; 1858 retval = inode_permission(inode, MAY_EXEC); 1859 if (retval) 1860 return retval; 1861 } 1862 nd->path = nd->root; 1863 nd->inode = inode; 1864 if (flags & LOOKUP_RCU) { 1865 lock_rcu_walk(); 1866 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1867 } else { 1868 path_get(&nd->path); 1869 } 1870 return 0; 1871 } 1872 1873 nd->root.mnt = NULL; 1874 1875 if (*name=='/') { 1876 if (flags & LOOKUP_RCU) { 1877 lock_rcu_walk(); 1878 set_root_rcu(nd); 1879 } else { 1880 set_root(nd); 1881 path_get(&nd->root); 1882 } 1883 nd->path = nd->root; 1884 } else if (dfd == AT_FDCWD) { 1885 if (flags & LOOKUP_RCU) { 1886 struct fs_struct *fs = current->fs; 1887 unsigned seq; 1888 1889 lock_rcu_walk(); 1890 1891 do { 1892 seq = read_seqcount_begin(&fs->seq); 1893 nd->path = fs->pwd; 1894 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1895 } while (read_seqcount_retry(&fs->seq, seq)); 1896 } else { 1897 get_fs_pwd(current->fs, &nd->path); 1898 } 1899 } else { 1900 /* Caller must check execute permissions on the starting path component */ 1901 struct fd f = fdget_raw(dfd); 1902 struct dentry *dentry; 1903 1904 if (!f.file) 1905 return -EBADF; 1906 1907 dentry = f.file->f_path.dentry; 1908 1909 if (*name) { 1910 if (!can_lookup(dentry->d_inode)) { 1911 fdput(f); 1912 return -ENOTDIR; 1913 } 1914 } 1915 1916 nd->path = f.file->f_path; 1917 if (flags & LOOKUP_RCU) { 1918 if (f.need_put) 1919 *fp = f.file; 1920 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1921 lock_rcu_walk(); 1922 } else { 1923 path_get(&nd->path); 1924 fdput(f); 1925 } 1926 } 1927 1928 nd->inode = nd->path.dentry->d_inode; 1929 return 0; 1930 } 1931 1932 static inline int lookup_last(struct nameidata *nd, struct path *path) 1933 { 1934 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len]) 1935 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 1936 1937 nd->flags &= ~LOOKUP_PARENT; 1938 return walk_component(nd, path, nd->flags & LOOKUP_FOLLOW); 1939 } 1940 1941 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 1942 static int path_lookupat(int dfd, const char *name, 1943 unsigned int flags, struct nameidata *nd) 1944 { 1945 struct file *base = NULL; 1946 struct path path; 1947 int err; 1948 1949 /* 1950 * Path walking is largely split up into 2 different synchronisation 1951 * schemes, rcu-walk and ref-walk (explained in 1952 * Documentation/filesystems/path-lookup.txt). These share much of the 1953 * path walk code, but some things particularly setup, cleanup, and 1954 * following mounts are sufficiently divergent that functions are 1955 * duplicated. Typically there is a function foo(), and its RCU 1956 * analogue, foo_rcu(). 1957 * 1958 * -ECHILD is the error number of choice (just to avoid clashes) that 1959 * is returned if some aspect of an rcu-walk fails. Such an error must 1960 * be handled by restarting a traditional ref-walk (which will always 1961 * be able to complete). 1962 */ 1963 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base); 1964 1965 if (unlikely(err)) 1966 return err; 1967 1968 current->total_link_count = 0; 1969 err = link_path_walk(name, nd); 1970 1971 if (!err && !(flags & LOOKUP_PARENT)) { 1972 err = lookup_last(nd, &path); 1973 while (err > 0) { 1974 void *cookie; 1975 struct path link = path; 1976 err = may_follow_link(&link, nd); 1977 if (unlikely(err)) 1978 break; 1979 nd->flags |= LOOKUP_PARENT; 1980 err = follow_link(&link, nd, &cookie); 1981 if (err) 1982 break; 1983 err = lookup_last(nd, &path); 1984 put_link(nd, &link, cookie); 1985 } 1986 } 1987 1988 if (!err) 1989 err = complete_walk(nd); 1990 1991 if (!err && nd->flags & LOOKUP_DIRECTORY) { 1992 if (!can_lookup(nd->inode)) { 1993 path_put(&nd->path); 1994 err = -ENOTDIR; 1995 } 1996 } 1997 1998 if (base) 1999 fput(base); 2000 2001 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 2002 path_put(&nd->root); 2003 nd->root.mnt = NULL; 2004 } 2005 return err; 2006 } 2007 2008 static int filename_lookup(int dfd, struct filename *name, 2009 unsigned int flags, struct nameidata *nd) 2010 { 2011 int retval = path_lookupat(dfd, name->name, flags | LOOKUP_RCU, nd); 2012 if (unlikely(retval == -ECHILD)) 2013 retval = path_lookupat(dfd, name->name, flags, nd); 2014 if (unlikely(retval == -ESTALE)) 2015 retval = path_lookupat(dfd, name->name, 2016 flags | LOOKUP_REVAL, nd); 2017 2018 if (likely(!retval)) 2019 audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT); 2020 return retval; 2021 } 2022 2023 static int do_path_lookup(int dfd, const char *name, 2024 unsigned int flags, struct nameidata *nd) 2025 { 2026 struct filename filename = { .name = name }; 2027 2028 return filename_lookup(dfd, &filename, flags, nd); 2029 } 2030 2031 /* does lookup, returns the object with parent locked */ 2032 struct dentry *kern_path_locked(const char *name, struct path *path) 2033 { 2034 struct nameidata nd; 2035 struct dentry *d; 2036 int err = do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, &nd); 2037 if (err) 2038 return ERR_PTR(err); 2039 if (nd.last_type != LAST_NORM) { 2040 path_put(&nd.path); 2041 return ERR_PTR(-EINVAL); 2042 } 2043 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 2044 d = __lookup_hash(&nd.last, nd.path.dentry, 0); 2045 if (IS_ERR(d)) { 2046 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2047 path_put(&nd.path); 2048 return d; 2049 } 2050 *path = nd.path; 2051 return d; 2052 } 2053 2054 int kern_path(const char *name, unsigned int flags, struct path *path) 2055 { 2056 struct nameidata nd; 2057 int res = do_path_lookup(AT_FDCWD, name, flags, &nd); 2058 if (!res) 2059 *path = nd.path; 2060 return res; 2061 } 2062 2063 /** 2064 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 2065 * @dentry: pointer to dentry of the base directory 2066 * @mnt: pointer to vfs mount of the base directory 2067 * @name: pointer to file name 2068 * @flags: lookup flags 2069 * @path: pointer to struct path to fill 2070 */ 2071 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 2072 const char *name, unsigned int flags, 2073 struct path *path) 2074 { 2075 struct nameidata nd; 2076 int err; 2077 nd.root.dentry = dentry; 2078 nd.root.mnt = mnt; 2079 BUG_ON(flags & LOOKUP_PARENT); 2080 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */ 2081 err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd); 2082 if (!err) 2083 *path = nd.path; 2084 return err; 2085 } 2086 2087 /* 2088 * Restricted form of lookup. Doesn't follow links, single-component only, 2089 * needs parent already locked. Doesn't follow mounts. 2090 * SMP-safe. 2091 */ 2092 static struct dentry *lookup_hash(struct nameidata *nd) 2093 { 2094 return __lookup_hash(&nd->last, nd->path.dentry, nd->flags); 2095 } 2096 2097 /** 2098 * lookup_one_len - filesystem helper to lookup single pathname component 2099 * @name: pathname component to lookup 2100 * @base: base directory to lookup from 2101 * @len: maximum length @len should be interpreted to 2102 * 2103 * Note that this routine is purely a helper for filesystem usage and should 2104 * not be called by generic code. Also note that by using this function the 2105 * nameidata argument is passed to the filesystem methods and a filesystem 2106 * using this helper needs to be prepared for that. 2107 */ 2108 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 2109 { 2110 struct qstr this; 2111 unsigned int c; 2112 int err; 2113 2114 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex)); 2115 2116 this.name = name; 2117 this.len = len; 2118 this.hash = full_name_hash(name, len); 2119 if (!len) 2120 return ERR_PTR(-EACCES); 2121 2122 if (unlikely(name[0] == '.')) { 2123 if (len < 2 || (len == 2 && name[1] == '.')) 2124 return ERR_PTR(-EACCES); 2125 } 2126 2127 while (len--) { 2128 c = *(const unsigned char *)name++; 2129 if (c == '/' || c == '\0') 2130 return ERR_PTR(-EACCES); 2131 } 2132 /* 2133 * See if the low-level filesystem might want 2134 * to use its own hash.. 2135 */ 2136 if (base->d_flags & DCACHE_OP_HASH) { 2137 int err = base->d_op->d_hash(base, &this); 2138 if (err < 0) 2139 return ERR_PTR(err); 2140 } 2141 2142 err = inode_permission(base->d_inode, MAY_EXEC); 2143 if (err) 2144 return ERR_PTR(err); 2145 2146 return __lookup_hash(&this, base, 0); 2147 } 2148 2149 int user_path_at_empty(int dfd, const char __user *name, unsigned flags, 2150 struct path *path, int *empty) 2151 { 2152 struct nameidata nd; 2153 struct filename *tmp = getname_flags(name, flags, empty); 2154 int err = PTR_ERR(tmp); 2155 if (!IS_ERR(tmp)) { 2156 2157 BUG_ON(flags & LOOKUP_PARENT); 2158 2159 err = filename_lookup(dfd, tmp, flags, &nd); 2160 putname(tmp); 2161 if (!err) 2162 *path = nd.path; 2163 } 2164 return err; 2165 } 2166 2167 int user_path_at(int dfd, const char __user *name, unsigned flags, 2168 struct path *path) 2169 { 2170 return user_path_at_empty(dfd, name, flags, path, NULL); 2171 } 2172 2173 /* 2174 * NB: most callers don't do anything directly with the reference to the 2175 * to struct filename, but the nd->last pointer points into the name string 2176 * allocated by getname. So we must hold the reference to it until all 2177 * path-walking is complete. 2178 */ 2179 static struct filename * 2180 user_path_parent(int dfd, const char __user *path, struct nameidata *nd, 2181 unsigned int flags) 2182 { 2183 struct filename *s = getname(path); 2184 int error; 2185 2186 /* only LOOKUP_REVAL is allowed in extra flags */ 2187 flags &= LOOKUP_REVAL; 2188 2189 if (IS_ERR(s)) 2190 return s; 2191 2192 error = filename_lookup(dfd, s, flags | LOOKUP_PARENT, nd); 2193 if (error) { 2194 putname(s); 2195 return ERR_PTR(error); 2196 } 2197 2198 return s; 2199 } 2200 2201 /** 2202 * mountpoint_last - look up last component for umount 2203 * @nd: pathwalk nameidata - currently pointing at parent directory of "last" 2204 * @path: pointer to container for result 2205 * 2206 * This is a special lookup_last function just for umount. In this case, we 2207 * need to resolve the path without doing any revalidation. 2208 * 2209 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since 2210 * mountpoints are always pinned in the dcache, their ancestors are too. Thus, 2211 * in almost all cases, this lookup will be served out of the dcache. The only 2212 * cases where it won't are if nd->last refers to a symlink or the path is 2213 * bogus and it doesn't exist. 2214 * 2215 * Returns: 2216 * -error: if there was an error during lookup. This includes -ENOENT if the 2217 * lookup found a negative dentry. The nd->path reference will also be 2218 * put in this case. 2219 * 2220 * 0: if we successfully resolved nd->path and found it to not to be a 2221 * symlink that needs to be followed. "path" will also be populated. 2222 * The nd->path reference will also be put. 2223 * 2224 * 1: if we successfully resolved nd->last and found it to be a symlink 2225 * that needs to be followed. "path" will be populated with the path 2226 * to the link, and nd->path will *not* be put. 2227 */ 2228 static int 2229 mountpoint_last(struct nameidata *nd, struct path *path) 2230 { 2231 int error = 0; 2232 struct dentry *dentry; 2233 struct dentry *dir = nd->path.dentry; 2234 2235 /* If we're in rcuwalk, drop out of it to handle last component */ 2236 if (nd->flags & LOOKUP_RCU) { 2237 if (unlazy_walk(nd, NULL)) { 2238 error = -ECHILD; 2239 goto out; 2240 } 2241 } 2242 2243 nd->flags &= ~LOOKUP_PARENT; 2244 2245 if (unlikely(nd->last_type != LAST_NORM)) { 2246 error = handle_dots(nd, nd->last_type); 2247 if (error) 2248 goto out; 2249 dentry = dget(nd->path.dentry); 2250 goto done; 2251 } 2252 2253 mutex_lock(&dir->d_inode->i_mutex); 2254 dentry = d_lookup(dir, &nd->last); 2255 if (!dentry) { 2256 /* 2257 * No cached dentry. Mounted dentries are pinned in the cache, 2258 * so that means that this dentry is probably a symlink or the 2259 * path doesn't actually point to a mounted dentry. 2260 */ 2261 dentry = d_alloc(dir, &nd->last); 2262 if (!dentry) { 2263 error = -ENOMEM; 2264 mutex_unlock(&dir->d_inode->i_mutex); 2265 goto out; 2266 } 2267 dentry = lookup_real(dir->d_inode, dentry, nd->flags); 2268 error = PTR_ERR(dentry); 2269 if (IS_ERR(dentry)) { 2270 mutex_unlock(&dir->d_inode->i_mutex); 2271 goto out; 2272 } 2273 } 2274 mutex_unlock(&dir->d_inode->i_mutex); 2275 2276 done: 2277 if (!dentry->d_inode) { 2278 error = -ENOENT; 2279 dput(dentry); 2280 goto out; 2281 } 2282 path->dentry = dentry; 2283 path->mnt = mntget(nd->path.mnt); 2284 if (should_follow_link(dentry->d_inode, nd->flags & LOOKUP_FOLLOW)) 2285 return 1; 2286 follow_mount(path); 2287 error = 0; 2288 out: 2289 terminate_walk(nd); 2290 return error; 2291 } 2292 2293 /** 2294 * path_mountpoint - look up a path to be umounted 2295 * @dfd: directory file descriptor to start walk from 2296 * @name: full pathname to walk 2297 * @flags: lookup flags 2298 * 2299 * Look up the given name, but don't attempt to revalidate the last component. 2300 * Returns 0 and "path" will be valid on success; Retuns error otherwise. 2301 */ 2302 static int 2303 path_mountpoint(int dfd, const char *name, struct path *path, unsigned int flags) 2304 { 2305 struct file *base = NULL; 2306 struct nameidata nd; 2307 int err; 2308 2309 err = path_init(dfd, name, flags | LOOKUP_PARENT, &nd, &base); 2310 if (unlikely(err)) 2311 return err; 2312 2313 current->total_link_count = 0; 2314 err = link_path_walk(name, &nd); 2315 if (err) 2316 goto out; 2317 2318 err = mountpoint_last(&nd, path); 2319 while (err > 0) { 2320 void *cookie; 2321 struct path link = *path; 2322 err = may_follow_link(&link, &nd); 2323 if (unlikely(err)) 2324 break; 2325 nd.flags |= LOOKUP_PARENT; 2326 err = follow_link(&link, &nd, &cookie); 2327 if (err) 2328 break; 2329 err = mountpoint_last(&nd, path); 2330 put_link(&nd, &link, cookie); 2331 } 2332 out: 2333 if (base) 2334 fput(base); 2335 2336 if (nd.root.mnt && !(nd.flags & LOOKUP_ROOT)) 2337 path_put(&nd.root); 2338 2339 return err; 2340 } 2341 2342 static int 2343 filename_mountpoint(int dfd, struct filename *s, struct path *path, 2344 unsigned int flags) 2345 { 2346 int error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_RCU); 2347 if (unlikely(error == -ECHILD)) 2348 error = path_mountpoint(dfd, s->name, path, flags); 2349 if (unlikely(error == -ESTALE)) 2350 error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_REVAL); 2351 if (likely(!error)) 2352 audit_inode(s, path->dentry, 0); 2353 return error; 2354 } 2355 2356 /** 2357 * user_path_mountpoint_at - lookup a path from userland in order to umount it 2358 * @dfd: directory file descriptor 2359 * @name: pathname from userland 2360 * @flags: lookup flags 2361 * @path: pointer to container to hold result 2362 * 2363 * A umount is a special case for path walking. We're not actually interested 2364 * in the inode in this situation, and ESTALE errors can be a problem. We 2365 * simply want track down the dentry and vfsmount attached at the mountpoint 2366 * and avoid revalidating the last component. 2367 * 2368 * Returns 0 and populates "path" on success. 2369 */ 2370 int 2371 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags, 2372 struct path *path) 2373 { 2374 struct filename *s = getname(name); 2375 int error; 2376 if (IS_ERR(s)) 2377 return PTR_ERR(s); 2378 error = filename_mountpoint(dfd, s, path, flags); 2379 putname(s); 2380 return error; 2381 } 2382 2383 int 2384 kern_path_mountpoint(int dfd, const char *name, struct path *path, 2385 unsigned int flags) 2386 { 2387 struct filename s = {.name = name}; 2388 return filename_mountpoint(dfd, &s, path, flags); 2389 } 2390 EXPORT_SYMBOL(kern_path_mountpoint); 2391 2392 /* 2393 * It's inline, so penalty for filesystems that don't use sticky bit is 2394 * minimal. 2395 */ 2396 static inline int check_sticky(struct inode *dir, struct inode *inode) 2397 { 2398 kuid_t fsuid = current_fsuid(); 2399 2400 if (!(dir->i_mode & S_ISVTX)) 2401 return 0; 2402 if (uid_eq(inode->i_uid, fsuid)) 2403 return 0; 2404 if (uid_eq(dir->i_uid, fsuid)) 2405 return 0; 2406 return !inode_capable(inode, CAP_FOWNER); 2407 } 2408 2409 /* 2410 * Check whether we can remove a link victim from directory dir, check 2411 * whether the type of victim is right. 2412 * 1. We can't do it if dir is read-only (done in permission()) 2413 * 2. We should have write and exec permissions on dir 2414 * 3. We can't remove anything from append-only dir 2415 * 4. We can't do anything with immutable dir (done in permission()) 2416 * 5. If the sticky bit on dir is set we should either 2417 * a. be owner of dir, or 2418 * b. be owner of victim, or 2419 * c. have CAP_FOWNER capability 2420 * 6. If the victim is append-only or immutable we can't do antyhing with 2421 * links pointing to it. 2422 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 2423 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 2424 * 9. We can't remove a root or mountpoint. 2425 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 2426 * nfs_async_unlink(). 2427 */ 2428 static int may_delete(struct inode *dir,struct dentry *victim,int isdir) 2429 { 2430 int error; 2431 2432 if (!victim->d_inode) 2433 return -ENOENT; 2434 2435 BUG_ON(victim->d_parent->d_inode != dir); 2436 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 2437 2438 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 2439 if (error) 2440 return error; 2441 if (IS_APPEND(dir)) 2442 return -EPERM; 2443 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)|| 2444 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode)) 2445 return -EPERM; 2446 if (isdir) { 2447 if (!S_ISDIR(victim->d_inode->i_mode)) 2448 return -ENOTDIR; 2449 if (IS_ROOT(victim)) 2450 return -EBUSY; 2451 } else if (S_ISDIR(victim->d_inode->i_mode)) 2452 return -EISDIR; 2453 if (IS_DEADDIR(dir)) 2454 return -ENOENT; 2455 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 2456 return -EBUSY; 2457 return 0; 2458 } 2459 2460 /* Check whether we can create an object with dentry child in directory 2461 * dir. 2462 * 1. We can't do it if child already exists (open has special treatment for 2463 * this case, but since we are inlined it's OK) 2464 * 2. We can't do it if dir is read-only (done in permission()) 2465 * 3. We should have write and exec permissions on dir 2466 * 4. We can't do it if dir is immutable (done in permission()) 2467 */ 2468 static inline int may_create(struct inode *dir, struct dentry *child) 2469 { 2470 if (child->d_inode) 2471 return -EEXIST; 2472 if (IS_DEADDIR(dir)) 2473 return -ENOENT; 2474 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 2475 } 2476 2477 /* 2478 * p1 and p2 should be directories on the same fs. 2479 */ 2480 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 2481 { 2482 struct dentry *p; 2483 2484 if (p1 == p2) { 2485 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 2486 return NULL; 2487 } 2488 2489 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 2490 2491 p = d_ancestor(p2, p1); 2492 if (p) { 2493 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT); 2494 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD); 2495 return p; 2496 } 2497 2498 p = d_ancestor(p1, p2); 2499 if (p) { 2500 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 2501 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 2502 return p; 2503 } 2504 2505 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 2506 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 2507 return NULL; 2508 } 2509 2510 void unlock_rename(struct dentry *p1, struct dentry *p2) 2511 { 2512 mutex_unlock(&p1->d_inode->i_mutex); 2513 if (p1 != p2) { 2514 mutex_unlock(&p2->d_inode->i_mutex); 2515 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 2516 } 2517 } 2518 2519 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2520 bool want_excl) 2521 { 2522 int error = may_create(dir, dentry); 2523 if (error) 2524 return error; 2525 2526 if (!dir->i_op->create) 2527 return -EACCES; /* shouldn't it be ENOSYS? */ 2528 mode &= S_IALLUGO; 2529 mode |= S_IFREG; 2530 error = security_inode_create(dir, dentry, mode); 2531 if (error) 2532 return error; 2533 error = dir->i_op->create(dir, dentry, mode, want_excl); 2534 if (!error) 2535 fsnotify_create(dir, dentry); 2536 return error; 2537 } 2538 2539 static int may_open(struct path *path, int acc_mode, int flag) 2540 { 2541 struct dentry *dentry = path->dentry; 2542 struct inode *inode = dentry->d_inode; 2543 int error; 2544 2545 /* O_PATH? */ 2546 if (!acc_mode) 2547 return 0; 2548 2549 if (!inode) 2550 return -ENOENT; 2551 2552 switch (inode->i_mode & S_IFMT) { 2553 case S_IFLNK: 2554 return -ELOOP; 2555 case S_IFDIR: 2556 if (acc_mode & MAY_WRITE) 2557 return -EISDIR; 2558 break; 2559 case S_IFBLK: 2560 case S_IFCHR: 2561 if (path->mnt->mnt_flags & MNT_NODEV) 2562 return -EACCES; 2563 /*FALLTHRU*/ 2564 case S_IFIFO: 2565 case S_IFSOCK: 2566 flag &= ~O_TRUNC; 2567 break; 2568 } 2569 2570 error = inode_permission(inode, acc_mode); 2571 if (error) 2572 return error; 2573 2574 /* 2575 * An append-only file must be opened in append mode for writing. 2576 */ 2577 if (IS_APPEND(inode)) { 2578 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 2579 return -EPERM; 2580 if (flag & O_TRUNC) 2581 return -EPERM; 2582 } 2583 2584 /* O_NOATIME can only be set by the owner or superuser */ 2585 if (flag & O_NOATIME && !inode_owner_or_capable(inode)) 2586 return -EPERM; 2587 2588 return 0; 2589 } 2590 2591 static int handle_truncate(struct file *filp) 2592 { 2593 struct path *path = &filp->f_path; 2594 struct inode *inode = path->dentry->d_inode; 2595 int error = get_write_access(inode); 2596 if (error) 2597 return error; 2598 /* 2599 * Refuse to truncate files with mandatory locks held on them. 2600 */ 2601 error = locks_verify_locked(inode); 2602 if (!error) 2603 error = security_path_truncate(path); 2604 if (!error) { 2605 error = do_truncate(path->dentry, 0, 2606 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 2607 filp); 2608 } 2609 put_write_access(inode); 2610 return error; 2611 } 2612 2613 static inline int open_to_namei_flags(int flag) 2614 { 2615 if ((flag & O_ACCMODE) == 3) 2616 flag--; 2617 return flag; 2618 } 2619 2620 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode) 2621 { 2622 int error = security_path_mknod(dir, dentry, mode, 0); 2623 if (error) 2624 return error; 2625 2626 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC); 2627 if (error) 2628 return error; 2629 2630 return security_inode_create(dir->dentry->d_inode, dentry, mode); 2631 } 2632 2633 /* 2634 * Attempt to atomically look up, create and open a file from a negative 2635 * dentry. 2636 * 2637 * Returns 0 if successful. The file will have been created and attached to 2638 * @file by the filesystem calling finish_open(). 2639 * 2640 * Returns 1 if the file was looked up only or didn't need creating. The 2641 * caller will need to perform the open themselves. @path will have been 2642 * updated to point to the new dentry. This may be negative. 2643 * 2644 * Returns an error code otherwise. 2645 */ 2646 static int atomic_open(struct nameidata *nd, struct dentry *dentry, 2647 struct path *path, struct file *file, 2648 const struct open_flags *op, 2649 bool got_write, bool need_lookup, 2650 int *opened) 2651 { 2652 struct inode *dir = nd->path.dentry->d_inode; 2653 unsigned open_flag = open_to_namei_flags(op->open_flag); 2654 umode_t mode; 2655 int error; 2656 int acc_mode; 2657 int create_error = 0; 2658 struct dentry *const DENTRY_NOT_SET = (void *) -1UL; 2659 bool excl; 2660 2661 BUG_ON(dentry->d_inode); 2662 2663 /* Don't create child dentry for a dead directory. */ 2664 if (unlikely(IS_DEADDIR(dir))) { 2665 error = -ENOENT; 2666 goto out; 2667 } 2668 2669 mode = op->mode; 2670 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir)) 2671 mode &= ~current_umask(); 2672 2673 excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT); 2674 if (excl) 2675 open_flag &= ~O_TRUNC; 2676 2677 /* 2678 * Checking write permission is tricky, bacuse we don't know if we are 2679 * going to actually need it: O_CREAT opens should work as long as the 2680 * file exists. But checking existence breaks atomicity. The trick is 2681 * to check access and if not granted clear O_CREAT from the flags. 2682 * 2683 * Another problem is returing the "right" error value (e.g. for an 2684 * O_EXCL open we want to return EEXIST not EROFS). 2685 */ 2686 if (((open_flag & (O_CREAT | O_TRUNC)) || 2687 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) { 2688 if (!(open_flag & O_CREAT)) { 2689 /* 2690 * No O_CREATE -> atomicity not a requirement -> fall 2691 * back to lookup + open 2692 */ 2693 goto no_open; 2694 } else if (open_flag & (O_EXCL | O_TRUNC)) { 2695 /* Fall back and fail with the right error */ 2696 create_error = -EROFS; 2697 goto no_open; 2698 } else { 2699 /* No side effects, safe to clear O_CREAT */ 2700 create_error = -EROFS; 2701 open_flag &= ~O_CREAT; 2702 } 2703 } 2704 2705 if (open_flag & O_CREAT) { 2706 error = may_o_create(&nd->path, dentry, mode); 2707 if (error) { 2708 create_error = error; 2709 if (open_flag & O_EXCL) 2710 goto no_open; 2711 open_flag &= ~O_CREAT; 2712 } 2713 } 2714 2715 if (nd->flags & LOOKUP_DIRECTORY) 2716 open_flag |= O_DIRECTORY; 2717 2718 file->f_path.dentry = DENTRY_NOT_SET; 2719 file->f_path.mnt = nd->path.mnt; 2720 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode, 2721 opened); 2722 if (error < 0) { 2723 if (create_error && error == -ENOENT) 2724 error = create_error; 2725 goto out; 2726 } 2727 2728 if (error) { /* returned 1, that is */ 2729 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) { 2730 error = -EIO; 2731 goto out; 2732 } 2733 if (file->f_path.dentry) { 2734 dput(dentry); 2735 dentry = file->f_path.dentry; 2736 } 2737 if (*opened & FILE_CREATED) 2738 fsnotify_create(dir, dentry); 2739 if (!dentry->d_inode) { 2740 WARN_ON(*opened & FILE_CREATED); 2741 if (create_error) { 2742 error = create_error; 2743 goto out; 2744 } 2745 } else { 2746 if (excl && !(*opened & FILE_CREATED)) { 2747 error = -EEXIST; 2748 goto out; 2749 } 2750 } 2751 goto looked_up; 2752 } 2753 2754 /* 2755 * We didn't have the inode before the open, so check open permission 2756 * here. 2757 */ 2758 acc_mode = op->acc_mode; 2759 if (*opened & FILE_CREATED) { 2760 WARN_ON(!(open_flag & O_CREAT)); 2761 fsnotify_create(dir, dentry); 2762 acc_mode = MAY_OPEN; 2763 } 2764 error = may_open(&file->f_path, acc_mode, open_flag); 2765 if (error) 2766 fput(file); 2767 2768 out: 2769 dput(dentry); 2770 return error; 2771 2772 no_open: 2773 if (need_lookup) { 2774 dentry = lookup_real(dir, dentry, nd->flags); 2775 if (IS_ERR(dentry)) 2776 return PTR_ERR(dentry); 2777 2778 if (create_error) { 2779 int open_flag = op->open_flag; 2780 2781 error = create_error; 2782 if ((open_flag & O_EXCL)) { 2783 if (!dentry->d_inode) 2784 goto out; 2785 } else if (!dentry->d_inode) { 2786 goto out; 2787 } else if ((open_flag & O_TRUNC) && 2788 S_ISREG(dentry->d_inode->i_mode)) { 2789 goto out; 2790 } 2791 /* will fail later, go on to get the right error */ 2792 } 2793 } 2794 looked_up: 2795 path->dentry = dentry; 2796 path->mnt = nd->path.mnt; 2797 return 1; 2798 } 2799 2800 /* 2801 * Look up and maybe create and open the last component. 2802 * 2803 * Must be called with i_mutex held on parent. 2804 * 2805 * Returns 0 if the file was successfully atomically created (if necessary) and 2806 * opened. In this case the file will be returned attached to @file. 2807 * 2808 * Returns 1 if the file was not completely opened at this time, though lookups 2809 * and creations will have been performed and the dentry returned in @path will 2810 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't 2811 * specified then a negative dentry may be returned. 2812 * 2813 * An error code is returned otherwise. 2814 * 2815 * FILE_CREATE will be set in @*opened if the dentry was created and will be 2816 * cleared otherwise prior to returning. 2817 */ 2818 static int lookup_open(struct nameidata *nd, struct path *path, 2819 struct file *file, 2820 const struct open_flags *op, 2821 bool got_write, int *opened) 2822 { 2823 struct dentry *dir = nd->path.dentry; 2824 struct inode *dir_inode = dir->d_inode; 2825 struct dentry *dentry; 2826 int error; 2827 bool need_lookup; 2828 2829 *opened &= ~FILE_CREATED; 2830 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup); 2831 if (IS_ERR(dentry)) 2832 return PTR_ERR(dentry); 2833 2834 /* Cached positive dentry: will open in f_op->open */ 2835 if (!need_lookup && dentry->d_inode) 2836 goto out_no_open; 2837 2838 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) { 2839 return atomic_open(nd, dentry, path, file, op, got_write, 2840 need_lookup, opened); 2841 } 2842 2843 if (need_lookup) { 2844 BUG_ON(dentry->d_inode); 2845 2846 dentry = lookup_real(dir_inode, dentry, nd->flags); 2847 if (IS_ERR(dentry)) 2848 return PTR_ERR(dentry); 2849 } 2850 2851 /* Negative dentry, just create the file */ 2852 if (!dentry->d_inode && (op->open_flag & O_CREAT)) { 2853 umode_t mode = op->mode; 2854 if (!IS_POSIXACL(dir->d_inode)) 2855 mode &= ~current_umask(); 2856 /* 2857 * This write is needed to ensure that a 2858 * rw->ro transition does not occur between 2859 * the time when the file is created and when 2860 * a permanent write count is taken through 2861 * the 'struct file' in finish_open(). 2862 */ 2863 if (!got_write) { 2864 error = -EROFS; 2865 goto out_dput; 2866 } 2867 *opened |= FILE_CREATED; 2868 error = security_path_mknod(&nd->path, dentry, mode, 0); 2869 if (error) 2870 goto out_dput; 2871 error = vfs_create(dir->d_inode, dentry, mode, 2872 nd->flags & LOOKUP_EXCL); 2873 if (error) 2874 goto out_dput; 2875 } 2876 out_no_open: 2877 path->dentry = dentry; 2878 path->mnt = nd->path.mnt; 2879 return 1; 2880 2881 out_dput: 2882 dput(dentry); 2883 return error; 2884 } 2885 2886 /* 2887 * Handle the last step of open() 2888 */ 2889 static int do_last(struct nameidata *nd, struct path *path, 2890 struct file *file, const struct open_flags *op, 2891 int *opened, struct filename *name) 2892 { 2893 struct dentry *dir = nd->path.dentry; 2894 int open_flag = op->open_flag; 2895 bool will_truncate = (open_flag & O_TRUNC) != 0; 2896 bool got_write = false; 2897 int acc_mode = op->acc_mode; 2898 struct inode *inode; 2899 bool symlink_ok = false; 2900 struct path save_parent = { .dentry = NULL, .mnt = NULL }; 2901 bool retried = false; 2902 int error; 2903 2904 nd->flags &= ~LOOKUP_PARENT; 2905 nd->flags |= op->intent; 2906 2907 if (nd->last_type != LAST_NORM) { 2908 error = handle_dots(nd, nd->last_type); 2909 if (error) 2910 return error; 2911 goto finish_open; 2912 } 2913 2914 if (!(open_flag & O_CREAT)) { 2915 if (nd->last.name[nd->last.len]) 2916 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 2917 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW)) 2918 symlink_ok = true; 2919 /* we _can_ be in RCU mode here */ 2920 error = lookup_fast(nd, path, &inode); 2921 if (likely(!error)) 2922 goto finish_lookup; 2923 2924 if (error < 0) 2925 goto out; 2926 2927 BUG_ON(nd->inode != dir->d_inode); 2928 } else { 2929 /* create side of things */ 2930 /* 2931 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED 2932 * has been cleared when we got to the last component we are 2933 * about to look up 2934 */ 2935 error = complete_walk(nd); 2936 if (error) 2937 return error; 2938 2939 audit_inode(name, dir, LOOKUP_PARENT); 2940 error = -EISDIR; 2941 /* trailing slashes? */ 2942 if (nd->last.name[nd->last.len]) 2943 goto out; 2944 } 2945 2946 retry_lookup: 2947 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) { 2948 error = mnt_want_write(nd->path.mnt); 2949 if (!error) 2950 got_write = true; 2951 /* 2952 * do _not_ fail yet - we might not need that or fail with 2953 * a different error; let lookup_open() decide; we'll be 2954 * dropping this one anyway. 2955 */ 2956 } 2957 mutex_lock(&dir->d_inode->i_mutex); 2958 error = lookup_open(nd, path, file, op, got_write, opened); 2959 mutex_unlock(&dir->d_inode->i_mutex); 2960 2961 if (error <= 0) { 2962 if (error) 2963 goto out; 2964 2965 if ((*opened & FILE_CREATED) || 2966 !S_ISREG(file_inode(file)->i_mode)) 2967 will_truncate = false; 2968 2969 audit_inode(name, file->f_path.dentry, 0); 2970 goto opened; 2971 } 2972 2973 if (*opened & FILE_CREATED) { 2974 /* Don't check for write permission, don't truncate */ 2975 open_flag &= ~O_TRUNC; 2976 will_truncate = false; 2977 acc_mode = MAY_OPEN; 2978 path_to_nameidata(path, nd); 2979 goto finish_open_created; 2980 } 2981 2982 /* 2983 * create/update audit record if it already exists. 2984 */ 2985 if (path->dentry->d_inode) 2986 audit_inode(name, path->dentry, 0); 2987 2988 /* 2989 * If atomic_open() acquired write access it is dropped now due to 2990 * possible mount and symlink following (this might be optimized away if 2991 * necessary...) 2992 */ 2993 if (got_write) { 2994 mnt_drop_write(nd->path.mnt); 2995 got_write = false; 2996 } 2997 2998 error = -EEXIST; 2999 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT)) 3000 goto exit_dput; 3001 3002 error = follow_managed(path, nd->flags); 3003 if (error < 0) 3004 goto exit_dput; 3005 3006 if (error) 3007 nd->flags |= LOOKUP_JUMPED; 3008 3009 BUG_ON(nd->flags & LOOKUP_RCU); 3010 inode = path->dentry->d_inode; 3011 finish_lookup: 3012 /* we _can_ be in RCU mode here */ 3013 error = -ENOENT; 3014 if (!inode) { 3015 path_to_nameidata(path, nd); 3016 goto out; 3017 } 3018 3019 if (should_follow_link(inode, !symlink_ok)) { 3020 if (nd->flags & LOOKUP_RCU) { 3021 if (unlikely(unlazy_walk(nd, path->dentry))) { 3022 error = -ECHILD; 3023 goto out; 3024 } 3025 } 3026 BUG_ON(inode != path->dentry->d_inode); 3027 return 1; 3028 } 3029 3030 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) { 3031 path_to_nameidata(path, nd); 3032 } else { 3033 save_parent.dentry = nd->path.dentry; 3034 save_parent.mnt = mntget(path->mnt); 3035 nd->path.dentry = path->dentry; 3036 3037 } 3038 nd->inode = inode; 3039 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */ 3040 finish_open: 3041 error = complete_walk(nd); 3042 if (error) { 3043 path_put(&save_parent); 3044 return error; 3045 } 3046 audit_inode(name, nd->path.dentry, 0); 3047 error = -EISDIR; 3048 if ((open_flag & O_CREAT) && S_ISDIR(nd->inode->i_mode)) 3049 goto out; 3050 error = -ENOTDIR; 3051 if ((nd->flags & LOOKUP_DIRECTORY) && !can_lookup(nd->inode)) 3052 goto out; 3053 if (!S_ISREG(nd->inode->i_mode)) 3054 will_truncate = false; 3055 3056 if (will_truncate) { 3057 error = mnt_want_write(nd->path.mnt); 3058 if (error) 3059 goto out; 3060 got_write = true; 3061 } 3062 finish_open_created: 3063 error = may_open(&nd->path, acc_mode, open_flag); 3064 if (error) 3065 goto out; 3066 file->f_path.mnt = nd->path.mnt; 3067 error = finish_open(file, nd->path.dentry, NULL, opened); 3068 if (error) { 3069 if (error == -EOPENSTALE) 3070 goto stale_open; 3071 goto out; 3072 } 3073 opened: 3074 error = open_check_o_direct(file); 3075 if (error) 3076 goto exit_fput; 3077 error = ima_file_check(file, op->acc_mode); 3078 if (error) 3079 goto exit_fput; 3080 3081 if (will_truncate) { 3082 error = handle_truncate(file); 3083 if (error) 3084 goto exit_fput; 3085 } 3086 out: 3087 if (got_write) 3088 mnt_drop_write(nd->path.mnt); 3089 path_put(&save_parent); 3090 terminate_walk(nd); 3091 return error; 3092 3093 exit_dput: 3094 path_put_conditional(path, nd); 3095 goto out; 3096 exit_fput: 3097 fput(file); 3098 goto out; 3099 3100 stale_open: 3101 /* If no saved parent or already retried then can't retry */ 3102 if (!save_parent.dentry || retried) 3103 goto out; 3104 3105 BUG_ON(save_parent.dentry != dir); 3106 path_put(&nd->path); 3107 nd->path = save_parent; 3108 nd->inode = dir->d_inode; 3109 save_parent.mnt = NULL; 3110 save_parent.dentry = NULL; 3111 if (got_write) { 3112 mnt_drop_write(nd->path.mnt); 3113 got_write = false; 3114 } 3115 retried = true; 3116 goto retry_lookup; 3117 } 3118 3119 static int do_tmpfile(int dfd, struct filename *pathname, 3120 struct nameidata *nd, int flags, 3121 const struct open_flags *op, 3122 struct file *file, int *opened) 3123 { 3124 static const struct qstr name = QSTR_INIT("/", 1); 3125 struct dentry *dentry, *child; 3126 struct inode *dir; 3127 int error = path_lookupat(dfd, pathname->name, 3128 flags | LOOKUP_DIRECTORY, nd); 3129 if (unlikely(error)) 3130 return error; 3131 error = mnt_want_write(nd->path.mnt); 3132 if (unlikely(error)) 3133 goto out; 3134 /* we want directory to be writable */ 3135 error = inode_permission(nd->inode, MAY_WRITE | MAY_EXEC); 3136 if (error) 3137 goto out2; 3138 dentry = nd->path.dentry; 3139 dir = dentry->d_inode; 3140 if (!dir->i_op->tmpfile) { 3141 error = -EOPNOTSUPP; 3142 goto out2; 3143 } 3144 child = d_alloc(dentry, &name); 3145 if (unlikely(!child)) { 3146 error = -ENOMEM; 3147 goto out2; 3148 } 3149 nd->flags &= ~LOOKUP_DIRECTORY; 3150 nd->flags |= op->intent; 3151 dput(nd->path.dentry); 3152 nd->path.dentry = child; 3153 error = dir->i_op->tmpfile(dir, nd->path.dentry, op->mode); 3154 if (error) 3155 goto out2; 3156 audit_inode(pathname, nd->path.dentry, 0); 3157 error = may_open(&nd->path, op->acc_mode, op->open_flag); 3158 if (error) 3159 goto out2; 3160 file->f_path.mnt = nd->path.mnt; 3161 error = finish_open(file, nd->path.dentry, NULL, opened); 3162 if (error) 3163 goto out2; 3164 error = open_check_o_direct(file); 3165 if (error) { 3166 fput(file); 3167 } else if (!(op->open_flag & O_EXCL)) { 3168 struct inode *inode = file_inode(file); 3169 spin_lock(&inode->i_lock); 3170 inode->i_state |= I_LINKABLE; 3171 spin_unlock(&inode->i_lock); 3172 } 3173 out2: 3174 mnt_drop_write(nd->path.mnt); 3175 out: 3176 path_put(&nd->path); 3177 return error; 3178 } 3179 3180 static struct file *path_openat(int dfd, struct filename *pathname, 3181 struct nameidata *nd, const struct open_flags *op, int flags) 3182 { 3183 struct file *base = NULL; 3184 struct file *file; 3185 struct path path; 3186 int opened = 0; 3187 int error; 3188 3189 file = get_empty_filp(); 3190 if (IS_ERR(file)) 3191 return file; 3192 3193 file->f_flags = op->open_flag; 3194 3195 if (unlikely(file->f_flags & __O_TMPFILE)) { 3196 error = do_tmpfile(dfd, pathname, nd, flags, op, file, &opened); 3197 goto out; 3198 } 3199 3200 error = path_init(dfd, pathname->name, flags | LOOKUP_PARENT, nd, &base); 3201 if (unlikely(error)) 3202 goto out; 3203 3204 current->total_link_count = 0; 3205 error = link_path_walk(pathname->name, nd); 3206 if (unlikely(error)) 3207 goto out; 3208 3209 error = do_last(nd, &path, file, op, &opened, pathname); 3210 while (unlikely(error > 0)) { /* trailing symlink */ 3211 struct path link = path; 3212 void *cookie; 3213 if (!(nd->flags & LOOKUP_FOLLOW)) { 3214 path_put_conditional(&path, nd); 3215 path_put(&nd->path); 3216 error = -ELOOP; 3217 break; 3218 } 3219 error = may_follow_link(&link, nd); 3220 if (unlikely(error)) 3221 break; 3222 nd->flags |= LOOKUP_PARENT; 3223 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL); 3224 error = follow_link(&link, nd, &cookie); 3225 if (unlikely(error)) 3226 break; 3227 error = do_last(nd, &path, file, op, &opened, pathname); 3228 put_link(nd, &link, cookie); 3229 } 3230 out: 3231 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) 3232 path_put(&nd->root); 3233 if (base) 3234 fput(base); 3235 if (!(opened & FILE_OPENED)) { 3236 BUG_ON(!error); 3237 put_filp(file); 3238 } 3239 if (unlikely(error)) { 3240 if (error == -EOPENSTALE) { 3241 if (flags & LOOKUP_RCU) 3242 error = -ECHILD; 3243 else 3244 error = -ESTALE; 3245 } 3246 file = ERR_PTR(error); 3247 } 3248 return file; 3249 } 3250 3251 struct file *do_filp_open(int dfd, struct filename *pathname, 3252 const struct open_flags *op) 3253 { 3254 struct nameidata nd; 3255 int flags = op->lookup_flags; 3256 struct file *filp; 3257 3258 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU); 3259 if (unlikely(filp == ERR_PTR(-ECHILD))) 3260 filp = path_openat(dfd, pathname, &nd, op, flags); 3261 if (unlikely(filp == ERR_PTR(-ESTALE))) 3262 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL); 3263 return filp; 3264 } 3265 3266 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt, 3267 const char *name, const struct open_flags *op) 3268 { 3269 struct nameidata nd; 3270 struct file *file; 3271 struct filename filename = { .name = name }; 3272 int flags = op->lookup_flags | LOOKUP_ROOT; 3273 3274 nd.root.mnt = mnt; 3275 nd.root.dentry = dentry; 3276 3277 if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN) 3278 return ERR_PTR(-ELOOP); 3279 3280 file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_RCU); 3281 if (unlikely(file == ERR_PTR(-ECHILD))) 3282 file = path_openat(-1, &filename, &nd, op, flags); 3283 if (unlikely(file == ERR_PTR(-ESTALE))) 3284 file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_REVAL); 3285 return file; 3286 } 3287 3288 struct dentry *kern_path_create(int dfd, const char *pathname, 3289 struct path *path, unsigned int lookup_flags) 3290 { 3291 struct dentry *dentry = ERR_PTR(-EEXIST); 3292 struct nameidata nd; 3293 int err2; 3294 int error; 3295 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY); 3296 3297 /* 3298 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any 3299 * other flags passed in are ignored! 3300 */ 3301 lookup_flags &= LOOKUP_REVAL; 3302 3303 error = do_path_lookup(dfd, pathname, LOOKUP_PARENT|lookup_flags, &nd); 3304 if (error) 3305 return ERR_PTR(error); 3306 3307 /* 3308 * Yucky last component or no last component at all? 3309 * (foo/., foo/.., /////) 3310 */ 3311 if (nd.last_type != LAST_NORM) 3312 goto out; 3313 nd.flags &= ~LOOKUP_PARENT; 3314 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL; 3315 3316 /* don't fail immediately if it's r/o, at least try to report other errors */ 3317 err2 = mnt_want_write(nd.path.mnt); 3318 /* 3319 * Do the final lookup. 3320 */ 3321 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 3322 dentry = lookup_hash(&nd); 3323 if (IS_ERR(dentry)) 3324 goto unlock; 3325 3326 error = -EEXIST; 3327 if (dentry->d_inode) 3328 goto fail; 3329 /* 3330 * Special case - lookup gave negative, but... we had foo/bar/ 3331 * From the vfs_mknod() POV we just have a negative dentry - 3332 * all is fine. Let's be bastards - you had / on the end, you've 3333 * been asking for (non-existent) directory. -ENOENT for you. 3334 */ 3335 if (unlikely(!is_dir && nd.last.name[nd.last.len])) { 3336 error = -ENOENT; 3337 goto fail; 3338 } 3339 if (unlikely(err2)) { 3340 error = err2; 3341 goto fail; 3342 } 3343 *path = nd.path; 3344 return dentry; 3345 fail: 3346 dput(dentry); 3347 dentry = ERR_PTR(error); 3348 unlock: 3349 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 3350 if (!err2) 3351 mnt_drop_write(nd.path.mnt); 3352 out: 3353 path_put(&nd.path); 3354 return dentry; 3355 } 3356 EXPORT_SYMBOL(kern_path_create); 3357 3358 void done_path_create(struct path *path, struct dentry *dentry) 3359 { 3360 dput(dentry); 3361 mutex_unlock(&path->dentry->d_inode->i_mutex); 3362 mnt_drop_write(path->mnt); 3363 path_put(path); 3364 } 3365 EXPORT_SYMBOL(done_path_create); 3366 3367 struct dentry *user_path_create(int dfd, const char __user *pathname, 3368 struct path *path, unsigned int lookup_flags) 3369 { 3370 struct filename *tmp = getname(pathname); 3371 struct dentry *res; 3372 if (IS_ERR(tmp)) 3373 return ERR_CAST(tmp); 3374 res = kern_path_create(dfd, tmp->name, path, lookup_flags); 3375 putname(tmp); 3376 return res; 3377 } 3378 EXPORT_SYMBOL(user_path_create); 3379 3380 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 3381 { 3382 int error = may_create(dir, dentry); 3383 3384 if (error) 3385 return error; 3386 3387 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD)) 3388 return -EPERM; 3389 3390 if (!dir->i_op->mknod) 3391 return -EPERM; 3392 3393 error = devcgroup_inode_mknod(mode, dev); 3394 if (error) 3395 return error; 3396 3397 error = security_inode_mknod(dir, dentry, mode, dev); 3398 if (error) 3399 return error; 3400 3401 error = dir->i_op->mknod(dir, dentry, mode, dev); 3402 if (!error) 3403 fsnotify_create(dir, dentry); 3404 return error; 3405 } 3406 3407 static int may_mknod(umode_t mode) 3408 { 3409 switch (mode & S_IFMT) { 3410 case S_IFREG: 3411 case S_IFCHR: 3412 case S_IFBLK: 3413 case S_IFIFO: 3414 case S_IFSOCK: 3415 case 0: /* zero mode translates to S_IFREG */ 3416 return 0; 3417 case S_IFDIR: 3418 return -EPERM; 3419 default: 3420 return -EINVAL; 3421 } 3422 } 3423 3424 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode, 3425 unsigned, dev) 3426 { 3427 struct dentry *dentry; 3428 struct path path; 3429 int error; 3430 unsigned int lookup_flags = 0; 3431 3432 error = may_mknod(mode); 3433 if (error) 3434 return error; 3435 retry: 3436 dentry = user_path_create(dfd, filename, &path, lookup_flags); 3437 if (IS_ERR(dentry)) 3438 return PTR_ERR(dentry); 3439 3440 if (!IS_POSIXACL(path.dentry->d_inode)) 3441 mode &= ~current_umask(); 3442 error = security_path_mknod(&path, dentry, mode, dev); 3443 if (error) 3444 goto out; 3445 switch (mode & S_IFMT) { 3446 case 0: case S_IFREG: 3447 error = vfs_create(path.dentry->d_inode,dentry,mode,true); 3448 break; 3449 case S_IFCHR: case S_IFBLK: 3450 error = vfs_mknod(path.dentry->d_inode,dentry,mode, 3451 new_decode_dev(dev)); 3452 break; 3453 case S_IFIFO: case S_IFSOCK: 3454 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0); 3455 break; 3456 } 3457 out: 3458 done_path_create(&path, dentry); 3459 if (retry_estale(error, lookup_flags)) { 3460 lookup_flags |= LOOKUP_REVAL; 3461 goto retry; 3462 } 3463 return error; 3464 } 3465 3466 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev) 3467 { 3468 return sys_mknodat(AT_FDCWD, filename, mode, dev); 3469 } 3470 3471 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 3472 { 3473 int error = may_create(dir, dentry); 3474 unsigned max_links = dir->i_sb->s_max_links; 3475 3476 if (error) 3477 return error; 3478 3479 if (!dir->i_op->mkdir) 3480 return -EPERM; 3481 3482 mode &= (S_IRWXUGO|S_ISVTX); 3483 error = security_inode_mkdir(dir, dentry, mode); 3484 if (error) 3485 return error; 3486 3487 if (max_links && dir->i_nlink >= max_links) 3488 return -EMLINK; 3489 3490 error = dir->i_op->mkdir(dir, dentry, mode); 3491 if (!error) 3492 fsnotify_mkdir(dir, dentry); 3493 return error; 3494 } 3495 3496 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode) 3497 { 3498 struct dentry *dentry; 3499 struct path path; 3500 int error; 3501 unsigned int lookup_flags = LOOKUP_DIRECTORY; 3502 3503 retry: 3504 dentry = user_path_create(dfd, pathname, &path, lookup_flags); 3505 if (IS_ERR(dentry)) 3506 return PTR_ERR(dentry); 3507 3508 if (!IS_POSIXACL(path.dentry->d_inode)) 3509 mode &= ~current_umask(); 3510 error = security_path_mkdir(&path, dentry, mode); 3511 if (!error) 3512 error = vfs_mkdir(path.dentry->d_inode, dentry, mode); 3513 done_path_create(&path, dentry); 3514 if (retry_estale(error, lookup_flags)) { 3515 lookup_flags |= LOOKUP_REVAL; 3516 goto retry; 3517 } 3518 return error; 3519 } 3520 3521 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode) 3522 { 3523 return sys_mkdirat(AT_FDCWD, pathname, mode); 3524 } 3525 3526 /* 3527 * The dentry_unhash() helper will try to drop the dentry early: we 3528 * should have a usage count of 1 if we're the only user of this 3529 * dentry, and if that is true (possibly after pruning the dcache), 3530 * then we drop the dentry now. 3531 * 3532 * A low-level filesystem can, if it choses, legally 3533 * do a 3534 * 3535 * if (!d_unhashed(dentry)) 3536 * return -EBUSY; 3537 * 3538 * if it cannot handle the case of removing a directory 3539 * that is still in use by something else.. 3540 */ 3541 void dentry_unhash(struct dentry *dentry) 3542 { 3543 shrink_dcache_parent(dentry); 3544 spin_lock(&dentry->d_lock); 3545 if (dentry->d_lockref.count == 1) 3546 __d_drop(dentry); 3547 spin_unlock(&dentry->d_lock); 3548 } 3549 3550 int vfs_rmdir(struct inode *dir, struct dentry *dentry) 3551 { 3552 int error = may_delete(dir, dentry, 1); 3553 3554 if (error) 3555 return error; 3556 3557 if (!dir->i_op->rmdir) 3558 return -EPERM; 3559 3560 dget(dentry); 3561 mutex_lock(&dentry->d_inode->i_mutex); 3562 3563 error = -EBUSY; 3564 if (d_mountpoint(dentry)) 3565 goto out; 3566 3567 error = security_inode_rmdir(dir, dentry); 3568 if (error) 3569 goto out; 3570 3571 shrink_dcache_parent(dentry); 3572 error = dir->i_op->rmdir(dir, dentry); 3573 if (error) 3574 goto out; 3575 3576 dentry->d_inode->i_flags |= S_DEAD; 3577 dont_mount(dentry); 3578 3579 out: 3580 mutex_unlock(&dentry->d_inode->i_mutex); 3581 dput(dentry); 3582 if (!error) 3583 d_delete(dentry); 3584 return error; 3585 } 3586 3587 static long do_rmdir(int dfd, const char __user *pathname) 3588 { 3589 int error = 0; 3590 struct filename *name; 3591 struct dentry *dentry; 3592 struct nameidata nd; 3593 unsigned int lookup_flags = 0; 3594 retry: 3595 name = user_path_parent(dfd, pathname, &nd, lookup_flags); 3596 if (IS_ERR(name)) 3597 return PTR_ERR(name); 3598 3599 switch(nd.last_type) { 3600 case LAST_DOTDOT: 3601 error = -ENOTEMPTY; 3602 goto exit1; 3603 case LAST_DOT: 3604 error = -EINVAL; 3605 goto exit1; 3606 case LAST_ROOT: 3607 error = -EBUSY; 3608 goto exit1; 3609 } 3610 3611 nd.flags &= ~LOOKUP_PARENT; 3612 error = mnt_want_write(nd.path.mnt); 3613 if (error) 3614 goto exit1; 3615 3616 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 3617 dentry = lookup_hash(&nd); 3618 error = PTR_ERR(dentry); 3619 if (IS_ERR(dentry)) 3620 goto exit2; 3621 if (!dentry->d_inode) { 3622 error = -ENOENT; 3623 goto exit3; 3624 } 3625 error = security_path_rmdir(&nd.path, dentry); 3626 if (error) 3627 goto exit3; 3628 error = vfs_rmdir(nd.path.dentry->d_inode, dentry); 3629 exit3: 3630 dput(dentry); 3631 exit2: 3632 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 3633 mnt_drop_write(nd.path.mnt); 3634 exit1: 3635 path_put(&nd.path); 3636 putname(name); 3637 if (retry_estale(error, lookup_flags)) { 3638 lookup_flags |= LOOKUP_REVAL; 3639 goto retry; 3640 } 3641 return error; 3642 } 3643 3644 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 3645 { 3646 return do_rmdir(AT_FDCWD, pathname); 3647 } 3648 3649 int vfs_unlink(struct inode *dir, struct dentry *dentry) 3650 { 3651 int error = may_delete(dir, dentry, 0); 3652 3653 if (error) 3654 return error; 3655 3656 if (!dir->i_op->unlink) 3657 return -EPERM; 3658 3659 mutex_lock(&dentry->d_inode->i_mutex); 3660 if (d_mountpoint(dentry)) 3661 error = -EBUSY; 3662 else { 3663 error = security_inode_unlink(dir, dentry); 3664 if (!error) { 3665 error = dir->i_op->unlink(dir, dentry); 3666 if (!error) 3667 dont_mount(dentry); 3668 } 3669 } 3670 mutex_unlock(&dentry->d_inode->i_mutex); 3671 3672 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 3673 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) { 3674 fsnotify_link_count(dentry->d_inode); 3675 d_delete(dentry); 3676 } 3677 3678 return error; 3679 } 3680 3681 /* 3682 * Make sure that the actual truncation of the file will occur outside its 3683 * directory's i_mutex. Truncate can take a long time if there is a lot of 3684 * writeout happening, and we don't want to prevent access to the directory 3685 * while waiting on the I/O. 3686 */ 3687 static long do_unlinkat(int dfd, const char __user *pathname) 3688 { 3689 int error; 3690 struct filename *name; 3691 struct dentry *dentry; 3692 struct nameidata nd; 3693 struct inode *inode = NULL; 3694 unsigned int lookup_flags = 0; 3695 retry: 3696 name = user_path_parent(dfd, pathname, &nd, lookup_flags); 3697 if (IS_ERR(name)) 3698 return PTR_ERR(name); 3699 3700 error = -EISDIR; 3701 if (nd.last_type != LAST_NORM) 3702 goto exit1; 3703 3704 nd.flags &= ~LOOKUP_PARENT; 3705 error = mnt_want_write(nd.path.mnt); 3706 if (error) 3707 goto exit1; 3708 3709 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 3710 dentry = lookup_hash(&nd); 3711 error = PTR_ERR(dentry); 3712 if (!IS_ERR(dentry)) { 3713 /* Why not before? Because we want correct error value */ 3714 if (nd.last.name[nd.last.len]) 3715 goto slashes; 3716 inode = dentry->d_inode; 3717 if (!inode) 3718 goto slashes; 3719 ihold(inode); 3720 error = security_path_unlink(&nd.path, dentry); 3721 if (error) 3722 goto exit2; 3723 error = vfs_unlink(nd.path.dentry->d_inode, dentry); 3724 exit2: 3725 dput(dentry); 3726 } 3727 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 3728 if (inode) 3729 iput(inode); /* truncate the inode here */ 3730 mnt_drop_write(nd.path.mnt); 3731 exit1: 3732 path_put(&nd.path); 3733 putname(name); 3734 if (retry_estale(error, lookup_flags)) { 3735 lookup_flags |= LOOKUP_REVAL; 3736 inode = NULL; 3737 goto retry; 3738 } 3739 return error; 3740 3741 slashes: 3742 error = !dentry->d_inode ? -ENOENT : 3743 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR; 3744 goto exit2; 3745 } 3746 3747 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 3748 { 3749 if ((flag & ~AT_REMOVEDIR) != 0) 3750 return -EINVAL; 3751 3752 if (flag & AT_REMOVEDIR) 3753 return do_rmdir(dfd, pathname); 3754 3755 return do_unlinkat(dfd, pathname); 3756 } 3757 3758 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 3759 { 3760 return do_unlinkat(AT_FDCWD, pathname); 3761 } 3762 3763 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname) 3764 { 3765 int error = may_create(dir, dentry); 3766 3767 if (error) 3768 return error; 3769 3770 if (!dir->i_op->symlink) 3771 return -EPERM; 3772 3773 error = security_inode_symlink(dir, dentry, oldname); 3774 if (error) 3775 return error; 3776 3777 error = dir->i_op->symlink(dir, dentry, oldname); 3778 if (!error) 3779 fsnotify_create(dir, dentry); 3780 return error; 3781 } 3782 3783 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 3784 int, newdfd, const char __user *, newname) 3785 { 3786 int error; 3787 struct filename *from; 3788 struct dentry *dentry; 3789 struct path path; 3790 unsigned int lookup_flags = 0; 3791 3792 from = getname(oldname); 3793 if (IS_ERR(from)) 3794 return PTR_ERR(from); 3795 retry: 3796 dentry = user_path_create(newdfd, newname, &path, lookup_flags); 3797 error = PTR_ERR(dentry); 3798 if (IS_ERR(dentry)) 3799 goto out_putname; 3800 3801 error = security_path_symlink(&path, dentry, from->name); 3802 if (!error) 3803 error = vfs_symlink(path.dentry->d_inode, dentry, from->name); 3804 done_path_create(&path, dentry); 3805 if (retry_estale(error, lookup_flags)) { 3806 lookup_flags |= LOOKUP_REVAL; 3807 goto retry; 3808 } 3809 out_putname: 3810 putname(from); 3811 return error; 3812 } 3813 3814 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 3815 { 3816 return sys_symlinkat(oldname, AT_FDCWD, newname); 3817 } 3818 3819 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) 3820 { 3821 struct inode *inode = old_dentry->d_inode; 3822 unsigned max_links = dir->i_sb->s_max_links; 3823 int error; 3824 3825 if (!inode) 3826 return -ENOENT; 3827 3828 error = may_create(dir, new_dentry); 3829 if (error) 3830 return error; 3831 3832 if (dir->i_sb != inode->i_sb) 3833 return -EXDEV; 3834 3835 /* 3836 * A link to an append-only or immutable file cannot be created. 3837 */ 3838 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 3839 return -EPERM; 3840 if (!dir->i_op->link) 3841 return -EPERM; 3842 if (S_ISDIR(inode->i_mode)) 3843 return -EPERM; 3844 3845 error = security_inode_link(old_dentry, dir, new_dentry); 3846 if (error) 3847 return error; 3848 3849 mutex_lock(&inode->i_mutex); 3850 /* Make sure we don't allow creating hardlink to an unlinked file */ 3851 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE)) 3852 error = -ENOENT; 3853 else if (max_links && inode->i_nlink >= max_links) 3854 error = -EMLINK; 3855 else 3856 error = dir->i_op->link(old_dentry, dir, new_dentry); 3857 3858 if (!error && (inode->i_state & I_LINKABLE)) { 3859 spin_lock(&inode->i_lock); 3860 inode->i_state &= ~I_LINKABLE; 3861 spin_unlock(&inode->i_lock); 3862 } 3863 mutex_unlock(&inode->i_mutex); 3864 if (!error) 3865 fsnotify_link(dir, inode, new_dentry); 3866 return error; 3867 } 3868 3869 /* 3870 * Hardlinks are often used in delicate situations. We avoid 3871 * security-related surprises by not following symlinks on the 3872 * newname. --KAB 3873 * 3874 * We don't follow them on the oldname either to be compatible 3875 * with linux 2.0, and to avoid hard-linking to directories 3876 * and other special files. --ADM 3877 */ 3878 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 3879 int, newdfd, const char __user *, newname, int, flags) 3880 { 3881 struct dentry *new_dentry; 3882 struct path old_path, new_path; 3883 int how = 0; 3884 int error; 3885 3886 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) 3887 return -EINVAL; 3888 /* 3889 * To use null names we require CAP_DAC_READ_SEARCH 3890 * This ensures that not everyone will be able to create 3891 * handlink using the passed filedescriptor. 3892 */ 3893 if (flags & AT_EMPTY_PATH) { 3894 if (!capable(CAP_DAC_READ_SEARCH)) 3895 return -ENOENT; 3896 how = LOOKUP_EMPTY; 3897 } 3898 3899 if (flags & AT_SYMLINK_FOLLOW) 3900 how |= LOOKUP_FOLLOW; 3901 retry: 3902 error = user_path_at(olddfd, oldname, how, &old_path); 3903 if (error) 3904 return error; 3905 3906 new_dentry = user_path_create(newdfd, newname, &new_path, 3907 (how & LOOKUP_REVAL)); 3908 error = PTR_ERR(new_dentry); 3909 if (IS_ERR(new_dentry)) 3910 goto out; 3911 3912 error = -EXDEV; 3913 if (old_path.mnt != new_path.mnt) 3914 goto out_dput; 3915 error = may_linkat(&old_path); 3916 if (unlikely(error)) 3917 goto out_dput; 3918 error = security_path_link(old_path.dentry, &new_path, new_dentry); 3919 if (error) 3920 goto out_dput; 3921 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry); 3922 out_dput: 3923 done_path_create(&new_path, new_dentry); 3924 if (retry_estale(error, how)) { 3925 how |= LOOKUP_REVAL; 3926 goto retry; 3927 } 3928 out: 3929 path_put(&old_path); 3930 3931 return error; 3932 } 3933 3934 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 3935 { 3936 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 3937 } 3938 3939 /* 3940 * The worst of all namespace operations - renaming directory. "Perverted" 3941 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 3942 * Problems: 3943 * a) we can get into loop creation. Check is done in is_subdir(). 3944 * b) race potential - two innocent renames can create a loop together. 3945 * That's where 4.4 screws up. Current fix: serialization on 3946 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 3947 * story. 3948 * c) we have to lock _three_ objects - parents and victim (if it exists). 3949 * And that - after we got ->i_mutex on parents (until then we don't know 3950 * whether the target exists). Solution: try to be smart with locking 3951 * order for inodes. We rely on the fact that tree topology may change 3952 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 3953 * move will be locked. Thus we can rank directories by the tree 3954 * (ancestors first) and rank all non-directories after them. 3955 * That works since everybody except rename does "lock parent, lookup, 3956 * lock child" and rename is under ->s_vfs_rename_mutex. 3957 * HOWEVER, it relies on the assumption that any object with ->lookup() 3958 * has no more than 1 dentry. If "hybrid" objects will ever appear, 3959 * we'd better make sure that there's no link(2) for them. 3960 * d) conversion from fhandle to dentry may come in the wrong moment - when 3961 * we are removing the target. Solution: we will have to grab ->i_mutex 3962 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 3963 * ->i_mutex on parents, which works but leads to some truly excessive 3964 * locking]. 3965 */ 3966 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry, 3967 struct inode *new_dir, struct dentry *new_dentry) 3968 { 3969 int error = 0; 3970 struct inode *target = new_dentry->d_inode; 3971 unsigned max_links = new_dir->i_sb->s_max_links; 3972 3973 /* 3974 * If we are going to change the parent - check write permissions, 3975 * we'll need to flip '..'. 3976 */ 3977 if (new_dir != old_dir) { 3978 error = inode_permission(old_dentry->d_inode, MAY_WRITE); 3979 if (error) 3980 return error; 3981 } 3982 3983 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry); 3984 if (error) 3985 return error; 3986 3987 dget(new_dentry); 3988 if (target) 3989 mutex_lock(&target->i_mutex); 3990 3991 error = -EBUSY; 3992 if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry)) 3993 goto out; 3994 3995 error = -EMLINK; 3996 if (max_links && !target && new_dir != old_dir && 3997 new_dir->i_nlink >= max_links) 3998 goto out; 3999 4000 if (target) 4001 shrink_dcache_parent(new_dentry); 4002 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry); 4003 if (error) 4004 goto out; 4005 4006 if (target) { 4007 target->i_flags |= S_DEAD; 4008 dont_mount(new_dentry); 4009 } 4010 out: 4011 if (target) 4012 mutex_unlock(&target->i_mutex); 4013 dput(new_dentry); 4014 if (!error) 4015 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) 4016 d_move(old_dentry,new_dentry); 4017 return error; 4018 } 4019 4020 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry, 4021 struct inode *new_dir, struct dentry *new_dentry) 4022 { 4023 struct inode *target = new_dentry->d_inode; 4024 int error; 4025 4026 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry); 4027 if (error) 4028 return error; 4029 4030 dget(new_dentry); 4031 if (target) 4032 mutex_lock(&target->i_mutex); 4033 4034 error = -EBUSY; 4035 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry)) 4036 goto out; 4037 4038 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry); 4039 if (error) 4040 goto out; 4041 4042 if (target) 4043 dont_mount(new_dentry); 4044 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) 4045 d_move(old_dentry, new_dentry); 4046 out: 4047 if (target) 4048 mutex_unlock(&target->i_mutex); 4049 dput(new_dentry); 4050 return error; 4051 } 4052 4053 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry, 4054 struct inode *new_dir, struct dentry *new_dentry) 4055 { 4056 int error; 4057 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode); 4058 const unsigned char *old_name; 4059 4060 if (old_dentry->d_inode == new_dentry->d_inode) 4061 return 0; 4062 4063 error = may_delete(old_dir, old_dentry, is_dir); 4064 if (error) 4065 return error; 4066 4067 if (!new_dentry->d_inode) 4068 error = may_create(new_dir, new_dentry); 4069 else 4070 error = may_delete(new_dir, new_dentry, is_dir); 4071 if (error) 4072 return error; 4073 4074 if (!old_dir->i_op->rename) 4075 return -EPERM; 4076 4077 old_name = fsnotify_oldname_init(old_dentry->d_name.name); 4078 4079 if (is_dir) 4080 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry); 4081 else 4082 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry); 4083 if (!error) 4084 fsnotify_move(old_dir, new_dir, old_name, is_dir, 4085 new_dentry->d_inode, old_dentry); 4086 fsnotify_oldname_free(old_name); 4087 4088 return error; 4089 } 4090 4091 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 4092 int, newdfd, const char __user *, newname) 4093 { 4094 struct dentry *old_dir, *new_dir; 4095 struct dentry *old_dentry, *new_dentry; 4096 struct dentry *trap; 4097 struct nameidata oldnd, newnd; 4098 struct filename *from; 4099 struct filename *to; 4100 unsigned int lookup_flags = 0; 4101 bool should_retry = false; 4102 int error; 4103 retry: 4104 from = user_path_parent(olddfd, oldname, &oldnd, lookup_flags); 4105 if (IS_ERR(from)) { 4106 error = PTR_ERR(from); 4107 goto exit; 4108 } 4109 4110 to = user_path_parent(newdfd, newname, &newnd, lookup_flags); 4111 if (IS_ERR(to)) { 4112 error = PTR_ERR(to); 4113 goto exit1; 4114 } 4115 4116 error = -EXDEV; 4117 if (oldnd.path.mnt != newnd.path.mnt) 4118 goto exit2; 4119 4120 old_dir = oldnd.path.dentry; 4121 error = -EBUSY; 4122 if (oldnd.last_type != LAST_NORM) 4123 goto exit2; 4124 4125 new_dir = newnd.path.dentry; 4126 if (newnd.last_type != LAST_NORM) 4127 goto exit2; 4128 4129 error = mnt_want_write(oldnd.path.mnt); 4130 if (error) 4131 goto exit2; 4132 4133 oldnd.flags &= ~LOOKUP_PARENT; 4134 newnd.flags &= ~LOOKUP_PARENT; 4135 newnd.flags |= LOOKUP_RENAME_TARGET; 4136 4137 trap = lock_rename(new_dir, old_dir); 4138 4139 old_dentry = lookup_hash(&oldnd); 4140 error = PTR_ERR(old_dentry); 4141 if (IS_ERR(old_dentry)) 4142 goto exit3; 4143 /* source must exist */ 4144 error = -ENOENT; 4145 if (!old_dentry->d_inode) 4146 goto exit4; 4147 /* unless the source is a directory trailing slashes give -ENOTDIR */ 4148 if (!S_ISDIR(old_dentry->d_inode->i_mode)) { 4149 error = -ENOTDIR; 4150 if (oldnd.last.name[oldnd.last.len]) 4151 goto exit4; 4152 if (newnd.last.name[newnd.last.len]) 4153 goto exit4; 4154 } 4155 /* source should not be ancestor of target */ 4156 error = -EINVAL; 4157 if (old_dentry == trap) 4158 goto exit4; 4159 new_dentry = lookup_hash(&newnd); 4160 error = PTR_ERR(new_dentry); 4161 if (IS_ERR(new_dentry)) 4162 goto exit4; 4163 /* target should not be an ancestor of source */ 4164 error = -ENOTEMPTY; 4165 if (new_dentry == trap) 4166 goto exit5; 4167 4168 error = security_path_rename(&oldnd.path, old_dentry, 4169 &newnd.path, new_dentry); 4170 if (error) 4171 goto exit5; 4172 error = vfs_rename(old_dir->d_inode, old_dentry, 4173 new_dir->d_inode, new_dentry); 4174 exit5: 4175 dput(new_dentry); 4176 exit4: 4177 dput(old_dentry); 4178 exit3: 4179 unlock_rename(new_dir, old_dir); 4180 mnt_drop_write(oldnd.path.mnt); 4181 exit2: 4182 if (retry_estale(error, lookup_flags)) 4183 should_retry = true; 4184 path_put(&newnd.path); 4185 putname(to); 4186 exit1: 4187 path_put(&oldnd.path); 4188 putname(from); 4189 if (should_retry) { 4190 should_retry = false; 4191 lookup_flags |= LOOKUP_REVAL; 4192 goto retry; 4193 } 4194 exit: 4195 return error; 4196 } 4197 4198 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 4199 { 4200 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname); 4201 } 4202 4203 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link) 4204 { 4205 int len; 4206 4207 len = PTR_ERR(link); 4208 if (IS_ERR(link)) 4209 goto out; 4210 4211 len = strlen(link); 4212 if (len > (unsigned) buflen) 4213 len = buflen; 4214 if (copy_to_user(buffer, link, len)) 4215 len = -EFAULT; 4216 out: 4217 return len; 4218 } 4219 4220 /* 4221 * A helper for ->readlink(). This should be used *ONLY* for symlinks that 4222 * have ->follow_link() touching nd only in nd_set_link(). Using (or not 4223 * using) it for any given inode is up to filesystem. 4224 */ 4225 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4226 { 4227 struct nameidata nd; 4228 void *cookie; 4229 int res; 4230 4231 nd.depth = 0; 4232 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd); 4233 if (IS_ERR(cookie)) 4234 return PTR_ERR(cookie); 4235 4236 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd)); 4237 if (dentry->d_inode->i_op->put_link) 4238 dentry->d_inode->i_op->put_link(dentry, &nd, cookie); 4239 return res; 4240 } 4241 4242 /* get the link contents into pagecache */ 4243 static char *page_getlink(struct dentry * dentry, struct page **ppage) 4244 { 4245 char *kaddr; 4246 struct page *page; 4247 struct address_space *mapping = dentry->d_inode->i_mapping; 4248 page = read_mapping_page(mapping, 0, NULL); 4249 if (IS_ERR(page)) 4250 return (char*)page; 4251 *ppage = page; 4252 kaddr = kmap(page); 4253 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1); 4254 return kaddr; 4255 } 4256 4257 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4258 { 4259 struct page *page = NULL; 4260 char *s = page_getlink(dentry, &page); 4261 int res = vfs_readlink(dentry,buffer,buflen,s); 4262 if (page) { 4263 kunmap(page); 4264 page_cache_release(page); 4265 } 4266 return res; 4267 } 4268 4269 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd) 4270 { 4271 struct page *page = NULL; 4272 nd_set_link(nd, page_getlink(dentry, &page)); 4273 return page; 4274 } 4275 4276 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie) 4277 { 4278 struct page *page = cookie; 4279 4280 if (page) { 4281 kunmap(page); 4282 page_cache_release(page); 4283 } 4284 } 4285 4286 /* 4287 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS 4288 */ 4289 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs) 4290 { 4291 struct address_space *mapping = inode->i_mapping; 4292 struct page *page; 4293 void *fsdata; 4294 int err; 4295 char *kaddr; 4296 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE; 4297 if (nofs) 4298 flags |= AOP_FLAG_NOFS; 4299 4300 retry: 4301 err = pagecache_write_begin(NULL, mapping, 0, len-1, 4302 flags, &page, &fsdata); 4303 if (err) 4304 goto fail; 4305 4306 kaddr = kmap_atomic(page); 4307 memcpy(kaddr, symname, len-1); 4308 kunmap_atomic(kaddr); 4309 4310 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1, 4311 page, fsdata); 4312 if (err < 0) 4313 goto fail; 4314 if (err < len-1) 4315 goto retry; 4316 4317 mark_inode_dirty(inode); 4318 return 0; 4319 fail: 4320 return err; 4321 } 4322 4323 int page_symlink(struct inode *inode, const char *symname, int len) 4324 { 4325 return __page_symlink(inode, symname, len, 4326 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS)); 4327 } 4328 4329 const struct inode_operations page_symlink_inode_operations = { 4330 .readlink = generic_readlink, 4331 .follow_link = page_follow_link_light, 4332 .put_link = page_put_link, 4333 }; 4334 4335 EXPORT_SYMBOL(user_path_at); 4336 EXPORT_SYMBOL(follow_down_one); 4337 EXPORT_SYMBOL(follow_down); 4338 EXPORT_SYMBOL(follow_up); 4339 EXPORT_SYMBOL(get_write_access); /* nfsd */ 4340 EXPORT_SYMBOL(lock_rename); 4341 EXPORT_SYMBOL(lookup_one_len); 4342 EXPORT_SYMBOL(page_follow_link_light); 4343 EXPORT_SYMBOL(page_put_link); 4344 EXPORT_SYMBOL(page_readlink); 4345 EXPORT_SYMBOL(__page_symlink); 4346 EXPORT_SYMBOL(page_symlink); 4347 EXPORT_SYMBOL(page_symlink_inode_operations); 4348 EXPORT_SYMBOL(kern_path); 4349 EXPORT_SYMBOL(vfs_path_lookup); 4350 EXPORT_SYMBOL(inode_permission); 4351 EXPORT_SYMBOL(unlock_rename); 4352 EXPORT_SYMBOL(vfs_create); 4353 EXPORT_SYMBOL(vfs_link); 4354 EXPORT_SYMBOL(vfs_mkdir); 4355 EXPORT_SYMBOL(vfs_mknod); 4356 EXPORT_SYMBOL(generic_permission); 4357 EXPORT_SYMBOL(vfs_readlink); 4358 EXPORT_SYMBOL(vfs_rename); 4359 EXPORT_SYMBOL(vfs_rmdir); 4360 EXPORT_SYMBOL(vfs_symlink); 4361 EXPORT_SYMBOL(vfs_unlink); 4362 EXPORT_SYMBOL(dentry_unhash); 4363 EXPORT_SYMBOL(generic_readlink); 4364