xref: /openbmc/linux/fs/namei.c (revision dfc66bef)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/namei.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * Some corrections by tytso.
10  */
11 
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13  * lookup logic.
14  */
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
16  */
17 
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
22 #include <linux/fs.h>
23 #include <linux/namei.h>
24 #include <linux/pagemap.h>
25 #include <linux/fsnotify.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/ima.h>
29 #include <linux/syscalls.h>
30 #include <linux/mount.h>
31 #include <linux/audit.h>
32 #include <linux/capability.h>
33 #include <linux/file.h>
34 #include <linux/fcntl.h>
35 #include <linux/device_cgroup.h>
36 #include <linux/fs_struct.h>
37 #include <linux/posix_acl.h>
38 #include <linux/hash.h>
39 #include <linux/bitops.h>
40 #include <linux/init_task.h>
41 #include <linux/uaccess.h>
42 
43 #include "internal.h"
44 #include "mount.h"
45 
46 /* [Feb-1997 T. Schoebel-Theuer]
47  * Fundamental changes in the pathname lookup mechanisms (namei)
48  * were necessary because of omirr.  The reason is that omirr needs
49  * to know the _real_ pathname, not the user-supplied one, in case
50  * of symlinks (and also when transname replacements occur).
51  *
52  * The new code replaces the old recursive symlink resolution with
53  * an iterative one (in case of non-nested symlink chains).  It does
54  * this with calls to <fs>_follow_link().
55  * As a side effect, dir_namei(), _namei() and follow_link() are now
56  * replaced with a single function lookup_dentry() that can handle all
57  * the special cases of the former code.
58  *
59  * With the new dcache, the pathname is stored at each inode, at least as
60  * long as the refcount of the inode is positive.  As a side effect, the
61  * size of the dcache depends on the inode cache and thus is dynamic.
62  *
63  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
64  * resolution to correspond with current state of the code.
65  *
66  * Note that the symlink resolution is not *completely* iterative.
67  * There is still a significant amount of tail- and mid- recursion in
68  * the algorithm.  Also, note that <fs>_readlink() is not used in
69  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
70  * may return different results than <fs>_follow_link().  Many virtual
71  * filesystems (including /proc) exhibit this behavior.
72  */
73 
74 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
75  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
76  * and the name already exists in form of a symlink, try to create the new
77  * name indicated by the symlink. The old code always complained that the
78  * name already exists, due to not following the symlink even if its target
79  * is nonexistent.  The new semantics affects also mknod() and link() when
80  * the name is a symlink pointing to a non-existent name.
81  *
82  * I don't know which semantics is the right one, since I have no access
83  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
84  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
85  * "old" one. Personally, I think the new semantics is much more logical.
86  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
87  * file does succeed in both HP-UX and SunOs, but not in Solaris
88  * and in the old Linux semantics.
89  */
90 
91 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
92  * semantics.  See the comments in "open_namei" and "do_link" below.
93  *
94  * [10-Sep-98 Alan Modra] Another symlink change.
95  */
96 
97 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
98  *	inside the path - always follow.
99  *	in the last component in creation/removal/renaming - never follow.
100  *	if LOOKUP_FOLLOW passed - follow.
101  *	if the pathname has trailing slashes - follow.
102  *	otherwise - don't follow.
103  * (applied in that order).
104  *
105  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
106  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
107  * During the 2.4 we need to fix the userland stuff depending on it -
108  * hopefully we will be able to get rid of that wart in 2.5. So far only
109  * XEmacs seems to be relying on it...
110  */
111 /*
112  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
113  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
114  * any extra contention...
115  */
116 
117 /* In order to reduce some races, while at the same time doing additional
118  * checking and hopefully speeding things up, we copy filenames to the
119  * kernel data space before using them..
120  *
121  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
122  * PATH_MAX includes the nul terminator --RR.
123  */
124 
125 #define EMBEDDED_NAME_MAX	(PATH_MAX - offsetof(struct filename, iname))
126 
127 struct filename *
128 getname_flags(const char __user *filename, int flags, int *empty)
129 {
130 	struct filename *result;
131 	char *kname;
132 	int len;
133 
134 	result = audit_reusename(filename);
135 	if (result)
136 		return result;
137 
138 	result = __getname();
139 	if (unlikely(!result))
140 		return ERR_PTR(-ENOMEM);
141 
142 	/*
143 	 * First, try to embed the struct filename inside the names_cache
144 	 * allocation
145 	 */
146 	kname = (char *)result->iname;
147 	result->name = kname;
148 
149 	len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
150 	if (unlikely(len < 0)) {
151 		__putname(result);
152 		return ERR_PTR(len);
153 	}
154 
155 	/*
156 	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
157 	 * separate struct filename so we can dedicate the entire
158 	 * names_cache allocation for the pathname, and re-do the copy from
159 	 * userland.
160 	 */
161 	if (unlikely(len == EMBEDDED_NAME_MAX)) {
162 		const size_t size = offsetof(struct filename, iname[1]);
163 		kname = (char *)result;
164 
165 		/*
166 		 * size is chosen that way we to guarantee that
167 		 * result->iname[0] is within the same object and that
168 		 * kname can't be equal to result->iname, no matter what.
169 		 */
170 		result = kzalloc(size, GFP_KERNEL);
171 		if (unlikely(!result)) {
172 			__putname(kname);
173 			return ERR_PTR(-ENOMEM);
174 		}
175 		result->name = kname;
176 		len = strncpy_from_user(kname, filename, PATH_MAX);
177 		if (unlikely(len < 0)) {
178 			__putname(kname);
179 			kfree(result);
180 			return ERR_PTR(len);
181 		}
182 		if (unlikely(len == PATH_MAX)) {
183 			__putname(kname);
184 			kfree(result);
185 			return ERR_PTR(-ENAMETOOLONG);
186 		}
187 	}
188 
189 	result->refcnt = 1;
190 	/* The empty path is special. */
191 	if (unlikely(!len)) {
192 		if (empty)
193 			*empty = 1;
194 		if (!(flags & LOOKUP_EMPTY)) {
195 			putname(result);
196 			return ERR_PTR(-ENOENT);
197 		}
198 	}
199 
200 	result->uptr = filename;
201 	result->aname = NULL;
202 	audit_getname(result);
203 	return result;
204 }
205 
206 struct filename *
207 getname_uflags(const char __user *filename, int uflags)
208 {
209 	int flags = (uflags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
210 
211 	return getname_flags(filename, flags, NULL);
212 }
213 
214 struct filename *
215 getname(const char __user * filename)
216 {
217 	return getname_flags(filename, 0, NULL);
218 }
219 
220 struct filename *
221 getname_kernel(const char * filename)
222 {
223 	struct filename *result;
224 	int len = strlen(filename) + 1;
225 
226 	result = __getname();
227 	if (unlikely(!result))
228 		return ERR_PTR(-ENOMEM);
229 
230 	if (len <= EMBEDDED_NAME_MAX) {
231 		result->name = (char *)result->iname;
232 	} else if (len <= PATH_MAX) {
233 		const size_t size = offsetof(struct filename, iname[1]);
234 		struct filename *tmp;
235 
236 		tmp = kmalloc(size, GFP_KERNEL);
237 		if (unlikely(!tmp)) {
238 			__putname(result);
239 			return ERR_PTR(-ENOMEM);
240 		}
241 		tmp->name = (char *)result;
242 		result = tmp;
243 	} else {
244 		__putname(result);
245 		return ERR_PTR(-ENAMETOOLONG);
246 	}
247 	memcpy((char *)result->name, filename, len);
248 	result->uptr = NULL;
249 	result->aname = NULL;
250 	result->refcnt = 1;
251 	audit_getname(result);
252 
253 	return result;
254 }
255 
256 void putname(struct filename *name)
257 {
258 	if (IS_ERR(name))
259 		return;
260 
261 	BUG_ON(name->refcnt <= 0);
262 
263 	if (--name->refcnt > 0)
264 		return;
265 
266 	if (name->name != name->iname) {
267 		__putname(name->name);
268 		kfree(name);
269 	} else
270 		__putname(name);
271 }
272 
273 /**
274  * check_acl - perform ACL permission checking
275  * @mnt_userns:	user namespace of the mount the inode was found from
276  * @inode:	inode to check permissions on
277  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
278  *
279  * This function performs the ACL permission checking. Since this function
280  * retrieve POSIX acls it needs to know whether it is called from a blocking or
281  * non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
282  *
283  * If the inode has been found through an idmapped mount the user namespace of
284  * the vfsmount must be passed through @mnt_userns. This function will then take
285  * care to map the inode according to @mnt_userns before checking permissions.
286  * On non-idmapped mounts or if permission checking is to be performed on the
287  * raw inode simply passs init_user_ns.
288  */
289 static int check_acl(struct user_namespace *mnt_userns,
290 		     struct inode *inode, int mask)
291 {
292 #ifdef CONFIG_FS_POSIX_ACL
293 	struct posix_acl *acl;
294 
295 	if (mask & MAY_NOT_BLOCK) {
296 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
297 	        if (!acl)
298 	                return -EAGAIN;
299 		/* no ->get_acl() calls in RCU mode... */
300 		if (is_uncached_acl(acl))
301 			return -ECHILD;
302 	        return posix_acl_permission(mnt_userns, inode, acl, mask);
303 	}
304 
305 	acl = get_acl(inode, ACL_TYPE_ACCESS);
306 	if (IS_ERR(acl))
307 		return PTR_ERR(acl);
308 	if (acl) {
309 	        int error = posix_acl_permission(mnt_userns, inode, acl, mask);
310 	        posix_acl_release(acl);
311 	        return error;
312 	}
313 #endif
314 
315 	return -EAGAIN;
316 }
317 
318 /**
319  * acl_permission_check - perform basic UNIX permission checking
320  * @mnt_userns:	user namespace of the mount the inode was found from
321  * @inode:	inode to check permissions on
322  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
323  *
324  * This function performs the basic UNIX permission checking. Since this
325  * function may retrieve POSIX acls it needs to know whether it is called from a
326  * blocking or non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
327  *
328  * If the inode has been found through an idmapped mount the user namespace of
329  * the vfsmount must be passed through @mnt_userns. This function will then take
330  * care to map the inode according to @mnt_userns before checking permissions.
331  * On non-idmapped mounts or if permission checking is to be performed on the
332  * raw inode simply passs init_user_ns.
333  */
334 static int acl_permission_check(struct user_namespace *mnt_userns,
335 				struct inode *inode, int mask)
336 {
337 	unsigned int mode = inode->i_mode;
338 	kuid_t i_uid;
339 
340 	/* Are we the owner? If so, ACL's don't matter */
341 	i_uid = i_uid_into_mnt(mnt_userns, inode);
342 	if (likely(uid_eq(current_fsuid(), i_uid))) {
343 		mask &= 7;
344 		mode >>= 6;
345 		return (mask & ~mode) ? -EACCES : 0;
346 	}
347 
348 	/* Do we have ACL's? */
349 	if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
350 		int error = check_acl(mnt_userns, inode, mask);
351 		if (error != -EAGAIN)
352 			return error;
353 	}
354 
355 	/* Only RWX matters for group/other mode bits */
356 	mask &= 7;
357 
358 	/*
359 	 * Are the group permissions different from
360 	 * the other permissions in the bits we care
361 	 * about? Need to check group ownership if so.
362 	 */
363 	if (mask & (mode ^ (mode >> 3))) {
364 		kgid_t kgid = i_gid_into_mnt(mnt_userns, inode);
365 		if (in_group_p(kgid))
366 			mode >>= 3;
367 	}
368 
369 	/* Bits in 'mode' clear that we require? */
370 	return (mask & ~mode) ? -EACCES : 0;
371 }
372 
373 /**
374  * generic_permission -  check for access rights on a Posix-like filesystem
375  * @mnt_userns:	user namespace of the mount the inode was found from
376  * @inode:	inode to check access rights for
377  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC,
378  *		%MAY_NOT_BLOCK ...)
379  *
380  * Used to check for read/write/execute permissions on a file.
381  * We use "fsuid" for this, letting us set arbitrary permissions
382  * for filesystem access without changing the "normal" uids which
383  * are used for other things.
384  *
385  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
386  * request cannot be satisfied (eg. requires blocking or too much complexity).
387  * It would then be called again in ref-walk mode.
388  *
389  * If the inode has been found through an idmapped mount the user namespace of
390  * the vfsmount must be passed through @mnt_userns. This function will then take
391  * care to map the inode according to @mnt_userns before checking permissions.
392  * On non-idmapped mounts or if permission checking is to be performed on the
393  * raw inode simply passs init_user_ns.
394  */
395 int generic_permission(struct user_namespace *mnt_userns, struct inode *inode,
396 		       int mask)
397 {
398 	int ret;
399 
400 	/*
401 	 * Do the basic permission checks.
402 	 */
403 	ret = acl_permission_check(mnt_userns, inode, mask);
404 	if (ret != -EACCES)
405 		return ret;
406 
407 	if (S_ISDIR(inode->i_mode)) {
408 		/* DACs are overridable for directories */
409 		if (!(mask & MAY_WRITE))
410 			if (capable_wrt_inode_uidgid(mnt_userns, inode,
411 						     CAP_DAC_READ_SEARCH))
412 				return 0;
413 		if (capable_wrt_inode_uidgid(mnt_userns, inode,
414 					     CAP_DAC_OVERRIDE))
415 			return 0;
416 		return -EACCES;
417 	}
418 
419 	/*
420 	 * Searching includes executable on directories, else just read.
421 	 */
422 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
423 	if (mask == MAY_READ)
424 		if (capable_wrt_inode_uidgid(mnt_userns, inode,
425 					     CAP_DAC_READ_SEARCH))
426 			return 0;
427 	/*
428 	 * Read/write DACs are always overridable.
429 	 * Executable DACs are overridable when there is
430 	 * at least one exec bit set.
431 	 */
432 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
433 		if (capable_wrt_inode_uidgid(mnt_userns, inode,
434 					     CAP_DAC_OVERRIDE))
435 			return 0;
436 
437 	return -EACCES;
438 }
439 EXPORT_SYMBOL(generic_permission);
440 
441 /**
442  * do_inode_permission - UNIX permission checking
443  * @mnt_userns:	user namespace of the mount the inode was found from
444  * @inode:	inode to check permissions on
445  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
446  *
447  * We _really_ want to just do "generic_permission()" without
448  * even looking at the inode->i_op values. So we keep a cache
449  * flag in inode->i_opflags, that says "this has not special
450  * permission function, use the fast case".
451  */
452 static inline int do_inode_permission(struct user_namespace *mnt_userns,
453 				      struct inode *inode, int mask)
454 {
455 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
456 		if (likely(inode->i_op->permission))
457 			return inode->i_op->permission(mnt_userns, inode, mask);
458 
459 		/* This gets set once for the inode lifetime */
460 		spin_lock(&inode->i_lock);
461 		inode->i_opflags |= IOP_FASTPERM;
462 		spin_unlock(&inode->i_lock);
463 	}
464 	return generic_permission(mnt_userns, inode, mask);
465 }
466 
467 /**
468  * sb_permission - Check superblock-level permissions
469  * @sb: Superblock of inode to check permission on
470  * @inode: Inode to check permission on
471  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
472  *
473  * Separate out file-system wide checks from inode-specific permission checks.
474  */
475 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
476 {
477 	if (unlikely(mask & MAY_WRITE)) {
478 		umode_t mode = inode->i_mode;
479 
480 		/* Nobody gets write access to a read-only fs. */
481 		if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
482 			return -EROFS;
483 	}
484 	return 0;
485 }
486 
487 /**
488  * inode_permission - Check for access rights to a given inode
489  * @mnt_userns:	User namespace of the mount the inode was found from
490  * @inode:	Inode to check permission on
491  * @mask:	Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
492  *
493  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
494  * this, letting us set arbitrary permissions for filesystem access without
495  * changing the "normal" UIDs which are used for other things.
496  *
497  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
498  */
499 int inode_permission(struct user_namespace *mnt_userns,
500 		     struct inode *inode, int mask)
501 {
502 	int retval;
503 
504 	retval = sb_permission(inode->i_sb, inode, mask);
505 	if (retval)
506 		return retval;
507 
508 	if (unlikely(mask & MAY_WRITE)) {
509 		/*
510 		 * Nobody gets write access to an immutable file.
511 		 */
512 		if (IS_IMMUTABLE(inode))
513 			return -EPERM;
514 
515 		/*
516 		 * Updating mtime will likely cause i_uid and i_gid to be
517 		 * written back improperly if their true value is unknown
518 		 * to the vfs.
519 		 */
520 		if (HAS_UNMAPPED_ID(mnt_userns, inode))
521 			return -EACCES;
522 	}
523 
524 	retval = do_inode_permission(mnt_userns, inode, mask);
525 	if (retval)
526 		return retval;
527 
528 	retval = devcgroup_inode_permission(inode, mask);
529 	if (retval)
530 		return retval;
531 
532 	return security_inode_permission(inode, mask);
533 }
534 EXPORT_SYMBOL(inode_permission);
535 
536 /**
537  * path_get - get a reference to a path
538  * @path: path to get the reference to
539  *
540  * Given a path increment the reference count to the dentry and the vfsmount.
541  */
542 void path_get(const struct path *path)
543 {
544 	mntget(path->mnt);
545 	dget(path->dentry);
546 }
547 EXPORT_SYMBOL(path_get);
548 
549 /**
550  * path_put - put a reference to a path
551  * @path: path to put the reference to
552  *
553  * Given a path decrement the reference count to the dentry and the vfsmount.
554  */
555 void path_put(const struct path *path)
556 {
557 	dput(path->dentry);
558 	mntput(path->mnt);
559 }
560 EXPORT_SYMBOL(path_put);
561 
562 #define EMBEDDED_LEVELS 2
563 struct nameidata {
564 	struct path	path;
565 	struct qstr	last;
566 	struct path	root;
567 	struct inode	*inode; /* path.dentry.d_inode */
568 	unsigned int	flags, state;
569 	unsigned	seq, m_seq, r_seq;
570 	int		last_type;
571 	unsigned	depth;
572 	int		total_link_count;
573 	struct saved {
574 		struct path link;
575 		struct delayed_call done;
576 		const char *name;
577 		unsigned seq;
578 	} *stack, internal[EMBEDDED_LEVELS];
579 	struct filename	*name;
580 	struct nameidata *saved;
581 	unsigned	root_seq;
582 	int		dfd;
583 	kuid_t		dir_uid;
584 	umode_t		dir_mode;
585 } __randomize_layout;
586 
587 #define ND_ROOT_PRESET 1
588 #define ND_ROOT_GRABBED 2
589 #define ND_JUMPED 4
590 
591 static void __set_nameidata(struct nameidata *p, int dfd, struct filename *name)
592 {
593 	struct nameidata *old = current->nameidata;
594 	p->stack = p->internal;
595 	p->depth = 0;
596 	p->dfd = dfd;
597 	p->name = name;
598 	p->path.mnt = NULL;
599 	p->path.dentry = NULL;
600 	p->total_link_count = old ? old->total_link_count : 0;
601 	p->saved = old;
602 	current->nameidata = p;
603 }
604 
605 static inline void set_nameidata(struct nameidata *p, int dfd, struct filename *name,
606 			  const struct path *root)
607 {
608 	__set_nameidata(p, dfd, name);
609 	p->state = 0;
610 	if (unlikely(root)) {
611 		p->state = ND_ROOT_PRESET;
612 		p->root = *root;
613 	}
614 }
615 
616 static void restore_nameidata(void)
617 {
618 	struct nameidata *now = current->nameidata, *old = now->saved;
619 
620 	current->nameidata = old;
621 	if (old)
622 		old->total_link_count = now->total_link_count;
623 	if (now->stack != now->internal)
624 		kfree(now->stack);
625 }
626 
627 static bool nd_alloc_stack(struct nameidata *nd)
628 {
629 	struct saved *p;
630 
631 	p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
632 			 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL);
633 	if (unlikely(!p))
634 		return false;
635 	memcpy(p, nd->internal, sizeof(nd->internal));
636 	nd->stack = p;
637 	return true;
638 }
639 
640 /**
641  * path_connected - Verify that a dentry is below mnt.mnt_root
642  *
643  * Rename can sometimes move a file or directory outside of a bind
644  * mount, path_connected allows those cases to be detected.
645  */
646 static bool path_connected(struct vfsmount *mnt, struct dentry *dentry)
647 {
648 	struct super_block *sb = mnt->mnt_sb;
649 
650 	/* Bind mounts can have disconnected paths */
651 	if (mnt->mnt_root == sb->s_root)
652 		return true;
653 
654 	return is_subdir(dentry, mnt->mnt_root);
655 }
656 
657 static void drop_links(struct nameidata *nd)
658 {
659 	int i = nd->depth;
660 	while (i--) {
661 		struct saved *last = nd->stack + i;
662 		do_delayed_call(&last->done);
663 		clear_delayed_call(&last->done);
664 	}
665 }
666 
667 static void terminate_walk(struct nameidata *nd)
668 {
669 	drop_links(nd);
670 	if (!(nd->flags & LOOKUP_RCU)) {
671 		int i;
672 		path_put(&nd->path);
673 		for (i = 0; i < nd->depth; i++)
674 			path_put(&nd->stack[i].link);
675 		if (nd->state & ND_ROOT_GRABBED) {
676 			path_put(&nd->root);
677 			nd->state &= ~ND_ROOT_GRABBED;
678 		}
679 	} else {
680 		nd->flags &= ~LOOKUP_RCU;
681 		rcu_read_unlock();
682 	}
683 	nd->depth = 0;
684 	nd->path.mnt = NULL;
685 	nd->path.dentry = NULL;
686 }
687 
688 /* path_put is needed afterwards regardless of success or failure */
689 static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq)
690 {
691 	int res = __legitimize_mnt(path->mnt, mseq);
692 	if (unlikely(res)) {
693 		if (res > 0)
694 			path->mnt = NULL;
695 		path->dentry = NULL;
696 		return false;
697 	}
698 	if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
699 		path->dentry = NULL;
700 		return false;
701 	}
702 	return !read_seqcount_retry(&path->dentry->d_seq, seq);
703 }
704 
705 static inline bool legitimize_path(struct nameidata *nd,
706 			    struct path *path, unsigned seq)
707 {
708 	return __legitimize_path(path, seq, nd->m_seq);
709 }
710 
711 static bool legitimize_links(struct nameidata *nd)
712 {
713 	int i;
714 	if (unlikely(nd->flags & LOOKUP_CACHED)) {
715 		drop_links(nd);
716 		nd->depth = 0;
717 		return false;
718 	}
719 	for (i = 0; i < nd->depth; i++) {
720 		struct saved *last = nd->stack + i;
721 		if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
722 			drop_links(nd);
723 			nd->depth = i + 1;
724 			return false;
725 		}
726 	}
727 	return true;
728 }
729 
730 static bool legitimize_root(struct nameidata *nd)
731 {
732 	/*
733 	 * For scoped-lookups (where nd->root has been zeroed), we need to
734 	 * restart the whole lookup from scratch -- because set_root() is wrong
735 	 * for these lookups (nd->dfd is the root, not the filesystem root).
736 	 */
737 	if (!nd->root.mnt && (nd->flags & LOOKUP_IS_SCOPED))
738 		return false;
739 	/* Nothing to do if nd->root is zero or is managed by the VFS user. */
740 	if (!nd->root.mnt || (nd->state & ND_ROOT_PRESET))
741 		return true;
742 	nd->state |= ND_ROOT_GRABBED;
743 	return legitimize_path(nd, &nd->root, nd->root_seq);
744 }
745 
746 /*
747  * Path walking has 2 modes, rcu-walk and ref-walk (see
748  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
749  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
750  * normal reference counts on dentries and vfsmounts to transition to ref-walk
751  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
752  * got stuck, so ref-walk may continue from there. If this is not successful
753  * (eg. a seqcount has changed), then failure is returned and it's up to caller
754  * to restart the path walk from the beginning in ref-walk mode.
755  */
756 
757 /**
758  * try_to_unlazy - try to switch to ref-walk mode.
759  * @nd: nameidata pathwalk data
760  * Returns: true on success, false on failure
761  *
762  * try_to_unlazy attempts to legitimize the current nd->path and nd->root
763  * for ref-walk mode.
764  * Must be called from rcu-walk context.
765  * Nothing should touch nameidata between try_to_unlazy() failure and
766  * terminate_walk().
767  */
768 static bool try_to_unlazy(struct nameidata *nd)
769 {
770 	struct dentry *parent = nd->path.dentry;
771 
772 	BUG_ON(!(nd->flags & LOOKUP_RCU));
773 
774 	nd->flags &= ~LOOKUP_RCU;
775 	if (unlikely(!legitimize_links(nd)))
776 		goto out1;
777 	if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
778 		goto out;
779 	if (unlikely(!legitimize_root(nd)))
780 		goto out;
781 	rcu_read_unlock();
782 	BUG_ON(nd->inode != parent->d_inode);
783 	return true;
784 
785 out1:
786 	nd->path.mnt = NULL;
787 	nd->path.dentry = NULL;
788 out:
789 	rcu_read_unlock();
790 	return false;
791 }
792 
793 /**
794  * try_to_unlazy_next - try to switch to ref-walk mode.
795  * @nd: nameidata pathwalk data
796  * @dentry: next dentry to step into
797  * @seq: seq number to check @dentry against
798  * Returns: true on success, false on failure
799  *
800  * Similar to to try_to_unlazy(), but here we have the next dentry already
801  * picked by rcu-walk and want to legitimize that in addition to the current
802  * nd->path and nd->root for ref-walk mode.  Must be called from rcu-walk context.
803  * Nothing should touch nameidata between try_to_unlazy_next() failure and
804  * terminate_walk().
805  */
806 static bool try_to_unlazy_next(struct nameidata *nd, struct dentry *dentry, unsigned seq)
807 {
808 	BUG_ON(!(nd->flags & LOOKUP_RCU));
809 
810 	nd->flags &= ~LOOKUP_RCU;
811 	if (unlikely(!legitimize_links(nd)))
812 		goto out2;
813 	if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
814 		goto out2;
815 	if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
816 		goto out1;
817 
818 	/*
819 	 * We need to move both the parent and the dentry from the RCU domain
820 	 * to be properly refcounted. And the sequence number in the dentry
821 	 * validates *both* dentry counters, since we checked the sequence
822 	 * number of the parent after we got the child sequence number. So we
823 	 * know the parent must still be valid if the child sequence number is
824 	 */
825 	if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
826 		goto out;
827 	if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
828 		goto out_dput;
829 	/*
830 	 * Sequence counts matched. Now make sure that the root is
831 	 * still valid and get it if required.
832 	 */
833 	if (unlikely(!legitimize_root(nd)))
834 		goto out_dput;
835 	rcu_read_unlock();
836 	return true;
837 
838 out2:
839 	nd->path.mnt = NULL;
840 out1:
841 	nd->path.dentry = NULL;
842 out:
843 	rcu_read_unlock();
844 	return false;
845 out_dput:
846 	rcu_read_unlock();
847 	dput(dentry);
848 	return false;
849 }
850 
851 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
852 {
853 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
854 		return dentry->d_op->d_revalidate(dentry, flags);
855 	else
856 		return 1;
857 }
858 
859 /**
860  * complete_walk - successful completion of path walk
861  * @nd:  pointer nameidata
862  *
863  * If we had been in RCU mode, drop out of it and legitimize nd->path.
864  * Revalidate the final result, unless we'd already done that during
865  * the path walk or the filesystem doesn't ask for it.  Return 0 on
866  * success, -error on failure.  In case of failure caller does not
867  * need to drop nd->path.
868  */
869 static int complete_walk(struct nameidata *nd)
870 {
871 	struct dentry *dentry = nd->path.dentry;
872 	int status;
873 
874 	if (nd->flags & LOOKUP_RCU) {
875 		/*
876 		 * We don't want to zero nd->root for scoped-lookups or
877 		 * externally-managed nd->root.
878 		 */
879 		if (!(nd->state & ND_ROOT_PRESET))
880 			if (!(nd->flags & LOOKUP_IS_SCOPED))
881 				nd->root.mnt = NULL;
882 		nd->flags &= ~LOOKUP_CACHED;
883 		if (!try_to_unlazy(nd))
884 			return -ECHILD;
885 	}
886 
887 	if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
888 		/*
889 		 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't
890 		 * ever step outside the root during lookup" and should already
891 		 * be guaranteed by the rest of namei, we want to avoid a namei
892 		 * BUG resulting in userspace being given a path that was not
893 		 * scoped within the root at some point during the lookup.
894 		 *
895 		 * So, do a final sanity-check to make sure that in the
896 		 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED)
897 		 * we won't silently return an fd completely outside of the
898 		 * requested root to userspace.
899 		 *
900 		 * Userspace could move the path outside the root after this
901 		 * check, but as discussed elsewhere this is not a concern (the
902 		 * resolved file was inside the root at some point).
903 		 */
904 		if (!path_is_under(&nd->path, &nd->root))
905 			return -EXDEV;
906 	}
907 
908 	if (likely(!(nd->state & ND_JUMPED)))
909 		return 0;
910 
911 	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
912 		return 0;
913 
914 	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
915 	if (status > 0)
916 		return 0;
917 
918 	if (!status)
919 		status = -ESTALE;
920 
921 	return status;
922 }
923 
924 static int set_root(struct nameidata *nd)
925 {
926 	struct fs_struct *fs = current->fs;
927 
928 	/*
929 	 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we
930 	 * still have to ensure it doesn't happen because it will cause a breakout
931 	 * from the dirfd.
932 	 */
933 	if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED))
934 		return -ENOTRECOVERABLE;
935 
936 	if (nd->flags & LOOKUP_RCU) {
937 		unsigned seq;
938 
939 		do {
940 			seq = read_seqcount_begin(&fs->seq);
941 			nd->root = fs->root;
942 			nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
943 		} while (read_seqcount_retry(&fs->seq, seq));
944 	} else {
945 		get_fs_root(fs, &nd->root);
946 		nd->state |= ND_ROOT_GRABBED;
947 	}
948 	return 0;
949 }
950 
951 static int nd_jump_root(struct nameidata *nd)
952 {
953 	if (unlikely(nd->flags & LOOKUP_BENEATH))
954 		return -EXDEV;
955 	if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
956 		/* Absolute path arguments to path_init() are allowed. */
957 		if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt)
958 			return -EXDEV;
959 	}
960 	if (!nd->root.mnt) {
961 		int error = set_root(nd);
962 		if (error)
963 			return error;
964 	}
965 	if (nd->flags & LOOKUP_RCU) {
966 		struct dentry *d;
967 		nd->path = nd->root;
968 		d = nd->path.dentry;
969 		nd->inode = d->d_inode;
970 		nd->seq = nd->root_seq;
971 		if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
972 			return -ECHILD;
973 	} else {
974 		path_put(&nd->path);
975 		nd->path = nd->root;
976 		path_get(&nd->path);
977 		nd->inode = nd->path.dentry->d_inode;
978 	}
979 	nd->state |= ND_JUMPED;
980 	return 0;
981 }
982 
983 /*
984  * Helper to directly jump to a known parsed path from ->get_link,
985  * caller must have taken a reference to path beforehand.
986  */
987 int nd_jump_link(struct path *path)
988 {
989 	int error = -ELOOP;
990 	struct nameidata *nd = current->nameidata;
991 
992 	if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS))
993 		goto err;
994 
995 	error = -EXDEV;
996 	if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
997 		if (nd->path.mnt != path->mnt)
998 			goto err;
999 	}
1000 	/* Not currently safe for scoped-lookups. */
1001 	if (unlikely(nd->flags & LOOKUP_IS_SCOPED))
1002 		goto err;
1003 
1004 	path_put(&nd->path);
1005 	nd->path = *path;
1006 	nd->inode = nd->path.dentry->d_inode;
1007 	nd->state |= ND_JUMPED;
1008 	return 0;
1009 
1010 err:
1011 	path_put(path);
1012 	return error;
1013 }
1014 
1015 static inline void put_link(struct nameidata *nd)
1016 {
1017 	struct saved *last = nd->stack + --nd->depth;
1018 	do_delayed_call(&last->done);
1019 	if (!(nd->flags & LOOKUP_RCU))
1020 		path_put(&last->link);
1021 }
1022 
1023 int sysctl_protected_symlinks __read_mostly = 0;
1024 int sysctl_protected_hardlinks __read_mostly = 0;
1025 int sysctl_protected_fifos __read_mostly;
1026 int sysctl_protected_regular __read_mostly;
1027 
1028 /**
1029  * may_follow_link - Check symlink following for unsafe situations
1030  * @nd: nameidata pathwalk data
1031  *
1032  * In the case of the sysctl_protected_symlinks sysctl being enabled,
1033  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
1034  * in a sticky world-writable directory. This is to protect privileged
1035  * processes from failing races against path names that may change out
1036  * from under them by way of other users creating malicious symlinks.
1037  * It will permit symlinks to be followed only when outside a sticky
1038  * world-writable directory, or when the uid of the symlink and follower
1039  * match, or when the directory owner matches the symlink's owner.
1040  *
1041  * Returns 0 if following the symlink is allowed, -ve on error.
1042  */
1043 static inline int may_follow_link(struct nameidata *nd, const struct inode *inode)
1044 {
1045 	struct user_namespace *mnt_userns;
1046 	kuid_t i_uid;
1047 
1048 	if (!sysctl_protected_symlinks)
1049 		return 0;
1050 
1051 	mnt_userns = mnt_user_ns(nd->path.mnt);
1052 	i_uid = i_uid_into_mnt(mnt_userns, inode);
1053 	/* Allowed if owner and follower match. */
1054 	if (uid_eq(current_cred()->fsuid, i_uid))
1055 		return 0;
1056 
1057 	/* Allowed if parent directory not sticky and world-writable. */
1058 	if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
1059 		return 0;
1060 
1061 	/* Allowed if parent directory and link owner match. */
1062 	if (uid_valid(nd->dir_uid) && uid_eq(nd->dir_uid, i_uid))
1063 		return 0;
1064 
1065 	if (nd->flags & LOOKUP_RCU)
1066 		return -ECHILD;
1067 
1068 	audit_inode(nd->name, nd->stack[0].link.dentry, 0);
1069 	audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link");
1070 	return -EACCES;
1071 }
1072 
1073 /**
1074  * safe_hardlink_source - Check for safe hardlink conditions
1075  * @mnt_userns:	user namespace of the mount the inode was found from
1076  * @inode: the source inode to hardlink from
1077  *
1078  * Return false if at least one of the following conditions:
1079  *    - inode is not a regular file
1080  *    - inode is setuid
1081  *    - inode is setgid and group-exec
1082  *    - access failure for read and write
1083  *
1084  * Otherwise returns true.
1085  */
1086 static bool safe_hardlink_source(struct user_namespace *mnt_userns,
1087 				 struct inode *inode)
1088 {
1089 	umode_t mode = inode->i_mode;
1090 
1091 	/* Special files should not get pinned to the filesystem. */
1092 	if (!S_ISREG(mode))
1093 		return false;
1094 
1095 	/* Setuid files should not get pinned to the filesystem. */
1096 	if (mode & S_ISUID)
1097 		return false;
1098 
1099 	/* Executable setgid files should not get pinned to the filesystem. */
1100 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
1101 		return false;
1102 
1103 	/* Hardlinking to unreadable or unwritable sources is dangerous. */
1104 	if (inode_permission(mnt_userns, inode, MAY_READ | MAY_WRITE))
1105 		return false;
1106 
1107 	return true;
1108 }
1109 
1110 /**
1111  * may_linkat - Check permissions for creating a hardlink
1112  * @mnt_userns:	user namespace of the mount the inode was found from
1113  * @link: the source to hardlink from
1114  *
1115  * Block hardlink when all of:
1116  *  - sysctl_protected_hardlinks enabled
1117  *  - fsuid does not match inode
1118  *  - hardlink source is unsafe (see safe_hardlink_source() above)
1119  *  - not CAP_FOWNER in a namespace with the inode owner uid mapped
1120  *
1121  * If the inode has been found through an idmapped mount the user namespace of
1122  * the vfsmount must be passed through @mnt_userns. This function will then take
1123  * care to map the inode according to @mnt_userns before checking permissions.
1124  * On non-idmapped mounts or if permission checking is to be performed on the
1125  * raw inode simply passs init_user_ns.
1126  *
1127  * Returns 0 if successful, -ve on error.
1128  */
1129 int may_linkat(struct user_namespace *mnt_userns, struct path *link)
1130 {
1131 	struct inode *inode = link->dentry->d_inode;
1132 
1133 	/* Inode writeback is not safe when the uid or gid are invalid. */
1134 	if (!uid_valid(i_uid_into_mnt(mnt_userns, inode)) ||
1135 	    !gid_valid(i_gid_into_mnt(mnt_userns, inode)))
1136 		return -EOVERFLOW;
1137 
1138 	if (!sysctl_protected_hardlinks)
1139 		return 0;
1140 
1141 	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1142 	 * otherwise, it must be a safe source.
1143 	 */
1144 	if (safe_hardlink_source(mnt_userns, inode) ||
1145 	    inode_owner_or_capable(mnt_userns, inode))
1146 		return 0;
1147 
1148 	audit_log_path_denied(AUDIT_ANOM_LINK, "linkat");
1149 	return -EPERM;
1150 }
1151 
1152 /**
1153  * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1154  *			  should be allowed, or not, on files that already
1155  *			  exist.
1156  * @mnt_userns:	user namespace of the mount the inode was found from
1157  * @nd: nameidata pathwalk data
1158  * @inode: the inode of the file to open
1159  *
1160  * Block an O_CREAT open of a FIFO (or a regular file) when:
1161  *   - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1162  *   - the file already exists
1163  *   - we are in a sticky directory
1164  *   - we don't own the file
1165  *   - the owner of the directory doesn't own the file
1166  *   - the directory is world writable
1167  * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1168  * the directory doesn't have to be world writable: being group writable will
1169  * be enough.
1170  *
1171  * If the inode has been found through an idmapped mount the user namespace of
1172  * the vfsmount must be passed through @mnt_userns. This function will then take
1173  * care to map the inode according to @mnt_userns before checking permissions.
1174  * On non-idmapped mounts or if permission checking is to be performed on the
1175  * raw inode simply passs init_user_ns.
1176  *
1177  * Returns 0 if the open is allowed, -ve on error.
1178  */
1179 static int may_create_in_sticky(struct user_namespace *mnt_userns,
1180 				struct nameidata *nd, struct inode *const inode)
1181 {
1182 	umode_t dir_mode = nd->dir_mode;
1183 	kuid_t dir_uid = nd->dir_uid;
1184 
1185 	if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) ||
1186 	    (!sysctl_protected_regular && S_ISREG(inode->i_mode)) ||
1187 	    likely(!(dir_mode & S_ISVTX)) ||
1188 	    uid_eq(i_uid_into_mnt(mnt_userns, inode), dir_uid) ||
1189 	    uid_eq(current_fsuid(), i_uid_into_mnt(mnt_userns, inode)))
1190 		return 0;
1191 
1192 	if (likely(dir_mode & 0002) ||
1193 	    (dir_mode & 0020 &&
1194 	     ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) ||
1195 	      (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) {
1196 		const char *operation = S_ISFIFO(inode->i_mode) ?
1197 					"sticky_create_fifo" :
1198 					"sticky_create_regular";
1199 		audit_log_path_denied(AUDIT_ANOM_CREAT, operation);
1200 		return -EACCES;
1201 	}
1202 	return 0;
1203 }
1204 
1205 /*
1206  * follow_up - Find the mountpoint of path's vfsmount
1207  *
1208  * Given a path, find the mountpoint of its source file system.
1209  * Replace @path with the path of the mountpoint in the parent mount.
1210  * Up is towards /.
1211  *
1212  * Return 1 if we went up a level and 0 if we were already at the
1213  * root.
1214  */
1215 int follow_up(struct path *path)
1216 {
1217 	struct mount *mnt = real_mount(path->mnt);
1218 	struct mount *parent;
1219 	struct dentry *mountpoint;
1220 
1221 	read_seqlock_excl(&mount_lock);
1222 	parent = mnt->mnt_parent;
1223 	if (parent == mnt) {
1224 		read_sequnlock_excl(&mount_lock);
1225 		return 0;
1226 	}
1227 	mntget(&parent->mnt);
1228 	mountpoint = dget(mnt->mnt_mountpoint);
1229 	read_sequnlock_excl(&mount_lock);
1230 	dput(path->dentry);
1231 	path->dentry = mountpoint;
1232 	mntput(path->mnt);
1233 	path->mnt = &parent->mnt;
1234 	return 1;
1235 }
1236 EXPORT_SYMBOL(follow_up);
1237 
1238 static bool choose_mountpoint_rcu(struct mount *m, const struct path *root,
1239 				  struct path *path, unsigned *seqp)
1240 {
1241 	while (mnt_has_parent(m)) {
1242 		struct dentry *mountpoint = m->mnt_mountpoint;
1243 
1244 		m = m->mnt_parent;
1245 		if (unlikely(root->dentry == mountpoint &&
1246 			     root->mnt == &m->mnt))
1247 			break;
1248 		if (mountpoint != m->mnt.mnt_root) {
1249 			path->mnt = &m->mnt;
1250 			path->dentry = mountpoint;
1251 			*seqp = read_seqcount_begin(&mountpoint->d_seq);
1252 			return true;
1253 		}
1254 	}
1255 	return false;
1256 }
1257 
1258 static bool choose_mountpoint(struct mount *m, const struct path *root,
1259 			      struct path *path)
1260 {
1261 	bool found;
1262 
1263 	rcu_read_lock();
1264 	while (1) {
1265 		unsigned seq, mseq = read_seqbegin(&mount_lock);
1266 
1267 		found = choose_mountpoint_rcu(m, root, path, &seq);
1268 		if (unlikely(!found)) {
1269 			if (!read_seqretry(&mount_lock, mseq))
1270 				break;
1271 		} else {
1272 			if (likely(__legitimize_path(path, seq, mseq)))
1273 				break;
1274 			rcu_read_unlock();
1275 			path_put(path);
1276 			rcu_read_lock();
1277 		}
1278 	}
1279 	rcu_read_unlock();
1280 	return found;
1281 }
1282 
1283 /*
1284  * Perform an automount
1285  * - return -EISDIR to tell follow_managed() to stop and return the path we
1286  *   were called with.
1287  */
1288 static int follow_automount(struct path *path, int *count, unsigned lookup_flags)
1289 {
1290 	struct dentry *dentry = path->dentry;
1291 
1292 	/* We don't want to mount if someone's just doing a stat -
1293 	 * unless they're stat'ing a directory and appended a '/' to
1294 	 * the name.
1295 	 *
1296 	 * We do, however, want to mount if someone wants to open or
1297 	 * create a file of any type under the mountpoint, wants to
1298 	 * traverse through the mountpoint or wants to open the
1299 	 * mounted directory.  Also, autofs may mark negative dentries
1300 	 * as being automount points.  These will need the attentions
1301 	 * of the daemon to instantiate them before they can be used.
1302 	 */
1303 	if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1304 			   LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1305 	    dentry->d_inode)
1306 		return -EISDIR;
1307 
1308 	if (count && (*count)++ >= MAXSYMLINKS)
1309 		return -ELOOP;
1310 
1311 	return finish_automount(dentry->d_op->d_automount(path), path);
1312 }
1313 
1314 /*
1315  * mount traversal - out-of-line part.  One note on ->d_flags accesses -
1316  * dentries are pinned but not locked here, so negative dentry can go
1317  * positive right under us.  Use of smp_load_acquire() provides a barrier
1318  * sufficient for ->d_inode and ->d_flags consistency.
1319  */
1320 static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped,
1321 			     int *count, unsigned lookup_flags)
1322 {
1323 	struct vfsmount *mnt = path->mnt;
1324 	bool need_mntput = false;
1325 	int ret = 0;
1326 
1327 	while (flags & DCACHE_MANAGED_DENTRY) {
1328 		/* Allow the filesystem to manage the transit without i_mutex
1329 		 * being held. */
1330 		if (flags & DCACHE_MANAGE_TRANSIT) {
1331 			ret = path->dentry->d_op->d_manage(path, false);
1332 			flags = smp_load_acquire(&path->dentry->d_flags);
1333 			if (ret < 0)
1334 				break;
1335 		}
1336 
1337 		if (flags & DCACHE_MOUNTED) {	// something's mounted on it..
1338 			struct vfsmount *mounted = lookup_mnt(path);
1339 			if (mounted) {		// ... in our namespace
1340 				dput(path->dentry);
1341 				if (need_mntput)
1342 					mntput(path->mnt);
1343 				path->mnt = mounted;
1344 				path->dentry = dget(mounted->mnt_root);
1345 				// here we know it's positive
1346 				flags = path->dentry->d_flags;
1347 				need_mntput = true;
1348 				continue;
1349 			}
1350 		}
1351 
1352 		if (!(flags & DCACHE_NEED_AUTOMOUNT))
1353 			break;
1354 
1355 		// uncovered automount point
1356 		ret = follow_automount(path, count, lookup_flags);
1357 		flags = smp_load_acquire(&path->dentry->d_flags);
1358 		if (ret < 0)
1359 			break;
1360 	}
1361 
1362 	if (ret == -EISDIR)
1363 		ret = 0;
1364 	// possible if you race with several mount --move
1365 	if (need_mntput && path->mnt == mnt)
1366 		mntput(path->mnt);
1367 	if (!ret && unlikely(d_flags_negative(flags)))
1368 		ret = -ENOENT;
1369 	*jumped = need_mntput;
1370 	return ret;
1371 }
1372 
1373 static inline int traverse_mounts(struct path *path, bool *jumped,
1374 				  int *count, unsigned lookup_flags)
1375 {
1376 	unsigned flags = smp_load_acquire(&path->dentry->d_flags);
1377 
1378 	/* fastpath */
1379 	if (likely(!(flags & DCACHE_MANAGED_DENTRY))) {
1380 		*jumped = false;
1381 		if (unlikely(d_flags_negative(flags)))
1382 			return -ENOENT;
1383 		return 0;
1384 	}
1385 	return __traverse_mounts(path, flags, jumped, count, lookup_flags);
1386 }
1387 
1388 int follow_down_one(struct path *path)
1389 {
1390 	struct vfsmount *mounted;
1391 
1392 	mounted = lookup_mnt(path);
1393 	if (mounted) {
1394 		dput(path->dentry);
1395 		mntput(path->mnt);
1396 		path->mnt = mounted;
1397 		path->dentry = dget(mounted->mnt_root);
1398 		return 1;
1399 	}
1400 	return 0;
1401 }
1402 EXPORT_SYMBOL(follow_down_one);
1403 
1404 /*
1405  * Follow down to the covering mount currently visible to userspace.  At each
1406  * point, the filesystem owning that dentry may be queried as to whether the
1407  * caller is permitted to proceed or not.
1408  */
1409 int follow_down(struct path *path)
1410 {
1411 	struct vfsmount *mnt = path->mnt;
1412 	bool jumped;
1413 	int ret = traverse_mounts(path, &jumped, NULL, 0);
1414 
1415 	if (path->mnt != mnt)
1416 		mntput(mnt);
1417 	return ret;
1418 }
1419 EXPORT_SYMBOL(follow_down);
1420 
1421 /*
1422  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1423  * we meet a managed dentry that would need blocking.
1424  */
1425 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1426 			       struct inode **inode, unsigned *seqp)
1427 {
1428 	struct dentry *dentry = path->dentry;
1429 	unsigned int flags = dentry->d_flags;
1430 
1431 	if (likely(!(flags & DCACHE_MANAGED_DENTRY)))
1432 		return true;
1433 
1434 	if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1435 		return false;
1436 
1437 	for (;;) {
1438 		/*
1439 		 * Don't forget we might have a non-mountpoint managed dentry
1440 		 * that wants to block transit.
1441 		 */
1442 		if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) {
1443 			int res = dentry->d_op->d_manage(path, true);
1444 			if (res)
1445 				return res == -EISDIR;
1446 			flags = dentry->d_flags;
1447 		}
1448 
1449 		if (flags & DCACHE_MOUNTED) {
1450 			struct mount *mounted = __lookup_mnt(path->mnt, dentry);
1451 			if (mounted) {
1452 				path->mnt = &mounted->mnt;
1453 				dentry = path->dentry = mounted->mnt.mnt_root;
1454 				nd->state |= ND_JUMPED;
1455 				*seqp = read_seqcount_begin(&dentry->d_seq);
1456 				*inode = dentry->d_inode;
1457 				/*
1458 				 * We don't need to re-check ->d_seq after this
1459 				 * ->d_inode read - there will be an RCU delay
1460 				 * between mount hash removal and ->mnt_root
1461 				 * becoming unpinned.
1462 				 */
1463 				flags = dentry->d_flags;
1464 				continue;
1465 			}
1466 			if (read_seqretry(&mount_lock, nd->m_seq))
1467 				return false;
1468 		}
1469 		return !(flags & DCACHE_NEED_AUTOMOUNT);
1470 	}
1471 }
1472 
1473 static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry,
1474 			  struct path *path, struct inode **inode,
1475 			  unsigned int *seqp)
1476 {
1477 	bool jumped;
1478 	int ret;
1479 
1480 	path->mnt = nd->path.mnt;
1481 	path->dentry = dentry;
1482 	if (nd->flags & LOOKUP_RCU) {
1483 		unsigned int seq = *seqp;
1484 		if (unlikely(!*inode))
1485 			return -ENOENT;
1486 		if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1487 			return 0;
1488 		if (!try_to_unlazy_next(nd, dentry, seq))
1489 			return -ECHILD;
1490 		// *path might've been clobbered by __follow_mount_rcu()
1491 		path->mnt = nd->path.mnt;
1492 		path->dentry = dentry;
1493 	}
1494 	ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags);
1495 	if (jumped) {
1496 		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1497 			ret = -EXDEV;
1498 		else
1499 			nd->state |= ND_JUMPED;
1500 	}
1501 	if (unlikely(ret)) {
1502 		dput(path->dentry);
1503 		if (path->mnt != nd->path.mnt)
1504 			mntput(path->mnt);
1505 	} else {
1506 		*inode = d_backing_inode(path->dentry);
1507 		*seqp = 0; /* out of RCU mode, so the value doesn't matter */
1508 	}
1509 	return ret;
1510 }
1511 
1512 /*
1513  * This looks up the name in dcache and possibly revalidates the found dentry.
1514  * NULL is returned if the dentry does not exist in the cache.
1515  */
1516 static struct dentry *lookup_dcache(const struct qstr *name,
1517 				    struct dentry *dir,
1518 				    unsigned int flags)
1519 {
1520 	struct dentry *dentry = d_lookup(dir, name);
1521 	if (dentry) {
1522 		int error = d_revalidate(dentry, flags);
1523 		if (unlikely(error <= 0)) {
1524 			if (!error)
1525 				d_invalidate(dentry);
1526 			dput(dentry);
1527 			return ERR_PTR(error);
1528 		}
1529 	}
1530 	return dentry;
1531 }
1532 
1533 /*
1534  * Parent directory has inode locked exclusive.  This is one
1535  * and only case when ->lookup() gets called on non in-lookup
1536  * dentries - as the matter of fact, this only gets called
1537  * when directory is guaranteed to have no in-lookup children
1538  * at all.
1539  */
1540 static struct dentry *__lookup_hash(const struct qstr *name,
1541 		struct dentry *base, unsigned int flags)
1542 {
1543 	struct dentry *dentry = lookup_dcache(name, base, flags);
1544 	struct dentry *old;
1545 	struct inode *dir = base->d_inode;
1546 
1547 	if (dentry)
1548 		return dentry;
1549 
1550 	/* Don't create child dentry for a dead directory. */
1551 	if (unlikely(IS_DEADDIR(dir)))
1552 		return ERR_PTR(-ENOENT);
1553 
1554 	dentry = d_alloc(base, name);
1555 	if (unlikely(!dentry))
1556 		return ERR_PTR(-ENOMEM);
1557 
1558 	old = dir->i_op->lookup(dir, dentry, flags);
1559 	if (unlikely(old)) {
1560 		dput(dentry);
1561 		dentry = old;
1562 	}
1563 	return dentry;
1564 }
1565 
1566 static struct dentry *lookup_fast(struct nameidata *nd,
1567 				  struct inode **inode,
1568 			          unsigned *seqp)
1569 {
1570 	struct dentry *dentry, *parent = nd->path.dentry;
1571 	int status = 1;
1572 
1573 	/*
1574 	 * Rename seqlock is not required here because in the off chance
1575 	 * of a false negative due to a concurrent rename, the caller is
1576 	 * going to fall back to non-racy lookup.
1577 	 */
1578 	if (nd->flags & LOOKUP_RCU) {
1579 		unsigned seq;
1580 		dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1581 		if (unlikely(!dentry)) {
1582 			if (!try_to_unlazy(nd))
1583 				return ERR_PTR(-ECHILD);
1584 			return NULL;
1585 		}
1586 
1587 		/*
1588 		 * This sequence count validates that the inode matches
1589 		 * the dentry name information from lookup.
1590 		 */
1591 		*inode = d_backing_inode(dentry);
1592 		if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1593 			return ERR_PTR(-ECHILD);
1594 
1595 		/*
1596 		 * This sequence count validates that the parent had no
1597 		 * changes while we did the lookup of the dentry above.
1598 		 *
1599 		 * The memory barrier in read_seqcount_begin of child is
1600 		 *  enough, we can use __read_seqcount_retry here.
1601 		 */
1602 		if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1603 			return ERR_PTR(-ECHILD);
1604 
1605 		*seqp = seq;
1606 		status = d_revalidate(dentry, nd->flags);
1607 		if (likely(status > 0))
1608 			return dentry;
1609 		if (!try_to_unlazy_next(nd, dentry, seq))
1610 			return ERR_PTR(-ECHILD);
1611 		if (status == -ECHILD)
1612 			/* we'd been told to redo it in non-rcu mode */
1613 			status = d_revalidate(dentry, nd->flags);
1614 	} else {
1615 		dentry = __d_lookup(parent, &nd->last);
1616 		if (unlikely(!dentry))
1617 			return NULL;
1618 		status = d_revalidate(dentry, nd->flags);
1619 	}
1620 	if (unlikely(status <= 0)) {
1621 		if (!status)
1622 			d_invalidate(dentry);
1623 		dput(dentry);
1624 		return ERR_PTR(status);
1625 	}
1626 	return dentry;
1627 }
1628 
1629 /* Fast lookup failed, do it the slow way */
1630 static struct dentry *__lookup_slow(const struct qstr *name,
1631 				    struct dentry *dir,
1632 				    unsigned int flags)
1633 {
1634 	struct dentry *dentry, *old;
1635 	struct inode *inode = dir->d_inode;
1636 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1637 
1638 	/* Don't go there if it's already dead */
1639 	if (unlikely(IS_DEADDIR(inode)))
1640 		return ERR_PTR(-ENOENT);
1641 again:
1642 	dentry = d_alloc_parallel(dir, name, &wq);
1643 	if (IS_ERR(dentry))
1644 		return dentry;
1645 	if (unlikely(!d_in_lookup(dentry))) {
1646 		int error = d_revalidate(dentry, flags);
1647 		if (unlikely(error <= 0)) {
1648 			if (!error) {
1649 				d_invalidate(dentry);
1650 				dput(dentry);
1651 				goto again;
1652 			}
1653 			dput(dentry);
1654 			dentry = ERR_PTR(error);
1655 		}
1656 	} else {
1657 		old = inode->i_op->lookup(inode, dentry, flags);
1658 		d_lookup_done(dentry);
1659 		if (unlikely(old)) {
1660 			dput(dentry);
1661 			dentry = old;
1662 		}
1663 	}
1664 	return dentry;
1665 }
1666 
1667 static struct dentry *lookup_slow(const struct qstr *name,
1668 				  struct dentry *dir,
1669 				  unsigned int flags)
1670 {
1671 	struct inode *inode = dir->d_inode;
1672 	struct dentry *res;
1673 	inode_lock_shared(inode);
1674 	res = __lookup_slow(name, dir, flags);
1675 	inode_unlock_shared(inode);
1676 	return res;
1677 }
1678 
1679 static inline int may_lookup(struct user_namespace *mnt_userns,
1680 			     struct nameidata *nd)
1681 {
1682 	if (nd->flags & LOOKUP_RCU) {
1683 		int err = inode_permission(mnt_userns, nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1684 		if (err != -ECHILD || !try_to_unlazy(nd))
1685 			return err;
1686 	}
1687 	return inode_permission(mnt_userns, nd->inode, MAY_EXEC);
1688 }
1689 
1690 static int reserve_stack(struct nameidata *nd, struct path *link, unsigned seq)
1691 {
1692 	if (unlikely(nd->total_link_count++ >= MAXSYMLINKS))
1693 		return -ELOOP;
1694 
1695 	if (likely(nd->depth != EMBEDDED_LEVELS))
1696 		return 0;
1697 	if (likely(nd->stack != nd->internal))
1698 		return 0;
1699 	if (likely(nd_alloc_stack(nd)))
1700 		return 0;
1701 
1702 	if (nd->flags & LOOKUP_RCU) {
1703 		// we need to grab link before we do unlazy.  And we can't skip
1704 		// unlazy even if we fail to grab the link - cleanup needs it
1705 		bool grabbed_link = legitimize_path(nd, link, seq);
1706 
1707 		if (!try_to_unlazy(nd) != 0 || !grabbed_link)
1708 			return -ECHILD;
1709 
1710 		if (nd_alloc_stack(nd))
1711 			return 0;
1712 	}
1713 	return -ENOMEM;
1714 }
1715 
1716 enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4};
1717 
1718 static const char *pick_link(struct nameidata *nd, struct path *link,
1719 		     struct inode *inode, unsigned seq, int flags)
1720 {
1721 	struct saved *last;
1722 	const char *res;
1723 	int error = reserve_stack(nd, link, seq);
1724 
1725 	if (unlikely(error)) {
1726 		if (!(nd->flags & LOOKUP_RCU))
1727 			path_put(link);
1728 		return ERR_PTR(error);
1729 	}
1730 	last = nd->stack + nd->depth++;
1731 	last->link = *link;
1732 	clear_delayed_call(&last->done);
1733 	last->seq = seq;
1734 
1735 	if (flags & WALK_TRAILING) {
1736 		error = may_follow_link(nd, inode);
1737 		if (unlikely(error))
1738 			return ERR_PTR(error);
1739 	}
1740 
1741 	if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) ||
1742 			unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW))
1743 		return ERR_PTR(-ELOOP);
1744 
1745 	if (!(nd->flags & LOOKUP_RCU)) {
1746 		touch_atime(&last->link);
1747 		cond_resched();
1748 	} else if (atime_needs_update(&last->link, inode)) {
1749 		if (!try_to_unlazy(nd))
1750 			return ERR_PTR(-ECHILD);
1751 		touch_atime(&last->link);
1752 	}
1753 
1754 	error = security_inode_follow_link(link->dentry, inode,
1755 					   nd->flags & LOOKUP_RCU);
1756 	if (unlikely(error))
1757 		return ERR_PTR(error);
1758 
1759 	res = READ_ONCE(inode->i_link);
1760 	if (!res) {
1761 		const char * (*get)(struct dentry *, struct inode *,
1762 				struct delayed_call *);
1763 		get = inode->i_op->get_link;
1764 		if (nd->flags & LOOKUP_RCU) {
1765 			res = get(NULL, inode, &last->done);
1766 			if (res == ERR_PTR(-ECHILD) && try_to_unlazy(nd))
1767 				res = get(link->dentry, inode, &last->done);
1768 		} else {
1769 			res = get(link->dentry, inode, &last->done);
1770 		}
1771 		if (!res)
1772 			goto all_done;
1773 		if (IS_ERR(res))
1774 			return res;
1775 	}
1776 	if (*res == '/') {
1777 		error = nd_jump_root(nd);
1778 		if (unlikely(error))
1779 			return ERR_PTR(error);
1780 		while (unlikely(*++res == '/'))
1781 			;
1782 	}
1783 	if (*res)
1784 		return res;
1785 all_done: // pure jump
1786 	put_link(nd);
1787 	return NULL;
1788 }
1789 
1790 /*
1791  * Do we need to follow links? We _really_ want to be able
1792  * to do this check without having to look at inode->i_op,
1793  * so we keep a cache of "no, this doesn't need follow_link"
1794  * for the common case.
1795  */
1796 static const char *step_into(struct nameidata *nd, int flags,
1797 		     struct dentry *dentry, struct inode *inode, unsigned seq)
1798 {
1799 	struct path path;
1800 	int err = handle_mounts(nd, dentry, &path, &inode, &seq);
1801 
1802 	if (err < 0)
1803 		return ERR_PTR(err);
1804 	if (likely(!d_is_symlink(path.dentry)) ||
1805 	   ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) ||
1806 	   (flags & WALK_NOFOLLOW)) {
1807 		/* not a symlink or should not follow */
1808 		if (!(nd->flags & LOOKUP_RCU)) {
1809 			dput(nd->path.dentry);
1810 			if (nd->path.mnt != path.mnt)
1811 				mntput(nd->path.mnt);
1812 		}
1813 		nd->path = path;
1814 		nd->inode = inode;
1815 		nd->seq = seq;
1816 		return NULL;
1817 	}
1818 	if (nd->flags & LOOKUP_RCU) {
1819 		/* make sure that d_is_symlink above matches inode */
1820 		if (read_seqcount_retry(&path.dentry->d_seq, seq))
1821 			return ERR_PTR(-ECHILD);
1822 	} else {
1823 		if (path.mnt == nd->path.mnt)
1824 			mntget(path.mnt);
1825 	}
1826 	return pick_link(nd, &path, inode, seq, flags);
1827 }
1828 
1829 static struct dentry *follow_dotdot_rcu(struct nameidata *nd,
1830 					struct inode **inodep,
1831 					unsigned *seqp)
1832 {
1833 	struct dentry *parent, *old;
1834 
1835 	if (path_equal(&nd->path, &nd->root))
1836 		goto in_root;
1837 	if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1838 		struct path path;
1839 		unsigned seq;
1840 		if (!choose_mountpoint_rcu(real_mount(nd->path.mnt),
1841 					   &nd->root, &path, &seq))
1842 			goto in_root;
1843 		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1844 			return ERR_PTR(-ECHILD);
1845 		nd->path = path;
1846 		nd->inode = path.dentry->d_inode;
1847 		nd->seq = seq;
1848 		if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1849 			return ERR_PTR(-ECHILD);
1850 		/* we know that mountpoint was pinned */
1851 	}
1852 	old = nd->path.dentry;
1853 	parent = old->d_parent;
1854 	*inodep = parent->d_inode;
1855 	*seqp = read_seqcount_begin(&parent->d_seq);
1856 	if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1857 		return ERR_PTR(-ECHILD);
1858 	if (unlikely(!path_connected(nd->path.mnt, parent)))
1859 		return ERR_PTR(-ECHILD);
1860 	return parent;
1861 in_root:
1862 	if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1863 		return ERR_PTR(-ECHILD);
1864 	if (unlikely(nd->flags & LOOKUP_BENEATH))
1865 		return ERR_PTR(-ECHILD);
1866 	return NULL;
1867 }
1868 
1869 static struct dentry *follow_dotdot(struct nameidata *nd,
1870 				 struct inode **inodep,
1871 				 unsigned *seqp)
1872 {
1873 	struct dentry *parent;
1874 
1875 	if (path_equal(&nd->path, &nd->root))
1876 		goto in_root;
1877 	if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1878 		struct path path;
1879 
1880 		if (!choose_mountpoint(real_mount(nd->path.mnt),
1881 				       &nd->root, &path))
1882 			goto in_root;
1883 		path_put(&nd->path);
1884 		nd->path = path;
1885 		nd->inode = path.dentry->d_inode;
1886 		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1887 			return ERR_PTR(-EXDEV);
1888 	}
1889 	/* rare case of legitimate dget_parent()... */
1890 	parent = dget_parent(nd->path.dentry);
1891 	if (unlikely(!path_connected(nd->path.mnt, parent))) {
1892 		dput(parent);
1893 		return ERR_PTR(-ENOENT);
1894 	}
1895 	*seqp = 0;
1896 	*inodep = parent->d_inode;
1897 	return parent;
1898 
1899 in_root:
1900 	if (unlikely(nd->flags & LOOKUP_BENEATH))
1901 		return ERR_PTR(-EXDEV);
1902 	dget(nd->path.dentry);
1903 	return NULL;
1904 }
1905 
1906 static const char *handle_dots(struct nameidata *nd, int type)
1907 {
1908 	if (type == LAST_DOTDOT) {
1909 		const char *error = NULL;
1910 		struct dentry *parent;
1911 		struct inode *inode;
1912 		unsigned seq;
1913 
1914 		if (!nd->root.mnt) {
1915 			error = ERR_PTR(set_root(nd));
1916 			if (error)
1917 				return error;
1918 		}
1919 		if (nd->flags & LOOKUP_RCU)
1920 			parent = follow_dotdot_rcu(nd, &inode, &seq);
1921 		else
1922 			parent = follow_dotdot(nd, &inode, &seq);
1923 		if (IS_ERR(parent))
1924 			return ERR_CAST(parent);
1925 		if (unlikely(!parent))
1926 			error = step_into(nd, WALK_NOFOLLOW,
1927 					 nd->path.dentry, nd->inode, nd->seq);
1928 		else
1929 			error = step_into(nd, WALK_NOFOLLOW,
1930 					 parent, inode, seq);
1931 		if (unlikely(error))
1932 			return error;
1933 
1934 		if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
1935 			/*
1936 			 * If there was a racing rename or mount along our
1937 			 * path, then we can't be sure that ".." hasn't jumped
1938 			 * above nd->root (and so userspace should retry or use
1939 			 * some fallback).
1940 			 */
1941 			smp_rmb();
1942 			if (unlikely(__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq)))
1943 				return ERR_PTR(-EAGAIN);
1944 			if (unlikely(__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq)))
1945 				return ERR_PTR(-EAGAIN);
1946 		}
1947 	}
1948 	return NULL;
1949 }
1950 
1951 static const char *walk_component(struct nameidata *nd, int flags)
1952 {
1953 	struct dentry *dentry;
1954 	struct inode *inode;
1955 	unsigned seq;
1956 	/*
1957 	 * "." and ".." are special - ".." especially so because it has
1958 	 * to be able to know about the current root directory and
1959 	 * parent relationships.
1960 	 */
1961 	if (unlikely(nd->last_type != LAST_NORM)) {
1962 		if (!(flags & WALK_MORE) && nd->depth)
1963 			put_link(nd);
1964 		return handle_dots(nd, nd->last_type);
1965 	}
1966 	dentry = lookup_fast(nd, &inode, &seq);
1967 	if (IS_ERR(dentry))
1968 		return ERR_CAST(dentry);
1969 	if (unlikely(!dentry)) {
1970 		dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags);
1971 		if (IS_ERR(dentry))
1972 			return ERR_CAST(dentry);
1973 	}
1974 	if (!(flags & WALK_MORE) && nd->depth)
1975 		put_link(nd);
1976 	return step_into(nd, flags, dentry, inode, seq);
1977 }
1978 
1979 /*
1980  * We can do the critical dentry name comparison and hashing
1981  * operations one word at a time, but we are limited to:
1982  *
1983  * - Architectures with fast unaligned word accesses. We could
1984  *   do a "get_unaligned()" if this helps and is sufficiently
1985  *   fast.
1986  *
1987  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1988  *   do not trap on the (extremely unlikely) case of a page
1989  *   crossing operation.
1990  *
1991  * - Furthermore, we need an efficient 64-bit compile for the
1992  *   64-bit case in order to generate the "number of bytes in
1993  *   the final mask". Again, that could be replaced with a
1994  *   efficient population count instruction or similar.
1995  */
1996 #ifdef CONFIG_DCACHE_WORD_ACCESS
1997 
1998 #include <asm/word-at-a-time.h>
1999 
2000 #ifdef HASH_MIX
2001 
2002 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
2003 
2004 #elif defined(CONFIG_64BIT)
2005 /*
2006  * Register pressure in the mixing function is an issue, particularly
2007  * on 32-bit x86, but almost any function requires one state value and
2008  * one temporary.  Instead, use a function designed for two state values
2009  * and no temporaries.
2010  *
2011  * This function cannot create a collision in only two iterations, so
2012  * we have two iterations to achieve avalanche.  In those two iterations,
2013  * we have six layers of mixing, which is enough to spread one bit's
2014  * influence out to 2^6 = 64 state bits.
2015  *
2016  * Rotate constants are scored by considering either 64 one-bit input
2017  * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
2018  * probability of that delta causing a change to each of the 128 output
2019  * bits, using a sample of random initial states.
2020  *
2021  * The Shannon entropy of the computed probabilities is then summed
2022  * to produce a score.  Ideally, any input change has a 50% chance of
2023  * toggling any given output bit.
2024  *
2025  * Mixing scores (in bits) for (12,45):
2026  * Input delta: 1-bit      2-bit
2027  * 1 round:     713.3    42542.6
2028  * 2 rounds:   2753.7   140389.8
2029  * 3 rounds:   5954.1   233458.2
2030  * 4 rounds:   7862.6   256672.2
2031  * Perfect:    8192     258048
2032  *            (64*128) (64*63/2 * 128)
2033  */
2034 #define HASH_MIX(x, y, a)	\
2035 	(	x ^= (a),	\
2036 	y ^= x,	x = rol64(x,12),\
2037 	x += y,	y = rol64(y,45),\
2038 	y *= 9			)
2039 
2040 /*
2041  * Fold two longs into one 32-bit hash value.  This must be fast, but
2042  * latency isn't quite as critical, as there is a fair bit of additional
2043  * work done before the hash value is used.
2044  */
2045 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2046 {
2047 	y ^= x * GOLDEN_RATIO_64;
2048 	y *= GOLDEN_RATIO_64;
2049 	return y >> 32;
2050 }
2051 
2052 #else	/* 32-bit case */
2053 
2054 /*
2055  * Mixing scores (in bits) for (7,20):
2056  * Input delta: 1-bit      2-bit
2057  * 1 round:     330.3     9201.6
2058  * 2 rounds:   1246.4    25475.4
2059  * 3 rounds:   1907.1    31295.1
2060  * 4 rounds:   2042.3    31718.6
2061  * Perfect:    2048      31744
2062  *            (32*64)   (32*31/2 * 64)
2063  */
2064 #define HASH_MIX(x, y, a)	\
2065 	(	x ^= (a),	\
2066 	y ^= x,	x = rol32(x, 7),\
2067 	x += y,	y = rol32(y,20),\
2068 	y *= 9			)
2069 
2070 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2071 {
2072 	/* Use arch-optimized multiply if one exists */
2073 	return __hash_32(y ^ __hash_32(x));
2074 }
2075 
2076 #endif
2077 
2078 /*
2079  * Return the hash of a string of known length.  This is carfully
2080  * designed to match hash_name(), which is the more critical function.
2081  * In particular, we must end by hashing a final word containing 0..7
2082  * payload bytes, to match the way that hash_name() iterates until it
2083  * finds the delimiter after the name.
2084  */
2085 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2086 {
2087 	unsigned long a, x = 0, y = (unsigned long)salt;
2088 
2089 	for (;;) {
2090 		if (!len)
2091 			goto done;
2092 		a = load_unaligned_zeropad(name);
2093 		if (len < sizeof(unsigned long))
2094 			break;
2095 		HASH_MIX(x, y, a);
2096 		name += sizeof(unsigned long);
2097 		len -= sizeof(unsigned long);
2098 	}
2099 	x ^= a & bytemask_from_count(len);
2100 done:
2101 	return fold_hash(x, y);
2102 }
2103 EXPORT_SYMBOL(full_name_hash);
2104 
2105 /* Return the "hash_len" (hash and length) of a null-terminated string */
2106 u64 hashlen_string(const void *salt, const char *name)
2107 {
2108 	unsigned long a = 0, x = 0, y = (unsigned long)salt;
2109 	unsigned long adata, mask, len;
2110 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2111 
2112 	len = 0;
2113 	goto inside;
2114 
2115 	do {
2116 		HASH_MIX(x, y, a);
2117 		len += sizeof(unsigned long);
2118 inside:
2119 		a = load_unaligned_zeropad(name+len);
2120 	} while (!has_zero(a, &adata, &constants));
2121 
2122 	adata = prep_zero_mask(a, adata, &constants);
2123 	mask = create_zero_mask(adata);
2124 	x ^= a & zero_bytemask(mask);
2125 
2126 	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2127 }
2128 EXPORT_SYMBOL(hashlen_string);
2129 
2130 /*
2131  * Calculate the length and hash of the path component, and
2132  * return the "hash_len" as the result.
2133  */
2134 static inline u64 hash_name(const void *salt, const char *name)
2135 {
2136 	unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
2137 	unsigned long adata, bdata, mask, len;
2138 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2139 
2140 	len = 0;
2141 	goto inside;
2142 
2143 	do {
2144 		HASH_MIX(x, y, a);
2145 		len += sizeof(unsigned long);
2146 inside:
2147 		a = load_unaligned_zeropad(name+len);
2148 		b = a ^ REPEAT_BYTE('/');
2149 	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
2150 
2151 	adata = prep_zero_mask(a, adata, &constants);
2152 	bdata = prep_zero_mask(b, bdata, &constants);
2153 	mask = create_zero_mask(adata | bdata);
2154 	x ^= a & zero_bytemask(mask);
2155 
2156 	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2157 }
2158 
2159 #else	/* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2160 
2161 /* Return the hash of a string of known length */
2162 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2163 {
2164 	unsigned long hash = init_name_hash(salt);
2165 	while (len--)
2166 		hash = partial_name_hash((unsigned char)*name++, hash);
2167 	return end_name_hash(hash);
2168 }
2169 EXPORT_SYMBOL(full_name_hash);
2170 
2171 /* Return the "hash_len" (hash and length) of a null-terminated string */
2172 u64 hashlen_string(const void *salt, const char *name)
2173 {
2174 	unsigned long hash = init_name_hash(salt);
2175 	unsigned long len = 0, c;
2176 
2177 	c = (unsigned char)*name;
2178 	while (c) {
2179 		len++;
2180 		hash = partial_name_hash(c, hash);
2181 		c = (unsigned char)name[len];
2182 	}
2183 	return hashlen_create(end_name_hash(hash), len);
2184 }
2185 EXPORT_SYMBOL(hashlen_string);
2186 
2187 /*
2188  * We know there's a real path component here of at least
2189  * one character.
2190  */
2191 static inline u64 hash_name(const void *salt, const char *name)
2192 {
2193 	unsigned long hash = init_name_hash(salt);
2194 	unsigned long len = 0, c;
2195 
2196 	c = (unsigned char)*name;
2197 	do {
2198 		len++;
2199 		hash = partial_name_hash(c, hash);
2200 		c = (unsigned char)name[len];
2201 	} while (c && c != '/');
2202 	return hashlen_create(end_name_hash(hash), len);
2203 }
2204 
2205 #endif
2206 
2207 /*
2208  * Name resolution.
2209  * This is the basic name resolution function, turning a pathname into
2210  * the final dentry. We expect 'base' to be positive and a directory.
2211  *
2212  * Returns 0 and nd will have valid dentry and mnt on success.
2213  * Returns error and drops reference to input namei data on failure.
2214  */
2215 static int link_path_walk(const char *name, struct nameidata *nd)
2216 {
2217 	int depth = 0; // depth <= nd->depth
2218 	int err;
2219 
2220 	nd->last_type = LAST_ROOT;
2221 	nd->flags |= LOOKUP_PARENT;
2222 	if (IS_ERR(name))
2223 		return PTR_ERR(name);
2224 	while (*name=='/')
2225 		name++;
2226 	if (!*name) {
2227 		nd->dir_mode = 0; // short-circuit the 'hardening' idiocy
2228 		return 0;
2229 	}
2230 
2231 	/* At this point we know we have a real path component. */
2232 	for(;;) {
2233 		struct user_namespace *mnt_userns;
2234 		const char *link;
2235 		u64 hash_len;
2236 		int type;
2237 
2238 		mnt_userns = mnt_user_ns(nd->path.mnt);
2239 		err = may_lookup(mnt_userns, nd);
2240 		if (err)
2241 			return err;
2242 
2243 		hash_len = hash_name(nd->path.dentry, name);
2244 
2245 		type = LAST_NORM;
2246 		if (name[0] == '.') switch (hashlen_len(hash_len)) {
2247 			case 2:
2248 				if (name[1] == '.') {
2249 					type = LAST_DOTDOT;
2250 					nd->state |= ND_JUMPED;
2251 				}
2252 				break;
2253 			case 1:
2254 				type = LAST_DOT;
2255 		}
2256 		if (likely(type == LAST_NORM)) {
2257 			struct dentry *parent = nd->path.dentry;
2258 			nd->state &= ~ND_JUMPED;
2259 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2260 				struct qstr this = { { .hash_len = hash_len }, .name = name };
2261 				err = parent->d_op->d_hash(parent, &this);
2262 				if (err < 0)
2263 					return err;
2264 				hash_len = this.hash_len;
2265 				name = this.name;
2266 			}
2267 		}
2268 
2269 		nd->last.hash_len = hash_len;
2270 		nd->last.name = name;
2271 		nd->last_type = type;
2272 
2273 		name += hashlen_len(hash_len);
2274 		if (!*name)
2275 			goto OK;
2276 		/*
2277 		 * If it wasn't NUL, we know it was '/'. Skip that
2278 		 * slash, and continue until no more slashes.
2279 		 */
2280 		do {
2281 			name++;
2282 		} while (unlikely(*name == '/'));
2283 		if (unlikely(!*name)) {
2284 OK:
2285 			/* pathname or trailing symlink, done */
2286 			if (!depth) {
2287 				nd->dir_uid = i_uid_into_mnt(mnt_userns, nd->inode);
2288 				nd->dir_mode = nd->inode->i_mode;
2289 				nd->flags &= ~LOOKUP_PARENT;
2290 				return 0;
2291 			}
2292 			/* last component of nested symlink */
2293 			name = nd->stack[--depth].name;
2294 			link = walk_component(nd, 0);
2295 		} else {
2296 			/* not the last component */
2297 			link = walk_component(nd, WALK_MORE);
2298 		}
2299 		if (unlikely(link)) {
2300 			if (IS_ERR(link))
2301 				return PTR_ERR(link);
2302 			/* a symlink to follow */
2303 			nd->stack[depth++].name = name;
2304 			name = link;
2305 			continue;
2306 		}
2307 		if (unlikely(!d_can_lookup(nd->path.dentry))) {
2308 			if (nd->flags & LOOKUP_RCU) {
2309 				if (!try_to_unlazy(nd))
2310 					return -ECHILD;
2311 			}
2312 			return -ENOTDIR;
2313 		}
2314 	}
2315 }
2316 
2317 /* must be paired with terminate_walk() */
2318 static const char *path_init(struct nameidata *nd, unsigned flags)
2319 {
2320 	int error;
2321 	const char *s = nd->name->name;
2322 
2323 	/* LOOKUP_CACHED requires RCU, ask caller to retry */
2324 	if ((flags & (LOOKUP_RCU | LOOKUP_CACHED)) == LOOKUP_CACHED)
2325 		return ERR_PTR(-EAGAIN);
2326 
2327 	if (!*s)
2328 		flags &= ~LOOKUP_RCU;
2329 	if (flags & LOOKUP_RCU)
2330 		rcu_read_lock();
2331 
2332 	nd->flags = flags;
2333 	nd->state |= ND_JUMPED;
2334 
2335 	nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount);
2336 	nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount);
2337 	smp_rmb();
2338 
2339 	if (nd->state & ND_ROOT_PRESET) {
2340 		struct dentry *root = nd->root.dentry;
2341 		struct inode *inode = root->d_inode;
2342 		if (*s && unlikely(!d_can_lookup(root)))
2343 			return ERR_PTR(-ENOTDIR);
2344 		nd->path = nd->root;
2345 		nd->inode = inode;
2346 		if (flags & LOOKUP_RCU) {
2347 			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2348 			nd->root_seq = nd->seq;
2349 		} else {
2350 			path_get(&nd->path);
2351 		}
2352 		return s;
2353 	}
2354 
2355 	nd->root.mnt = NULL;
2356 
2357 	/* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */
2358 	if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) {
2359 		error = nd_jump_root(nd);
2360 		if (unlikely(error))
2361 			return ERR_PTR(error);
2362 		return s;
2363 	}
2364 
2365 	/* Relative pathname -- get the starting-point it is relative to. */
2366 	if (nd->dfd == AT_FDCWD) {
2367 		if (flags & LOOKUP_RCU) {
2368 			struct fs_struct *fs = current->fs;
2369 			unsigned seq;
2370 
2371 			do {
2372 				seq = read_seqcount_begin(&fs->seq);
2373 				nd->path = fs->pwd;
2374 				nd->inode = nd->path.dentry->d_inode;
2375 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2376 			} while (read_seqcount_retry(&fs->seq, seq));
2377 		} else {
2378 			get_fs_pwd(current->fs, &nd->path);
2379 			nd->inode = nd->path.dentry->d_inode;
2380 		}
2381 	} else {
2382 		/* Caller must check execute permissions on the starting path component */
2383 		struct fd f = fdget_raw(nd->dfd);
2384 		struct dentry *dentry;
2385 
2386 		if (!f.file)
2387 			return ERR_PTR(-EBADF);
2388 
2389 		dentry = f.file->f_path.dentry;
2390 
2391 		if (*s && unlikely(!d_can_lookup(dentry))) {
2392 			fdput(f);
2393 			return ERR_PTR(-ENOTDIR);
2394 		}
2395 
2396 		nd->path = f.file->f_path;
2397 		if (flags & LOOKUP_RCU) {
2398 			nd->inode = nd->path.dentry->d_inode;
2399 			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2400 		} else {
2401 			path_get(&nd->path);
2402 			nd->inode = nd->path.dentry->d_inode;
2403 		}
2404 		fdput(f);
2405 	}
2406 
2407 	/* For scoped-lookups we need to set the root to the dirfd as well. */
2408 	if (flags & LOOKUP_IS_SCOPED) {
2409 		nd->root = nd->path;
2410 		if (flags & LOOKUP_RCU) {
2411 			nd->root_seq = nd->seq;
2412 		} else {
2413 			path_get(&nd->root);
2414 			nd->state |= ND_ROOT_GRABBED;
2415 		}
2416 	}
2417 	return s;
2418 }
2419 
2420 static inline const char *lookup_last(struct nameidata *nd)
2421 {
2422 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2423 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2424 
2425 	return walk_component(nd, WALK_TRAILING);
2426 }
2427 
2428 static int handle_lookup_down(struct nameidata *nd)
2429 {
2430 	if (!(nd->flags & LOOKUP_RCU))
2431 		dget(nd->path.dentry);
2432 	return PTR_ERR(step_into(nd, WALK_NOFOLLOW,
2433 			nd->path.dentry, nd->inode, nd->seq));
2434 }
2435 
2436 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2437 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2438 {
2439 	const char *s = path_init(nd, flags);
2440 	int err;
2441 
2442 	if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2443 		err = handle_lookup_down(nd);
2444 		if (unlikely(err < 0))
2445 			s = ERR_PTR(err);
2446 	}
2447 
2448 	while (!(err = link_path_walk(s, nd)) &&
2449 	       (s = lookup_last(nd)) != NULL)
2450 		;
2451 	if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) {
2452 		err = handle_lookup_down(nd);
2453 		nd->state &= ~ND_JUMPED; // no d_weak_revalidate(), please...
2454 	}
2455 	if (!err)
2456 		err = complete_walk(nd);
2457 
2458 	if (!err && nd->flags & LOOKUP_DIRECTORY)
2459 		if (!d_can_lookup(nd->path.dentry))
2460 			err = -ENOTDIR;
2461 	if (!err) {
2462 		*path = nd->path;
2463 		nd->path.mnt = NULL;
2464 		nd->path.dentry = NULL;
2465 	}
2466 	terminate_walk(nd);
2467 	return err;
2468 }
2469 
2470 int filename_lookup(int dfd, struct filename *name, unsigned flags,
2471 		    struct path *path, struct path *root)
2472 {
2473 	int retval;
2474 	struct nameidata nd;
2475 	if (IS_ERR(name))
2476 		return PTR_ERR(name);
2477 	set_nameidata(&nd, dfd, name, root);
2478 	retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2479 	if (unlikely(retval == -ECHILD))
2480 		retval = path_lookupat(&nd, flags, path);
2481 	if (unlikely(retval == -ESTALE))
2482 		retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2483 
2484 	if (likely(!retval))
2485 		audit_inode(name, path->dentry,
2486 			    flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0);
2487 	restore_nameidata();
2488 	return retval;
2489 }
2490 
2491 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2492 static int path_parentat(struct nameidata *nd, unsigned flags,
2493 				struct path *parent)
2494 {
2495 	const char *s = path_init(nd, flags);
2496 	int err = link_path_walk(s, nd);
2497 	if (!err)
2498 		err = complete_walk(nd);
2499 	if (!err) {
2500 		*parent = nd->path;
2501 		nd->path.mnt = NULL;
2502 		nd->path.dentry = NULL;
2503 	}
2504 	terminate_walk(nd);
2505 	return err;
2506 }
2507 
2508 /* Note: this does not consume "name" */
2509 static int filename_parentat(int dfd, struct filename *name,
2510 			     unsigned int flags, struct path *parent,
2511 			     struct qstr *last, int *type)
2512 {
2513 	int retval;
2514 	struct nameidata nd;
2515 
2516 	if (IS_ERR(name))
2517 		return PTR_ERR(name);
2518 	set_nameidata(&nd, dfd, name, NULL);
2519 	retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2520 	if (unlikely(retval == -ECHILD))
2521 		retval = path_parentat(&nd, flags, parent);
2522 	if (unlikely(retval == -ESTALE))
2523 		retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2524 	if (likely(!retval)) {
2525 		*last = nd.last;
2526 		*type = nd.last_type;
2527 		audit_inode(name, parent->dentry, AUDIT_INODE_PARENT);
2528 	}
2529 	restore_nameidata();
2530 	return retval;
2531 }
2532 
2533 /* does lookup, returns the object with parent locked */
2534 static struct dentry *__kern_path_locked(struct filename *name, struct path *path)
2535 {
2536 	struct dentry *d;
2537 	struct qstr last;
2538 	int type, error;
2539 
2540 	error = filename_parentat(AT_FDCWD, name, 0, path, &last, &type);
2541 	if (error)
2542 		return ERR_PTR(error);
2543 	if (unlikely(type != LAST_NORM)) {
2544 		path_put(path);
2545 		return ERR_PTR(-EINVAL);
2546 	}
2547 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2548 	d = __lookup_hash(&last, path->dentry, 0);
2549 	if (IS_ERR(d)) {
2550 		inode_unlock(path->dentry->d_inode);
2551 		path_put(path);
2552 	}
2553 	return d;
2554 }
2555 
2556 struct dentry *kern_path_locked(const char *name, struct path *path)
2557 {
2558 	struct filename *filename = getname_kernel(name);
2559 	struct dentry *res = __kern_path_locked(filename, path);
2560 
2561 	putname(filename);
2562 	return res;
2563 }
2564 
2565 int kern_path(const char *name, unsigned int flags, struct path *path)
2566 {
2567 	struct filename *filename = getname_kernel(name);
2568 	int ret = filename_lookup(AT_FDCWD, filename, flags, path, NULL);
2569 
2570 	putname(filename);
2571 	return ret;
2572 
2573 }
2574 EXPORT_SYMBOL(kern_path);
2575 
2576 /**
2577  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2578  * @dentry:  pointer to dentry of the base directory
2579  * @mnt: pointer to vfs mount of the base directory
2580  * @name: pointer to file name
2581  * @flags: lookup flags
2582  * @path: pointer to struct path to fill
2583  */
2584 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2585 		    const char *name, unsigned int flags,
2586 		    struct path *path)
2587 {
2588 	struct filename *filename;
2589 	struct path root = {.mnt = mnt, .dentry = dentry};
2590 	int ret;
2591 
2592 	filename = getname_kernel(name);
2593 	/* the first argument of filename_lookup() is ignored with root */
2594 	ret = filename_lookup(AT_FDCWD, filename, flags, path, &root);
2595 	putname(filename);
2596 	return ret;
2597 }
2598 EXPORT_SYMBOL(vfs_path_lookup);
2599 
2600 static int lookup_one_common(struct user_namespace *mnt_userns,
2601 			     const char *name, struct dentry *base, int len,
2602 			     struct qstr *this)
2603 {
2604 	this->name = name;
2605 	this->len = len;
2606 	this->hash = full_name_hash(base, name, len);
2607 	if (!len)
2608 		return -EACCES;
2609 
2610 	if (unlikely(name[0] == '.')) {
2611 		if (len < 2 || (len == 2 && name[1] == '.'))
2612 			return -EACCES;
2613 	}
2614 
2615 	while (len--) {
2616 		unsigned int c = *(const unsigned char *)name++;
2617 		if (c == '/' || c == '\0')
2618 			return -EACCES;
2619 	}
2620 	/*
2621 	 * See if the low-level filesystem might want
2622 	 * to use its own hash..
2623 	 */
2624 	if (base->d_flags & DCACHE_OP_HASH) {
2625 		int err = base->d_op->d_hash(base, this);
2626 		if (err < 0)
2627 			return err;
2628 	}
2629 
2630 	return inode_permission(mnt_userns, base->d_inode, MAY_EXEC);
2631 }
2632 
2633 /**
2634  * try_lookup_one_len - filesystem helper to lookup single pathname component
2635  * @name:	pathname component to lookup
2636  * @base:	base directory to lookup from
2637  * @len:	maximum length @len should be interpreted to
2638  *
2639  * Look up a dentry by name in the dcache, returning NULL if it does not
2640  * currently exist.  The function does not try to create a dentry.
2641  *
2642  * Note that this routine is purely a helper for filesystem usage and should
2643  * not be called by generic code.
2644  *
2645  * The caller must hold base->i_mutex.
2646  */
2647 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
2648 {
2649 	struct qstr this;
2650 	int err;
2651 
2652 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2653 
2654 	err = lookup_one_common(&init_user_ns, name, base, len, &this);
2655 	if (err)
2656 		return ERR_PTR(err);
2657 
2658 	return lookup_dcache(&this, base, 0);
2659 }
2660 EXPORT_SYMBOL(try_lookup_one_len);
2661 
2662 /**
2663  * lookup_one_len - filesystem helper to lookup single pathname component
2664  * @name:	pathname component to lookup
2665  * @base:	base directory to lookup from
2666  * @len:	maximum length @len should be interpreted to
2667  *
2668  * Note that this routine is purely a helper for filesystem usage and should
2669  * not be called by generic code.
2670  *
2671  * The caller must hold base->i_mutex.
2672  */
2673 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2674 {
2675 	struct dentry *dentry;
2676 	struct qstr this;
2677 	int err;
2678 
2679 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2680 
2681 	err = lookup_one_common(&init_user_ns, name, base, len, &this);
2682 	if (err)
2683 		return ERR_PTR(err);
2684 
2685 	dentry = lookup_dcache(&this, base, 0);
2686 	return dentry ? dentry : __lookup_slow(&this, base, 0);
2687 }
2688 EXPORT_SYMBOL(lookup_one_len);
2689 
2690 /**
2691  * lookup_one - filesystem helper to lookup single pathname component
2692  * @mnt_userns:	user namespace of the mount the lookup is performed from
2693  * @name:	pathname component to lookup
2694  * @base:	base directory to lookup from
2695  * @len:	maximum length @len should be interpreted to
2696  *
2697  * Note that this routine is purely a helper for filesystem usage and should
2698  * not be called by generic code.
2699  *
2700  * The caller must hold base->i_mutex.
2701  */
2702 struct dentry *lookup_one(struct user_namespace *mnt_userns, const char *name,
2703 			  struct dentry *base, int len)
2704 {
2705 	struct dentry *dentry;
2706 	struct qstr this;
2707 	int err;
2708 
2709 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2710 
2711 	err = lookup_one_common(mnt_userns, name, base, len, &this);
2712 	if (err)
2713 		return ERR_PTR(err);
2714 
2715 	dentry = lookup_dcache(&this, base, 0);
2716 	return dentry ? dentry : __lookup_slow(&this, base, 0);
2717 }
2718 EXPORT_SYMBOL(lookup_one);
2719 
2720 /**
2721  * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2722  * @name:	pathname component to lookup
2723  * @base:	base directory to lookup from
2724  * @len:	maximum length @len should be interpreted to
2725  *
2726  * Note that this routine is purely a helper for filesystem usage and should
2727  * not be called by generic code.
2728  *
2729  * Unlike lookup_one_len, it should be called without the parent
2730  * i_mutex held, and will take the i_mutex itself if necessary.
2731  */
2732 struct dentry *lookup_one_len_unlocked(const char *name,
2733 				       struct dentry *base, int len)
2734 {
2735 	struct qstr this;
2736 	int err;
2737 	struct dentry *ret;
2738 
2739 	err = lookup_one_common(&init_user_ns, name, base, len, &this);
2740 	if (err)
2741 		return ERR_PTR(err);
2742 
2743 	ret = lookup_dcache(&this, base, 0);
2744 	if (!ret)
2745 		ret = lookup_slow(&this, base, 0);
2746 	return ret;
2747 }
2748 EXPORT_SYMBOL(lookup_one_len_unlocked);
2749 
2750 /*
2751  * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT)
2752  * on negatives.  Returns known positive or ERR_PTR(); that's what
2753  * most of the users want.  Note that pinned negative with unlocked parent
2754  * _can_ become positive at any time, so callers of lookup_one_len_unlocked()
2755  * need to be very careful; pinned positives have ->d_inode stable, so
2756  * this one avoids such problems.
2757  */
2758 struct dentry *lookup_positive_unlocked(const char *name,
2759 				       struct dentry *base, int len)
2760 {
2761 	struct dentry *ret = lookup_one_len_unlocked(name, base, len);
2762 	if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
2763 		dput(ret);
2764 		ret = ERR_PTR(-ENOENT);
2765 	}
2766 	return ret;
2767 }
2768 EXPORT_SYMBOL(lookup_positive_unlocked);
2769 
2770 #ifdef CONFIG_UNIX98_PTYS
2771 int path_pts(struct path *path)
2772 {
2773 	/* Find something mounted on "pts" in the same directory as
2774 	 * the input path.
2775 	 */
2776 	struct dentry *parent = dget_parent(path->dentry);
2777 	struct dentry *child;
2778 	struct qstr this = QSTR_INIT("pts", 3);
2779 
2780 	if (unlikely(!path_connected(path->mnt, parent))) {
2781 		dput(parent);
2782 		return -ENOENT;
2783 	}
2784 	dput(path->dentry);
2785 	path->dentry = parent;
2786 	child = d_hash_and_lookup(parent, &this);
2787 	if (!child)
2788 		return -ENOENT;
2789 
2790 	path->dentry = child;
2791 	dput(parent);
2792 	follow_down(path);
2793 	return 0;
2794 }
2795 #endif
2796 
2797 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2798 		 struct path *path, int *empty)
2799 {
2800 	struct filename *filename = getname_flags(name, flags, empty);
2801 	int ret = filename_lookup(dfd, filename, flags, path, NULL);
2802 
2803 	putname(filename);
2804 	return ret;
2805 }
2806 EXPORT_SYMBOL(user_path_at_empty);
2807 
2808 int __check_sticky(struct user_namespace *mnt_userns, struct inode *dir,
2809 		   struct inode *inode)
2810 {
2811 	kuid_t fsuid = current_fsuid();
2812 
2813 	if (uid_eq(i_uid_into_mnt(mnt_userns, inode), fsuid))
2814 		return 0;
2815 	if (uid_eq(i_uid_into_mnt(mnt_userns, dir), fsuid))
2816 		return 0;
2817 	return !capable_wrt_inode_uidgid(mnt_userns, inode, CAP_FOWNER);
2818 }
2819 EXPORT_SYMBOL(__check_sticky);
2820 
2821 /*
2822  *	Check whether we can remove a link victim from directory dir, check
2823  *  whether the type of victim is right.
2824  *  1. We can't do it if dir is read-only (done in permission())
2825  *  2. We should have write and exec permissions on dir
2826  *  3. We can't remove anything from append-only dir
2827  *  4. We can't do anything with immutable dir (done in permission())
2828  *  5. If the sticky bit on dir is set we should either
2829  *	a. be owner of dir, or
2830  *	b. be owner of victim, or
2831  *	c. have CAP_FOWNER capability
2832  *  6. If the victim is append-only or immutable we can't do antyhing with
2833  *     links pointing to it.
2834  *  7. If the victim has an unknown uid or gid we can't change the inode.
2835  *  8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2836  *  9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2837  * 10. We can't remove a root or mountpoint.
2838  * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2839  *     nfs_async_unlink().
2840  */
2841 static int may_delete(struct user_namespace *mnt_userns, struct inode *dir,
2842 		      struct dentry *victim, bool isdir)
2843 {
2844 	struct inode *inode = d_backing_inode(victim);
2845 	int error;
2846 
2847 	if (d_is_negative(victim))
2848 		return -ENOENT;
2849 	BUG_ON(!inode);
2850 
2851 	BUG_ON(victim->d_parent->d_inode != dir);
2852 
2853 	/* Inode writeback is not safe when the uid or gid are invalid. */
2854 	if (!uid_valid(i_uid_into_mnt(mnt_userns, inode)) ||
2855 	    !gid_valid(i_gid_into_mnt(mnt_userns, inode)))
2856 		return -EOVERFLOW;
2857 
2858 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2859 
2860 	error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
2861 	if (error)
2862 		return error;
2863 	if (IS_APPEND(dir))
2864 		return -EPERM;
2865 
2866 	if (check_sticky(mnt_userns, dir, inode) || IS_APPEND(inode) ||
2867 	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) ||
2868 	    HAS_UNMAPPED_ID(mnt_userns, inode))
2869 		return -EPERM;
2870 	if (isdir) {
2871 		if (!d_is_dir(victim))
2872 			return -ENOTDIR;
2873 		if (IS_ROOT(victim))
2874 			return -EBUSY;
2875 	} else if (d_is_dir(victim))
2876 		return -EISDIR;
2877 	if (IS_DEADDIR(dir))
2878 		return -ENOENT;
2879 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2880 		return -EBUSY;
2881 	return 0;
2882 }
2883 
2884 /*	Check whether we can create an object with dentry child in directory
2885  *  dir.
2886  *  1. We can't do it if child already exists (open has special treatment for
2887  *     this case, but since we are inlined it's OK)
2888  *  2. We can't do it if dir is read-only (done in permission())
2889  *  3. We can't do it if the fs can't represent the fsuid or fsgid.
2890  *  4. We should have write and exec permissions on dir
2891  *  5. We can't do it if dir is immutable (done in permission())
2892  */
2893 static inline int may_create(struct user_namespace *mnt_userns,
2894 			     struct inode *dir, struct dentry *child)
2895 {
2896 	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2897 	if (child->d_inode)
2898 		return -EEXIST;
2899 	if (IS_DEADDIR(dir))
2900 		return -ENOENT;
2901 	if (!fsuidgid_has_mapping(dir->i_sb, mnt_userns))
2902 		return -EOVERFLOW;
2903 
2904 	return inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
2905 }
2906 
2907 /*
2908  * p1 and p2 should be directories on the same fs.
2909  */
2910 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2911 {
2912 	struct dentry *p;
2913 
2914 	if (p1 == p2) {
2915 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2916 		return NULL;
2917 	}
2918 
2919 	mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2920 
2921 	p = d_ancestor(p2, p1);
2922 	if (p) {
2923 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2924 		inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2925 		return p;
2926 	}
2927 
2928 	p = d_ancestor(p1, p2);
2929 	if (p) {
2930 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2931 		inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2932 		return p;
2933 	}
2934 
2935 	inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2936 	inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2937 	return NULL;
2938 }
2939 EXPORT_SYMBOL(lock_rename);
2940 
2941 void unlock_rename(struct dentry *p1, struct dentry *p2)
2942 {
2943 	inode_unlock(p1->d_inode);
2944 	if (p1 != p2) {
2945 		inode_unlock(p2->d_inode);
2946 		mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2947 	}
2948 }
2949 EXPORT_SYMBOL(unlock_rename);
2950 
2951 /**
2952  * vfs_create - create new file
2953  * @mnt_userns:	user namespace of the mount the inode was found from
2954  * @dir:	inode of @dentry
2955  * @dentry:	pointer to dentry of the base directory
2956  * @mode:	mode of the new file
2957  * @want_excl:	whether the file must not yet exist
2958  *
2959  * Create a new file.
2960  *
2961  * If the inode has been found through an idmapped mount the user namespace of
2962  * the vfsmount must be passed through @mnt_userns. This function will then take
2963  * care to map the inode according to @mnt_userns before checking permissions.
2964  * On non-idmapped mounts or if permission checking is to be performed on the
2965  * raw inode simply passs init_user_ns.
2966  */
2967 int vfs_create(struct user_namespace *mnt_userns, struct inode *dir,
2968 	       struct dentry *dentry, umode_t mode, bool want_excl)
2969 {
2970 	int error = may_create(mnt_userns, dir, dentry);
2971 	if (error)
2972 		return error;
2973 
2974 	if (!dir->i_op->create)
2975 		return -EACCES;	/* shouldn't it be ENOSYS? */
2976 	mode &= S_IALLUGO;
2977 	mode |= S_IFREG;
2978 	error = security_inode_create(dir, dentry, mode);
2979 	if (error)
2980 		return error;
2981 	error = dir->i_op->create(mnt_userns, dir, dentry, mode, want_excl);
2982 	if (!error)
2983 		fsnotify_create(dir, dentry);
2984 	return error;
2985 }
2986 EXPORT_SYMBOL(vfs_create);
2987 
2988 int vfs_mkobj(struct dentry *dentry, umode_t mode,
2989 		int (*f)(struct dentry *, umode_t, void *),
2990 		void *arg)
2991 {
2992 	struct inode *dir = dentry->d_parent->d_inode;
2993 	int error = may_create(&init_user_ns, dir, dentry);
2994 	if (error)
2995 		return error;
2996 
2997 	mode &= S_IALLUGO;
2998 	mode |= S_IFREG;
2999 	error = security_inode_create(dir, dentry, mode);
3000 	if (error)
3001 		return error;
3002 	error = f(dentry, mode, arg);
3003 	if (!error)
3004 		fsnotify_create(dir, dentry);
3005 	return error;
3006 }
3007 EXPORT_SYMBOL(vfs_mkobj);
3008 
3009 bool may_open_dev(const struct path *path)
3010 {
3011 	return !(path->mnt->mnt_flags & MNT_NODEV) &&
3012 		!(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
3013 }
3014 
3015 static int may_open(struct user_namespace *mnt_userns, const struct path *path,
3016 		    int acc_mode, int flag)
3017 {
3018 	struct dentry *dentry = path->dentry;
3019 	struct inode *inode = dentry->d_inode;
3020 	int error;
3021 
3022 	if (!inode)
3023 		return -ENOENT;
3024 
3025 	switch (inode->i_mode & S_IFMT) {
3026 	case S_IFLNK:
3027 		return -ELOOP;
3028 	case S_IFDIR:
3029 		if (acc_mode & MAY_WRITE)
3030 			return -EISDIR;
3031 		if (acc_mode & MAY_EXEC)
3032 			return -EACCES;
3033 		break;
3034 	case S_IFBLK:
3035 	case S_IFCHR:
3036 		if (!may_open_dev(path))
3037 			return -EACCES;
3038 		fallthrough;
3039 	case S_IFIFO:
3040 	case S_IFSOCK:
3041 		if (acc_mode & MAY_EXEC)
3042 			return -EACCES;
3043 		flag &= ~O_TRUNC;
3044 		break;
3045 	case S_IFREG:
3046 		if ((acc_mode & MAY_EXEC) && path_noexec(path))
3047 			return -EACCES;
3048 		break;
3049 	}
3050 
3051 	error = inode_permission(mnt_userns, inode, MAY_OPEN | acc_mode);
3052 	if (error)
3053 		return error;
3054 
3055 	/*
3056 	 * An append-only file must be opened in append mode for writing.
3057 	 */
3058 	if (IS_APPEND(inode)) {
3059 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
3060 			return -EPERM;
3061 		if (flag & O_TRUNC)
3062 			return -EPERM;
3063 	}
3064 
3065 	/* O_NOATIME can only be set by the owner or superuser */
3066 	if (flag & O_NOATIME && !inode_owner_or_capable(mnt_userns, inode))
3067 		return -EPERM;
3068 
3069 	return 0;
3070 }
3071 
3072 static int handle_truncate(struct user_namespace *mnt_userns, struct file *filp)
3073 {
3074 	const struct path *path = &filp->f_path;
3075 	struct inode *inode = path->dentry->d_inode;
3076 	int error = get_write_access(inode);
3077 	if (error)
3078 		return error;
3079 
3080 	error = security_path_truncate(path);
3081 	if (!error) {
3082 		error = do_truncate(mnt_userns, path->dentry, 0,
3083 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
3084 				    filp);
3085 	}
3086 	put_write_access(inode);
3087 	return error;
3088 }
3089 
3090 static inline int open_to_namei_flags(int flag)
3091 {
3092 	if ((flag & O_ACCMODE) == 3)
3093 		flag--;
3094 	return flag;
3095 }
3096 
3097 static int may_o_create(struct user_namespace *mnt_userns,
3098 			const struct path *dir, struct dentry *dentry,
3099 			umode_t mode)
3100 {
3101 	int error = security_path_mknod(dir, dentry, mode, 0);
3102 	if (error)
3103 		return error;
3104 
3105 	if (!fsuidgid_has_mapping(dir->dentry->d_sb, mnt_userns))
3106 		return -EOVERFLOW;
3107 
3108 	error = inode_permission(mnt_userns, dir->dentry->d_inode,
3109 				 MAY_WRITE | MAY_EXEC);
3110 	if (error)
3111 		return error;
3112 
3113 	return security_inode_create(dir->dentry->d_inode, dentry, mode);
3114 }
3115 
3116 /*
3117  * Attempt to atomically look up, create and open a file from a negative
3118  * dentry.
3119  *
3120  * Returns 0 if successful.  The file will have been created and attached to
3121  * @file by the filesystem calling finish_open().
3122  *
3123  * If the file was looked up only or didn't need creating, FMODE_OPENED won't
3124  * be set.  The caller will need to perform the open themselves.  @path will
3125  * have been updated to point to the new dentry.  This may be negative.
3126  *
3127  * Returns an error code otherwise.
3128  */
3129 static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry,
3130 				  struct file *file,
3131 				  int open_flag, umode_t mode)
3132 {
3133 	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3134 	struct inode *dir =  nd->path.dentry->d_inode;
3135 	int error;
3136 
3137 	if (nd->flags & LOOKUP_DIRECTORY)
3138 		open_flag |= O_DIRECTORY;
3139 
3140 	file->f_path.dentry = DENTRY_NOT_SET;
3141 	file->f_path.mnt = nd->path.mnt;
3142 	error = dir->i_op->atomic_open(dir, dentry, file,
3143 				       open_to_namei_flags(open_flag), mode);
3144 	d_lookup_done(dentry);
3145 	if (!error) {
3146 		if (file->f_mode & FMODE_OPENED) {
3147 			if (unlikely(dentry != file->f_path.dentry)) {
3148 				dput(dentry);
3149 				dentry = dget(file->f_path.dentry);
3150 			}
3151 		} else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3152 			error = -EIO;
3153 		} else {
3154 			if (file->f_path.dentry) {
3155 				dput(dentry);
3156 				dentry = file->f_path.dentry;
3157 			}
3158 			if (unlikely(d_is_negative(dentry)))
3159 				error = -ENOENT;
3160 		}
3161 	}
3162 	if (error) {
3163 		dput(dentry);
3164 		dentry = ERR_PTR(error);
3165 	}
3166 	return dentry;
3167 }
3168 
3169 /*
3170  * Look up and maybe create and open the last component.
3171  *
3172  * Must be called with parent locked (exclusive in O_CREAT case).
3173  *
3174  * Returns 0 on success, that is, if
3175  *  the file was successfully atomically created (if necessary) and opened, or
3176  *  the file was not completely opened at this time, though lookups and
3177  *  creations were performed.
3178  * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3179  * In the latter case dentry returned in @path might be negative if O_CREAT
3180  * hadn't been specified.
3181  *
3182  * An error code is returned on failure.
3183  */
3184 static struct dentry *lookup_open(struct nameidata *nd, struct file *file,
3185 				  const struct open_flags *op,
3186 				  bool got_write)
3187 {
3188 	struct user_namespace *mnt_userns;
3189 	struct dentry *dir = nd->path.dentry;
3190 	struct inode *dir_inode = dir->d_inode;
3191 	int open_flag = op->open_flag;
3192 	struct dentry *dentry;
3193 	int error, create_error = 0;
3194 	umode_t mode = op->mode;
3195 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3196 
3197 	if (unlikely(IS_DEADDIR(dir_inode)))
3198 		return ERR_PTR(-ENOENT);
3199 
3200 	file->f_mode &= ~FMODE_CREATED;
3201 	dentry = d_lookup(dir, &nd->last);
3202 	for (;;) {
3203 		if (!dentry) {
3204 			dentry = d_alloc_parallel(dir, &nd->last, &wq);
3205 			if (IS_ERR(dentry))
3206 				return dentry;
3207 		}
3208 		if (d_in_lookup(dentry))
3209 			break;
3210 
3211 		error = d_revalidate(dentry, nd->flags);
3212 		if (likely(error > 0))
3213 			break;
3214 		if (error)
3215 			goto out_dput;
3216 		d_invalidate(dentry);
3217 		dput(dentry);
3218 		dentry = NULL;
3219 	}
3220 	if (dentry->d_inode) {
3221 		/* Cached positive dentry: will open in f_op->open */
3222 		return dentry;
3223 	}
3224 
3225 	/*
3226 	 * Checking write permission is tricky, bacuse we don't know if we are
3227 	 * going to actually need it: O_CREAT opens should work as long as the
3228 	 * file exists.  But checking existence breaks atomicity.  The trick is
3229 	 * to check access and if not granted clear O_CREAT from the flags.
3230 	 *
3231 	 * Another problem is returing the "right" error value (e.g. for an
3232 	 * O_EXCL open we want to return EEXIST not EROFS).
3233 	 */
3234 	if (unlikely(!got_write))
3235 		open_flag &= ~O_TRUNC;
3236 	mnt_userns = mnt_user_ns(nd->path.mnt);
3237 	if (open_flag & O_CREAT) {
3238 		if (open_flag & O_EXCL)
3239 			open_flag &= ~O_TRUNC;
3240 		if (!IS_POSIXACL(dir->d_inode))
3241 			mode &= ~current_umask();
3242 		if (likely(got_write))
3243 			create_error = may_o_create(mnt_userns, &nd->path,
3244 						    dentry, mode);
3245 		else
3246 			create_error = -EROFS;
3247 	}
3248 	if (create_error)
3249 		open_flag &= ~O_CREAT;
3250 	if (dir_inode->i_op->atomic_open) {
3251 		dentry = atomic_open(nd, dentry, file, open_flag, mode);
3252 		if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT))
3253 			dentry = ERR_PTR(create_error);
3254 		return dentry;
3255 	}
3256 
3257 	if (d_in_lookup(dentry)) {
3258 		struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3259 							     nd->flags);
3260 		d_lookup_done(dentry);
3261 		if (unlikely(res)) {
3262 			if (IS_ERR(res)) {
3263 				error = PTR_ERR(res);
3264 				goto out_dput;
3265 			}
3266 			dput(dentry);
3267 			dentry = res;
3268 		}
3269 	}
3270 
3271 	/* Negative dentry, just create the file */
3272 	if (!dentry->d_inode && (open_flag & O_CREAT)) {
3273 		file->f_mode |= FMODE_CREATED;
3274 		audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3275 		if (!dir_inode->i_op->create) {
3276 			error = -EACCES;
3277 			goto out_dput;
3278 		}
3279 
3280 		error = dir_inode->i_op->create(mnt_userns, dir_inode, dentry,
3281 						mode, open_flag & O_EXCL);
3282 		if (error)
3283 			goto out_dput;
3284 	}
3285 	if (unlikely(create_error) && !dentry->d_inode) {
3286 		error = create_error;
3287 		goto out_dput;
3288 	}
3289 	return dentry;
3290 
3291 out_dput:
3292 	dput(dentry);
3293 	return ERR_PTR(error);
3294 }
3295 
3296 static const char *open_last_lookups(struct nameidata *nd,
3297 		   struct file *file, const struct open_flags *op)
3298 {
3299 	struct dentry *dir = nd->path.dentry;
3300 	int open_flag = op->open_flag;
3301 	bool got_write = false;
3302 	unsigned seq;
3303 	struct inode *inode;
3304 	struct dentry *dentry;
3305 	const char *res;
3306 
3307 	nd->flags |= op->intent;
3308 
3309 	if (nd->last_type != LAST_NORM) {
3310 		if (nd->depth)
3311 			put_link(nd);
3312 		return handle_dots(nd, nd->last_type);
3313 	}
3314 
3315 	if (!(open_flag & O_CREAT)) {
3316 		if (nd->last.name[nd->last.len])
3317 			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3318 		/* we _can_ be in RCU mode here */
3319 		dentry = lookup_fast(nd, &inode, &seq);
3320 		if (IS_ERR(dentry))
3321 			return ERR_CAST(dentry);
3322 		if (likely(dentry))
3323 			goto finish_lookup;
3324 
3325 		BUG_ON(nd->flags & LOOKUP_RCU);
3326 	} else {
3327 		/* create side of things */
3328 		if (nd->flags & LOOKUP_RCU) {
3329 			if (!try_to_unlazy(nd))
3330 				return ERR_PTR(-ECHILD);
3331 		}
3332 		audit_inode(nd->name, dir, AUDIT_INODE_PARENT);
3333 		/* trailing slashes? */
3334 		if (unlikely(nd->last.name[nd->last.len]))
3335 			return ERR_PTR(-EISDIR);
3336 	}
3337 
3338 	if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3339 		got_write = !mnt_want_write(nd->path.mnt);
3340 		/*
3341 		 * do _not_ fail yet - we might not need that or fail with
3342 		 * a different error; let lookup_open() decide; we'll be
3343 		 * dropping this one anyway.
3344 		 */
3345 	}
3346 	if (open_flag & O_CREAT)
3347 		inode_lock(dir->d_inode);
3348 	else
3349 		inode_lock_shared(dir->d_inode);
3350 	dentry = lookup_open(nd, file, op, got_write);
3351 	if (!IS_ERR(dentry) && (file->f_mode & FMODE_CREATED))
3352 		fsnotify_create(dir->d_inode, dentry);
3353 	if (open_flag & O_CREAT)
3354 		inode_unlock(dir->d_inode);
3355 	else
3356 		inode_unlock_shared(dir->d_inode);
3357 
3358 	if (got_write)
3359 		mnt_drop_write(nd->path.mnt);
3360 
3361 	if (IS_ERR(dentry))
3362 		return ERR_CAST(dentry);
3363 
3364 	if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) {
3365 		dput(nd->path.dentry);
3366 		nd->path.dentry = dentry;
3367 		return NULL;
3368 	}
3369 
3370 finish_lookup:
3371 	if (nd->depth)
3372 		put_link(nd);
3373 	res = step_into(nd, WALK_TRAILING, dentry, inode, seq);
3374 	if (unlikely(res))
3375 		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3376 	return res;
3377 }
3378 
3379 /*
3380  * Handle the last step of open()
3381  */
3382 static int do_open(struct nameidata *nd,
3383 		   struct file *file, const struct open_flags *op)
3384 {
3385 	struct user_namespace *mnt_userns;
3386 	int open_flag = op->open_flag;
3387 	bool do_truncate;
3388 	int acc_mode;
3389 	int error;
3390 
3391 	if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) {
3392 		error = complete_walk(nd);
3393 		if (error)
3394 			return error;
3395 	}
3396 	if (!(file->f_mode & FMODE_CREATED))
3397 		audit_inode(nd->name, nd->path.dentry, 0);
3398 	mnt_userns = mnt_user_ns(nd->path.mnt);
3399 	if (open_flag & O_CREAT) {
3400 		if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED))
3401 			return -EEXIST;
3402 		if (d_is_dir(nd->path.dentry))
3403 			return -EISDIR;
3404 		error = may_create_in_sticky(mnt_userns, nd,
3405 					     d_backing_inode(nd->path.dentry));
3406 		if (unlikely(error))
3407 			return error;
3408 	}
3409 	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3410 		return -ENOTDIR;
3411 
3412 	do_truncate = false;
3413 	acc_mode = op->acc_mode;
3414 	if (file->f_mode & FMODE_CREATED) {
3415 		/* Don't check for write permission, don't truncate */
3416 		open_flag &= ~O_TRUNC;
3417 		acc_mode = 0;
3418 	} else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) {
3419 		error = mnt_want_write(nd->path.mnt);
3420 		if (error)
3421 			return error;
3422 		do_truncate = true;
3423 	}
3424 	error = may_open(mnt_userns, &nd->path, acc_mode, open_flag);
3425 	if (!error && !(file->f_mode & FMODE_OPENED))
3426 		error = vfs_open(&nd->path, file);
3427 	if (!error)
3428 		error = ima_file_check(file, op->acc_mode);
3429 	if (!error && do_truncate)
3430 		error = handle_truncate(mnt_userns, file);
3431 	if (unlikely(error > 0)) {
3432 		WARN_ON(1);
3433 		error = -EINVAL;
3434 	}
3435 	if (do_truncate)
3436 		mnt_drop_write(nd->path.mnt);
3437 	return error;
3438 }
3439 
3440 /**
3441  * vfs_tmpfile - create tmpfile
3442  * @mnt_userns:	user namespace of the mount the inode was found from
3443  * @dentry:	pointer to dentry of the base directory
3444  * @mode:	mode of the new tmpfile
3445  * @open_flag:	flags
3446  *
3447  * Create a temporary file.
3448  *
3449  * If the inode has been found through an idmapped mount the user namespace of
3450  * the vfsmount must be passed through @mnt_userns. This function will then take
3451  * care to map the inode according to @mnt_userns before checking permissions.
3452  * On non-idmapped mounts or if permission checking is to be performed on the
3453  * raw inode simply passs init_user_ns.
3454  */
3455 struct dentry *vfs_tmpfile(struct user_namespace *mnt_userns,
3456 			   struct dentry *dentry, umode_t mode, int open_flag)
3457 {
3458 	struct dentry *child = NULL;
3459 	struct inode *dir = dentry->d_inode;
3460 	struct inode *inode;
3461 	int error;
3462 
3463 	/* we want directory to be writable */
3464 	error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
3465 	if (error)
3466 		goto out_err;
3467 	error = -EOPNOTSUPP;
3468 	if (!dir->i_op->tmpfile)
3469 		goto out_err;
3470 	error = -ENOMEM;
3471 	child = d_alloc(dentry, &slash_name);
3472 	if (unlikely(!child))
3473 		goto out_err;
3474 	error = dir->i_op->tmpfile(mnt_userns, dir, child, mode);
3475 	if (error)
3476 		goto out_err;
3477 	error = -ENOENT;
3478 	inode = child->d_inode;
3479 	if (unlikely(!inode))
3480 		goto out_err;
3481 	if (!(open_flag & O_EXCL)) {
3482 		spin_lock(&inode->i_lock);
3483 		inode->i_state |= I_LINKABLE;
3484 		spin_unlock(&inode->i_lock);
3485 	}
3486 	ima_post_create_tmpfile(mnt_userns, inode);
3487 	return child;
3488 
3489 out_err:
3490 	dput(child);
3491 	return ERR_PTR(error);
3492 }
3493 EXPORT_SYMBOL(vfs_tmpfile);
3494 
3495 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3496 		const struct open_flags *op,
3497 		struct file *file)
3498 {
3499 	struct user_namespace *mnt_userns;
3500 	struct dentry *child;
3501 	struct path path;
3502 	int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3503 	if (unlikely(error))
3504 		return error;
3505 	error = mnt_want_write(path.mnt);
3506 	if (unlikely(error))
3507 		goto out;
3508 	mnt_userns = mnt_user_ns(path.mnt);
3509 	child = vfs_tmpfile(mnt_userns, path.dentry, op->mode, op->open_flag);
3510 	error = PTR_ERR(child);
3511 	if (IS_ERR(child))
3512 		goto out2;
3513 	dput(path.dentry);
3514 	path.dentry = child;
3515 	audit_inode(nd->name, child, 0);
3516 	/* Don't check for other permissions, the inode was just created */
3517 	error = may_open(mnt_userns, &path, 0, op->open_flag);
3518 	if (!error)
3519 		error = vfs_open(&path, file);
3520 out2:
3521 	mnt_drop_write(path.mnt);
3522 out:
3523 	path_put(&path);
3524 	return error;
3525 }
3526 
3527 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3528 {
3529 	struct path path;
3530 	int error = path_lookupat(nd, flags, &path);
3531 	if (!error) {
3532 		audit_inode(nd->name, path.dentry, 0);
3533 		error = vfs_open(&path, file);
3534 		path_put(&path);
3535 	}
3536 	return error;
3537 }
3538 
3539 static struct file *path_openat(struct nameidata *nd,
3540 			const struct open_flags *op, unsigned flags)
3541 {
3542 	struct file *file;
3543 	int error;
3544 
3545 	file = alloc_empty_file(op->open_flag, current_cred());
3546 	if (IS_ERR(file))
3547 		return file;
3548 
3549 	if (unlikely(file->f_flags & __O_TMPFILE)) {
3550 		error = do_tmpfile(nd, flags, op, file);
3551 	} else if (unlikely(file->f_flags & O_PATH)) {
3552 		error = do_o_path(nd, flags, file);
3553 	} else {
3554 		const char *s = path_init(nd, flags);
3555 		while (!(error = link_path_walk(s, nd)) &&
3556 		       (s = open_last_lookups(nd, file, op)) != NULL)
3557 			;
3558 		if (!error)
3559 			error = do_open(nd, file, op);
3560 		terminate_walk(nd);
3561 	}
3562 	if (likely(!error)) {
3563 		if (likely(file->f_mode & FMODE_OPENED))
3564 			return file;
3565 		WARN_ON(1);
3566 		error = -EINVAL;
3567 	}
3568 	fput(file);
3569 	if (error == -EOPENSTALE) {
3570 		if (flags & LOOKUP_RCU)
3571 			error = -ECHILD;
3572 		else
3573 			error = -ESTALE;
3574 	}
3575 	return ERR_PTR(error);
3576 }
3577 
3578 struct file *do_filp_open(int dfd, struct filename *pathname,
3579 		const struct open_flags *op)
3580 {
3581 	struct nameidata nd;
3582 	int flags = op->lookup_flags;
3583 	struct file *filp;
3584 
3585 	set_nameidata(&nd, dfd, pathname, NULL);
3586 	filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3587 	if (unlikely(filp == ERR_PTR(-ECHILD)))
3588 		filp = path_openat(&nd, op, flags);
3589 	if (unlikely(filp == ERR_PTR(-ESTALE)))
3590 		filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3591 	restore_nameidata();
3592 	return filp;
3593 }
3594 
3595 struct file *do_file_open_root(const struct path *root,
3596 		const char *name, const struct open_flags *op)
3597 {
3598 	struct nameidata nd;
3599 	struct file *file;
3600 	struct filename *filename;
3601 	int flags = op->lookup_flags;
3602 
3603 	if (d_is_symlink(root->dentry) && op->intent & LOOKUP_OPEN)
3604 		return ERR_PTR(-ELOOP);
3605 
3606 	filename = getname_kernel(name);
3607 	if (IS_ERR(filename))
3608 		return ERR_CAST(filename);
3609 
3610 	set_nameidata(&nd, -1, filename, root);
3611 	file = path_openat(&nd, op, flags | LOOKUP_RCU);
3612 	if (unlikely(file == ERR_PTR(-ECHILD)))
3613 		file = path_openat(&nd, op, flags);
3614 	if (unlikely(file == ERR_PTR(-ESTALE)))
3615 		file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3616 	restore_nameidata();
3617 	putname(filename);
3618 	return file;
3619 }
3620 
3621 static struct dentry *filename_create(int dfd, struct filename *name,
3622 				      struct path *path, unsigned int lookup_flags)
3623 {
3624 	struct dentry *dentry = ERR_PTR(-EEXIST);
3625 	struct qstr last;
3626 	int type;
3627 	int err2;
3628 	int error;
3629 	bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3630 
3631 	/*
3632 	 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3633 	 * other flags passed in are ignored!
3634 	 */
3635 	lookup_flags &= LOOKUP_REVAL;
3636 
3637 	error = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3638 	if (error)
3639 		return ERR_PTR(error);
3640 
3641 	/*
3642 	 * Yucky last component or no last component at all?
3643 	 * (foo/., foo/.., /////)
3644 	 */
3645 	if (unlikely(type != LAST_NORM))
3646 		goto out;
3647 
3648 	/* don't fail immediately if it's r/o, at least try to report other errors */
3649 	err2 = mnt_want_write(path->mnt);
3650 	/*
3651 	 * Do the final lookup.
3652 	 */
3653 	lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3654 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3655 	dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3656 	if (IS_ERR(dentry))
3657 		goto unlock;
3658 
3659 	error = -EEXIST;
3660 	if (d_is_positive(dentry))
3661 		goto fail;
3662 
3663 	/*
3664 	 * Special case - lookup gave negative, but... we had foo/bar/
3665 	 * From the vfs_mknod() POV we just have a negative dentry -
3666 	 * all is fine. Let's be bastards - you had / on the end, you've
3667 	 * been asking for (non-existent) directory. -ENOENT for you.
3668 	 */
3669 	if (unlikely(!is_dir && last.name[last.len])) {
3670 		error = -ENOENT;
3671 		goto fail;
3672 	}
3673 	if (unlikely(err2)) {
3674 		error = err2;
3675 		goto fail;
3676 	}
3677 	return dentry;
3678 fail:
3679 	dput(dentry);
3680 	dentry = ERR_PTR(error);
3681 unlock:
3682 	inode_unlock(path->dentry->d_inode);
3683 	if (!err2)
3684 		mnt_drop_write(path->mnt);
3685 out:
3686 	path_put(path);
3687 	return dentry;
3688 }
3689 
3690 struct dentry *kern_path_create(int dfd, const char *pathname,
3691 				struct path *path, unsigned int lookup_flags)
3692 {
3693 	struct filename *filename = getname_kernel(pathname);
3694 	struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
3695 
3696 	putname(filename);
3697 	return res;
3698 }
3699 EXPORT_SYMBOL(kern_path_create);
3700 
3701 void done_path_create(struct path *path, struct dentry *dentry)
3702 {
3703 	dput(dentry);
3704 	inode_unlock(path->dentry->d_inode);
3705 	mnt_drop_write(path->mnt);
3706 	path_put(path);
3707 }
3708 EXPORT_SYMBOL(done_path_create);
3709 
3710 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3711 				struct path *path, unsigned int lookup_flags)
3712 {
3713 	struct filename *filename = getname(pathname);
3714 	struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
3715 
3716 	putname(filename);
3717 	return res;
3718 }
3719 EXPORT_SYMBOL(user_path_create);
3720 
3721 /**
3722  * vfs_mknod - create device node or file
3723  * @mnt_userns:	user namespace of the mount the inode was found from
3724  * @dir:	inode of @dentry
3725  * @dentry:	pointer to dentry of the base directory
3726  * @mode:	mode of the new device node or file
3727  * @dev:	device number of device to create
3728  *
3729  * Create a device node or file.
3730  *
3731  * If the inode has been found through an idmapped mount the user namespace of
3732  * the vfsmount must be passed through @mnt_userns. This function will then take
3733  * care to map the inode according to @mnt_userns before checking permissions.
3734  * On non-idmapped mounts or if permission checking is to be performed on the
3735  * raw inode simply passs init_user_ns.
3736  */
3737 int vfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
3738 	      struct dentry *dentry, umode_t mode, dev_t dev)
3739 {
3740 	bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV;
3741 	int error = may_create(mnt_userns, dir, dentry);
3742 
3743 	if (error)
3744 		return error;
3745 
3746 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout &&
3747 	    !capable(CAP_MKNOD))
3748 		return -EPERM;
3749 
3750 	if (!dir->i_op->mknod)
3751 		return -EPERM;
3752 
3753 	error = devcgroup_inode_mknod(mode, dev);
3754 	if (error)
3755 		return error;
3756 
3757 	error = security_inode_mknod(dir, dentry, mode, dev);
3758 	if (error)
3759 		return error;
3760 
3761 	error = dir->i_op->mknod(mnt_userns, dir, dentry, mode, dev);
3762 	if (!error)
3763 		fsnotify_create(dir, dentry);
3764 	return error;
3765 }
3766 EXPORT_SYMBOL(vfs_mknod);
3767 
3768 static int may_mknod(umode_t mode)
3769 {
3770 	switch (mode & S_IFMT) {
3771 	case S_IFREG:
3772 	case S_IFCHR:
3773 	case S_IFBLK:
3774 	case S_IFIFO:
3775 	case S_IFSOCK:
3776 	case 0: /* zero mode translates to S_IFREG */
3777 		return 0;
3778 	case S_IFDIR:
3779 		return -EPERM;
3780 	default:
3781 		return -EINVAL;
3782 	}
3783 }
3784 
3785 static int do_mknodat(int dfd, struct filename *name, umode_t mode,
3786 		unsigned int dev)
3787 {
3788 	struct user_namespace *mnt_userns;
3789 	struct dentry *dentry;
3790 	struct path path;
3791 	int error;
3792 	unsigned int lookup_flags = 0;
3793 
3794 	error = may_mknod(mode);
3795 	if (error)
3796 		goto out1;
3797 retry:
3798 	dentry = filename_create(dfd, name, &path, lookup_flags);
3799 	error = PTR_ERR(dentry);
3800 	if (IS_ERR(dentry))
3801 		goto out1;
3802 
3803 	if (!IS_POSIXACL(path.dentry->d_inode))
3804 		mode &= ~current_umask();
3805 	error = security_path_mknod(&path, dentry, mode, dev);
3806 	if (error)
3807 		goto out2;
3808 
3809 	mnt_userns = mnt_user_ns(path.mnt);
3810 	switch (mode & S_IFMT) {
3811 		case 0: case S_IFREG:
3812 			error = vfs_create(mnt_userns, path.dentry->d_inode,
3813 					   dentry, mode, true);
3814 			if (!error)
3815 				ima_post_path_mknod(mnt_userns, dentry);
3816 			break;
3817 		case S_IFCHR: case S_IFBLK:
3818 			error = vfs_mknod(mnt_userns, path.dentry->d_inode,
3819 					  dentry, mode, new_decode_dev(dev));
3820 			break;
3821 		case S_IFIFO: case S_IFSOCK:
3822 			error = vfs_mknod(mnt_userns, path.dentry->d_inode,
3823 					  dentry, mode, 0);
3824 			break;
3825 	}
3826 out2:
3827 	done_path_create(&path, dentry);
3828 	if (retry_estale(error, lookup_flags)) {
3829 		lookup_flags |= LOOKUP_REVAL;
3830 		goto retry;
3831 	}
3832 out1:
3833 	putname(name);
3834 	return error;
3835 }
3836 
3837 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3838 		unsigned int, dev)
3839 {
3840 	return do_mknodat(dfd, getname(filename), mode, dev);
3841 }
3842 
3843 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3844 {
3845 	return do_mknodat(AT_FDCWD, getname(filename), mode, dev);
3846 }
3847 
3848 /**
3849  * vfs_mkdir - create directory
3850  * @mnt_userns:	user namespace of the mount the inode was found from
3851  * @dir:	inode of @dentry
3852  * @dentry:	pointer to dentry of the base directory
3853  * @mode:	mode of the new directory
3854  *
3855  * Create a directory.
3856  *
3857  * If the inode has been found through an idmapped mount the user namespace of
3858  * the vfsmount must be passed through @mnt_userns. This function will then take
3859  * care to map the inode according to @mnt_userns before checking permissions.
3860  * On non-idmapped mounts or if permission checking is to be performed on the
3861  * raw inode simply passs init_user_ns.
3862  */
3863 int vfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
3864 	      struct dentry *dentry, umode_t mode)
3865 {
3866 	int error = may_create(mnt_userns, dir, dentry);
3867 	unsigned max_links = dir->i_sb->s_max_links;
3868 
3869 	if (error)
3870 		return error;
3871 
3872 	if (!dir->i_op->mkdir)
3873 		return -EPERM;
3874 
3875 	mode &= (S_IRWXUGO|S_ISVTX);
3876 	error = security_inode_mkdir(dir, dentry, mode);
3877 	if (error)
3878 		return error;
3879 
3880 	if (max_links && dir->i_nlink >= max_links)
3881 		return -EMLINK;
3882 
3883 	error = dir->i_op->mkdir(mnt_userns, dir, dentry, mode);
3884 	if (!error)
3885 		fsnotify_mkdir(dir, dentry);
3886 	return error;
3887 }
3888 EXPORT_SYMBOL(vfs_mkdir);
3889 
3890 int do_mkdirat(int dfd, struct filename *name, umode_t mode)
3891 {
3892 	struct dentry *dentry;
3893 	struct path path;
3894 	int error;
3895 	unsigned int lookup_flags = LOOKUP_DIRECTORY;
3896 
3897 retry:
3898 	dentry = filename_create(dfd, name, &path, lookup_flags);
3899 	error = PTR_ERR(dentry);
3900 	if (IS_ERR(dentry))
3901 		goto out_putname;
3902 
3903 	if (!IS_POSIXACL(path.dentry->d_inode))
3904 		mode &= ~current_umask();
3905 	error = security_path_mkdir(&path, dentry, mode);
3906 	if (!error) {
3907 		struct user_namespace *mnt_userns;
3908 		mnt_userns = mnt_user_ns(path.mnt);
3909 		error = vfs_mkdir(mnt_userns, path.dentry->d_inode, dentry,
3910 				  mode);
3911 	}
3912 	done_path_create(&path, dentry);
3913 	if (retry_estale(error, lookup_flags)) {
3914 		lookup_flags |= LOOKUP_REVAL;
3915 		goto retry;
3916 	}
3917 out_putname:
3918 	putname(name);
3919 	return error;
3920 }
3921 
3922 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3923 {
3924 	return do_mkdirat(dfd, getname(pathname), mode);
3925 }
3926 
3927 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3928 {
3929 	return do_mkdirat(AT_FDCWD, getname(pathname), mode);
3930 }
3931 
3932 /**
3933  * vfs_rmdir - remove directory
3934  * @mnt_userns:	user namespace of the mount the inode was found from
3935  * @dir:	inode of @dentry
3936  * @dentry:	pointer to dentry of the base directory
3937  *
3938  * Remove a directory.
3939  *
3940  * If the inode has been found through an idmapped mount the user namespace of
3941  * the vfsmount must be passed through @mnt_userns. This function will then take
3942  * care to map the inode according to @mnt_userns before checking permissions.
3943  * On non-idmapped mounts or if permission checking is to be performed on the
3944  * raw inode simply passs init_user_ns.
3945  */
3946 int vfs_rmdir(struct user_namespace *mnt_userns, struct inode *dir,
3947 		     struct dentry *dentry)
3948 {
3949 	int error = may_delete(mnt_userns, dir, dentry, 1);
3950 
3951 	if (error)
3952 		return error;
3953 
3954 	if (!dir->i_op->rmdir)
3955 		return -EPERM;
3956 
3957 	dget(dentry);
3958 	inode_lock(dentry->d_inode);
3959 
3960 	error = -EBUSY;
3961 	if (is_local_mountpoint(dentry))
3962 		goto out;
3963 
3964 	error = security_inode_rmdir(dir, dentry);
3965 	if (error)
3966 		goto out;
3967 
3968 	error = dir->i_op->rmdir(dir, dentry);
3969 	if (error)
3970 		goto out;
3971 
3972 	shrink_dcache_parent(dentry);
3973 	dentry->d_inode->i_flags |= S_DEAD;
3974 	dont_mount(dentry);
3975 	detach_mounts(dentry);
3976 	fsnotify_rmdir(dir, dentry);
3977 
3978 out:
3979 	inode_unlock(dentry->d_inode);
3980 	dput(dentry);
3981 	if (!error)
3982 		d_delete(dentry);
3983 	return error;
3984 }
3985 EXPORT_SYMBOL(vfs_rmdir);
3986 
3987 int do_rmdir(int dfd, struct filename *name)
3988 {
3989 	struct user_namespace *mnt_userns;
3990 	int error;
3991 	struct dentry *dentry;
3992 	struct path path;
3993 	struct qstr last;
3994 	int type;
3995 	unsigned int lookup_flags = 0;
3996 retry:
3997 	error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
3998 	if (error)
3999 		goto exit1;
4000 
4001 	switch (type) {
4002 	case LAST_DOTDOT:
4003 		error = -ENOTEMPTY;
4004 		goto exit2;
4005 	case LAST_DOT:
4006 		error = -EINVAL;
4007 		goto exit2;
4008 	case LAST_ROOT:
4009 		error = -EBUSY;
4010 		goto exit2;
4011 	}
4012 
4013 	error = mnt_want_write(path.mnt);
4014 	if (error)
4015 		goto exit2;
4016 
4017 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4018 	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4019 	error = PTR_ERR(dentry);
4020 	if (IS_ERR(dentry))
4021 		goto exit3;
4022 	if (!dentry->d_inode) {
4023 		error = -ENOENT;
4024 		goto exit4;
4025 	}
4026 	error = security_path_rmdir(&path, dentry);
4027 	if (error)
4028 		goto exit4;
4029 	mnt_userns = mnt_user_ns(path.mnt);
4030 	error = vfs_rmdir(mnt_userns, path.dentry->d_inode, dentry);
4031 exit4:
4032 	dput(dentry);
4033 exit3:
4034 	inode_unlock(path.dentry->d_inode);
4035 	mnt_drop_write(path.mnt);
4036 exit2:
4037 	path_put(&path);
4038 	if (retry_estale(error, lookup_flags)) {
4039 		lookup_flags |= LOOKUP_REVAL;
4040 		goto retry;
4041 	}
4042 exit1:
4043 	putname(name);
4044 	return error;
4045 }
4046 
4047 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
4048 {
4049 	return do_rmdir(AT_FDCWD, getname(pathname));
4050 }
4051 
4052 /**
4053  * vfs_unlink - unlink a filesystem object
4054  * @mnt_userns:	user namespace of the mount the inode was found from
4055  * @dir:	parent directory
4056  * @dentry:	victim
4057  * @delegated_inode: returns victim inode, if the inode is delegated.
4058  *
4059  * The caller must hold dir->i_mutex.
4060  *
4061  * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
4062  * return a reference to the inode in delegated_inode.  The caller
4063  * should then break the delegation on that inode and retry.  Because
4064  * breaking a delegation may take a long time, the caller should drop
4065  * dir->i_mutex before doing so.
4066  *
4067  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4068  * be appropriate for callers that expect the underlying filesystem not
4069  * to be NFS exported.
4070  *
4071  * If the inode has been found through an idmapped mount the user namespace of
4072  * the vfsmount must be passed through @mnt_userns. This function will then take
4073  * care to map the inode according to @mnt_userns before checking permissions.
4074  * On non-idmapped mounts or if permission checking is to be performed on the
4075  * raw inode simply passs init_user_ns.
4076  */
4077 int vfs_unlink(struct user_namespace *mnt_userns, struct inode *dir,
4078 	       struct dentry *dentry, struct inode **delegated_inode)
4079 {
4080 	struct inode *target = dentry->d_inode;
4081 	int error = may_delete(mnt_userns, dir, dentry, 0);
4082 
4083 	if (error)
4084 		return error;
4085 
4086 	if (!dir->i_op->unlink)
4087 		return -EPERM;
4088 
4089 	inode_lock(target);
4090 	if (IS_SWAPFILE(target))
4091 		error = -EPERM;
4092 	else if (is_local_mountpoint(dentry))
4093 		error = -EBUSY;
4094 	else {
4095 		error = security_inode_unlink(dir, dentry);
4096 		if (!error) {
4097 			error = try_break_deleg(target, delegated_inode);
4098 			if (error)
4099 				goto out;
4100 			error = dir->i_op->unlink(dir, dentry);
4101 			if (!error) {
4102 				dont_mount(dentry);
4103 				detach_mounts(dentry);
4104 				fsnotify_unlink(dir, dentry);
4105 			}
4106 		}
4107 	}
4108 out:
4109 	inode_unlock(target);
4110 
4111 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
4112 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
4113 		fsnotify_link_count(target);
4114 		d_delete(dentry);
4115 	}
4116 
4117 	return error;
4118 }
4119 EXPORT_SYMBOL(vfs_unlink);
4120 
4121 /*
4122  * Make sure that the actual truncation of the file will occur outside its
4123  * directory's i_mutex.  Truncate can take a long time if there is a lot of
4124  * writeout happening, and we don't want to prevent access to the directory
4125  * while waiting on the I/O.
4126  */
4127 int do_unlinkat(int dfd, struct filename *name)
4128 {
4129 	int error;
4130 	struct dentry *dentry;
4131 	struct path path;
4132 	struct qstr last;
4133 	int type;
4134 	struct inode *inode = NULL;
4135 	struct inode *delegated_inode = NULL;
4136 	unsigned int lookup_flags = 0;
4137 retry:
4138 	error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4139 	if (error)
4140 		goto exit1;
4141 
4142 	error = -EISDIR;
4143 	if (type != LAST_NORM)
4144 		goto exit2;
4145 
4146 	error = mnt_want_write(path.mnt);
4147 	if (error)
4148 		goto exit2;
4149 retry_deleg:
4150 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4151 	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4152 	error = PTR_ERR(dentry);
4153 	if (!IS_ERR(dentry)) {
4154 		struct user_namespace *mnt_userns;
4155 
4156 		/* Why not before? Because we want correct error value */
4157 		if (last.name[last.len])
4158 			goto slashes;
4159 		inode = dentry->d_inode;
4160 		if (d_is_negative(dentry))
4161 			goto slashes;
4162 		ihold(inode);
4163 		error = security_path_unlink(&path, dentry);
4164 		if (error)
4165 			goto exit3;
4166 		mnt_userns = mnt_user_ns(path.mnt);
4167 		error = vfs_unlink(mnt_userns, path.dentry->d_inode, dentry,
4168 				   &delegated_inode);
4169 exit3:
4170 		dput(dentry);
4171 	}
4172 	inode_unlock(path.dentry->d_inode);
4173 	if (inode)
4174 		iput(inode);	/* truncate the inode here */
4175 	inode = NULL;
4176 	if (delegated_inode) {
4177 		error = break_deleg_wait(&delegated_inode);
4178 		if (!error)
4179 			goto retry_deleg;
4180 	}
4181 	mnt_drop_write(path.mnt);
4182 exit2:
4183 	path_put(&path);
4184 	if (retry_estale(error, lookup_flags)) {
4185 		lookup_flags |= LOOKUP_REVAL;
4186 		inode = NULL;
4187 		goto retry;
4188 	}
4189 exit1:
4190 	putname(name);
4191 	return error;
4192 
4193 slashes:
4194 	if (d_is_negative(dentry))
4195 		error = -ENOENT;
4196 	else if (d_is_dir(dentry))
4197 		error = -EISDIR;
4198 	else
4199 		error = -ENOTDIR;
4200 	goto exit3;
4201 }
4202 
4203 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4204 {
4205 	if ((flag & ~AT_REMOVEDIR) != 0)
4206 		return -EINVAL;
4207 
4208 	if (flag & AT_REMOVEDIR)
4209 		return do_rmdir(dfd, getname(pathname));
4210 	return do_unlinkat(dfd, getname(pathname));
4211 }
4212 
4213 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4214 {
4215 	return do_unlinkat(AT_FDCWD, getname(pathname));
4216 }
4217 
4218 /**
4219  * vfs_symlink - create symlink
4220  * @mnt_userns:	user namespace of the mount the inode was found from
4221  * @dir:	inode of @dentry
4222  * @dentry:	pointer to dentry of the base directory
4223  * @oldname:	name of the file to link to
4224  *
4225  * Create a symlink.
4226  *
4227  * If the inode has been found through an idmapped mount the user namespace of
4228  * the vfsmount must be passed through @mnt_userns. This function will then take
4229  * care to map the inode according to @mnt_userns before checking permissions.
4230  * On non-idmapped mounts or if permission checking is to be performed on the
4231  * raw inode simply passs init_user_ns.
4232  */
4233 int vfs_symlink(struct user_namespace *mnt_userns, struct inode *dir,
4234 		struct dentry *dentry, const char *oldname)
4235 {
4236 	int error = may_create(mnt_userns, dir, dentry);
4237 
4238 	if (error)
4239 		return error;
4240 
4241 	if (!dir->i_op->symlink)
4242 		return -EPERM;
4243 
4244 	error = security_inode_symlink(dir, dentry, oldname);
4245 	if (error)
4246 		return error;
4247 
4248 	error = dir->i_op->symlink(mnt_userns, dir, dentry, oldname);
4249 	if (!error)
4250 		fsnotify_create(dir, dentry);
4251 	return error;
4252 }
4253 EXPORT_SYMBOL(vfs_symlink);
4254 
4255 int do_symlinkat(struct filename *from, int newdfd, struct filename *to)
4256 {
4257 	int error;
4258 	struct dentry *dentry;
4259 	struct path path;
4260 	unsigned int lookup_flags = 0;
4261 
4262 	if (IS_ERR(from)) {
4263 		error = PTR_ERR(from);
4264 		goto out_putnames;
4265 	}
4266 retry:
4267 	dentry = filename_create(newdfd, to, &path, lookup_flags);
4268 	error = PTR_ERR(dentry);
4269 	if (IS_ERR(dentry))
4270 		goto out_putnames;
4271 
4272 	error = security_path_symlink(&path, dentry, from->name);
4273 	if (!error) {
4274 		struct user_namespace *mnt_userns;
4275 
4276 		mnt_userns = mnt_user_ns(path.mnt);
4277 		error = vfs_symlink(mnt_userns, path.dentry->d_inode, dentry,
4278 				    from->name);
4279 	}
4280 	done_path_create(&path, dentry);
4281 	if (retry_estale(error, lookup_flags)) {
4282 		lookup_flags |= LOOKUP_REVAL;
4283 		goto retry;
4284 	}
4285 out_putnames:
4286 	putname(to);
4287 	putname(from);
4288 	return error;
4289 }
4290 
4291 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4292 		int, newdfd, const char __user *, newname)
4293 {
4294 	return do_symlinkat(getname(oldname), newdfd, getname(newname));
4295 }
4296 
4297 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4298 {
4299 	return do_symlinkat(getname(oldname), AT_FDCWD, getname(newname));
4300 }
4301 
4302 /**
4303  * vfs_link - create a new link
4304  * @old_dentry:	object to be linked
4305  * @mnt_userns:	the user namespace of the mount
4306  * @dir:	new parent
4307  * @new_dentry:	where to create the new link
4308  * @delegated_inode: returns inode needing a delegation break
4309  *
4310  * The caller must hold dir->i_mutex
4311  *
4312  * If vfs_link discovers a delegation on the to-be-linked file in need
4313  * of breaking, it will return -EWOULDBLOCK and return a reference to the
4314  * inode in delegated_inode.  The caller should then break the delegation
4315  * and retry.  Because breaking a delegation may take a long time, the
4316  * caller should drop the i_mutex before doing so.
4317  *
4318  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4319  * be appropriate for callers that expect the underlying filesystem not
4320  * to be NFS exported.
4321  *
4322  * If the inode has been found through an idmapped mount the user namespace of
4323  * the vfsmount must be passed through @mnt_userns. This function will then take
4324  * care to map the inode according to @mnt_userns before checking permissions.
4325  * On non-idmapped mounts or if permission checking is to be performed on the
4326  * raw inode simply passs init_user_ns.
4327  */
4328 int vfs_link(struct dentry *old_dentry, struct user_namespace *mnt_userns,
4329 	     struct inode *dir, struct dentry *new_dentry,
4330 	     struct inode **delegated_inode)
4331 {
4332 	struct inode *inode = old_dentry->d_inode;
4333 	unsigned max_links = dir->i_sb->s_max_links;
4334 	int error;
4335 
4336 	if (!inode)
4337 		return -ENOENT;
4338 
4339 	error = may_create(mnt_userns, dir, new_dentry);
4340 	if (error)
4341 		return error;
4342 
4343 	if (dir->i_sb != inode->i_sb)
4344 		return -EXDEV;
4345 
4346 	/*
4347 	 * A link to an append-only or immutable file cannot be created.
4348 	 */
4349 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4350 		return -EPERM;
4351 	/*
4352 	 * Updating the link count will likely cause i_uid and i_gid to
4353 	 * be writen back improperly if their true value is unknown to
4354 	 * the vfs.
4355 	 */
4356 	if (HAS_UNMAPPED_ID(mnt_userns, inode))
4357 		return -EPERM;
4358 	if (!dir->i_op->link)
4359 		return -EPERM;
4360 	if (S_ISDIR(inode->i_mode))
4361 		return -EPERM;
4362 
4363 	error = security_inode_link(old_dentry, dir, new_dentry);
4364 	if (error)
4365 		return error;
4366 
4367 	inode_lock(inode);
4368 	/* Make sure we don't allow creating hardlink to an unlinked file */
4369 	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4370 		error =  -ENOENT;
4371 	else if (max_links && inode->i_nlink >= max_links)
4372 		error = -EMLINK;
4373 	else {
4374 		error = try_break_deleg(inode, delegated_inode);
4375 		if (!error)
4376 			error = dir->i_op->link(old_dentry, dir, new_dentry);
4377 	}
4378 
4379 	if (!error && (inode->i_state & I_LINKABLE)) {
4380 		spin_lock(&inode->i_lock);
4381 		inode->i_state &= ~I_LINKABLE;
4382 		spin_unlock(&inode->i_lock);
4383 	}
4384 	inode_unlock(inode);
4385 	if (!error)
4386 		fsnotify_link(dir, inode, new_dentry);
4387 	return error;
4388 }
4389 EXPORT_SYMBOL(vfs_link);
4390 
4391 /*
4392  * Hardlinks are often used in delicate situations.  We avoid
4393  * security-related surprises by not following symlinks on the
4394  * newname.  --KAB
4395  *
4396  * We don't follow them on the oldname either to be compatible
4397  * with linux 2.0, and to avoid hard-linking to directories
4398  * and other special files.  --ADM
4399  */
4400 int do_linkat(int olddfd, struct filename *old, int newdfd,
4401 	      struct filename *new, int flags)
4402 {
4403 	struct user_namespace *mnt_userns;
4404 	struct dentry *new_dentry;
4405 	struct path old_path, new_path;
4406 	struct inode *delegated_inode = NULL;
4407 	int how = 0;
4408 	int error;
4409 
4410 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) {
4411 		error = -EINVAL;
4412 		goto out_putnames;
4413 	}
4414 	/*
4415 	 * To use null names we require CAP_DAC_READ_SEARCH
4416 	 * This ensures that not everyone will be able to create
4417 	 * handlink using the passed filedescriptor.
4418 	 */
4419 	if (flags & AT_EMPTY_PATH && !capable(CAP_DAC_READ_SEARCH)) {
4420 		error = -ENOENT;
4421 		goto out_putnames;
4422 	}
4423 
4424 	if (flags & AT_SYMLINK_FOLLOW)
4425 		how |= LOOKUP_FOLLOW;
4426 retry:
4427 	error = filename_lookup(olddfd, old, how, &old_path, NULL);
4428 	if (error)
4429 		goto out_putnames;
4430 
4431 	new_dentry = filename_create(newdfd, new, &new_path,
4432 					(how & LOOKUP_REVAL));
4433 	error = PTR_ERR(new_dentry);
4434 	if (IS_ERR(new_dentry))
4435 		goto out_putpath;
4436 
4437 	error = -EXDEV;
4438 	if (old_path.mnt != new_path.mnt)
4439 		goto out_dput;
4440 	mnt_userns = mnt_user_ns(new_path.mnt);
4441 	error = may_linkat(mnt_userns, &old_path);
4442 	if (unlikely(error))
4443 		goto out_dput;
4444 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
4445 	if (error)
4446 		goto out_dput;
4447 	error = vfs_link(old_path.dentry, mnt_userns, new_path.dentry->d_inode,
4448 			 new_dentry, &delegated_inode);
4449 out_dput:
4450 	done_path_create(&new_path, new_dentry);
4451 	if (delegated_inode) {
4452 		error = break_deleg_wait(&delegated_inode);
4453 		if (!error) {
4454 			path_put(&old_path);
4455 			goto retry;
4456 		}
4457 	}
4458 	if (retry_estale(error, how)) {
4459 		path_put(&old_path);
4460 		how |= LOOKUP_REVAL;
4461 		goto retry;
4462 	}
4463 out_putpath:
4464 	path_put(&old_path);
4465 out_putnames:
4466 	putname(old);
4467 	putname(new);
4468 
4469 	return error;
4470 }
4471 
4472 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4473 		int, newdfd, const char __user *, newname, int, flags)
4474 {
4475 	return do_linkat(olddfd, getname_uflags(oldname, flags),
4476 		newdfd, getname(newname), flags);
4477 }
4478 
4479 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4480 {
4481 	return do_linkat(AT_FDCWD, getname(oldname), AT_FDCWD, getname(newname), 0);
4482 }
4483 
4484 /**
4485  * vfs_rename - rename a filesystem object
4486  * @rd:		pointer to &struct renamedata info
4487  *
4488  * The caller must hold multiple mutexes--see lock_rename()).
4489  *
4490  * If vfs_rename discovers a delegation in need of breaking at either
4491  * the source or destination, it will return -EWOULDBLOCK and return a
4492  * reference to the inode in delegated_inode.  The caller should then
4493  * break the delegation and retry.  Because breaking a delegation may
4494  * take a long time, the caller should drop all locks before doing
4495  * so.
4496  *
4497  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4498  * be appropriate for callers that expect the underlying filesystem not
4499  * to be NFS exported.
4500  *
4501  * The worst of all namespace operations - renaming directory. "Perverted"
4502  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4503  * Problems:
4504  *
4505  *	a) we can get into loop creation.
4506  *	b) race potential - two innocent renames can create a loop together.
4507  *	   That's where 4.4 screws up. Current fix: serialization on
4508  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4509  *	   story.
4510  *	c) we have to lock _four_ objects - parents and victim (if it exists),
4511  *	   and source (if it is not a directory).
4512  *	   And that - after we got ->i_mutex on parents (until then we don't know
4513  *	   whether the target exists).  Solution: try to be smart with locking
4514  *	   order for inodes.  We rely on the fact that tree topology may change
4515  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
4516  *	   move will be locked.  Thus we can rank directories by the tree
4517  *	   (ancestors first) and rank all non-directories after them.
4518  *	   That works since everybody except rename does "lock parent, lookup,
4519  *	   lock child" and rename is under ->s_vfs_rename_mutex.
4520  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
4521  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
4522  *	   we'd better make sure that there's no link(2) for them.
4523  *	d) conversion from fhandle to dentry may come in the wrong moment - when
4524  *	   we are removing the target. Solution: we will have to grab ->i_mutex
4525  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4526  *	   ->i_mutex on parents, which works but leads to some truly excessive
4527  *	   locking].
4528  */
4529 int vfs_rename(struct renamedata *rd)
4530 {
4531 	int error;
4532 	struct inode *old_dir = rd->old_dir, *new_dir = rd->new_dir;
4533 	struct dentry *old_dentry = rd->old_dentry;
4534 	struct dentry *new_dentry = rd->new_dentry;
4535 	struct inode **delegated_inode = rd->delegated_inode;
4536 	unsigned int flags = rd->flags;
4537 	bool is_dir = d_is_dir(old_dentry);
4538 	struct inode *source = old_dentry->d_inode;
4539 	struct inode *target = new_dentry->d_inode;
4540 	bool new_is_dir = false;
4541 	unsigned max_links = new_dir->i_sb->s_max_links;
4542 	struct name_snapshot old_name;
4543 
4544 	if (source == target)
4545 		return 0;
4546 
4547 	error = may_delete(rd->old_mnt_userns, old_dir, old_dentry, is_dir);
4548 	if (error)
4549 		return error;
4550 
4551 	if (!target) {
4552 		error = may_create(rd->new_mnt_userns, new_dir, new_dentry);
4553 	} else {
4554 		new_is_dir = d_is_dir(new_dentry);
4555 
4556 		if (!(flags & RENAME_EXCHANGE))
4557 			error = may_delete(rd->new_mnt_userns, new_dir,
4558 					   new_dentry, is_dir);
4559 		else
4560 			error = may_delete(rd->new_mnt_userns, new_dir,
4561 					   new_dentry, new_is_dir);
4562 	}
4563 	if (error)
4564 		return error;
4565 
4566 	if (!old_dir->i_op->rename)
4567 		return -EPERM;
4568 
4569 	/*
4570 	 * If we are going to change the parent - check write permissions,
4571 	 * we'll need to flip '..'.
4572 	 */
4573 	if (new_dir != old_dir) {
4574 		if (is_dir) {
4575 			error = inode_permission(rd->old_mnt_userns, source,
4576 						 MAY_WRITE);
4577 			if (error)
4578 				return error;
4579 		}
4580 		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4581 			error = inode_permission(rd->new_mnt_userns, target,
4582 						 MAY_WRITE);
4583 			if (error)
4584 				return error;
4585 		}
4586 	}
4587 
4588 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4589 				      flags);
4590 	if (error)
4591 		return error;
4592 
4593 	take_dentry_name_snapshot(&old_name, old_dentry);
4594 	dget(new_dentry);
4595 	if (!is_dir || (flags & RENAME_EXCHANGE))
4596 		lock_two_nondirectories(source, target);
4597 	else if (target)
4598 		inode_lock(target);
4599 
4600 	error = -EPERM;
4601 	if (IS_SWAPFILE(source) || (target && IS_SWAPFILE(target)))
4602 		goto out;
4603 
4604 	error = -EBUSY;
4605 	if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4606 		goto out;
4607 
4608 	if (max_links && new_dir != old_dir) {
4609 		error = -EMLINK;
4610 		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4611 			goto out;
4612 		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4613 		    old_dir->i_nlink >= max_links)
4614 			goto out;
4615 	}
4616 	if (!is_dir) {
4617 		error = try_break_deleg(source, delegated_inode);
4618 		if (error)
4619 			goto out;
4620 	}
4621 	if (target && !new_is_dir) {
4622 		error = try_break_deleg(target, delegated_inode);
4623 		if (error)
4624 			goto out;
4625 	}
4626 	error = old_dir->i_op->rename(rd->new_mnt_userns, old_dir, old_dentry,
4627 				      new_dir, new_dentry, flags);
4628 	if (error)
4629 		goto out;
4630 
4631 	if (!(flags & RENAME_EXCHANGE) && target) {
4632 		if (is_dir) {
4633 			shrink_dcache_parent(new_dentry);
4634 			target->i_flags |= S_DEAD;
4635 		}
4636 		dont_mount(new_dentry);
4637 		detach_mounts(new_dentry);
4638 	}
4639 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4640 		if (!(flags & RENAME_EXCHANGE))
4641 			d_move(old_dentry, new_dentry);
4642 		else
4643 			d_exchange(old_dentry, new_dentry);
4644 	}
4645 out:
4646 	if (!is_dir || (flags & RENAME_EXCHANGE))
4647 		unlock_two_nondirectories(source, target);
4648 	else if (target)
4649 		inode_unlock(target);
4650 	dput(new_dentry);
4651 	if (!error) {
4652 		fsnotify_move(old_dir, new_dir, &old_name.name, is_dir,
4653 			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4654 		if (flags & RENAME_EXCHANGE) {
4655 			fsnotify_move(new_dir, old_dir, &old_dentry->d_name,
4656 				      new_is_dir, NULL, new_dentry);
4657 		}
4658 	}
4659 	release_dentry_name_snapshot(&old_name);
4660 
4661 	return error;
4662 }
4663 EXPORT_SYMBOL(vfs_rename);
4664 
4665 int do_renameat2(int olddfd, struct filename *from, int newdfd,
4666 		 struct filename *to, unsigned int flags)
4667 {
4668 	struct renamedata rd;
4669 	struct dentry *old_dentry, *new_dentry;
4670 	struct dentry *trap;
4671 	struct path old_path, new_path;
4672 	struct qstr old_last, new_last;
4673 	int old_type, new_type;
4674 	struct inode *delegated_inode = NULL;
4675 	unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4676 	bool should_retry = false;
4677 	int error = -EINVAL;
4678 
4679 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4680 		goto put_names;
4681 
4682 	if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4683 	    (flags & RENAME_EXCHANGE))
4684 		goto put_names;
4685 
4686 	if (flags & RENAME_EXCHANGE)
4687 		target_flags = 0;
4688 
4689 retry:
4690 	error = filename_parentat(olddfd, from, lookup_flags, &old_path,
4691 				  &old_last, &old_type);
4692 	if (error)
4693 		goto put_names;
4694 
4695 	error = filename_parentat(newdfd, to, lookup_flags, &new_path, &new_last,
4696 				  &new_type);
4697 	if (error)
4698 		goto exit1;
4699 
4700 	error = -EXDEV;
4701 	if (old_path.mnt != new_path.mnt)
4702 		goto exit2;
4703 
4704 	error = -EBUSY;
4705 	if (old_type != LAST_NORM)
4706 		goto exit2;
4707 
4708 	if (flags & RENAME_NOREPLACE)
4709 		error = -EEXIST;
4710 	if (new_type != LAST_NORM)
4711 		goto exit2;
4712 
4713 	error = mnt_want_write(old_path.mnt);
4714 	if (error)
4715 		goto exit2;
4716 
4717 retry_deleg:
4718 	trap = lock_rename(new_path.dentry, old_path.dentry);
4719 
4720 	old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4721 	error = PTR_ERR(old_dentry);
4722 	if (IS_ERR(old_dentry))
4723 		goto exit3;
4724 	/* source must exist */
4725 	error = -ENOENT;
4726 	if (d_is_negative(old_dentry))
4727 		goto exit4;
4728 	new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4729 	error = PTR_ERR(new_dentry);
4730 	if (IS_ERR(new_dentry))
4731 		goto exit4;
4732 	error = -EEXIST;
4733 	if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4734 		goto exit5;
4735 	if (flags & RENAME_EXCHANGE) {
4736 		error = -ENOENT;
4737 		if (d_is_negative(new_dentry))
4738 			goto exit5;
4739 
4740 		if (!d_is_dir(new_dentry)) {
4741 			error = -ENOTDIR;
4742 			if (new_last.name[new_last.len])
4743 				goto exit5;
4744 		}
4745 	}
4746 	/* unless the source is a directory trailing slashes give -ENOTDIR */
4747 	if (!d_is_dir(old_dentry)) {
4748 		error = -ENOTDIR;
4749 		if (old_last.name[old_last.len])
4750 			goto exit5;
4751 		if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4752 			goto exit5;
4753 	}
4754 	/* source should not be ancestor of target */
4755 	error = -EINVAL;
4756 	if (old_dentry == trap)
4757 		goto exit5;
4758 	/* target should not be an ancestor of source */
4759 	if (!(flags & RENAME_EXCHANGE))
4760 		error = -ENOTEMPTY;
4761 	if (new_dentry == trap)
4762 		goto exit5;
4763 
4764 	error = security_path_rename(&old_path, old_dentry,
4765 				     &new_path, new_dentry, flags);
4766 	if (error)
4767 		goto exit5;
4768 
4769 	rd.old_dir	   = old_path.dentry->d_inode;
4770 	rd.old_dentry	   = old_dentry;
4771 	rd.old_mnt_userns  = mnt_user_ns(old_path.mnt);
4772 	rd.new_dir	   = new_path.dentry->d_inode;
4773 	rd.new_dentry	   = new_dentry;
4774 	rd.new_mnt_userns  = mnt_user_ns(new_path.mnt);
4775 	rd.delegated_inode = &delegated_inode;
4776 	rd.flags	   = flags;
4777 	error = vfs_rename(&rd);
4778 exit5:
4779 	dput(new_dentry);
4780 exit4:
4781 	dput(old_dentry);
4782 exit3:
4783 	unlock_rename(new_path.dentry, old_path.dentry);
4784 	if (delegated_inode) {
4785 		error = break_deleg_wait(&delegated_inode);
4786 		if (!error)
4787 			goto retry_deleg;
4788 	}
4789 	mnt_drop_write(old_path.mnt);
4790 exit2:
4791 	if (retry_estale(error, lookup_flags))
4792 		should_retry = true;
4793 	path_put(&new_path);
4794 exit1:
4795 	path_put(&old_path);
4796 	if (should_retry) {
4797 		should_retry = false;
4798 		lookup_flags |= LOOKUP_REVAL;
4799 		goto retry;
4800 	}
4801 put_names:
4802 	putname(from);
4803 	putname(to);
4804 	return error;
4805 }
4806 
4807 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4808 		int, newdfd, const char __user *, newname, unsigned int, flags)
4809 {
4810 	return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
4811 				flags);
4812 }
4813 
4814 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4815 		int, newdfd, const char __user *, newname)
4816 {
4817 	return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
4818 				0);
4819 }
4820 
4821 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4822 {
4823 	return do_renameat2(AT_FDCWD, getname(oldname), AT_FDCWD,
4824 				getname(newname), 0);
4825 }
4826 
4827 int readlink_copy(char __user *buffer, int buflen, const char *link)
4828 {
4829 	int len = PTR_ERR(link);
4830 	if (IS_ERR(link))
4831 		goto out;
4832 
4833 	len = strlen(link);
4834 	if (len > (unsigned) buflen)
4835 		len = buflen;
4836 	if (copy_to_user(buffer, link, len))
4837 		len = -EFAULT;
4838 out:
4839 	return len;
4840 }
4841 
4842 /**
4843  * vfs_readlink - copy symlink body into userspace buffer
4844  * @dentry: dentry on which to get symbolic link
4845  * @buffer: user memory pointer
4846  * @buflen: size of buffer
4847  *
4848  * Does not touch atime.  That's up to the caller if necessary
4849  *
4850  * Does not call security hook.
4851  */
4852 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4853 {
4854 	struct inode *inode = d_inode(dentry);
4855 	DEFINE_DELAYED_CALL(done);
4856 	const char *link;
4857 	int res;
4858 
4859 	if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
4860 		if (unlikely(inode->i_op->readlink))
4861 			return inode->i_op->readlink(dentry, buffer, buflen);
4862 
4863 		if (!d_is_symlink(dentry))
4864 			return -EINVAL;
4865 
4866 		spin_lock(&inode->i_lock);
4867 		inode->i_opflags |= IOP_DEFAULT_READLINK;
4868 		spin_unlock(&inode->i_lock);
4869 	}
4870 
4871 	link = READ_ONCE(inode->i_link);
4872 	if (!link) {
4873 		link = inode->i_op->get_link(dentry, inode, &done);
4874 		if (IS_ERR(link))
4875 			return PTR_ERR(link);
4876 	}
4877 	res = readlink_copy(buffer, buflen, link);
4878 	do_delayed_call(&done);
4879 	return res;
4880 }
4881 EXPORT_SYMBOL(vfs_readlink);
4882 
4883 /**
4884  * vfs_get_link - get symlink body
4885  * @dentry: dentry on which to get symbolic link
4886  * @done: caller needs to free returned data with this
4887  *
4888  * Calls security hook and i_op->get_link() on the supplied inode.
4889  *
4890  * It does not touch atime.  That's up to the caller if necessary.
4891  *
4892  * Does not work on "special" symlinks like /proc/$$/fd/N
4893  */
4894 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
4895 {
4896 	const char *res = ERR_PTR(-EINVAL);
4897 	struct inode *inode = d_inode(dentry);
4898 
4899 	if (d_is_symlink(dentry)) {
4900 		res = ERR_PTR(security_inode_readlink(dentry));
4901 		if (!res)
4902 			res = inode->i_op->get_link(dentry, inode, done);
4903 	}
4904 	return res;
4905 }
4906 EXPORT_SYMBOL(vfs_get_link);
4907 
4908 /* get the link contents into pagecache */
4909 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4910 			  struct delayed_call *callback)
4911 {
4912 	char *kaddr;
4913 	struct page *page;
4914 	struct address_space *mapping = inode->i_mapping;
4915 
4916 	if (!dentry) {
4917 		page = find_get_page(mapping, 0);
4918 		if (!page)
4919 			return ERR_PTR(-ECHILD);
4920 		if (!PageUptodate(page)) {
4921 			put_page(page);
4922 			return ERR_PTR(-ECHILD);
4923 		}
4924 	} else {
4925 		page = read_mapping_page(mapping, 0, NULL);
4926 		if (IS_ERR(page))
4927 			return (char*)page;
4928 	}
4929 	set_delayed_call(callback, page_put_link, page);
4930 	BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4931 	kaddr = page_address(page);
4932 	nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4933 	return kaddr;
4934 }
4935 
4936 EXPORT_SYMBOL(page_get_link);
4937 
4938 void page_put_link(void *arg)
4939 {
4940 	put_page(arg);
4941 }
4942 EXPORT_SYMBOL(page_put_link);
4943 
4944 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4945 {
4946 	DEFINE_DELAYED_CALL(done);
4947 	int res = readlink_copy(buffer, buflen,
4948 				page_get_link(dentry, d_inode(dentry),
4949 					      &done));
4950 	do_delayed_call(&done);
4951 	return res;
4952 }
4953 EXPORT_SYMBOL(page_readlink);
4954 
4955 /*
4956  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4957  */
4958 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4959 {
4960 	struct address_space *mapping = inode->i_mapping;
4961 	struct page *page;
4962 	void *fsdata;
4963 	int err;
4964 	unsigned int flags = 0;
4965 	if (nofs)
4966 		flags |= AOP_FLAG_NOFS;
4967 
4968 retry:
4969 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
4970 				flags, &page, &fsdata);
4971 	if (err)
4972 		goto fail;
4973 
4974 	memcpy(page_address(page), symname, len-1);
4975 
4976 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4977 							page, fsdata);
4978 	if (err < 0)
4979 		goto fail;
4980 	if (err < len-1)
4981 		goto retry;
4982 
4983 	mark_inode_dirty(inode);
4984 	return 0;
4985 fail:
4986 	return err;
4987 }
4988 EXPORT_SYMBOL(__page_symlink);
4989 
4990 int page_symlink(struct inode *inode, const char *symname, int len)
4991 {
4992 	return __page_symlink(inode, symname, len,
4993 			!mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4994 }
4995 EXPORT_SYMBOL(page_symlink);
4996 
4997 const struct inode_operations page_symlink_inode_operations = {
4998 	.get_link	= page_get_link,
4999 };
5000 EXPORT_SYMBOL(page_symlink_inode_operations);
5001