xref: /openbmc/linux/fs/namei.c (revision de167752a889d19b9bb018f8eecbc1ebbfe07b2f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/namei.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * Some corrections by tytso.
10  */
11 
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13  * lookup logic.
14  */
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
16  */
17 
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
22 #include <linux/fs.h>
23 #include <linux/namei.h>
24 #include <linux/pagemap.h>
25 #include <linux/fsnotify.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/ima.h>
29 #include <linux/syscalls.h>
30 #include <linux/mount.h>
31 #include <linux/audit.h>
32 #include <linux/capability.h>
33 #include <linux/file.h>
34 #include <linux/fcntl.h>
35 #include <linux/device_cgroup.h>
36 #include <linux/fs_struct.h>
37 #include <linux/posix_acl.h>
38 #include <linux/hash.h>
39 #include <linux/bitops.h>
40 #include <linux/init_task.h>
41 #include <linux/uaccess.h>
42 #include <linux/build_bug.h>
43 
44 #include "internal.h"
45 #include "mount.h"
46 
47 /* [Feb-1997 T. Schoebel-Theuer]
48  * Fundamental changes in the pathname lookup mechanisms (namei)
49  * were necessary because of omirr.  The reason is that omirr needs
50  * to know the _real_ pathname, not the user-supplied one, in case
51  * of symlinks (and also when transname replacements occur).
52  *
53  * The new code replaces the old recursive symlink resolution with
54  * an iterative one (in case of non-nested symlink chains).  It does
55  * this with calls to <fs>_follow_link().
56  * As a side effect, dir_namei(), _namei() and follow_link() are now
57  * replaced with a single function lookup_dentry() that can handle all
58  * the special cases of the former code.
59  *
60  * With the new dcache, the pathname is stored at each inode, at least as
61  * long as the refcount of the inode is positive.  As a side effect, the
62  * size of the dcache depends on the inode cache and thus is dynamic.
63  *
64  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
65  * resolution to correspond with current state of the code.
66  *
67  * Note that the symlink resolution is not *completely* iterative.
68  * There is still a significant amount of tail- and mid- recursion in
69  * the algorithm.  Also, note that <fs>_readlink() is not used in
70  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
71  * may return different results than <fs>_follow_link().  Many virtual
72  * filesystems (including /proc) exhibit this behavior.
73  */
74 
75 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
76  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
77  * and the name already exists in form of a symlink, try to create the new
78  * name indicated by the symlink. The old code always complained that the
79  * name already exists, due to not following the symlink even if its target
80  * is nonexistent.  The new semantics affects also mknod() and link() when
81  * the name is a symlink pointing to a non-existent name.
82  *
83  * I don't know which semantics is the right one, since I have no access
84  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
85  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
86  * "old" one. Personally, I think the new semantics is much more logical.
87  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
88  * file does succeed in both HP-UX and SunOs, but not in Solaris
89  * and in the old Linux semantics.
90  */
91 
92 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
93  * semantics.  See the comments in "open_namei" and "do_link" below.
94  *
95  * [10-Sep-98 Alan Modra] Another symlink change.
96  */
97 
98 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
99  *	inside the path - always follow.
100  *	in the last component in creation/removal/renaming - never follow.
101  *	if LOOKUP_FOLLOW passed - follow.
102  *	if the pathname has trailing slashes - follow.
103  *	otherwise - don't follow.
104  * (applied in that order).
105  *
106  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
107  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
108  * During the 2.4 we need to fix the userland stuff depending on it -
109  * hopefully we will be able to get rid of that wart in 2.5. So far only
110  * XEmacs seems to be relying on it...
111  */
112 /*
113  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
114  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
115  * any extra contention...
116  */
117 
118 /* In order to reduce some races, while at the same time doing additional
119  * checking and hopefully speeding things up, we copy filenames to the
120  * kernel data space before using them..
121  *
122  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
123  * PATH_MAX includes the nul terminator --RR.
124  */
125 
126 #define EMBEDDED_NAME_MAX	(PATH_MAX - offsetof(struct filename, iname))
127 
128 struct filename *
129 getname_flags(const char __user *filename, int flags, int *empty)
130 {
131 	struct filename *result;
132 	char *kname;
133 	int len;
134 	BUILD_BUG_ON(offsetof(struct filename, iname) % sizeof(long) != 0);
135 
136 	result = audit_reusename(filename);
137 	if (result)
138 		return result;
139 
140 	result = __getname();
141 	if (unlikely(!result))
142 		return ERR_PTR(-ENOMEM);
143 
144 	/*
145 	 * First, try to embed the struct filename inside the names_cache
146 	 * allocation
147 	 */
148 	kname = (char *)result->iname;
149 	result->name = kname;
150 
151 	len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
152 	if (unlikely(len < 0)) {
153 		__putname(result);
154 		return ERR_PTR(len);
155 	}
156 
157 	/*
158 	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
159 	 * separate struct filename so we can dedicate the entire
160 	 * names_cache allocation for the pathname, and re-do the copy from
161 	 * userland.
162 	 */
163 	if (unlikely(len == EMBEDDED_NAME_MAX)) {
164 		const size_t size = offsetof(struct filename, iname[1]);
165 		kname = (char *)result;
166 
167 		/*
168 		 * size is chosen that way we to guarantee that
169 		 * result->iname[0] is within the same object and that
170 		 * kname can't be equal to result->iname, no matter what.
171 		 */
172 		result = kzalloc(size, GFP_KERNEL);
173 		if (unlikely(!result)) {
174 			__putname(kname);
175 			return ERR_PTR(-ENOMEM);
176 		}
177 		result->name = kname;
178 		len = strncpy_from_user(kname, filename, PATH_MAX);
179 		if (unlikely(len < 0)) {
180 			__putname(kname);
181 			kfree(result);
182 			return ERR_PTR(len);
183 		}
184 		if (unlikely(len == PATH_MAX)) {
185 			__putname(kname);
186 			kfree(result);
187 			return ERR_PTR(-ENAMETOOLONG);
188 		}
189 	}
190 
191 	result->refcnt = 1;
192 	/* The empty path is special. */
193 	if (unlikely(!len)) {
194 		if (empty)
195 			*empty = 1;
196 		if (!(flags & LOOKUP_EMPTY)) {
197 			putname(result);
198 			return ERR_PTR(-ENOENT);
199 		}
200 	}
201 
202 	result->uptr = filename;
203 	result->aname = NULL;
204 	audit_getname(result);
205 	return result;
206 }
207 
208 struct filename *
209 getname(const char __user * filename)
210 {
211 	return getname_flags(filename, 0, NULL);
212 }
213 
214 struct filename *
215 getname_kernel(const char * filename)
216 {
217 	struct filename *result;
218 	int len = strlen(filename) + 1;
219 
220 	result = __getname();
221 	if (unlikely(!result))
222 		return ERR_PTR(-ENOMEM);
223 
224 	if (len <= EMBEDDED_NAME_MAX) {
225 		result->name = (char *)result->iname;
226 	} else if (len <= PATH_MAX) {
227 		const size_t size = offsetof(struct filename, iname[1]);
228 		struct filename *tmp;
229 
230 		tmp = kmalloc(size, GFP_KERNEL);
231 		if (unlikely(!tmp)) {
232 			__putname(result);
233 			return ERR_PTR(-ENOMEM);
234 		}
235 		tmp->name = (char *)result;
236 		result = tmp;
237 	} else {
238 		__putname(result);
239 		return ERR_PTR(-ENAMETOOLONG);
240 	}
241 	memcpy((char *)result->name, filename, len);
242 	result->uptr = NULL;
243 	result->aname = NULL;
244 	result->refcnt = 1;
245 	audit_getname(result);
246 
247 	return result;
248 }
249 
250 void putname(struct filename *name)
251 {
252 	BUG_ON(name->refcnt <= 0);
253 
254 	if (--name->refcnt > 0)
255 		return;
256 
257 	if (name->name != name->iname) {
258 		__putname(name->name);
259 		kfree(name);
260 	} else
261 		__putname(name);
262 }
263 
264 static int check_acl(struct inode *inode, int mask)
265 {
266 #ifdef CONFIG_FS_POSIX_ACL
267 	struct posix_acl *acl;
268 
269 	if (mask & MAY_NOT_BLOCK) {
270 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
271 	        if (!acl)
272 	                return -EAGAIN;
273 		/* no ->get_acl() calls in RCU mode... */
274 		if (is_uncached_acl(acl))
275 			return -ECHILD;
276 	        return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
277 	}
278 
279 	acl = get_acl(inode, ACL_TYPE_ACCESS);
280 	if (IS_ERR(acl))
281 		return PTR_ERR(acl);
282 	if (acl) {
283 	        int error = posix_acl_permission(inode, acl, mask);
284 	        posix_acl_release(acl);
285 	        return error;
286 	}
287 #endif
288 
289 	return -EAGAIN;
290 }
291 
292 /*
293  * This does the basic permission checking
294  */
295 static int acl_permission_check(struct inode *inode, int mask)
296 {
297 	unsigned int mode = inode->i_mode;
298 
299 	if (likely(uid_eq(current_fsuid(), inode->i_uid)))
300 		mode >>= 6;
301 	else {
302 		if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
303 			int error = check_acl(inode, mask);
304 			if (error != -EAGAIN)
305 				return error;
306 		}
307 
308 		if (in_group_p(inode->i_gid))
309 			mode >>= 3;
310 	}
311 
312 	/*
313 	 * If the DACs are ok we don't need any capability check.
314 	 */
315 	if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
316 		return 0;
317 	return -EACCES;
318 }
319 
320 /**
321  * generic_permission -  check for access rights on a Posix-like filesystem
322  * @inode:	inode to check access rights for
323  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
324  *
325  * Used to check for read/write/execute permissions on a file.
326  * We use "fsuid" for this, letting us set arbitrary permissions
327  * for filesystem access without changing the "normal" uids which
328  * are used for other things.
329  *
330  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
331  * request cannot be satisfied (eg. requires blocking or too much complexity).
332  * It would then be called again in ref-walk mode.
333  */
334 int generic_permission(struct inode *inode, int mask)
335 {
336 	int ret;
337 
338 	/*
339 	 * Do the basic permission checks.
340 	 */
341 	ret = acl_permission_check(inode, mask);
342 	if (ret != -EACCES)
343 		return ret;
344 
345 	if (S_ISDIR(inode->i_mode)) {
346 		/* DACs are overridable for directories */
347 		if (!(mask & MAY_WRITE))
348 			if (capable_wrt_inode_uidgid(inode,
349 						     CAP_DAC_READ_SEARCH))
350 				return 0;
351 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
352 			return 0;
353 		return -EACCES;
354 	}
355 
356 	/*
357 	 * Searching includes executable on directories, else just read.
358 	 */
359 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
360 	if (mask == MAY_READ)
361 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
362 			return 0;
363 	/*
364 	 * Read/write DACs are always overridable.
365 	 * Executable DACs are overridable when there is
366 	 * at least one exec bit set.
367 	 */
368 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
369 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
370 			return 0;
371 
372 	return -EACCES;
373 }
374 EXPORT_SYMBOL(generic_permission);
375 
376 /*
377  * We _really_ want to just do "generic_permission()" without
378  * even looking at the inode->i_op values. So we keep a cache
379  * flag in inode->i_opflags, that says "this has not special
380  * permission function, use the fast case".
381  */
382 static inline int do_inode_permission(struct inode *inode, int mask)
383 {
384 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
385 		if (likely(inode->i_op->permission))
386 			return inode->i_op->permission(inode, mask);
387 
388 		/* This gets set once for the inode lifetime */
389 		spin_lock(&inode->i_lock);
390 		inode->i_opflags |= IOP_FASTPERM;
391 		spin_unlock(&inode->i_lock);
392 	}
393 	return generic_permission(inode, mask);
394 }
395 
396 /**
397  * sb_permission - Check superblock-level permissions
398  * @sb: Superblock of inode to check permission on
399  * @inode: Inode to check permission on
400  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
401  *
402  * Separate out file-system wide checks from inode-specific permission checks.
403  */
404 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
405 {
406 	if (unlikely(mask & MAY_WRITE)) {
407 		umode_t mode = inode->i_mode;
408 
409 		/* Nobody gets write access to a read-only fs. */
410 		if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
411 			return -EROFS;
412 	}
413 	return 0;
414 }
415 
416 /**
417  * inode_permission - Check for access rights to a given inode
418  * @inode: Inode to check permission on
419  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
420  *
421  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
422  * this, letting us set arbitrary permissions for filesystem access without
423  * changing the "normal" UIDs which are used for other things.
424  *
425  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
426  */
427 int inode_permission(struct inode *inode, int mask)
428 {
429 	int retval;
430 
431 	retval = sb_permission(inode->i_sb, inode, mask);
432 	if (retval)
433 		return retval;
434 
435 	if (unlikely(mask & MAY_WRITE)) {
436 		/*
437 		 * Nobody gets write access to an immutable file.
438 		 */
439 		if (IS_IMMUTABLE(inode))
440 			return -EPERM;
441 
442 		/*
443 		 * Updating mtime will likely cause i_uid and i_gid to be
444 		 * written back improperly if their true value is unknown
445 		 * to the vfs.
446 		 */
447 		if (HAS_UNMAPPED_ID(inode))
448 			return -EACCES;
449 	}
450 
451 	retval = do_inode_permission(inode, mask);
452 	if (retval)
453 		return retval;
454 
455 	retval = devcgroup_inode_permission(inode, mask);
456 	if (retval)
457 		return retval;
458 
459 	return security_inode_permission(inode, mask);
460 }
461 EXPORT_SYMBOL(inode_permission);
462 
463 /**
464  * path_get - get a reference to a path
465  * @path: path to get the reference to
466  *
467  * Given a path increment the reference count to the dentry and the vfsmount.
468  */
469 void path_get(const struct path *path)
470 {
471 	mntget(path->mnt);
472 	dget(path->dentry);
473 }
474 EXPORT_SYMBOL(path_get);
475 
476 /**
477  * path_put - put a reference to a path
478  * @path: path to put the reference to
479  *
480  * Given a path decrement the reference count to the dentry and the vfsmount.
481  */
482 void path_put(const struct path *path)
483 {
484 	dput(path->dentry);
485 	mntput(path->mnt);
486 }
487 EXPORT_SYMBOL(path_put);
488 
489 #define EMBEDDED_LEVELS 2
490 struct nameidata {
491 	struct path	path;
492 	struct qstr	last;
493 	struct path	root;
494 	struct inode	*inode; /* path.dentry.d_inode */
495 	unsigned int	flags;
496 	unsigned	seq, m_seq;
497 	int		last_type;
498 	unsigned	depth;
499 	int		total_link_count;
500 	struct saved {
501 		struct path link;
502 		struct delayed_call done;
503 		const char *name;
504 		unsigned seq;
505 	} *stack, internal[EMBEDDED_LEVELS];
506 	struct filename	*name;
507 	struct nameidata *saved;
508 	struct inode	*link_inode;
509 	unsigned	root_seq;
510 	int		dfd;
511 } __randomize_layout;
512 
513 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
514 {
515 	struct nameidata *old = current->nameidata;
516 	p->stack = p->internal;
517 	p->dfd = dfd;
518 	p->name = name;
519 	p->total_link_count = old ? old->total_link_count : 0;
520 	p->saved = old;
521 	current->nameidata = p;
522 }
523 
524 static void restore_nameidata(void)
525 {
526 	struct nameidata *now = current->nameidata, *old = now->saved;
527 
528 	current->nameidata = old;
529 	if (old)
530 		old->total_link_count = now->total_link_count;
531 	if (now->stack != now->internal)
532 		kfree(now->stack);
533 }
534 
535 static int __nd_alloc_stack(struct nameidata *nd)
536 {
537 	struct saved *p;
538 
539 	if (nd->flags & LOOKUP_RCU) {
540 		p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
541 				  GFP_ATOMIC);
542 		if (unlikely(!p))
543 			return -ECHILD;
544 	} else {
545 		p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
546 				  GFP_KERNEL);
547 		if (unlikely(!p))
548 			return -ENOMEM;
549 	}
550 	memcpy(p, nd->internal, sizeof(nd->internal));
551 	nd->stack = p;
552 	return 0;
553 }
554 
555 /**
556  * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
557  * @path: nameidate to verify
558  *
559  * Rename can sometimes move a file or directory outside of a bind
560  * mount, path_connected allows those cases to be detected.
561  */
562 static bool path_connected(const struct path *path)
563 {
564 	struct vfsmount *mnt = path->mnt;
565 	struct super_block *sb = mnt->mnt_sb;
566 
567 	/* Bind mounts and multi-root filesystems can have disconnected paths */
568 	if (!(sb->s_iflags & SB_I_MULTIROOT) && (mnt->mnt_root == sb->s_root))
569 		return true;
570 
571 	return is_subdir(path->dentry, mnt->mnt_root);
572 }
573 
574 static inline int nd_alloc_stack(struct nameidata *nd)
575 {
576 	if (likely(nd->depth != EMBEDDED_LEVELS))
577 		return 0;
578 	if (likely(nd->stack != nd->internal))
579 		return 0;
580 	return __nd_alloc_stack(nd);
581 }
582 
583 static void drop_links(struct nameidata *nd)
584 {
585 	int i = nd->depth;
586 	while (i--) {
587 		struct saved *last = nd->stack + i;
588 		do_delayed_call(&last->done);
589 		clear_delayed_call(&last->done);
590 	}
591 }
592 
593 static void terminate_walk(struct nameidata *nd)
594 {
595 	drop_links(nd);
596 	if (!(nd->flags & LOOKUP_RCU)) {
597 		int i;
598 		path_put(&nd->path);
599 		for (i = 0; i < nd->depth; i++)
600 			path_put(&nd->stack[i].link);
601 		if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
602 			path_put(&nd->root);
603 			nd->root.mnt = NULL;
604 		}
605 	} else {
606 		nd->flags &= ~LOOKUP_RCU;
607 		if (!(nd->flags & LOOKUP_ROOT))
608 			nd->root.mnt = NULL;
609 		rcu_read_unlock();
610 	}
611 	nd->depth = 0;
612 }
613 
614 /* path_put is needed afterwards regardless of success or failure */
615 static bool legitimize_path(struct nameidata *nd,
616 			    struct path *path, unsigned seq)
617 {
618 	int res = __legitimize_mnt(path->mnt, nd->m_seq);
619 	if (unlikely(res)) {
620 		if (res > 0)
621 			path->mnt = NULL;
622 		path->dentry = NULL;
623 		return false;
624 	}
625 	if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
626 		path->dentry = NULL;
627 		return false;
628 	}
629 	return !read_seqcount_retry(&path->dentry->d_seq, seq);
630 }
631 
632 static bool legitimize_links(struct nameidata *nd)
633 {
634 	int i;
635 	for (i = 0; i < nd->depth; i++) {
636 		struct saved *last = nd->stack + i;
637 		if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
638 			drop_links(nd);
639 			nd->depth = i + 1;
640 			return false;
641 		}
642 	}
643 	return true;
644 }
645 
646 /*
647  * Path walking has 2 modes, rcu-walk and ref-walk (see
648  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
649  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
650  * normal reference counts on dentries and vfsmounts to transition to ref-walk
651  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
652  * got stuck, so ref-walk may continue from there. If this is not successful
653  * (eg. a seqcount has changed), then failure is returned and it's up to caller
654  * to restart the path walk from the beginning in ref-walk mode.
655  */
656 
657 /**
658  * unlazy_walk - try to switch to ref-walk mode.
659  * @nd: nameidata pathwalk data
660  * Returns: 0 on success, -ECHILD on failure
661  *
662  * unlazy_walk attempts to legitimize the current nd->path and nd->root
663  * for ref-walk mode.
664  * Must be called from rcu-walk context.
665  * Nothing should touch nameidata between unlazy_walk() failure and
666  * terminate_walk().
667  */
668 static int unlazy_walk(struct nameidata *nd)
669 {
670 	struct dentry *parent = nd->path.dentry;
671 
672 	BUG_ON(!(nd->flags & LOOKUP_RCU));
673 
674 	nd->flags &= ~LOOKUP_RCU;
675 	if (unlikely(!legitimize_links(nd)))
676 		goto out2;
677 	if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
678 		goto out1;
679 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
680 		if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq)))
681 			goto out;
682 	}
683 	rcu_read_unlock();
684 	BUG_ON(nd->inode != parent->d_inode);
685 	return 0;
686 
687 out2:
688 	nd->path.mnt = NULL;
689 	nd->path.dentry = NULL;
690 out1:
691 	if (!(nd->flags & LOOKUP_ROOT))
692 		nd->root.mnt = NULL;
693 out:
694 	rcu_read_unlock();
695 	return -ECHILD;
696 }
697 
698 /**
699  * unlazy_child - try to switch to ref-walk mode.
700  * @nd: nameidata pathwalk data
701  * @dentry: child of nd->path.dentry
702  * @seq: seq number to check dentry against
703  * Returns: 0 on success, -ECHILD on failure
704  *
705  * unlazy_child attempts to legitimize the current nd->path, nd->root and dentry
706  * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
707  * @nd.  Must be called from rcu-walk context.
708  * Nothing should touch nameidata between unlazy_child() failure and
709  * terminate_walk().
710  */
711 static int unlazy_child(struct nameidata *nd, struct dentry *dentry, unsigned seq)
712 {
713 	BUG_ON(!(nd->flags & LOOKUP_RCU));
714 
715 	nd->flags &= ~LOOKUP_RCU;
716 	if (unlikely(!legitimize_links(nd)))
717 		goto out2;
718 	if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
719 		goto out2;
720 	if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
721 		goto out1;
722 
723 	/*
724 	 * We need to move both the parent and the dentry from the RCU domain
725 	 * to be properly refcounted. And the sequence number in the dentry
726 	 * validates *both* dentry counters, since we checked the sequence
727 	 * number of the parent after we got the child sequence number. So we
728 	 * know the parent must still be valid if the child sequence number is
729 	 */
730 	if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
731 		goto out;
732 	if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) {
733 		rcu_read_unlock();
734 		dput(dentry);
735 		goto drop_root_mnt;
736 	}
737 	/*
738 	 * Sequence counts matched. Now make sure that the root is
739 	 * still valid and get it if required.
740 	 */
741 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
742 		if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) {
743 			rcu_read_unlock();
744 			dput(dentry);
745 			return -ECHILD;
746 		}
747 	}
748 
749 	rcu_read_unlock();
750 	return 0;
751 
752 out2:
753 	nd->path.mnt = NULL;
754 out1:
755 	nd->path.dentry = NULL;
756 out:
757 	rcu_read_unlock();
758 drop_root_mnt:
759 	if (!(nd->flags & LOOKUP_ROOT))
760 		nd->root.mnt = NULL;
761 	return -ECHILD;
762 }
763 
764 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
765 {
766 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
767 		return dentry->d_op->d_revalidate(dentry, flags);
768 	else
769 		return 1;
770 }
771 
772 /**
773  * complete_walk - successful completion of path walk
774  * @nd:  pointer nameidata
775  *
776  * If we had been in RCU mode, drop out of it and legitimize nd->path.
777  * Revalidate the final result, unless we'd already done that during
778  * the path walk or the filesystem doesn't ask for it.  Return 0 on
779  * success, -error on failure.  In case of failure caller does not
780  * need to drop nd->path.
781  */
782 static int complete_walk(struct nameidata *nd)
783 {
784 	struct dentry *dentry = nd->path.dentry;
785 	int status;
786 
787 	if (nd->flags & LOOKUP_RCU) {
788 		if (!(nd->flags & LOOKUP_ROOT))
789 			nd->root.mnt = NULL;
790 		if (unlikely(unlazy_walk(nd)))
791 			return -ECHILD;
792 	}
793 
794 	if (likely(!(nd->flags & LOOKUP_JUMPED)))
795 		return 0;
796 
797 	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
798 		return 0;
799 
800 	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
801 	if (status > 0)
802 		return 0;
803 
804 	if (!status)
805 		status = -ESTALE;
806 
807 	return status;
808 }
809 
810 static void set_root(struct nameidata *nd)
811 {
812 	struct fs_struct *fs = current->fs;
813 
814 	if (nd->flags & LOOKUP_RCU) {
815 		unsigned seq;
816 
817 		do {
818 			seq = read_seqcount_begin(&fs->seq);
819 			nd->root = fs->root;
820 			nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
821 		} while (read_seqcount_retry(&fs->seq, seq));
822 	} else {
823 		get_fs_root(fs, &nd->root);
824 	}
825 }
826 
827 static void path_put_conditional(struct path *path, struct nameidata *nd)
828 {
829 	dput(path->dentry);
830 	if (path->mnt != nd->path.mnt)
831 		mntput(path->mnt);
832 }
833 
834 static inline void path_to_nameidata(const struct path *path,
835 					struct nameidata *nd)
836 {
837 	if (!(nd->flags & LOOKUP_RCU)) {
838 		dput(nd->path.dentry);
839 		if (nd->path.mnt != path->mnt)
840 			mntput(nd->path.mnt);
841 	}
842 	nd->path.mnt = path->mnt;
843 	nd->path.dentry = path->dentry;
844 }
845 
846 static int nd_jump_root(struct nameidata *nd)
847 {
848 	if (nd->flags & LOOKUP_RCU) {
849 		struct dentry *d;
850 		nd->path = nd->root;
851 		d = nd->path.dentry;
852 		nd->inode = d->d_inode;
853 		nd->seq = nd->root_seq;
854 		if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
855 			return -ECHILD;
856 	} else {
857 		path_put(&nd->path);
858 		nd->path = nd->root;
859 		path_get(&nd->path);
860 		nd->inode = nd->path.dentry->d_inode;
861 	}
862 	nd->flags |= LOOKUP_JUMPED;
863 	return 0;
864 }
865 
866 /*
867  * Helper to directly jump to a known parsed path from ->get_link,
868  * caller must have taken a reference to path beforehand.
869  */
870 void nd_jump_link(struct path *path)
871 {
872 	struct nameidata *nd = current->nameidata;
873 	path_put(&nd->path);
874 
875 	nd->path = *path;
876 	nd->inode = nd->path.dentry->d_inode;
877 	nd->flags |= LOOKUP_JUMPED;
878 }
879 
880 static inline void put_link(struct nameidata *nd)
881 {
882 	struct saved *last = nd->stack + --nd->depth;
883 	do_delayed_call(&last->done);
884 	if (!(nd->flags & LOOKUP_RCU))
885 		path_put(&last->link);
886 }
887 
888 int sysctl_protected_symlinks __read_mostly = 0;
889 int sysctl_protected_hardlinks __read_mostly = 0;
890 
891 /**
892  * may_follow_link - Check symlink following for unsafe situations
893  * @nd: nameidata pathwalk data
894  *
895  * In the case of the sysctl_protected_symlinks sysctl being enabled,
896  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
897  * in a sticky world-writable directory. This is to protect privileged
898  * processes from failing races against path names that may change out
899  * from under them by way of other users creating malicious symlinks.
900  * It will permit symlinks to be followed only when outside a sticky
901  * world-writable directory, or when the uid of the symlink and follower
902  * match, or when the directory owner matches the symlink's owner.
903  *
904  * Returns 0 if following the symlink is allowed, -ve on error.
905  */
906 static inline int may_follow_link(struct nameidata *nd)
907 {
908 	const struct inode *inode;
909 	const struct inode *parent;
910 	kuid_t puid;
911 
912 	if (!sysctl_protected_symlinks)
913 		return 0;
914 
915 	/* Allowed if owner and follower match. */
916 	inode = nd->link_inode;
917 	if (uid_eq(current_cred()->fsuid, inode->i_uid))
918 		return 0;
919 
920 	/* Allowed if parent directory not sticky and world-writable. */
921 	parent = nd->inode;
922 	if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
923 		return 0;
924 
925 	/* Allowed if parent directory and link owner match. */
926 	puid = parent->i_uid;
927 	if (uid_valid(puid) && uid_eq(puid, inode->i_uid))
928 		return 0;
929 
930 	if (nd->flags & LOOKUP_RCU)
931 		return -ECHILD;
932 
933 	audit_inode(nd->name, nd->stack[0].link.dentry, 0);
934 	audit_log_link_denied("follow_link");
935 	return -EACCES;
936 }
937 
938 /**
939  * safe_hardlink_source - Check for safe hardlink conditions
940  * @inode: the source inode to hardlink from
941  *
942  * Return false if at least one of the following conditions:
943  *    - inode is not a regular file
944  *    - inode is setuid
945  *    - inode is setgid and group-exec
946  *    - access failure for read and write
947  *
948  * Otherwise returns true.
949  */
950 static bool safe_hardlink_source(struct inode *inode)
951 {
952 	umode_t mode = inode->i_mode;
953 
954 	/* Special files should not get pinned to the filesystem. */
955 	if (!S_ISREG(mode))
956 		return false;
957 
958 	/* Setuid files should not get pinned to the filesystem. */
959 	if (mode & S_ISUID)
960 		return false;
961 
962 	/* Executable setgid files should not get pinned to the filesystem. */
963 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
964 		return false;
965 
966 	/* Hardlinking to unreadable or unwritable sources is dangerous. */
967 	if (inode_permission(inode, MAY_READ | MAY_WRITE))
968 		return false;
969 
970 	return true;
971 }
972 
973 /**
974  * may_linkat - Check permissions for creating a hardlink
975  * @link: the source to hardlink from
976  *
977  * Block hardlink when all of:
978  *  - sysctl_protected_hardlinks enabled
979  *  - fsuid does not match inode
980  *  - hardlink source is unsafe (see safe_hardlink_source() above)
981  *  - not CAP_FOWNER in a namespace with the inode owner uid mapped
982  *
983  * Returns 0 if successful, -ve on error.
984  */
985 static int may_linkat(struct path *link)
986 {
987 	struct inode *inode = link->dentry->d_inode;
988 
989 	/* Inode writeback is not safe when the uid or gid are invalid. */
990 	if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
991 		return -EOVERFLOW;
992 
993 	if (!sysctl_protected_hardlinks)
994 		return 0;
995 
996 	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
997 	 * otherwise, it must be a safe source.
998 	 */
999 	if (safe_hardlink_source(inode) || inode_owner_or_capable(inode))
1000 		return 0;
1001 
1002 	audit_log_link_denied("linkat");
1003 	return -EPERM;
1004 }
1005 
1006 static __always_inline
1007 const char *get_link(struct nameidata *nd)
1008 {
1009 	struct saved *last = nd->stack + nd->depth - 1;
1010 	struct dentry *dentry = last->link.dentry;
1011 	struct inode *inode = nd->link_inode;
1012 	int error;
1013 	const char *res;
1014 
1015 	if (!(nd->flags & LOOKUP_RCU)) {
1016 		touch_atime(&last->link);
1017 		cond_resched();
1018 	} else if (atime_needs_update_rcu(&last->link, inode)) {
1019 		if (unlikely(unlazy_walk(nd)))
1020 			return ERR_PTR(-ECHILD);
1021 		touch_atime(&last->link);
1022 	}
1023 
1024 	error = security_inode_follow_link(dentry, inode,
1025 					   nd->flags & LOOKUP_RCU);
1026 	if (unlikely(error))
1027 		return ERR_PTR(error);
1028 
1029 	nd->last_type = LAST_BIND;
1030 	res = inode->i_link;
1031 	if (!res) {
1032 		const char * (*get)(struct dentry *, struct inode *,
1033 				struct delayed_call *);
1034 		get = inode->i_op->get_link;
1035 		if (nd->flags & LOOKUP_RCU) {
1036 			res = get(NULL, inode, &last->done);
1037 			if (res == ERR_PTR(-ECHILD)) {
1038 				if (unlikely(unlazy_walk(nd)))
1039 					return ERR_PTR(-ECHILD);
1040 				res = get(dentry, inode, &last->done);
1041 			}
1042 		} else {
1043 			res = get(dentry, inode, &last->done);
1044 		}
1045 		if (IS_ERR_OR_NULL(res))
1046 			return res;
1047 	}
1048 	if (*res == '/') {
1049 		if (!nd->root.mnt)
1050 			set_root(nd);
1051 		if (unlikely(nd_jump_root(nd)))
1052 			return ERR_PTR(-ECHILD);
1053 		while (unlikely(*++res == '/'))
1054 			;
1055 	}
1056 	if (!*res)
1057 		res = NULL;
1058 	return res;
1059 }
1060 
1061 /*
1062  * follow_up - Find the mountpoint of path's vfsmount
1063  *
1064  * Given a path, find the mountpoint of its source file system.
1065  * Replace @path with the path of the mountpoint in the parent mount.
1066  * Up is towards /.
1067  *
1068  * Return 1 if we went up a level and 0 if we were already at the
1069  * root.
1070  */
1071 int follow_up(struct path *path)
1072 {
1073 	struct mount *mnt = real_mount(path->mnt);
1074 	struct mount *parent;
1075 	struct dentry *mountpoint;
1076 
1077 	read_seqlock_excl(&mount_lock);
1078 	parent = mnt->mnt_parent;
1079 	if (parent == mnt) {
1080 		read_sequnlock_excl(&mount_lock);
1081 		return 0;
1082 	}
1083 	mntget(&parent->mnt);
1084 	mountpoint = dget(mnt->mnt_mountpoint);
1085 	read_sequnlock_excl(&mount_lock);
1086 	dput(path->dentry);
1087 	path->dentry = mountpoint;
1088 	mntput(path->mnt);
1089 	path->mnt = &parent->mnt;
1090 	return 1;
1091 }
1092 EXPORT_SYMBOL(follow_up);
1093 
1094 /*
1095  * Perform an automount
1096  * - return -EISDIR to tell follow_managed() to stop and return the path we
1097  *   were called with.
1098  */
1099 static int follow_automount(struct path *path, struct nameidata *nd,
1100 			    bool *need_mntput)
1101 {
1102 	struct vfsmount *mnt;
1103 	int err;
1104 
1105 	if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1106 		return -EREMOTE;
1107 
1108 	/* We don't want to mount if someone's just doing a stat -
1109 	 * unless they're stat'ing a directory and appended a '/' to
1110 	 * the name.
1111 	 *
1112 	 * We do, however, want to mount if someone wants to open or
1113 	 * create a file of any type under the mountpoint, wants to
1114 	 * traverse through the mountpoint or wants to open the
1115 	 * mounted directory.  Also, autofs may mark negative dentries
1116 	 * as being automount points.  These will need the attentions
1117 	 * of the daemon to instantiate them before they can be used.
1118 	 */
1119 	if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1120 			   LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1121 	    path->dentry->d_inode)
1122 		return -EISDIR;
1123 
1124 	nd->total_link_count++;
1125 	if (nd->total_link_count >= 40)
1126 		return -ELOOP;
1127 
1128 	mnt = path->dentry->d_op->d_automount(path);
1129 	if (IS_ERR(mnt)) {
1130 		/*
1131 		 * The filesystem is allowed to return -EISDIR here to indicate
1132 		 * it doesn't want to automount.  For instance, autofs would do
1133 		 * this so that its userspace daemon can mount on this dentry.
1134 		 *
1135 		 * However, we can only permit this if it's a terminal point in
1136 		 * the path being looked up; if it wasn't then the remainder of
1137 		 * the path is inaccessible and we should say so.
1138 		 */
1139 		if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1140 			return -EREMOTE;
1141 		return PTR_ERR(mnt);
1142 	}
1143 
1144 	if (!mnt) /* mount collision */
1145 		return 0;
1146 
1147 	if (!*need_mntput) {
1148 		/* lock_mount() may release path->mnt on error */
1149 		mntget(path->mnt);
1150 		*need_mntput = true;
1151 	}
1152 	err = finish_automount(mnt, path);
1153 
1154 	switch (err) {
1155 	case -EBUSY:
1156 		/* Someone else made a mount here whilst we were busy */
1157 		return 0;
1158 	case 0:
1159 		path_put(path);
1160 		path->mnt = mnt;
1161 		path->dentry = dget(mnt->mnt_root);
1162 		return 0;
1163 	default:
1164 		return err;
1165 	}
1166 
1167 }
1168 
1169 /*
1170  * Handle a dentry that is managed in some way.
1171  * - Flagged for transit management (autofs)
1172  * - Flagged as mountpoint
1173  * - Flagged as automount point
1174  *
1175  * This may only be called in refwalk mode.
1176  *
1177  * Serialization is taken care of in namespace.c
1178  */
1179 static int follow_managed(struct path *path, struct nameidata *nd)
1180 {
1181 	struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1182 	unsigned managed;
1183 	bool need_mntput = false;
1184 	int ret = 0;
1185 
1186 	/* Given that we're not holding a lock here, we retain the value in a
1187 	 * local variable for each dentry as we look at it so that we don't see
1188 	 * the components of that value change under us */
1189 	while (managed = READ_ONCE(path->dentry->d_flags),
1190 	       managed &= DCACHE_MANAGED_DENTRY,
1191 	       unlikely(managed != 0)) {
1192 		/* Allow the filesystem to manage the transit without i_mutex
1193 		 * being held. */
1194 		if (managed & DCACHE_MANAGE_TRANSIT) {
1195 			BUG_ON(!path->dentry->d_op);
1196 			BUG_ON(!path->dentry->d_op->d_manage);
1197 			ret = path->dentry->d_op->d_manage(path, false);
1198 			if (ret < 0)
1199 				break;
1200 		}
1201 
1202 		/* Transit to a mounted filesystem. */
1203 		if (managed & DCACHE_MOUNTED) {
1204 			struct vfsmount *mounted = lookup_mnt(path);
1205 			if (mounted) {
1206 				dput(path->dentry);
1207 				if (need_mntput)
1208 					mntput(path->mnt);
1209 				path->mnt = mounted;
1210 				path->dentry = dget(mounted->mnt_root);
1211 				need_mntput = true;
1212 				continue;
1213 			}
1214 
1215 			/* Something is mounted on this dentry in another
1216 			 * namespace and/or whatever was mounted there in this
1217 			 * namespace got unmounted before lookup_mnt() could
1218 			 * get it */
1219 		}
1220 
1221 		/* Handle an automount point */
1222 		if (managed & DCACHE_NEED_AUTOMOUNT) {
1223 			ret = follow_automount(path, nd, &need_mntput);
1224 			if (ret < 0)
1225 				break;
1226 			continue;
1227 		}
1228 
1229 		/* We didn't change the current path point */
1230 		break;
1231 	}
1232 
1233 	if (need_mntput && path->mnt == mnt)
1234 		mntput(path->mnt);
1235 	if (ret == -EISDIR || !ret)
1236 		ret = 1;
1237 	if (need_mntput)
1238 		nd->flags |= LOOKUP_JUMPED;
1239 	if (unlikely(ret < 0))
1240 		path_put_conditional(path, nd);
1241 	return ret;
1242 }
1243 
1244 int follow_down_one(struct path *path)
1245 {
1246 	struct vfsmount *mounted;
1247 
1248 	mounted = lookup_mnt(path);
1249 	if (mounted) {
1250 		dput(path->dentry);
1251 		mntput(path->mnt);
1252 		path->mnt = mounted;
1253 		path->dentry = dget(mounted->mnt_root);
1254 		return 1;
1255 	}
1256 	return 0;
1257 }
1258 EXPORT_SYMBOL(follow_down_one);
1259 
1260 static inline int managed_dentry_rcu(const struct path *path)
1261 {
1262 	return (path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1263 		path->dentry->d_op->d_manage(path, true) : 0;
1264 }
1265 
1266 /*
1267  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1268  * we meet a managed dentry that would need blocking.
1269  */
1270 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1271 			       struct inode **inode, unsigned *seqp)
1272 {
1273 	for (;;) {
1274 		struct mount *mounted;
1275 		/*
1276 		 * Don't forget we might have a non-mountpoint managed dentry
1277 		 * that wants to block transit.
1278 		 */
1279 		switch (managed_dentry_rcu(path)) {
1280 		case -ECHILD:
1281 		default:
1282 			return false;
1283 		case -EISDIR:
1284 			return true;
1285 		case 0:
1286 			break;
1287 		}
1288 
1289 		if (!d_mountpoint(path->dentry))
1290 			return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1291 
1292 		mounted = __lookup_mnt(path->mnt, path->dentry);
1293 		if (!mounted)
1294 			break;
1295 		path->mnt = &mounted->mnt;
1296 		path->dentry = mounted->mnt.mnt_root;
1297 		nd->flags |= LOOKUP_JUMPED;
1298 		*seqp = read_seqcount_begin(&path->dentry->d_seq);
1299 		/*
1300 		 * Update the inode too. We don't need to re-check the
1301 		 * dentry sequence number here after this d_inode read,
1302 		 * because a mount-point is always pinned.
1303 		 */
1304 		*inode = path->dentry->d_inode;
1305 	}
1306 	return !read_seqretry(&mount_lock, nd->m_seq) &&
1307 		!(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1308 }
1309 
1310 static int follow_dotdot_rcu(struct nameidata *nd)
1311 {
1312 	struct inode *inode = nd->inode;
1313 
1314 	while (1) {
1315 		if (path_equal(&nd->path, &nd->root))
1316 			break;
1317 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1318 			struct dentry *old = nd->path.dentry;
1319 			struct dentry *parent = old->d_parent;
1320 			unsigned seq;
1321 
1322 			inode = parent->d_inode;
1323 			seq = read_seqcount_begin(&parent->d_seq);
1324 			if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1325 				return -ECHILD;
1326 			nd->path.dentry = parent;
1327 			nd->seq = seq;
1328 			if (unlikely(!path_connected(&nd->path)))
1329 				return -ENOENT;
1330 			break;
1331 		} else {
1332 			struct mount *mnt = real_mount(nd->path.mnt);
1333 			struct mount *mparent = mnt->mnt_parent;
1334 			struct dentry *mountpoint = mnt->mnt_mountpoint;
1335 			struct inode *inode2 = mountpoint->d_inode;
1336 			unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1337 			if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1338 				return -ECHILD;
1339 			if (&mparent->mnt == nd->path.mnt)
1340 				break;
1341 			/* we know that mountpoint was pinned */
1342 			nd->path.dentry = mountpoint;
1343 			nd->path.mnt = &mparent->mnt;
1344 			inode = inode2;
1345 			nd->seq = seq;
1346 		}
1347 	}
1348 	while (unlikely(d_mountpoint(nd->path.dentry))) {
1349 		struct mount *mounted;
1350 		mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1351 		if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1352 			return -ECHILD;
1353 		if (!mounted)
1354 			break;
1355 		nd->path.mnt = &mounted->mnt;
1356 		nd->path.dentry = mounted->mnt.mnt_root;
1357 		inode = nd->path.dentry->d_inode;
1358 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1359 	}
1360 	nd->inode = inode;
1361 	return 0;
1362 }
1363 
1364 /*
1365  * Follow down to the covering mount currently visible to userspace.  At each
1366  * point, the filesystem owning that dentry may be queried as to whether the
1367  * caller is permitted to proceed or not.
1368  */
1369 int follow_down(struct path *path)
1370 {
1371 	unsigned managed;
1372 	int ret;
1373 
1374 	while (managed = READ_ONCE(path->dentry->d_flags),
1375 	       unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1376 		/* Allow the filesystem to manage the transit without i_mutex
1377 		 * being held.
1378 		 *
1379 		 * We indicate to the filesystem if someone is trying to mount
1380 		 * something here.  This gives autofs the chance to deny anyone
1381 		 * other than its daemon the right to mount on its
1382 		 * superstructure.
1383 		 *
1384 		 * The filesystem may sleep at this point.
1385 		 */
1386 		if (managed & DCACHE_MANAGE_TRANSIT) {
1387 			BUG_ON(!path->dentry->d_op);
1388 			BUG_ON(!path->dentry->d_op->d_manage);
1389 			ret = path->dentry->d_op->d_manage(path, false);
1390 			if (ret < 0)
1391 				return ret == -EISDIR ? 0 : ret;
1392 		}
1393 
1394 		/* Transit to a mounted filesystem. */
1395 		if (managed & DCACHE_MOUNTED) {
1396 			struct vfsmount *mounted = lookup_mnt(path);
1397 			if (!mounted)
1398 				break;
1399 			dput(path->dentry);
1400 			mntput(path->mnt);
1401 			path->mnt = mounted;
1402 			path->dentry = dget(mounted->mnt_root);
1403 			continue;
1404 		}
1405 
1406 		/* Don't handle automount points here */
1407 		break;
1408 	}
1409 	return 0;
1410 }
1411 EXPORT_SYMBOL(follow_down);
1412 
1413 /*
1414  * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1415  */
1416 static void follow_mount(struct path *path)
1417 {
1418 	while (d_mountpoint(path->dentry)) {
1419 		struct vfsmount *mounted = lookup_mnt(path);
1420 		if (!mounted)
1421 			break;
1422 		dput(path->dentry);
1423 		mntput(path->mnt);
1424 		path->mnt = mounted;
1425 		path->dentry = dget(mounted->mnt_root);
1426 	}
1427 }
1428 
1429 static int path_parent_directory(struct path *path)
1430 {
1431 	struct dentry *old = path->dentry;
1432 	/* rare case of legitimate dget_parent()... */
1433 	path->dentry = dget_parent(path->dentry);
1434 	dput(old);
1435 	if (unlikely(!path_connected(path)))
1436 		return -ENOENT;
1437 	return 0;
1438 }
1439 
1440 static int follow_dotdot(struct nameidata *nd)
1441 {
1442 	while(1) {
1443 		if (path_equal(&nd->path, &nd->root))
1444 			break;
1445 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1446 			int ret = path_parent_directory(&nd->path);
1447 			if (ret)
1448 				return ret;
1449 			break;
1450 		}
1451 		if (!follow_up(&nd->path))
1452 			break;
1453 	}
1454 	follow_mount(&nd->path);
1455 	nd->inode = nd->path.dentry->d_inode;
1456 	return 0;
1457 }
1458 
1459 /*
1460  * This looks up the name in dcache and possibly revalidates the found dentry.
1461  * NULL is returned if the dentry does not exist in the cache.
1462  */
1463 static struct dentry *lookup_dcache(const struct qstr *name,
1464 				    struct dentry *dir,
1465 				    unsigned int flags)
1466 {
1467 	struct dentry *dentry = d_lookup(dir, name);
1468 	if (dentry) {
1469 		int error = d_revalidate(dentry, flags);
1470 		if (unlikely(error <= 0)) {
1471 			if (!error)
1472 				d_invalidate(dentry);
1473 			dput(dentry);
1474 			return ERR_PTR(error);
1475 		}
1476 	}
1477 	return dentry;
1478 }
1479 
1480 /*
1481  * Parent directory has inode locked exclusive.  This is one
1482  * and only case when ->lookup() gets called on non in-lookup
1483  * dentries - as the matter of fact, this only gets called
1484  * when directory is guaranteed to have no in-lookup children
1485  * at all.
1486  */
1487 static struct dentry *__lookup_hash(const struct qstr *name,
1488 		struct dentry *base, unsigned int flags)
1489 {
1490 	struct dentry *dentry = lookup_dcache(name, base, flags);
1491 	struct dentry *old;
1492 	struct inode *dir = base->d_inode;
1493 
1494 	if (dentry)
1495 		return dentry;
1496 
1497 	/* Don't create child dentry for a dead directory. */
1498 	if (unlikely(IS_DEADDIR(dir)))
1499 		return ERR_PTR(-ENOENT);
1500 
1501 	dentry = d_alloc(base, name);
1502 	if (unlikely(!dentry))
1503 		return ERR_PTR(-ENOMEM);
1504 
1505 	old = dir->i_op->lookup(dir, dentry, flags);
1506 	if (unlikely(old)) {
1507 		dput(dentry);
1508 		dentry = old;
1509 	}
1510 	return dentry;
1511 }
1512 
1513 static int lookup_fast(struct nameidata *nd,
1514 		       struct path *path, struct inode **inode,
1515 		       unsigned *seqp)
1516 {
1517 	struct vfsmount *mnt = nd->path.mnt;
1518 	struct dentry *dentry, *parent = nd->path.dentry;
1519 	int status = 1;
1520 	int err;
1521 
1522 	/*
1523 	 * Rename seqlock is not required here because in the off chance
1524 	 * of a false negative due to a concurrent rename, the caller is
1525 	 * going to fall back to non-racy lookup.
1526 	 */
1527 	if (nd->flags & LOOKUP_RCU) {
1528 		unsigned seq;
1529 		bool negative;
1530 		dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1531 		if (unlikely(!dentry)) {
1532 			if (unlazy_walk(nd))
1533 				return -ECHILD;
1534 			return 0;
1535 		}
1536 
1537 		/*
1538 		 * This sequence count validates that the inode matches
1539 		 * the dentry name information from lookup.
1540 		 */
1541 		*inode = d_backing_inode(dentry);
1542 		negative = d_is_negative(dentry);
1543 		if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1544 			return -ECHILD;
1545 
1546 		/*
1547 		 * This sequence count validates that the parent had no
1548 		 * changes while we did the lookup of the dentry above.
1549 		 *
1550 		 * The memory barrier in read_seqcount_begin of child is
1551 		 *  enough, we can use __read_seqcount_retry here.
1552 		 */
1553 		if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1554 			return -ECHILD;
1555 
1556 		*seqp = seq;
1557 		status = d_revalidate(dentry, nd->flags);
1558 		if (likely(status > 0)) {
1559 			/*
1560 			 * Note: do negative dentry check after revalidation in
1561 			 * case that drops it.
1562 			 */
1563 			if (unlikely(negative))
1564 				return -ENOENT;
1565 			path->mnt = mnt;
1566 			path->dentry = dentry;
1567 			if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1568 				return 1;
1569 		}
1570 		if (unlazy_child(nd, dentry, seq))
1571 			return -ECHILD;
1572 		if (unlikely(status == -ECHILD))
1573 			/* we'd been told to redo it in non-rcu mode */
1574 			status = d_revalidate(dentry, nd->flags);
1575 	} else {
1576 		dentry = __d_lookup(parent, &nd->last);
1577 		if (unlikely(!dentry))
1578 			return 0;
1579 		status = d_revalidate(dentry, nd->flags);
1580 	}
1581 	if (unlikely(status <= 0)) {
1582 		if (!status)
1583 			d_invalidate(dentry);
1584 		dput(dentry);
1585 		return status;
1586 	}
1587 	if (unlikely(d_is_negative(dentry))) {
1588 		dput(dentry);
1589 		return -ENOENT;
1590 	}
1591 
1592 	path->mnt = mnt;
1593 	path->dentry = dentry;
1594 	err = follow_managed(path, nd);
1595 	if (likely(err > 0))
1596 		*inode = d_backing_inode(path->dentry);
1597 	return err;
1598 }
1599 
1600 /* Fast lookup failed, do it the slow way */
1601 static struct dentry *__lookup_slow(const struct qstr *name,
1602 				    struct dentry *dir,
1603 				    unsigned int flags)
1604 {
1605 	struct dentry *dentry, *old;
1606 	struct inode *inode = dir->d_inode;
1607 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1608 
1609 	/* Don't go there if it's already dead */
1610 	if (unlikely(IS_DEADDIR(inode)))
1611 		return ERR_PTR(-ENOENT);
1612 again:
1613 	dentry = d_alloc_parallel(dir, name, &wq);
1614 	if (IS_ERR(dentry))
1615 		return dentry;
1616 	if (unlikely(!d_in_lookup(dentry))) {
1617 		if (!(flags & LOOKUP_NO_REVAL)) {
1618 			int error = d_revalidate(dentry, flags);
1619 			if (unlikely(error <= 0)) {
1620 				if (!error) {
1621 					d_invalidate(dentry);
1622 					dput(dentry);
1623 					goto again;
1624 				}
1625 				dput(dentry);
1626 				dentry = ERR_PTR(error);
1627 			}
1628 		}
1629 	} else {
1630 		old = inode->i_op->lookup(inode, dentry, flags);
1631 		d_lookup_done(dentry);
1632 		if (unlikely(old)) {
1633 			dput(dentry);
1634 			dentry = old;
1635 		}
1636 	}
1637 	return dentry;
1638 }
1639 
1640 static struct dentry *lookup_slow(const struct qstr *name,
1641 				  struct dentry *dir,
1642 				  unsigned int flags)
1643 {
1644 	struct inode *inode = dir->d_inode;
1645 	struct dentry *res;
1646 	inode_lock_shared(inode);
1647 	res = __lookup_slow(name, dir, flags);
1648 	inode_unlock_shared(inode);
1649 	return res;
1650 }
1651 
1652 static inline int may_lookup(struct nameidata *nd)
1653 {
1654 	if (nd->flags & LOOKUP_RCU) {
1655 		int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1656 		if (err != -ECHILD)
1657 			return err;
1658 		if (unlazy_walk(nd))
1659 			return -ECHILD;
1660 	}
1661 	return inode_permission(nd->inode, MAY_EXEC);
1662 }
1663 
1664 static inline int handle_dots(struct nameidata *nd, int type)
1665 {
1666 	if (type == LAST_DOTDOT) {
1667 		if (!nd->root.mnt)
1668 			set_root(nd);
1669 		if (nd->flags & LOOKUP_RCU) {
1670 			return follow_dotdot_rcu(nd);
1671 		} else
1672 			return follow_dotdot(nd);
1673 	}
1674 	return 0;
1675 }
1676 
1677 static int pick_link(struct nameidata *nd, struct path *link,
1678 		     struct inode *inode, unsigned seq)
1679 {
1680 	int error;
1681 	struct saved *last;
1682 	if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1683 		path_to_nameidata(link, nd);
1684 		return -ELOOP;
1685 	}
1686 	if (!(nd->flags & LOOKUP_RCU)) {
1687 		if (link->mnt == nd->path.mnt)
1688 			mntget(link->mnt);
1689 	}
1690 	error = nd_alloc_stack(nd);
1691 	if (unlikely(error)) {
1692 		if (error == -ECHILD) {
1693 			if (unlikely(!legitimize_path(nd, link, seq))) {
1694 				drop_links(nd);
1695 				nd->depth = 0;
1696 				nd->flags &= ~LOOKUP_RCU;
1697 				nd->path.mnt = NULL;
1698 				nd->path.dentry = NULL;
1699 				if (!(nd->flags & LOOKUP_ROOT))
1700 					nd->root.mnt = NULL;
1701 				rcu_read_unlock();
1702 			} else if (likely(unlazy_walk(nd)) == 0)
1703 				error = nd_alloc_stack(nd);
1704 		}
1705 		if (error) {
1706 			path_put(link);
1707 			return error;
1708 		}
1709 	}
1710 
1711 	last = nd->stack + nd->depth++;
1712 	last->link = *link;
1713 	clear_delayed_call(&last->done);
1714 	nd->link_inode = inode;
1715 	last->seq = seq;
1716 	return 1;
1717 }
1718 
1719 enum {WALK_FOLLOW = 1, WALK_MORE = 2};
1720 
1721 /*
1722  * Do we need to follow links? We _really_ want to be able
1723  * to do this check without having to look at inode->i_op,
1724  * so we keep a cache of "no, this doesn't need follow_link"
1725  * for the common case.
1726  */
1727 static inline int step_into(struct nameidata *nd, struct path *path,
1728 			    int flags, struct inode *inode, unsigned seq)
1729 {
1730 	if (!(flags & WALK_MORE) && nd->depth)
1731 		put_link(nd);
1732 	if (likely(!d_is_symlink(path->dentry)) ||
1733 	   !(flags & WALK_FOLLOW || nd->flags & LOOKUP_FOLLOW)) {
1734 		/* not a symlink or should not follow */
1735 		path_to_nameidata(path, nd);
1736 		nd->inode = inode;
1737 		nd->seq = seq;
1738 		return 0;
1739 	}
1740 	/* make sure that d_is_symlink above matches inode */
1741 	if (nd->flags & LOOKUP_RCU) {
1742 		if (read_seqcount_retry(&path->dentry->d_seq, seq))
1743 			return -ECHILD;
1744 	}
1745 	return pick_link(nd, path, inode, seq);
1746 }
1747 
1748 static int walk_component(struct nameidata *nd, int flags)
1749 {
1750 	struct path path;
1751 	struct inode *inode;
1752 	unsigned seq;
1753 	int err;
1754 	/*
1755 	 * "." and ".." are special - ".." especially so because it has
1756 	 * to be able to know about the current root directory and
1757 	 * parent relationships.
1758 	 */
1759 	if (unlikely(nd->last_type != LAST_NORM)) {
1760 		err = handle_dots(nd, nd->last_type);
1761 		if (!(flags & WALK_MORE) && nd->depth)
1762 			put_link(nd);
1763 		return err;
1764 	}
1765 	err = lookup_fast(nd, &path, &inode, &seq);
1766 	if (unlikely(err <= 0)) {
1767 		if (err < 0)
1768 			return err;
1769 		path.dentry = lookup_slow(&nd->last, nd->path.dentry,
1770 					  nd->flags);
1771 		if (IS_ERR(path.dentry))
1772 			return PTR_ERR(path.dentry);
1773 
1774 		path.mnt = nd->path.mnt;
1775 		err = follow_managed(&path, nd);
1776 		if (unlikely(err < 0))
1777 			return err;
1778 
1779 		if (unlikely(d_is_negative(path.dentry))) {
1780 			path_to_nameidata(&path, nd);
1781 			return -ENOENT;
1782 		}
1783 
1784 		seq = 0;	/* we are already out of RCU mode */
1785 		inode = d_backing_inode(path.dentry);
1786 	}
1787 
1788 	return step_into(nd, &path, flags, inode, seq);
1789 }
1790 
1791 /*
1792  * We can do the critical dentry name comparison and hashing
1793  * operations one word at a time, but we are limited to:
1794  *
1795  * - Architectures with fast unaligned word accesses. We could
1796  *   do a "get_unaligned()" if this helps and is sufficiently
1797  *   fast.
1798  *
1799  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1800  *   do not trap on the (extremely unlikely) case of a page
1801  *   crossing operation.
1802  *
1803  * - Furthermore, we need an efficient 64-bit compile for the
1804  *   64-bit case in order to generate the "number of bytes in
1805  *   the final mask". Again, that could be replaced with a
1806  *   efficient population count instruction or similar.
1807  */
1808 #ifdef CONFIG_DCACHE_WORD_ACCESS
1809 
1810 #include <asm/word-at-a-time.h>
1811 
1812 #ifdef HASH_MIX
1813 
1814 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1815 
1816 #elif defined(CONFIG_64BIT)
1817 /*
1818  * Register pressure in the mixing function is an issue, particularly
1819  * on 32-bit x86, but almost any function requires one state value and
1820  * one temporary.  Instead, use a function designed for two state values
1821  * and no temporaries.
1822  *
1823  * This function cannot create a collision in only two iterations, so
1824  * we have two iterations to achieve avalanche.  In those two iterations,
1825  * we have six layers of mixing, which is enough to spread one bit's
1826  * influence out to 2^6 = 64 state bits.
1827  *
1828  * Rotate constants are scored by considering either 64 one-bit input
1829  * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
1830  * probability of that delta causing a change to each of the 128 output
1831  * bits, using a sample of random initial states.
1832  *
1833  * The Shannon entropy of the computed probabilities is then summed
1834  * to produce a score.  Ideally, any input change has a 50% chance of
1835  * toggling any given output bit.
1836  *
1837  * Mixing scores (in bits) for (12,45):
1838  * Input delta: 1-bit      2-bit
1839  * 1 round:     713.3    42542.6
1840  * 2 rounds:   2753.7   140389.8
1841  * 3 rounds:   5954.1   233458.2
1842  * 4 rounds:   7862.6   256672.2
1843  * Perfect:    8192     258048
1844  *            (64*128) (64*63/2 * 128)
1845  */
1846 #define HASH_MIX(x, y, a)	\
1847 	(	x ^= (a),	\
1848 	y ^= x,	x = rol64(x,12),\
1849 	x += y,	y = rol64(y,45),\
1850 	y *= 9			)
1851 
1852 /*
1853  * Fold two longs into one 32-bit hash value.  This must be fast, but
1854  * latency isn't quite as critical, as there is a fair bit of additional
1855  * work done before the hash value is used.
1856  */
1857 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1858 {
1859 	y ^= x * GOLDEN_RATIO_64;
1860 	y *= GOLDEN_RATIO_64;
1861 	return y >> 32;
1862 }
1863 
1864 #else	/* 32-bit case */
1865 
1866 /*
1867  * Mixing scores (in bits) for (7,20):
1868  * Input delta: 1-bit      2-bit
1869  * 1 round:     330.3     9201.6
1870  * 2 rounds:   1246.4    25475.4
1871  * 3 rounds:   1907.1    31295.1
1872  * 4 rounds:   2042.3    31718.6
1873  * Perfect:    2048      31744
1874  *            (32*64)   (32*31/2 * 64)
1875  */
1876 #define HASH_MIX(x, y, a)	\
1877 	(	x ^= (a),	\
1878 	y ^= x,	x = rol32(x, 7),\
1879 	x += y,	y = rol32(y,20),\
1880 	y *= 9			)
1881 
1882 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1883 {
1884 	/* Use arch-optimized multiply if one exists */
1885 	return __hash_32(y ^ __hash_32(x));
1886 }
1887 
1888 #endif
1889 
1890 /*
1891  * Return the hash of a string of known length.  This is carfully
1892  * designed to match hash_name(), which is the more critical function.
1893  * In particular, we must end by hashing a final word containing 0..7
1894  * payload bytes, to match the way that hash_name() iterates until it
1895  * finds the delimiter after the name.
1896  */
1897 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1898 {
1899 	unsigned long a, x = 0, y = (unsigned long)salt;
1900 
1901 	for (;;) {
1902 		if (!len)
1903 			goto done;
1904 		a = load_unaligned_zeropad(name);
1905 		if (len < sizeof(unsigned long))
1906 			break;
1907 		HASH_MIX(x, y, a);
1908 		name += sizeof(unsigned long);
1909 		len -= sizeof(unsigned long);
1910 	}
1911 	x ^= a & bytemask_from_count(len);
1912 done:
1913 	return fold_hash(x, y);
1914 }
1915 EXPORT_SYMBOL(full_name_hash);
1916 
1917 /* Return the "hash_len" (hash and length) of a null-terminated string */
1918 u64 hashlen_string(const void *salt, const char *name)
1919 {
1920 	unsigned long a = 0, x = 0, y = (unsigned long)salt;
1921 	unsigned long adata, mask, len;
1922 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1923 
1924 	len = 0;
1925 	goto inside;
1926 
1927 	do {
1928 		HASH_MIX(x, y, a);
1929 		len += sizeof(unsigned long);
1930 inside:
1931 		a = load_unaligned_zeropad(name+len);
1932 	} while (!has_zero(a, &adata, &constants));
1933 
1934 	adata = prep_zero_mask(a, adata, &constants);
1935 	mask = create_zero_mask(adata);
1936 	x ^= a & zero_bytemask(mask);
1937 
1938 	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1939 }
1940 EXPORT_SYMBOL(hashlen_string);
1941 
1942 /*
1943  * Calculate the length and hash of the path component, and
1944  * return the "hash_len" as the result.
1945  */
1946 static inline u64 hash_name(const void *salt, const char *name)
1947 {
1948 	unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
1949 	unsigned long adata, bdata, mask, len;
1950 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1951 
1952 	len = 0;
1953 	goto inside;
1954 
1955 	do {
1956 		HASH_MIX(x, y, a);
1957 		len += sizeof(unsigned long);
1958 inside:
1959 		a = load_unaligned_zeropad(name+len);
1960 		b = a ^ REPEAT_BYTE('/');
1961 	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1962 
1963 	adata = prep_zero_mask(a, adata, &constants);
1964 	bdata = prep_zero_mask(b, bdata, &constants);
1965 	mask = create_zero_mask(adata | bdata);
1966 	x ^= a & zero_bytemask(mask);
1967 
1968 	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1969 }
1970 
1971 #else	/* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
1972 
1973 /* Return the hash of a string of known length */
1974 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1975 {
1976 	unsigned long hash = init_name_hash(salt);
1977 	while (len--)
1978 		hash = partial_name_hash((unsigned char)*name++, hash);
1979 	return end_name_hash(hash);
1980 }
1981 EXPORT_SYMBOL(full_name_hash);
1982 
1983 /* Return the "hash_len" (hash and length) of a null-terminated string */
1984 u64 hashlen_string(const void *salt, const char *name)
1985 {
1986 	unsigned long hash = init_name_hash(salt);
1987 	unsigned long len = 0, c;
1988 
1989 	c = (unsigned char)*name;
1990 	while (c) {
1991 		len++;
1992 		hash = partial_name_hash(c, hash);
1993 		c = (unsigned char)name[len];
1994 	}
1995 	return hashlen_create(end_name_hash(hash), len);
1996 }
1997 EXPORT_SYMBOL(hashlen_string);
1998 
1999 /*
2000  * We know there's a real path component here of at least
2001  * one character.
2002  */
2003 static inline u64 hash_name(const void *salt, const char *name)
2004 {
2005 	unsigned long hash = init_name_hash(salt);
2006 	unsigned long len = 0, c;
2007 
2008 	c = (unsigned char)*name;
2009 	do {
2010 		len++;
2011 		hash = partial_name_hash(c, hash);
2012 		c = (unsigned char)name[len];
2013 	} while (c && c != '/');
2014 	return hashlen_create(end_name_hash(hash), len);
2015 }
2016 
2017 #endif
2018 
2019 /*
2020  * Name resolution.
2021  * This is the basic name resolution function, turning a pathname into
2022  * the final dentry. We expect 'base' to be positive and a directory.
2023  *
2024  * Returns 0 and nd will have valid dentry and mnt on success.
2025  * Returns error and drops reference to input namei data on failure.
2026  */
2027 static int link_path_walk(const char *name, struct nameidata *nd)
2028 {
2029 	int err;
2030 
2031 	while (*name=='/')
2032 		name++;
2033 	if (!*name)
2034 		return 0;
2035 
2036 	/* At this point we know we have a real path component. */
2037 	for(;;) {
2038 		u64 hash_len;
2039 		int type;
2040 
2041 		err = may_lookup(nd);
2042 		if (err)
2043 			return err;
2044 
2045 		hash_len = hash_name(nd->path.dentry, name);
2046 
2047 		type = LAST_NORM;
2048 		if (name[0] == '.') switch (hashlen_len(hash_len)) {
2049 			case 2:
2050 				if (name[1] == '.') {
2051 					type = LAST_DOTDOT;
2052 					nd->flags |= LOOKUP_JUMPED;
2053 				}
2054 				break;
2055 			case 1:
2056 				type = LAST_DOT;
2057 		}
2058 		if (likely(type == LAST_NORM)) {
2059 			struct dentry *parent = nd->path.dentry;
2060 			nd->flags &= ~LOOKUP_JUMPED;
2061 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2062 				struct qstr this = { { .hash_len = hash_len }, .name = name };
2063 				err = parent->d_op->d_hash(parent, &this);
2064 				if (err < 0)
2065 					return err;
2066 				hash_len = this.hash_len;
2067 				name = this.name;
2068 			}
2069 		}
2070 
2071 		nd->last.hash_len = hash_len;
2072 		nd->last.name = name;
2073 		nd->last_type = type;
2074 
2075 		name += hashlen_len(hash_len);
2076 		if (!*name)
2077 			goto OK;
2078 		/*
2079 		 * If it wasn't NUL, we know it was '/'. Skip that
2080 		 * slash, and continue until no more slashes.
2081 		 */
2082 		do {
2083 			name++;
2084 		} while (unlikely(*name == '/'));
2085 		if (unlikely(!*name)) {
2086 OK:
2087 			/* pathname body, done */
2088 			if (!nd->depth)
2089 				return 0;
2090 			name = nd->stack[nd->depth - 1].name;
2091 			/* trailing symlink, done */
2092 			if (!name)
2093 				return 0;
2094 			/* last component of nested symlink */
2095 			err = walk_component(nd, WALK_FOLLOW);
2096 		} else {
2097 			/* not the last component */
2098 			err = walk_component(nd, WALK_FOLLOW | WALK_MORE);
2099 		}
2100 		if (err < 0)
2101 			return err;
2102 
2103 		if (err) {
2104 			const char *s = get_link(nd);
2105 
2106 			if (IS_ERR(s))
2107 				return PTR_ERR(s);
2108 			err = 0;
2109 			if (unlikely(!s)) {
2110 				/* jumped */
2111 				put_link(nd);
2112 			} else {
2113 				nd->stack[nd->depth - 1].name = name;
2114 				name = s;
2115 				continue;
2116 			}
2117 		}
2118 		if (unlikely(!d_can_lookup(nd->path.dentry))) {
2119 			if (nd->flags & LOOKUP_RCU) {
2120 				if (unlazy_walk(nd))
2121 					return -ECHILD;
2122 			}
2123 			return -ENOTDIR;
2124 		}
2125 	}
2126 }
2127 
2128 static const char *path_init(struct nameidata *nd, unsigned flags)
2129 {
2130 	const char *s = nd->name->name;
2131 
2132 	if (!*s)
2133 		flags &= ~LOOKUP_RCU;
2134 
2135 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
2136 	nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
2137 	nd->depth = 0;
2138 	if (flags & LOOKUP_ROOT) {
2139 		struct dentry *root = nd->root.dentry;
2140 		struct inode *inode = root->d_inode;
2141 		if (*s && unlikely(!d_can_lookup(root)))
2142 			return ERR_PTR(-ENOTDIR);
2143 		nd->path = nd->root;
2144 		nd->inode = inode;
2145 		if (flags & LOOKUP_RCU) {
2146 			rcu_read_lock();
2147 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2148 			nd->root_seq = nd->seq;
2149 			nd->m_seq = read_seqbegin(&mount_lock);
2150 		} else {
2151 			path_get(&nd->path);
2152 		}
2153 		return s;
2154 	}
2155 
2156 	nd->root.mnt = NULL;
2157 	nd->path.mnt = NULL;
2158 	nd->path.dentry = NULL;
2159 
2160 	nd->m_seq = read_seqbegin(&mount_lock);
2161 	if (*s == '/') {
2162 		if (flags & LOOKUP_RCU)
2163 			rcu_read_lock();
2164 		set_root(nd);
2165 		if (likely(!nd_jump_root(nd)))
2166 			return s;
2167 		nd->root.mnt = NULL;
2168 		rcu_read_unlock();
2169 		return ERR_PTR(-ECHILD);
2170 	} else if (nd->dfd == AT_FDCWD) {
2171 		if (flags & LOOKUP_RCU) {
2172 			struct fs_struct *fs = current->fs;
2173 			unsigned seq;
2174 
2175 			rcu_read_lock();
2176 
2177 			do {
2178 				seq = read_seqcount_begin(&fs->seq);
2179 				nd->path = fs->pwd;
2180 				nd->inode = nd->path.dentry->d_inode;
2181 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2182 			} while (read_seqcount_retry(&fs->seq, seq));
2183 		} else {
2184 			get_fs_pwd(current->fs, &nd->path);
2185 			nd->inode = nd->path.dentry->d_inode;
2186 		}
2187 		return s;
2188 	} else {
2189 		/* Caller must check execute permissions on the starting path component */
2190 		struct fd f = fdget_raw(nd->dfd);
2191 		struct dentry *dentry;
2192 
2193 		if (!f.file)
2194 			return ERR_PTR(-EBADF);
2195 
2196 		dentry = f.file->f_path.dentry;
2197 
2198 		if (*s) {
2199 			if (!d_can_lookup(dentry)) {
2200 				fdput(f);
2201 				return ERR_PTR(-ENOTDIR);
2202 			}
2203 		}
2204 
2205 		nd->path = f.file->f_path;
2206 		if (flags & LOOKUP_RCU) {
2207 			rcu_read_lock();
2208 			nd->inode = nd->path.dentry->d_inode;
2209 			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2210 		} else {
2211 			path_get(&nd->path);
2212 			nd->inode = nd->path.dentry->d_inode;
2213 		}
2214 		fdput(f);
2215 		return s;
2216 	}
2217 }
2218 
2219 static const char *trailing_symlink(struct nameidata *nd)
2220 {
2221 	const char *s;
2222 	int error = may_follow_link(nd);
2223 	if (unlikely(error))
2224 		return ERR_PTR(error);
2225 	nd->flags |= LOOKUP_PARENT;
2226 	nd->stack[0].name = NULL;
2227 	s = get_link(nd);
2228 	return s ? s : "";
2229 }
2230 
2231 static inline int lookup_last(struct nameidata *nd)
2232 {
2233 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2234 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2235 
2236 	nd->flags &= ~LOOKUP_PARENT;
2237 	return walk_component(nd, 0);
2238 }
2239 
2240 static int handle_lookup_down(struct nameidata *nd)
2241 {
2242 	struct path path = nd->path;
2243 	struct inode *inode = nd->inode;
2244 	unsigned seq = nd->seq;
2245 	int err;
2246 
2247 	if (nd->flags & LOOKUP_RCU) {
2248 		/*
2249 		 * don't bother with unlazy_walk on failure - we are
2250 		 * at the very beginning of walk, so we lose nothing
2251 		 * if we simply redo everything in non-RCU mode
2252 		 */
2253 		if (unlikely(!__follow_mount_rcu(nd, &path, &inode, &seq)))
2254 			return -ECHILD;
2255 	} else {
2256 		dget(path.dentry);
2257 		err = follow_managed(&path, nd);
2258 		if (unlikely(err < 0))
2259 			return err;
2260 		inode = d_backing_inode(path.dentry);
2261 		seq = 0;
2262 	}
2263 	path_to_nameidata(&path, nd);
2264 	nd->inode = inode;
2265 	nd->seq = seq;
2266 	return 0;
2267 }
2268 
2269 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2270 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2271 {
2272 	const char *s = path_init(nd, flags);
2273 	int err;
2274 
2275 	if (IS_ERR(s))
2276 		return PTR_ERR(s);
2277 
2278 	if (unlikely(flags & LOOKUP_DOWN)) {
2279 		err = handle_lookup_down(nd);
2280 		if (unlikely(err < 0)) {
2281 			terminate_walk(nd);
2282 			return err;
2283 		}
2284 	}
2285 
2286 	while (!(err = link_path_walk(s, nd))
2287 		&& ((err = lookup_last(nd)) > 0)) {
2288 		s = trailing_symlink(nd);
2289 		if (IS_ERR(s)) {
2290 			err = PTR_ERR(s);
2291 			break;
2292 		}
2293 	}
2294 	if (!err)
2295 		err = complete_walk(nd);
2296 
2297 	if (!err && nd->flags & LOOKUP_DIRECTORY)
2298 		if (!d_can_lookup(nd->path.dentry))
2299 			err = -ENOTDIR;
2300 	if (!err) {
2301 		*path = nd->path;
2302 		nd->path.mnt = NULL;
2303 		nd->path.dentry = NULL;
2304 	}
2305 	terminate_walk(nd);
2306 	return err;
2307 }
2308 
2309 static int filename_lookup(int dfd, struct filename *name, unsigned flags,
2310 			   struct path *path, struct path *root)
2311 {
2312 	int retval;
2313 	struct nameidata nd;
2314 	if (IS_ERR(name))
2315 		return PTR_ERR(name);
2316 	if (unlikely(root)) {
2317 		nd.root = *root;
2318 		flags |= LOOKUP_ROOT;
2319 	}
2320 	set_nameidata(&nd, dfd, name);
2321 	retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2322 	if (unlikely(retval == -ECHILD))
2323 		retval = path_lookupat(&nd, flags, path);
2324 	if (unlikely(retval == -ESTALE))
2325 		retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2326 
2327 	if (likely(!retval))
2328 		audit_inode(name, path->dentry, flags & LOOKUP_PARENT);
2329 	restore_nameidata();
2330 	putname(name);
2331 	return retval;
2332 }
2333 
2334 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2335 static int path_parentat(struct nameidata *nd, unsigned flags,
2336 				struct path *parent)
2337 {
2338 	const char *s = path_init(nd, flags);
2339 	int err;
2340 	if (IS_ERR(s))
2341 		return PTR_ERR(s);
2342 	err = link_path_walk(s, nd);
2343 	if (!err)
2344 		err = complete_walk(nd);
2345 	if (!err) {
2346 		*parent = nd->path;
2347 		nd->path.mnt = NULL;
2348 		nd->path.dentry = NULL;
2349 	}
2350 	terminate_walk(nd);
2351 	return err;
2352 }
2353 
2354 static struct filename *filename_parentat(int dfd, struct filename *name,
2355 				unsigned int flags, struct path *parent,
2356 				struct qstr *last, int *type)
2357 {
2358 	int retval;
2359 	struct nameidata nd;
2360 
2361 	if (IS_ERR(name))
2362 		return name;
2363 	set_nameidata(&nd, dfd, name);
2364 	retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2365 	if (unlikely(retval == -ECHILD))
2366 		retval = path_parentat(&nd, flags, parent);
2367 	if (unlikely(retval == -ESTALE))
2368 		retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2369 	if (likely(!retval)) {
2370 		*last = nd.last;
2371 		*type = nd.last_type;
2372 		audit_inode(name, parent->dentry, LOOKUP_PARENT);
2373 	} else {
2374 		putname(name);
2375 		name = ERR_PTR(retval);
2376 	}
2377 	restore_nameidata();
2378 	return name;
2379 }
2380 
2381 /* does lookup, returns the object with parent locked */
2382 struct dentry *kern_path_locked(const char *name, struct path *path)
2383 {
2384 	struct filename *filename;
2385 	struct dentry *d;
2386 	struct qstr last;
2387 	int type;
2388 
2389 	filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2390 				    &last, &type);
2391 	if (IS_ERR(filename))
2392 		return ERR_CAST(filename);
2393 	if (unlikely(type != LAST_NORM)) {
2394 		path_put(path);
2395 		putname(filename);
2396 		return ERR_PTR(-EINVAL);
2397 	}
2398 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2399 	d = __lookup_hash(&last, path->dentry, 0);
2400 	if (IS_ERR(d)) {
2401 		inode_unlock(path->dentry->d_inode);
2402 		path_put(path);
2403 	}
2404 	putname(filename);
2405 	return d;
2406 }
2407 
2408 int kern_path(const char *name, unsigned int flags, struct path *path)
2409 {
2410 	return filename_lookup(AT_FDCWD, getname_kernel(name),
2411 			       flags, path, NULL);
2412 }
2413 EXPORT_SYMBOL(kern_path);
2414 
2415 /**
2416  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2417  * @dentry:  pointer to dentry of the base directory
2418  * @mnt: pointer to vfs mount of the base directory
2419  * @name: pointer to file name
2420  * @flags: lookup flags
2421  * @path: pointer to struct path to fill
2422  */
2423 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2424 		    const char *name, unsigned int flags,
2425 		    struct path *path)
2426 {
2427 	struct path root = {.mnt = mnt, .dentry = dentry};
2428 	/* the first argument of filename_lookup() is ignored with root */
2429 	return filename_lookup(AT_FDCWD, getname_kernel(name),
2430 			       flags , path, &root);
2431 }
2432 EXPORT_SYMBOL(vfs_path_lookup);
2433 
2434 static int lookup_one_len_common(const char *name, struct dentry *base,
2435 				 int len, struct qstr *this)
2436 {
2437 	this->name = name;
2438 	this->len = len;
2439 	this->hash = full_name_hash(base, name, len);
2440 	if (!len)
2441 		return -EACCES;
2442 
2443 	if (unlikely(name[0] == '.')) {
2444 		if (len < 2 || (len == 2 && name[1] == '.'))
2445 			return -EACCES;
2446 	}
2447 
2448 	while (len--) {
2449 		unsigned int c = *(const unsigned char *)name++;
2450 		if (c == '/' || c == '\0')
2451 			return -EACCES;
2452 	}
2453 	/*
2454 	 * See if the low-level filesystem might want
2455 	 * to use its own hash..
2456 	 */
2457 	if (base->d_flags & DCACHE_OP_HASH) {
2458 		int err = base->d_op->d_hash(base, this);
2459 		if (err < 0)
2460 			return err;
2461 	}
2462 
2463 	return inode_permission(base->d_inode, MAY_EXEC);
2464 }
2465 
2466 /**
2467  * try_lookup_one_len - filesystem helper to lookup single pathname component
2468  * @name:	pathname component to lookup
2469  * @base:	base directory to lookup from
2470  * @len:	maximum length @len should be interpreted to
2471  *
2472  * Look up a dentry by name in the dcache, returning NULL if it does not
2473  * currently exist.  The function does not try to create a dentry.
2474  *
2475  * Note that this routine is purely a helper for filesystem usage and should
2476  * not be called by generic code.
2477  *
2478  * The caller must hold base->i_mutex.
2479  */
2480 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
2481 {
2482 	struct qstr this;
2483 	int err;
2484 
2485 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2486 
2487 	err = lookup_one_len_common(name, base, len, &this);
2488 	if (err)
2489 		return ERR_PTR(err);
2490 
2491 	return lookup_dcache(&this, base, 0);
2492 }
2493 EXPORT_SYMBOL(try_lookup_one_len);
2494 
2495 /**
2496  * lookup_one_len - filesystem helper to lookup single pathname component
2497  * @name:	pathname component to lookup
2498  * @base:	base directory to lookup from
2499  * @len:	maximum length @len should be interpreted to
2500  *
2501  * Note that this routine is purely a helper for filesystem usage and should
2502  * not be called by generic code.
2503  *
2504  * The caller must hold base->i_mutex.
2505  */
2506 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2507 {
2508 	struct dentry *dentry;
2509 	struct qstr this;
2510 	int err;
2511 
2512 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2513 
2514 	err = lookup_one_len_common(name, base, len, &this);
2515 	if (err)
2516 		return ERR_PTR(err);
2517 
2518 	dentry = lookup_dcache(&this, base, 0);
2519 	return dentry ? dentry : __lookup_slow(&this, base, 0);
2520 }
2521 EXPORT_SYMBOL(lookup_one_len);
2522 
2523 /**
2524  * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2525  * @name:	pathname component to lookup
2526  * @base:	base directory to lookup from
2527  * @len:	maximum length @len should be interpreted to
2528  *
2529  * Note that this routine is purely a helper for filesystem usage and should
2530  * not be called by generic code.
2531  *
2532  * Unlike lookup_one_len, it should be called without the parent
2533  * i_mutex held, and will take the i_mutex itself if necessary.
2534  */
2535 struct dentry *lookup_one_len_unlocked(const char *name,
2536 				       struct dentry *base, int len)
2537 {
2538 	struct qstr this;
2539 	int err;
2540 	struct dentry *ret;
2541 
2542 	err = lookup_one_len_common(name, base, len, &this);
2543 	if (err)
2544 		return ERR_PTR(err);
2545 
2546 	ret = lookup_dcache(&this, base, 0);
2547 	if (!ret)
2548 		ret = lookup_slow(&this, base, 0);
2549 	return ret;
2550 }
2551 EXPORT_SYMBOL(lookup_one_len_unlocked);
2552 
2553 #ifdef CONFIG_UNIX98_PTYS
2554 int path_pts(struct path *path)
2555 {
2556 	/* Find something mounted on "pts" in the same directory as
2557 	 * the input path.
2558 	 */
2559 	struct dentry *child, *parent;
2560 	struct qstr this;
2561 	int ret;
2562 
2563 	ret = path_parent_directory(path);
2564 	if (ret)
2565 		return ret;
2566 
2567 	parent = path->dentry;
2568 	this.name = "pts";
2569 	this.len = 3;
2570 	child = d_hash_and_lookup(parent, &this);
2571 	if (!child)
2572 		return -ENOENT;
2573 
2574 	path->dentry = child;
2575 	dput(parent);
2576 	follow_mount(path);
2577 	return 0;
2578 }
2579 #endif
2580 
2581 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2582 		 struct path *path, int *empty)
2583 {
2584 	return filename_lookup(dfd, getname_flags(name, flags, empty),
2585 			       flags, path, NULL);
2586 }
2587 EXPORT_SYMBOL(user_path_at_empty);
2588 
2589 /**
2590  * mountpoint_last - look up last component for umount
2591  * @nd:   pathwalk nameidata - currently pointing at parent directory of "last"
2592  *
2593  * This is a special lookup_last function just for umount. In this case, we
2594  * need to resolve the path without doing any revalidation.
2595  *
2596  * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2597  * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2598  * in almost all cases, this lookup will be served out of the dcache. The only
2599  * cases where it won't are if nd->last refers to a symlink or the path is
2600  * bogus and it doesn't exist.
2601  *
2602  * Returns:
2603  * -error: if there was an error during lookup. This includes -ENOENT if the
2604  *         lookup found a negative dentry.
2605  *
2606  * 0:      if we successfully resolved nd->last and found it to not to be a
2607  *         symlink that needs to be followed.
2608  *
2609  * 1:      if we successfully resolved nd->last and found it to be a symlink
2610  *         that needs to be followed.
2611  */
2612 static int
2613 mountpoint_last(struct nameidata *nd)
2614 {
2615 	int error = 0;
2616 	struct dentry *dir = nd->path.dentry;
2617 	struct path path;
2618 
2619 	/* If we're in rcuwalk, drop out of it to handle last component */
2620 	if (nd->flags & LOOKUP_RCU) {
2621 		if (unlazy_walk(nd))
2622 			return -ECHILD;
2623 	}
2624 
2625 	nd->flags &= ~LOOKUP_PARENT;
2626 
2627 	if (unlikely(nd->last_type != LAST_NORM)) {
2628 		error = handle_dots(nd, nd->last_type);
2629 		if (error)
2630 			return error;
2631 		path.dentry = dget(nd->path.dentry);
2632 	} else {
2633 		path.dentry = d_lookup(dir, &nd->last);
2634 		if (!path.dentry) {
2635 			/*
2636 			 * No cached dentry. Mounted dentries are pinned in the
2637 			 * cache, so that means that this dentry is probably
2638 			 * a symlink or the path doesn't actually point
2639 			 * to a mounted dentry.
2640 			 */
2641 			path.dentry = lookup_slow(&nd->last, dir,
2642 					     nd->flags | LOOKUP_NO_REVAL);
2643 			if (IS_ERR(path.dentry))
2644 				return PTR_ERR(path.dentry);
2645 		}
2646 	}
2647 	if (d_is_negative(path.dentry)) {
2648 		dput(path.dentry);
2649 		return -ENOENT;
2650 	}
2651 	path.mnt = nd->path.mnt;
2652 	return step_into(nd, &path, 0, d_backing_inode(path.dentry), 0);
2653 }
2654 
2655 /**
2656  * path_mountpoint - look up a path to be umounted
2657  * @nd:		lookup context
2658  * @flags:	lookup flags
2659  * @path:	pointer to container for result
2660  *
2661  * Look up the given name, but don't attempt to revalidate the last component.
2662  * Returns 0 and "path" will be valid on success; Returns error otherwise.
2663  */
2664 static int
2665 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2666 {
2667 	const char *s = path_init(nd, flags);
2668 	int err;
2669 	if (IS_ERR(s))
2670 		return PTR_ERR(s);
2671 	while (!(err = link_path_walk(s, nd)) &&
2672 		(err = mountpoint_last(nd)) > 0) {
2673 		s = trailing_symlink(nd);
2674 		if (IS_ERR(s)) {
2675 			err = PTR_ERR(s);
2676 			break;
2677 		}
2678 	}
2679 	if (!err) {
2680 		*path = nd->path;
2681 		nd->path.mnt = NULL;
2682 		nd->path.dentry = NULL;
2683 		follow_mount(path);
2684 	}
2685 	terminate_walk(nd);
2686 	return err;
2687 }
2688 
2689 static int
2690 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2691 			unsigned int flags)
2692 {
2693 	struct nameidata nd;
2694 	int error;
2695 	if (IS_ERR(name))
2696 		return PTR_ERR(name);
2697 	set_nameidata(&nd, dfd, name);
2698 	error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2699 	if (unlikely(error == -ECHILD))
2700 		error = path_mountpoint(&nd, flags, path);
2701 	if (unlikely(error == -ESTALE))
2702 		error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2703 	if (likely(!error))
2704 		audit_inode(name, path->dentry, 0);
2705 	restore_nameidata();
2706 	putname(name);
2707 	return error;
2708 }
2709 
2710 /**
2711  * user_path_mountpoint_at - lookup a path from userland in order to umount it
2712  * @dfd:	directory file descriptor
2713  * @name:	pathname from userland
2714  * @flags:	lookup flags
2715  * @path:	pointer to container to hold result
2716  *
2717  * A umount is a special case for path walking. We're not actually interested
2718  * in the inode in this situation, and ESTALE errors can be a problem. We
2719  * simply want track down the dentry and vfsmount attached at the mountpoint
2720  * and avoid revalidating the last component.
2721  *
2722  * Returns 0 and populates "path" on success.
2723  */
2724 int
2725 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2726 			struct path *path)
2727 {
2728 	return filename_mountpoint(dfd, getname(name), path, flags);
2729 }
2730 
2731 int
2732 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2733 			unsigned int flags)
2734 {
2735 	return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2736 }
2737 EXPORT_SYMBOL(kern_path_mountpoint);
2738 
2739 int __check_sticky(struct inode *dir, struct inode *inode)
2740 {
2741 	kuid_t fsuid = current_fsuid();
2742 
2743 	if (uid_eq(inode->i_uid, fsuid))
2744 		return 0;
2745 	if (uid_eq(dir->i_uid, fsuid))
2746 		return 0;
2747 	return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2748 }
2749 EXPORT_SYMBOL(__check_sticky);
2750 
2751 /*
2752  *	Check whether we can remove a link victim from directory dir, check
2753  *  whether the type of victim is right.
2754  *  1. We can't do it if dir is read-only (done in permission())
2755  *  2. We should have write and exec permissions on dir
2756  *  3. We can't remove anything from append-only dir
2757  *  4. We can't do anything with immutable dir (done in permission())
2758  *  5. If the sticky bit on dir is set we should either
2759  *	a. be owner of dir, or
2760  *	b. be owner of victim, or
2761  *	c. have CAP_FOWNER capability
2762  *  6. If the victim is append-only or immutable we can't do antyhing with
2763  *     links pointing to it.
2764  *  7. If the victim has an unknown uid or gid we can't change the inode.
2765  *  8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2766  *  9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2767  * 10. We can't remove a root or mountpoint.
2768  * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2769  *     nfs_async_unlink().
2770  */
2771 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2772 {
2773 	struct inode *inode = d_backing_inode(victim);
2774 	int error;
2775 
2776 	if (d_is_negative(victim))
2777 		return -ENOENT;
2778 	BUG_ON(!inode);
2779 
2780 	BUG_ON(victim->d_parent->d_inode != dir);
2781 
2782 	/* Inode writeback is not safe when the uid or gid are invalid. */
2783 	if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
2784 		return -EOVERFLOW;
2785 
2786 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2787 
2788 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2789 	if (error)
2790 		return error;
2791 	if (IS_APPEND(dir))
2792 		return -EPERM;
2793 
2794 	if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2795 	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode))
2796 		return -EPERM;
2797 	if (isdir) {
2798 		if (!d_is_dir(victim))
2799 			return -ENOTDIR;
2800 		if (IS_ROOT(victim))
2801 			return -EBUSY;
2802 	} else if (d_is_dir(victim))
2803 		return -EISDIR;
2804 	if (IS_DEADDIR(dir))
2805 		return -ENOENT;
2806 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2807 		return -EBUSY;
2808 	return 0;
2809 }
2810 
2811 /*	Check whether we can create an object with dentry child in directory
2812  *  dir.
2813  *  1. We can't do it if child already exists (open has special treatment for
2814  *     this case, but since we are inlined it's OK)
2815  *  2. We can't do it if dir is read-only (done in permission())
2816  *  3. We can't do it if the fs can't represent the fsuid or fsgid.
2817  *  4. We should have write and exec permissions on dir
2818  *  5. We can't do it if dir is immutable (done in permission())
2819  */
2820 static inline int may_create(struct inode *dir, struct dentry *child)
2821 {
2822 	struct user_namespace *s_user_ns;
2823 	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2824 	if (child->d_inode)
2825 		return -EEXIST;
2826 	if (IS_DEADDIR(dir))
2827 		return -ENOENT;
2828 	s_user_ns = dir->i_sb->s_user_ns;
2829 	if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2830 	    !kgid_has_mapping(s_user_ns, current_fsgid()))
2831 		return -EOVERFLOW;
2832 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2833 }
2834 
2835 /*
2836  * p1 and p2 should be directories on the same fs.
2837  */
2838 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2839 {
2840 	struct dentry *p;
2841 
2842 	if (p1 == p2) {
2843 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2844 		return NULL;
2845 	}
2846 
2847 	mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2848 
2849 	p = d_ancestor(p2, p1);
2850 	if (p) {
2851 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2852 		inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2853 		return p;
2854 	}
2855 
2856 	p = d_ancestor(p1, p2);
2857 	if (p) {
2858 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2859 		inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2860 		return p;
2861 	}
2862 
2863 	inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2864 	inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2865 	return NULL;
2866 }
2867 EXPORT_SYMBOL(lock_rename);
2868 
2869 void unlock_rename(struct dentry *p1, struct dentry *p2)
2870 {
2871 	inode_unlock(p1->d_inode);
2872 	if (p1 != p2) {
2873 		inode_unlock(p2->d_inode);
2874 		mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2875 	}
2876 }
2877 EXPORT_SYMBOL(unlock_rename);
2878 
2879 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2880 		bool want_excl)
2881 {
2882 	int error = may_create(dir, dentry);
2883 	if (error)
2884 		return error;
2885 
2886 	if (!dir->i_op->create)
2887 		return -EACCES;	/* shouldn't it be ENOSYS? */
2888 	mode &= S_IALLUGO;
2889 	mode |= S_IFREG;
2890 	error = security_inode_create(dir, dentry, mode);
2891 	if (error)
2892 		return error;
2893 	error = dir->i_op->create(dir, dentry, mode, want_excl);
2894 	if (!error)
2895 		fsnotify_create(dir, dentry);
2896 	return error;
2897 }
2898 EXPORT_SYMBOL(vfs_create);
2899 
2900 int vfs_mkobj(struct dentry *dentry, umode_t mode,
2901 		int (*f)(struct dentry *, umode_t, void *),
2902 		void *arg)
2903 {
2904 	struct inode *dir = dentry->d_parent->d_inode;
2905 	int error = may_create(dir, dentry);
2906 	if (error)
2907 		return error;
2908 
2909 	mode &= S_IALLUGO;
2910 	mode |= S_IFREG;
2911 	error = security_inode_create(dir, dentry, mode);
2912 	if (error)
2913 		return error;
2914 	error = f(dentry, mode, arg);
2915 	if (!error)
2916 		fsnotify_create(dir, dentry);
2917 	return error;
2918 }
2919 EXPORT_SYMBOL(vfs_mkobj);
2920 
2921 bool may_open_dev(const struct path *path)
2922 {
2923 	return !(path->mnt->mnt_flags & MNT_NODEV) &&
2924 		!(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
2925 }
2926 
2927 static int may_open(const struct path *path, int acc_mode, int flag)
2928 {
2929 	struct dentry *dentry = path->dentry;
2930 	struct inode *inode = dentry->d_inode;
2931 	int error;
2932 
2933 	if (!inode)
2934 		return -ENOENT;
2935 
2936 	switch (inode->i_mode & S_IFMT) {
2937 	case S_IFLNK:
2938 		return -ELOOP;
2939 	case S_IFDIR:
2940 		if (acc_mode & MAY_WRITE)
2941 			return -EISDIR;
2942 		break;
2943 	case S_IFBLK:
2944 	case S_IFCHR:
2945 		if (!may_open_dev(path))
2946 			return -EACCES;
2947 		/*FALLTHRU*/
2948 	case S_IFIFO:
2949 	case S_IFSOCK:
2950 		flag &= ~O_TRUNC;
2951 		break;
2952 	}
2953 
2954 	error = inode_permission(inode, MAY_OPEN | acc_mode);
2955 	if (error)
2956 		return error;
2957 
2958 	/*
2959 	 * An append-only file must be opened in append mode for writing.
2960 	 */
2961 	if (IS_APPEND(inode)) {
2962 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2963 			return -EPERM;
2964 		if (flag & O_TRUNC)
2965 			return -EPERM;
2966 	}
2967 
2968 	/* O_NOATIME can only be set by the owner or superuser */
2969 	if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2970 		return -EPERM;
2971 
2972 	return 0;
2973 }
2974 
2975 static int handle_truncate(struct file *filp)
2976 {
2977 	const struct path *path = &filp->f_path;
2978 	struct inode *inode = path->dentry->d_inode;
2979 	int error = get_write_access(inode);
2980 	if (error)
2981 		return error;
2982 	/*
2983 	 * Refuse to truncate files with mandatory locks held on them.
2984 	 */
2985 	error = locks_verify_locked(filp);
2986 	if (!error)
2987 		error = security_path_truncate(path);
2988 	if (!error) {
2989 		error = do_truncate(path->dentry, 0,
2990 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2991 				    filp);
2992 	}
2993 	put_write_access(inode);
2994 	return error;
2995 }
2996 
2997 static inline int open_to_namei_flags(int flag)
2998 {
2999 	if ((flag & O_ACCMODE) == 3)
3000 		flag--;
3001 	return flag;
3002 }
3003 
3004 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode)
3005 {
3006 	struct user_namespace *s_user_ns;
3007 	int error = security_path_mknod(dir, dentry, mode, 0);
3008 	if (error)
3009 		return error;
3010 
3011 	s_user_ns = dir->dentry->d_sb->s_user_ns;
3012 	if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
3013 	    !kgid_has_mapping(s_user_ns, current_fsgid()))
3014 		return -EOVERFLOW;
3015 
3016 	error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
3017 	if (error)
3018 		return error;
3019 
3020 	return security_inode_create(dir->dentry->d_inode, dentry, mode);
3021 }
3022 
3023 /*
3024  * Attempt to atomically look up, create and open a file from a negative
3025  * dentry.
3026  *
3027  * Returns 0 if successful.  The file will have been created and attached to
3028  * @file by the filesystem calling finish_open().
3029  *
3030  * Returns 1 if the file was looked up only or didn't need creating.  The
3031  * caller will need to perform the open themselves.  @path will have been
3032  * updated to point to the new dentry.  This may be negative.
3033  *
3034  * Returns an error code otherwise.
3035  */
3036 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
3037 			struct path *path, struct file *file,
3038 			const struct open_flags *op,
3039 			int open_flag, umode_t mode,
3040 			int *opened)
3041 {
3042 	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3043 	struct inode *dir =  nd->path.dentry->d_inode;
3044 	int error;
3045 
3046 	if (!(~open_flag & (O_EXCL | O_CREAT)))	/* both O_EXCL and O_CREAT */
3047 		open_flag &= ~O_TRUNC;
3048 
3049 	if (nd->flags & LOOKUP_DIRECTORY)
3050 		open_flag |= O_DIRECTORY;
3051 
3052 	file->f_path.dentry = DENTRY_NOT_SET;
3053 	file->f_path.mnt = nd->path.mnt;
3054 	error = dir->i_op->atomic_open(dir, dentry, file,
3055 				       open_to_namei_flags(open_flag),
3056 				       mode, opened);
3057 	d_lookup_done(dentry);
3058 	if (!error) {
3059 		/*
3060 		 * We didn't have the inode before the open, so check open
3061 		 * permission here.
3062 		 */
3063 		int acc_mode = op->acc_mode;
3064 		if (*opened & FILE_CREATED) {
3065 			WARN_ON(!(open_flag & O_CREAT));
3066 			fsnotify_create(dir, dentry);
3067 			acc_mode = 0;
3068 		}
3069 		error = may_open(&file->f_path, acc_mode, open_flag);
3070 		if (WARN_ON(error > 0))
3071 			error = -EINVAL;
3072 	} else if (error > 0) {
3073 		if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3074 			error = -EIO;
3075 		} else {
3076 			if (file->f_path.dentry) {
3077 				dput(dentry);
3078 				dentry = file->f_path.dentry;
3079 			}
3080 			if (*opened & FILE_CREATED)
3081 				fsnotify_create(dir, dentry);
3082 			if (unlikely(d_is_negative(dentry))) {
3083 				error = -ENOENT;
3084 			} else {
3085 				path->dentry = dentry;
3086 				path->mnt = nd->path.mnt;
3087 				return 1;
3088 			}
3089 		}
3090 	}
3091 	dput(dentry);
3092 	return error;
3093 }
3094 
3095 /*
3096  * Look up and maybe create and open the last component.
3097  *
3098  * Must be called with i_mutex held on parent.
3099  *
3100  * Returns 0 if the file was successfully atomically created (if necessary) and
3101  * opened.  In this case the file will be returned attached to @file.
3102  *
3103  * Returns 1 if the file was not completely opened at this time, though lookups
3104  * and creations will have been performed and the dentry returned in @path will
3105  * be positive upon return if O_CREAT was specified.  If O_CREAT wasn't
3106  * specified then a negative dentry may be returned.
3107  *
3108  * An error code is returned otherwise.
3109  *
3110  * FILE_CREATE will be set in @*opened if the dentry was created and will be
3111  * cleared otherwise prior to returning.
3112  */
3113 static int lookup_open(struct nameidata *nd, struct path *path,
3114 			struct file *file,
3115 			const struct open_flags *op,
3116 			bool got_write, int *opened)
3117 {
3118 	struct dentry *dir = nd->path.dentry;
3119 	struct inode *dir_inode = dir->d_inode;
3120 	int open_flag = op->open_flag;
3121 	struct dentry *dentry;
3122 	int error, create_error = 0;
3123 	umode_t mode = op->mode;
3124 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3125 
3126 	if (unlikely(IS_DEADDIR(dir_inode)))
3127 		return -ENOENT;
3128 
3129 	*opened &= ~FILE_CREATED;
3130 	dentry = d_lookup(dir, &nd->last);
3131 	for (;;) {
3132 		if (!dentry) {
3133 			dentry = d_alloc_parallel(dir, &nd->last, &wq);
3134 			if (IS_ERR(dentry))
3135 				return PTR_ERR(dentry);
3136 		}
3137 		if (d_in_lookup(dentry))
3138 			break;
3139 
3140 		error = d_revalidate(dentry, nd->flags);
3141 		if (likely(error > 0))
3142 			break;
3143 		if (error)
3144 			goto out_dput;
3145 		d_invalidate(dentry);
3146 		dput(dentry);
3147 		dentry = NULL;
3148 	}
3149 	if (dentry->d_inode) {
3150 		/* Cached positive dentry: will open in f_op->open */
3151 		goto out_no_open;
3152 	}
3153 
3154 	/*
3155 	 * Checking write permission is tricky, bacuse we don't know if we are
3156 	 * going to actually need it: O_CREAT opens should work as long as the
3157 	 * file exists.  But checking existence breaks atomicity.  The trick is
3158 	 * to check access and if not granted clear O_CREAT from the flags.
3159 	 *
3160 	 * Another problem is returing the "right" error value (e.g. for an
3161 	 * O_EXCL open we want to return EEXIST not EROFS).
3162 	 */
3163 	if (open_flag & O_CREAT) {
3164 		if (!IS_POSIXACL(dir->d_inode))
3165 			mode &= ~current_umask();
3166 		if (unlikely(!got_write)) {
3167 			create_error = -EROFS;
3168 			open_flag &= ~O_CREAT;
3169 			if (open_flag & (O_EXCL | O_TRUNC))
3170 				goto no_open;
3171 			/* No side effects, safe to clear O_CREAT */
3172 		} else {
3173 			create_error = may_o_create(&nd->path, dentry, mode);
3174 			if (create_error) {
3175 				open_flag &= ~O_CREAT;
3176 				if (open_flag & O_EXCL)
3177 					goto no_open;
3178 			}
3179 		}
3180 	} else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) &&
3181 		   unlikely(!got_write)) {
3182 		/*
3183 		 * No O_CREATE -> atomicity not a requirement -> fall
3184 		 * back to lookup + open
3185 		 */
3186 		goto no_open;
3187 	}
3188 
3189 	if (dir_inode->i_op->atomic_open) {
3190 		error = atomic_open(nd, dentry, path, file, op, open_flag,
3191 				    mode, opened);
3192 		if (unlikely(error == -ENOENT) && create_error)
3193 			error = create_error;
3194 		return error;
3195 	}
3196 
3197 no_open:
3198 	if (d_in_lookup(dentry)) {
3199 		struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3200 							     nd->flags);
3201 		d_lookup_done(dentry);
3202 		if (unlikely(res)) {
3203 			if (IS_ERR(res)) {
3204 				error = PTR_ERR(res);
3205 				goto out_dput;
3206 			}
3207 			dput(dentry);
3208 			dentry = res;
3209 		}
3210 	}
3211 
3212 	/* Negative dentry, just create the file */
3213 	if (!dentry->d_inode && (open_flag & O_CREAT)) {
3214 		*opened |= FILE_CREATED;
3215 		audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3216 		if (!dir_inode->i_op->create) {
3217 			error = -EACCES;
3218 			goto out_dput;
3219 		}
3220 		error = dir_inode->i_op->create(dir_inode, dentry, mode,
3221 						open_flag & O_EXCL);
3222 		if (error)
3223 			goto out_dput;
3224 		fsnotify_create(dir_inode, dentry);
3225 	}
3226 	if (unlikely(create_error) && !dentry->d_inode) {
3227 		error = create_error;
3228 		goto out_dput;
3229 	}
3230 out_no_open:
3231 	path->dentry = dentry;
3232 	path->mnt = nd->path.mnt;
3233 	return 1;
3234 
3235 out_dput:
3236 	dput(dentry);
3237 	return error;
3238 }
3239 
3240 /*
3241  * Handle the last step of open()
3242  */
3243 static int do_last(struct nameidata *nd,
3244 		   struct file *file, const struct open_flags *op,
3245 		   int *opened)
3246 {
3247 	struct dentry *dir = nd->path.dentry;
3248 	int open_flag = op->open_flag;
3249 	bool will_truncate = (open_flag & O_TRUNC) != 0;
3250 	bool got_write = false;
3251 	int acc_mode = op->acc_mode;
3252 	unsigned seq;
3253 	struct inode *inode;
3254 	struct path path;
3255 	int error;
3256 
3257 	nd->flags &= ~LOOKUP_PARENT;
3258 	nd->flags |= op->intent;
3259 
3260 	if (nd->last_type != LAST_NORM) {
3261 		error = handle_dots(nd, nd->last_type);
3262 		if (unlikely(error))
3263 			return error;
3264 		goto finish_open;
3265 	}
3266 
3267 	if (!(open_flag & O_CREAT)) {
3268 		if (nd->last.name[nd->last.len])
3269 			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3270 		/* we _can_ be in RCU mode here */
3271 		error = lookup_fast(nd, &path, &inode, &seq);
3272 		if (likely(error > 0))
3273 			goto finish_lookup;
3274 
3275 		if (error < 0)
3276 			return error;
3277 
3278 		BUG_ON(nd->inode != dir->d_inode);
3279 		BUG_ON(nd->flags & LOOKUP_RCU);
3280 	} else {
3281 		/* create side of things */
3282 		/*
3283 		 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3284 		 * has been cleared when we got to the last component we are
3285 		 * about to look up
3286 		 */
3287 		error = complete_walk(nd);
3288 		if (error)
3289 			return error;
3290 
3291 		audit_inode(nd->name, dir, LOOKUP_PARENT);
3292 		/* trailing slashes? */
3293 		if (unlikely(nd->last.name[nd->last.len]))
3294 			return -EISDIR;
3295 	}
3296 
3297 	if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3298 		error = mnt_want_write(nd->path.mnt);
3299 		if (!error)
3300 			got_write = true;
3301 		/*
3302 		 * do _not_ fail yet - we might not need that or fail with
3303 		 * a different error; let lookup_open() decide; we'll be
3304 		 * dropping this one anyway.
3305 		 */
3306 	}
3307 	if (open_flag & O_CREAT)
3308 		inode_lock(dir->d_inode);
3309 	else
3310 		inode_lock_shared(dir->d_inode);
3311 	error = lookup_open(nd, &path, file, op, got_write, opened);
3312 	if (open_flag & O_CREAT)
3313 		inode_unlock(dir->d_inode);
3314 	else
3315 		inode_unlock_shared(dir->d_inode);
3316 
3317 	if (error <= 0) {
3318 		if (error)
3319 			goto out;
3320 
3321 		if ((*opened & FILE_CREATED) ||
3322 		    !S_ISREG(file_inode(file)->i_mode))
3323 			will_truncate = false;
3324 
3325 		audit_inode(nd->name, file->f_path.dentry, 0);
3326 		goto opened;
3327 	}
3328 
3329 	if (*opened & FILE_CREATED) {
3330 		/* Don't check for write permission, don't truncate */
3331 		open_flag &= ~O_TRUNC;
3332 		will_truncate = false;
3333 		acc_mode = 0;
3334 		path_to_nameidata(&path, nd);
3335 		goto finish_open_created;
3336 	}
3337 
3338 	/*
3339 	 * If atomic_open() acquired write access it is dropped now due to
3340 	 * possible mount and symlink following (this might be optimized away if
3341 	 * necessary...)
3342 	 */
3343 	if (got_write) {
3344 		mnt_drop_write(nd->path.mnt);
3345 		got_write = false;
3346 	}
3347 
3348 	error = follow_managed(&path, nd);
3349 	if (unlikely(error < 0))
3350 		return error;
3351 
3352 	if (unlikely(d_is_negative(path.dentry))) {
3353 		path_to_nameidata(&path, nd);
3354 		return -ENOENT;
3355 	}
3356 
3357 	/*
3358 	 * create/update audit record if it already exists.
3359 	 */
3360 	audit_inode(nd->name, path.dentry, 0);
3361 
3362 	if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3363 		path_to_nameidata(&path, nd);
3364 		return -EEXIST;
3365 	}
3366 
3367 	seq = 0;	/* out of RCU mode, so the value doesn't matter */
3368 	inode = d_backing_inode(path.dentry);
3369 finish_lookup:
3370 	error = step_into(nd, &path, 0, inode, seq);
3371 	if (unlikely(error))
3372 		return error;
3373 finish_open:
3374 	/* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
3375 	error = complete_walk(nd);
3376 	if (error)
3377 		return error;
3378 	audit_inode(nd->name, nd->path.dentry, 0);
3379 	error = -EISDIR;
3380 	if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3381 		goto out;
3382 	error = -ENOTDIR;
3383 	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3384 		goto out;
3385 	if (!d_is_reg(nd->path.dentry))
3386 		will_truncate = false;
3387 
3388 	if (will_truncate) {
3389 		error = mnt_want_write(nd->path.mnt);
3390 		if (error)
3391 			goto out;
3392 		got_write = true;
3393 	}
3394 finish_open_created:
3395 	error = may_open(&nd->path, acc_mode, open_flag);
3396 	if (error)
3397 		goto out;
3398 	BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3399 	error = vfs_open(&nd->path, file, current_cred());
3400 	if (error)
3401 		goto out;
3402 	*opened |= FILE_OPENED;
3403 opened:
3404 	error = open_check_o_direct(file);
3405 	if (!error)
3406 		error = ima_file_check(file, op->acc_mode, *opened);
3407 	if (!error && will_truncate)
3408 		error = handle_truncate(file);
3409 out:
3410 	if (unlikely(error) && (*opened & FILE_OPENED))
3411 		fput(file);
3412 	if (unlikely(error > 0)) {
3413 		WARN_ON(1);
3414 		error = -EINVAL;
3415 	}
3416 	if (got_write)
3417 		mnt_drop_write(nd->path.mnt);
3418 	return error;
3419 }
3420 
3421 struct dentry *vfs_tmpfile(struct dentry *dentry, umode_t mode, int open_flag)
3422 {
3423 	struct dentry *child = NULL;
3424 	struct inode *dir = dentry->d_inode;
3425 	struct inode *inode;
3426 	int error;
3427 
3428 	/* we want directory to be writable */
3429 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3430 	if (error)
3431 		goto out_err;
3432 	error = -EOPNOTSUPP;
3433 	if (!dir->i_op->tmpfile)
3434 		goto out_err;
3435 	error = -ENOMEM;
3436 	child = d_alloc(dentry, &slash_name);
3437 	if (unlikely(!child))
3438 		goto out_err;
3439 	error = dir->i_op->tmpfile(dir, child, mode);
3440 	if (error)
3441 		goto out_err;
3442 	error = -ENOENT;
3443 	inode = child->d_inode;
3444 	if (unlikely(!inode))
3445 		goto out_err;
3446 	if (!(open_flag & O_EXCL)) {
3447 		spin_lock(&inode->i_lock);
3448 		inode->i_state |= I_LINKABLE;
3449 		spin_unlock(&inode->i_lock);
3450 	}
3451 	return child;
3452 
3453 out_err:
3454 	dput(child);
3455 	return ERR_PTR(error);
3456 }
3457 EXPORT_SYMBOL(vfs_tmpfile);
3458 
3459 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3460 		const struct open_flags *op,
3461 		struct file *file, int *opened)
3462 {
3463 	struct dentry *child;
3464 	struct path path;
3465 	int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3466 	if (unlikely(error))
3467 		return error;
3468 	error = mnt_want_write(path.mnt);
3469 	if (unlikely(error))
3470 		goto out;
3471 	child = vfs_tmpfile(path.dentry, op->mode, op->open_flag);
3472 	error = PTR_ERR(child);
3473 	if (IS_ERR(child))
3474 		goto out2;
3475 	dput(path.dentry);
3476 	path.dentry = child;
3477 	audit_inode(nd->name, child, 0);
3478 	/* Don't check for other permissions, the inode was just created */
3479 	error = may_open(&path, 0, op->open_flag);
3480 	if (error)
3481 		goto out2;
3482 	file->f_path.mnt = path.mnt;
3483 	error = finish_open(file, child, NULL, opened);
3484 	if (error)
3485 		goto out2;
3486 	error = open_check_o_direct(file);
3487 	if (error)
3488 		fput(file);
3489 out2:
3490 	mnt_drop_write(path.mnt);
3491 out:
3492 	path_put(&path);
3493 	return error;
3494 }
3495 
3496 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3497 {
3498 	struct path path;
3499 	int error = path_lookupat(nd, flags, &path);
3500 	if (!error) {
3501 		audit_inode(nd->name, path.dentry, 0);
3502 		error = vfs_open(&path, file, current_cred());
3503 		path_put(&path);
3504 	}
3505 	return error;
3506 }
3507 
3508 static struct file *path_openat(struct nameidata *nd,
3509 			const struct open_flags *op, unsigned flags)
3510 {
3511 	const char *s;
3512 	struct file *file;
3513 	int opened = 0;
3514 	int error;
3515 
3516 	file = get_empty_filp();
3517 	if (IS_ERR(file))
3518 		return file;
3519 
3520 	file->f_flags = op->open_flag;
3521 
3522 	if (unlikely(file->f_flags & __O_TMPFILE)) {
3523 		error = do_tmpfile(nd, flags, op, file, &opened);
3524 		goto out2;
3525 	}
3526 
3527 	if (unlikely(file->f_flags & O_PATH)) {
3528 		error = do_o_path(nd, flags, file);
3529 		if (!error)
3530 			opened |= FILE_OPENED;
3531 		goto out2;
3532 	}
3533 
3534 	s = path_init(nd, flags);
3535 	if (IS_ERR(s)) {
3536 		put_filp(file);
3537 		return ERR_CAST(s);
3538 	}
3539 	while (!(error = link_path_walk(s, nd)) &&
3540 		(error = do_last(nd, file, op, &opened)) > 0) {
3541 		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3542 		s = trailing_symlink(nd);
3543 		if (IS_ERR(s)) {
3544 			error = PTR_ERR(s);
3545 			break;
3546 		}
3547 	}
3548 	terminate_walk(nd);
3549 out2:
3550 	if (!(opened & FILE_OPENED)) {
3551 		BUG_ON(!error);
3552 		put_filp(file);
3553 	}
3554 	if (unlikely(error)) {
3555 		if (error == -EOPENSTALE) {
3556 			if (flags & LOOKUP_RCU)
3557 				error = -ECHILD;
3558 			else
3559 				error = -ESTALE;
3560 		}
3561 		file = ERR_PTR(error);
3562 	}
3563 	return file;
3564 }
3565 
3566 struct file *do_filp_open(int dfd, struct filename *pathname,
3567 		const struct open_flags *op)
3568 {
3569 	struct nameidata nd;
3570 	int flags = op->lookup_flags;
3571 	struct file *filp;
3572 
3573 	set_nameidata(&nd, dfd, pathname);
3574 	filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3575 	if (unlikely(filp == ERR_PTR(-ECHILD)))
3576 		filp = path_openat(&nd, op, flags);
3577 	if (unlikely(filp == ERR_PTR(-ESTALE)))
3578 		filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3579 	restore_nameidata();
3580 	return filp;
3581 }
3582 
3583 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3584 		const char *name, const struct open_flags *op)
3585 {
3586 	struct nameidata nd;
3587 	struct file *file;
3588 	struct filename *filename;
3589 	int flags = op->lookup_flags | LOOKUP_ROOT;
3590 
3591 	nd.root.mnt = mnt;
3592 	nd.root.dentry = dentry;
3593 
3594 	if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3595 		return ERR_PTR(-ELOOP);
3596 
3597 	filename = getname_kernel(name);
3598 	if (IS_ERR(filename))
3599 		return ERR_CAST(filename);
3600 
3601 	set_nameidata(&nd, -1, filename);
3602 	file = path_openat(&nd, op, flags | LOOKUP_RCU);
3603 	if (unlikely(file == ERR_PTR(-ECHILD)))
3604 		file = path_openat(&nd, op, flags);
3605 	if (unlikely(file == ERR_PTR(-ESTALE)))
3606 		file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3607 	restore_nameidata();
3608 	putname(filename);
3609 	return file;
3610 }
3611 
3612 static struct dentry *filename_create(int dfd, struct filename *name,
3613 				struct path *path, unsigned int lookup_flags)
3614 {
3615 	struct dentry *dentry = ERR_PTR(-EEXIST);
3616 	struct qstr last;
3617 	int type;
3618 	int err2;
3619 	int error;
3620 	bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3621 
3622 	/*
3623 	 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3624 	 * other flags passed in are ignored!
3625 	 */
3626 	lookup_flags &= LOOKUP_REVAL;
3627 
3628 	name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3629 	if (IS_ERR(name))
3630 		return ERR_CAST(name);
3631 
3632 	/*
3633 	 * Yucky last component or no last component at all?
3634 	 * (foo/., foo/.., /////)
3635 	 */
3636 	if (unlikely(type != LAST_NORM))
3637 		goto out;
3638 
3639 	/* don't fail immediately if it's r/o, at least try to report other errors */
3640 	err2 = mnt_want_write(path->mnt);
3641 	/*
3642 	 * Do the final lookup.
3643 	 */
3644 	lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3645 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3646 	dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3647 	if (IS_ERR(dentry))
3648 		goto unlock;
3649 
3650 	error = -EEXIST;
3651 	if (d_is_positive(dentry))
3652 		goto fail;
3653 
3654 	/*
3655 	 * Special case - lookup gave negative, but... we had foo/bar/
3656 	 * From the vfs_mknod() POV we just have a negative dentry -
3657 	 * all is fine. Let's be bastards - you had / on the end, you've
3658 	 * been asking for (non-existent) directory. -ENOENT for you.
3659 	 */
3660 	if (unlikely(!is_dir && last.name[last.len])) {
3661 		error = -ENOENT;
3662 		goto fail;
3663 	}
3664 	if (unlikely(err2)) {
3665 		error = err2;
3666 		goto fail;
3667 	}
3668 	putname(name);
3669 	return dentry;
3670 fail:
3671 	dput(dentry);
3672 	dentry = ERR_PTR(error);
3673 unlock:
3674 	inode_unlock(path->dentry->d_inode);
3675 	if (!err2)
3676 		mnt_drop_write(path->mnt);
3677 out:
3678 	path_put(path);
3679 	putname(name);
3680 	return dentry;
3681 }
3682 
3683 struct dentry *kern_path_create(int dfd, const char *pathname,
3684 				struct path *path, unsigned int lookup_flags)
3685 {
3686 	return filename_create(dfd, getname_kernel(pathname),
3687 				path, lookup_flags);
3688 }
3689 EXPORT_SYMBOL(kern_path_create);
3690 
3691 void done_path_create(struct path *path, struct dentry *dentry)
3692 {
3693 	dput(dentry);
3694 	inode_unlock(path->dentry->d_inode);
3695 	mnt_drop_write(path->mnt);
3696 	path_put(path);
3697 }
3698 EXPORT_SYMBOL(done_path_create);
3699 
3700 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3701 				struct path *path, unsigned int lookup_flags)
3702 {
3703 	return filename_create(dfd, getname(pathname), path, lookup_flags);
3704 }
3705 EXPORT_SYMBOL(user_path_create);
3706 
3707 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3708 {
3709 	int error = may_create(dir, dentry);
3710 
3711 	if (error)
3712 		return error;
3713 
3714 	if ((S_ISCHR(mode) || S_ISBLK(mode)) &&
3715 	    !ns_capable(dentry->d_sb->s_user_ns, CAP_MKNOD))
3716 		return -EPERM;
3717 
3718 	if (!dir->i_op->mknod)
3719 		return -EPERM;
3720 
3721 	error = devcgroup_inode_mknod(mode, dev);
3722 	if (error)
3723 		return error;
3724 
3725 	error = security_inode_mknod(dir, dentry, mode, dev);
3726 	if (error)
3727 		return error;
3728 
3729 	error = dir->i_op->mknod(dir, dentry, mode, dev);
3730 	if (!error)
3731 		fsnotify_create(dir, dentry);
3732 	return error;
3733 }
3734 EXPORT_SYMBOL(vfs_mknod);
3735 
3736 static int may_mknod(umode_t mode)
3737 {
3738 	switch (mode & S_IFMT) {
3739 	case S_IFREG:
3740 	case S_IFCHR:
3741 	case S_IFBLK:
3742 	case S_IFIFO:
3743 	case S_IFSOCK:
3744 	case 0: /* zero mode translates to S_IFREG */
3745 		return 0;
3746 	case S_IFDIR:
3747 		return -EPERM;
3748 	default:
3749 		return -EINVAL;
3750 	}
3751 }
3752 
3753 long do_mknodat(int dfd, const char __user *filename, umode_t mode,
3754 		unsigned int dev)
3755 {
3756 	struct dentry *dentry;
3757 	struct path path;
3758 	int error;
3759 	unsigned int lookup_flags = 0;
3760 
3761 	error = may_mknod(mode);
3762 	if (error)
3763 		return error;
3764 retry:
3765 	dentry = user_path_create(dfd, filename, &path, lookup_flags);
3766 	if (IS_ERR(dentry))
3767 		return PTR_ERR(dentry);
3768 
3769 	if (!IS_POSIXACL(path.dentry->d_inode))
3770 		mode &= ~current_umask();
3771 	error = security_path_mknod(&path, dentry, mode, dev);
3772 	if (error)
3773 		goto out;
3774 	switch (mode & S_IFMT) {
3775 		case 0: case S_IFREG:
3776 			error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3777 			if (!error)
3778 				ima_post_path_mknod(dentry);
3779 			break;
3780 		case S_IFCHR: case S_IFBLK:
3781 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3782 					new_decode_dev(dev));
3783 			break;
3784 		case S_IFIFO: case S_IFSOCK:
3785 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3786 			break;
3787 	}
3788 out:
3789 	done_path_create(&path, dentry);
3790 	if (retry_estale(error, lookup_flags)) {
3791 		lookup_flags |= LOOKUP_REVAL;
3792 		goto retry;
3793 	}
3794 	return error;
3795 }
3796 
3797 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3798 		unsigned int, dev)
3799 {
3800 	return do_mknodat(dfd, filename, mode, dev);
3801 }
3802 
3803 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3804 {
3805 	return do_mknodat(AT_FDCWD, filename, mode, dev);
3806 }
3807 
3808 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3809 {
3810 	int error = may_create(dir, dentry);
3811 	unsigned max_links = dir->i_sb->s_max_links;
3812 
3813 	if (error)
3814 		return error;
3815 
3816 	if (!dir->i_op->mkdir)
3817 		return -EPERM;
3818 
3819 	mode &= (S_IRWXUGO|S_ISVTX);
3820 	error = security_inode_mkdir(dir, dentry, mode);
3821 	if (error)
3822 		return error;
3823 
3824 	if (max_links && dir->i_nlink >= max_links)
3825 		return -EMLINK;
3826 
3827 	error = dir->i_op->mkdir(dir, dentry, mode);
3828 	if (!error)
3829 		fsnotify_mkdir(dir, dentry);
3830 	return error;
3831 }
3832 EXPORT_SYMBOL(vfs_mkdir);
3833 
3834 long do_mkdirat(int dfd, const char __user *pathname, umode_t mode)
3835 {
3836 	struct dentry *dentry;
3837 	struct path path;
3838 	int error;
3839 	unsigned int lookup_flags = LOOKUP_DIRECTORY;
3840 
3841 retry:
3842 	dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3843 	if (IS_ERR(dentry))
3844 		return PTR_ERR(dentry);
3845 
3846 	if (!IS_POSIXACL(path.dentry->d_inode))
3847 		mode &= ~current_umask();
3848 	error = security_path_mkdir(&path, dentry, mode);
3849 	if (!error)
3850 		error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3851 	done_path_create(&path, dentry);
3852 	if (retry_estale(error, lookup_flags)) {
3853 		lookup_flags |= LOOKUP_REVAL;
3854 		goto retry;
3855 	}
3856 	return error;
3857 }
3858 
3859 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3860 {
3861 	return do_mkdirat(dfd, pathname, mode);
3862 }
3863 
3864 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3865 {
3866 	return do_mkdirat(AT_FDCWD, pathname, mode);
3867 }
3868 
3869 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3870 {
3871 	int error = may_delete(dir, dentry, 1);
3872 
3873 	if (error)
3874 		return error;
3875 
3876 	if (!dir->i_op->rmdir)
3877 		return -EPERM;
3878 
3879 	dget(dentry);
3880 	inode_lock(dentry->d_inode);
3881 
3882 	error = -EBUSY;
3883 	if (is_local_mountpoint(dentry))
3884 		goto out;
3885 
3886 	error = security_inode_rmdir(dir, dentry);
3887 	if (error)
3888 		goto out;
3889 
3890 	error = dir->i_op->rmdir(dir, dentry);
3891 	if (error)
3892 		goto out;
3893 
3894 	shrink_dcache_parent(dentry);
3895 	dentry->d_inode->i_flags |= S_DEAD;
3896 	dont_mount(dentry);
3897 	detach_mounts(dentry);
3898 
3899 out:
3900 	inode_unlock(dentry->d_inode);
3901 	dput(dentry);
3902 	if (!error)
3903 		d_delete(dentry);
3904 	return error;
3905 }
3906 EXPORT_SYMBOL(vfs_rmdir);
3907 
3908 long do_rmdir(int dfd, const char __user *pathname)
3909 {
3910 	int error = 0;
3911 	struct filename *name;
3912 	struct dentry *dentry;
3913 	struct path path;
3914 	struct qstr last;
3915 	int type;
3916 	unsigned int lookup_flags = 0;
3917 retry:
3918 	name = filename_parentat(dfd, getname(pathname), lookup_flags,
3919 				&path, &last, &type);
3920 	if (IS_ERR(name))
3921 		return PTR_ERR(name);
3922 
3923 	switch (type) {
3924 	case LAST_DOTDOT:
3925 		error = -ENOTEMPTY;
3926 		goto exit1;
3927 	case LAST_DOT:
3928 		error = -EINVAL;
3929 		goto exit1;
3930 	case LAST_ROOT:
3931 		error = -EBUSY;
3932 		goto exit1;
3933 	}
3934 
3935 	error = mnt_want_write(path.mnt);
3936 	if (error)
3937 		goto exit1;
3938 
3939 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3940 	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3941 	error = PTR_ERR(dentry);
3942 	if (IS_ERR(dentry))
3943 		goto exit2;
3944 	if (!dentry->d_inode) {
3945 		error = -ENOENT;
3946 		goto exit3;
3947 	}
3948 	error = security_path_rmdir(&path, dentry);
3949 	if (error)
3950 		goto exit3;
3951 	error = vfs_rmdir(path.dentry->d_inode, dentry);
3952 exit3:
3953 	dput(dentry);
3954 exit2:
3955 	inode_unlock(path.dentry->d_inode);
3956 	mnt_drop_write(path.mnt);
3957 exit1:
3958 	path_put(&path);
3959 	putname(name);
3960 	if (retry_estale(error, lookup_flags)) {
3961 		lookup_flags |= LOOKUP_REVAL;
3962 		goto retry;
3963 	}
3964 	return error;
3965 }
3966 
3967 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3968 {
3969 	return do_rmdir(AT_FDCWD, pathname);
3970 }
3971 
3972 /**
3973  * vfs_unlink - unlink a filesystem object
3974  * @dir:	parent directory
3975  * @dentry:	victim
3976  * @delegated_inode: returns victim inode, if the inode is delegated.
3977  *
3978  * The caller must hold dir->i_mutex.
3979  *
3980  * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3981  * return a reference to the inode in delegated_inode.  The caller
3982  * should then break the delegation on that inode and retry.  Because
3983  * breaking a delegation may take a long time, the caller should drop
3984  * dir->i_mutex before doing so.
3985  *
3986  * Alternatively, a caller may pass NULL for delegated_inode.  This may
3987  * be appropriate for callers that expect the underlying filesystem not
3988  * to be NFS exported.
3989  */
3990 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3991 {
3992 	struct inode *target = dentry->d_inode;
3993 	int error = may_delete(dir, dentry, 0);
3994 
3995 	if (error)
3996 		return error;
3997 
3998 	if (!dir->i_op->unlink)
3999 		return -EPERM;
4000 
4001 	inode_lock(target);
4002 	if (is_local_mountpoint(dentry))
4003 		error = -EBUSY;
4004 	else {
4005 		error = security_inode_unlink(dir, dentry);
4006 		if (!error) {
4007 			error = try_break_deleg(target, delegated_inode);
4008 			if (error)
4009 				goto out;
4010 			error = dir->i_op->unlink(dir, dentry);
4011 			if (!error) {
4012 				dont_mount(dentry);
4013 				detach_mounts(dentry);
4014 			}
4015 		}
4016 	}
4017 out:
4018 	inode_unlock(target);
4019 
4020 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
4021 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
4022 		fsnotify_link_count(target);
4023 		d_delete(dentry);
4024 	}
4025 
4026 	return error;
4027 }
4028 EXPORT_SYMBOL(vfs_unlink);
4029 
4030 /*
4031  * Make sure that the actual truncation of the file will occur outside its
4032  * directory's i_mutex.  Truncate can take a long time if there is a lot of
4033  * writeout happening, and we don't want to prevent access to the directory
4034  * while waiting on the I/O.
4035  */
4036 long do_unlinkat(int dfd, struct filename *name)
4037 {
4038 	int error;
4039 	struct dentry *dentry;
4040 	struct path path;
4041 	struct qstr last;
4042 	int type;
4043 	struct inode *inode = NULL;
4044 	struct inode *delegated_inode = NULL;
4045 	unsigned int lookup_flags = 0;
4046 retry:
4047 	name = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4048 	if (IS_ERR(name))
4049 		return PTR_ERR(name);
4050 
4051 	error = -EISDIR;
4052 	if (type != LAST_NORM)
4053 		goto exit1;
4054 
4055 	error = mnt_want_write(path.mnt);
4056 	if (error)
4057 		goto exit1;
4058 retry_deleg:
4059 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4060 	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4061 	error = PTR_ERR(dentry);
4062 	if (!IS_ERR(dentry)) {
4063 		/* Why not before? Because we want correct error value */
4064 		if (last.name[last.len])
4065 			goto slashes;
4066 		inode = dentry->d_inode;
4067 		if (d_is_negative(dentry))
4068 			goto slashes;
4069 		ihold(inode);
4070 		error = security_path_unlink(&path, dentry);
4071 		if (error)
4072 			goto exit2;
4073 		error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
4074 exit2:
4075 		dput(dentry);
4076 	}
4077 	inode_unlock(path.dentry->d_inode);
4078 	if (inode)
4079 		iput(inode);	/* truncate the inode here */
4080 	inode = NULL;
4081 	if (delegated_inode) {
4082 		error = break_deleg_wait(&delegated_inode);
4083 		if (!error)
4084 			goto retry_deleg;
4085 	}
4086 	mnt_drop_write(path.mnt);
4087 exit1:
4088 	path_put(&path);
4089 	if (retry_estale(error, lookup_flags)) {
4090 		lookup_flags |= LOOKUP_REVAL;
4091 		inode = NULL;
4092 		goto retry;
4093 	}
4094 	putname(name);
4095 	return error;
4096 
4097 slashes:
4098 	if (d_is_negative(dentry))
4099 		error = -ENOENT;
4100 	else if (d_is_dir(dentry))
4101 		error = -EISDIR;
4102 	else
4103 		error = -ENOTDIR;
4104 	goto exit2;
4105 }
4106 
4107 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4108 {
4109 	if ((flag & ~AT_REMOVEDIR) != 0)
4110 		return -EINVAL;
4111 
4112 	if (flag & AT_REMOVEDIR)
4113 		return do_rmdir(dfd, pathname);
4114 
4115 	return do_unlinkat(dfd, getname(pathname));
4116 }
4117 
4118 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4119 {
4120 	return do_unlinkat(AT_FDCWD, getname(pathname));
4121 }
4122 
4123 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
4124 {
4125 	int error = may_create(dir, dentry);
4126 
4127 	if (error)
4128 		return error;
4129 
4130 	if (!dir->i_op->symlink)
4131 		return -EPERM;
4132 
4133 	error = security_inode_symlink(dir, dentry, oldname);
4134 	if (error)
4135 		return error;
4136 
4137 	error = dir->i_op->symlink(dir, dentry, oldname);
4138 	if (!error)
4139 		fsnotify_create(dir, dentry);
4140 	return error;
4141 }
4142 EXPORT_SYMBOL(vfs_symlink);
4143 
4144 long do_symlinkat(const char __user *oldname, int newdfd,
4145 		  const char __user *newname)
4146 {
4147 	int error;
4148 	struct filename *from;
4149 	struct dentry *dentry;
4150 	struct path path;
4151 	unsigned int lookup_flags = 0;
4152 
4153 	from = getname(oldname);
4154 	if (IS_ERR(from))
4155 		return PTR_ERR(from);
4156 retry:
4157 	dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4158 	error = PTR_ERR(dentry);
4159 	if (IS_ERR(dentry))
4160 		goto out_putname;
4161 
4162 	error = security_path_symlink(&path, dentry, from->name);
4163 	if (!error)
4164 		error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
4165 	done_path_create(&path, dentry);
4166 	if (retry_estale(error, lookup_flags)) {
4167 		lookup_flags |= LOOKUP_REVAL;
4168 		goto retry;
4169 	}
4170 out_putname:
4171 	putname(from);
4172 	return error;
4173 }
4174 
4175 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4176 		int, newdfd, const char __user *, newname)
4177 {
4178 	return do_symlinkat(oldname, newdfd, newname);
4179 }
4180 
4181 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4182 {
4183 	return do_symlinkat(oldname, AT_FDCWD, newname);
4184 }
4185 
4186 /**
4187  * vfs_link - create a new link
4188  * @old_dentry:	object to be linked
4189  * @dir:	new parent
4190  * @new_dentry:	where to create the new link
4191  * @delegated_inode: returns inode needing a delegation break
4192  *
4193  * The caller must hold dir->i_mutex
4194  *
4195  * If vfs_link discovers a delegation on the to-be-linked file in need
4196  * of breaking, it will return -EWOULDBLOCK and return a reference to the
4197  * inode in delegated_inode.  The caller should then break the delegation
4198  * and retry.  Because breaking a delegation may take a long time, the
4199  * caller should drop the i_mutex before doing so.
4200  *
4201  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4202  * be appropriate for callers that expect the underlying filesystem not
4203  * to be NFS exported.
4204  */
4205 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4206 {
4207 	struct inode *inode = old_dentry->d_inode;
4208 	unsigned max_links = dir->i_sb->s_max_links;
4209 	int error;
4210 
4211 	if (!inode)
4212 		return -ENOENT;
4213 
4214 	error = may_create(dir, new_dentry);
4215 	if (error)
4216 		return error;
4217 
4218 	if (dir->i_sb != inode->i_sb)
4219 		return -EXDEV;
4220 
4221 	/*
4222 	 * A link to an append-only or immutable file cannot be created.
4223 	 */
4224 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4225 		return -EPERM;
4226 	/*
4227 	 * Updating the link count will likely cause i_uid and i_gid to
4228 	 * be writen back improperly if their true value is unknown to
4229 	 * the vfs.
4230 	 */
4231 	if (HAS_UNMAPPED_ID(inode))
4232 		return -EPERM;
4233 	if (!dir->i_op->link)
4234 		return -EPERM;
4235 	if (S_ISDIR(inode->i_mode))
4236 		return -EPERM;
4237 
4238 	error = security_inode_link(old_dentry, dir, new_dentry);
4239 	if (error)
4240 		return error;
4241 
4242 	inode_lock(inode);
4243 	/* Make sure we don't allow creating hardlink to an unlinked file */
4244 	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4245 		error =  -ENOENT;
4246 	else if (max_links && inode->i_nlink >= max_links)
4247 		error = -EMLINK;
4248 	else {
4249 		error = try_break_deleg(inode, delegated_inode);
4250 		if (!error)
4251 			error = dir->i_op->link(old_dentry, dir, new_dentry);
4252 	}
4253 
4254 	if (!error && (inode->i_state & I_LINKABLE)) {
4255 		spin_lock(&inode->i_lock);
4256 		inode->i_state &= ~I_LINKABLE;
4257 		spin_unlock(&inode->i_lock);
4258 	}
4259 	inode_unlock(inode);
4260 	if (!error)
4261 		fsnotify_link(dir, inode, new_dentry);
4262 	return error;
4263 }
4264 EXPORT_SYMBOL(vfs_link);
4265 
4266 /*
4267  * Hardlinks are often used in delicate situations.  We avoid
4268  * security-related surprises by not following symlinks on the
4269  * newname.  --KAB
4270  *
4271  * We don't follow them on the oldname either to be compatible
4272  * with linux 2.0, and to avoid hard-linking to directories
4273  * and other special files.  --ADM
4274  */
4275 int do_linkat(int olddfd, const char __user *oldname, int newdfd,
4276 	      const char __user *newname, int flags)
4277 {
4278 	struct dentry *new_dentry;
4279 	struct path old_path, new_path;
4280 	struct inode *delegated_inode = NULL;
4281 	int how = 0;
4282 	int error;
4283 
4284 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4285 		return -EINVAL;
4286 	/*
4287 	 * To use null names we require CAP_DAC_READ_SEARCH
4288 	 * This ensures that not everyone will be able to create
4289 	 * handlink using the passed filedescriptor.
4290 	 */
4291 	if (flags & AT_EMPTY_PATH) {
4292 		if (!capable(CAP_DAC_READ_SEARCH))
4293 			return -ENOENT;
4294 		how = LOOKUP_EMPTY;
4295 	}
4296 
4297 	if (flags & AT_SYMLINK_FOLLOW)
4298 		how |= LOOKUP_FOLLOW;
4299 retry:
4300 	error = user_path_at(olddfd, oldname, how, &old_path);
4301 	if (error)
4302 		return error;
4303 
4304 	new_dentry = user_path_create(newdfd, newname, &new_path,
4305 					(how & LOOKUP_REVAL));
4306 	error = PTR_ERR(new_dentry);
4307 	if (IS_ERR(new_dentry))
4308 		goto out;
4309 
4310 	error = -EXDEV;
4311 	if (old_path.mnt != new_path.mnt)
4312 		goto out_dput;
4313 	error = may_linkat(&old_path);
4314 	if (unlikely(error))
4315 		goto out_dput;
4316 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
4317 	if (error)
4318 		goto out_dput;
4319 	error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4320 out_dput:
4321 	done_path_create(&new_path, new_dentry);
4322 	if (delegated_inode) {
4323 		error = break_deleg_wait(&delegated_inode);
4324 		if (!error) {
4325 			path_put(&old_path);
4326 			goto retry;
4327 		}
4328 	}
4329 	if (retry_estale(error, how)) {
4330 		path_put(&old_path);
4331 		how |= LOOKUP_REVAL;
4332 		goto retry;
4333 	}
4334 out:
4335 	path_put(&old_path);
4336 
4337 	return error;
4338 }
4339 
4340 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4341 		int, newdfd, const char __user *, newname, int, flags)
4342 {
4343 	return do_linkat(olddfd, oldname, newdfd, newname, flags);
4344 }
4345 
4346 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4347 {
4348 	return do_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4349 }
4350 
4351 /**
4352  * vfs_rename - rename a filesystem object
4353  * @old_dir:	parent of source
4354  * @old_dentry:	source
4355  * @new_dir:	parent of destination
4356  * @new_dentry:	destination
4357  * @delegated_inode: returns an inode needing a delegation break
4358  * @flags:	rename flags
4359  *
4360  * The caller must hold multiple mutexes--see lock_rename()).
4361  *
4362  * If vfs_rename discovers a delegation in need of breaking at either
4363  * the source or destination, it will return -EWOULDBLOCK and return a
4364  * reference to the inode in delegated_inode.  The caller should then
4365  * break the delegation and retry.  Because breaking a delegation may
4366  * take a long time, the caller should drop all locks before doing
4367  * so.
4368  *
4369  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4370  * be appropriate for callers that expect the underlying filesystem not
4371  * to be NFS exported.
4372  *
4373  * The worst of all namespace operations - renaming directory. "Perverted"
4374  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4375  * Problems:
4376  *
4377  *	a) we can get into loop creation.
4378  *	b) race potential - two innocent renames can create a loop together.
4379  *	   That's where 4.4 screws up. Current fix: serialization on
4380  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4381  *	   story.
4382  *	c) we have to lock _four_ objects - parents and victim (if it exists),
4383  *	   and source (if it is not a directory).
4384  *	   And that - after we got ->i_mutex on parents (until then we don't know
4385  *	   whether the target exists).  Solution: try to be smart with locking
4386  *	   order for inodes.  We rely on the fact that tree topology may change
4387  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
4388  *	   move will be locked.  Thus we can rank directories by the tree
4389  *	   (ancestors first) and rank all non-directories after them.
4390  *	   That works since everybody except rename does "lock parent, lookup,
4391  *	   lock child" and rename is under ->s_vfs_rename_mutex.
4392  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
4393  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
4394  *	   we'd better make sure that there's no link(2) for them.
4395  *	d) conversion from fhandle to dentry may come in the wrong moment - when
4396  *	   we are removing the target. Solution: we will have to grab ->i_mutex
4397  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4398  *	   ->i_mutex on parents, which works but leads to some truly excessive
4399  *	   locking].
4400  */
4401 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4402 	       struct inode *new_dir, struct dentry *new_dentry,
4403 	       struct inode **delegated_inode, unsigned int flags)
4404 {
4405 	int error;
4406 	bool is_dir = d_is_dir(old_dentry);
4407 	struct inode *source = old_dentry->d_inode;
4408 	struct inode *target = new_dentry->d_inode;
4409 	bool new_is_dir = false;
4410 	unsigned max_links = new_dir->i_sb->s_max_links;
4411 	struct name_snapshot old_name;
4412 
4413 	if (source == target)
4414 		return 0;
4415 
4416 	error = may_delete(old_dir, old_dentry, is_dir);
4417 	if (error)
4418 		return error;
4419 
4420 	if (!target) {
4421 		error = may_create(new_dir, new_dentry);
4422 	} else {
4423 		new_is_dir = d_is_dir(new_dentry);
4424 
4425 		if (!(flags & RENAME_EXCHANGE))
4426 			error = may_delete(new_dir, new_dentry, is_dir);
4427 		else
4428 			error = may_delete(new_dir, new_dentry, new_is_dir);
4429 	}
4430 	if (error)
4431 		return error;
4432 
4433 	if (!old_dir->i_op->rename)
4434 		return -EPERM;
4435 
4436 	/*
4437 	 * If we are going to change the parent - check write permissions,
4438 	 * we'll need to flip '..'.
4439 	 */
4440 	if (new_dir != old_dir) {
4441 		if (is_dir) {
4442 			error = inode_permission(source, MAY_WRITE);
4443 			if (error)
4444 				return error;
4445 		}
4446 		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4447 			error = inode_permission(target, MAY_WRITE);
4448 			if (error)
4449 				return error;
4450 		}
4451 	}
4452 
4453 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4454 				      flags);
4455 	if (error)
4456 		return error;
4457 
4458 	take_dentry_name_snapshot(&old_name, old_dentry);
4459 	dget(new_dentry);
4460 	if (!is_dir || (flags & RENAME_EXCHANGE))
4461 		lock_two_nondirectories(source, target);
4462 	else if (target)
4463 		inode_lock(target);
4464 
4465 	error = -EBUSY;
4466 	if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4467 		goto out;
4468 
4469 	if (max_links && new_dir != old_dir) {
4470 		error = -EMLINK;
4471 		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4472 			goto out;
4473 		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4474 		    old_dir->i_nlink >= max_links)
4475 			goto out;
4476 	}
4477 	if (!is_dir) {
4478 		error = try_break_deleg(source, delegated_inode);
4479 		if (error)
4480 			goto out;
4481 	}
4482 	if (target && !new_is_dir) {
4483 		error = try_break_deleg(target, delegated_inode);
4484 		if (error)
4485 			goto out;
4486 	}
4487 	error = old_dir->i_op->rename(old_dir, old_dentry,
4488 				       new_dir, new_dentry, flags);
4489 	if (error)
4490 		goto out;
4491 
4492 	if (!(flags & RENAME_EXCHANGE) && target) {
4493 		if (is_dir) {
4494 			shrink_dcache_parent(new_dentry);
4495 			target->i_flags |= S_DEAD;
4496 		}
4497 		dont_mount(new_dentry);
4498 		detach_mounts(new_dentry);
4499 	}
4500 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4501 		if (!(flags & RENAME_EXCHANGE))
4502 			d_move(old_dentry, new_dentry);
4503 		else
4504 			d_exchange(old_dentry, new_dentry);
4505 	}
4506 out:
4507 	if (!is_dir || (flags & RENAME_EXCHANGE))
4508 		unlock_two_nondirectories(source, target);
4509 	else if (target)
4510 		inode_unlock(target);
4511 	dput(new_dentry);
4512 	if (!error) {
4513 		fsnotify_move(old_dir, new_dir, old_name.name, is_dir,
4514 			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4515 		if (flags & RENAME_EXCHANGE) {
4516 			fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4517 				      new_is_dir, NULL, new_dentry);
4518 		}
4519 	}
4520 	release_dentry_name_snapshot(&old_name);
4521 
4522 	return error;
4523 }
4524 EXPORT_SYMBOL(vfs_rename);
4525 
4526 static int do_renameat2(int olddfd, const char __user *oldname, int newdfd,
4527 			const char __user *newname, unsigned int flags)
4528 {
4529 	struct dentry *old_dentry, *new_dentry;
4530 	struct dentry *trap;
4531 	struct path old_path, new_path;
4532 	struct qstr old_last, new_last;
4533 	int old_type, new_type;
4534 	struct inode *delegated_inode = NULL;
4535 	struct filename *from;
4536 	struct filename *to;
4537 	unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4538 	bool should_retry = false;
4539 	int error;
4540 
4541 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4542 		return -EINVAL;
4543 
4544 	if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4545 	    (flags & RENAME_EXCHANGE))
4546 		return -EINVAL;
4547 
4548 	if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4549 		return -EPERM;
4550 
4551 	if (flags & RENAME_EXCHANGE)
4552 		target_flags = 0;
4553 
4554 retry:
4555 	from = filename_parentat(olddfd, getname(oldname), lookup_flags,
4556 				&old_path, &old_last, &old_type);
4557 	if (IS_ERR(from)) {
4558 		error = PTR_ERR(from);
4559 		goto exit;
4560 	}
4561 
4562 	to = filename_parentat(newdfd, getname(newname), lookup_flags,
4563 				&new_path, &new_last, &new_type);
4564 	if (IS_ERR(to)) {
4565 		error = PTR_ERR(to);
4566 		goto exit1;
4567 	}
4568 
4569 	error = -EXDEV;
4570 	if (old_path.mnt != new_path.mnt)
4571 		goto exit2;
4572 
4573 	error = -EBUSY;
4574 	if (old_type != LAST_NORM)
4575 		goto exit2;
4576 
4577 	if (flags & RENAME_NOREPLACE)
4578 		error = -EEXIST;
4579 	if (new_type != LAST_NORM)
4580 		goto exit2;
4581 
4582 	error = mnt_want_write(old_path.mnt);
4583 	if (error)
4584 		goto exit2;
4585 
4586 retry_deleg:
4587 	trap = lock_rename(new_path.dentry, old_path.dentry);
4588 
4589 	old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4590 	error = PTR_ERR(old_dentry);
4591 	if (IS_ERR(old_dentry))
4592 		goto exit3;
4593 	/* source must exist */
4594 	error = -ENOENT;
4595 	if (d_is_negative(old_dentry))
4596 		goto exit4;
4597 	new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4598 	error = PTR_ERR(new_dentry);
4599 	if (IS_ERR(new_dentry))
4600 		goto exit4;
4601 	error = -EEXIST;
4602 	if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4603 		goto exit5;
4604 	if (flags & RENAME_EXCHANGE) {
4605 		error = -ENOENT;
4606 		if (d_is_negative(new_dentry))
4607 			goto exit5;
4608 
4609 		if (!d_is_dir(new_dentry)) {
4610 			error = -ENOTDIR;
4611 			if (new_last.name[new_last.len])
4612 				goto exit5;
4613 		}
4614 	}
4615 	/* unless the source is a directory trailing slashes give -ENOTDIR */
4616 	if (!d_is_dir(old_dentry)) {
4617 		error = -ENOTDIR;
4618 		if (old_last.name[old_last.len])
4619 			goto exit5;
4620 		if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4621 			goto exit5;
4622 	}
4623 	/* source should not be ancestor of target */
4624 	error = -EINVAL;
4625 	if (old_dentry == trap)
4626 		goto exit5;
4627 	/* target should not be an ancestor of source */
4628 	if (!(flags & RENAME_EXCHANGE))
4629 		error = -ENOTEMPTY;
4630 	if (new_dentry == trap)
4631 		goto exit5;
4632 
4633 	error = security_path_rename(&old_path, old_dentry,
4634 				     &new_path, new_dentry, flags);
4635 	if (error)
4636 		goto exit5;
4637 	error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4638 			   new_path.dentry->d_inode, new_dentry,
4639 			   &delegated_inode, flags);
4640 exit5:
4641 	dput(new_dentry);
4642 exit4:
4643 	dput(old_dentry);
4644 exit3:
4645 	unlock_rename(new_path.dentry, old_path.dentry);
4646 	if (delegated_inode) {
4647 		error = break_deleg_wait(&delegated_inode);
4648 		if (!error)
4649 			goto retry_deleg;
4650 	}
4651 	mnt_drop_write(old_path.mnt);
4652 exit2:
4653 	if (retry_estale(error, lookup_flags))
4654 		should_retry = true;
4655 	path_put(&new_path);
4656 	putname(to);
4657 exit1:
4658 	path_put(&old_path);
4659 	putname(from);
4660 	if (should_retry) {
4661 		should_retry = false;
4662 		lookup_flags |= LOOKUP_REVAL;
4663 		goto retry;
4664 	}
4665 exit:
4666 	return error;
4667 }
4668 
4669 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4670 		int, newdfd, const char __user *, newname, unsigned int, flags)
4671 {
4672 	return do_renameat2(olddfd, oldname, newdfd, newname, flags);
4673 }
4674 
4675 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4676 		int, newdfd, const char __user *, newname)
4677 {
4678 	return do_renameat2(olddfd, oldname, newdfd, newname, 0);
4679 }
4680 
4681 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4682 {
4683 	return do_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4684 }
4685 
4686 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4687 {
4688 	int error = may_create(dir, dentry);
4689 	if (error)
4690 		return error;
4691 
4692 	if (!dir->i_op->mknod)
4693 		return -EPERM;
4694 
4695 	return dir->i_op->mknod(dir, dentry,
4696 				S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4697 }
4698 EXPORT_SYMBOL(vfs_whiteout);
4699 
4700 int readlink_copy(char __user *buffer, int buflen, const char *link)
4701 {
4702 	int len = PTR_ERR(link);
4703 	if (IS_ERR(link))
4704 		goto out;
4705 
4706 	len = strlen(link);
4707 	if (len > (unsigned) buflen)
4708 		len = buflen;
4709 	if (copy_to_user(buffer, link, len))
4710 		len = -EFAULT;
4711 out:
4712 	return len;
4713 }
4714 
4715 /*
4716  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
4717  * have ->get_link() not calling nd_jump_link().  Using (or not using) it
4718  * for any given inode is up to filesystem.
4719  */
4720 static int generic_readlink(struct dentry *dentry, char __user *buffer,
4721 			    int buflen)
4722 {
4723 	DEFINE_DELAYED_CALL(done);
4724 	struct inode *inode = d_inode(dentry);
4725 	const char *link = inode->i_link;
4726 	int res;
4727 
4728 	if (!link) {
4729 		link = inode->i_op->get_link(dentry, inode, &done);
4730 		if (IS_ERR(link))
4731 			return PTR_ERR(link);
4732 	}
4733 	res = readlink_copy(buffer, buflen, link);
4734 	do_delayed_call(&done);
4735 	return res;
4736 }
4737 
4738 /**
4739  * vfs_readlink - copy symlink body into userspace buffer
4740  * @dentry: dentry on which to get symbolic link
4741  * @buffer: user memory pointer
4742  * @buflen: size of buffer
4743  *
4744  * Does not touch atime.  That's up to the caller if necessary
4745  *
4746  * Does not call security hook.
4747  */
4748 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4749 {
4750 	struct inode *inode = d_inode(dentry);
4751 
4752 	if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
4753 		if (unlikely(inode->i_op->readlink))
4754 			return inode->i_op->readlink(dentry, buffer, buflen);
4755 
4756 		if (!d_is_symlink(dentry))
4757 			return -EINVAL;
4758 
4759 		spin_lock(&inode->i_lock);
4760 		inode->i_opflags |= IOP_DEFAULT_READLINK;
4761 		spin_unlock(&inode->i_lock);
4762 	}
4763 
4764 	return generic_readlink(dentry, buffer, buflen);
4765 }
4766 EXPORT_SYMBOL(vfs_readlink);
4767 
4768 /**
4769  * vfs_get_link - get symlink body
4770  * @dentry: dentry on which to get symbolic link
4771  * @done: caller needs to free returned data with this
4772  *
4773  * Calls security hook and i_op->get_link() on the supplied inode.
4774  *
4775  * It does not touch atime.  That's up to the caller if necessary.
4776  *
4777  * Does not work on "special" symlinks like /proc/$$/fd/N
4778  */
4779 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
4780 {
4781 	const char *res = ERR_PTR(-EINVAL);
4782 	struct inode *inode = d_inode(dentry);
4783 
4784 	if (d_is_symlink(dentry)) {
4785 		res = ERR_PTR(security_inode_readlink(dentry));
4786 		if (!res)
4787 			res = inode->i_op->get_link(dentry, inode, done);
4788 	}
4789 	return res;
4790 }
4791 EXPORT_SYMBOL(vfs_get_link);
4792 
4793 /* get the link contents into pagecache */
4794 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4795 			  struct delayed_call *callback)
4796 {
4797 	char *kaddr;
4798 	struct page *page;
4799 	struct address_space *mapping = inode->i_mapping;
4800 
4801 	if (!dentry) {
4802 		page = find_get_page(mapping, 0);
4803 		if (!page)
4804 			return ERR_PTR(-ECHILD);
4805 		if (!PageUptodate(page)) {
4806 			put_page(page);
4807 			return ERR_PTR(-ECHILD);
4808 		}
4809 	} else {
4810 		page = read_mapping_page(mapping, 0, NULL);
4811 		if (IS_ERR(page))
4812 			return (char*)page;
4813 	}
4814 	set_delayed_call(callback, page_put_link, page);
4815 	BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4816 	kaddr = page_address(page);
4817 	nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4818 	return kaddr;
4819 }
4820 
4821 EXPORT_SYMBOL(page_get_link);
4822 
4823 void page_put_link(void *arg)
4824 {
4825 	put_page(arg);
4826 }
4827 EXPORT_SYMBOL(page_put_link);
4828 
4829 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4830 {
4831 	DEFINE_DELAYED_CALL(done);
4832 	int res = readlink_copy(buffer, buflen,
4833 				page_get_link(dentry, d_inode(dentry),
4834 					      &done));
4835 	do_delayed_call(&done);
4836 	return res;
4837 }
4838 EXPORT_SYMBOL(page_readlink);
4839 
4840 /*
4841  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4842  */
4843 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4844 {
4845 	struct address_space *mapping = inode->i_mapping;
4846 	struct page *page;
4847 	void *fsdata;
4848 	int err;
4849 	unsigned int flags = 0;
4850 	if (nofs)
4851 		flags |= AOP_FLAG_NOFS;
4852 
4853 retry:
4854 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
4855 				flags, &page, &fsdata);
4856 	if (err)
4857 		goto fail;
4858 
4859 	memcpy(page_address(page), symname, len-1);
4860 
4861 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4862 							page, fsdata);
4863 	if (err < 0)
4864 		goto fail;
4865 	if (err < len-1)
4866 		goto retry;
4867 
4868 	mark_inode_dirty(inode);
4869 	return 0;
4870 fail:
4871 	return err;
4872 }
4873 EXPORT_SYMBOL(__page_symlink);
4874 
4875 int page_symlink(struct inode *inode, const char *symname, int len)
4876 {
4877 	return __page_symlink(inode, symname, len,
4878 			!mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4879 }
4880 EXPORT_SYMBOL(page_symlink);
4881 
4882 const struct inode_operations page_symlink_inode_operations = {
4883 	.get_link	= page_get_link,
4884 };
4885 EXPORT_SYMBOL(page_symlink_inode_operations);
4886