xref: /openbmc/linux/fs/namei.c (revision d6e2d652)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/namei.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * Some corrections by tytso.
10  */
11 
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13  * lookup logic.
14  */
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
16  */
17 
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
22 #include <linux/fs.h>
23 #include <linux/filelock.h>
24 #include <linux/namei.h>
25 #include <linux/pagemap.h>
26 #include <linux/sched/mm.h>
27 #include <linux/fsnotify.h>
28 #include <linux/personality.h>
29 #include <linux/security.h>
30 #include <linux/ima.h>
31 #include <linux/syscalls.h>
32 #include <linux/mount.h>
33 #include <linux/audit.h>
34 #include <linux/capability.h>
35 #include <linux/file.h>
36 #include <linux/fcntl.h>
37 #include <linux/device_cgroup.h>
38 #include <linux/fs_struct.h>
39 #include <linux/posix_acl.h>
40 #include <linux/hash.h>
41 #include <linux/bitops.h>
42 #include <linux/init_task.h>
43 #include <linux/uaccess.h>
44 
45 #include "internal.h"
46 #include "mount.h"
47 
48 /* [Feb-1997 T. Schoebel-Theuer]
49  * Fundamental changes in the pathname lookup mechanisms (namei)
50  * were necessary because of omirr.  The reason is that omirr needs
51  * to know the _real_ pathname, not the user-supplied one, in case
52  * of symlinks (and also when transname replacements occur).
53  *
54  * The new code replaces the old recursive symlink resolution with
55  * an iterative one (in case of non-nested symlink chains).  It does
56  * this with calls to <fs>_follow_link().
57  * As a side effect, dir_namei(), _namei() and follow_link() are now
58  * replaced with a single function lookup_dentry() that can handle all
59  * the special cases of the former code.
60  *
61  * With the new dcache, the pathname is stored at each inode, at least as
62  * long as the refcount of the inode is positive.  As a side effect, the
63  * size of the dcache depends on the inode cache and thus is dynamic.
64  *
65  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
66  * resolution to correspond with current state of the code.
67  *
68  * Note that the symlink resolution is not *completely* iterative.
69  * There is still a significant amount of tail- and mid- recursion in
70  * the algorithm.  Also, note that <fs>_readlink() is not used in
71  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
72  * may return different results than <fs>_follow_link().  Many virtual
73  * filesystems (including /proc) exhibit this behavior.
74  */
75 
76 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
77  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
78  * and the name already exists in form of a symlink, try to create the new
79  * name indicated by the symlink. The old code always complained that the
80  * name already exists, due to not following the symlink even if its target
81  * is nonexistent.  The new semantics affects also mknod() and link() when
82  * the name is a symlink pointing to a non-existent name.
83  *
84  * I don't know which semantics is the right one, since I have no access
85  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
86  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
87  * "old" one. Personally, I think the new semantics is much more logical.
88  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
89  * file does succeed in both HP-UX and SunOs, but not in Solaris
90  * and in the old Linux semantics.
91  */
92 
93 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
94  * semantics.  See the comments in "open_namei" and "do_link" below.
95  *
96  * [10-Sep-98 Alan Modra] Another symlink change.
97  */
98 
99 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
100  *	inside the path - always follow.
101  *	in the last component in creation/removal/renaming - never follow.
102  *	if LOOKUP_FOLLOW passed - follow.
103  *	if the pathname has trailing slashes - follow.
104  *	otherwise - don't follow.
105  * (applied in that order).
106  *
107  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
108  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
109  * During the 2.4 we need to fix the userland stuff depending on it -
110  * hopefully we will be able to get rid of that wart in 2.5. So far only
111  * XEmacs seems to be relying on it...
112  */
113 /*
114  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
115  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
116  * any extra contention...
117  */
118 
119 /* In order to reduce some races, while at the same time doing additional
120  * checking and hopefully speeding things up, we copy filenames to the
121  * kernel data space before using them..
122  *
123  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
124  * PATH_MAX includes the nul terminator --RR.
125  */
126 
127 #define EMBEDDED_NAME_MAX	(PATH_MAX - offsetof(struct filename, iname))
128 
129 struct filename *
130 getname_flags(const char __user *filename, int flags, int *empty)
131 {
132 	struct filename *result;
133 	char *kname;
134 	int len;
135 
136 	result = audit_reusename(filename);
137 	if (result)
138 		return result;
139 
140 	result = __getname();
141 	if (unlikely(!result))
142 		return ERR_PTR(-ENOMEM);
143 
144 	/*
145 	 * First, try to embed the struct filename inside the names_cache
146 	 * allocation
147 	 */
148 	kname = (char *)result->iname;
149 	result->name = kname;
150 
151 	len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
152 	if (unlikely(len < 0)) {
153 		__putname(result);
154 		return ERR_PTR(len);
155 	}
156 
157 	/*
158 	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
159 	 * separate struct filename so we can dedicate the entire
160 	 * names_cache allocation for the pathname, and re-do the copy from
161 	 * userland.
162 	 */
163 	if (unlikely(len == EMBEDDED_NAME_MAX)) {
164 		const size_t size = offsetof(struct filename, iname[1]);
165 		kname = (char *)result;
166 
167 		/*
168 		 * size is chosen that way we to guarantee that
169 		 * result->iname[0] is within the same object and that
170 		 * kname can't be equal to result->iname, no matter what.
171 		 */
172 		result = kzalloc(size, GFP_KERNEL);
173 		if (unlikely(!result)) {
174 			__putname(kname);
175 			return ERR_PTR(-ENOMEM);
176 		}
177 		result->name = kname;
178 		len = strncpy_from_user(kname, filename, PATH_MAX);
179 		if (unlikely(len < 0)) {
180 			__putname(kname);
181 			kfree(result);
182 			return ERR_PTR(len);
183 		}
184 		if (unlikely(len == PATH_MAX)) {
185 			__putname(kname);
186 			kfree(result);
187 			return ERR_PTR(-ENAMETOOLONG);
188 		}
189 	}
190 
191 	result->refcnt = 1;
192 	/* The empty path is special. */
193 	if (unlikely(!len)) {
194 		if (empty)
195 			*empty = 1;
196 		if (!(flags & LOOKUP_EMPTY)) {
197 			putname(result);
198 			return ERR_PTR(-ENOENT);
199 		}
200 	}
201 
202 	result->uptr = filename;
203 	result->aname = NULL;
204 	audit_getname(result);
205 	return result;
206 }
207 
208 struct filename *
209 getname_uflags(const char __user *filename, int uflags)
210 {
211 	int flags = (uflags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
212 
213 	return getname_flags(filename, flags, NULL);
214 }
215 
216 struct filename *
217 getname(const char __user * filename)
218 {
219 	return getname_flags(filename, 0, NULL);
220 }
221 
222 struct filename *
223 getname_kernel(const char * filename)
224 {
225 	struct filename *result;
226 	int len = strlen(filename) + 1;
227 
228 	result = __getname();
229 	if (unlikely(!result))
230 		return ERR_PTR(-ENOMEM);
231 
232 	if (len <= EMBEDDED_NAME_MAX) {
233 		result->name = (char *)result->iname;
234 	} else if (len <= PATH_MAX) {
235 		const size_t size = offsetof(struct filename, iname[1]);
236 		struct filename *tmp;
237 
238 		tmp = kmalloc(size, GFP_KERNEL);
239 		if (unlikely(!tmp)) {
240 			__putname(result);
241 			return ERR_PTR(-ENOMEM);
242 		}
243 		tmp->name = (char *)result;
244 		result = tmp;
245 	} else {
246 		__putname(result);
247 		return ERR_PTR(-ENAMETOOLONG);
248 	}
249 	memcpy((char *)result->name, filename, len);
250 	result->uptr = NULL;
251 	result->aname = NULL;
252 	result->refcnt = 1;
253 	audit_getname(result);
254 
255 	return result;
256 }
257 EXPORT_SYMBOL(getname_kernel);
258 
259 void putname(struct filename *name)
260 {
261 	if (IS_ERR(name))
262 		return;
263 
264 	BUG_ON(name->refcnt <= 0);
265 
266 	if (--name->refcnt > 0)
267 		return;
268 
269 	if (name->name != name->iname) {
270 		__putname(name->name);
271 		kfree(name);
272 	} else
273 		__putname(name);
274 }
275 EXPORT_SYMBOL(putname);
276 
277 /**
278  * check_acl - perform ACL permission checking
279  * @idmap:	idmap of the mount the inode was found from
280  * @inode:	inode to check permissions on
281  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
282  *
283  * This function performs the ACL permission checking. Since this function
284  * retrieve POSIX acls it needs to know whether it is called from a blocking or
285  * non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
286  *
287  * If the inode has been found through an idmapped mount the idmap of
288  * the vfsmount must be passed through @idmap. This function will then take
289  * care to map the inode according to @idmap before checking permissions.
290  * On non-idmapped mounts or if permission checking is to be performed on the
291  * raw inode simply passs @nop_mnt_idmap.
292  */
293 static int check_acl(struct mnt_idmap *idmap,
294 		     struct inode *inode, int mask)
295 {
296 #ifdef CONFIG_FS_POSIX_ACL
297 	struct posix_acl *acl;
298 
299 	if (mask & MAY_NOT_BLOCK) {
300 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
301 	        if (!acl)
302 	                return -EAGAIN;
303 		/* no ->get_inode_acl() calls in RCU mode... */
304 		if (is_uncached_acl(acl))
305 			return -ECHILD;
306 	        return posix_acl_permission(idmap, inode, acl, mask);
307 	}
308 
309 	acl = get_inode_acl(inode, ACL_TYPE_ACCESS);
310 	if (IS_ERR(acl))
311 		return PTR_ERR(acl);
312 	if (acl) {
313 	        int error = posix_acl_permission(idmap, inode, acl, mask);
314 	        posix_acl_release(acl);
315 	        return error;
316 	}
317 #endif
318 
319 	return -EAGAIN;
320 }
321 
322 /**
323  * acl_permission_check - perform basic UNIX permission checking
324  * @idmap:	idmap of the mount the inode was found from
325  * @inode:	inode to check permissions on
326  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
327  *
328  * This function performs the basic UNIX permission checking. Since this
329  * function may retrieve POSIX acls it needs to know whether it is called from a
330  * blocking or non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
331  *
332  * If the inode has been found through an idmapped mount the idmap of
333  * the vfsmount must be passed through @idmap. This function will then take
334  * care to map the inode according to @idmap before checking permissions.
335  * On non-idmapped mounts or if permission checking is to be performed on the
336  * raw inode simply passs @nop_mnt_idmap.
337  */
338 static int acl_permission_check(struct mnt_idmap *idmap,
339 				struct inode *inode, int mask)
340 {
341 	unsigned int mode = inode->i_mode;
342 	vfsuid_t vfsuid;
343 
344 	/* Are we the owner? If so, ACL's don't matter */
345 	vfsuid = i_uid_into_vfsuid(idmap, inode);
346 	if (likely(vfsuid_eq_kuid(vfsuid, current_fsuid()))) {
347 		mask &= 7;
348 		mode >>= 6;
349 		return (mask & ~mode) ? -EACCES : 0;
350 	}
351 
352 	/* Do we have ACL's? */
353 	if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
354 		int error = check_acl(idmap, inode, mask);
355 		if (error != -EAGAIN)
356 			return error;
357 	}
358 
359 	/* Only RWX matters for group/other mode bits */
360 	mask &= 7;
361 
362 	/*
363 	 * Are the group permissions different from
364 	 * the other permissions in the bits we care
365 	 * about? Need to check group ownership if so.
366 	 */
367 	if (mask & (mode ^ (mode >> 3))) {
368 		vfsgid_t vfsgid = i_gid_into_vfsgid(idmap, inode);
369 		if (vfsgid_in_group_p(vfsgid))
370 			mode >>= 3;
371 	}
372 
373 	/* Bits in 'mode' clear that we require? */
374 	return (mask & ~mode) ? -EACCES : 0;
375 }
376 
377 /**
378  * generic_permission -  check for access rights on a Posix-like filesystem
379  * @idmap:	idmap of the mount the inode was found from
380  * @inode:	inode to check access rights for
381  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC,
382  *		%MAY_NOT_BLOCK ...)
383  *
384  * Used to check for read/write/execute permissions on a file.
385  * We use "fsuid" for this, letting us set arbitrary permissions
386  * for filesystem access without changing the "normal" uids which
387  * are used for other things.
388  *
389  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
390  * request cannot be satisfied (eg. requires blocking or too much complexity).
391  * It would then be called again in ref-walk mode.
392  *
393  * If the inode has been found through an idmapped mount the idmap of
394  * the vfsmount must be passed through @idmap. This function will then take
395  * care to map the inode according to @idmap before checking permissions.
396  * On non-idmapped mounts or if permission checking is to be performed on the
397  * raw inode simply passs @nop_mnt_idmap.
398  */
399 int generic_permission(struct mnt_idmap *idmap, struct inode *inode,
400 		       int mask)
401 {
402 	int ret;
403 
404 	/*
405 	 * Do the basic permission checks.
406 	 */
407 	ret = acl_permission_check(idmap, inode, mask);
408 	if (ret != -EACCES)
409 		return ret;
410 
411 	if (S_ISDIR(inode->i_mode)) {
412 		/* DACs are overridable for directories */
413 		if (!(mask & MAY_WRITE))
414 			if (capable_wrt_inode_uidgid(idmap, inode,
415 						     CAP_DAC_READ_SEARCH))
416 				return 0;
417 		if (capable_wrt_inode_uidgid(idmap, inode,
418 					     CAP_DAC_OVERRIDE))
419 			return 0;
420 		return -EACCES;
421 	}
422 
423 	/*
424 	 * Searching includes executable on directories, else just read.
425 	 */
426 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
427 	if (mask == MAY_READ)
428 		if (capable_wrt_inode_uidgid(idmap, inode,
429 					     CAP_DAC_READ_SEARCH))
430 			return 0;
431 	/*
432 	 * Read/write DACs are always overridable.
433 	 * Executable DACs are overridable when there is
434 	 * at least one exec bit set.
435 	 */
436 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
437 		if (capable_wrt_inode_uidgid(idmap, inode,
438 					     CAP_DAC_OVERRIDE))
439 			return 0;
440 
441 	return -EACCES;
442 }
443 EXPORT_SYMBOL(generic_permission);
444 
445 /**
446  * do_inode_permission - UNIX permission checking
447  * @idmap:	idmap of the mount the inode was found from
448  * @inode:	inode to check permissions on
449  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
450  *
451  * We _really_ want to just do "generic_permission()" without
452  * even looking at the inode->i_op values. So we keep a cache
453  * flag in inode->i_opflags, that says "this has not special
454  * permission function, use the fast case".
455  */
456 static inline int do_inode_permission(struct mnt_idmap *idmap,
457 				      struct inode *inode, int mask)
458 {
459 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
460 		if (likely(inode->i_op->permission))
461 			return inode->i_op->permission(idmap, inode, mask);
462 
463 		/* This gets set once for the inode lifetime */
464 		spin_lock(&inode->i_lock);
465 		inode->i_opflags |= IOP_FASTPERM;
466 		spin_unlock(&inode->i_lock);
467 	}
468 	return generic_permission(idmap, inode, mask);
469 }
470 
471 /**
472  * sb_permission - Check superblock-level permissions
473  * @sb: Superblock of inode to check permission on
474  * @inode: Inode to check permission on
475  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
476  *
477  * Separate out file-system wide checks from inode-specific permission checks.
478  */
479 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
480 {
481 	if (unlikely(mask & MAY_WRITE)) {
482 		umode_t mode = inode->i_mode;
483 
484 		/* Nobody gets write access to a read-only fs. */
485 		if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
486 			return -EROFS;
487 	}
488 	return 0;
489 }
490 
491 /**
492  * inode_permission - Check for access rights to a given inode
493  * @idmap:	idmap of the mount the inode was found from
494  * @inode:	Inode to check permission on
495  * @mask:	Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
496  *
497  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
498  * this, letting us set arbitrary permissions for filesystem access without
499  * changing the "normal" UIDs which are used for other things.
500  *
501  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
502  */
503 int inode_permission(struct mnt_idmap *idmap,
504 		     struct inode *inode, int mask)
505 {
506 	int retval;
507 
508 	retval = sb_permission(inode->i_sb, inode, mask);
509 	if (retval)
510 		return retval;
511 
512 	if (unlikely(mask & MAY_WRITE)) {
513 		/*
514 		 * Nobody gets write access to an immutable file.
515 		 */
516 		if (IS_IMMUTABLE(inode))
517 			return -EPERM;
518 
519 		/*
520 		 * Updating mtime will likely cause i_uid and i_gid to be
521 		 * written back improperly if their true value is unknown
522 		 * to the vfs.
523 		 */
524 		if (HAS_UNMAPPED_ID(idmap, inode))
525 			return -EACCES;
526 	}
527 
528 	retval = do_inode_permission(idmap, inode, mask);
529 	if (retval)
530 		return retval;
531 
532 	retval = devcgroup_inode_permission(inode, mask);
533 	if (retval)
534 		return retval;
535 
536 	return security_inode_permission(inode, mask);
537 }
538 EXPORT_SYMBOL(inode_permission);
539 
540 /**
541  * path_get - get a reference to a path
542  * @path: path to get the reference to
543  *
544  * Given a path increment the reference count to the dentry and the vfsmount.
545  */
546 void path_get(const struct path *path)
547 {
548 	mntget(path->mnt);
549 	dget(path->dentry);
550 }
551 EXPORT_SYMBOL(path_get);
552 
553 /**
554  * path_put - put a reference to a path
555  * @path: path to put the reference to
556  *
557  * Given a path decrement the reference count to the dentry and the vfsmount.
558  */
559 void path_put(const struct path *path)
560 {
561 	dput(path->dentry);
562 	mntput(path->mnt);
563 }
564 EXPORT_SYMBOL(path_put);
565 
566 #define EMBEDDED_LEVELS 2
567 struct nameidata {
568 	struct path	path;
569 	struct qstr	last;
570 	struct path	root;
571 	struct inode	*inode; /* path.dentry.d_inode */
572 	unsigned int	flags, state;
573 	unsigned	seq, next_seq, m_seq, r_seq;
574 	int		last_type;
575 	unsigned	depth;
576 	int		total_link_count;
577 	struct saved {
578 		struct path link;
579 		struct delayed_call done;
580 		const char *name;
581 		unsigned seq;
582 	} *stack, internal[EMBEDDED_LEVELS];
583 	struct filename	*name;
584 	struct nameidata *saved;
585 	unsigned	root_seq;
586 	int		dfd;
587 	vfsuid_t	dir_vfsuid;
588 	umode_t		dir_mode;
589 } __randomize_layout;
590 
591 #define ND_ROOT_PRESET 1
592 #define ND_ROOT_GRABBED 2
593 #define ND_JUMPED 4
594 
595 static void __set_nameidata(struct nameidata *p, int dfd, struct filename *name)
596 {
597 	struct nameidata *old = current->nameidata;
598 	p->stack = p->internal;
599 	p->depth = 0;
600 	p->dfd = dfd;
601 	p->name = name;
602 	p->path.mnt = NULL;
603 	p->path.dentry = NULL;
604 	p->total_link_count = old ? old->total_link_count : 0;
605 	p->saved = old;
606 	current->nameidata = p;
607 }
608 
609 static inline void set_nameidata(struct nameidata *p, int dfd, struct filename *name,
610 			  const struct path *root)
611 {
612 	__set_nameidata(p, dfd, name);
613 	p->state = 0;
614 	if (unlikely(root)) {
615 		p->state = ND_ROOT_PRESET;
616 		p->root = *root;
617 	}
618 }
619 
620 static void restore_nameidata(void)
621 {
622 	struct nameidata *now = current->nameidata, *old = now->saved;
623 
624 	current->nameidata = old;
625 	if (old)
626 		old->total_link_count = now->total_link_count;
627 	if (now->stack != now->internal)
628 		kfree(now->stack);
629 }
630 
631 static bool nd_alloc_stack(struct nameidata *nd)
632 {
633 	struct saved *p;
634 
635 	p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
636 			 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL);
637 	if (unlikely(!p))
638 		return false;
639 	memcpy(p, nd->internal, sizeof(nd->internal));
640 	nd->stack = p;
641 	return true;
642 }
643 
644 /**
645  * path_connected - Verify that a dentry is below mnt.mnt_root
646  *
647  * Rename can sometimes move a file or directory outside of a bind
648  * mount, path_connected allows those cases to be detected.
649  */
650 static bool path_connected(struct vfsmount *mnt, struct dentry *dentry)
651 {
652 	struct super_block *sb = mnt->mnt_sb;
653 
654 	/* Bind mounts can have disconnected paths */
655 	if (mnt->mnt_root == sb->s_root)
656 		return true;
657 
658 	return is_subdir(dentry, mnt->mnt_root);
659 }
660 
661 static void drop_links(struct nameidata *nd)
662 {
663 	int i = nd->depth;
664 	while (i--) {
665 		struct saved *last = nd->stack + i;
666 		do_delayed_call(&last->done);
667 		clear_delayed_call(&last->done);
668 	}
669 }
670 
671 static void leave_rcu(struct nameidata *nd)
672 {
673 	nd->flags &= ~LOOKUP_RCU;
674 	nd->seq = nd->next_seq = 0;
675 	rcu_read_unlock();
676 }
677 
678 static void terminate_walk(struct nameidata *nd)
679 {
680 	drop_links(nd);
681 	if (!(nd->flags & LOOKUP_RCU)) {
682 		int i;
683 		path_put(&nd->path);
684 		for (i = 0; i < nd->depth; i++)
685 			path_put(&nd->stack[i].link);
686 		if (nd->state & ND_ROOT_GRABBED) {
687 			path_put(&nd->root);
688 			nd->state &= ~ND_ROOT_GRABBED;
689 		}
690 	} else {
691 		leave_rcu(nd);
692 	}
693 	nd->depth = 0;
694 	nd->path.mnt = NULL;
695 	nd->path.dentry = NULL;
696 }
697 
698 /* path_put is needed afterwards regardless of success or failure */
699 static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq)
700 {
701 	int res = __legitimize_mnt(path->mnt, mseq);
702 	if (unlikely(res)) {
703 		if (res > 0)
704 			path->mnt = NULL;
705 		path->dentry = NULL;
706 		return false;
707 	}
708 	if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
709 		path->dentry = NULL;
710 		return false;
711 	}
712 	return !read_seqcount_retry(&path->dentry->d_seq, seq);
713 }
714 
715 static inline bool legitimize_path(struct nameidata *nd,
716 			    struct path *path, unsigned seq)
717 {
718 	return __legitimize_path(path, seq, nd->m_seq);
719 }
720 
721 static bool legitimize_links(struct nameidata *nd)
722 {
723 	int i;
724 	if (unlikely(nd->flags & LOOKUP_CACHED)) {
725 		drop_links(nd);
726 		nd->depth = 0;
727 		return false;
728 	}
729 	for (i = 0; i < nd->depth; i++) {
730 		struct saved *last = nd->stack + i;
731 		if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
732 			drop_links(nd);
733 			nd->depth = i + 1;
734 			return false;
735 		}
736 	}
737 	return true;
738 }
739 
740 static bool legitimize_root(struct nameidata *nd)
741 {
742 	/* Nothing to do if nd->root is zero or is managed by the VFS user. */
743 	if (!nd->root.mnt || (nd->state & ND_ROOT_PRESET))
744 		return true;
745 	nd->state |= ND_ROOT_GRABBED;
746 	return legitimize_path(nd, &nd->root, nd->root_seq);
747 }
748 
749 /*
750  * Path walking has 2 modes, rcu-walk and ref-walk (see
751  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
752  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
753  * normal reference counts on dentries and vfsmounts to transition to ref-walk
754  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
755  * got stuck, so ref-walk may continue from there. If this is not successful
756  * (eg. a seqcount has changed), then failure is returned and it's up to caller
757  * to restart the path walk from the beginning in ref-walk mode.
758  */
759 
760 /**
761  * try_to_unlazy - try to switch to ref-walk mode.
762  * @nd: nameidata pathwalk data
763  * Returns: true on success, false on failure
764  *
765  * try_to_unlazy attempts to legitimize the current nd->path and nd->root
766  * for ref-walk mode.
767  * Must be called from rcu-walk context.
768  * Nothing should touch nameidata between try_to_unlazy() failure and
769  * terminate_walk().
770  */
771 static bool try_to_unlazy(struct nameidata *nd)
772 {
773 	struct dentry *parent = nd->path.dentry;
774 
775 	BUG_ON(!(nd->flags & LOOKUP_RCU));
776 
777 	if (unlikely(!legitimize_links(nd)))
778 		goto out1;
779 	if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
780 		goto out;
781 	if (unlikely(!legitimize_root(nd)))
782 		goto out;
783 	leave_rcu(nd);
784 	BUG_ON(nd->inode != parent->d_inode);
785 	return true;
786 
787 out1:
788 	nd->path.mnt = NULL;
789 	nd->path.dentry = NULL;
790 out:
791 	leave_rcu(nd);
792 	return false;
793 }
794 
795 /**
796  * try_to_unlazy_next - try to switch to ref-walk mode.
797  * @nd: nameidata pathwalk data
798  * @dentry: next dentry to step into
799  * Returns: true on success, false on failure
800  *
801  * Similar to try_to_unlazy(), but here we have the next dentry already
802  * picked by rcu-walk and want to legitimize that in addition to the current
803  * nd->path and nd->root for ref-walk mode.  Must be called from rcu-walk context.
804  * Nothing should touch nameidata between try_to_unlazy_next() failure and
805  * terminate_walk().
806  */
807 static bool try_to_unlazy_next(struct nameidata *nd, struct dentry *dentry)
808 {
809 	int res;
810 	BUG_ON(!(nd->flags & LOOKUP_RCU));
811 
812 	if (unlikely(!legitimize_links(nd)))
813 		goto out2;
814 	res = __legitimize_mnt(nd->path.mnt, nd->m_seq);
815 	if (unlikely(res)) {
816 		if (res > 0)
817 			goto out2;
818 		goto out1;
819 	}
820 	if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
821 		goto out1;
822 
823 	/*
824 	 * We need to move both the parent and the dentry from the RCU domain
825 	 * to be properly refcounted. And the sequence number in the dentry
826 	 * validates *both* dentry counters, since we checked the sequence
827 	 * number of the parent after we got the child sequence number. So we
828 	 * know the parent must still be valid if the child sequence number is
829 	 */
830 	if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
831 		goto out;
832 	if (read_seqcount_retry(&dentry->d_seq, nd->next_seq))
833 		goto out_dput;
834 	/*
835 	 * Sequence counts matched. Now make sure that the root is
836 	 * still valid and get it if required.
837 	 */
838 	if (unlikely(!legitimize_root(nd)))
839 		goto out_dput;
840 	leave_rcu(nd);
841 	return true;
842 
843 out2:
844 	nd->path.mnt = NULL;
845 out1:
846 	nd->path.dentry = NULL;
847 out:
848 	leave_rcu(nd);
849 	return false;
850 out_dput:
851 	leave_rcu(nd);
852 	dput(dentry);
853 	return false;
854 }
855 
856 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
857 {
858 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
859 		return dentry->d_op->d_revalidate(dentry, flags);
860 	else
861 		return 1;
862 }
863 
864 /**
865  * complete_walk - successful completion of path walk
866  * @nd:  pointer nameidata
867  *
868  * If we had been in RCU mode, drop out of it and legitimize nd->path.
869  * Revalidate the final result, unless we'd already done that during
870  * the path walk or the filesystem doesn't ask for it.  Return 0 on
871  * success, -error on failure.  In case of failure caller does not
872  * need to drop nd->path.
873  */
874 static int complete_walk(struct nameidata *nd)
875 {
876 	struct dentry *dentry = nd->path.dentry;
877 	int status;
878 
879 	if (nd->flags & LOOKUP_RCU) {
880 		/*
881 		 * We don't want to zero nd->root for scoped-lookups or
882 		 * externally-managed nd->root.
883 		 */
884 		if (!(nd->state & ND_ROOT_PRESET))
885 			if (!(nd->flags & LOOKUP_IS_SCOPED))
886 				nd->root.mnt = NULL;
887 		nd->flags &= ~LOOKUP_CACHED;
888 		if (!try_to_unlazy(nd))
889 			return -ECHILD;
890 	}
891 
892 	if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
893 		/*
894 		 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't
895 		 * ever step outside the root during lookup" and should already
896 		 * be guaranteed by the rest of namei, we want to avoid a namei
897 		 * BUG resulting in userspace being given a path that was not
898 		 * scoped within the root at some point during the lookup.
899 		 *
900 		 * So, do a final sanity-check to make sure that in the
901 		 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED)
902 		 * we won't silently return an fd completely outside of the
903 		 * requested root to userspace.
904 		 *
905 		 * Userspace could move the path outside the root after this
906 		 * check, but as discussed elsewhere this is not a concern (the
907 		 * resolved file was inside the root at some point).
908 		 */
909 		if (!path_is_under(&nd->path, &nd->root))
910 			return -EXDEV;
911 	}
912 
913 	if (likely(!(nd->state & ND_JUMPED)))
914 		return 0;
915 
916 	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
917 		return 0;
918 
919 	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
920 	if (status > 0)
921 		return 0;
922 
923 	if (!status)
924 		status = -ESTALE;
925 
926 	return status;
927 }
928 
929 static int set_root(struct nameidata *nd)
930 {
931 	struct fs_struct *fs = current->fs;
932 
933 	/*
934 	 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we
935 	 * still have to ensure it doesn't happen because it will cause a breakout
936 	 * from the dirfd.
937 	 */
938 	if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED))
939 		return -ENOTRECOVERABLE;
940 
941 	if (nd->flags & LOOKUP_RCU) {
942 		unsigned seq;
943 
944 		do {
945 			seq = read_seqcount_begin(&fs->seq);
946 			nd->root = fs->root;
947 			nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
948 		} while (read_seqcount_retry(&fs->seq, seq));
949 	} else {
950 		get_fs_root(fs, &nd->root);
951 		nd->state |= ND_ROOT_GRABBED;
952 	}
953 	return 0;
954 }
955 
956 static int nd_jump_root(struct nameidata *nd)
957 {
958 	if (unlikely(nd->flags & LOOKUP_BENEATH))
959 		return -EXDEV;
960 	if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
961 		/* Absolute path arguments to path_init() are allowed. */
962 		if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt)
963 			return -EXDEV;
964 	}
965 	if (!nd->root.mnt) {
966 		int error = set_root(nd);
967 		if (error)
968 			return error;
969 	}
970 	if (nd->flags & LOOKUP_RCU) {
971 		struct dentry *d;
972 		nd->path = nd->root;
973 		d = nd->path.dentry;
974 		nd->inode = d->d_inode;
975 		nd->seq = nd->root_seq;
976 		if (read_seqcount_retry(&d->d_seq, nd->seq))
977 			return -ECHILD;
978 	} else {
979 		path_put(&nd->path);
980 		nd->path = nd->root;
981 		path_get(&nd->path);
982 		nd->inode = nd->path.dentry->d_inode;
983 	}
984 	nd->state |= ND_JUMPED;
985 	return 0;
986 }
987 
988 /*
989  * Helper to directly jump to a known parsed path from ->get_link,
990  * caller must have taken a reference to path beforehand.
991  */
992 int nd_jump_link(const struct path *path)
993 {
994 	int error = -ELOOP;
995 	struct nameidata *nd = current->nameidata;
996 
997 	if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS))
998 		goto err;
999 
1000 	error = -EXDEV;
1001 	if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
1002 		if (nd->path.mnt != path->mnt)
1003 			goto err;
1004 	}
1005 	/* Not currently safe for scoped-lookups. */
1006 	if (unlikely(nd->flags & LOOKUP_IS_SCOPED))
1007 		goto err;
1008 
1009 	path_put(&nd->path);
1010 	nd->path = *path;
1011 	nd->inode = nd->path.dentry->d_inode;
1012 	nd->state |= ND_JUMPED;
1013 	return 0;
1014 
1015 err:
1016 	path_put(path);
1017 	return error;
1018 }
1019 
1020 static inline void put_link(struct nameidata *nd)
1021 {
1022 	struct saved *last = nd->stack + --nd->depth;
1023 	do_delayed_call(&last->done);
1024 	if (!(nd->flags & LOOKUP_RCU))
1025 		path_put(&last->link);
1026 }
1027 
1028 static int sysctl_protected_symlinks __read_mostly;
1029 static int sysctl_protected_hardlinks __read_mostly;
1030 static int sysctl_protected_fifos __read_mostly;
1031 static int sysctl_protected_regular __read_mostly;
1032 
1033 #ifdef CONFIG_SYSCTL
1034 static struct ctl_table namei_sysctls[] = {
1035 	{
1036 		.procname	= "protected_symlinks",
1037 		.data		= &sysctl_protected_symlinks,
1038 		.maxlen		= sizeof(int),
1039 		.mode		= 0644,
1040 		.proc_handler	= proc_dointvec_minmax,
1041 		.extra1		= SYSCTL_ZERO,
1042 		.extra2		= SYSCTL_ONE,
1043 	},
1044 	{
1045 		.procname	= "protected_hardlinks",
1046 		.data		= &sysctl_protected_hardlinks,
1047 		.maxlen		= sizeof(int),
1048 		.mode		= 0644,
1049 		.proc_handler	= proc_dointvec_minmax,
1050 		.extra1		= SYSCTL_ZERO,
1051 		.extra2		= SYSCTL_ONE,
1052 	},
1053 	{
1054 		.procname	= "protected_fifos",
1055 		.data		= &sysctl_protected_fifos,
1056 		.maxlen		= sizeof(int),
1057 		.mode		= 0644,
1058 		.proc_handler	= proc_dointvec_minmax,
1059 		.extra1		= SYSCTL_ZERO,
1060 		.extra2		= SYSCTL_TWO,
1061 	},
1062 	{
1063 		.procname	= "protected_regular",
1064 		.data		= &sysctl_protected_regular,
1065 		.maxlen		= sizeof(int),
1066 		.mode		= 0644,
1067 		.proc_handler	= proc_dointvec_minmax,
1068 		.extra1		= SYSCTL_ZERO,
1069 		.extra2		= SYSCTL_TWO,
1070 	},
1071 	{ }
1072 };
1073 
1074 static int __init init_fs_namei_sysctls(void)
1075 {
1076 	register_sysctl_init("fs", namei_sysctls);
1077 	return 0;
1078 }
1079 fs_initcall(init_fs_namei_sysctls);
1080 
1081 #endif /* CONFIG_SYSCTL */
1082 
1083 /**
1084  * may_follow_link - Check symlink following for unsafe situations
1085  * @nd: nameidata pathwalk data
1086  *
1087  * In the case of the sysctl_protected_symlinks sysctl being enabled,
1088  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
1089  * in a sticky world-writable directory. This is to protect privileged
1090  * processes from failing races against path names that may change out
1091  * from under them by way of other users creating malicious symlinks.
1092  * It will permit symlinks to be followed only when outside a sticky
1093  * world-writable directory, or when the uid of the symlink and follower
1094  * match, or when the directory owner matches the symlink's owner.
1095  *
1096  * Returns 0 if following the symlink is allowed, -ve on error.
1097  */
1098 static inline int may_follow_link(struct nameidata *nd, const struct inode *inode)
1099 {
1100 	struct mnt_idmap *idmap;
1101 	vfsuid_t vfsuid;
1102 
1103 	if (!sysctl_protected_symlinks)
1104 		return 0;
1105 
1106 	idmap = mnt_idmap(nd->path.mnt);
1107 	vfsuid = i_uid_into_vfsuid(idmap, inode);
1108 	/* Allowed if owner and follower match. */
1109 	if (vfsuid_eq_kuid(vfsuid, current_fsuid()))
1110 		return 0;
1111 
1112 	/* Allowed if parent directory not sticky and world-writable. */
1113 	if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
1114 		return 0;
1115 
1116 	/* Allowed if parent directory and link owner match. */
1117 	if (vfsuid_valid(nd->dir_vfsuid) && vfsuid_eq(nd->dir_vfsuid, vfsuid))
1118 		return 0;
1119 
1120 	if (nd->flags & LOOKUP_RCU)
1121 		return -ECHILD;
1122 
1123 	audit_inode(nd->name, nd->stack[0].link.dentry, 0);
1124 	audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link");
1125 	return -EACCES;
1126 }
1127 
1128 /**
1129  * safe_hardlink_source - Check for safe hardlink conditions
1130  * @idmap: idmap of the mount the inode was found from
1131  * @inode: the source inode to hardlink from
1132  *
1133  * Return false if at least one of the following conditions:
1134  *    - inode is not a regular file
1135  *    - inode is setuid
1136  *    - inode is setgid and group-exec
1137  *    - access failure for read and write
1138  *
1139  * Otherwise returns true.
1140  */
1141 static bool safe_hardlink_source(struct mnt_idmap *idmap,
1142 				 struct inode *inode)
1143 {
1144 	umode_t mode = inode->i_mode;
1145 
1146 	/* Special files should not get pinned to the filesystem. */
1147 	if (!S_ISREG(mode))
1148 		return false;
1149 
1150 	/* Setuid files should not get pinned to the filesystem. */
1151 	if (mode & S_ISUID)
1152 		return false;
1153 
1154 	/* Executable setgid files should not get pinned to the filesystem. */
1155 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
1156 		return false;
1157 
1158 	/* Hardlinking to unreadable or unwritable sources is dangerous. */
1159 	if (inode_permission(idmap, inode, MAY_READ | MAY_WRITE))
1160 		return false;
1161 
1162 	return true;
1163 }
1164 
1165 /**
1166  * may_linkat - Check permissions for creating a hardlink
1167  * @idmap: idmap of the mount the inode was found from
1168  * @link:  the source to hardlink from
1169  *
1170  * Block hardlink when all of:
1171  *  - sysctl_protected_hardlinks enabled
1172  *  - fsuid does not match inode
1173  *  - hardlink source is unsafe (see safe_hardlink_source() above)
1174  *  - not CAP_FOWNER in a namespace with the inode owner uid mapped
1175  *
1176  * If the inode has been found through an idmapped mount the idmap of
1177  * the vfsmount must be passed through @idmap. This function will then take
1178  * care to map the inode according to @idmap before checking permissions.
1179  * On non-idmapped mounts or if permission checking is to be performed on the
1180  * raw inode simply pass @nop_mnt_idmap.
1181  *
1182  * Returns 0 if successful, -ve on error.
1183  */
1184 int may_linkat(struct mnt_idmap *idmap, const struct path *link)
1185 {
1186 	struct inode *inode = link->dentry->d_inode;
1187 
1188 	/* Inode writeback is not safe when the uid or gid are invalid. */
1189 	if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) ||
1190 	    !vfsgid_valid(i_gid_into_vfsgid(idmap, inode)))
1191 		return -EOVERFLOW;
1192 
1193 	if (!sysctl_protected_hardlinks)
1194 		return 0;
1195 
1196 	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1197 	 * otherwise, it must be a safe source.
1198 	 */
1199 	if (safe_hardlink_source(idmap, inode) ||
1200 	    inode_owner_or_capable(idmap, inode))
1201 		return 0;
1202 
1203 	audit_log_path_denied(AUDIT_ANOM_LINK, "linkat");
1204 	return -EPERM;
1205 }
1206 
1207 /**
1208  * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1209  *			  should be allowed, or not, on files that already
1210  *			  exist.
1211  * @idmap: idmap of the mount the inode was found from
1212  * @nd: nameidata pathwalk data
1213  * @inode: the inode of the file to open
1214  *
1215  * Block an O_CREAT open of a FIFO (or a regular file) when:
1216  *   - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1217  *   - the file already exists
1218  *   - we are in a sticky directory
1219  *   - we don't own the file
1220  *   - the owner of the directory doesn't own the file
1221  *   - the directory is world writable
1222  * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1223  * the directory doesn't have to be world writable: being group writable will
1224  * be enough.
1225  *
1226  * If the inode has been found through an idmapped mount the idmap of
1227  * the vfsmount must be passed through @idmap. This function will then take
1228  * care to map the inode according to @idmap before checking permissions.
1229  * On non-idmapped mounts or if permission checking is to be performed on the
1230  * raw inode simply pass @nop_mnt_idmap.
1231  *
1232  * Returns 0 if the open is allowed, -ve on error.
1233  */
1234 static int may_create_in_sticky(struct mnt_idmap *idmap,
1235 				struct nameidata *nd, struct inode *const inode)
1236 {
1237 	umode_t dir_mode = nd->dir_mode;
1238 	vfsuid_t dir_vfsuid = nd->dir_vfsuid;
1239 
1240 	if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) ||
1241 	    (!sysctl_protected_regular && S_ISREG(inode->i_mode)) ||
1242 	    likely(!(dir_mode & S_ISVTX)) ||
1243 	    vfsuid_eq(i_uid_into_vfsuid(idmap, inode), dir_vfsuid) ||
1244 	    vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, inode), current_fsuid()))
1245 		return 0;
1246 
1247 	if (likely(dir_mode & 0002) ||
1248 	    (dir_mode & 0020 &&
1249 	     ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) ||
1250 	      (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) {
1251 		const char *operation = S_ISFIFO(inode->i_mode) ?
1252 					"sticky_create_fifo" :
1253 					"sticky_create_regular";
1254 		audit_log_path_denied(AUDIT_ANOM_CREAT, operation);
1255 		return -EACCES;
1256 	}
1257 	return 0;
1258 }
1259 
1260 /*
1261  * follow_up - Find the mountpoint of path's vfsmount
1262  *
1263  * Given a path, find the mountpoint of its source file system.
1264  * Replace @path with the path of the mountpoint in the parent mount.
1265  * Up is towards /.
1266  *
1267  * Return 1 if we went up a level and 0 if we were already at the
1268  * root.
1269  */
1270 int follow_up(struct path *path)
1271 {
1272 	struct mount *mnt = real_mount(path->mnt);
1273 	struct mount *parent;
1274 	struct dentry *mountpoint;
1275 
1276 	read_seqlock_excl(&mount_lock);
1277 	parent = mnt->mnt_parent;
1278 	if (parent == mnt) {
1279 		read_sequnlock_excl(&mount_lock);
1280 		return 0;
1281 	}
1282 	mntget(&parent->mnt);
1283 	mountpoint = dget(mnt->mnt_mountpoint);
1284 	read_sequnlock_excl(&mount_lock);
1285 	dput(path->dentry);
1286 	path->dentry = mountpoint;
1287 	mntput(path->mnt);
1288 	path->mnt = &parent->mnt;
1289 	return 1;
1290 }
1291 EXPORT_SYMBOL(follow_up);
1292 
1293 static bool choose_mountpoint_rcu(struct mount *m, const struct path *root,
1294 				  struct path *path, unsigned *seqp)
1295 {
1296 	while (mnt_has_parent(m)) {
1297 		struct dentry *mountpoint = m->mnt_mountpoint;
1298 
1299 		m = m->mnt_parent;
1300 		if (unlikely(root->dentry == mountpoint &&
1301 			     root->mnt == &m->mnt))
1302 			break;
1303 		if (mountpoint != m->mnt.mnt_root) {
1304 			path->mnt = &m->mnt;
1305 			path->dentry = mountpoint;
1306 			*seqp = read_seqcount_begin(&mountpoint->d_seq);
1307 			return true;
1308 		}
1309 	}
1310 	return false;
1311 }
1312 
1313 static bool choose_mountpoint(struct mount *m, const struct path *root,
1314 			      struct path *path)
1315 {
1316 	bool found;
1317 
1318 	rcu_read_lock();
1319 	while (1) {
1320 		unsigned seq, mseq = read_seqbegin(&mount_lock);
1321 
1322 		found = choose_mountpoint_rcu(m, root, path, &seq);
1323 		if (unlikely(!found)) {
1324 			if (!read_seqretry(&mount_lock, mseq))
1325 				break;
1326 		} else {
1327 			if (likely(__legitimize_path(path, seq, mseq)))
1328 				break;
1329 			rcu_read_unlock();
1330 			path_put(path);
1331 			rcu_read_lock();
1332 		}
1333 	}
1334 	rcu_read_unlock();
1335 	return found;
1336 }
1337 
1338 /*
1339  * Perform an automount
1340  * - return -EISDIR to tell follow_managed() to stop and return the path we
1341  *   were called with.
1342  */
1343 static int follow_automount(struct path *path, int *count, unsigned lookup_flags)
1344 {
1345 	struct dentry *dentry = path->dentry;
1346 
1347 	/* We don't want to mount if someone's just doing a stat -
1348 	 * unless they're stat'ing a directory and appended a '/' to
1349 	 * the name.
1350 	 *
1351 	 * We do, however, want to mount if someone wants to open or
1352 	 * create a file of any type under the mountpoint, wants to
1353 	 * traverse through the mountpoint or wants to open the
1354 	 * mounted directory.  Also, autofs may mark negative dentries
1355 	 * as being automount points.  These will need the attentions
1356 	 * of the daemon to instantiate them before they can be used.
1357 	 */
1358 	if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1359 			   LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1360 	    dentry->d_inode)
1361 		return -EISDIR;
1362 
1363 	if (count && (*count)++ >= MAXSYMLINKS)
1364 		return -ELOOP;
1365 
1366 	return finish_automount(dentry->d_op->d_automount(path), path);
1367 }
1368 
1369 /*
1370  * mount traversal - out-of-line part.  One note on ->d_flags accesses -
1371  * dentries are pinned but not locked here, so negative dentry can go
1372  * positive right under us.  Use of smp_load_acquire() provides a barrier
1373  * sufficient for ->d_inode and ->d_flags consistency.
1374  */
1375 static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped,
1376 			     int *count, unsigned lookup_flags)
1377 {
1378 	struct vfsmount *mnt = path->mnt;
1379 	bool need_mntput = false;
1380 	int ret = 0;
1381 
1382 	while (flags & DCACHE_MANAGED_DENTRY) {
1383 		/* Allow the filesystem to manage the transit without i_mutex
1384 		 * being held. */
1385 		if (flags & DCACHE_MANAGE_TRANSIT) {
1386 			ret = path->dentry->d_op->d_manage(path, false);
1387 			flags = smp_load_acquire(&path->dentry->d_flags);
1388 			if (ret < 0)
1389 				break;
1390 		}
1391 
1392 		if (flags & DCACHE_MOUNTED) {	// something's mounted on it..
1393 			struct vfsmount *mounted = lookup_mnt(path);
1394 			if (mounted) {		// ... in our namespace
1395 				dput(path->dentry);
1396 				if (need_mntput)
1397 					mntput(path->mnt);
1398 				path->mnt = mounted;
1399 				path->dentry = dget(mounted->mnt_root);
1400 				// here we know it's positive
1401 				flags = path->dentry->d_flags;
1402 				need_mntput = true;
1403 				continue;
1404 			}
1405 		}
1406 
1407 		if (!(flags & DCACHE_NEED_AUTOMOUNT))
1408 			break;
1409 
1410 		// uncovered automount point
1411 		ret = follow_automount(path, count, lookup_flags);
1412 		flags = smp_load_acquire(&path->dentry->d_flags);
1413 		if (ret < 0)
1414 			break;
1415 	}
1416 
1417 	if (ret == -EISDIR)
1418 		ret = 0;
1419 	// possible if you race with several mount --move
1420 	if (need_mntput && path->mnt == mnt)
1421 		mntput(path->mnt);
1422 	if (!ret && unlikely(d_flags_negative(flags)))
1423 		ret = -ENOENT;
1424 	*jumped = need_mntput;
1425 	return ret;
1426 }
1427 
1428 static inline int traverse_mounts(struct path *path, bool *jumped,
1429 				  int *count, unsigned lookup_flags)
1430 {
1431 	unsigned flags = smp_load_acquire(&path->dentry->d_flags);
1432 
1433 	/* fastpath */
1434 	if (likely(!(flags & DCACHE_MANAGED_DENTRY))) {
1435 		*jumped = false;
1436 		if (unlikely(d_flags_negative(flags)))
1437 			return -ENOENT;
1438 		return 0;
1439 	}
1440 	return __traverse_mounts(path, flags, jumped, count, lookup_flags);
1441 }
1442 
1443 int follow_down_one(struct path *path)
1444 {
1445 	struct vfsmount *mounted;
1446 
1447 	mounted = lookup_mnt(path);
1448 	if (mounted) {
1449 		dput(path->dentry);
1450 		mntput(path->mnt);
1451 		path->mnt = mounted;
1452 		path->dentry = dget(mounted->mnt_root);
1453 		return 1;
1454 	}
1455 	return 0;
1456 }
1457 EXPORT_SYMBOL(follow_down_one);
1458 
1459 /*
1460  * Follow down to the covering mount currently visible to userspace.  At each
1461  * point, the filesystem owning that dentry may be queried as to whether the
1462  * caller is permitted to proceed or not.
1463  */
1464 int follow_down(struct path *path, unsigned int flags)
1465 {
1466 	struct vfsmount *mnt = path->mnt;
1467 	bool jumped;
1468 	int ret = traverse_mounts(path, &jumped, NULL, flags);
1469 
1470 	if (path->mnt != mnt)
1471 		mntput(mnt);
1472 	return ret;
1473 }
1474 EXPORT_SYMBOL(follow_down);
1475 
1476 /*
1477  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1478  * we meet a managed dentry that would need blocking.
1479  */
1480 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path)
1481 {
1482 	struct dentry *dentry = path->dentry;
1483 	unsigned int flags = dentry->d_flags;
1484 
1485 	if (likely(!(flags & DCACHE_MANAGED_DENTRY)))
1486 		return true;
1487 
1488 	if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1489 		return false;
1490 
1491 	for (;;) {
1492 		/*
1493 		 * Don't forget we might have a non-mountpoint managed dentry
1494 		 * that wants to block transit.
1495 		 */
1496 		if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) {
1497 			int res = dentry->d_op->d_manage(path, true);
1498 			if (res)
1499 				return res == -EISDIR;
1500 			flags = dentry->d_flags;
1501 		}
1502 
1503 		if (flags & DCACHE_MOUNTED) {
1504 			struct mount *mounted = __lookup_mnt(path->mnt, dentry);
1505 			if (mounted) {
1506 				path->mnt = &mounted->mnt;
1507 				dentry = path->dentry = mounted->mnt.mnt_root;
1508 				nd->state |= ND_JUMPED;
1509 				nd->next_seq = read_seqcount_begin(&dentry->d_seq);
1510 				flags = dentry->d_flags;
1511 				// makes sure that non-RCU pathwalk could reach
1512 				// this state.
1513 				if (read_seqretry(&mount_lock, nd->m_seq))
1514 					return false;
1515 				continue;
1516 			}
1517 			if (read_seqretry(&mount_lock, nd->m_seq))
1518 				return false;
1519 		}
1520 		return !(flags & DCACHE_NEED_AUTOMOUNT);
1521 	}
1522 }
1523 
1524 static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry,
1525 			  struct path *path)
1526 {
1527 	bool jumped;
1528 	int ret;
1529 
1530 	path->mnt = nd->path.mnt;
1531 	path->dentry = dentry;
1532 	if (nd->flags & LOOKUP_RCU) {
1533 		unsigned int seq = nd->next_seq;
1534 		if (likely(__follow_mount_rcu(nd, path)))
1535 			return 0;
1536 		// *path and nd->next_seq might've been clobbered
1537 		path->mnt = nd->path.mnt;
1538 		path->dentry = dentry;
1539 		nd->next_seq = seq;
1540 		if (!try_to_unlazy_next(nd, dentry))
1541 			return -ECHILD;
1542 	}
1543 	ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags);
1544 	if (jumped) {
1545 		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1546 			ret = -EXDEV;
1547 		else
1548 			nd->state |= ND_JUMPED;
1549 	}
1550 	if (unlikely(ret)) {
1551 		dput(path->dentry);
1552 		if (path->mnt != nd->path.mnt)
1553 			mntput(path->mnt);
1554 	}
1555 	return ret;
1556 }
1557 
1558 /*
1559  * This looks up the name in dcache and possibly revalidates the found dentry.
1560  * NULL is returned if the dentry does not exist in the cache.
1561  */
1562 static struct dentry *lookup_dcache(const struct qstr *name,
1563 				    struct dentry *dir,
1564 				    unsigned int flags)
1565 {
1566 	struct dentry *dentry = d_lookup(dir, name);
1567 	if (dentry) {
1568 		int error = d_revalidate(dentry, flags);
1569 		if (unlikely(error <= 0)) {
1570 			if (!error)
1571 				d_invalidate(dentry);
1572 			dput(dentry);
1573 			return ERR_PTR(error);
1574 		}
1575 	}
1576 	return dentry;
1577 }
1578 
1579 /*
1580  * Parent directory has inode locked exclusive.  This is one
1581  * and only case when ->lookup() gets called on non in-lookup
1582  * dentries - as the matter of fact, this only gets called
1583  * when directory is guaranteed to have no in-lookup children
1584  * at all.
1585  */
1586 struct dentry *lookup_one_qstr_excl(const struct qstr *name,
1587 				    struct dentry *base,
1588 				    unsigned int flags)
1589 {
1590 	struct dentry *dentry = lookup_dcache(name, base, flags);
1591 	struct dentry *old;
1592 	struct inode *dir = base->d_inode;
1593 
1594 	if (dentry)
1595 		return dentry;
1596 
1597 	/* Don't create child dentry for a dead directory. */
1598 	if (unlikely(IS_DEADDIR(dir)))
1599 		return ERR_PTR(-ENOENT);
1600 
1601 	dentry = d_alloc(base, name);
1602 	if (unlikely(!dentry))
1603 		return ERR_PTR(-ENOMEM);
1604 
1605 	old = dir->i_op->lookup(dir, dentry, flags);
1606 	if (unlikely(old)) {
1607 		dput(dentry);
1608 		dentry = old;
1609 	}
1610 	return dentry;
1611 }
1612 EXPORT_SYMBOL(lookup_one_qstr_excl);
1613 
1614 static struct dentry *lookup_fast(struct nameidata *nd)
1615 {
1616 	struct dentry *dentry, *parent = nd->path.dentry;
1617 	int status = 1;
1618 
1619 	/*
1620 	 * Rename seqlock is not required here because in the off chance
1621 	 * of a false negative due to a concurrent rename, the caller is
1622 	 * going to fall back to non-racy lookup.
1623 	 */
1624 	if (nd->flags & LOOKUP_RCU) {
1625 		dentry = __d_lookup_rcu(parent, &nd->last, &nd->next_seq);
1626 		if (unlikely(!dentry)) {
1627 			if (!try_to_unlazy(nd))
1628 				return ERR_PTR(-ECHILD);
1629 			return NULL;
1630 		}
1631 
1632 		/*
1633 		 * This sequence count validates that the parent had no
1634 		 * changes while we did the lookup of the dentry above.
1635 		 */
1636 		if (read_seqcount_retry(&parent->d_seq, nd->seq))
1637 			return ERR_PTR(-ECHILD);
1638 
1639 		status = d_revalidate(dentry, nd->flags);
1640 		if (likely(status > 0))
1641 			return dentry;
1642 		if (!try_to_unlazy_next(nd, dentry))
1643 			return ERR_PTR(-ECHILD);
1644 		if (status == -ECHILD)
1645 			/* we'd been told to redo it in non-rcu mode */
1646 			status = d_revalidate(dentry, nd->flags);
1647 	} else {
1648 		dentry = __d_lookup(parent, &nd->last);
1649 		if (unlikely(!dentry))
1650 			return NULL;
1651 		status = d_revalidate(dentry, nd->flags);
1652 	}
1653 	if (unlikely(status <= 0)) {
1654 		if (!status)
1655 			d_invalidate(dentry);
1656 		dput(dentry);
1657 		return ERR_PTR(status);
1658 	}
1659 	return dentry;
1660 }
1661 
1662 /* Fast lookup failed, do it the slow way */
1663 static struct dentry *__lookup_slow(const struct qstr *name,
1664 				    struct dentry *dir,
1665 				    unsigned int flags)
1666 {
1667 	struct dentry *dentry, *old;
1668 	struct inode *inode = dir->d_inode;
1669 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1670 
1671 	/* Don't go there if it's already dead */
1672 	if (unlikely(IS_DEADDIR(inode)))
1673 		return ERR_PTR(-ENOENT);
1674 again:
1675 	dentry = d_alloc_parallel(dir, name, &wq);
1676 	if (IS_ERR(dentry))
1677 		return dentry;
1678 	if (unlikely(!d_in_lookup(dentry))) {
1679 		int error = d_revalidate(dentry, flags);
1680 		if (unlikely(error <= 0)) {
1681 			if (!error) {
1682 				d_invalidate(dentry);
1683 				dput(dentry);
1684 				goto again;
1685 			}
1686 			dput(dentry);
1687 			dentry = ERR_PTR(error);
1688 		}
1689 	} else {
1690 		old = inode->i_op->lookup(inode, dentry, flags);
1691 		d_lookup_done(dentry);
1692 		if (unlikely(old)) {
1693 			dput(dentry);
1694 			dentry = old;
1695 		}
1696 	}
1697 	return dentry;
1698 }
1699 
1700 static struct dentry *lookup_slow(const struct qstr *name,
1701 				  struct dentry *dir,
1702 				  unsigned int flags)
1703 {
1704 	struct inode *inode = dir->d_inode;
1705 	struct dentry *res;
1706 	inode_lock_shared(inode);
1707 	res = __lookup_slow(name, dir, flags);
1708 	inode_unlock_shared(inode);
1709 	return res;
1710 }
1711 
1712 static inline int may_lookup(struct mnt_idmap *idmap,
1713 			     struct nameidata *nd)
1714 {
1715 	if (nd->flags & LOOKUP_RCU) {
1716 		int err = inode_permission(idmap, nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1717 		if (err != -ECHILD || !try_to_unlazy(nd))
1718 			return err;
1719 	}
1720 	return inode_permission(idmap, nd->inode, MAY_EXEC);
1721 }
1722 
1723 static int reserve_stack(struct nameidata *nd, struct path *link)
1724 {
1725 	if (unlikely(nd->total_link_count++ >= MAXSYMLINKS))
1726 		return -ELOOP;
1727 
1728 	if (likely(nd->depth != EMBEDDED_LEVELS))
1729 		return 0;
1730 	if (likely(nd->stack != nd->internal))
1731 		return 0;
1732 	if (likely(nd_alloc_stack(nd)))
1733 		return 0;
1734 
1735 	if (nd->flags & LOOKUP_RCU) {
1736 		// we need to grab link before we do unlazy.  And we can't skip
1737 		// unlazy even if we fail to grab the link - cleanup needs it
1738 		bool grabbed_link = legitimize_path(nd, link, nd->next_seq);
1739 
1740 		if (!try_to_unlazy(nd) || !grabbed_link)
1741 			return -ECHILD;
1742 
1743 		if (nd_alloc_stack(nd))
1744 			return 0;
1745 	}
1746 	return -ENOMEM;
1747 }
1748 
1749 enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4};
1750 
1751 static const char *pick_link(struct nameidata *nd, struct path *link,
1752 		     struct inode *inode, int flags)
1753 {
1754 	struct saved *last;
1755 	const char *res;
1756 	int error = reserve_stack(nd, link);
1757 
1758 	if (unlikely(error)) {
1759 		if (!(nd->flags & LOOKUP_RCU))
1760 			path_put(link);
1761 		return ERR_PTR(error);
1762 	}
1763 	last = nd->stack + nd->depth++;
1764 	last->link = *link;
1765 	clear_delayed_call(&last->done);
1766 	last->seq = nd->next_seq;
1767 
1768 	if (flags & WALK_TRAILING) {
1769 		error = may_follow_link(nd, inode);
1770 		if (unlikely(error))
1771 			return ERR_PTR(error);
1772 	}
1773 
1774 	if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) ||
1775 			unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW))
1776 		return ERR_PTR(-ELOOP);
1777 
1778 	if (!(nd->flags & LOOKUP_RCU)) {
1779 		touch_atime(&last->link);
1780 		cond_resched();
1781 	} else if (atime_needs_update(&last->link, inode)) {
1782 		if (!try_to_unlazy(nd))
1783 			return ERR_PTR(-ECHILD);
1784 		touch_atime(&last->link);
1785 	}
1786 
1787 	error = security_inode_follow_link(link->dentry, inode,
1788 					   nd->flags & LOOKUP_RCU);
1789 	if (unlikely(error))
1790 		return ERR_PTR(error);
1791 
1792 	res = READ_ONCE(inode->i_link);
1793 	if (!res) {
1794 		const char * (*get)(struct dentry *, struct inode *,
1795 				struct delayed_call *);
1796 		get = inode->i_op->get_link;
1797 		if (nd->flags & LOOKUP_RCU) {
1798 			res = get(NULL, inode, &last->done);
1799 			if (res == ERR_PTR(-ECHILD) && try_to_unlazy(nd))
1800 				res = get(link->dentry, inode, &last->done);
1801 		} else {
1802 			res = get(link->dentry, inode, &last->done);
1803 		}
1804 		if (!res)
1805 			goto all_done;
1806 		if (IS_ERR(res))
1807 			return res;
1808 	}
1809 	if (*res == '/') {
1810 		error = nd_jump_root(nd);
1811 		if (unlikely(error))
1812 			return ERR_PTR(error);
1813 		while (unlikely(*++res == '/'))
1814 			;
1815 	}
1816 	if (*res)
1817 		return res;
1818 all_done: // pure jump
1819 	put_link(nd);
1820 	return NULL;
1821 }
1822 
1823 /*
1824  * Do we need to follow links? We _really_ want to be able
1825  * to do this check without having to look at inode->i_op,
1826  * so we keep a cache of "no, this doesn't need follow_link"
1827  * for the common case.
1828  *
1829  * NOTE: dentry must be what nd->next_seq had been sampled from.
1830  */
1831 static const char *step_into(struct nameidata *nd, int flags,
1832 		     struct dentry *dentry)
1833 {
1834 	struct path path;
1835 	struct inode *inode;
1836 	int err = handle_mounts(nd, dentry, &path);
1837 
1838 	if (err < 0)
1839 		return ERR_PTR(err);
1840 	inode = path.dentry->d_inode;
1841 	if (likely(!d_is_symlink(path.dentry)) ||
1842 	   ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) ||
1843 	   (flags & WALK_NOFOLLOW)) {
1844 		/* not a symlink or should not follow */
1845 		if (nd->flags & LOOKUP_RCU) {
1846 			if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq))
1847 				return ERR_PTR(-ECHILD);
1848 			if (unlikely(!inode))
1849 				return ERR_PTR(-ENOENT);
1850 		} else {
1851 			dput(nd->path.dentry);
1852 			if (nd->path.mnt != path.mnt)
1853 				mntput(nd->path.mnt);
1854 		}
1855 		nd->path = path;
1856 		nd->inode = inode;
1857 		nd->seq = nd->next_seq;
1858 		return NULL;
1859 	}
1860 	if (nd->flags & LOOKUP_RCU) {
1861 		/* make sure that d_is_symlink above matches inode */
1862 		if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq))
1863 			return ERR_PTR(-ECHILD);
1864 	} else {
1865 		if (path.mnt == nd->path.mnt)
1866 			mntget(path.mnt);
1867 	}
1868 	return pick_link(nd, &path, inode, flags);
1869 }
1870 
1871 static struct dentry *follow_dotdot_rcu(struct nameidata *nd)
1872 {
1873 	struct dentry *parent, *old;
1874 
1875 	if (path_equal(&nd->path, &nd->root))
1876 		goto in_root;
1877 	if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1878 		struct path path;
1879 		unsigned seq;
1880 		if (!choose_mountpoint_rcu(real_mount(nd->path.mnt),
1881 					   &nd->root, &path, &seq))
1882 			goto in_root;
1883 		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1884 			return ERR_PTR(-ECHILD);
1885 		nd->path = path;
1886 		nd->inode = path.dentry->d_inode;
1887 		nd->seq = seq;
1888 		// makes sure that non-RCU pathwalk could reach this state
1889 		if (read_seqretry(&mount_lock, nd->m_seq))
1890 			return ERR_PTR(-ECHILD);
1891 		/* we know that mountpoint was pinned */
1892 	}
1893 	old = nd->path.dentry;
1894 	parent = old->d_parent;
1895 	nd->next_seq = read_seqcount_begin(&parent->d_seq);
1896 	// makes sure that non-RCU pathwalk could reach this state
1897 	if (read_seqcount_retry(&old->d_seq, nd->seq))
1898 		return ERR_PTR(-ECHILD);
1899 	if (unlikely(!path_connected(nd->path.mnt, parent)))
1900 		return ERR_PTR(-ECHILD);
1901 	return parent;
1902 in_root:
1903 	if (read_seqretry(&mount_lock, nd->m_seq))
1904 		return ERR_PTR(-ECHILD);
1905 	if (unlikely(nd->flags & LOOKUP_BENEATH))
1906 		return ERR_PTR(-ECHILD);
1907 	nd->next_seq = nd->seq;
1908 	return nd->path.dentry;
1909 }
1910 
1911 static struct dentry *follow_dotdot(struct nameidata *nd)
1912 {
1913 	struct dentry *parent;
1914 
1915 	if (path_equal(&nd->path, &nd->root))
1916 		goto in_root;
1917 	if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1918 		struct path path;
1919 
1920 		if (!choose_mountpoint(real_mount(nd->path.mnt),
1921 				       &nd->root, &path))
1922 			goto in_root;
1923 		path_put(&nd->path);
1924 		nd->path = path;
1925 		nd->inode = path.dentry->d_inode;
1926 		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1927 			return ERR_PTR(-EXDEV);
1928 	}
1929 	/* rare case of legitimate dget_parent()... */
1930 	parent = dget_parent(nd->path.dentry);
1931 	if (unlikely(!path_connected(nd->path.mnt, parent))) {
1932 		dput(parent);
1933 		return ERR_PTR(-ENOENT);
1934 	}
1935 	return parent;
1936 
1937 in_root:
1938 	if (unlikely(nd->flags & LOOKUP_BENEATH))
1939 		return ERR_PTR(-EXDEV);
1940 	return dget(nd->path.dentry);
1941 }
1942 
1943 static const char *handle_dots(struct nameidata *nd, int type)
1944 {
1945 	if (type == LAST_DOTDOT) {
1946 		const char *error = NULL;
1947 		struct dentry *parent;
1948 
1949 		if (!nd->root.mnt) {
1950 			error = ERR_PTR(set_root(nd));
1951 			if (error)
1952 				return error;
1953 		}
1954 		if (nd->flags & LOOKUP_RCU)
1955 			parent = follow_dotdot_rcu(nd);
1956 		else
1957 			parent = follow_dotdot(nd);
1958 		if (IS_ERR(parent))
1959 			return ERR_CAST(parent);
1960 		error = step_into(nd, WALK_NOFOLLOW, parent);
1961 		if (unlikely(error))
1962 			return error;
1963 
1964 		if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
1965 			/*
1966 			 * If there was a racing rename or mount along our
1967 			 * path, then we can't be sure that ".." hasn't jumped
1968 			 * above nd->root (and so userspace should retry or use
1969 			 * some fallback).
1970 			 */
1971 			smp_rmb();
1972 			if (__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq))
1973 				return ERR_PTR(-EAGAIN);
1974 			if (__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq))
1975 				return ERR_PTR(-EAGAIN);
1976 		}
1977 	}
1978 	return NULL;
1979 }
1980 
1981 static const char *walk_component(struct nameidata *nd, int flags)
1982 {
1983 	struct dentry *dentry;
1984 	/*
1985 	 * "." and ".." are special - ".." especially so because it has
1986 	 * to be able to know about the current root directory and
1987 	 * parent relationships.
1988 	 */
1989 	if (unlikely(nd->last_type != LAST_NORM)) {
1990 		if (!(flags & WALK_MORE) && nd->depth)
1991 			put_link(nd);
1992 		return handle_dots(nd, nd->last_type);
1993 	}
1994 	dentry = lookup_fast(nd);
1995 	if (IS_ERR(dentry))
1996 		return ERR_CAST(dentry);
1997 	if (unlikely(!dentry)) {
1998 		dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags);
1999 		if (IS_ERR(dentry))
2000 			return ERR_CAST(dentry);
2001 	}
2002 	if (!(flags & WALK_MORE) && nd->depth)
2003 		put_link(nd);
2004 	return step_into(nd, flags, dentry);
2005 }
2006 
2007 /*
2008  * We can do the critical dentry name comparison and hashing
2009  * operations one word at a time, but we are limited to:
2010  *
2011  * - Architectures with fast unaligned word accesses. We could
2012  *   do a "get_unaligned()" if this helps and is sufficiently
2013  *   fast.
2014  *
2015  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
2016  *   do not trap on the (extremely unlikely) case of a page
2017  *   crossing operation.
2018  *
2019  * - Furthermore, we need an efficient 64-bit compile for the
2020  *   64-bit case in order to generate the "number of bytes in
2021  *   the final mask". Again, that could be replaced with a
2022  *   efficient population count instruction or similar.
2023  */
2024 #ifdef CONFIG_DCACHE_WORD_ACCESS
2025 
2026 #include <asm/word-at-a-time.h>
2027 
2028 #ifdef HASH_MIX
2029 
2030 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
2031 
2032 #elif defined(CONFIG_64BIT)
2033 /*
2034  * Register pressure in the mixing function is an issue, particularly
2035  * on 32-bit x86, but almost any function requires one state value and
2036  * one temporary.  Instead, use a function designed for two state values
2037  * and no temporaries.
2038  *
2039  * This function cannot create a collision in only two iterations, so
2040  * we have two iterations to achieve avalanche.  In those two iterations,
2041  * we have six layers of mixing, which is enough to spread one bit's
2042  * influence out to 2^6 = 64 state bits.
2043  *
2044  * Rotate constants are scored by considering either 64 one-bit input
2045  * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
2046  * probability of that delta causing a change to each of the 128 output
2047  * bits, using a sample of random initial states.
2048  *
2049  * The Shannon entropy of the computed probabilities is then summed
2050  * to produce a score.  Ideally, any input change has a 50% chance of
2051  * toggling any given output bit.
2052  *
2053  * Mixing scores (in bits) for (12,45):
2054  * Input delta: 1-bit      2-bit
2055  * 1 round:     713.3    42542.6
2056  * 2 rounds:   2753.7   140389.8
2057  * 3 rounds:   5954.1   233458.2
2058  * 4 rounds:   7862.6   256672.2
2059  * Perfect:    8192     258048
2060  *            (64*128) (64*63/2 * 128)
2061  */
2062 #define HASH_MIX(x, y, a)	\
2063 	(	x ^= (a),	\
2064 	y ^= x,	x = rol64(x,12),\
2065 	x += y,	y = rol64(y,45),\
2066 	y *= 9			)
2067 
2068 /*
2069  * Fold two longs into one 32-bit hash value.  This must be fast, but
2070  * latency isn't quite as critical, as there is a fair bit of additional
2071  * work done before the hash value is used.
2072  */
2073 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2074 {
2075 	y ^= x * GOLDEN_RATIO_64;
2076 	y *= GOLDEN_RATIO_64;
2077 	return y >> 32;
2078 }
2079 
2080 #else	/* 32-bit case */
2081 
2082 /*
2083  * Mixing scores (in bits) for (7,20):
2084  * Input delta: 1-bit      2-bit
2085  * 1 round:     330.3     9201.6
2086  * 2 rounds:   1246.4    25475.4
2087  * 3 rounds:   1907.1    31295.1
2088  * 4 rounds:   2042.3    31718.6
2089  * Perfect:    2048      31744
2090  *            (32*64)   (32*31/2 * 64)
2091  */
2092 #define HASH_MIX(x, y, a)	\
2093 	(	x ^= (a),	\
2094 	y ^= x,	x = rol32(x, 7),\
2095 	x += y,	y = rol32(y,20),\
2096 	y *= 9			)
2097 
2098 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2099 {
2100 	/* Use arch-optimized multiply if one exists */
2101 	return __hash_32(y ^ __hash_32(x));
2102 }
2103 
2104 #endif
2105 
2106 /*
2107  * Return the hash of a string of known length.  This is carfully
2108  * designed to match hash_name(), which is the more critical function.
2109  * In particular, we must end by hashing a final word containing 0..7
2110  * payload bytes, to match the way that hash_name() iterates until it
2111  * finds the delimiter after the name.
2112  */
2113 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2114 {
2115 	unsigned long a, x = 0, y = (unsigned long)salt;
2116 
2117 	for (;;) {
2118 		if (!len)
2119 			goto done;
2120 		a = load_unaligned_zeropad(name);
2121 		if (len < sizeof(unsigned long))
2122 			break;
2123 		HASH_MIX(x, y, a);
2124 		name += sizeof(unsigned long);
2125 		len -= sizeof(unsigned long);
2126 	}
2127 	x ^= a & bytemask_from_count(len);
2128 done:
2129 	return fold_hash(x, y);
2130 }
2131 EXPORT_SYMBOL(full_name_hash);
2132 
2133 /* Return the "hash_len" (hash and length) of a null-terminated string */
2134 u64 hashlen_string(const void *salt, const char *name)
2135 {
2136 	unsigned long a = 0, x = 0, y = (unsigned long)salt;
2137 	unsigned long adata, mask, len;
2138 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2139 
2140 	len = 0;
2141 	goto inside;
2142 
2143 	do {
2144 		HASH_MIX(x, y, a);
2145 		len += sizeof(unsigned long);
2146 inside:
2147 		a = load_unaligned_zeropad(name+len);
2148 	} while (!has_zero(a, &adata, &constants));
2149 
2150 	adata = prep_zero_mask(a, adata, &constants);
2151 	mask = create_zero_mask(adata);
2152 	x ^= a & zero_bytemask(mask);
2153 
2154 	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2155 }
2156 EXPORT_SYMBOL(hashlen_string);
2157 
2158 /*
2159  * Calculate the length and hash of the path component, and
2160  * return the "hash_len" as the result.
2161  */
2162 static inline u64 hash_name(const void *salt, const char *name)
2163 {
2164 	unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
2165 	unsigned long adata, bdata, mask, len;
2166 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2167 
2168 	len = 0;
2169 	goto inside;
2170 
2171 	do {
2172 		HASH_MIX(x, y, a);
2173 		len += sizeof(unsigned long);
2174 inside:
2175 		a = load_unaligned_zeropad(name+len);
2176 		b = a ^ REPEAT_BYTE('/');
2177 	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
2178 
2179 	adata = prep_zero_mask(a, adata, &constants);
2180 	bdata = prep_zero_mask(b, bdata, &constants);
2181 	mask = create_zero_mask(adata | bdata);
2182 	x ^= a & zero_bytemask(mask);
2183 
2184 	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2185 }
2186 
2187 #else	/* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2188 
2189 /* Return the hash of a string of known length */
2190 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2191 {
2192 	unsigned long hash = init_name_hash(salt);
2193 	while (len--)
2194 		hash = partial_name_hash((unsigned char)*name++, hash);
2195 	return end_name_hash(hash);
2196 }
2197 EXPORT_SYMBOL(full_name_hash);
2198 
2199 /* Return the "hash_len" (hash and length) of a null-terminated string */
2200 u64 hashlen_string(const void *salt, const char *name)
2201 {
2202 	unsigned long hash = init_name_hash(salt);
2203 	unsigned long len = 0, c;
2204 
2205 	c = (unsigned char)*name;
2206 	while (c) {
2207 		len++;
2208 		hash = partial_name_hash(c, hash);
2209 		c = (unsigned char)name[len];
2210 	}
2211 	return hashlen_create(end_name_hash(hash), len);
2212 }
2213 EXPORT_SYMBOL(hashlen_string);
2214 
2215 /*
2216  * We know there's a real path component here of at least
2217  * one character.
2218  */
2219 static inline u64 hash_name(const void *salt, const char *name)
2220 {
2221 	unsigned long hash = init_name_hash(salt);
2222 	unsigned long len = 0, c;
2223 
2224 	c = (unsigned char)*name;
2225 	do {
2226 		len++;
2227 		hash = partial_name_hash(c, hash);
2228 		c = (unsigned char)name[len];
2229 	} while (c && c != '/');
2230 	return hashlen_create(end_name_hash(hash), len);
2231 }
2232 
2233 #endif
2234 
2235 /*
2236  * Name resolution.
2237  * This is the basic name resolution function, turning a pathname into
2238  * the final dentry. We expect 'base' to be positive and a directory.
2239  *
2240  * Returns 0 and nd will have valid dentry and mnt on success.
2241  * Returns error and drops reference to input namei data on failure.
2242  */
2243 static int link_path_walk(const char *name, struct nameidata *nd)
2244 {
2245 	int depth = 0; // depth <= nd->depth
2246 	int err;
2247 
2248 	nd->last_type = LAST_ROOT;
2249 	nd->flags |= LOOKUP_PARENT;
2250 	if (IS_ERR(name))
2251 		return PTR_ERR(name);
2252 	while (*name=='/')
2253 		name++;
2254 	if (!*name) {
2255 		nd->dir_mode = 0; // short-circuit the 'hardening' idiocy
2256 		return 0;
2257 	}
2258 
2259 	/* At this point we know we have a real path component. */
2260 	for(;;) {
2261 		struct mnt_idmap *idmap;
2262 		const char *link;
2263 		u64 hash_len;
2264 		int type;
2265 
2266 		idmap = mnt_idmap(nd->path.mnt);
2267 		err = may_lookup(idmap, nd);
2268 		if (err)
2269 			return err;
2270 
2271 		hash_len = hash_name(nd->path.dentry, name);
2272 
2273 		type = LAST_NORM;
2274 		if (name[0] == '.') switch (hashlen_len(hash_len)) {
2275 			case 2:
2276 				if (name[1] == '.') {
2277 					type = LAST_DOTDOT;
2278 					nd->state |= ND_JUMPED;
2279 				}
2280 				break;
2281 			case 1:
2282 				type = LAST_DOT;
2283 		}
2284 		if (likely(type == LAST_NORM)) {
2285 			struct dentry *parent = nd->path.dentry;
2286 			nd->state &= ~ND_JUMPED;
2287 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2288 				struct qstr this = { { .hash_len = hash_len }, .name = name };
2289 				err = parent->d_op->d_hash(parent, &this);
2290 				if (err < 0)
2291 					return err;
2292 				hash_len = this.hash_len;
2293 				name = this.name;
2294 			}
2295 		}
2296 
2297 		nd->last.hash_len = hash_len;
2298 		nd->last.name = name;
2299 		nd->last_type = type;
2300 
2301 		name += hashlen_len(hash_len);
2302 		if (!*name)
2303 			goto OK;
2304 		/*
2305 		 * If it wasn't NUL, we know it was '/'. Skip that
2306 		 * slash, and continue until no more slashes.
2307 		 */
2308 		do {
2309 			name++;
2310 		} while (unlikely(*name == '/'));
2311 		if (unlikely(!*name)) {
2312 OK:
2313 			/* pathname or trailing symlink, done */
2314 			if (!depth) {
2315 				nd->dir_vfsuid = i_uid_into_vfsuid(idmap, nd->inode);
2316 				nd->dir_mode = nd->inode->i_mode;
2317 				nd->flags &= ~LOOKUP_PARENT;
2318 				return 0;
2319 			}
2320 			/* last component of nested symlink */
2321 			name = nd->stack[--depth].name;
2322 			link = walk_component(nd, 0);
2323 		} else {
2324 			/* not the last component */
2325 			link = walk_component(nd, WALK_MORE);
2326 		}
2327 		if (unlikely(link)) {
2328 			if (IS_ERR(link))
2329 				return PTR_ERR(link);
2330 			/* a symlink to follow */
2331 			nd->stack[depth++].name = name;
2332 			name = link;
2333 			continue;
2334 		}
2335 		if (unlikely(!d_can_lookup(nd->path.dentry))) {
2336 			if (nd->flags & LOOKUP_RCU) {
2337 				if (!try_to_unlazy(nd))
2338 					return -ECHILD;
2339 			}
2340 			return -ENOTDIR;
2341 		}
2342 	}
2343 }
2344 
2345 /* must be paired with terminate_walk() */
2346 static const char *path_init(struct nameidata *nd, unsigned flags)
2347 {
2348 	int error;
2349 	const char *s = nd->name->name;
2350 
2351 	/* LOOKUP_CACHED requires RCU, ask caller to retry */
2352 	if ((flags & (LOOKUP_RCU | LOOKUP_CACHED)) == LOOKUP_CACHED)
2353 		return ERR_PTR(-EAGAIN);
2354 
2355 	if (!*s)
2356 		flags &= ~LOOKUP_RCU;
2357 	if (flags & LOOKUP_RCU)
2358 		rcu_read_lock();
2359 	else
2360 		nd->seq = nd->next_seq = 0;
2361 
2362 	nd->flags = flags;
2363 	nd->state |= ND_JUMPED;
2364 
2365 	nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount);
2366 	nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount);
2367 	smp_rmb();
2368 
2369 	if (nd->state & ND_ROOT_PRESET) {
2370 		struct dentry *root = nd->root.dentry;
2371 		struct inode *inode = root->d_inode;
2372 		if (*s && unlikely(!d_can_lookup(root)))
2373 			return ERR_PTR(-ENOTDIR);
2374 		nd->path = nd->root;
2375 		nd->inode = inode;
2376 		if (flags & LOOKUP_RCU) {
2377 			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2378 			nd->root_seq = nd->seq;
2379 		} else {
2380 			path_get(&nd->path);
2381 		}
2382 		return s;
2383 	}
2384 
2385 	nd->root.mnt = NULL;
2386 
2387 	/* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */
2388 	if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) {
2389 		error = nd_jump_root(nd);
2390 		if (unlikely(error))
2391 			return ERR_PTR(error);
2392 		return s;
2393 	}
2394 
2395 	/* Relative pathname -- get the starting-point it is relative to. */
2396 	if (nd->dfd == AT_FDCWD) {
2397 		if (flags & LOOKUP_RCU) {
2398 			struct fs_struct *fs = current->fs;
2399 			unsigned seq;
2400 
2401 			do {
2402 				seq = read_seqcount_begin(&fs->seq);
2403 				nd->path = fs->pwd;
2404 				nd->inode = nd->path.dentry->d_inode;
2405 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2406 			} while (read_seqcount_retry(&fs->seq, seq));
2407 		} else {
2408 			get_fs_pwd(current->fs, &nd->path);
2409 			nd->inode = nd->path.dentry->d_inode;
2410 		}
2411 	} else {
2412 		/* Caller must check execute permissions on the starting path component */
2413 		struct fd f = fdget_raw(nd->dfd);
2414 		struct dentry *dentry;
2415 
2416 		if (!f.file)
2417 			return ERR_PTR(-EBADF);
2418 
2419 		dentry = f.file->f_path.dentry;
2420 
2421 		if (*s && unlikely(!d_can_lookup(dentry))) {
2422 			fdput(f);
2423 			return ERR_PTR(-ENOTDIR);
2424 		}
2425 
2426 		nd->path = f.file->f_path;
2427 		if (flags & LOOKUP_RCU) {
2428 			nd->inode = nd->path.dentry->d_inode;
2429 			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2430 		} else {
2431 			path_get(&nd->path);
2432 			nd->inode = nd->path.dentry->d_inode;
2433 		}
2434 		fdput(f);
2435 	}
2436 
2437 	/* For scoped-lookups we need to set the root to the dirfd as well. */
2438 	if (flags & LOOKUP_IS_SCOPED) {
2439 		nd->root = nd->path;
2440 		if (flags & LOOKUP_RCU) {
2441 			nd->root_seq = nd->seq;
2442 		} else {
2443 			path_get(&nd->root);
2444 			nd->state |= ND_ROOT_GRABBED;
2445 		}
2446 	}
2447 	return s;
2448 }
2449 
2450 static inline const char *lookup_last(struct nameidata *nd)
2451 {
2452 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2453 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2454 
2455 	return walk_component(nd, WALK_TRAILING);
2456 }
2457 
2458 static int handle_lookup_down(struct nameidata *nd)
2459 {
2460 	if (!(nd->flags & LOOKUP_RCU))
2461 		dget(nd->path.dentry);
2462 	nd->next_seq = nd->seq;
2463 	return PTR_ERR(step_into(nd, WALK_NOFOLLOW, nd->path.dentry));
2464 }
2465 
2466 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2467 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2468 {
2469 	const char *s = path_init(nd, flags);
2470 	int err;
2471 
2472 	if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2473 		err = handle_lookup_down(nd);
2474 		if (unlikely(err < 0))
2475 			s = ERR_PTR(err);
2476 	}
2477 
2478 	while (!(err = link_path_walk(s, nd)) &&
2479 	       (s = lookup_last(nd)) != NULL)
2480 		;
2481 	if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) {
2482 		err = handle_lookup_down(nd);
2483 		nd->state &= ~ND_JUMPED; // no d_weak_revalidate(), please...
2484 	}
2485 	if (!err)
2486 		err = complete_walk(nd);
2487 
2488 	if (!err && nd->flags & LOOKUP_DIRECTORY)
2489 		if (!d_can_lookup(nd->path.dentry))
2490 			err = -ENOTDIR;
2491 	if (!err) {
2492 		*path = nd->path;
2493 		nd->path.mnt = NULL;
2494 		nd->path.dentry = NULL;
2495 	}
2496 	terminate_walk(nd);
2497 	return err;
2498 }
2499 
2500 int filename_lookup(int dfd, struct filename *name, unsigned flags,
2501 		    struct path *path, struct path *root)
2502 {
2503 	int retval;
2504 	struct nameidata nd;
2505 	if (IS_ERR(name))
2506 		return PTR_ERR(name);
2507 	set_nameidata(&nd, dfd, name, root);
2508 	retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2509 	if (unlikely(retval == -ECHILD))
2510 		retval = path_lookupat(&nd, flags, path);
2511 	if (unlikely(retval == -ESTALE))
2512 		retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2513 
2514 	if (likely(!retval))
2515 		audit_inode(name, path->dentry,
2516 			    flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0);
2517 	restore_nameidata();
2518 	return retval;
2519 }
2520 
2521 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2522 static int path_parentat(struct nameidata *nd, unsigned flags,
2523 				struct path *parent)
2524 {
2525 	const char *s = path_init(nd, flags);
2526 	int err = link_path_walk(s, nd);
2527 	if (!err)
2528 		err = complete_walk(nd);
2529 	if (!err) {
2530 		*parent = nd->path;
2531 		nd->path.mnt = NULL;
2532 		nd->path.dentry = NULL;
2533 	}
2534 	terminate_walk(nd);
2535 	return err;
2536 }
2537 
2538 /* Note: this does not consume "name" */
2539 static int __filename_parentat(int dfd, struct filename *name,
2540 			       unsigned int flags, struct path *parent,
2541 			       struct qstr *last, int *type,
2542 			       const struct path *root)
2543 {
2544 	int retval;
2545 	struct nameidata nd;
2546 
2547 	if (IS_ERR(name))
2548 		return PTR_ERR(name);
2549 	set_nameidata(&nd, dfd, name, root);
2550 	retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2551 	if (unlikely(retval == -ECHILD))
2552 		retval = path_parentat(&nd, flags, parent);
2553 	if (unlikely(retval == -ESTALE))
2554 		retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2555 	if (likely(!retval)) {
2556 		*last = nd.last;
2557 		*type = nd.last_type;
2558 		audit_inode(name, parent->dentry, AUDIT_INODE_PARENT);
2559 	}
2560 	restore_nameidata();
2561 	return retval;
2562 }
2563 
2564 static int filename_parentat(int dfd, struct filename *name,
2565 			     unsigned int flags, struct path *parent,
2566 			     struct qstr *last, int *type)
2567 {
2568 	return __filename_parentat(dfd, name, flags, parent, last, type, NULL);
2569 }
2570 
2571 /* does lookup, returns the object with parent locked */
2572 static struct dentry *__kern_path_locked(struct filename *name, struct path *path)
2573 {
2574 	struct dentry *d;
2575 	struct qstr last;
2576 	int type, error;
2577 
2578 	error = filename_parentat(AT_FDCWD, name, 0, path, &last, &type);
2579 	if (error)
2580 		return ERR_PTR(error);
2581 	if (unlikely(type != LAST_NORM)) {
2582 		path_put(path);
2583 		return ERR_PTR(-EINVAL);
2584 	}
2585 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2586 	d = lookup_one_qstr_excl(&last, path->dentry, 0);
2587 	if (IS_ERR(d)) {
2588 		inode_unlock(path->dentry->d_inode);
2589 		path_put(path);
2590 	}
2591 	return d;
2592 }
2593 
2594 struct dentry *kern_path_locked(const char *name, struct path *path)
2595 {
2596 	struct filename *filename = getname_kernel(name);
2597 	struct dentry *res = __kern_path_locked(filename, path);
2598 
2599 	putname(filename);
2600 	return res;
2601 }
2602 
2603 int kern_path(const char *name, unsigned int flags, struct path *path)
2604 {
2605 	struct filename *filename = getname_kernel(name);
2606 	int ret = filename_lookup(AT_FDCWD, filename, flags, path, NULL);
2607 
2608 	putname(filename);
2609 	return ret;
2610 
2611 }
2612 EXPORT_SYMBOL(kern_path);
2613 
2614 /**
2615  * vfs_path_parent_lookup - lookup a parent path relative to a dentry-vfsmount pair
2616  * @filename: filename structure
2617  * @flags: lookup flags
2618  * @parent: pointer to struct path to fill
2619  * @last: last component
2620  * @type: type of the last component
2621  * @root: pointer to struct path of the base directory
2622  */
2623 int vfs_path_parent_lookup(struct filename *filename, unsigned int flags,
2624 			   struct path *parent, struct qstr *last, int *type,
2625 			   const struct path *root)
2626 {
2627 	return  __filename_parentat(AT_FDCWD, filename, flags, parent, last,
2628 				    type, root);
2629 }
2630 EXPORT_SYMBOL(vfs_path_parent_lookup);
2631 
2632 /**
2633  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2634  * @dentry:  pointer to dentry of the base directory
2635  * @mnt: pointer to vfs mount of the base directory
2636  * @name: pointer to file name
2637  * @flags: lookup flags
2638  * @path: pointer to struct path to fill
2639  */
2640 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2641 		    const char *name, unsigned int flags,
2642 		    struct path *path)
2643 {
2644 	struct filename *filename;
2645 	struct path root = {.mnt = mnt, .dentry = dentry};
2646 	int ret;
2647 
2648 	filename = getname_kernel(name);
2649 	/* the first argument of filename_lookup() is ignored with root */
2650 	ret = filename_lookup(AT_FDCWD, filename, flags, path, &root);
2651 	putname(filename);
2652 	return ret;
2653 }
2654 EXPORT_SYMBOL(vfs_path_lookup);
2655 
2656 static int lookup_one_common(struct mnt_idmap *idmap,
2657 			     const char *name, struct dentry *base, int len,
2658 			     struct qstr *this)
2659 {
2660 	this->name = name;
2661 	this->len = len;
2662 	this->hash = full_name_hash(base, name, len);
2663 	if (!len)
2664 		return -EACCES;
2665 
2666 	if (unlikely(name[0] == '.')) {
2667 		if (len < 2 || (len == 2 && name[1] == '.'))
2668 			return -EACCES;
2669 	}
2670 
2671 	while (len--) {
2672 		unsigned int c = *(const unsigned char *)name++;
2673 		if (c == '/' || c == '\0')
2674 			return -EACCES;
2675 	}
2676 	/*
2677 	 * See if the low-level filesystem might want
2678 	 * to use its own hash..
2679 	 */
2680 	if (base->d_flags & DCACHE_OP_HASH) {
2681 		int err = base->d_op->d_hash(base, this);
2682 		if (err < 0)
2683 			return err;
2684 	}
2685 
2686 	return inode_permission(idmap, base->d_inode, MAY_EXEC);
2687 }
2688 
2689 /**
2690  * try_lookup_one_len - filesystem helper to lookup single pathname component
2691  * @name:	pathname component to lookup
2692  * @base:	base directory to lookup from
2693  * @len:	maximum length @len should be interpreted to
2694  *
2695  * Look up a dentry by name in the dcache, returning NULL if it does not
2696  * currently exist.  The function does not try to create a dentry.
2697  *
2698  * Note that this routine is purely a helper for filesystem usage and should
2699  * not be called by generic code.
2700  *
2701  * The caller must hold base->i_mutex.
2702  */
2703 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
2704 {
2705 	struct qstr this;
2706 	int err;
2707 
2708 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2709 
2710 	err = lookup_one_common(&nop_mnt_idmap, name, base, len, &this);
2711 	if (err)
2712 		return ERR_PTR(err);
2713 
2714 	return lookup_dcache(&this, base, 0);
2715 }
2716 EXPORT_SYMBOL(try_lookup_one_len);
2717 
2718 /**
2719  * lookup_one_len - filesystem helper to lookup single pathname component
2720  * @name:	pathname component to lookup
2721  * @base:	base directory to lookup from
2722  * @len:	maximum length @len should be interpreted to
2723  *
2724  * Note that this routine is purely a helper for filesystem usage and should
2725  * not be called by generic code.
2726  *
2727  * The caller must hold base->i_mutex.
2728  */
2729 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2730 {
2731 	struct dentry *dentry;
2732 	struct qstr this;
2733 	int err;
2734 
2735 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2736 
2737 	err = lookup_one_common(&nop_mnt_idmap, name, base, len, &this);
2738 	if (err)
2739 		return ERR_PTR(err);
2740 
2741 	dentry = lookup_dcache(&this, base, 0);
2742 	return dentry ? dentry : __lookup_slow(&this, base, 0);
2743 }
2744 EXPORT_SYMBOL(lookup_one_len);
2745 
2746 /**
2747  * lookup_one - filesystem helper to lookup single pathname component
2748  * @idmap:	idmap of the mount the lookup is performed from
2749  * @name:	pathname component to lookup
2750  * @base:	base directory to lookup from
2751  * @len:	maximum length @len should be interpreted to
2752  *
2753  * Note that this routine is purely a helper for filesystem usage and should
2754  * not be called by generic code.
2755  *
2756  * The caller must hold base->i_mutex.
2757  */
2758 struct dentry *lookup_one(struct mnt_idmap *idmap, const char *name,
2759 			  struct dentry *base, int len)
2760 {
2761 	struct dentry *dentry;
2762 	struct qstr this;
2763 	int err;
2764 
2765 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2766 
2767 	err = lookup_one_common(idmap, name, base, len, &this);
2768 	if (err)
2769 		return ERR_PTR(err);
2770 
2771 	dentry = lookup_dcache(&this, base, 0);
2772 	return dentry ? dentry : __lookup_slow(&this, base, 0);
2773 }
2774 EXPORT_SYMBOL(lookup_one);
2775 
2776 /**
2777  * lookup_one_unlocked - filesystem helper to lookup single pathname component
2778  * @idmap:	idmap of the mount the lookup is performed from
2779  * @name:	pathname component to lookup
2780  * @base:	base directory to lookup from
2781  * @len:	maximum length @len should be interpreted to
2782  *
2783  * Note that this routine is purely a helper for filesystem usage and should
2784  * not be called by generic code.
2785  *
2786  * Unlike lookup_one_len, it should be called without the parent
2787  * i_mutex held, and will take the i_mutex itself if necessary.
2788  */
2789 struct dentry *lookup_one_unlocked(struct mnt_idmap *idmap,
2790 				   const char *name, struct dentry *base,
2791 				   int len)
2792 {
2793 	struct qstr this;
2794 	int err;
2795 	struct dentry *ret;
2796 
2797 	err = lookup_one_common(idmap, name, base, len, &this);
2798 	if (err)
2799 		return ERR_PTR(err);
2800 
2801 	ret = lookup_dcache(&this, base, 0);
2802 	if (!ret)
2803 		ret = lookup_slow(&this, base, 0);
2804 	return ret;
2805 }
2806 EXPORT_SYMBOL(lookup_one_unlocked);
2807 
2808 /**
2809  * lookup_one_positive_unlocked - filesystem helper to lookup single
2810  *				  pathname component
2811  * @idmap:	idmap of the mount the lookup is performed from
2812  * @name:	pathname component to lookup
2813  * @base:	base directory to lookup from
2814  * @len:	maximum length @len should be interpreted to
2815  *
2816  * This helper will yield ERR_PTR(-ENOENT) on negatives. The helper returns
2817  * known positive or ERR_PTR(). This is what most of the users want.
2818  *
2819  * Note that pinned negative with unlocked parent _can_ become positive at any
2820  * time, so callers of lookup_one_unlocked() need to be very careful; pinned
2821  * positives have >d_inode stable, so this one avoids such problems.
2822  *
2823  * Note that this routine is purely a helper for filesystem usage and should
2824  * not be called by generic code.
2825  *
2826  * The helper should be called without i_mutex held.
2827  */
2828 struct dentry *lookup_one_positive_unlocked(struct mnt_idmap *idmap,
2829 					    const char *name,
2830 					    struct dentry *base, int len)
2831 {
2832 	struct dentry *ret = lookup_one_unlocked(idmap, name, base, len);
2833 
2834 	if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
2835 		dput(ret);
2836 		ret = ERR_PTR(-ENOENT);
2837 	}
2838 	return ret;
2839 }
2840 EXPORT_SYMBOL(lookup_one_positive_unlocked);
2841 
2842 /**
2843  * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2844  * @name:	pathname component to lookup
2845  * @base:	base directory to lookup from
2846  * @len:	maximum length @len should be interpreted to
2847  *
2848  * Note that this routine is purely a helper for filesystem usage and should
2849  * not be called by generic code.
2850  *
2851  * Unlike lookup_one_len, it should be called without the parent
2852  * i_mutex held, and will take the i_mutex itself if necessary.
2853  */
2854 struct dentry *lookup_one_len_unlocked(const char *name,
2855 				       struct dentry *base, int len)
2856 {
2857 	return lookup_one_unlocked(&nop_mnt_idmap, name, base, len);
2858 }
2859 EXPORT_SYMBOL(lookup_one_len_unlocked);
2860 
2861 /*
2862  * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT)
2863  * on negatives.  Returns known positive or ERR_PTR(); that's what
2864  * most of the users want.  Note that pinned negative with unlocked parent
2865  * _can_ become positive at any time, so callers of lookup_one_len_unlocked()
2866  * need to be very careful; pinned positives have ->d_inode stable, so
2867  * this one avoids such problems.
2868  */
2869 struct dentry *lookup_positive_unlocked(const char *name,
2870 				       struct dentry *base, int len)
2871 {
2872 	return lookup_one_positive_unlocked(&nop_mnt_idmap, name, base, len);
2873 }
2874 EXPORT_SYMBOL(lookup_positive_unlocked);
2875 
2876 #ifdef CONFIG_UNIX98_PTYS
2877 int path_pts(struct path *path)
2878 {
2879 	/* Find something mounted on "pts" in the same directory as
2880 	 * the input path.
2881 	 */
2882 	struct dentry *parent = dget_parent(path->dentry);
2883 	struct dentry *child;
2884 	struct qstr this = QSTR_INIT("pts", 3);
2885 
2886 	if (unlikely(!path_connected(path->mnt, parent))) {
2887 		dput(parent);
2888 		return -ENOENT;
2889 	}
2890 	dput(path->dentry);
2891 	path->dentry = parent;
2892 	child = d_hash_and_lookup(parent, &this);
2893 	if (!child)
2894 		return -ENOENT;
2895 
2896 	path->dentry = child;
2897 	dput(parent);
2898 	follow_down(path, 0);
2899 	return 0;
2900 }
2901 #endif
2902 
2903 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2904 		 struct path *path, int *empty)
2905 {
2906 	struct filename *filename = getname_flags(name, flags, empty);
2907 	int ret = filename_lookup(dfd, filename, flags, path, NULL);
2908 
2909 	putname(filename);
2910 	return ret;
2911 }
2912 EXPORT_SYMBOL(user_path_at_empty);
2913 
2914 int __check_sticky(struct mnt_idmap *idmap, struct inode *dir,
2915 		   struct inode *inode)
2916 {
2917 	kuid_t fsuid = current_fsuid();
2918 
2919 	if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, inode), fsuid))
2920 		return 0;
2921 	if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, dir), fsuid))
2922 		return 0;
2923 	return !capable_wrt_inode_uidgid(idmap, inode, CAP_FOWNER);
2924 }
2925 EXPORT_SYMBOL(__check_sticky);
2926 
2927 /*
2928  *	Check whether we can remove a link victim from directory dir, check
2929  *  whether the type of victim is right.
2930  *  1. We can't do it if dir is read-only (done in permission())
2931  *  2. We should have write and exec permissions on dir
2932  *  3. We can't remove anything from append-only dir
2933  *  4. We can't do anything with immutable dir (done in permission())
2934  *  5. If the sticky bit on dir is set we should either
2935  *	a. be owner of dir, or
2936  *	b. be owner of victim, or
2937  *	c. have CAP_FOWNER capability
2938  *  6. If the victim is append-only or immutable we can't do antyhing with
2939  *     links pointing to it.
2940  *  7. If the victim has an unknown uid or gid we can't change the inode.
2941  *  8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2942  *  9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2943  * 10. We can't remove a root or mountpoint.
2944  * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2945  *     nfs_async_unlink().
2946  */
2947 static int may_delete(struct mnt_idmap *idmap, struct inode *dir,
2948 		      struct dentry *victim, bool isdir)
2949 {
2950 	struct inode *inode = d_backing_inode(victim);
2951 	int error;
2952 
2953 	if (d_is_negative(victim))
2954 		return -ENOENT;
2955 	BUG_ON(!inode);
2956 
2957 	BUG_ON(victim->d_parent->d_inode != dir);
2958 
2959 	/* Inode writeback is not safe when the uid or gid are invalid. */
2960 	if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) ||
2961 	    !vfsgid_valid(i_gid_into_vfsgid(idmap, inode)))
2962 		return -EOVERFLOW;
2963 
2964 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2965 
2966 	error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
2967 	if (error)
2968 		return error;
2969 	if (IS_APPEND(dir))
2970 		return -EPERM;
2971 
2972 	if (check_sticky(idmap, dir, inode) || IS_APPEND(inode) ||
2973 	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) ||
2974 	    HAS_UNMAPPED_ID(idmap, inode))
2975 		return -EPERM;
2976 	if (isdir) {
2977 		if (!d_is_dir(victim))
2978 			return -ENOTDIR;
2979 		if (IS_ROOT(victim))
2980 			return -EBUSY;
2981 	} else if (d_is_dir(victim))
2982 		return -EISDIR;
2983 	if (IS_DEADDIR(dir))
2984 		return -ENOENT;
2985 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2986 		return -EBUSY;
2987 	return 0;
2988 }
2989 
2990 /*	Check whether we can create an object with dentry child in directory
2991  *  dir.
2992  *  1. We can't do it if child already exists (open has special treatment for
2993  *     this case, but since we are inlined it's OK)
2994  *  2. We can't do it if dir is read-only (done in permission())
2995  *  3. We can't do it if the fs can't represent the fsuid or fsgid.
2996  *  4. We should have write and exec permissions on dir
2997  *  5. We can't do it if dir is immutable (done in permission())
2998  */
2999 static inline int may_create(struct mnt_idmap *idmap,
3000 			     struct inode *dir, struct dentry *child)
3001 {
3002 	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
3003 	if (child->d_inode)
3004 		return -EEXIST;
3005 	if (IS_DEADDIR(dir))
3006 		return -ENOENT;
3007 	if (!fsuidgid_has_mapping(dir->i_sb, idmap))
3008 		return -EOVERFLOW;
3009 
3010 	return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
3011 }
3012 
3013 static struct dentry *lock_two_directories(struct dentry *p1, struct dentry *p2)
3014 {
3015 	struct dentry *p;
3016 
3017 	p = d_ancestor(p2, p1);
3018 	if (p) {
3019 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3020 		inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
3021 		return p;
3022 	}
3023 
3024 	p = d_ancestor(p1, p2);
3025 	if (p) {
3026 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3027 		inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
3028 		return p;
3029 	}
3030 
3031 	lock_two_inodes(p1->d_inode, p2->d_inode,
3032 			I_MUTEX_PARENT, I_MUTEX_PARENT2);
3033 	return NULL;
3034 }
3035 
3036 /*
3037  * p1 and p2 should be directories on the same fs.
3038  */
3039 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
3040 {
3041 	if (p1 == p2) {
3042 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3043 		return NULL;
3044 	}
3045 
3046 	mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
3047 	return lock_two_directories(p1, p2);
3048 }
3049 EXPORT_SYMBOL(lock_rename);
3050 
3051 /*
3052  * c1 and p2 should be on the same fs.
3053  */
3054 struct dentry *lock_rename_child(struct dentry *c1, struct dentry *p2)
3055 {
3056 	if (READ_ONCE(c1->d_parent) == p2) {
3057 		/*
3058 		 * hopefully won't need to touch ->s_vfs_rename_mutex at all.
3059 		 */
3060 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3061 		/*
3062 		 * now that p2 is locked, nobody can move in or out of it,
3063 		 * so the test below is safe.
3064 		 */
3065 		if (likely(c1->d_parent == p2))
3066 			return NULL;
3067 
3068 		/*
3069 		 * c1 got moved out of p2 while we'd been taking locks;
3070 		 * unlock and fall back to slow case.
3071 		 */
3072 		inode_unlock(p2->d_inode);
3073 	}
3074 
3075 	mutex_lock(&c1->d_sb->s_vfs_rename_mutex);
3076 	/*
3077 	 * nobody can move out of any directories on this fs.
3078 	 */
3079 	if (likely(c1->d_parent != p2))
3080 		return lock_two_directories(c1->d_parent, p2);
3081 
3082 	/*
3083 	 * c1 got moved into p2 while we were taking locks;
3084 	 * we need p2 locked and ->s_vfs_rename_mutex unlocked,
3085 	 * for consistency with lock_rename().
3086 	 */
3087 	inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3088 	mutex_unlock(&c1->d_sb->s_vfs_rename_mutex);
3089 	return NULL;
3090 }
3091 EXPORT_SYMBOL(lock_rename_child);
3092 
3093 void unlock_rename(struct dentry *p1, struct dentry *p2)
3094 {
3095 	inode_unlock(p1->d_inode);
3096 	if (p1 != p2) {
3097 		inode_unlock(p2->d_inode);
3098 		mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
3099 	}
3100 }
3101 EXPORT_SYMBOL(unlock_rename);
3102 
3103 /**
3104  * mode_strip_umask - handle vfs umask stripping
3105  * @dir:	parent directory of the new inode
3106  * @mode:	mode of the new inode to be created in @dir
3107  *
3108  * Umask stripping depends on whether or not the filesystem supports POSIX
3109  * ACLs. If the filesystem doesn't support it umask stripping is done directly
3110  * in here. If the filesystem does support POSIX ACLs umask stripping is
3111  * deferred until the filesystem calls posix_acl_create().
3112  *
3113  * Returns: mode
3114  */
3115 static inline umode_t mode_strip_umask(const struct inode *dir, umode_t mode)
3116 {
3117 	if (!IS_POSIXACL(dir))
3118 		mode &= ~current_umask();
3119 	return mode;
3120 }
3121 
3122 /**
3123  * vfs_prepare_mode - prepare the mode to be used for a new inode
3124  * @idmap:	idmap of the mount the inode was found from
3125  * @dir:	parent directory of the new inode
3126  * @mode:	mode of the new inode
3127  * @mask_perms:	allowed permission by the vfs
3128  * @type:	type of file to be created
3129  *
3130  * This helper consolidates and enforces vfs restrictions on the @mode of a new
3131  * object to be created.
3132  *
3133  * Umask stripping depends on whether the filesystem supports POSIX ACLs (see
3134  * the kernel documentation for mode_strip_umask()). Moving umask stripping
3135  * after setgid stripping allows the same ordering for both non-POSIX ACL and
3136  * POSIX ACL supporting filesystems.
3137  *
3138  * Note that it's currently valid for @type to be 0 if a directory is created.
3139  * Filesystems raise that flag individually and we need to check whether each
3140  * filesystem can deal with receiving S_IFDIR from the vfs before we enforce a
3141  * non-zero type.
3142  *
3143  * Returns: mode to be passed to the filesystem
3144  */
3145 static inline umode_t vfs_prepare_mode(struct mnt_idmap *idmap,
3146 				       const struct inode *dir, umode_t mode,
3147 				       umode_t mask_perms, umode_t type)
3148 {
3149 	mode = mode_strip_sgid(idmap, dir, mode);
3150 	mode = mode_strip_umask(dir, mode);
3151 
3152 	/*
3153 	 * Apply the vfs mandated allowed permission mask and set the type of
3154 	 * file to be created before we call into the filesystem.
3155 	 */
3156 	mode &= (mask_perms & ~S_IFMT);
3157 	mode |= (type & S_IFMT);
3158 
3159 	return mode;
3160 }
3161 
3162 /**
3163  * vfs_create - create new file
3164  * @idmap:	idmap of the mount the inode was found from
3165  * @dir:	inode of @dentry
3166  * @dentry:	pointer to dentry of the base directory
3167  * @mode:	mode of the new file
3168  * @want_excl:	whether the file must not yet exist
3169  *
3170  * Create a new file.
3171  *
3172  * If the inode has been found through an idmapped mount the idmap of
3173  * the vfsmount must be passed through @idmap. This function will then take
3174  * care to map the inode according to @idmap before checking permissions.
3175  * On non-idmapped mounts or if permission checking is to be performed on the
3176  * raw inode simply passs @nop_mnt_idmap.
3177  */
3178 int vfs_create(struct mnt_idmap *idmap, struct inode *dir,
3179 	       struct dentry *dentry, umode_t mode, bool want_excl)
3180 {
3181 	int error;
3182 
3183 	error = may_create(idmap, dir, dentry);
3184 	if (error)
3185 		return error;
3186 
3187 	if (!dir->i_op->create)
3188 		return -EACCES;	/* shouldn't it be ENOSYS? */
3189 
3190 	mode = vfs_prepare_mode(idmap, dir, mode, S_IALLUGO, S_IFREG);
3191 	error = security_inode_create(dir, dentry, mode);
3192 	if (error)
3193 		return error;
3194 	error = dir->i_op->create(idmap, dir, dentry, mode, want_excl);
3195 	if (!error)
3196 		fsnotify_create(dir, dentry);
3197 	return error;
3198 }
3199 EXPORT_SYMBOL(vfs_create);
3200 
3201 int vfs_mkobj(struct dentry *dentry, umode_t mode,
3202 		int (*f)(struct dentry *, umode_t, void *),
3203 		void *arg)
3204 {
3205 	struct inode *dir = dentry->d_parent->d_inode;
3206 	int error = may_create(&nop_mnt_idmap, dir, dentry);
3207 	if (error)
3208 		return error;
3209 
3210 	mode &= S_IALLUGO;
3211 	mode |= S_IFREG;
3212 	error = security_inode_create(dir, dentry, mode);
3213 	if (error)
3214 		return error;
3215 	error = f(dentry, mode, arg);
3216 	if (!error)
3217 		fsnotify_create(dir, dentry);
3218 	return error;
3219 }
3220 EXPORT_SYMBOL(vfs_mkobj);
3221 
3222 bool may_open_dev(const struct path *path)
3223 {
3224 	return !(path->mnt->mnt_flags & MNT_NODEV) &&
3225 		!(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
3226 }
3227 
3228 static int may_open(struct mnt_idmap *idmap, const struct path *path,
3229 		    int acc_mode, int flag)
3230 {
3231 	struct dentry *dentry = path->dentry;
3232 	struct inode *inode = dentry->d_inode;
3233 	int error;
3234 
3235 	if (!inode)
3236 		return -ENOENT;
3237 
3238 	switch (inode->i_mode & S_IFMT) {
3239 	case S_IFLNK:
3240 		return -ELOOP;
3241 	case S_IFDIR:
3242 		if (acc_mode & MAY_WRITE)
3243 			return -EISDIR;
3244 		if (acc_mode & MAY_EXEC)
3245 			return -EACCES;
3246 		break;
3247 	case S_IFBLK:
3248 	case S_IFCHR:
3249 		if (!may_open_dev(path))
3250 			return -EACCES;
3251 		fallthrough;
3252 	case S_IFIFO:
3253 	case S_IFSOCK:
3254 		if (acc_mode & MAY_EXEC)
3255 			return -EACCES;
3256 		flag &= ~O_TRUNC;
3257 		break;
3258 	case S_IFREG:
3259 		if ((acc_mode & MAY_EXEC) && path_noexec(path))
3260 			return -EACCES;
3261 		break;
3262 	}
3263 
3264 	error = inode_permission(idmap, inode, MAY_OPEN | acc_mode);
3265 	if (error)
3266 		return error;
3267 
3268 	/*
3269 	 * An append-only file must be opened in append mode for writing.
3270 	 */
3271 	if (IS_APPEND(inode)) {
3272 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
3273 			return -EPERM;
3274 		if (flag & O_TRUNC)
3275 			return -EPERM;
3276 	}
3277 
3278 	/* O_NOATIME can only be set by the owner or superuser */
3279 	if (flag & O_NOATIME && !inode_owner_or_capable(idmap, inode))
3280 		return -EPERM;
3281 
3282 	return 0;
3283 }
3284 
3285 static int handle_truncate(struct mnt_idmap *idmap, struct file *filp)
3286 {
3287 	const struct path *path = &filp->f_path;
3288 	struct inode *inode = path->dentry->d_inode;
3289 	int error = get_write_access(inode);
3290 	if (error)
3291 		return error;
3292 
3293 	error = security_file_truncate(filp);
3294 	if (!error) {
3295 		error = do_truncate(idmap, path->dentry, 0,
3296 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
3297 				    filp);
3298 	}
3299 	put_write_access(inode);
3300 	return error;
3301 }
3302 
3303 static inline int open_to_namei_flags(int flag)
3304 {
3305 	if ((flag & O_ACCMODE) == 3)
3306 		flag--;
3307 	return flag;
3308 }
3309 
3310 static int may_o_create(struct mnt_idmap *idmap,
3311 			const struct path *dir, struct dentry *dentry,
3312 			umode_t mode)
3313 {
3314 	int error = security_path_mknod(dir, dentry, mode, 0);
3315 	if (error)
3316 		return error;
3317 
3318 	if (!fsuidgid_has_mapping(dir->dentry->d_sb, idmap))
3319 		return -EOVERFLOW;
3320 
3321 	error = inode_permission(idmap, dir->dentry->d_inode,
3322 				 MAY_WRITE | MAY_EXEC);
3323 	if (error)
3324 		return error;
3325 
3326 	return security_inode_create(dir->dentry->d_inode, dentry, mode);
3327 }
3328 
3329 /*
3330  * Attempt to atomically look up, create and open a file from a negative
3331  * dentry.
3332  *
3333  * Returns 0 if successful.  The file will have been created and attached to
3334  * @file by the filesystem calling finish_open().
3335  *
3336  * If the file was looked up only or didn't need creating, FMODE_OPENED won't
3337  * be set.  The caller will need to perform the open themselves.  @path will
3338  * have been updated to point to the new dentry.  This may be negative.
3339  *
3340  * Returns an error code otherwise.
3341  */
3342 static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry,
3343 				  struct file *file,
3344 				  int open_flag, umode_t mode)
3345 {
3346 	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3347 	struct inode *dir =  nd->path.dentry->d_inode;
3348 	int error;
3349 
3350 	if (nd->flags & LOOKUP_DIRECTORY)
3351 		open_flag |= O_DIRECTORY;
3352 
3353 	file->f_path.dentry = DENTRY_NOT_SET;
3354 	file->f_path.mnt = nd->path.mnt;
3355 	error = dir->i_op->atomic_open(dir, dentry, file,
3356 				       open_to_namei_flags(open_flag), mode);
3357 	d_lookup_done(dentry);
3358 	if (!error) {
3359 		if (file->f_mode & FMODE_OPENED) {
3360 			if (unlikely(dentry != file->f_path.dentry)) {
3361 				dput(dentry);
3362 				dentry = dget(file->f_path.dentry);
3363 			}
3364 		} else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3365 			error = -EIO;
3366 		} else {
3367 			if (file->f_path.dentry) {
3368 				dput(dentry);
3369 				dentry = file->f_path.dentry;
3370 			}
3371 			if (unlikely(d_is_negative(dentry)))
3372 				error = -ENOENT;
3373 		}
3374 	}
3375 	if (error) {
3376 		dput(dentry);
3377 		dentry = ERR_PTR(error);
3378 	}
3379 	return dentry;
3380 }
3381 
3382 /*
3383  * Look up and maybe create and open the last component.
3384  *
3385  * Must be called with parent locked (exclusive in O_CREAT case).
3386  *
3387  * Returns 0 on success, that is, if
3388  *  the file was successfully atomically created (if necessary) and opened, or
3389  *  the file was not completely opened at this time, though lookups and
3390  *  creations were performed.
3391  * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3392  * In the latter case dentry returned in @path might be negative if O_CREAT
3393  * hadn't been specified.
3394  *
3395  * An error code is returned on failure.
3396  */
3397 static struct dentry *lookup_open(struct nameidata *nd, struct file *file,
3398 				  const struct open_flags *op,
3399 				  bool got_write)
3400 {
3401 	struct mnt_idmap *idmap;
3402 	struct dentry *dir = nd->path.dentry;
3403 	struct inode *dir_inode = dir->d_inode;
3404 	int open_flag = op->open_flag;
3405 	struct dentry *dentry;
3406 	int error, create_error = 0;
3407 	umode_t mode = op->mode;
3408 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3409 
3410 	if (unlikely(IS_DEADDIR(dir_inode)))
3411 		return ERR_PTR(-ENOENT);
3412 
3413 	file->f_mode &= ~FMODE_CREATED;
3414 	dentry = d_lookup(dir, &nd->last);
3415 	for (;;) {
3416 		if (!dentry) {
3417 			dentry = d_alloc_parallel(dir, &nd->last, &wq);
3418 			if (IS_ERR(dentry))
3419 				return dentry;
3420 		}
3421 		if (d_in_lookup(dentry))
3422 			break;
3423 
3424 		error = d_revalidate(dentry, nd->flags);
3425 		if (likely(error > 0))
3426 			break;
3427 		if (error)
3428 			goto out_dput;
3429 		d_invalidate(dentry);
3430 		dput(dentry);
3431 		dentry = NULL;
3432 	}
3433 	if (dentry->d_inode) {
3434 		/* Cached positive dentry: will open in f_op->open */
3435 		return dentry;
3436 	}
3437 
3438 	/*
3439 	 * Checking write permission is tricky, bacuse we don't know if we are
3440 	 * going to actually need it: O_CREAT opens should work as long as the
3441 	 * file exists.  But checking existence breaks atomicity.  The trick is
3442 	 * to check access and if not granted clear O_CREAT from the flags.
3443 	 *
3444 	 * Another problem is returing the "right" error value (e.g. for an
3445 	 * O_EXCL open we want to return EEXIST not EROFS).
3446 	 */
3447 	if (unlikely(!got_write))
3448 		open_flag &= ~O_TRUNC;
3449 	idmap = mnt_idmap(nd->path.mnt);
3450 	if (open_flag & O_CREAT) {
3451 		if (open_flag & O_EXCL)
3452 			open_flag &= ~O_TRUNC;
3453 		mode = vfs_prepare_mode(idmap, dir->d_inode, mode, mode, mode);
3454 		if (likely(got_write))
3455 			create_error = may_o_create(idmap, &nd->path,
3456 						    dentry, mode);
3457 		else
3458 			create_error = -EROFS;
3459 	}
3460 	if (create_error)
3461 		open_flag &= ~O_CREAT;
3462 	if (dir_inode->i_op->atomic_open) {
3463 		dentry = atomic_open(nd, dentry, file, open_flag, mode);
3464 		if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT))
3465 			dentry = ERR_PTR(create_error);
3466 		return dentry;
3467 	}
3468 
3469 	if (d_in_lookup(dentry)) {
3470 		struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3471 							     nd->flags);
3472 		d_lookup_done(dentry);
3473 		if (unlikely(res)) {
3474 			if (IS_ERR(res)) {
3475 				error = PTR_ERR(res);
3476 				goto out_dput;
3477 			}
3478 			dput(dentry);
3479 			dentry = res;
3480 		}
3481 	}
3482 
3483 	/* Negative dentry, just create the file */
3484 	if (!dentry->d_inode && (open_flag & O_CREAT)) {
3485 		file->f_mode |= FMODE_CREATED;
3486 		audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3487 		if (!dir_inode->i_op->create) {
3488 			error = -EACCES;
3489 			goto out_dput;
3490 		}
3491 
3492 		error = dir_inode->i_op->create(idmap, dir_inode, dentry,
3493 						mode, open_flag & O_EXCL);
3494 		if (error)
3495 			goto out_dput;
3496 	}
3497 	if (unlikely(create_error) && !dentry->d_inode) {
3498 		error = create_error;
3499 		goto out_dput;
3500 	}
3501 	return dentry;
3502 
3503 out_dput:
3504 	dput(dentry);
3505 	return ERR_PTR(error);
3506 }
3507 
3508 static const char *open_last_lookups(struct nameidata *nd,
3509 		   struct file *file, const struct open_flags *op)
3510 {
3511 	struct dentry *dir = nd->path.dentry;
3512 	int open_flag = op->open_flag;
3513 	bool got_write = false;
3514 	struct dentry *dentry;
3515 	const char *res;
3516 
3517 	nd->flags |= op->intent;
3518 
3519 	if (nd->last_type != LAST_NORM) {
3520 		if (nd->depth)
3521 			put_link(nd);
3522 		return handle_dots(nd, nd->last_type);
3523 	}
3524 
3525 	if (!(open_flag & O_CREAT)) {
3526 		if (nd->last.name[nd->last.len])
3527 			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3528 		/* we _can_ be in RCU mode here */
3529 		dentry = lookup_fast(nd);
3530 		if (IS_ERR(dentry))
3531 			return ERR_CAST(dentry);
3532 		if (likely(dentry))
3533 			goto finish_lookup;
3534 
3535 		BUG_ON(nd->flags & LOOKUP_RCU);
3536 	} else {
3537 		/* create side of things */
3538 		if (nd->flags & LOOKUP_RCU) {
3539 			if (!try_to_unlazy(nd))
3540 				return ERR_PTR(-ECHILD);
3541 		}
3542 		audit_inode(nd->name, dir, AUDIT_INODE_PARENT);
3543 		/* trailing slashes? */
3544 		if (unlikely(nd->last.name[nd->last.len]))
3545 			return ERR_PTR(-EISDIR);
3546 	}
3547 
3548 	if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3549 		got_write = !mnt_want_write(nd->path.mnt);
3550 		/*
3551 		 * do _not_ fail yet - we might not need that or fail with
3552 		 * a different error; let lookup_open() decide; we'll be
3553 		 * dropping this one anyway.
3554 		 */
3555 	}
3556 	if (open_flag & O_CREAT)
3557 		inode_lock(dir->d_inode);
3558 	else
3559 		inode_lock_shared(dir->d_inode);
3560 	dentry = lookup_open(nd, file, op, got_write);
3561 	if (!IS_ERR(dentry) && (file->f_mode & FMODE_CREATED))
3562 		fsnotify_create(dir->d_inode, dentry);
3563 	if (open_flag & O_CREAT)
3564 		inode_unlock(dir->d_inode);
3565 	else
3566 		inode_unlock_shared(dir->d_inode);
3567 
3568 	if (got_write)
3569 		mnt_drop_write(nd->path.mnt);
3570 
3571 	if (IS_ERR(dentry))
3572 		return ERR_CAST(dentry);
3573 
3574 	if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) {
3575 		dput(nd->path.dentry);
3576 		nd->path.dentry = dentry;
3577 		return NULL;
3578 	}
3579 
3580 finish_lookup:
3581 	if (nd->depth)
3582 		put_link(nd);
3583 	res = step_into(nd, WALK_TRAILING, dentry);
3584 	if (unlikely(res))
3585 		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3586 	return res;
3587 }
3588 
3589 /*
3590  * Handle the last step of open()
3591  */
3592 static int do_open(struct nameidata *nd,
3593 		   struct file *file, const struct open_flags *op)
3594 {
3595 	struct mnt_idmap *idmap;
3596 	int open_flag = op->open_flag;
3597 	bool do_truncate;
3598 	int acc_mode;
3599 	int error;
3600 
3601 	if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) {
3602 		error = complete_walk(nd);
3603 		if (error)
3604 			return error;
3605 	}
3606 	if (!(file->f_mode & FMODE_CREATED))
3607 		audit_inode(nd->name, nd->path.dentry, 0);
3608 	idmap = mnt_idmap(nd->path.mnt);
3609 	if (open_flag & O_CREAT) {
3610 		if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED))
3611 			return -EEXIST;
3612 		if (d_is_dir(nd->path.dentry))
3613 			return -EISDIR;
3614 		error = may_create_in_sticky(idmap, nd,
3615 					     d_backing_inode(nd->path.dentry));
3616 		if (unlikely(error))
3617 			return error;
3618 	}
3619 	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3620 		return -ENOTDIR;
3621 
3622 	do_truncate = false;
3623 	acc_mode = op->acc_mode;
3624 	if (file->f_mode & FMODE_CREATED) {
3625 		/* Don't check for write permission, don't truncate */
3626 		open_flag &= ~O_TRUNC;
3627 		acc_mode = 0;
3628 	} else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) {
3629 		error = mnt_want_write(nd->path.mnt);
3630 		if (error)
3631 			return error;
3632 		do_truncate = true;
3633 	}
3634 	error = may_open(idmap, &nd->path, acc_mode, open_flag);
3635 	if (!error && !(file->f_mode & FMODE_OPENED))
3636 		error = vfs_open(&nd->path, file);
3637 	if (!error)
3638 		error = ima_file_check(file, op->acc_mode);
3639 	if (!error && do_truncate)
3640 		error = handle_truncate(idmap, file);
3641 	if (unlikely(error > 0)) {
3642 		WARN_ON(1);
3643 		error = -EINVAL;
3644 	}
3645 	if (do_truncate)
3646 		mnt_drop_write(nd->path.mnt);
3647 	return error;
3648 }
3649 
3650 /**
3651  * vfs_tmpfile - create tmpfile
3652  * @idmap:	idmap of the mount the inode was found from
3653  * @parentpath:	pointer to the path of the base directory
3654  * @file:	file descriptor of the new tmpfile
3655  * @mode:	mode of the new tmpfile
3656  *
3657  * Create a temporary file.
3658  *
3659  * If the inode has been found through an idmapped mount the idmap of
3660  * the vfsmount must be passed through @idmap. This function will then take
3661  * care to map the inode according to @idmap before checking permissions.
3662  * On non-idmapped mounts or if permission checking is to be performed on the
3663  * raw inode simply passs @nop_mnt_idmap.
3664  */
3665 static int vfs_tmpfile(struct mnt_idmap *idmap,
3666 		       const struct path *parentpath,
3667 		       struct file *file, umode_t mode)
3668 {
3669 	struct dentry *child;
3670 	struct inode *dir = d_inode(parentpath->dentry);
3671 	struct inode *inode;
3672 	int error;
3673 	int open_flag = file->f_flags;
3674 
3675 	/* we want directory to be writable */
3676 	error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
3677 	if (error)
3678 		return error;
3679 	if (!dir->i_op->tmpfile)
3680 		return -EOPNOTSUPP;
3681 	child = d_alloc(parentpath->dentry, &slash_name);
3682 	if (unlikely(!child))
3683 		return -ENOMEM;
3684 	file->f_path.mnt = parentpath->mnt;
3685 	file->f_path.dentry = child;
3686 	mode = vfs_prepare_mode(idmap, dir, mode, mode, mode);
3687 	error = dir->i_op->tmpfile(idmap, dir, file, mode);
3688 	dput(child);
3689 	if (error)
3690 		return error;
3691 	/* Don't check for other permissions, the inode was just created */
3692 	error = may_open(idmap, &file->f_path, 0, file->f_flags);
3693 	if (error)
3694 		return error;
3695 	inode = file_inode(file);
3696 	if (!(open_flag & O_EXCL)) {
3697 		spin_lock(&inode->i_lock);
3698 		inode->i_state |= I_LINKABLE;
3699 		spin_unlock(&inode->i_lock);
3700 	}
3701 	ima_post_create_tmpfile(idmap, inode);
3702 	return 0;
3703 }
3704 
3705 /**
3706  * kernel_tmpfile_open - open a tmpfile for kernel internal use
3707  * @idmap:	idmap of the mount the inode was found from
3708  * @parentpath:	path of the base directory
3709  * @mode:	mode of the new tmpfile
3710  * @open_flag:	flags
3711  * @cred:	credentials for open
3712  *
3713  * Create and open a temporary file.  The file is not accounted in nr_files,
3714  * hence this is only for kernel internal use, and must not be installed into
3715  * file tables or such.
3716  */
3717 struct file *kernel_tmpfile_open(struct mnt_idmap *idmap,
3718 				 const struct path *parentpath,
3719 				 umode_t mode, int open_flag,
3720 				 const struct cred *cred)
3721 {
3722 	struct file *file;
3723 	int error;
3724 
3725 	file = alloc_empty_file_noaccount(open_flag, cred);
3726 	if (IS_ERR(file))
3727 		return file;
3728 
3729 	error = vfs_tmpfile(idmap, parentpath, file, mode);
3730 	if (error) {
3731 		fput(file);
3732 		file = ERR_PTR(error);
3733 	}
3734 	return file;
3735 }
3736 EXPORT_SYMBOL(kernel_tmpfile_open);
3737 
3738 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3739 		const struct open_flags *op,
3740 		struct file *file)
3741 {
3742 	struct path path;
3743 	int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3744 
3745 	if (unlikely(error))
3746 		return error;
3747 	error = mnt_want_write(path.mnt);
3748 	if (unlikely(error))
3749 		goto out;
3750 	error = vfs_tmpfile(mnt_idmap(path.mnt), &path, file, op->mode);
3751 	if (error)
3752 		goto out2;
3753 	audit_inode(nd->name, file->f_path.dentry, 0);
3754 out2:
3755 	mnt_drop_write(path.mnt);
3756 out:
3757 	path_put(&path);
3758 	return error;
3759 }
3760 
3761 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3762 {
3763 	struct path path;
3764 	int error = path_lookupat(nd, flags, &path);
3765 	if (!error) {
3766 		audit_inode(nd->name, path.dentry, 0);
3767 		error = vfs_open(&path, file);
3768 		path_put(&path);
3769 	}
3770 	return error;
3771 }
3772 
3773 static struct file *path_openat(struct nameidata *nd,
3774 			const struct open_flags *op, unsigned flags)
3775 {
3776 	struct file *file;
3777 	int error;
3778 
3779 	file = alloc_empty_file(op->open_flag, current_cred());
3780 	if (IS_ERR(file))
3781 		return file;
3782 
3783 	if (unlikely(file->f_flags & __O_TMPFILE)) {
3784 		error = do_tmpfile(nd, flags, op, file);
3785 	} else if (unlikely(file->f_flags & O_PATH)) {
3786 		error = do_o_path(nd, flags, file);
3787 	} else {
3788 		const char *s = path_init(nd, flags);
3789 		while (!(error = link_path_walk(s, nd)) &&
3790 		       (s = open_last_lookups(nd, file, op)) != NULL)
3791 			;
3792 		if (!error)
3793 			error = do_open(nd, file, op);
3794 		terminate_walk(nd);
3795 	}
3796 	if (likely(!error)) {
3797 		if (likely(file->f_mode & FMODE_OPENED))
3798 			return file;
3799 		WARN_ON(1);
3800 		error = -EINVAL;
3801 	}
3802 	fput(file);
3803 	if (error == -EOPENSTALE) {
3804 		if (flags & LOOKUP_RCU)
3805 			error = -ECHILD;
3806 		else
3807 			error = -ESTALE;
3808 	}
3809 	return ERR_PTR(error);
3810 }
3811 
3812 struct file *do_filp_open(int dfd, struct filename *pathname,
3813 		const struct open_flags *op)
3814 {
3815 	struct nameidata nd;
3816 	int flags = op->lookup_flags;
3817 	struct file *filp;
3818 
3819 	set_nameidata(&nd, dfd, pathname, NULL);
3820 	filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3821 	if (unlikely(filp == ERR_PTR(-ECHILD)))
3822 		filp = path_openat(&nd, op, flags);
3823 	if (unlikely(filp == ERR_PTR(-ESTALE)))
3824 		filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3825 	restore_nameidata();
3826 	return filp;
3827 }
3828 
3829 struct file *do_file_open_root(const struct path *root,
3830 		const char *name, const struct open_flags *op)
3831 {
3832 	struct nameidata nd;
3833 	struct file *file;
3834 	struct filename *filename;
3835 	int flags = op->lookup_flags;
3836 
3837 	if (d_is_symlink(root->dentry) && op->intent & LOOKUP_OPEN)
3838 		return ERR_PTR(-ELOOP);
3839 
3840 	filename = getname_kernel(name);
3841 	if (IS_ERR(filename))
3842 		return ERR_CAST(filename);
3843 
3844 	set_nameidata(&nd, -1, filename, root);
3845 	file = path_openat(&nd, op, flags | LOOKUP_RCU);
3846 	if (unlikely(file == ERR_PTR(-ECHILD)))
3847 		file = path_openat(&nd, op, flags);
3848 	if (unlikely(file == ERR_PTR(-ESTALE)))
3849 		file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3850 	restore_nameidata();
3851 	putname(filename);
3852 	return file;
3853 }
3854 
3855 static struct dentry *filename_create(int dfd, struct filename *name,
3856 				      struct path *path, unsigned int lookup_flags)
3857 {
3858 	struct dentry *dentry = ERR_PTR(-EEXIST);
3859 	struct qstr last;
3860 	bool want_dir = lookup_flags & LOOKUP_DIRECTORY;
3861 	unsigned int reval_flag = lookup_flags & LOOKUP_REVAL;
3862 	unsigned int create_flags = LOOKUP_CREATE | LOOKUP_EXCL;
3863 	int type;
3864 	int err2;
3865 	int error;
3866 
3867 	error = filename_parentat(dfd, name, reval_flag, path, &last, &type);
3868 	if (error)
3869 		return ERR_PTR(error);
3870 
3871 	/*
3872 	 * Yucky last component or no last component at all?
3873 	 * (foo/., foo/.., /////)
3874 	 */
3875 	if (unlikely(type != LAST_NORM))
3876 		goto out;
3877 
3878 	/* don't fail immediately if it's r/o, at least try to report other errors */
3879 	err2 = mnt_want_write(path->mnt);
3880 	/*
3881 	 * Do the final lookup.  Suppress 'create' if there is a trailing
3882 	 * '/', and a directory wasn't requested.
3883 	 */
3884 	if (last.name[last.len] && !want_dir)
3885 		create_flags = 0;
3886 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3887 	dentry = lookup_one_qstr_excl(&last, path->dentry,
3888 				      reval_flag | create_flags);
3889 	if (IS_ERR(dentry))
3890 		goto unlock;
3891 
3892 	error = -EEXIST;
3893 	if (d_is_positive(dentry))
3894 		goto fail;
3895 
3896 	/*
3897 	 * Special case - lookup gave negative, but... we had foo/bar/
3898 	 * From the vfs_mknod() POV we just have a negative dentry -
3899 	 * all is fine. Let's be bastards - you had / on the end, you've
3900 	 * been asking for (non-existent) directory. -ENOENT for you.
3901 	 */
3902 	if (unlikely(!create_flags)) {
3903 		error = -ENOENT;
3904 		goto fail;
3905 	}
3906 	if (unlikely(err2)) {
3907 		error = err2;
3908 		goto fail;
3909 	}
3910 	return dentry;
3911 fail:
3912 	dput(dentry);
3913 	dentry = ERR_PTR(error);
3914 unlock:
3915 	inode_unlock(path->dentry->d_inode);
3916 	if (!err2)
3917 		mnt_drop_write(path->mnt);
3918 out:
3919 	path_put(path);
3920 	return dentry;
3921 }
3922 
3923 struct dentry *kern_path_create(int dfd, const char *pathname,
3924 				struct path *path, unsigned int lookup_flags)
3925 {
3926 	struct filename *filename = getname_kernel(pathname);
3927 	struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
3928 
3929 	putname(filename);
3930 	return res;
3931 }
3932 EXPORT_SYMBOL(kern_path_create);
3933 
3934 void done_path_create(struct path *path, struct dentry *dentry)
3935 {
3936 	dput(dentry);
3937 	inode_unlock(path->dentry->d_inode);
3938 	mnt_drop_write(path->mnt);
3939 	path_put(path);
3940 }
3941 EXPORT_SYMBOL(done_path_create);
3942 
3943 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3944 				struct path *path, unsigned int lookup_flags)
3945 {
3946 	struct filename *filename = getname(pathname);
3947 	struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
3948 
3949 	putname(filename);
3950 	return res;
3951 }
3952 EXPORT_SYMBOL(user_path_create);
3953 
3954 /**
3955  * vfs_mknod - create device node or file
3956  * @idmap:	idmap of the mount the inode was found from
3957  * @dir:	inode of @dentry
3958  * @dentry:	pointer to dentry of the base directory
3959  * @mode:	mode of the new device node or file
3960  * @dev:	device number of device to create
3961  *
3962  * Create a device node or file.
3963  *
3964  * If the inode has been found through an idmapped mount the idmap of
3965  * the vfsmount must be passed through @idmap. This function will then take
3966  * care to map the inode according to @idmap before checking permissions.
3967  * On non-idmapped mounts or if permission checking is to be performed on the
3968  * raw inode simply passs @nop_mnt_idmap.
3969  */
3970 int vfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
3971 	      struct dentry *dentry, umode_t mode, dev_t dev)
3972 {
3973 	bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV;
3974 	int error = may_create(idmap, dir, dentry);
3975 
3976 	if (error)
3977 		return error;
3978 
3979 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout &&
3980 	    !capable(CAP_MKNOD))
3981 		return -EPERM;
3982 
3983 	if (!dir->i_op->mknod)
3984 		return -EPERM;
3985 
3986 	mode = vfs_prepare_mode(idmap, dir, mode, mode, mode);
3987 	error = devcgroup_inode_mknod(mode, dev);
3988 	if (error)
3989 		return error;
3990 
3991 	error = security_inode_mknod(dir, dentry, mode, dev);
3992 	if (error)
3993 		return error;
3994 
3995 	error = dir->i_op->mknod(idmap, dir, dentry, mode, dev);
3996 	if (!error)
3997 		fsnotify_create(dir, dentry);
3998 	return error;
3999 }
4000 EXPORT_SYMBOL(vfs_mknod);
4001 
4002 static int may_mknod(umode_t mode)
4003 {
4004 	switch (mode & S_IFMT) {
4005 	case S_IFREG:
4006 	case S_IFCHR:
4007 	case S_IFBLK:
4008 	case S_IFIFO:
4009 	case S_IFSOCK:
4010 	case 0: /* zero mode translates to S_IFREG */
4011 		return 0;
4012 	case S_IFDIR:
4013 		return -EPERM;
4014 	default:
4015 		return -EINVAL;
4016 	}
4017 }
4018 
4019 static int do_mknodat(int dfd, struct filename *name, umode_t mode,
4020 		unsigned int dev)
4021 {
4022 	struct mnt_idmap *idmap;
4023 	struct dentry *dentry;
4024 	struct path path;
4025 	int error;
4026 	unsigned int lookup_flags = 0;
4027 
4028 	error = may_mknod(mode);
4029 	if (error)
4030 		goto out1;
4031 retry:
4032 	dentry = filename_create(dfd, name, &path, lookup_flags);
4033 	error = PTR_ERR(dentry);
4034 	if (IS_ERR(dentry))
4035 		goto out1;
4036 
4037 	error = security_path_mknod(&path, dentry,
4038 			mode_strip_umask(path.dentry->d_inode, mode), dev);
4039 	if (error)
4040 		goto out2;
4041 
4042 	idmap = mnt_idmap(path.mnt);
4043 	switch (mode & S_IFMT) {
4044 		case 0: case S_IFREG:
4045 			error = vfs_create(idmap, path.dentry->d_inode,
4046 					   dentry, mode, true);
4047 			if (!error)
4048 				ima_post_path_mknod(idmap, dentry);
4049 			break;
4050 		case S_IFCHR: case S_IFBLK:
4051 			error = vfs_mknod(idmap, path.dentry->d_inode,
4052 					  dentry, mode, new_decode_dev(dev));
4053 			break;
4054 		case S_IFIFO: case S_IFSOCK:
4055 			error = vfs_mknod(idmap, path.dentry->d_inode,
4056 					  dentry, mode, 0);
4057 			break;
4058 	}
4059 out2:
4060 	done_path_create(&path, dentry);
4061 	if (retry_estale(error, lookup_flags)) {
4062 		lookup_flags |= LOOKUP_REVAL;
4063 		goto retry;
4064 	}
4065 out1:
4066 	putname(name);
4067 	return error;
4068 }
4069 
4070 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
4071 		unsigned int, dev)
4072 {
4073 	return do_mknodat(dfd, getname(filename), mode, dev);
4074 }
4075 
4076 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
4077 {
4078 	return do_mknodat(AT_FDCWD, getname(filename), mode, dev);
4079 }
4080 
4081 /**
4082  * vfs_mkdir - create directory
4083  * @idmap:	idmap of the mount the inode was found from
4084  * @dir:	inode of @dentry
4085  * @dentry:	pointer to dentry of the base directory
4086  * @mode:	mode of the new directory
4087  *
4088  * Create a directory.
4089  *
4090  * If the inode has been found through an idmapped mount the idmap of
4091  * the vfsmount must be passed through @idmap. This function will then take
4092  * care to map the inode according to @idmap before checking permissions.
4093  * On non-idmapped mounts or if permission checking is to be performed on the
4094  * raw inode simply passs @nop_mnt_idmap.
4095  */
4096 int vfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
4097 	      struct dentry *dentry, umode_t mode)
4098 {
4099 	int error;
4100 	unsigned max_links = dir->i_sb->s_max_links;
4101 
4102 	error = may_create(idmap, dir, dentry);
4103 	if (error)
4104 		return error;
4105 
4106 	if (!dir->i_op->mkdir)
4107 		return -EPERM;
4108 
4109 	mode = vfs_prepare_mode(idmap, dir, mode, S_IRWXUGO | S_ISVTX, 0);
4110 	error = security_inode_mkdir(dir, dentry, mode);
4111 	if (error)
4112 		return error;
4113 
4114 	if (max_links && dir->i_nlink >= max_links)
4115 		return -EMLINK;
4116 
4117 	error = dir->i_op->mkdir(idmap, dir, dentry, mode);
4118 	if (!error)
4119 		fsnotify_mkdir(dir, dentry);
4120 	return error;
4121 }
4122 EXPORT_SYMBOL(vfs_mkdir);
4123 
4124 int do_mkdirat(int dfd, struct filename *name, umode_t mode)
4125 {
4126 	struct dentry *dentry;
4127 	struct path path;
4128 	int error;
4129 	unsigned int lookup_flags = LOOKUP_DIRECTORY;
4130 
4131 retry:
4132 	dentry = filename_create(dfd, name, &path, lookup_flags);
4133 	error = PTR_ERR(dentry);
4134 	if (IS_ERR(dentry))
4135 		goto out_putname;
4136 
4137 	error = security_path_mkdir(&path, dentry,
4138 			mode_strip_umask(path.dentry->d_inode, mode));
4139 	if (!error) {
4140 		error = vfs_mkdir(mnt_idmap(path.mnt), path.dentry->d_inode,
4141 				  dentry, mode);
4142 	}
4143 	done_path_create(&path, dentry);
4144 	if (retry_estale(error, lookup_flags)) {
4145 		lookup_flags |= LOOKUP_REVAL;
4146 		goto retry;
4147 	}
4148 out_putname:
4149 	putname(name);
4150 	return error;
4151 }
4152 
4153 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
4154 {
4155 	return do_mkdirat(dfd, getname(pathname), mode);
4156 }
4157 
4158 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
4159 {
4160 	return do_mkdirat(AT_FDCWD, getname(pathname), mode);
4161 }
4162 
4163 /**
4164  * vfs_rmdir - remove directory
4165  * @idmap:	idmap of the mount the inode was found from
4166  * @dir:	inode of @dentry
4167  * @dentry:	pointer to dentry of the base directory
4168  *
4169  * Remove a directory.
4170  *
4171  * If the inode has been found through an idmapped mount the idmap of
4172  * the vfsmount must be passed through @idmap. This function will then take
4173  * care to map the inode according to @idmap before checking permissions.
4174  * On non-idmapped mounts or if permission checking is to be performed on the
4175  * raw inode simply passs @nop_mnt_idmap.
4176  */
4177 int vfs_rmdir(struct mnt_idmap *idmap, struct inode *dir,
4178 		     struct dentry *dentry)
4179 {
4180 	int error = may_delete(idmap, dir, dentry, 1);
4181 
4182 	if (error)
4183 		return error;
4184 
4185 	if (!dir->i_op->rmdir)
4186 		return -EPERM;
4187 
4188 	dget(dentry);
4189 	inode_lock(dentry->d_inode);
4190 
4191 	error = -EBUSY;
4192 	if (is_local_mountpoint(dentry) ||
4193 	    (dentry->d_inode->i_flags & S_KERNEL_FILE))
4194 		goto out;
4195 
4196 	error = security_inode_rmdir(dir, dentry);
4197 	if (error)
4198 		goto out;
4199 
4200 	error = dir->i_op->rmdir(dir, dentry);
4201 	if (error)
4202 		goto out;
4203 
4204 	shrink_dcache_parent(dentry);
4205 	dentry->d_inode->i_flags |= S_DEAD;
4206 	dont_mount(dentry);
4207 	detach_mounts(dentry);
4208 
4209 out:
4210 	inode_unlock(dentry->d_inode);
4211 	dput(dentry);
4212 	if (!error)
4213 		d_delete_notify(dir, dentry);
4214 	return error;
4215 }
4216 EXPORT_SYMBOL(vfs_rmdir);
4217 
4218 int do_rmdir(int dfd, struct filename *name)
4219 {
4220 	int error;
4221 	struct dentry *dentry;
4222 	struct path path;
4223 	struct qstr last;
4224 	int type;
4225 	unsigned int lookup_flags = 0;
4226 retry:
4227 	error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4228 	if (error)
4229 		goto exit1;
4230 
4231 	switch (type) {
4232 	case LAST_DOTDOT:
4233 		error = -ENOTEMPTY;
4234 		goto exit2;
4235 	case LAST_DOT:
4236 		error = -EINVAL;
4237 		goto exit2;
4238 	case LAST_ROOT:
4239 		error = -EBUSY;
4240 		goto exit2;
4241 	}
4242 
4243 	error = mnt_want_write(path.mnt);
4244 	if (error)
4245 		goto exit2;
4246 
4247 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4248 	dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags);
4249 	error = PTR_ERR(dentry);
4250 	if (IS_ERR(dentry))
4251 		goto exit3;
4252 	if (!dentry->d_inode) {
4253 		error = -ENOENT;
4254 		goto exit4;
4255 	}
4256 	error = security_path_rmdir(&path, dentry);
4257 	if (error)
4258 		goto exit4;
4259 	error = vfs_rmdir(mnt_idmap(path.mnt), path.dentry->d_inode, dentry);
4260 exit4:
4261 	dput(dentry);
4262 exit3:
4263 	inode_unlock(path.dentry->d_inode);
4264 	mnt_drop_write(path.mnt);
4265 exit2:
4266 	path_put(&path);
4267 	if (retry_estale(error, lookup_flags)) {
4268 		lookup_flags |= LOOKUP_REVAL;
4269 		goto retry;
4270 	}
4271 exit1:
4272 	putname(name);
4273 	return error;
4274 }
4275 
4276 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
4277 {
4278 	return do_rmdir(AT_FDCWD, getname(pathname));
4279 }
4280 
4281 /**
4282  * vfs_unlink - unlink a filesystem object
4283  * @idmap:	idmap of the mount the inode was found from
4284  * @dir:	parent directory
4285  * @dentry:	victim
4286  * @delegated_inode: returns victim inode, if the inode is delegated.
4287  *
4288  * The caller must hold dir->i_mutex.
4289  *
4290  * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
4291  * return a reference to the inode in delegated_inode.  The caller
4292  * should then break the delegation on that inode and retry.  Because
4293  * breaking a delegation may take a long time, the caller should drop
4294  * dir->i_mutex before doing so.
4295  *
4296  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4297  * be appropriate for callers that expect the underlying filesystem not
4298  * to be NFS exported.
4299  *
4300  * If the inode has been found through an idmapped mount the idmap of
4301  * the vfsmount must be passed through @idmap. This function will then take
4302  * care to map the inode according to @idmap before checking permissions.
4303  * On non-idmapped mounts or if permission checking is to be performed on the
4304  * raw inode simply passs @nop_mnt_idmap.
4305  */
4306 int vfs_unlink(struct mnt_idmap *idmap, struct inode *dir,
4307 	       struct dentry *dentry, struct inode **delegated_inode)
4308 {
4309 	struct inode *target = dentry->d_inode;
4310 	int error = may_delete(idmap, dir, dentry, 0);
4311 
4312 	if (error)
4313 		return error;
4314 
4315 	if (!dir->i_op->unlink)
4316 		return -EPERM;
4317 
4318 	inode_lock(target);
4319 	if (IS_SWAPFILE(target))
4320 		error = -EPERM;
4321 	else if (is_local_mountpoint(dentry))
4322 		error = -EBUSY;
4323 	else {
4324 		error = security_inode_unlink(dir, dentry);
4325 		if (!error) {
4326 			error = try_break_deleg(target, delegated_inode);
4327 			if (error)
4328 				goto out;
4329 			error = dir->i_op->unlink(dir, dentry);
4330 			if (!error) {
4331 				dont_mount(dentry);
4332 				detach_mounts(dentry);
4333 			}
4334 		}
4335 	}
4336 out:
4337 	inode_unlock(target);
4338 
4339 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
4340 	if (!error && dentry->d_flags & DCACHE_NFSFS_RENAMED) {
4341 		fsnotify_unlink(dir, dentry);
4342 	} else if (!error) {
4343 		fsnotify_link_count(target);
4344 		d_delete_notify(dir, dentry);
4345 	}
4346 
4347 	return error;
4348 }
4349 EXPORT_SYMBOL(vfs_unlink);
4350 
4351 /*
4352  * Make sure that the actual truncation of the file will occur outside its
4353  * directory's i_mutex.  Truncate can take a long time if there is a lot of
4354  * writeout happening, and we don't want to prevent access to the directory
4355  * while waiting on the I/O.
4356  */
4357 int do_unlinkat(int dfd, struct filename *name)
4358 {
4359 	int error;
4360 	struct dentry *dentry;
4361 	struct path path;
4362 	struct qstr last;
4363 	int type;
4364 	struct inode *inode = NULL;
4365 	struct inode *delegated_inode = NULL;
4366 	unsigned int lookup_flags = 0;
4367 retry:
4368 	error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4369 	if (error)
4370 		goto exit1;
4371 
4372 	error = -EISDIR;
4373 	if (type != LAST_NORM)
4374 		goto exit2;
4375 
4376 	error = mnt_want_write(path.mnt);
4377 	if (error)
4378 		goto exit2;
4379 retry_deleg:
4380 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4381 	dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags);
4382 	error = PTR_ERR(dentry);
4383 	if (!IS_ERR(dentry)) {
4384 
4385 		/* Why not before? Because we want correct error value */
4386 		if (last.name[last.len])
4387 			goto slashes;
4388 		inode = dentry->d_inode;
4389 		if (d_is_negative(dentry))
4390 			goto slashes;
4391 		ihold(inode);
4392 		error = security_path_unlink(&path, dentry);
4393 		if (error)
4394 			goto exit3;
4395 		error = vfs_unlink(mnt_idmap(path.mnt), path.dentry->d_inode,
4396 				   dentry, &delegated_inode);
4397 exit3:
4398 		dput(dentry);
4399 	}
4400 	inode_unlock(path.dentry->d_inode);
4401 	if (inode)
4402 		iput(inode);	/* truncate the inode here */
4403 	inode = NULL;
4404 	if (delegated_inode) {
4405 		error = break_deleg_wait(&delegated_inode);
4406 		if (!error)
4407 			goto retry_deleg;
4408 	}
4409 	mnt_drop_write(path.mnt);
4410 exit2:
4411 	path_put(&path);
4412 	if (retry_estale(error, lookup_flags)) {
4413 		lookup_flags |= LOOKUP_REVAL;
4414 		inode = NULL;
4415 		goto retry;
4416 	}
4417 exit1:
4418 	putname(name);
4419 	return error;
4420 
4421 slashes:
4422 	if (d_is_negative(dentry))
4423 		error = -ENOENT;
4424 	else if (d_is_dir(dentry))
4425 		error = -EISDIR;
4426 	else
4427 		error = -ENOTDIR;
4428 	goto exit3;
4429 }
4430 
4431 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4432 {
4433 	if ((flag & ~AT_REMOVEDIR) != 0)
4434 		return -EINVAL;
4435 
4436 	if (flag & AT_REMOVEDIR)
4437 		return do_rmdir(dfd, getname(pathname));
4438 	return do_unlinkat(dfd, getname(pathname));
4439 }
4440 
4441 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4442 {
4443 	return do_unlinkat(AT_FDCWD, getname(pathname));
4444 }
4445 
4446 /**
4447  * vfs_symlink - create symlink
4448  * @idmap:	idmap of the mount the inode was found from
4449  * @dir:	inode of @dentry
4450  * @dentry:	pointer to dentry of the base directory
4451  * @oldname:	name of the file to link to
4452  *
4453  * Create a symlink.
4454  *
4455  * If the inode has been found through an idmapped mount the idmap of
4456  * the vfsmount must be passed through @idmap. This function will then take
4457  * care to map the inode according to @idmap before checking permissions.
4458  * On non-idmapped mounts or if permission checking is to be performed on the
4459  * raw inode simply passs @nop_mnt_idmap.
4460  */
4461 int vfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
4462 		struct dentry *dentry, const char *oldname)
4463 {
4464 	int error;
4465 
4466 	error = may_create(idmap, dir, dentry);
4467 	if (error)
4468 		return error;
4469 
4470 	if (!dir->i_op->symlink)
4471 		return -EPERM;
4472 
4473 	error = security_inode_symlink(dir, dentry, oldname);
4474 	if (error)
4475 		return error;
4476 
4477 	error = dir->i_op->symlink(idmap, dir, dentry, oldname);
4478 	if (!error)
4479 		fsnotify_create(dir, dentry);
4480 	return error;
4481 }
4482 EXPORT_SYMBOL(vfs_symlink);
4483 
4484 int do_symlinkat(struct filename *from, int newdfd, struct filename *to)
4485 {
4486 	int error;
4487 	struct dentry *dentry;
4488 	struct path path;
4489 	unsigned int lookup_flags = 0;
4490 
4491 	if (IS_ERR(from)) {
4492 		error = PTR_ERR(from);
4493 		goto out_putnames;
4494 	}
4495 retry:
4496 	dentry = filename_create(newdfd, to, &path, lookup_flags);
4497 	error = PTR_ERR(dentry);
4498 	if (IS_ERR(dentry))
4499 		goto out_putnames;
4500 
4501 	error = security_path_symlink(&path, dentry, from->name);
4502 	if (!error)
4503 		error = vfs_symlink(mnt_idmap(path.mnt), path.dentry->d_inode,
4504 				    dentry, from->name);
4505 	done_path_create(&path, dentry);
4506 	if (retry_estale(error, lookup_flags)) {
4507 		lookup_flags |= LOOKUP_REVAL;
4508 		goto retry;
4509 	}
4510 out_putnames:
4511 	putname(to);
4512 	putname(from);
4513 	return error;
4514 }
4515 
4516 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4517 		int, newdfd, const char __user *, newname)
4518 {
4519 	return do_symlinkat(getname(oldname), newdfd, getname(newname));
4520 }
4521 
4522 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4523 {
4524 	return do_symlinkat(getname(oldname), AT_FDCWD, getname(newname));
4525 }
4526 
4527 /**
4528  * vfs_link - create a new link
4529  * @old_dentry:	object to be linked
4530  * @idmap:	idmap of the mount
4531  * @dir:	new parent
4532  * @new_dentry:	where to create the new link
4533  * @delegated_inode: returns inode needing a delegation break
4534  *
4535  * The caller must hold dir->i_mutex
4536  *
4537  * If vfs_link discovers a delegation on the to-be-linked file in need
4538  * of breaking, it will return -EWOULDBLOCK and return a reference to the
4539  * inode in delegated_inode.  The caller should then break the delegation
4540  * and retry.  Because breaking a delegation may take a long time, the
4541  * caller should drop the i_mutex before doing so.
4542  *
4543  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4544  * be appropriate for callers that expect the underlying filesystem not
4545  * to be NFS exported.
4546  *
4547  * If the inode has been found through an idmapped mount the idmap of
4548  * the vfsmount must be passed through @idmap. This function will then take
4549  * care to map the inode according to @idmap before checking permissions.
4550  * On non-idmapped mounts or if permission checking is to be performed on the
4551  * raw inode simply passs @nop_mnt_idmap.
4552  */
4553 int vfs_link(struct dentry *old_dentry, struct mnt_idmap *idmap,
4554 	     struct inode *dir, struct dentry *new_dentry,
4555 	     struct inode **delegated_inode)
4556 {
4557 	struct inode *inode = old_dentry->d_inode;
4558 	unsigned max_links = dir->i_sb->s_max_links;
4559 	int error;
4560 
4561 	if (!inode)
4562 		return -ENOENT;
4563 
4564 	error = may_create(idmap, dir, new_dentry);
4565 	if (error)
4566 		return error;
4567 
4568 	if (dir->i_sb != inode->i_sb)
4569 		return -EXDEV;
4570 
4571 	/*
4572 	 * A link to an append-only or immutable file cannot be created.
4573 	 */
4574 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4575 		return -EPERM;
4576 	/*
4577 	 * Updating the link count will likely cause i_uid and i_gid to
4578 	 * be writen back improperly if their true value is unknown to
4579 	 * the vfs.
4580 	 */
4581 	if (HAS_UNMAPPED_ID(idmap, inode))
4582 		return -EPERM;
4583 	if (!dir->i_op->link)
4584 		return -EPERM;
4585 	if (S_ISDIR(inode->i_mode))
4586 		return -EPERM;
4587 
4588 	error = security_inode_link(old_dentry, dir, new_dentry);
4589 	if (error)
4590 		return error;
4591 
4592 	inode_lock(inode);
4593 	/* Make sure we don't allow creating hardlink to an unlinked file */
4594 	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4595 		error =  -ENOENT;
4596 	else if (max_links && inode->i_nlink >= max_links)
4597 		error = -EMLINK;
4598 	else {
4599 		error = try_break_deleg(inode, delegated_inode);
4600 		if (!error)
4601 			error = dir->i_op->link(old_dentry, dir, new_dentry);
4602 	}
4603 
4604 	if (!error && (inode->i_state & I_LINKABLE)) {
4605 		spin_lock(&inode->i_lock);
4606 		inode->i_state &= ~I_LINKABLE;
4607 		spin_unlock(&inode->i_lock);
4608 	}
4609 	inode_unlock(inode);
4610 	if (!error)
4611 		fsnotify_link(dir, inode, new_dentry);
4612 	return error;
4613 }
4614 EXPORT_SYMBOL(vfs_link);
4615 
4616 /*
4617  * Hardlinks are often used in delicate situations.  We avoid
4618  * security-related surprises by not following symlinks on the
4619  * newname.  --KAB
4620  *
4621  * We don't follow them on the oldname either to be compatible
4622  * with linux 2.0, and to avoid hard-linking to directories
4623  * and other special files.  --ADM
4624  */
4625 int do_linkat(int olddfd, struct filename *old, int newdfd,
4626 	      struct filename *new, int flags)
4627 {
4628 	struct mnt_idmap *idmap;
4629 	struct dentry *new_dentry;
4630 	struct path old_path, new_path;
4631 	struct inode *delegated_inode = NULL;
4632 	int how = 0;
4633 	int error;
4634 
4635 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) {
4636 		error = -EINVAL;
4637 		goto out_putnames;
4638 	}
4639 	/*
4640 	 * To use null names we require CAP_DAC_READ_SEARCH
4641 	 * This ensures that not everyone will be able to create
4642 	 * handlink using the passed filedescriptor.
4643 	 */
4644 	if (flags & AT_EMPTY_PATH && !capable(CAP_DAC_READ_SEARCH)) {
4645 		error = -ENOENT;
4646 		goto out_putnames;
4647 	}
4648 
4649 	if (flags & AT_SYMLINK_FOLLOW)
4650 		how |= LOOKUP_FOLLOW;
4651 retry:
4652 	error = filename_lookup(olddfd, old, how, &old_path, NULL);
4653 	if (error)
4654 		goto out_putnames;
4655 
4656 	new_dentry = filename_create(newdfd, new, &new_path,
4657 					(how & LOOKUP_REVAL));
4658 	error = PTR_ERR(new_dentry);
4659 	if (IS_ERR(new_dentry))
4660 		goto out_putpath;
4661 
4662 	error = -EXDEV;
4663 	if (old_path.mnt != new_path.mnt)
4664 		goto out_dput;
4665 	idmap = mnt_idmap(new_path.mnt);
4666 	error = may_linkat(idmap, &old_path);
4667 	if (unlikely(error))
4668 		goto out_dput;
4669 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
4670 	if (error)
4671 		goto out_dput;
4672 	error = vfs_link(old_path.dentry, idmap, new_path.dentry->d_inode,
4673 			 new_dentry, &delegated_inode);
4674 out_dput:
4675 	done_path_create(&new_path, new_dentry);
4676 	if (delegated_inode) {
4677 		error = break_deleg_wait(&delegated_inode);
4678 		if (!error) {
4679 			path_put(&old_path);
4680 			goto retry;
4681 		}
4682 	}
4683 	if (retry_estale(error, how)) {
4684 		path_put(&old_path);
4685 		how |= LOOKUP_REVAL;
4686 		goto retry;
4687 	}
4688 out_putpath:
4689 	path_put(&old_path);
4690 out_putnames:
4691 	putname(old);
4692 	putname(new);
4693 
4694 	return error;
4695 }
4696 
4697 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4698 		int, newdfd, const char __user *, newname, int, flags)
4699 {
4700 	return do_linkat(olddfd, getname_uflags(oldname, flags),
4701 		newdfd, getname(newname), flags);
4702 }
4703 
4704 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4705 {
4706 	return do_linkat(AT_FDCWD, getname(oldname), AT_FDCWD, getname(newname), 0);
4707 }
4708 
4709 /**
4710  * vfs_rename - rename a filesystem object
4711  * @rd:		pointer to &struct renamedata info
4712  *
4713  * The caller must hold multiple mutexes--see lock_rename()).
4714  *
4715  * If vfs_rename discovers a delegation in need of breaking at either
4716  * the source or destination, it will return -EWOULDBLOCK and return a
4717  * reference to the inode in delegated_inode.  The caller should then
4718  * break the delegation and retry.  Because breaking a delegation may
4719  * take a long time, the caller should drop all locks before doing
4720  * so.
4721  *
4722  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4723  * be appropriate for callers that expect the underlying filesystem not
4724  * to be NFS exported.
4725  *
4726  * The worst of all namespace operations - renaming directory. "Perverted"
4727  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4728  * Problems:
4729  *
4730  *	a) we can get into loop creation.
4731  *	b) race potential - two innocent renames can create a loop together.
4732  *	   That's where 4.4 screws up. Current fix: serialization on
4733  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4734  *	   story.
4735  *	c) we have to lock _four_ objects - parents and victim (if it exists),
4736  *	   and source.
4737  *	   And that - after we got ->i_mutex on parents (until then we don't know
4738  *	   whether the target exists).  Solution: try to be smart with locking
4739  *	   order for inodes.  We rely on the fact that tree topology may change
4740  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
4741  *	   move will be locked.  Thus we can rank directories by the tree
4742  *	   (ancestors first) and rank all non-directories after them.
4743  *	   That works since everybody except rename does "lock parent, lookup,
4744  *	   lock child" and rename is under ->s_vfs_rename_mutex.
4745  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
4746  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
4747  *	   we'd better make sure that there's no link(2) for them.
4748  *	d) conversion from fhandle to dentry may come in the wrong moment - when
4749  *	   we are removing the target. Solution: we will have to grab ->i_mutex
4750  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4751  *	   ->i_mutex on parents, which works but leads to some truly excessive
4752  *	   locking].
4753  */
4754 int vfs_rename(struct renamedata *rd)
4755 {
4756 	int error;
4757 	struct inode *old_dir = rd->old_dir, *new_dir = rd->new_dir;
4758 	struct dentry *old_dentry = rd->old_dentry;
4759 	struct dentry *new_dentry = rd->new_dentry;
4760 	struct inode **delegated_inode = rd->delegated_inode;
4761 	unsigned int flags = rd->flags;
4762 	bool is_dir = d_is_dir(old_dentry);
4763 	struct inode *source = old_dentry->d_inode;
4764 	struct inode *target = new_dentry->d_inode;
4765 	bool new_is_dir = false;
4766 	unsigned max_links = new_dir->i_sb->s_max_links;
4767 	struct name_snapshot old_name;
4768 
4769 	if (source == target)
4770 		return 0;
4771 
4772 	error = may_delete(rd->old_mnt_idmap, old_dir, old_dentry, is_dir);
4773 	if (error)
4774 		return error;
4775 
4776 	if (!target) {
4777 		error = may_create(rd->new_mnt_idmap, new_dir, new_dentry);
4778 	} else {
4779 		new_is_dir = d_is_dir(new_dentry);
4780 
4781 		if (!(flags & RENAME_EXCHANGE))
4782 			error = may_delete(rd->new_mnt_idmap, new_dir,
4783 					   new_dentry, is_dir);
4784 		else
4785 			error = may_delete(rd->new_mnt_idmap, new_dir,
4786 					   new_dentry, new_is_dir);
4787 	}
4788 	if (error)
4789 		return error;
4790 
4791 	if (!old_dir->i_op->rename)
4792 		return -EPERM;
4793 
4794 	/*
4795 	 * If we are going to change the parent - check write permissions,
4796 	 * we'll need to flip '..'.
4797 	 */
4798 	if (new_dir != old_dir) {
4799 		if (is_dir) {
4800 			error = inode_permission(rd->old_mnt_idmap, source,
4801 						 MAY_WRITE);
4802 			if (error)
4803 				return error;
4804 		}
4805 		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4806 			error = inode_permission(rd->new_mnt_idmap, target,
4807 						 MAY_WRITE);
4808 			if (error)
4809 				return error;
4810 		}
4811 	}
4812 
4813 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4814 				      flags);
4815 	if (error)
4816 		return error;
4817 
4818 	take_dentry_name_snapshot(&old_name, old_dentry);
4819 	dget(new_dentry);
4820 	/*
4821 	 * Lock all moved children. Moved directories may need to change parent
4822 	 * pointer so they need the lock to prevent against concurrent
4823 	 * directory changes moving parent pointer. For regular files we've
4824 	 * historically always done this. The lockdep locking subclasses are
4825 	 * somewhat arbitrary but RENAME_EXCHANGE in particular can swap
4826 	 * regular files and directories so it's difficult to tell which
4827 	 * subclasses to use.
4828 	 */
4829 	lock_two_inodes(source, target, I_MUTEX_NORMAL, I_MUTEX_NONDIR2);
4830 
4831 	error = -EPERM;
4832 	if (IS_SWAPFILE(source) || (target && IS_SWAPFILE(target)))
4833 		goto out;
4834 
4835 	error = -EBUSY;
4836 	if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4837 		goto out;
4838 
4839 	if (max_links && new_dir != old_dir) {
4840 		error = -EMLINK;
4841 		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4842 			goto out;
4843 		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4844 		    old_dir->i_nlink >= max_links)
4845 			goto out;
4846 	}
4847 	if (!is_dir) {
4848 		error = try_break_deleg(source, delegated_inode);
4849 		if (error)
4850 			goto out;
4851 	}
4852 	if (target && !new_is_dir) {
4853 		error = try_break_deleg(target, delegated_inode);
4854 		if (error)
4855 			goto out;
4856 	}
4857 	error = old_dir->i_op->rename(rd->new_mnt_idmap, old_dir, old_dentry,
4858 				      new_dir, new_dentry, flags);
4859 	if (error)
4860 		goto out;
4861 
4862 	if (!(flags & RENAME_EXCHANGE) && target) {
4863 		if (is_dir) {
4864 			shrink_dcache_parent(new_dentry);
4865 			target->i_flags |= S_DEAD;
4866 		}
4867 		dont_mount(new_dentry);
4868 		detach_mounts(new_dentry);
4869 	}
4870 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4871 		if (!(flags & RENAME_EXCHANGE))
4872 			d_move(old_dentry, new_dentry);
4873 		else
4874 			d_exchange(old_dentry, new_dentry);
4875 	}
4876 out:
4877 	inode_unlock(source);
4878 	if (target)
4879 		inode_unlock(target);
4880 	dput(new_dentry);
4881 	if (!error) {
4882 		fsnotify_move(old_dir, new_dir, &old_name.name, is_dir,
4883 			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4884 		if (flags & RENAME_EXCHANGE) {
4885 			fsnotify_move(new_dir, old_dir, &old_dentry->d_name,
4886 				      new_is_dir, NULL, new_dentry);
4887 		}
4888 	}
4889 	release_dentry_name_snapshot(&old_name);
4890 
4891 	return error;
4892 }
4893 EXPORT_SYMBOL(vfs_rename);
4894 
4895 int do_renameat2(int olddfd, struct filename *from, int newdfd,
4896 		 struct filename *to, unsigned int flags)
4897 {
4898 	struct renamedata rd;
4899 	struct dentry *old_dentry, *new_dentry;
4900 	struct dentry *trap;
4901 	struct path old_path, new_path;
4902 	struct qstr old_last, new_last;
4903 	int old_type, new_type;
4904 	struct inode *delegated_inode = NULL;
4905 	unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4906 	bool should_retry = false;
4907 	int error = -EINVAL;
4908 
4909 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4910 		goto put_names;
4911 
4912 	if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4913 	    (flags & RENAME_EXCHANGE))
4914 		goto put_names;
4915 
4916 	if (flags & RENAME_EXCHANGE)
4917 		target_flags = 0;
4918 
4919 retry:
4920 	error = filename_parentat(olddfd, from, lookup_flags, &old_path,
4921 				  &old_last, &old_type);
4922 	if (error)
4923 		goto put_names;
4924 
4925 	error = filename_parentat(newdfd, to, lookup_flags, &new_path, &new_last,
4926 				  &new_type);
4927 	if (error)
4928 		goto exit1;
4929 
4930 	error = -EXDEV;
4931 	if (old_path.mnt != new_path.mnt)
4932 		goto exit2;
4933 
4934 	error = -EBUSY;
4935 	if (old_type != LAST_NORM)
4936 		goto exit2;
4937 
4938 	if (flags & RENAME_NOREPLACE)
4939 		error = -EEXIST;
4940 	if (new_type != LAST_NORM)
4941 		goto exit2;
4942 
4943 	error = mnt_want_write(old_path.mnt);
4944 	if (error)
4945 		goto exit2;
4946 
4947 retry_deleg:
4948 	trap = lock_rename(new_path.dentry, old_path.dentry);
4949 
4950 	old_dentry = lookup_one_qstr_excl(&old_last, old_path.dentry,
4951 					  lookup_flags);
4952 	error = PTR_ERR(old_dentry);
4953 	if (IS_ERR(old_dentry))
4954 		goto exit3;
4955 	/* source must exist */
4956 	error = -ENOENT;
4957 	if (d_is_negative(old_dentry))
4958 		goto exit4;
4959 	new_dentry = lookup_one_qstr_excl(&new_last, new_path.dentry,
4960 					  lookup_flags | target_flags);
4961 	error = PTR_ERR(new_dentry);
4962 	if (IS_ERR(new_dentry))
4963 		goto exit4;
4964 	error = -EEXIST;
4965 	if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4966 		goto exit5;
4967 	if (flags & RENAME_EXCHANGE) {
4968 		error = -ENOENT;
4969 		if (d_is_negative(new_dentry))
4970 			goto exit5;
4971 
4972 		if (!d_is_dir(new_dentry)) {
4973 			error = -ENOTDIR;
4974 			if (new_last.name[new_last.len])
4975 				goto exit5;
4976 		}
4977 	}
4978 	/* unless the source is a directory trailing slashes give -ENOTDIR */
4979 	if (!d_is_dir(old_dentry)) {
4980 		error = -ENOTDIR;
4981 		if (old_last.name[old_last.len])
4982 			goto exit5;
4983 		if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4984 			goto exit5;
4985 	}
4986 	/* source should not be ancestor of target */
4987 	error = -EINVAL;
4988 	if (old_dentry == trap)
4989 		goto exit5;
4990 	/* target should not be an ancestor of source */
4991 	if (!(flags & RENAME_EXCHANGE))
4992 		error = -ENOTEMPTY;
4993 	if (new_dentry == trap)
4994 		goto exit5;
4995 
4996 	error = security_path_rename(&old_path, old_dentry,
4997 				     &new_path, new_dentry, flags);
4998 	if (error)
4999 		goto exit5;
5000 
5001 	rd.old_dir	   = old_path.dentry->d_inode;
5002 	rd.old_dentry	   = old_dentry;
5003 	rd.old_mnt_idmap   = mnt_idmap(old_path.mnt);
5004 	rd.new_dir	   = new_path.dentry->d_inode;
5005 	rd.new_dentry	   = new_dentry;
5006 	rd.new_mnt_idmap   = mnt_idmap(new_path.mnt);
5007 	rd.delegated_inode = &delegated_inode;
5008 	rd.flags	   = flags;
5009 	error = vfs_rename(&rd);
5010 exit5:
5011 	dput(new_dentry);
5012 exit4:
5013 	dput(old_dentry);
5014 exit3:
5015 	unlock_rename(new_path.dentry, old_path.dentry);
5016 	if (delegated_inode) {
5017 		error = break_deleg_wait(&delegated_inode);
5018 		if (!error)
5019 			goto retry_deleg;
5020 	}
5021 	mnt_drop_write(old_path.mnt);
5022 exit2:
5023 	if (retry_estale(error, lookup_flags))
5024 		should_retry = true;
5025 	path_put(&new_path);
5026 exit1:
5027 	path_put(&old_path);
5028 	if (should_retry) {
5029 		should_retry = false;
5030 		lookup_flags |= LOOKUP_REVAL;
5031 		goto retry;
5032 	}
5033 put_names:
5034 	putname(from);
5035 	putname(to);
5036 	return error;
5037 }
5038 
5039 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
5040 		int, newdfd, const char __user *, newname, unsigned int, flags)
5041 {
5042 	return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
5043 				flags);
5044 }
5045 
5046 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
5047 		int, newdfd, const char __user *, newname)
5048 {
5049 	return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
5050 				0);
5051 }
5052 
5053 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
5054 {
5055 	return do_renameat2(AT_FDCWD, getname(oldname), AT_FDCWD,
5056 				getname(newname), 0);
5057 }
5058 
5059 int readlink_copy(char __user *buffer, int buflen, const char *link)
5060 {
5061 	int len = PTR_ERR(link);
5062 	if (IS_ERR(link))
5063 		goto out;
5064 
5065 	len = strlen(link);
5066 	if (len > (unsigned) buflen)
5067 		len = buflen;
5068 	if (copy_to_user(buffer, link, len))
5069 		len = -EFAULT;
5070 out:
5071 	return len;
5072 }
5073 
5074 /**
5075  * vfs_readlink - copy symlink body into userspace buffer
5076  * @dentry: dentry on which to get symbolic link
5077  * @buffer: user memory pointer
5078  * @buflen: size of buffer
5079  *
5080  * Does not touch atime.  That's up to the caller if necessary
5081  *
5082  * Does not call security hook.
5083  */
5084 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
5085 {
5086 	struct inode *inode = d_inode(dentry);
5087 	DEFINE_DELAYED_CALL(done);
5088 	const char *link;
5089 	int res;
5090 
5091 	if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
5092 		if (unlikely(inode->i_op->readlink))
5093 			return inode->i_op->readlink(dentry, buffer, buflen);
5094 
5095 		if (!d_is_symlink(dentry))
5096 			return -EINVAL;
5097 
5098 		spin_lock(&inode->i_lock);
5099 		inode->i_opflags |= IOP_DEFAULT_READLINK;
5100 		spin_unlock(&inode->i_lock);
5101 	}
5102 
5103 	link = READ_ONCE(inode->i_link);
5104 	if (!link) {
5105 		link = inode->i_op->get_link(dentry, inode, &done);
5106 		if (IS_ERR(link))
5107 			return PTR_ERR(link);
5108 	}
5109 	res = readlink_copy(buffer, buflen, link);
5110 	do_delayed_call(&done);
5111 	return res;
5112 }
5113 EXPORT_SYMBOL(vfs_readlink);
5114 
5115 /**
5116  * vfs_get_link - get symlink body
5117  * @dentry: dentry on which to get symbolic link
5118  * @done: caller needs to free returned data with this
5119  *
5120  * Calls security hook and i_op->get_link() on the supplied inode.
5121  *
5122  * It does not touch atime.  That's up to the caller if necessary.
5123  *
5124  * Does not work on "special" symlinks like /proc/$$/fd/N
5125  */
5126 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
5127 {
5128 	const char *res = ERR_PTR(-EINVAL);
5129 	struct inode *inode = d_inode(dentry);
5130 
5131 	if (d_is_symlink(dentry)) {
5132 		res = ERR_PTR(security_inode_readlink(dentry));
5133 		if (!res)
5134 			res = inode->i_op->get_link(dentry, inode, done);
5135 	}
5136 	return res;
5137 }
5138 EXPORT_SYMBOL(vfs_get_link);
5139 
5140 /* get the link contents into pagecache */
5141 const char *page_get_link(struct dentry *dentry, struct inode *inode,
5142 			  struct delayed_call *callback)
5143 {
5144 	char *kaddr;
5145 	struct page *page;
5146 	struct address_space *mapping = inode->i_mapping;
5147 
5148 	if (!dentry) {
5149 		page = find_get_page(mapping, 0);
5150 		if (!page)
5151 			return ERR_PTR(-ECHILD);
5152 		if (!PageUptodate(page)) {
5153 			put_page(page);
5154 			return ERR_PTR(-ECHILD);
5155 		}
5156 	} else {
5157 		page = read_mapping_page(mapping, 0, NULL);
5158 		if (IS_ERR(page))
5159 			return (char*)page;
5160 	}
5161 	set_delayed_call(callback, page_put_link, page);
5162 	BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
5163 	kaddr = page_address(page);
5164 	nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
5165 	return kaddr;
5166 }
5167 
5168 EXPORT_SYMBOL(page_get_link);
5169 
5170 void page_put_link(void *arg)
5171 {
5172 	put_page(arg);
5173 }
5174 EXPORT_SYMBOL(page_put_link);
5175 
5176 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
5177 {
5178 	DEFINE_DELAYED_CALL(done);
5179 	int res = readlink_copy(buffer, buflen,
5180 				page_get_link(dentry, d_inode(dentry),
5181 					      &done));
5182 	do_delayed_call(&done);
5183 	return res;
5184 }
5185 EXPORT_SYMBOL(page_readlink);
5186 
5187 int page_symlink(struct inode *inode, const char *symname, int len)
5188 {
5189 	struct address_space *mapping = inode->i_mapping;
5190 	const struct address_space_operations *aops = mapping->a_ops;
5191 	bool nofs = !mapping_gfp_constraint(mapping, __GFP_FS);
5192 	struct page *page;
5193 	void *fsdata = NULL;
5194 	int err;
5195 	unsigned int flags;
5196 
5197 retry:
5198 	if (nofs)
5199 		flags = memalloc_nofs_save();
5200 	err = aops->write_begin(NULL, mapping, 0, len-1, &page, &fsdata);
5201 	if (nofs)
5202 		memalloc_nofs_restore(flags);
5203 	if (err)
5204 		goto fail;
5205 
5206 	memcpy(page_address(page), symname, len-1);
5207 
5208 	err = aops->write_end(NULL, mapping, 0, len-1, len-1,
5209 							page, fsdata);
5210 	if (err < 0)
5211 		goto fail;
5212 	if (err < len-1)
5213 		goto retry;
5214 
5215 	mark_inode_dirty(inode);
5216 	return 0;
5217 fail:
5218 	return err;
5219 }
5220 EXPORT_SYMBOL(page_symlink);
5221 
5222 const struct inode_operations page_symlink_inode_operations = {
5223 	.get_link	= page_get_link,
5224 };
5225 EXPORT_SYMBOL(page_symlink_inode_operations);
5226