xref: /openbmc/linux/fs/namei.c (revision d5532ee7)
1 /*
2  *  linux/fs/namei.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * Some corrections by tytso.
9  */
10 
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12  * lookup logic.
13  */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15  */
16 
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/pagemap.h>
23 #include <linux/fsnotify.h>
24 #include <linux/personality.h>
25 #include <linux/security.h>
26 #include <linux/ima.h>
27 #include <linux/syscalls.h>
28 #include <linux/mount.h>
29 #include <linux/audit.h>
30 #include <linux/capability.h>
31 #include <linux/file.h>
32 #include <linux/fcntl.h>
33 #include <linux/device_cgroup.h>
34 #include <linux/fs_struct.h>
35 #include <asm/uaccess.h>
36 
37 #include "internal.h"
38 
39 /* [Feb-1997 T. Schoebel-Theuer]
40  * Fundamental changes in the pathname lookup mechanisms (namei)
41  * were necessary because of omirr.  The reason is that omirr needs
42  * to know the _real_ pathname, not the user-supplied one, in case
43  * of symlinks (and also when transname replacements occur).
44  *
45  * The new code replaces the old recursive symlink resolution with
46  * an iterative one (in case of non-nested symlink chains).  It does
47  * this with calls to <fs>_follow_link().
48  * As a side effect, dir_namei(), _namei() and follow_link() are now
49  * replaced with a single function lookup_dentry() that can handle all
50  * the special cases of the former code.
51  *
52  * With the new dcache, the pathname is stored at each inode, at least as
53  * long as the refcount of the inode is positive.  As a side effect, the
54  * size of the dcache depends on the inode cache and thus is dynamic.
55  *
56  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
57  * resolution to correspond with current state of the code.
58  *
59  * Note that the symlink resolution is not *completely* iterative.
60  * There is still a significant amount of tail- and mid- recursion in
61  * the algorithm.  Also, note that <fs>_readlink() is not used in
62  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
63  * may return different results than <fs>_follow_link().  Many virtual
64  * filesystems (including /proc) exhibit this behavior.
65  */
66 
67 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
68  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
69  * and the name already exists in form of a symlink, try to create the new
70  * name indicated by the symlink. The old code always complained that the
71  * name already exists, due to not following the symlink even if its target
72  * is nonexistent.  The new semantics affects also mknod() and link() when
73  * the name is a symlink pointing to a non-existant name.
74  *
75  * I don't know which semantics is the right one, since I have no access
76  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
77  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
78  * "old" one. Personally, I think the new semantics is much more logical.
79  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
80  * file does succeed in both HP-UX and SunOs, but not in Solaris
81  * and in the old Linux semantics.
82  */
83 
84 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
85  * semantics.  See the comments in "open_namei" and "do_link" below.
86  *
87  * [10-Sep-98 Alan Modra] Another symlink change.
88  */
89 
90 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
91  *	inside the path - always follow.
92  *	in the last component in creation/removal/renaming - never follow.
93  *	if LOOKUP_FOLLOW passed - follow.
94  *	if the pathname has trailing slashes - follow.
95  *	otherwise - don't follow.
96  * (applied in that order).
97  *
98  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
99  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
100  * During the 2.4 we need to fix the userland stuff depending on it -
101  * hopefully we will be able to get rid of that wart in 2.5. So far only
102  * XEmacs seems to be relying on it...
103  */
104 /*
105  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
106  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
107  * any extra contention...
108  */
109 
110 /* In order to reduce some races, while at the same time doing additional
111  * checking and hopefully speeding things up, we copy filenames to the
112  * kernel data space before using them..
113  *
114  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
115  * PATH_MAX includes the nul terminator --RR.
116  */
117 static int do_getname(const char __user *filename, char *page)
118 {
119 	int retval;
120 	unsigned long len = PATH_MAX;
121 
122 	if (!segment_eq(get_fs(), KERNEL_DS)) {
123 		if ((unsigned long) filename >= TASK_SIZE)
124 			return -EFAULT;
125 		if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
126 			len = TASK_SIZE - (unsigned long) filename;
127 	}
128 
129 	retval = strncpy_from_user(page, filename, len);
130 	if (retval > 0) {
131 		if (retval < len)
132 			return 0;
133 		return -ENAMETOOLONG;
134 	} else if (!retval)
135 		retval = -ENOENT;
136 	return retval;
137 }
138 
139 char * getname(const char __user * filename)
140 {
141 	char *tmp, *result;
142 
143 	result = ERR_PTR(-ENOMEM);
144 	tmp = __getname();
145 	if (tmp)  {
146 		int retval = do_getname(filename, tmp);
147 
148 		result = tmp;
149 		if (retval < 0) {
150 			__putname(tmp);
151 			result = ERR_PTR(retval);
152 		}
153 	}
154 	audit_getname(result);
155 	return result;
156 }
157 
158 #ifdef CONFIG_AUDITSYSCALL
159 void putname(const char *name)
160 {
161 	if (unlikely(!audit_dummy_context()))
162 		audit_putname(name);
163 	else
164 		__putname(name);
165 }
166 EXPORT_SYMBOL(putname);
167 #endif
168 
169 /*
170  * This does basic POSIX ACL permission checking
171  */
172 static int acl_permission_check(struct inode *inode, int mask,
173 		int (*check_acl)(struct inode *inode, int mask))
174 {
175 	umode_t			mode = inode->i_mode;
176 
177 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
178 
179 	if (current_fsuid() == inode->i_uid)
180 		mode >>= 6;
181 	else {
182 		if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
183 			int error = check_acl(inode, mask);
184 			if (error != -EAGAIN)
185 				return error;
186 		}
187 
188 		if (in_group_p(inode->i_gid))
189 			mode >>= 3;
190 	}
191 
192 	/*
193 	 * If the DACs are ok we don't need any capability check.
194 	 */
195 	if ((mask & ~mode) == 0)
196 		return 0;
197 	return -EACCES;
198 }
199 
200 /**
201  * generic_permission  -  check for access rights on a Posix-like filesystem
202  * @inode:	inode to check access rights for
203  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
204  * @check_acl:	optional callback to check for Posix ACLs
205  *
206  * Used to check for read/write/execute permissions on a file.
207  * We use "fsuid" for this, letting us set arbitrary permissions
208  * for filesystem access without changing the "normal" uids which
209  * are used for other things..
210  */
211 int generic_permission(struct inode *inode, int mask,
212 		int (*check_acl)(struct inode *inode, int mask))
213 {
214 	int ret;
215 
216 	/*
217 	 * Do the basic POSIX ACL permission checks.
218 	 */
219 	ret = acl_permission_check(inode, mask, check_acl);
220 	if (ret != -EACCES)
221 		return ret;
222 
223 	/*
224 	 * Read/write DACs are always overridable.
225 	 * Executable DACs are overridable if at least one exec bit is set.
226 	 */
227 	if (!(mask & MAY_EXEC) || execute_ok(inode))
228 		if (capable(CAP_DAC_OVERRIDE))
229 			return 0;
230 
231 	/*
232 	 * Searching includes executable on directories, else just read.
233 	 */
234 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
235 	if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE)))
236 		if (capable(CAP_DAC_READ_SEARCH))
237 			return 0;
238 
239 	return -EACCES;
240 }
241 
242 /**
243  * inode_permission  -  check for access rights to a given inode
244  * @inode:	inode to check permission on
245  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
246  *
247  * Used to check for read/write/execute permissions on an inode.
248  * We use "fsuid" for this, letting us set arbitrary permissions
249  * for filesystem access without changing the "normal" uids which
250  * are used for other things.
251  */
252 int inode_permission(struct inode *inode, int mask)
253 {
254 	int retval;
255 
256 	if (mask & MAY_WRITE) {
257 		umode_t mode = inode->i_mode;
258 
259 		/*
260 		 * Nobody gets write access to a read-only fs.
261 		 */
262 		if (IS_RDONLY(inode) &&
263 		    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
264 			return -EROFS;
265 
266 		/*
267 		 * Nobody gets write access to an immutable file.
268 		 */
269 		if (IS_IMMUTABLE(inode))
270 			return -EACCES;
271 	}
272 
273 	if (inode->i_op->permission)
274 		retval = inode->i_op->permission(inode, mask);
275 	else
276 		retval = generic_permission(inode, mask, inode->i_op->check_acl);
277 
278 	if (retval)
279 		return retval;
280 
281 	retval = devcgroup_inode_permission(inode, mask);
282 	if (retval)
283 		return retval;
284 
285 	return security_inode_permission(inode, mask);
286 }
287 
288 /**
289  * file_permission  -  check for additional access rights to a given file
290  * @file:	file to check access rights for
291  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
292  *
293  * Used to check for read/write/execute permissions on an already opened
294  * file.
295  *
296  * Note:
297  *	Do not use this function in new code.  All access checks should
298  *	be done using inode_permission().
299  */
300 int file_permission(struct file *file, int mask)
301 {
302 	return inode_permission(file->f_path.dentry->d_inode, mask);
303 }
304 
305 /*
306  * get_write_access() gets write permission for a file.
307  * put_write_access() releases this write permission.
308  * This is used for regular files.
309  * We cannot support write (and maybe mmap read-write shared) accesses and
310  * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode
311  * can have the following values:
312  * 0: no writers, no VM_DENYWRITE mappings
313  * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist
314  * > 0: (i_writecount) users are writing to the file.
315  *
316  * Normally we operate on that counter with atomic_{inc,dec} and it's safe
317  * except for the cases where we don't hold i_writecount yet. Then we need to
318  * use {get,deny}_write_access() - these functions check the sign and refuse
319  * to do the change if sign is wrong. Exclusion between them is provided by
320  * the inode->i_lock spinlock.
321  */
322 
323 int get_write_access(struct inode * inode)
324 {
325 	spin_lock(&inode->i_lock);
326 	if (atomic_read(&inode->i_writecount) < 0) {
327 		spin_unlock(&inode->i_lock);
328 		return -ETXTBSY;
329 	}
330 	atomic_inc(&inode->i_writecount);
331 	spin_unlock(&inode->i_lock);
332 
333 	return 0;
334 }
335 
336 int deny_write_access(struct file * file)
337 {
338 	struct inode *inode = file->f_path.dentry->d_inode;
339 
340 	spin_lock(&inode->i_lock);
341 	if (atomic_read(&inode->i_writecount) > 0) {
342 		spin_unlock(&inode->i_lock);
343 		return -ETXTBSY;
344 	}
345 	atomic_dec(&inode->i_writecount);
346 	spin_unlock(&inode->i_lock);
347 
348 	return 0;
349 }
350 
351 /**
352  * path_get - get a reference to a path
353  * @path: path to get the reference to
354  *
355  * Given a path increment the reference count to the dentry and the vfsmount.
356  */
357 void path_get(struct path *path)
358 {
359 	mntget(path->mnt);
360 	dget(path->dentry);
361 }
362 EXPORT_SYMBOL(path_get);
363 
364 /**
365  * path_put - put a reference to a path
366  * @path: path to put the reference to
367  *
368  * Given a path decrement the reference count to the dentry and the vfsmount.
369  */
370 void path_put(struct path *path)
371 {
372 	dput(path->dentry);
373 	mntput(path->mnt);
374 }
375 EXPORT_SYMBOL(path_put);
376 
377 /**
378  * release_open_intent - free up open intent resources
379  * @nd: pointer to nameidata
380  */
381 void release_open_intent(struct nameidata *nd)
382 {
383 	if (nd->intent.open.file->f_path.dentry == NULL)
384 		put_filp(nd->intent.open.file);
385 	else
386 		fput(nd->intent.open.file);
387 }
388 
389 static inline struct dentry *
390 do_revalidate(struct dentry *dentry, struct nameidata *nd)
391 {
392 	int status = dentry->d_op->d_revalidate(dentry, nd);
393 	if (unlikely(status <= 0)) {
394 		/*
395 		 * The dentry failed validation.
396 		 * If d_revalidate returned 0 attempt to invalidate
397 		 * the dentry otherwise d_revalidate is asking us
398 		 * to return a fail status.
399 		 */
400 		if (!status) {
401 			if (!d_invalidate(dentry)) {
402 				dput(dentry);
403 				dentry = NULL;
404 			}
405 		} else {
406 			dput(dentry);
407 			dentry = ERR_PTR(status);
408 		}
409 	}
410 	return dentry;
411 }
412 
413 /*
414  * force_reval_path - force revalidation of a dentry
415  *
416  * In some situations the path walking code will trust dentries without
417  * revalidating them. This causes problems for filesystems that depend on
418  * d_revalidate to handle file opens (e.g. NFSv4). When FS_REVAL_DOT is set
419  * (which indicates that it's possible for the dentry to go stale), force
420  * a d_revalidate call before proceeding.
421  *
422  * Returns 0 if the revalidation was successful. If the revalidation fails,
423  * either return the error returned by d_revalidate or -ESTALE if the
424  * revalidation it just returned 0. If d_revalidate returns 0, we attempt to
425  * invalidate the dentry. It's up to the caller to handle putting references
426  * to the path if necessary.
427  */
428 static int
429 force_reval_path(struct path *path, struct nameidata *nd)
430 {
431 	int status;
432 	struct dentry *dentry = path->dentry;
433 
434 	/*
435 	 * only check on filesystems where it's possible for the dentry to
436 	 * become stale. It's assumed that if this flag is set then the
437 	 * d_revalidate op will also be defined.
438 	 */
439 	if (!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT))
440 		return 0;
441 
442 	status = dentry->d_op->d_revalidate(dentry, nd);
443 	if (status > 0)
444 		return 0;
445 
446 	if (!status) {
447 		d_invalidate(dentry);
448 		status = -ESTALE;
449 	}
450 	return status;
451 }
452 
453 /*
454  * Short-cut version of permission(), for calling on directories
455  * during pathname resolution.  Combines parts of permission()
456  * and generic_permission(), and tests ONLY for MAY_EXEC permission.
457  *
458  * If appropriate, check DAC only.  If not appropriate, or
459  * short-cut DAC fails, then call ->permission() to do more
460  * complete permission check.
461  */
462 static int exec_permission(struct inode *inode)
463 {
464 	int ret;
465 
466 	if (inode->i_op->permission) {
467 		ret = inode->i_op->permission(inode, MAY_EXEC);
468 		if (!ret)
469 			goto ok;
470 		return ret;
471 	}
472 	ret = acl_permission_check(inode, MAY_EXEC, inode->i_op->check_acl);
473 	if (!ret)
474 		goto ok;
475 
476 	if (capable(CAP_DAC_OVERRIDE) || capable(CAP_DAC_READ_SEARCH))
477 		goto ok;
478 
479 	return ret;
480 ok:
481 	return security_inode_permission(inode, MAY_EXEC);
482 }
483 
484 static __always_inline void set_root(struct nameidata *nd)
485 {
486 	if (!nd->root.mnt)
487 		get_fs_root(current->fs, &nd->root);
488 }
489 
490 static int link_path_walk(const char *, struct nameidata *);
491 
492 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
493 {
494 	if (IS_ERR(link))
495 		goto fail;
496 
497 	if (*link == '/') {
498 		set_root(nd);
499 		path_put(&nd->path);
500 		nd->path = nd->root;
501 		path_get(&nd->root);
502 	}
503 
504 	return link_path_walk(link, nd);
505 fail:
506 	path_put(&nd->path);
507 	return PTR_ERR(link);
508 }
509 
510 static void path_put_conditional(struct path *path, struct nameidata *nd)
511 {
512 	dput(path->dentry);
513 	if (path->mnt != nd->path.mnt)
514 		mntput(path->mnt);
515 }
516 
517 static inline void path_to_nameidata(struct path *path, struct nameidata *nd)
518 {
519 	dput(nd->path.dentry);
520 	if (nd->path.mnt != path->mnt) {
521 		mntput(nd->path.mnt);
522 		nd->path.mnt = path->mnt;
523 	}
524 	nd->path.dentry = path->dentry;
525 }
526 
527 static __always_inline int
528 __do_follow_link(struct path *path, struct nameidata *nd, void **p)
529 {
530 	int error;
531 	struct dentry *dentry = path->dentry;
532 
533 	touch_atime(path->mnt, dentry);
534 	nd_set_link(nd, NULL);
535 
536 	if (path->mnt != nd->path.mnt) {
537 		path_to_nameidata(path, nd);
538 		dget(dentry);
539 	}
540 	mntget(path->mnt);
541 	nd->last_type = LAST_BIND;
542 	*p = dentry->d_inode->i_op->follow_link(dentry, nd);
543 	error = PTR_ERR(*p);
544 	if (!IS_ERR(*p)) {
545 		char *s = nd_get_link(nd);
546 		error = 0;
547 		if (s)
548 			error = __vfs_follow_link(nd, s);
549 		else if (nd->last_type == LAST_BIND) {
550 			error = force_reval_path(&nd->path, nd);
551 			if (error)
552 				path_put(&nd->path);
553 		}
554 	}
555 	return error;
556 }
557 
558 /*
559  * This limits recursive symlink follows to 8, while
560  * limiting consecutive symlinks to 40.
561  *
562  * Without that kind of total limit, nasty chains of consecutive
563  * symlinks can cause almost arbitrarily long lookups.
564  */
565 static inline int do_follow_link(struct path *path, struct nameidata *nd)
566 {
567 	void *cookie;
568 	int err = -ELOOP;
569 	if (current->link_count >= MAX_NESTED_LINKS)
570 		goto loop;
571 	if (current->total_link_count >= 40)
572 		goto loop;
573 	BUG_ON(nd->depth >= MAX_NESTED_LINKS);
574 	cond_resched();
575 	err = security_inode_follow_link(path->dentry, nd);
576 	if (err)
577 		goto loop;
578 	current->link_count++;
579 	current->total_link_count++;
580 	nd->depth++;
581 	err = __do_follow_link(path, nd, &cookie);
582 	if (!IS_ERR(cookie) && path->dentry->d_inode->i_op->put_link)
583 		path->dentry->d_inode->i_op->put_link(path->dentry, nd, cookie);
584 	path_put(path);
585 	current->link_count--;
586 	nd->depth--;
587 	return err;
588 loop:
589 	path_put_conditional(path, nd);
590 	path_put(&nd->path);
591 	return err;
592 }
593 
594 int follow_up(struct path *path)
595 {
596 	struct vfsmount *parent;
597 	struct dentry *mountpoint;
598 
599 	br_read_lock(vfsmount_lock);
600 	parent = path->mnt->mnt_parent;
601 	if (parent == path->mnt) {
602 		br_read_unlock(vfsmount_lock);
603 		return 0;
604 	}
605 	mntget(parent);
606 	mountpoint = dget(path->mnt->mnt_mountpoint);
607 	br_read_unlock(vfsmount_lock);
608 	dput(path->dentry);
609 	path->dentry = mountpoint;
610 	mntput(path->mnt);
611 	path->mnt = parent;
612 	return 1;
613 }
614 
615 /* no need for dcache_lock, as serialization is taken care in
616  * namespace.c
617  */
618 static int __follow_mount(struct path *path)
619 {
620 	int res = 0;
621 	while (d_mountpoint(path->dentry)) {
622 		struct vfsmount *mounted = lookup_mnt(path);
623 		if (!mounted)
624 			break;
625 		dput(path->dentry);
626 		if (res)
627 			mntput(path->mnt);
628 		path->mnt = mounted;
629 		path->dentry = dget(mounted->mnt_root);
630 		res = 1;
631 	}
632 	return res;
633 }
634 
635 static void follow_mount(struct path *path)
636 {
637 	while (d_mountpoint(path->dentry)) {
638 		struct vfsmount *mounted = lookup_mnt(path);
639 		if (!mounted)
640 			break;
641 		dput(path->dentry);
642 		mntput(path->mnt);
643 		path->mnt = mounted;
644 		path->dentry = dget(mounted->mnt_root);
645 	}
646 }
647 
648 /* no need for dcache_lock, as serialization is taken care in
649  * namespace.c
650  */
651 int follow_down(struct path *path)
652 {
653 	struct vfsmount *mounted;
654 
655 	mounted = lookup_mnt(path);
656 	if (mounted) {
657 		dput(path->dentry);
658 		mntput(path->mnt);
659 		path->mnt = mounted;
660 		path->dentry = dget(mounted->mnt_root);
661 		return 1;
662 	}
663 	return 0;
664 }
665 
666 static __always_inline void follow_dotdot(struct nameidata *nd)
667 {
668 	set_root(nd);
669 
670 	while(1) {
671 		struct dentry *old = nd->path.dentry;
672 
673 		if (nd->path.dentry == nd->root.dentry &&
674 		    nd->path.mnt == nd->root.mnt) {
675 			break;
676 		}
677 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
678 			/* rare case of legitimate dget_parent()... */
679 			nd->path.dentry = dget_parent(nd->path.dentry);
680 			dput(old);
681 			break;
682 		}
683 		if (!follow_up(&nd->path))
684 			break;
685 	}
686 	follow_mount(&nd->path);
687 }
688 
689 /*
690  * Allocate a dentry with name and parent, and perform a parent
691  * directory ->lookup on it. Returns the new dentry, or ERR_PTR
692  * on error. parent->d_inode->i_mutex must be held. d_lookup must
693  * have verified that no child exists while under i_mutex.
694  */
695 static struct dentry *d_alloc_and_lookup(struct dentry *parent,
696 				struct qstr *name, struct nameidata *nd)
697 {
698 	struct inode *inode = parent->d_inode;
699 	struct dentry *dentry;
700 	struct dentry *old;
701 
702 	/* Don't create child dentry for a dead directory. */
703 	if (unlikely(IS_DEADDIR(inode)))
704 		return ERR_PTR(-ENOENT);
705 
706 	dentry = d_alloc(parent, name);
707 	if (unlikely(!dentry))
708 		return ERR_PTR(-ENOMEM);
709 
710 	old = inode->i_op->lookup(inode, dentry, nd);
711 	if (unlikely(old)) {
712 		dput(dentry);
713 		dentry = old;
714 	}
715 	return dentry;
716 }
717 
718 /*
719  *  It's more convoluted than I'd like it to be, but... it's still fairly
720  *  small and for now I'd prefer to have fast path as straight as possible.
721  *  It _is_ time-critical.
722  */
723 static int do_lookup(struct nameidata *nd, struct qstr *name,
724 		     struct path *path)
725 {
726 	struct vfsmount *mnt = nd->path.mnt;
727 	struct dentry *dentry, *parent;
728 	struct inode *dir;
729 	/*
730 	 * See if the low-level filesystem might want
731 	 * to use its own hash..
732 	 */
733 	if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) {
734 		int err = nd->path.dentry->d_op->d_hash(nd->path.dentry, name);
735 		if (err < 0)
736 			return err;
737 	}
738 
739 	/*
740 	 * Rename seqlock is not required here because in the off chance
741 	 * of a false negative due to a concurrent rename, we're going to
742 	 * do the non-racy lookup, below.
743 	 */
744 	dentry = __d_lookup(nd->path.dentry, name);
745 	if (!dentry)
746 		goto need_lookup;
747 found:
748 	if (dentry->d_op && dentry->d_op->d_revalidate)
749 		goto need_revalidate;
750 done:
751 	path->mnt = mnt;
752 	path->dentry = dentry;
753 	__follow_mount(path);
754 	return 0;
755 
756 need_lookup:
757 	parent = nd->path.dentry;
758 	dir = parent->d_inode;
759 
760 	mutex_lock(&dir->i_mutex);
761 	/*
762 	 * First re-do the cached lookup just in case it was created
763 	 * while we waited for the directory semaphore, or the first
764 	 * lookup failed due to an unrelated rename.
765 	 *
766 	 * This could use version numbering or similar to avoid unnecessary
767 	 * cache lookups, but then we'd have to do the first lookup in the
768 	 * non-racy way. However in the common case here, everything should
769 	 * be hot in cache, so would it be a big win?
770 	 */
771 	dentry = d_lookup(parent, name);
772 	if (likely(!dentry)) {
773 		dentry = d_alloc_and_lookup(parent, name, nd);
774 		mutex_unlock(&dir->i_mutex);
775 		if (IS_ERR(dentry))
776 			goto fail;
777 		goto done;
778 	}
779 	/*
780 	 * Uhhuh! Nasty case: the cache was re-populated while
781 	 * we waited on the semaphore. Need to revalidate.
782 	 */
783 	mutex_unlock(&dir->i_mutex);
784 	goto found;
785 
786 need_revalidate:
787 	dentry = do_revalidate(dentry, nd);
788 	if (!dentry)
789 		goto need_lookup;
790 	if (IS_ERR(dentry))
791 		goto fail;
792 	goto done;
793 
794 fail:
795 	return PTR_ERR(dentry);
796 }
797 
798 /*
799  * This is a temporary kludge to deal with "automount" symlinks; proper
800  * solution is to trigger them on follow_mount(), so that do_lookup()
801  * would DTRT.  To be killed before 2.6.34-final.
802  */
803 static inline int follow_on_final(struct inode *inode, unsigned lookup_flags)
804 {
805 	return inode && unlikely(inode->i_op->follow_link) &&
806 		((lookup_flags & LOOKUP_FOLLOW) || S_ISDIR(inode->i_mode));
807 }
808 
809 /*
810  * Name resolution.
811  * This is the basic name resolution function, turning a pathname into
812  * the final dentry. We expect 'base' to be positive and a directory.
813  *
814  * Returns 0 and nd will have valid dentry and mnt on success.
815  * Returns error and drops reference to input namei data on failure.
816  */
817 static int link_path_walk(const char *name, struct nameidata *nd)
818 {
819 	struct path next;
820 	struct inode *inode;
821 	int err;
822 	unsigned int lookup_flags = nd->flags;
823 
824 	while (*name=='/')
825 		name++;
826 	if (!*name)
827 		goto return_reval;
828 
829 	inode = nd->path.dentry->d_inode;
830 	if (nd->depth)
831 		lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE);
832 
833 	/* At this point we know we have a real path component. */
834 	for(;;) {
835 		unsigned long hash;
836 		struct qstr this;
837 		unsigned int c;
838 
839 		nd->flags |= LOOKUP_CONTINUE;
840 		err = exec_permission(inode);
841  		if (err)
842 			break;
843 
844 		this.name = name;
845 		c = *(const unsigned char *)name;
846 
847 		hash = init_name_hash();
848 		do {
849 			name++;
850 			hash = partial_name_hash(c, hash);
851 			c = *(const unsigned char *)name;
852 		} while (c && (c != '/'));
853 		this.len = name - (const char *) this.name;
854 		this.hash = end_name_hash(hash);
855 
856 		/* remove trailing slashes? */
857 		if (!c)
858 			goto last_component;
859 		while (*++name == '/');
860 		if (!*name)
861 			goto last_with_slashes;
862 
863 		/*
864 		 * "." and ".." are special - ".." especially so because it has
865 		 * to be able to know about the current root directory and
866 		 * parent relationships.
867 		 */
868 		if (this.name[0] == '.') switch (this.len) {
869 			default:
870 				break;
871 			case 2:
872 				if (this.name[1] != '.')
873 					break;
874 				follow_dotdot(nd);
875 				inode = nd->path.dentry->d_inode;
876 				/* fallthrough */
877 			case 1:
878 				continue;
879 		}
880 		/* This does the actual lookups.. */
881 		err = do_lookup(nd, &this, &next);
882 		if (err)
883 			break;
884 
885 		err = -ENOENT;
886 		inode = next.dentry->d_inode;
887 		if (!inode)
888 			goto out_dput;
889 
890 		if (inode->i_op->follow_link) {
891 			err = do_follow_link(&next, nd);
892 			if (err)
893 				goto return_err;
894 			err = -ENOENT;
895 			inode = nd->path.dentry->d_inode;
896 			if (!inode)
897 				break;
898 		} else
899 			path_to_nameidata(&next, nd);
900 		err = -ENOTDIR;
901 		if (!inode->i_op->lookup)
902 			break;
903 		continue;
904 		/* here ends the main loop */
905 
906 last_with_slashes:
907 		lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
908 last_component:
909 		/* Clear LOOKUP_CONTINUE iff it was previously unset */
910 		nd->flags &= lookup_flags | ~LOOKUP_CONTINUE;
911 		if (lookup_flags & LOOKUP_PARENT)
912 			goto lookup_parent;
913 		if (this.name[0] == '.') switch (this.len) {
914 			default:
915 				break;
916 			case 2:
917 				if (this.name[1] != '.')
918 					break;
919 				follow_dotdot(nd);
920 				inode = nd->path.dentry->d_inode;
921 				/* fallthrough */
922 			case 1:
923 				goto return_reval;
924 		}
925 		err = do_lookup(nd, &this, &next);
926 		if (err)
927 			break;
928 		inode = next.dentry->d_inode;
929 		if (follow_on_final(inode, lookup_flags)) {
930 			err = do_follow_link(&next, nd);
931 			if (err)
932 				goto return_err;
933 			inode = nd->path.dentry->d_inode;
934 		} else
935 			path_to_nameidata(&next, nd);
936 		err = -ENOENT;
937 		if (!inode)
938 			break;
939 		if (lookup_flags & LOOKUP_DIRECTORY) {
940 			err = -ENOTDIR;
941 			if (!inode->i_op->lookup)
942 				break;
943 		}
944 		goto return_base;
945 lookup_parent:
946 		nd->last = this;
947 		nd->last_type = LAST_NORM;
948 		if (this.name[0] != '.')
949 			goto return_base;
950 		if (this.len == 1)
951 			nd->last_type = LAST_DOT;
952 		else if (this.len == 2 && this.name[1] == '.')
953 			nd->last_type = LAST_DOTDOT;
954 		else
955 			goto return_base;
956 return_reval:
957 		/*
958 		 * We bypassed the ordinary revalidation routines.
959 		 * We may need to check the cached dentry for staleness.
960 		 */
961 		if (nd->path.dentry && nd->path.dentry->d_sb &&
962 		    (nd->path.dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)) {
963 			err = -ESTALE;
964 			/* Note: we do not d_invalidate() */
965 			if (!nd->path.dentry->d_op->d_revalidate(
966 					nd->path.dentry, nd))
967 				break;
968 		}
969 return_base:
970 		return 0;
971 out_dput:
972 		path_put_conditional(&next, nd);
973 		break;
974 	}
975 	path_put(&nd->path);
976 return_err:
977 	return err;
978 }
979 
980 static int path_walk(const char *name, struct nameidata *nd)
981 {
982 	struct path save = nd->path;
983 	int result;
984 
985 	current->total_link_count = 0;
986 
987 	/* make sure the stuff we saved doesn't go away */
988 	path_get(&save);
989 
990 	result = link_path_walk(name, nd);
991 	if (result == -ESTALE) {
992 		/* nd->path had been dropped */
993 		current->total_link_count = 0;
994 		nd->path = save;
995 		path_get(&nd->path);
996 		nd->flags |= LOOKUP_REVAL;
997 		result = link_path_walk(name, nd);
998 	}
999 
1000 	path_put(&save);
1001 
1002 	return result;
1003 }
1004 
1005 static int path_init(int dfd, const char *name, unsigned int flags, struct nameidata *nd)
1006 {
1007 	int retval = 0;
1008 	int fput_needed;
1009 	struct file *file;
1010 
1011 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
1012 	nd->flags = flags;
1013 	nd->depth = 0;
1014 	nd->root.mnt = NULL;
1015 
1016 	if (*name=='/') {
1017 		set_root(nd);
1018 		nd->path = nd->root;
1019 		path_get(&nd->root);
1020 	} else if (dfd == AT_FDCWD) {
1021 		get_fs_pwd(current->fs, &nd->path);
1022 	} else {
1023 		struct dentry *dentry;
1024 
1025 		file = fget_light(dfd, &fput_needed);
1026 		retval = -EBADF;
1027 		if (!file)
1028 			goto out_fail;
1029 
1030 		dentry = file->f_path.dentry;
1031 
1032 		retval = -ENOTDIR;
1033 		if (!S_ISDIR(dentry->d_inode->i_mode))
1034 			goto fput_fail;
1035 
1036 		retval = file_permission(file, MAY_EXEC);
1037 		if (retval)
1038 			goto fput_fail;
1039 
1040 		nd->path = file->f_path;
1041 		path_get(&file->f_path);
1042 
1043 		fput_light(file, fput_needed);
1044 	}
1045 	return 0;
1046 
1047 fput_fail:
1048 	fput_light(file, fput_needed);
1049 out_fail:
1050 	return retval;
1051 }
1052 
1053 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1054 static int do_path_lookup(int dfd, const char *name,
1055 				unsigned int flags, struct nameidata *nd)
1056 {
1057 	int retval = path_init(dfd, name, flags, nd);
1058 	if (!retval)
1059 		retval = path_walk(name, nd);
1060 	if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1061 				nd->path.dentry->d_inode))
1062 		audit_inode(name, nd->path.dentry);
1063 	if (nd->root.mnt) {
1064 		path_put(&nd->root);
1065 		nd->root.mnt = NULL;
1066 	}
1067 	return retval;
1068 }
1069 
1070 int path_lookup(const char *name, unsigned int flags,
1071 			struct nameidata *nd)
1072 {
1073 	return do_path_lookup(AT_FDCWD, name, flags, nd);
1074 }
1075 
1076 int kern_path(const char *name, unsigned int flags, struct path *path)
1077 {
1078 	struct nameidata nd;
1079 	int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1080 	if (!res)
1081 		*path = nd.path;
1082 	return res;
1083 }
1084 
1085 /**
1086  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1087  * @dentry:  pointer to dentry of the base directory
1088  * @mnt: pointer to vfs mount of the base directory
1089  * @name: pointer to file name
1090  * @flags: lookup flags
1091  * @nd: pointer to nameidata
1092  */
1093 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1094 		    const char *name, unsigned int flags,
1095 		    struct nameidata *nd)
1096 {
1097 	int retval;
1098 
1099 	/* same as do_path_lookup */
1100 	nd->last_type = LAST_ROOT;
1101 	nd->flags = flags;
1102 	nd->depth = 0;
1103 
1104 	nd->path.dentry = dentry;
1105 	nd->path.mnt = mnt;
1106 	path_get(&nd->path);
1107 	nd->root = nd->path;
1108 	path_get(&nd->root);
1109 
1110 	retval = path_walk(name, nd);
1111 	if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1112 				nd->path.dentry->d_inode))
1113 		audit_inode(name, nd->path.dentry);
1114 
1115 	path_put(&nd->root);
1116 	nd->root.mnt = NULL;
1117 
1118 	return retval;
1119 }
1120 
1121 static struct dentry *__lookup_hash(struct qstr *name,
1122 		struct dentry *base, struct nameidata *nd)
1123 {
1124 	struct dentry *dentry;
1125 	struct inode *inode;
1126 	int err;
1127 
1128 	inode = base->d_inode;
1129 
1130 	/*
1131 	 * See if the low-level filesystem might want
1132 	 * to use its own hash..
1133 	 */
1134 	if (base->d_op && base->d_op->d_hash) {
1135 		err = base->d_op->d_hash(base, name);
1136 		dentry = ERR_PTR(err);
1137 		if (err < 0)
1138 			goto out;
1139 	}
1140 
1141 	/*
1142 	 * Don't bother with __d_lookup: callers are for creat as
1143 	 * well as unlink, so a lot of the time it would cost
1144 	 * a double lookup.
1145 	 */
1146 	dentry = d_lookup(base, name);
1147 
1148 	if (dentry && dentry->d_op && dentry->d_op->d_revalidate)
1149 		dentry = do_revalidate(dentry, nd);
1150 
1151 	if (!dentry)
1152 		dentry = d_alloc_and_lookup(base, name, nd);
1153 out:
1154 	return dentry;
1155 }
1156 
1157 /*
1158  * Restricted form of lookup. Doesn't follow links, single-component only,
1159  * needs parent already locked. Doesn't follow mounts.
1160  * SMP-safe.
1161  */
1162 static struct dentry *lookup_hash(struct nameidata *nd)
1163 {
1164 	int err;
1165 
1166 	err = exec_permission(nd->path.dentry->d_inode);
1167 	if (err)
1168 		return ERR_PTR(err);
1169 	return __lookup_hash(&nd->last, nd->path.dentry, nd);
1170 }
1171 
1172 static int __lookup_one_len(const char *name, struct qstr *this,
1173 		struct dentry *base, int len)
1174 {
1175 	unsigned long hash;
1176 	unsigned int c;
1177 
1178 	this->name = name;
1179 	this->len = len;
1180 	if (!len)
1181 		return -EACCES;
1182 
1183 	hash = init_name_hash();
1184 	while (len--) {
1185 		c = *(const unsigned char *)name++;
1186 		if (c == '/' || c == '\0')
1187 			return -EACCES;
1188 		hash = partial_name_hash(c, hash);
1189 	}
1190 	this->hash = end_name_hash(hash);
1191 	return 0;
1192 }
1193 
1194 /**
1195  * lookup_one_len - filesystem helper to lookup single pathname component
1196  * @name:	pathname component to lookup
1197  * @base:	base directory to lookup from
1198  * @len:	maximum length @len should be interpreted to
1199  *
1200  * Note that this routine is purely a helper for filesystem usage and should
1201  * not be called by generic code.  Also note that by using this function the
1202  * nameidata argument is passed to the filesystem methods and a filesystem
1203  * using this helper needs to be prepared for that.
1204  */
1205 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1206 {
1207 	int err;
1208 	struct qstr this;
1209 
1210 	WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1211 
1212 	err = __lookup_one_len(name, &this, base, len);
1213 	if (err)
1214 		return ERR_PTR(err);
1215 
1216 	err = exec_permission(base->d_inode);
1217 	if (err)
1218 		return ERR_PTR(err);
1219 	return __lookup_hash(&this, base, NULL);
1220 }
1221 
1222 int user_path_at(int dfd, const char __user *name, unsigned flags,
1223 		 struct path *path)
1224 {
1225 	struct nameidata nd;
1226 	char *tmp = getname(name);
1227 	int err = PTR_ERR(tmp);
1228 	if (!IS_ERR(tmp)) {
1229 
1230 		BUG_ON(flags & LOOKUP_PARENT);
1231 
1232 		err = do_path_lookup(dfd, tmp, flags, &nd);
1233 		putname(tmp);
1234 		if (!err)
1235 			*path = nd.path;
1236 	}
1237 	return err;
1238 }
1239 
1240 static int user_path_parent(int dfd, const char __user *path,
1241 			struct nameidata *nd, char **name)
1242 {
1243 	char *s = getname(path);
1244 	int error;
1245 
1246 	if (IS_ERR(s))
1247 		return PTR_ERR(s);
1248 
1249 	error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1250 	if (error)
1251 		putname(s);
1252 	else
1253 		*name = s;
1254 
1255 	return error;
1256 }
1257 
1258 /*
1259  * It's inline, so penalty for filesystems that don't use sticky bit is
1260  * minimal.
1261  */
1262 static inline int check_sticky(struct inode *dir, struct inode *inode)
1263 {
1264 	uid_t fsuid = current_fsuid();
1265 
1266 	if (!(dir->i_mode & S_ISVTX))
1267 		return 0;
1268 	if (inode->i_uid == fsuid)
1269 		return 0;
1270 	if (dir->i_uid == fsuid)
1271 		return 0;
1272 	return !capable(CAP_FOWNER);
1273 }
1274 
1275 /*
1276  *	Check whether we can remove a link victim from directory dir, check
1277  *  whether the type of victim is right.
1278  *  1. We can't do it if dir is read-only (done in permission())
1279  *  2. We should have write and exec permissions on dir
1280  *  3. We can't remove anything from append-only dir
1281  *  4. We can't do anything with immutable dir (done in permission())
1282  *  5. If the sticky bit on dir is set we should either
1283  *	a. be owner of dir, or
1284  *	b. be owner of victim, or
1285  *	c. have CAP_FOWNER capability
1286  *  6. If the victim is append-only or immutable we can't do antyhing with
1287  *     links pointing to it.
1288  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1289  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1290  *  9. We can't remove a root or mountpoint.
1291  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1292  *     nfs_async_unlink().
1293  */
1294 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1295 {
1296 	int error;
1297 
1298 	if (!victim->d_inode)
1299 		return -ENOENT;
1300 
1301 	BUG_ON(victim->d_parent->d_inode != dir);
1302 	audit_inode_child(victim, dir);
1303 
1304 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1305 	if (error)
1306 		return error;
1307 	if (IS_APPEND(dir))
1308 		return -EPERM;
1309 	if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1310 	    IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
1311 		return -EPERM;
1312 	if (isdir) {
1313 		if (!S_ISDIR(victim->d_inode->i_mode))
1314 			return -ENOTDIR;
1315 		if (IS_ROOT(victim))
1316 			return -EBUSY;
1317 	} else if (S_ISDIR(victim->d_inode->i_mode))
1318 		return -EISDIR;
1319 	if (IS_DEADDIR(dir))
1320 		return -ENOENT;
1321 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1322 		return -EBUSY;
1323 	return 0;
1324 }
1325 
1326 /*	Check whether we can create an object with dentry child in directory
1327  *  dir.
1328  *  1. We can't do it if child already exists (open has special treatment for
1329  *     this case, but since we are inlined it's OK)
1330  *  2. We can't do it if dir is read-only (done in permission())
1331  *  3. We should have write and exec permissions on dir
1332  *  4. We can't do it if dir is immutable (done in permission())
1333  */
1334 static inline int may_create(struct inode *dir, struct dentry *child)
1335 {
1336 	if (child->d_inode)
1337 		return -EEXIST;
1338 	if (IS_DEADDIR(dir))
1339 		return -ENOENT;
1340 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
1341 }
1342 
1343 /*
1344  * p1 and p2 should be directories on the same fs.
1345  */
1346 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1347 {
1348 	struct dentry *p;
1349 
1350 	if (p1 == p2) {
1351 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1352 		return NULL;
1353 	}
1354 
1355 	mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1356 
1357 	p = d_ancestor(p2, p1);
1358 	if (p) {
1359 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1360 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1361 		return p;
1362 	}
1363 
1364 	p = d_ancestor(p1, p2);
1365 	if (p) {
1366 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1367 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1368 		return p;
1369 	}
1370 
1371 	mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1372 	mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1373 	return NULL;
1374 }
1375 
1376 void unlock_rename(struct dentry *p1, struct dentry *p2)
1377 {
1378 	mutex_unlock(&p1->d_inode->i_mutex);
1379 	if (p1 != p2) {
1380 		mutex_unlock(&p2->d_inode->i_mutex);
1381 		mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1382 	}
1383 }
1384 
1385 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1386 		struct nameidata *nd)
1387 {
1388 	int error = may_create(dir, dentry);
1389 
1390 	if (error)
1391 		return error;
1392 
1393 	if (!dir->i_op->create)
1394 		return -EACCES;	/* shouldn't it be ENOSYS? */
1395 	mode &= S_IALLUGO;
1396 	mode |= S_IFREG;
1397 	error = security_inode_create(dir, dentry, mode);
1398 	if (error)
1399 		return error;
1400 	error = dir->i_op->create(dir, dentry, mode, nd);
1401 	if (!error)
1402 		fsnotify_create(dir, dentry);
1403 	return error;
1404 }
1405 
1406 int may_open(struct path *path, int acc_mode, int flag)
1407 {
1408 	struct dentry *dentry = path->dentry;
1409 	struct inode *inode = dentry->d_inode;
1410 	int error;
1411 
1412 	if (!inode)
1413 		return -ENOENT;
1414 
1415 	switch (inode->i_mode & S_IFMT) {
1416 	case S_IFLNK:
1417 		return -ELOOP;
1418 	case S_IFDIR:
1419 		if (acc_mode & MAY_WRITE)
1420 			return -EISDIR;
1421 		break;
1422 	case S_IFBLK:
1423 	case S_IFCHR:
1424 		if (path->mnt->mnt_flags & MNT_NODEV)
1425 			return -EACCES;
1426 		/*FALLTHRU*/
1427 	case S_IFIFO:
1428 	case S_IFSOCK:
1429 		flag &= ~O_TRUNC;
1430 		break;
1431 	}
1432 
1433 	error = inode_permission(inode, acc_mode);
1434 	if (error)
1435 		return error;
1436 
1437 	/*
1438 	 * An append-only file must be opened in append mode for writing.
1439 	 */
1440 	if (IS_APPEND(inode)) {
1441 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
1442 			return -EPERM;
1443 		if (flag & O_TRUNC)
1444 			return -EPERM;
1445 	}
1446 
1447 	/* O_NOATIME can only be set by the owner or superuser */
1448 	if (flag & O_NOATIME && !is_owner_or_cap(inode))
1449 		return -EPERM;
1450 
1451 	/*
1452 	 * Ensure there are no outstanding leases on the file.
1453 	 */
1454 	return break_lease(inode, flag);
1455 }
1456 
1457 static int handle_truncate(struct path *path)
1458 {
1459 	struct inode *inode = path->dentry->d_inode;
1460 	int error = get_write_access(inode);
1461 	if (error)
1462 		return error;
1463 	/*
1464 	 * Refuse to truncate files with mandatory locks held on them.
1465 	 */
1466 	error = locks_verify_locked(inode);
1467 	if (!error)
1468 		error = security_path_truncate(path);
1469 	if (!error) {
1470 		error = do_truncate(path->dentry, 0,
1471 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
1472 				    NULL);
1473 	}
1474 	put_write_access(inode);
1475 	return error;
1476 }
1477 
1478 /*
1479  * Be careful about ever adding any more callers of this
1480  * function.  Its flags must be in the namei format, not
1481  * what get passed to sys_open().
1482  */
1483 static int __open_namei_create(struct nameidata *nd, struct path *path,
1484 				int open_flag, int mode)
1485 {
1486 	int error;
1487 	struct dentry *dir = nd->path.dentry;
1488 
1489 	if (!IS_POSIXACL(dir->d_inode))
1490 		mode &= ~current_umask();
1491 	error = security_path_mknod(&nd->path, path->dentry, mode, 0);
1492 	if (error)
1493 		goto out_unlock;
1494 	error = vfs_create(dir->d_inode, path->dentry, mode, nd);
1495 out_unlock:
1496 	mutex_unlock(&dir->d_inode->i_mutex);
1497 	dput(nd->path.dentry);
1498 	nd->path.dentry = path->dentry;
1499 	if (error)
1500 		return error;
1501 	/* Don't check for write permission, don't truncate */
1502 	return may_open(&nd->path, 0, open_flag & ~O_TRUNC);
1503 }
1504 
1505 /*
1506  * Note that while the flag value (low two bits) for sys_open means:
1507  *	00 - read-only
1508  *	01 - write-only
1509  *	10 - read-write
1510  *	11 - special
1511  * it is changed into
1512  *	00 - no permissions needed
1513  *	01 - read-permission
1514  *	10 - write-permission
1515  *	11 - read-write
1516  * for the internal routines (ie open_namei()/follow_link() etc)
1517  * This is more logical, and also allows the 00 "no perm needed"
1518  * to be used for symlinks (where the permissions are checked
1519  * later).
1520  *
1521 */
1522 static inline int open_to_namei_flags(int flag)
1523 {
1524 	if ((flag+1) & O_ACCMODE)
1525 		flag++;
1526 	return flag;
1527 }
1528 
1529 static int open_will_truncate(int flag, struct inode *inode)
1530 {
1531 	/*
1532 	 * We'll never write to the fs underlying
1533 	 * a device file.
1534 	 */
1535 	if (special_file(inode->i_mode))
1536 		return 0;
1537 	return (flag & O_TRUNC);
1538 }
1539 
1540 static struct file *finish_open(struct nameidata *nd,
1541 				int open_flag, int acc_mode)
1542 {
1543 	struct file *filp;
1544 	int will_truncate;
1545 	int error;
1546 
1547 	will_truncate = open_will_truncate(open_flag, nd->path.dentry->d_inode);
1548 	if (will_truncate) {
1549 		error = mnt_want_write(nd->path.mnt);
1550 		if (error)
1551 			goto exit;
1552 	}
1553 	error = may_open(&nd->path, acc_mode, open_flag);
1554 	if (error) {
1555 		if (will_truncate)
1556 			mnt_drop_write(nd->path.mnt);
1557 		goto exit;
1558 	}
1559 	filp = nameidata_to_filp(nd);
1560 	if (!IS_ERR(filp)) {
1561 		error = ima_file_check(filp, acc_mode);
1562 		if (error) {
1563 			fput(filp);
1564 			filp = ERR_PTR(error);
1565 		}
1566 	}
1567 	if (!IS_ERR(filp)) {
1568 		if (will_truncate) {
1569 			error = handle_truncate(&nd->path);
1570 			if (error) {
1571 				fput(filp);
1572 				filp = ERR_PTR(error);
1573 			}
1574 		}
1575 	}
1576 	/*
1577 	 * It is now safe to drop the mnt write
1578 	 * because the filp has had a write taken
1579 	 * on its behalf.
1580 	 */
1581 	if (will_truncate)
1582 		mnt_drop_write(nd->path.mnt);
1583 	return filp;
1584 
1585 exit:
1586 	if (!IS_ERR(nd->intent.open.file))
1587 		release_open_intent(nd);
1588 	path_put(&nd->path);
1589 	return ERR_PTR(error);
1590 }
1591 
1592 static struct file *do_last(struct nameidata *nd, struct path *path,
1593 			    int open_flag, int acc_mode,
1594 			    int mode, const char *pathname)
1595 {
1596 	struct dentry *dir = nd->path.dentry;
1597 	struct file *filp;
1598 	int error = -EISDIR;
1599 
1600 	switch (nd->last_type) {
1601 	case LAST_DOTDOT:
1602 		follow_dotdot(nd);
1603 		dir = nd->path.dentry;
1604 	case LAST_DOT:
1605 		if (nd->path.mnt->mnt_sb->s_type->fs_flags & FS_REVAL_DOT) {
1606 			if (!dir->d_op->d_revalidate(dir, nd)) {
1607 				error = -ESTALE;
1608 				goto exit;
1609 			}
1610 		}
1611 		/* fallthrough */
1612 	case LAST_ROOT:
1613 		if (open_flag & O_CREAT)
1614 			goto exit;
1615 		/* fallthrough */
1616 	case LAST_BIND:
1617 		audit_inode(pathname, dir);
1618 		goto ok;
1619 	}
1620 
1621 	/* trailing slashes? */
1622 	if (nd->last.name[nd->last.len]) {
1623 		if (open_flag & O_CREAT)
1624 			goto exit;
1625 		nd->flags |= LOOKUP_DIRECTORY | LOOKUP_FOLLOW;
1626 	}
1627 
1628 	/* just plain open? */
1629 	if (!(open_flag & O_CREAT)) {
1630 		error = do_lookup(nd, &nd->last, path);
1631 		if (error)
1632 			goto exit;
1633 		error = -ENOENT;
1634 		if (!path->dentry->d_inode)
1635 			goto exit_dput;
1636 		if (path->dentry->d_inode->i_op->follow_link)
1637 			return NULL;
1638 		error = -ENOTDIR;
1639 		if (nd->flags & LOOKUP_DIRECTORY) {
1640 			if (!path->dentry->d_inode->i_op->lookup)
1641 				goto exit_dput;
1642 		}
1643 		path_to_nameidata(path, nd);
1644 		audit_inode(pathname, nd->path.dentry);
1645 		goto ok;
1646 	}
1647 
1648 	/* OK, it's O_CREAT */
1649 	mutex_lock(&dir->d_inode->i_mutex);
1650 
1651 	path->dentry = lookup_hash(nd);
1652 	path->mnt = nd->path.mnt;
1653 
1654 	error = PTR_ERR(path->dentry);
1655 	if (IS_ERR(path->dentry)) {
1656 		mutex_unlock(&dir->d_inode->i_mutex);
1657 		goto exit;
1658 	}
1659 
1660 	if (IS_ERR(nd->intent.open.file)) {
1661 		error = PTR_ERR(nd->intent.open.file);
1662 		goto exit_mutex_unlock;
1663 	}
1664 
1665 	/* Negative dentry, just create the file */
1666 	if (!path->dentry->d_inode) {
1667 		/*
1668 		 * This write is needed to ensure that a
1669 		 * ro->rw transition does not occur between
1670 		 * the time when the file is created and when
1671 		 * a permanent write count is taken through
1672 		 * the 'struct file' in nameidata_to_filp().
1673 		 */
1674 		error = mnt_want_write(nd->path.mnt);
1675 		if (error)
1676 			goto exit_mutex_unlock;
1677 		error = __open_namei_create(nd, path, open_flag, mode);
1678 		if (error) {
1679 			mnt_drop_write(nd->path.mnt);
1680 			goto exit;
1681 		}
1682 		filp = nameidata_to_filp(nd);
1683 		mnt_drop_write(nd->path.mnt);
1684 		if (!IS_ERR(filp)) {
1685 			error = ima_file_check(filp, acc_mode);
1686 			if (error) {
1687 				fput(filp);
1688 				filp = ERR_PTR(error);
1689 			}
1690 		}
1691 		return filp;
1692 	}
1693 
1694 	/*
1695 	 * It already exists.
1696 	 */
1697 	mutex_unlock(&dir->d_inode->i_mutex);
1698 	audit_inode(pathname, path->dentry);
1699 
1700 	error = -EEXIST;
1701 	if (open_flag & O_EXCL)
1702 		goto exit_dput;
1703 
1704 	if (__follow_mount(path)) {
1705 		error = -ELOOP;
1706 		if (open_flag & O_NOFOLLOW)
1707 			goto exit_dput;
1708 	}
1709 
1710 	error = -ENOENT;
1711 	if (!path->dentry->d_inode)
1712 		goto exit_dput;
1713 
1714 	if (path->dentry->d_inode->i_op->follow_link)
1715 		return NULL;
1716 
1717 	path_to_nameidata(path, nd);
1718 	error = -EISDIR;
1719 	if (S_ISDIR(path->dentry->d_inode->i_mode))
1720 		goto exit;
1721 ok:
1722 	filp = finish_open(nd, open_flag, acc_mode);
1723 	return filp;
1724 
1725 exit_mutex_unlock:
1726 	mutex_unlock(&dir->d_inode->i_mutex);
1727 exit_dput:
1728 	path_put_conditional(path, nd);
1729 exit:
1730 	if (!IS_ERR(nd->intent.open.file))
1731 		release_open_intent(nd);
1732 	path_put(&nd->path);
1733 	return ERR_PTR(error);
1734 }
1735 
1736 /*
1737  * Note that the low bits of the passed in "open_flag"
1738  * are not the same as in the local variable "flag". See
1739  * open_to_namei_flags() for more details.
1740  */
1741 struct file *do_filp_open(int dfd, const char *pathname,
1742 		int open_flag, int mode, int acc_mode)
1743 {
1744 	struct file *filp;
1745 	struct nameidata nd;
1746 	int error;
1747 	struct path path;
1748 	int count = 0;
1749 	int flag = open_to_namei_flags(open_flag);
1750 	int force_reval = 0;
1751 
1752 	if (!(open_flag & O_CREAT))
1753 		mode = 0;
1754 
1755 	/*
1756 	 * O_SYNC is implemented as __O_SYNC|O_DSYNC.  As many places only
1757 	 * check for O_DSYNC if the need any syncing at all we enforce it's
1758 	 * always set instead of having to deal with possibly weird behaviour
1759 	 * for malicious applications setting only __O_SYNC.
1760 	 */
1761 	if (open_flag & __O_SYNC)
1762 		open_flag |= O_DSYNC;
1763 
1764 	if (!acc_mode)
1765 		acc_mode = MAY_OPEN | ACC_MODE(open_flag);
1766 
1767 	/* O_TRUNC implies we need access checks for write permissions */
1768 	if (open_flag & O_TRUNC)
1769 		acc_mode |= MAY_WRITE;
1770 
1771 	/* Allow the LSM permission hook to distinguish append
1772 	   access from general write access. */
1773 	if (open_flag & O_APPEND)
1774 		acc_mode |= MAY_APPEND;
1775 
1776 	/* find the parent */
1777 reval:
1778 	error = path_init(dfd, pathname, LOOKUP_PARENT, &nd);
1779 	if (error)
1780 		return ERR_PTR(error);
1781 	if (force_reval)
1782 		nd.flags |= LOOKUP_REVAL;
1783 
1784 	current->total_link_count = 0;
1785 	error = link_path_walk(pathname, &nd);
1786 	if (error) {
1787 		filp = ERR_PTR(error);
1788 		goto out;
1789 	}
1790 	if (unlikely(!audit_dummy_context()) && (open_flag & O_CREAT))
1791 		audit_inode(pathname, nd.path.dentry);
1792 
1793 	/*
1794 	 * We have the parent and last component.
1795 	 */
1796 
1797 	error = -ENFILE;
1798 	filp = get_empty_filp();
1799 	if (filp == NULL)
1800 		goto exit_parent;
1801 	nd.intent.open.file = filp;
1802 	filp->f_flags = open_flag;
1803 	nd.intent.open.flags = flag;
1804 	nd.intent.open.create_mode = mode;
1805 	nd.flags &= ~LOOKUP_PARENT;
1806 	nd.flags |= LOOKUP_OPEN;
1807 	if (open_flag & O_CREAT) {
1808 		nd.flags |= LOOKUP_CREATE;
1809 		if (open_flag & O_EXCL)
1810 			nd.flags |= LOOKUP_EXCL;
1811 	}
1812 	if (open_flag & O_DIRECTORY)
1813 		nd.flags |= LOOKUP_DIRECTORY;
1814 	if (!(open_flag & O_NOFOLLOW))
1815 		nd.flags |= LOOKUP_FOLLOW;
1816 	filp = do_last(&nd, &path, open_flag, acc_mode, mode, pathname);
1817 	while (unlikely(!filp)) { /* trailing symlink */
1818 		struct path holder;
1819 		struct inode *inode = path.dentry->d_inode;
1820 		void *cookie;
1821 		error = -ELOOP;
1822 		/* S_ISDIR part is a temporary automount kludge */
1823 		if (!(nd.flags & LOOKUP_FOLLOW) && !S_ISDIR(inode->i_mode))
1824 			goto exit_dput;
1825 		if (count++ == 32)
1826 			goto exit_dput;
1827 		/*
1828 		 * This is subtle. Instead of calling do_follow_link() we do
1829 		 * the thing by hands. The reason is that this way we have zero
1830 		 * link_count and path_walk() (called from ->follow_link)
1831 		 * honoring LOOKUP_PARENT.  After that we have the parent and
1832 		 * last component, i.e. we are in the same situation as after
1833 		 * the first path_walk().  Well, almost - if the last component
1834 		 * is normal we get its copy stored in nd->last.name and we will
1835 		 * have to putname() it when we are done. Procfs-like symlinks
1836 		 * just set LAST_BIND.
1837 		 */
1838 		nd.flags |= LOOKUP_PARENT;
1839 		error = security_inode_follow_link(path.dentry, &nd);
1840 		if (error)
1841 			goto exit_dput;
1842 		error = __do_follow_link(&path, &nd, &cookie);
1843 		if (unlikely(error)) {
1844 			/* nd.path had been dropped */
1845 			if (!IS_ERR(cookie) && inode->i_op->put_link)
1846 				inode->i_op->put_link(path.dentry, &nd, cookie);
1847 			path_put(&path);
1848 			release_open_intent(&nd);
1849 			filp = ERR_PTR(error);
1850 			goto out;
1851 		}
1852 		holder = path;
1853 		nd.flags &= ~LOOKUP_PARENT;
1854 		filp = do_last(&nd, &path, open_flag, acc_mode, mode, pathname);
1855 		if (inode->i_op->put_link)
1856 			inode->i_op->put_link(holder.dentry, &nd, cookie);
1857 		path_put(&holder);
1858 	}
1859 out:
1860 	if (nd.root.mnt)
1861 		path_put(&nd.root);
1862 	if (filp == ERR_PTR(-ESTALE) && !force_reval) {
1863 		force_reval = 1;
1864 		goto reval;
1865 	}
1866 	return filp;
1867 
1868 exit_dput:
1869 	path_put_conditional(&path, &nd);
1870 	if (!IS_ERR(nd.intent.open.file))
1871 		release_open_intent(&nd);
1872 exit_parent:
1873 	path_put(&nd.path);
1874 	filp = ERR_PTR(error);
1875 	goto out;
1876 }
1877 
1878 /**
1879  * filp_open - open file and return file pointer
1880  *
1881  * @filename:	path to open
1882  * @flags:	open flags as per the open(2) second argument
1883  * @mode:	mode for the new file if O_CREAT is set, else ignored
1884  *
1885  * This is the helper to open a file from kernelspace if you really
1886  * have to.  But in generally you should not do this, so please move
1887  * along, nothing to see here..
1888  */
1889 struct file *filp_open(const char *filename, int flags, int mode)
1890 {
1891 	return do_filp_open(AT_FDCWD, filename, flags, mode, 0);
1892 }
1893 EXPORT_SYMBOL(filp_open);
1894 
1895 /**
1896  * lookup_create - lookup a dentry, creating it if it doesn't exist
1897  * @nd: nameidata info
1898  * @is_dir: directory flag
1899  *
1900  * Simple function to lookup and return a dentry and create it
1901  * if it doesn't exist.  Is SMP-safe.
1902  *
1903  * Returns with nd->path.dentry->d_inode->i_mutex locked.
1904  */
1905 struct dentry *lookup_create(struct nameidata *nd, int is_dir)
1906 {
1907 	struct dentry *dentry = ERR_PTR(-EEXIST);
1908 
1909 	mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
1910 	/*
1911 	 * Yucky last component or no last component at all?
1912 	 * (foo/., foo/.., /////)
1913 	 */
1914 	if (nd->last_type != LAST_NORM)
1915 		goto fail;
1916 	nd->flags &= ~LOOKUP_PARENT;
1917 	nd->flags |= LOOKUP_CREATE | LOOKUP_EXCL;
1918 	nd->intent.open.flags = O_EXCL;
1919 
1920 	/*
1921 	 * Do the final lookup.
1922 	 */
1923 	dentry = lookup_hash(nd);
1924 	if (IS_ERR(dentry))
1925 		goto fail;
1926 
1927 	if (dentry->d_inode)
1928 		goto eexist;
1929 	/*
1930 	 * Special case - lookup gave negative, but... we had foo/bar/
1931 	 * From the vfs_mknod() POV we just have a negative dentry -
1932 	 * all is fine. Let's be bastards - you had / on the end, you've
1933 	 * been asking for (non-existent) directory. -ENOENT for you.
1934 	 */
1935 	if (unlikely(!is_dir && nd->last.name[nd->last.len])) {
1936 		dput(dentry);
1937 		dentry = ERR_PTR(-ENOENT);
1938 	}
1939 	return dentry;
1940 eexist:
1941 	dput(dentry);
1942 	dentry = ERR_PTR(-EEXIST);
1943 fail:
1944 	return dentry;
1945 }
1946 EXPORT_SYMBOL_GPL(lookup_create);
1947 
1948 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1949 {
1950 	int error = may_create(dir, dentry);
1951 
1952 	if (error)
1953 		return error;
1954 
1955 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
1956 		return -EPERM;
1957 
1958 	if (!dir->i_op->mknod)
1959 		return -EPERM;
1960 
1961 	error = devcgroup_inode_mknod(mode, dev);
1962 	if (error)
1963 		return error;
1964 
1965 	error = security_inode_mknod(dir, dentry, mode, dev);
1966 	if (error)
1967 		return error;
1968 
1969 	error = dir->i_op->mknod(dir, dentry, mode, dev);
1970 	if (!error)
1971 		fsnotify_create(dir, dentry);
1972 	return error;
1973 }
1974 
1975 static int may_mknod(mode_t mode)
1976 {
1977 	switch (mode & S_IFMT) {
1978 	case S_IFREG:
1979 	case S_IFCHR:
1980 	case S_IFBLK:
1981 	case S_IFIFO:
1982 	case S_IFSOCK:
1983 	case 0: /* zero mode translates to S_IFREG */
1984 		return 0;
1985 	case S_IFDIR:
1986 		return -EPERM;
1987 	default:
1988 		return -EINVAL;
1989 	}
1990 }
1991 
1992 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode,
1993 		unsigned, dev)
1994 {
1995 	int error;
1996 	char *tmp;
1997 	struct dentry *dentry;
1998 	struct nameidata nd;
1999 
2000 	if (S_ISDIR(mode))
2001 		return -EPERM;
2002 
2003 	error = user_path_parent(dfd, filename, &nd, &tmp);
2004 	if (error)
2005 		return error;
2006 
2007 	dentry = lookup_create(&nd, 0);
2008 	if (IS_ERR(dentry)) {
2009 		error = PTR_ERR(dentry);
2010 		goto out_unlock;
2011 	}
2012 	if (!IS_POSIXACL(nd.path.dentry->d_inode))
2013 		mode &= ~current_umask();
2014 	error = may_mknod(mode);
2015 	if (error)
2016 		goto out_dput;
2017 	error = mnt_want_write(nd.path.mnt);
2018 	if (error)
2019 		goto out_dput;
2020 	error = security_path_mknod(&nd.path, dentry, mode, dev);
2021 	if (error)
2022 		goto out_drop_write;
2023 	switch (mode & S_IFMT) {
2024 		case 0: case S_IFREG:
2025 			error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd);
2026 			break;
2027 		case S_IFCHR: case S_IFBLK:
2028 			error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,
2029 					new_decode_dev(dev));
2030 			break;
2031 		case S_IFIFO: case S_IFSOCK:
2032 			error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0);
2033 			break;
2034 	}
2035 out_drop_write:
2036 	mnt_drop_write(nd.path.mnt);
2037 out_dput:
2038 	dput(dentry);
2039 out_unlock:
2040 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2041 	path_put(&nd.path);
2042 	putname(tmp);
2043 
2044 	return error;
2045 }
2046 
2047 SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev)
2048 {
2049 	return sys_mknodat(AT_FDCWD, filename, mode, dev);
2050 }
2051 
2052 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2053 {
2054 	int error = may_create(dir, dentry);
2055 
2056 	if (error)
2057 		return error;
2058 
2059 	if (!dir->i_op->mkdir)
2060 		return -EPERM;
2061 
2062 	mode &= (S_IRWXUGO|S_ISVTX);
2063 	error = security_inode_mkdir(dir, dentry, mode);
2064 	if (error)
2065 		return error;
2066 
2067 	error = dir->i_op->mkdir(dir, dentry, mode);
2068 	if (!error)
2069 		fsnotify_mkdir(dir, dentry);
2070 	return error;
2071 }
2072 
2073 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode)
2074 {
2075 	int error = 0;
2076 	char * tmp;
2077 	struct dentry *dentry;
2078 	struct nameidata nd;
2079 
2080 	error = user_path_parent(dfd, pathname, &nd, &tmp);
2081 	if (error)
2082 		goto out_err;
2083 
2084 	dentry = lookup_create(&nd, 1);
2085 	error = PTR_ERR(dentry);
2086 	if (IS_ERR(dentry))
2087 		goto out_unlock;
2088 
2089 	if (!IS_POSIXACL(nd.path.dentry->d_inode))
2090 		mode &= ~current_umask();
2091 	error = mnt_want_write(nd.path.mnt);
2092 	if (error)
2093 		goto out_dput;
2094 	error = security_path_mkdir(&nd.path, dentry, mode);
2095 	if (error)
2096 		goto out_drop_write;
2097 	error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode);
2098 out_drop_write:
2099 	mnt_drop_write(nd.path.mnt);
2100 out_dput:
2101 	dput(dentry);
2102 out_unlock:
2103 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2104 	path_put(&nd.path);
2105 	putname(tmp);
2106 out_err:
2107 	return error;
2108 }
2109 
2110 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode)
2111 {
2112 	return sys_mkdirat(AT_FDCWD, pathname, mode);
2113 }
2114 
2115 /*
2116  * We try to drop the dentry early: we should have
2117  * a usage count of 2 if we're the only user of this
2118  * dentry, and if that is true (possibly after pruning
2119  * the dcache), then we drop the dentry now.
2120  *
2121  * A low-level filesystem can, if it choses, legally
2122  * do a
2123  *
2124  *	if (!d_unhashed(dentry))
2125  *		return -EBUSY;
2126  *
2127  * if it cannot handle the case of removing a directory
2128  * that is still in use by something else..
2129  */
2130 void dentry_unhash(struct dentry *dentry)
2131 {
2132 	dget(dentry);
2133 	shrink_dcache_parent(dentry);
2134 	spin_lock(&dcache_lock);
2135 	spin_lock(&dentry->d_lock);
2136 	if (atomic_read(&dentry->d_count) == 2)
2137 		__d_drop(dentry);
2138 	spin_unlock(&dentry->d_lock);
2139 	spin_unlock(&dcache_lock);
2140 }
2141 
2142 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2143 {
2144 	int error = may_delete(dir, dentry, 1);
2145 
2146 	if (error)
2147 		return error;
2148 
2149 	if (!dir->i_op->rmdir)
2150 		return -EPERM;
2151 
2152 	mutex_lock(&dentry->d_inode->i_mutex);
2153 	dentry_unhash(dentry);
2154 	if (d_mountpoint(dentry))
2155 		error = -EBUSY;
2156 	else {
2157 		error = security_inode_rmdir(dir, dentry);
2158 		if (!error) {
2159 			error = dir->i_op->rmdir(dir, dentry);
2160 			if (!error) {
2161 				dentry->d_inode->i_flags |= S_DEAD;
2162 				dont_mount(dentry);
2163 			}
2164 		}
2165 	}
2166 	mutex_unlock(&dentry->d_inode->i_mutex);
2167 	if (!error) {
2168 		d_delete(dentry);
2169 	}
2170 	dput(dentry);
2171 
2172 	return error;
2173 }
2174 
2175 static long do_rmdir(int dfd, const char __user *pathname)
2176 {
2177 	int error = 0;
2178 	char * name;
2179 	struct dentry *dentry;
2180 	struct nameidata nd;
2181 
2182 	error = user_path_parent(dfd, pathname, &nd, &name);
2183 	if (error)
2184 		return error;
2185 
2186 	switch(nd.last_type) {
2187 	case LAST_DOTDOT:
2188 		error = -ENOTEMPTY;
2189 		goto exit1;
2190 	case LAST_DOT:
2191 		error = -EINVAL;
2192 		goto exit1;
2193 	case LAST_ROOT:
2194 		error = -EBUSY;
2195 		goto exit1;
2196 	}
2197 
2198 	nd.flags &= ~LOOKUP_PARENT;
2199 
2200 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2201 	dentry = lookup_hash(&nd);
2202 	error = PTR_ERR(dentry);
2203 	if (IS_ERR(dentry))
2204 		goto exit2;
2205 	error = mnt_want_write(nd.path.mnt);
2206 	if (error)
2207 		goto exit3;
2208 	error = security_path_rmdir(&nd.path, dentry);
2209 	if (error)
2210 		goto exit4;
2211 	error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2212 exit4:
2213 	mnt_drop_write(nd.path.mnt);
2214 exit3:
2215 	dput(dentry);
2216 exit2:
2217 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2218 exit1:
2219 	path_put(&nd.path);
2220 	putname(name);
2221 	return error;
2222 }
2223 
2224 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2225 {
2226 	return do_rmdir(AT_FDCWD, pathname);
2227 }
2228 
2229 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2230 {
2231 	int error = may_delete(dir, dentry, 0);
2232 
2233 	if (error)
2234 		return error;
2235 
2236 	if (!dir->i_op->unlink)
2237 		return -EPERM;
2238 
2239 	mutex_lock(&dentry->d_inode->i_mutex);
2240 	if (d_mountpoint(dentry))
2241 		error = -EBUSY;
2242 	else {
2243 		error = security_inode_unlink(dir, dentry);
2244 		if (!error) {
2245 			error = dir->i_op->unlink(dir, dentry);
2246 			if (!error)
2247 				dont_mount(dentry);
2248 		}
2249 	}
2250 	mutex_unlock(&dentry->d_inode->i_mutex);
2251 
2252 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
2253 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2254 		fsnotify_link_count(dentry->d_inode);
2255 		d_delete(dentry);
2256 	}
2257 
2258 	return error;
2259 }
2260 
2261 /*
2262  * Make sure that the actual truncation of the file will occur outside its
2263  * directory's i_mutex.  Truncate can take a long time if there is a lot of
2264  * writeout happening, and we don't want to prevent access to the directory
2265  * while waiting on the I/O.
2266  */
2267 static long do_unlinkat(int dfd, const char __user *pathname)
2268 {
2269 	int error;
2270 	char *name;
2271 	struct dentry *dentry;
2272 	struct nameidata nd;
2273 	struct inode *inode = NULL;
2274 
2275 	error = user_path_parent(dfd, pathname, &nd, &name);
2276 	if (error)
2277 		return error;
2278 
2279 	error = -EISDIR;
2280 	if (nd.last_type != LAST_NORM)
2281 		goto exit1;
2282 
2283 	nd.flags &= ~LOOKUP_PARENT;
2284 
2285 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2286 	dentry = lookup_hash(&nd);
2287 	error = PTR_ERR(dentry);
2288 	if (!IS_ERR(dentry)) {
2289 		/* Why not before? Because we want correct error value */
2290 		if (nd.last.name[nd.last.len])
2291 			goto slashes;
2292 		inode = dentry->d_inode;
2293 		if (inode)
2294 			atomic_inc(&inode->i_count);
2295 		error = mnt_want_write(nd.path.mnt);
2296 		if (error)
2297 			goto exit2;
2298 		error = security_path_unlink(&nd.path, dentry);
2299 		if (error)
2300 			goto exit3;
2301 		error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2302 exit3:
2303 		mnt_drop_write(nd.path.mnt);
2304 	exit2:
2305 		dput(dentry);
2306 	}
2307 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2308 	if (inode)
2309 		iput(inode);	/* truncate the inode here */
2310 exit1:
2311 	path_put(&nd.path);
2312 	putname(name);
2313 	return error;
2314 
2315 slashes:
2316 	error = !dentry->d_inode ? -ENOENT :
2317 		S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2318 	goto exit2;
2319 }
2320 
2321 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
2322 {
2323 	if ((flag & ~AT_REMOVEDIR) != 0)
2324 		return -EINVAL;
2325 
2326 	if (flag & AT_REMOVEDIR)
2327 		return do_rmdir(dfd, pathname);
2328 
2329 	return do_unlinkat(dfd, pathname);
2330 }
2331 
2332 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
2333 {
2334 	return do_unlinkat(AT_FDCWD, pathname);
2335 }
2336 
2337 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2338 {
2339 	int error = may_create(dir, dentry);
2340 
2341 	if (error)
2342 		return error;
2343 
2344 	if (!dir->i_op->symlink)
2345 		return -EPERM;
2346 
2347 	error = security_inode_symlink(dir, dentry, oldname);
2348 	if (error)
2349 		return error;
2350 
2351 	error = dir->i_op->symlink(dir, dentry, oldname);
2352 	if (!error)
2353 		fsnotify_create(dir, dentry);
2354 	return error;
2355 }
2356 
2357 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
2358 		int, newdfd, const char __user *, newname)
2359 {
2360 	int error;
2361 	char *from;
2362 	char *to;
2363 	struct dentry *dentry;
2364 	struct nameidata nd;
2365 
2366 	from = getname(oldname);
2367 	if (IS_ERR(from))
2368 		return PTR_ERR(from);
2369 
2370 	error = user_path_parent(newdfd, newname, &nd, &to);
2371 	if (error)
2372 		goto out_putname;
2373 
2374 	dentry = lookup_create(&nd, 0);
2375 	error = PTR_ERR(dentry);
2376 	if (IS_ERR(dentry))
2377 		goto out_unlock;
2378 
2379 	error = mnt_want_write(nd.path.mnt);
2380 	if (error)
2381 		goto out_dput;
2382 	error = security_path_symlink(&nd.path, dentry, from);
2383 	if (error)
2384 		goto out_drop_write;
2385 	error = vfs_symlink(nd.path.dentry->d_inode, dentry, from);
2386 out_drop_write:
2387 	mnt_drop_write(nd.path.mnt);
2388 out_dput:
2389 	dput(dentry);
2390 out_unlock:
2391 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2392 	path_put(&nd.path);
2393 	putname(to);
2394 out_putname:
2395 	putname(from);
2396 	return error;
2397 }
2398 
2399 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
2400 {
2401 	return sys_symlinkat(oldname, AT_FDCWD, newname);
2402 }
2403 
2404 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2405 {
2406 	struct inode *inode = old_dentry->d_inode;
2407 	int error;
2408 
2409 	if (!inode)
2410 		return -ENOENT;
2411 
2412 	error = may_create(dir, new_dentry);
2413 	if (error)
2414 		return error;
2415 
2416 	if (dir->i_sb != inode->i_sb)
2417 		return -EXDEV;
2418 
2419 	/*
2420 	 * A link to an append-only or immutable file cannot be created.
2421 	 */
2422 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2423 		return -EPERM;
2424 	if (!dir->i_op->link)
2425 		return -EPERM;
2426 	if (S_ISDIR(inode->i_mode))
2427 		return -EPERM;
2428 
2429 	error = security_inode_link(old_dentry, dir, new_dentry);
2430 	if (error)
2431 		return error;
2432 
2433 	mutex_lock(&inode->i_mutex);
2434 	error = dir->i_op->link(old_dentry, dir, new_dentry);
2435 	mutex_unlock(&inode->i_mutex);
2436 	if (!error)
2437 		fsnotify_link(dir, inode, new_dentry);
2438 	return error;
2439 }
2440 
2441 /*
2442  * Hardlinks are often used in delicate situations.  We avoid
2443  * security-related surprises by not following symlinks on the
2444  * newname.  --KAB
2445  *
2446  * We don't follow them on the oldname either to be compatible
2447  * with linux 2.0, and to avoid hard-linking to directories
2448  * and other special files.  --ADM
2449  */
2450 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
2451 		int, newdfd, const char __user *, newname, int, flags)
2452 {
2453 	struct dentry *new_dentry;
2454 	struct nameidata nd;
2455 	struct path old_path;
2456 	int error;
2457 	char *to;
2458 
2459 	if ((flags & ~AT_SYMLINK_FOLLOW) != 0)
2460 		return -EINVAL;
2461 
2462 	error = user_path_at(olddfd, oldname,
2463 			     flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0,
2464 			     &old_path);
2465 	if (error)
2466 		return error;
2467 
2468 	error = user_path_parent(newdfd, newname, &nd, &to);
2469 	if (error)
2470 		goto out;
2471 	error = -EXDEV;
2472 	if (old_path.mnt != nd.path.mnt)
2473 		goto out_release;
2474 	new_dentry = lookup_create(&nd, 0);
2475 	error = PTR_ERR(new_dentry);
2476 	if (IS_ERR(new_dentry))
2477 		goto out_unlock;
2478 	error = mnt_want_write(nd.path.mnt);
2479 	if (error)
2480 		goto out_dput;
2481 	error = security_path_link(old_path.dentry, &nd.path, new_dentry);
2482 	if (error)
2483 		goto out_drop_write;
2484 	error = vfs_link(old_path.dentry, nd.path.dentry->d_inode, new_dentry);
2485 out_drop_write:
2486 	mnt_drop_write(nd.path.mnt);
2487 out_dput:
2488 	dput(new_dentry);
2489 out_unlock:
2490 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2491 out_release:
2492 	path_put(&nd.path);
2493 	putname(to);
2494 out:
2495 	path_put(&old_path);
2496 
2497 	return error;
2498 }
2499 
2500 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
2501 {
2502 	return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
2503 }
2504 
2505 /*
2506  * The worst of all namespace operations - renaming directory. "Perverted"
2507  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
2508  * Problems:
2509  *	a) we can get into loop creation. Check is done in is_subdir().
2510  *	b) race potential - two innocent renames can create a loop together.
2511  *	   That's where 4.4 screws up. Current fix: serialization on
2512  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
2513  *	   story.
2514  *	c) we have to lock _three_ objects - parents and victim (if it exists).
2515  *	   And that - after we got ->i_mutex on parents (until then we don't know
2516  *	   whether the target exists).  Solution: try to be smart with locking
2517  *	   order for inodes.  We rely on the fact that tree topology may change
2518  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
2519  *	   move will be locked.  Thus we can rank directories by the tree
2520  *	   (ancestors first) and rank all non-directories after them.
2521  *	   That works since everybody except rename does "lock parent, lookup,
2522  *	   lock child" and rename is under ->s_vfs_rename_mutex.
2523  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
2524  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
2525  *	   we'd better make sure that there's no link(2) for them.
2526  *	d) some filesystems don't support opened-but-unlinked directories,
2527  *	   either because of layout or because they are not ready to deal with
2528  *	   all cases correctly. The latter will be fixed (taking this sort of
2529  *	   stuff into VFS), but the former is not going away. Solution: the same
2530  *	   trick as in rmdir().
2531  *	e) conversion from fhandle to dentry may come in the wrong moment - when
2532  *	   we are removing the target. Solution: we will have to grab ->i_mutex
2533  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
2534  *	   ->i_mutex on parents, which works but leads to some truly excessive
2535  *	   locking].
2536  */
2537 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
2538 			  struct inode *new_dir, struct dentry *new_dentry)
2539 {
2540 	int error = 0;
2541 	struct inode *target;
2542 
2543 	/*
2544 	 * If we are going to change the parent - check write permissions,
2545 	 * we'll need to flip '..'.
2546 	 */
2547 	if (new_dir != old_dir) {
2548 		error = inode_permission(old_dentry->d_inode, MAY_WRITE);
2549 		if (error)
2550 			return error;
2551 	}
2552 
2553 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2554 	if (error)
2555 		return error;
2556 
2557 	target = new_dentry->d_inode;
2558 	if (target)
2559 		mutex_lock(&target->i_mutex);
2560 	if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2561 		error = -EBUSY;
2562 	else {
2563 		if (target)
2564 			dentry_unhash(new_dentry);
2565 		error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2566 	}
2567 	if (target) {
2568 		if (!error) {
2569 			target->i_flags |= S_DEAD;
2570 			dont_mount(new_dentry);
2571 		}
2572 		mutex_unlock(&target->i_mutex);
2573 		if (d_unhashed(new_dentry))
2574 			d_rehash(new_dentry);
2575 		dput(new_dentry);
2576 	}
2577 	if (!error)
2578 		if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2579 			d_move(old_dentry,new_dentry);
2580 	return error;
2581 }
2582 
2583 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
2584 			    struct inode *new_dir, struct dentry *new_dentry)
2585 {
2586 	struct inode *target;
2587 	int error;
2588 
2589 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2590 	if (error)
2591 		return error;
2592 
2593 	dget(new_dentry);
2594 	target = new_dentry->d_inode;
2595 	if (target)
2596 		mutex_lock(&target->i_mutex);
2597 	if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2598 		error = -EBUSY;
2599 	else
2600 		error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2601 	if (!error) {
2602 		if (target)
2603 			dont_mount(new_dentry);
2604 		if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2605 			d_move(old_dentry, new_dentry);
2606 	}
2607 	if (target)
2608 		mutex_unlock(&target->i_mutex);
2609 	dput(new_dentry);
2610 	return error;
2611 }
2612 
2613 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2614 	       struct inode *new_dir, struct dentry *new_dentry)
2615 {
2616 	int error;
2617 	int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
2618 	const unsigned char *old_name;
2619 
2620 	if (old_dentry->d_inode == new_dentry->d_inode)
2621  		return 0;
2622 
2623 	error = may_delete(old_dir, old_dentry, is_dir);
2624 	if (error)
2625 		return error;
2626 
2627 	if (!new_dentry->d_inode)
2628 		error = may_create(new_dir, new_dentry);
2629 	else
2630 		error = may_delete(new_dir, new_dentry, is_dir);
2631 	if (error)
2632 		return error;
2633 
2634 	if (!old_dir->i_op->rename)
2635 		return -EPERM;
2636 
2637 	old_name = fsnotify_oldname_init(old_dentry->d_name.name);
2638 
2639 	if (is_dir)
2640 		error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
2641 	else
2642 		error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
2643 	if (!error)
2644 		fsnotify_move(old_dir, new_dir, old_name, is_dir,
2645 			      new_dentry->d_inode, old_dentry);
2646 	fsnotify_oldname_free(old_name);
2647 
2648 	return error;
2649 }
2650 
2651 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
2652 		int, newdfd, const char __user *, newname)
2653 {
2654 	struct dentry *old_dir, *new_dir;
2655 	struct dentry *old_dentry, *new_dentry;
2656 	struct dentry *trap;
2657 	struct nameidata oldnd, newnd;
2658 	char *from;
2659 	char *to;
2660 	int error;
2661 
2662 	error = user_path_parent(olddfd, oldname, &oldnd, &from);
2663 	if (error)
2664 		goto exit;
2665 
2666 	error = user_path_parent(newdfd, newname, &newnd, &to);
2667 	if (error)
2668 		goto exit1;
2669 
2670 	error = -EXDEV;
2671 	if (oldnd.path.mnt != newnd.path.mnt)
2672 		goto exit2;
2673 
2674 	old_dir = oldnd.path.dentry;
2675 	error = -EBUSY;
2676 	if (oldnd.last_type != LAST_NORM)
2677 		goto exit2;
2678 
2679 	new_dir = newnd.path.dentry;
2680 	if (newnd.last_type != LAST_NORM)
2681 		goto exit2;
2682 
2683 	oldnd.flags &= ~LOOKUP_PARENT;
2684 	newnd.flags &= ~LOOKUP_PARENT;
2685 	newnd.flags |= LOOKUP_RENAME_TARGET;
2686 
2687 	trap = lock_rename(new_dir, old_dir);
2688 
2689 	old_dentry = lookup_hash(&oldnd);
2690 	error = PTR_ERR(old_dentry);
2691 	if (IS_ERR(old_dentry))
2692 		goto exit3;
2693 	/* source must exist */
2694 	error = -ENOENT;
2695 	if (!old_dentry->d_inode)
2696 		goto exit4;
2697 	/* unless the source is a directory trailing slashes give -ENOTDIR */
2698 	if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
2699 		error = -ENOTDIR;
2700 		if (oldnd.last.name[oldnd.last.len])
2701 			goto exit4;
2702 		if (newnd.last.name[newnd.last.len])
2703 			goto exit4;
2704 	}
2705 	/* source should not be ancestor of target */
2706 	error = -EINVAL;
2707 	if (old_dentry == trap)
2708 		goto exit4;
2709 	new_dentry = lookup_hash(&newnd);
2710 	error = PTR_ERR(new_dentry);
2711 	if (IS_ERR(new_dentry))
2712 		goto exit4;
2713 	/* target should not be an ancestor of source */
2714 	error = -ENOTEMPTY;
2715 	if (new_dentry == trap)
2716 		goto exit5;
2717 
2718 	error = mnt_want_write(oldnd.path.mnt);
2719 	if (error)
2720 		goto exit5;
2721 	error = security_path_rename(&oldnd.path, old_dentry,
2722 				     &newnd.path, new_dentry);
2723 	if (error)
2724 		goto exit6;
2725 	error = vfs_rename(old_dir->d_inode, old_dentry,
2726 				   new_dir->d_inode, new_dentry);
2727 exit6:
2728 	mnt_drop_write(oldnd.path.mnt);
2729 exit5:
2730 	dput(new_dentry);
2731 exit4:
2732 	dput(old_dentry);
2733 exit3:
2734 	unlock_rename(new_dir, old_dir);
2735 exit2:
2736 	path_put(&newnd.path);
2737 	putname(to);
2738 exit1:
2739 	path_put(&oldnd.path);
2740 	putname(from);
2741 exit:
2742 	return error;
2743 }
2744 
2745 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
2746 {
2747 	return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
2748 }
2749 
2750 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
2751 {
2752 	int len;
2753 
2754 	len = PTR_ERR(link);
2755 	if (IS_ERR(link))
2756 		goto out;
2757 
2758 	len = strlen(link);
2759 	if (len > (unsigned) buflen)
2760 		len = buflen;
2761 	if (copy_to_user(buffer, link, len))
2762 		len = -EFAULT;
2763 out:
2764 	return len;
2765 }
2766 
2767 /*
2768  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
2769  * have ->follow_link() touching nd only in nd_set_link().  Using (or not
2770  * using) it for any given inode is up to filesystem.
2771  */
2772 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2773 {
2774 	struct nameidata nd;
2775 	void *cookie;
2776 	int res;
2777 
2778 	nd.depth = 0;
2779 	cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
2780 	if (IS_ERR(cookie))
2781 		return PTR_ERR(cookie);
2782 
2783 	res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
2784 	if (dentry->d_inode->i_op->put_link)
2785 		dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
2786 	return res;
2787 }
2788 
2789 int vfs_follow_link(struct nameidata *nd, const char *link)
2790 {
2791 	return __vfs_follow_link(nd, link);
2792 }
2793 
2794 /* get the link contents into pagecache */
2795 static char *page_getlink(struct dentry * dentry, struct page **ppage)
2796 {
2797 	char *kaddr;
2798 	struct page *page;
2799 	struct address_space *mapping = dentry->d_inode->i_mapping;
2800 	page = read_mapping_page(mapping, 0, NULL);
2801 	if (IS_ERR(page))
2802 		return (char*)page;
2803 	*ppage = page;
2804 	kaddr = kmap(page);
2805 	nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
2806 	return kaddr;
2807 }
2808 
2809 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2810 {
2811 	struct page *page = NULL;
2812 	char *s = page_getlink(dentry, &page);
2813 	int res = vfs_readlink(dentry,buffer,buflen,s);
2814 	if (page) {
2815 		kunmap(page);
2816 		page_cache_release(page);
2817 	}
2818 	return res;
2819 }
2820 
2821 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
2822 {
2823 	struct page *page = NULL;
2824 	nd_set_link(nd, page_getlink(dentry, &page));
2825 	return page;
2826 }
2827 
2828 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2829 {
2830 	struct page *page = cookie;
2831 
2832 	if (page) {
2833 		kunmap(page);
2834 		page_cache_release(page);
2835 	}
2836 }
2837 
2838 /*
2839  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
2840  */
2841 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
2842 {
2843 	struct address_space *mapping = inode->i_mapping;
2844 	struct page *page;
2845 	void *fsdata;
2846 	int err;
2847 	char *kaddr;
2848 	unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
2849 	if (nofs)
2850 		flags |= AOP_FLAG_NOFS;
2851 
2852 retry:
2853 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
2854 				flags, &page, &fsdata);
2855 	if (err)
2856 		goto fail;
2857 
2858 	kaddr = kmap_atomic(page, KM_USER0);
2859 	memcpy(kaddr, symname, len-1);
2860 	kunmap_atomic(kaddr, KM_USER0);
2861 
2862 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
2863 							page, fsdata);
2864 	if (err < 0)
2865 		goto fail;
2866 	if (err < len-1)
2867 		goto retry;
2868 
2869 	mark_inode_dirty(inode);
2870 	return 0;
2871 fail:
2872 	return err;
2873 }
2874 
2875 int page_symlink(struct inode *inode, const char *symname, int len)
2876 {
2877 	return __page_symlink(inode, symname, len,
2878 			!(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
2879 }
2880 
2881 const struct inode_operations page_symlink_inode_operations = {
2882 	.readlink	= generic_readlink,
2883 	.follow_link	= page_follow_link_light,
2884 	.put_link	= page_put_link,
2885 };
2886 
2887 EXPORT_SYMBOL(user_path_at);
2888 EXPORT_SYMBOL(follow_down);
2889 EXPORT_SYMBOL(follow_up);
2890 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
2891 EXPORT_SYMBOL(getname);
2892 EXPORT_SYMBOL(lock_rename);
2893 EXPORT_SYMBOL(lookup_one_len);
2894 EXPORT_SYMBOL(page_follow_link_light);
2895 EXPORT_SYMBOL(page_put_link);
2896 EXPORT_SYMBOL(page_readlink);
2897 EXPORT_SYMBOL(__page_symlink);
2898 EXPORT_SYMBOL(page_symlink);
2899 EXPORT_SYMBOL(page_symlink_inode_operations);
2900 EXPORT_SYMBOL(path_lookup);
2901 EXPORT_SYMBOL(kern_path);
2902 EXPORT_SYMBOL(vfs_path_lookup);
2903 EXPORT_SYMBOL(inode_permission);
2904 EXPORT_SYMBOL(file_permission);
2905 EXPORT_SYMBOL(unlock_rename);
2906 EXPORT_SYMBOL(vfs_create);
2907 EXPORT_SYMBOL(vfs_follow_link);
2908 EXPORT_SYMBOL(vfs_link);
2909 EXPORT_SYMBOL(vfs_mkdir);
2910 EXPORT_SYMBOL(vfs_mknod);
2911 EXPORT_SYMBOL(generic_permission);
2912 EXPORT_SYMBOL(vfs_readlink);
2913 EXPORT_SYMBOL(vfs_rename);
2914 EXPORT_SYMBOL(vfs_rmdir);
2915 EXPORT_SYMBOL(vfs_symlink);
2916 EXPORT_SYMBOL(vfs_unlink);
2917 EXPORT_SYMBOL(dentry_unhash);
2918 EXPORT_SYMBOL(generic_readlink);
2919