1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/namei.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * Some corrections by tytso. 10 */ 11 12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 13 * lookup logic. 14 */ 15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 16 */ 17 18 #include <linux/init.h> 19 #include <linux/export.h> 20 #include <linux/kernel.h> 21 #include <linux/slab.h> 22 #include <linux/fs.h> 23 #include <linux/namei.h> 24 #include <linux/pagemap.h> 25 #include <linux/fsnotify.h> 26 #include <linux/personality.h> 27 #include <linux/security.h> 28 #include <linux/ima.h> 29 #include <linux/syscalls.h> 30 #include <linux/mount.h> 31 #include <linux/audit.h> 32 #include <linux/capability.h> 33 #include <linux/file.h> 34 #include <linux/fcntl.h> 35 #include <linux/device_cgroup.h> 36 #include <linux/fs_struct.h> 37 #include <linux/posix_acl.h> 38 #include <linux/hash.h> 39 #include <linux/bitops.h> 40 #include <linux/init_task.h> 41 #include <linux/uaccess.h> 42 #include <linux/build_bug.h> 43 44 #include "internal.h" 45 #include "mount.h" 46 47 /* [Feb-1997 T. Schoebel-Theuer] 48 * Fundamental changes in the pathname lookup mechanisms (namei) 49 * were necessary because of omirr. The reason is that omirr needs 50 * to know the _real_ pathname, not the user-supplied one, in case 51 * of symlinks (and also when transname replacements occur). 52 * 53 * The new code replaces the old recursive symlink resolution with 54 * an iterative one (in case of non-nested symlink chains). It does 55 * this with calls to <fs>_follow_link(). 56 * As a side effect, dir_namei(), _namei() and follow_link() are now 57 * replaced with a single function lookup_dentry() that can handle all 58 * the special cases of the former code. 59 * 60 * With the new dcache, the pathname is stored at each inode, at least as 61 * long as the refcount of the inode is positive. As a side effect, the 62 * size of the dcache depends on the inode cache and thus is dynamic. 63 * 64 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 65 * resolution to correspond with current state of the code. 66 * 67 * Note that the symlink resolution is not *completely* iterative. 68 * There is still a significant amount of tail- and mid- recursion in 69 * the algorithm. Also, note that <fs>_readlink() is not used in 70 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 71 * may return different results than <fs>_follow_link(). Many virtual 72 * filesystems (including /proc) exhibit this behavior. 73 */ 74 75 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 76 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 77 * and the name already exists in form of a symlink, try to create the new 78 * name indicated by the symlink. The old code always complained that the 79 * name already exists, due to not following the symlink even if its target 80 * is nonexistent. The new semantics affects also mknod() and link() when 81 * the name is a symlink pointing to a non-existent name. 82 * 83 * I don't know which semantics is the right one, since I have no access 84 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 85 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 86 * "old" one. Personally, I think the new semantics is much more logical. 87 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 88 * file does succeed in both HP-UX and SunOs, but not in Solaris 89 * and in the old Linux semantics. 90 */ 91 92 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 93 * semantics. See the comments in "open_namei" and "do_link" below. 94 * 95 * [10-Sep-98 Alan Modra] Another symlink change. 96 */ 97 98 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 99 * inside the path - always follow. 100 * in the last component in creation/removal/renaming - never follow. 101 * if LOOKUP_FOLLOW passed - follow. 102 * if the pathname has trailing slashes - follow. 103 * otherwise - don't follow. 104 * (applied in that order). 105 * 106 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 107 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 108 * During the 2.4 we need to fix the userland stuff depending on it - 109 * hopefully we will be able to get rid of that wart in 2.5. So far only 110 * XEmacs seems to be relying on it... 111 */ 112 /* 113 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 114 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 115 * any extra contention... 116 */ 117 118 /* In order to reduce some races, while at the same time doing additional 119 * checking and hopefully speeding things up, we copy filenames to the 120 * kernel data space before using them.. 121 * 122 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 123 * PATH_MAX includes the nul terminator --RR. 124 */ 125 126 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname)) 127 128 struct filename * 129 getname_flags(const char __user *filename, int flags, int *empty) 130 { 131 struct filename *result; 132 char *kname; 133 int len; 134 BUILD_BUG_ON(offsetof(struct filename, iname) % sizeof(long) != 0); 135 136 result = audit_reusename(filename); 137 if (result) 138 return result; 139 140 result = __getname(); 141 if (unlikely(!result)) 142 return ERR_PTR(-ENOMEM); 143 144 /* 145 * First, try to embed the struct filename inside the names_cache 146 * allocation 147 */ 148 kname = (char *)result->iname; 149 result->name = kname; 150 151 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX); 152 if (unlikely(len < 0)) { 153 __putname(result); 154 return ERR_PTR(len); 155 } 156 157 /* 158 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a 159 * separate struct filename so we can dedicate the entire 160 * names_cache allocation for the pathname, and re-do the copy from 161 * userland. 162 */ 163 if (unlikely(len == EMBEDDED_NAME_MAX)) { 164 const size_t size = offsetof(struct filename, iname[1]); 165 kname = (char *)result; 166 167 /* 168 * size is chosen that way we to guarantee that 169 * result->iname[0] is within the same object and that 170 * kname can't be equal to result->iname, no matter what. 171 */ 172 result = kzalloc(size, GFP_KERNEL); 173 if (unlikely(!result)) { 174 __putname(kname); 175 return ERR_PTR(-ENOMEM); 176 } 177 result->name = kname; 178 len = strncpy_from_user(kname, filename, PATH_MAX); 179 if (unlikely(len < 0)) { 180 __putname(kname); 181 kfree(result); 182 return ERR_PTR(len); 183 } 184 if (unlikely(len == PATH_MAX)) { 185 __putname(kname); 186 kfree(result); 187 return ERR_PTR(-ENAMETOOLONG); 188 } 189 } 190 191 result->refcnt = 1; 192 /* The empty path is special. */ 193 if (unlikely(!len)) { 194 if (empty) 195 *empty = 1; 196 if (!(flags & LOOKUP_EMPTY)) { 197 putname(result); 198 return ERR_PTR(-ENOENT); 199 } 200 } 201 202 result->uptr = filename; 203 result->aname = NULL; 204 audit_getname(result); 205 return result; 206 } 207 208 struct filename * 209 getname(const char __user * filename) 210 { 211 return getname_flags(filename, 0, NULL); 212 } 213 214 struct filename * 215 getname_kernel(const char * filename) 216 { 217 struct filename *result; 218 int len = strlen(filename) + 1; 219 220 result = __getname(); 221 if (unlikely(!result)) 222 return ERR_PTR(-ENOMEM); 223 224 if (len <= EMBEDDED_NAME_MAX) { 225 result->name = (char *)result->iname; 226 } else if (len <= PATH_MAX) { 227 const size_t size = offsetof(struct filename, iname[1]); 228 struct filename *tmp; 229 230 tmp = kmalloc(size, GFP_KERNEL); 231 if (unlikely(!tmp)) { 232 __putname(result); 233 return ERR_PTR(-ENOMEM); 234 } 235 tmp->name = (char *)result; 236 result = tmp; 237 } else { 238 __putname(result); 239 return ERR_PTR(-ENAMETOOLONG); 240 } 241 memcpy((char *)result->name, filename, len); 242 result->uptr = NULL; 243 result->aname = NULL; 244 result->refcnt = 1; 245 audit_getname(result); 246 247 return result; 248 } 249 250 void putname(struct filename *name) 251 { 252 BUG_ON(name->refcnt <= 0); 253 254 if (--name->refcnt > 0) 255 return; 256 257 if (name->name != name->iname) { 258 __putname(name->name); 259 kfree(name); 260 } else 261 __putname(name); 262 } 263 264 static int check_acl(struct inode *inode, int mask) 265 { 266 #ifdef CONFIG_FS_POSIX_ACL 267 struct posix_acl *acl; 268 269 if (mask & MAY_NOT_BLOCK) { 270 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS); 271 if (!acl) 272 return -EAGAIN; 273 /* no ->get_acl() calls in RCU mode... */ 274 if (is_uncached_acl(acl)) 275 return -ECHILD; 276 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK); 277 } 278 279 acl = get_acl(inode, ACL_TYPE_ACCESS); 280 if (IS_ERR(acl)) 281 return PTR_ERR(acl); 282 if (acl) { 283 int error = posix_acl_permission(inode, acl, mask); 284 posix_acl_release(acl); 285 return error; 286 } 287 #endif 288 289 return -EAGAIN; 290 } 291 292 /* 293 * This does the basic permission checking 294 */ 295 static int acl_permission_check(struct inode *inode, int mask) 296 { 297 unsigned int mode = inode->i_mode; 298 299 if (likely(uid_eq(current_fsuid(), inode->i_uid))) 300 mode >>= 6; 301 else { 302 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) { 303 int error = check_acl(inode, mask); 304 if (error != -EAGAIN) 305 return error; 306 } 307 308 if (in_group_p(inode->i_gid)) 309 mode >>= 3; 310 } 311 312 /* 313 * If the DACs are ok we don't need any capability check. 314 */ 315 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 316 return 0; 317 return -EACCES; 318 } 319 320 /** 321 * generic_permission - check for access rights on a Posix-like filesystem 322 * @inode: inode to check access rights for 323 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...) 324 * 325 * Used to check for read/write/execute permissions on a file. 326 * We use "fsuid" for this, letting us set arbitrary permissions 327 * for filesystem access without changing the "normal" uids which 328 * are used for other things. 329 * 330 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk 331 * request cannot be satisfied (eg. requires blocking or too much complexity). 332 * It would then be called again in ref-walk mode. 333 */ 334 int generic_permission(struct inode *inode, int mask) 335 { 336 int ret; 337 338 /* 339 * Do the basic permission checks. 340 */ 341 ret = acl_permission_check(inode, mask); 342 if (ret != -EACCES) 343 return ret; 344 345 if (S_ISDIR(inode->i_mode)) { 346 /* DACs are overridable for directories */ 347 if (!(mask & MAY_WRITE)) 348 if (capable_wrt_inode_uidgid(inode, 349 CAP_DAC_READ_SEARCH)) 350 return 0; 351 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE)) 352 return 0; 353 return -EACCES; 354 } 355 356 /* 357 * Searching includes executable on directories, else just read. 358 */ 359 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 360 if (mask == MAY_READ) 361 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH)) 362 return 0; 363 /* 364 * Read/write DACs are always overridable. 365 * Executable DACs are overridable when there is 366 * at least one exec bit set. 367 */ 368 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO)) 369 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE)) 370 return 0; 371 372 return -EACCES; 373 } 374 EXPORT_SYMBOL(generic_permission); 375 376 /* 377 * We _really_ want to just do "generic_permission()" without 378 * even looking at the inode->i_op values. So we keep a cache 379 * flag in inode->i_opflags, that says "this has not special 380 * permission function, use the fast case". 381 */ 382 static inline int do_inode_permission(struct inode *inode, int mask) 383 { 384 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) { 385 if (likely(inode->i_op->permission)) 386 return inode->i_op->permission(inode, mask); 387 388 /* This gets set once for the inode lifetime */ 389 spin_lock(&inode->i_lock); 390 inode->i_opflags |= IOP_FASTPERM; 391 spin_unlock(&inode->i_lock); 392 } 393 return generic_permission(inode, mask); 394 } 395 396 /** 397 * sb_permission - Check superblock-level permissions 398 * @sb: Superblock of inode to check permission on 399 * @inode: Inode to check permission on 400 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 401 * 402 * Separate out file-system wide checks from inode-specific permission checks. 403 */ 404 static int sb_permission(struct super_block *sb, struct inode *inode, int mask) 405 { 406 if (unlikely(mask & MAY_WRITE)) { 407 umode_t mode = inode->i_mode; 408 409 /* Nobody gets write access to a read-only fs. */ 410 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 411 return -EROFS; 412 } 413 return 0; 414 } 415 416 /** 417 * inode_permission - Check for access rights to a given inode 418 * @inode: Inode to check permission on 419 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 420 * 421 * Check for read/write/execute permissions on an inode. We use fs[ug]id for 422 * this, letting us set arbitrary permissions for filesystem access without 423 * changing the "normal" UIDs which are used for other things. 424 * 425 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 426 */ 427 int inode_permission(struct inode *inode, int mask) 428 { 429 int retval; 430 431 retval = sb_permission(inode->i_sb, inode, mask); 432 if (retval) 433 return retval; 434 435 if (unlikely(mask & MAY_WRITE)) { 436 /* 437 * Nobody gets write access to an immutable file. 438 */ 439 if (IS_IMMUTABLE(inode)) 440 return -EPERM; 441 442 /* 443 * Updating mtime will likely cause i_uid and i_gid to be 444 * written back improperly if their true value is unknown 445 * to the vfs. 446 */ 447 if (HAS_UNMAPPED_ID(inode)) 448 return -EACCES; 449 } 450 451 retval = do_inode_permission(inode, mask); 452 if (retval) 453 return retval; 454 455 retval = devcgroup_inode_permission(inode, mask); 456 if (retval) 457 return retval; 458 459 return security_inode_permission(inode, mask); 460 } 461 EXPORT_SYMBOL(inode_permission); 462 463 /** 464 * path_get - get a reference to a path 465 * @path: path to get the reference to 466 * 467 * Given a path increment the reference count to the dentry and the vfsmount. 468 */ 469 void path_get(const struct path *path) 470 { 471 mntget(path->mnt); 472 dget(path->dentry); 473 } 474 EXPORT_SYMBOL(path_get); 475 476 /** 477 * path_put - put a reference to a path 478 * @path: path to put the reference to 479 * 480 * Given a path decrement the reference count to the dentry and the vfsmount. 481 */ 482 void path_put(const struct path *path) 483 { 484 dput(path->dentry); 485 mntput(path->mnt); 486 } 487 EXPORT_SYMBOL(path_put); 488 489 #define EMBEDDED_LEVELS 2 490 struct nameidata { 491 struct path path; 492 struct qstr last; 493 struct path root; 494 struct inode *inode; /* path.dentry.d_inode */ 495 unsigned int flags; 496 unsigned seq, m_seq; 497 int last_type; 498 unsigned depth; 499 int total_link_count; 500 struct saved { 501 struct path link; 502 struct delayed_call done; 503 const char *name; 504 unsigned seq; 505 } *stack, internal[EMBEDDED_LEVELS]; 506 struct filename *name; 507 struct nameidata *saved; 508 struct inode *link_inode; 509 unsigned root_seq; 510 int dfd; 511 } __randomize_layout; 512 513 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name) 514 { 515 struct nameidata *old = current->nameidata; 516 p->stack = p->internal; 517 p->dfd = dfd; 518 p->name = name; 519 p->total_link_count = old ? old->total_link_count : 0; 520 p->saved = old; 521 current->nameidata = p; 522 } 523 524 static void restore_nameidata(void) 525 { 526 struct nameidata *now = current->nameidata, *old = now->saved; 527 528 current->nameidata = old; 529 if (old) 530 old->total_link_count = now->total_link_count; 531 if (now->stack != now->internal) 532 kfree(now->stack); 533 } 534 535 static int __nd_alloc_stack(struct nameidata *nd) 536 { 537 struct saved *p; 538 539 if (nd->flags & LOOKUP_RCU) { 540 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved), 541 GFP_ATOMIC); 542 if (unlikely(!p)) 543 return -ECHILD; 544 } else { 545 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved), 546 GFP_KERNEL); 547 if (unlikely(!p)) 548 return -ENOMEM; 549 } 550 memcpy(p, nd->internal, sizeof(nd->internal)); 551 nd->stack = p; 552 return 0; 553 } 554 555 /** 556 * path_connected - Verify that a path->dentry is below path->mnt.mnt_root 557 * @path: nameidate to verify 558 * 559 * Rename can sometimes move a file or directory outside of a bind 560 * mount, path_connected allows those cases to be detected. 561 */ 562 static bool path_connected(const struct path *path) 563 { 564 struct vfsmount *mnt = path->mnt; 565 struct super_block *sb = mnt->mnt_sb; 566 567 /* Bind mounts and multi-root filesystems can have disconnected paths */ 568 if (!(sb->s_iflags & SB_I_MULTIROOT) && (mnt->mnt_root == sb->s_root)) 569 return true; 570 571 return is_subdir(path->dentry, mnt->mnt_root); 572 } 573 574 static inline int nd_alloc_stack(struct nameidata *nd) 575 { 576 if (likely(nd->depth != EMBEDDED_LEVELS)) 577 return 0; 578 if (likely(nd->stack != nd->internal)) 579 return 0; 580 return __nd_alloc_stack(nd); 581 } 582 583 static void drop_links(struct nameidata *nd) 584 { 585 int i = nd->depth; 586 while (i--) { 587 struct saved *last = nd->stack + i; 588 do_delayed_call(&last->done); 589 clear_delayed_call(&last->done); 590 } 591 } 592 593 static void terminate_walk(struct nameidata *nd) 594 { 595 drop_links(nd); 596 if (!(nd->flags & LOOKUP_RCU)) { 597 int i; 598 path_put(&nd->path); 599 for (i = 0; i < nd->depth; i++) 600 path_put(&nd->stack[i].link); 601 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 602 path_put(&nd->root); 603 nd->root.mnt = NULL; 604 } 605 } else { 606 nd->flags &= ~LOOKUP_RCU; 607 if (!(nd->flags & LOOKUP_ROOT)) 608 nd->root.mnt = NULL; 609 rcu_read_unlock(); 610 } 611 nd->depth = 0; 612 } 613 614 /* path_put is needed afterwards regardless of success or failure */ 615 static bool legitimize_path(struct nameidata *nd, 616 struct path *path, unsigned seq) 617 { 618 int res = __legitimize_mnt(path->mnt, nd->m_seq); 619 if (unlikely(res)) { 620 if (res > 0) 621 path->mnt = NULL; 622 path->dentry = NULL; 623 return false; 624 } 625 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) { 626 path->dentry = NULL; 627 return false; 628 } 629 return !read_seqcount_retry(&path->dentry->d_seq, seq); 630 } 631 632 static bool legitimize_links(struct nameidata *nd) 633 { 634 int i; 635 for (i = 0; i < nd->depth; i++) { 636 struct saved *last = nd->stack + i; 637 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) { 638 drop_links(nd); 639 nd->depth = i + 1; 640 return false; 641 } 642 } 643 return true; 644 } 645 646 /* 647 * Path walking has 2 modes, rcu-walk and ref-walk (see 648 * Documentation/filesystems/path-lookup.txt). In situations when we can't 649 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab 650 * normal reference counts on dentries and vfsmounts to transition to ref-walk 651 * mode. Refcounts are grabbed at the last known good point before rcu-walk 652 * got stuck, so ref-walk may continue from there. If this is not successful 653 * (eg. a seqcount has changed), then failure is returned and it's up to caller 654 * to restart the path walk from the beginning in ref-walk mode. 655 */ 656 657 /** 658 * unlazy_walk - try to switch to ref-walk mode. 659 * @nd: nameidata pathwalk data 660 * Returns: 0 on success, -ECHILD on failure 661 * 662 * unlazy_walk attempts to legitimize the current nd->path and nd->root 663 * for ref-walk mode. 664 * Must be called from rcu-walk context. 665 * Nothing should touch nameidata between unlazy_walk() failure and 666 * terminate_walk(). 667 */ 668 static int unlazy_walk(struct nameidata *nd) 669 { 670 struct dentry *parent = nd->path.dentry; 671 672 BUG_ON(!(nd->flags & LOOKUP_RCU)); 673 674 nd->flags &= ~LOOKUP_RCU; 675 if (unlikely(!legitimize_links(nd))) 676 goto out2; 677 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq))) 678 goto out1; 679 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 680 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) 681 goto out; 682 } 683 rcu_read_unlock(); 684 BUG_ON(nd->inode != parent->d_inode); 685 return 0; 686 687 out2: 688 nd->path.mnt = NULL; 689 nd->path.dentry = NULL; 690 out1: 691 if (!(nd->flags & LOOKUP_ROOT)) 692 nd->root.mnt = NULL; 693 out: 694 rcu_read_unlock(); 695 return -ECHILD; 696 } 697 698 /** 699 * unlazy_child - try to switch to ref-walk mode. 700 * @nd: nameidata pathwalk data 701 * @dentry: child of nd->path.dentry 702 * @seq: seq number to check dentry against 703 * Returns: 0 on success, -ECHILD on failure 704 * 705 * unlazy_child attempts to legitimize the current nd->path, nd->root and dentry 706 * for ref-walk mode. @dentry must be a path found by a do_lookup call on 707 * @nd. Must be called from rcu-walk context. 708 * Nothing should touch nameidata between unlazy_child() failure and 709 * terminate_walk(). 710 */ 711 static int unlazy_child(struct nameidata *nd, struct dentry *dentry, unsigned seq) 712 { 713 BUG_ON(!(nd->flags & LOOKUP_RCU)); 714 715 nd->flags &= ~LOOKUP_RCU; 716 if (unlikely(!legitimize_links(nd))) 717 goto out2; 718 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq))) 719 goto out2; 720 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref))) 721 goto out1; 722 723 /* 724 * We need to move both the parent and the dentry from the RCU domain 725 * to be properly refcounted. And the sequence number in the dentry 726 * validates *both* dentry counters, since we checked the sequence 727 * number of the parent after we got the child sequence number. So we 728 * know the parent must still be valid if the child sequence number is 729 */ 730 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) 731 goto out; 732 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) { 733 rcu_read_unlock(); 734 dput(dentry); 735 goto drop_root_mnt; 736 } 737 /* 738 * Sequence counts matched. Now make sure that the root is 739 * still valid and get it if required. 740 */ 741 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 742 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) { 743 rcu_read_unlock(); 744 dput(dentry); 745 return -ECHILD; 746 } 747 } 748 749 rcu_read_unlock(); 750 return 0; 751 752 out2: 753 nd->path.mnt = NULL; 754 out1: 755 nd->path.dentry = NULL; 756 out: 757 rcu_read_unlock(); 758 drop_root_mnt: 759 if (!(nd->flags & LOOKUP_ROOT)) 760 nd->root.mnt = NULL; 761 return -ECHILD; 762 } 763 764 static inline int d_revalidate(struct dentry *dentry, unsigned int flags) 765 { 766 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) 767 return dentry->d_op->d_revalidate(dentry, flags); 768 else 769 return 1; 770 } 771 772 /** 773 * complete_walk - successful completion of path walk 774 * @nd: pointer nameidata 775 * 776 * If we had been in RCU mode, drop out of it and legitimize nd->path. 777 * Revalidate the final result, unless we'd already done that during 778 * the path walk or the filesystem doesn't ask for it. Return 0 on 779 * success, -error on failure. In case of failure caller does not 780 * need to drop nd->path. 781 */ 782 static int complete_walk(struct nameidata *nd) 783 { 784 struct dentry *dentry = nd->path.dentry; 785 int status; 786 787 if (nd->flags & LOOKUP_RCU) { 788 if (!(nd->flags & LOOKUP_ROOT)) 789 nd->root.mnt = NULL; 790 if (unlikely(unlazy_walk(nd))) 791 return -ECHILD; 792 } 793 794 if (likely(!(nd->flags & LOOKUP_JUMPED))) 795 return 0; 796 797 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE))) 798 return 0; 799 800 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags); 801 if (status > 0) 802 return 0; 803 804 if (!status) 805 status = -ESTALE; 806 807 return status; 808 } 809 810 static void set_root(struct nameidata *nd) 811 { 812 struct fs_struct *fs = current->fs; 813 814 if (nd->flags & LOOKUP_RCU) { 815 unsigned seq; 816 817 do { 818 seq = read_seqcount_begin(&fs->seq); 819 nd->root = fs->root; 820 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq); 821 } while (read_seqcount_retry(&fs->seq, seq)); 822 } else { 823 get_fs_root(fs, &nd->root); 824 } 825 } 826 827 static void path_put_conditional(struct path *path, struct nameidata *nd) 828 { 829 dput(path->dentry); 830 if (path->mnt != nd->path.mnt) 831 mntput(path->mnt); 832 } 833 834 static inline void path_to_nameidata(const struct path *path, 835 struct nameidata *nd) 836 { 837 if (!(nd->flags & LOOKUP_RCU)) { 838 dput(nd->path.dentry); 839 if (nd->path.mnt != path->mnt) 840 mntput(nd->path.mnt); 841 } 842 nd->path.mnt = path->mnt; 843 nd->path.dentry = path->dentry; 844 } 845 846 static int nd_jump_root(struct nameidata *nd) 847 { 848 if (nd->flags & LOOKUP_RCU) { 849 struct dentry *d; 850 nd->path = nd->root; 851 d = nd->path.dentry; 852 nd->inode = d->d_inode; 853 nd->seq = nd->root_seq; 854 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq))) 855 return -ECHILD; 856 } else { 857 path_put(&nd->path); 858 nd->path = nd->root; 859 path_get(&nd->path); 860 nd->inode = nd->path.dentry->d_inode; 861 } 862 nd->flags |= LOOKUP_JUMPED; 863 return 0; 864 } 865 866 /* 867 * Helper to directly jump to a known parsed path from ->get_link, 868 * caller must have taken a reference to path beforehand. 869 */ 870 void nd_jump_link(struct path *path) 871 { 872 struct nameidata *nd = current->nameidata; 873 path_put(&nd->path); 874 875 nd->path = *path; 876 nd->inode = nd->path.dentry->d_inode; 877 nd->flags |= LOOKUP_JUMPED; 878 } 879 880 static inline void put_link(struct nameidata *nd) 881 { 882 struct saved *last = nd->stack + --nd->depth; 883 do_delayed_call(&last->done); 884 if (!(nd->flags & LOOKUP_RCU)) 885 path_put(&last->link); 886 } 887 888 int sysctl_protected_symlinks __read_mostly = 0; 889 int sysctl_protected_hardlinks __read_mostly = 0; 890 int sysctl_protected_fifos __read_mostly; 891 int sysctl_protected_regular __read_mostly; 892 893 /** 894 * may_follow_link - Check symlink following for unsafe situations 895 * @nd: nameidata pathwalk data 896 * 897 * In the case of the sysctl_protected_symlinks sysctl being enabled, 898 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is 899 * in a sticky world-writable directory. This is to protect privileged 900 * processes from failing races against path names that may change out 901 * from under them by way of other users creating malicious symlinks. 902 * It will permit symlinks to be followed only when outside a sticky 903 * world-writable directory, or when the uid of the symlink and follower 904 * match, or when the directory owner matches the symlink's owner. 905 * 906 * Returns 0 if following the symlink is allowed, -ve on error. 907 */ 908 static inline int may_follow_link(struct nameidata *nd) 909 { 910 const struct inode *inode; 911 const struct inode *parent; 912 kuid_t puid; 913 914 if (!sysctl_protected_symlinks) 915 return 0; 916 917 /* Allowed if owner and follower match. */ 918 inode = nd->link_inode; 919 if (uid_eq(current_cred()->fsuid, inode->i_uid)) 920 return 0; 921 922 /* Allowed if parent directory not sticky and world-writable. */ 923 parent = nd->inode; 924 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH)) 925 return 0; 926 927 /* Allowed if parent directory and link owner match. */ 928 puid = parent->i_uid; 929 if (uid_valid(puid) && uid_eq(puid, inode->i_uid)) 930 return 0; 931 932 if (nd->flags & LOOKUP_RCU) 933 return -ECHILD; 934 935 audit_inode(nd->name, nd->stack[0].link.dentry, 0); 936 audit_log_link_denied("follow_link"); 937 return -EACCES; 938 } 939 940 /** 941 * safe_hardlink_source - Check for safe hardlink conditions 942 * @inode: the source inode to hardlink from 943 * 944 * Return false if at least one of the following conditions: 945 * - inode is not a regular file 946 * - inode is setuid 947 * - inode is setgid and group-exec 948 * - access failure for read and write 949 * 950 * Otherwise returns true. 951 */ 952 static bool safe_hardlink_source(struct inode *inode) 953 { 954 umode_t mode = inode->i_mode; 955 956 /* Special files should not get pinned to the filesystem. */ 957 if (!S_ISREG(mode)) 958 return false; 959 960 /* Setuid files should not get pinned to the filesystem. */ 961 if (mode & S_ISUID) 962 return false; 963 964 /* Executable setgid files should not get pinned to the filesystem. */ 965 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) 966 return false; 967 968 /* Hardlinking to unreadable or unwritable sources is dangerous. */ 969 if (inode_permission(inode, MAY_READ | MAY_WRITE)) 970 return false; 971 972 return true; 973 } 974 975 /** 976 * may_linkat - Check permissions for creating a hardlink 977 * @link: the source to hardlink from 978 * 979 * Block hardlink when all of: 980 * - sysctl_protected_hardlinks enabled 981 * - fsuid does not match inode 982 * - hardlink source is unsafe (see safe_hardlink_source() above) 983 * - not CAP_FOWNER in a namespace with the inode owner uid mapped 984 * 985 * Returns 0 if successful, -ve on error. 986 */ 987 static int may_linkat(struct path *link) 988 { 989 struct inode *inode = link->dentry->d_inode; 990 991 /* Inode writeback is not safe when the uid or gid are invalid. */ 992 if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid)) 993 return -EOVERFLOW; 994 995 if (!sysctl_protected_hardlinks) 996 return 0; 997 998 /* Source inode owner (or CAP_FOWNER) can hardlink all they like, 999 * otherwise, it must be a safe source. 1000 */ 1001 if (safe_hardlink_source(inode) || inode_owner_or_capable(inode)) 1002 return 0; 1003 1004 audit_log_link_denied("linkat"); 1005 return -EPERM; 1006 } 1007 1008 /** 1009 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory 1010 * should be allowed, or not, on files that already 1011 * exist. 1012 * @dir: the sticky parent directory 1013 * @inode: the inode of the file to open 1014 * 1015 * Block an O_CREAT open of a FIFO (or a regular file) when: 1016 * - sysctl_protected_fifos (or sysctl_protected_regular) is enabled 1017 * - the file already exists 1018 * - we are in a sticky directory 1019 * - we don't own the file 1020 * - the owner of the directory doesn't own the file 1021 * - the directory is world writable 1022 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2 1023 * the directory doesn't have to be world writable: being group writable will 1024 * be enough. 1025 * 1026 * Returns 0 if the open is allowed, -ve on error. 1027 */ 1028 static int may_create_in_sticky(struct dentry * const dir, 1029 struct inode * const inode) 1030 { 1031 if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) || 1032 (!sysctl_protected_regular && S_ISREG(inode->i_mode)) || 1033 likely(!(dir->d_inode->i_mode & S_ISVTX)) || 1034 uid_eq(inode->i_uid, dir->d_inode->i_uid) || 1035 uid_eq(current_fsuid(), inode->i_uid)) 1036 return 0; 1037 1038 if (likely(dir->d_inode->i_mode & 0002) || 1039 (dir->d_inode->i_mode & 0020 && 1040 ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) || 1041 (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) { 1042 return -EACCES; 1043 } 1044 return 0; 1045 } 1046 1047 static __always_inline 1048 const char *get_link(struct nameidata *nd) 1049 { 1050 struct saved *last = nd->stack + nd->depth - 1; 1051 struct dentry *dentry = last->link.dentry; 1052 struct inode *inode = nd->link_inode; 1053 int error; 1054 const char *res; 1055 1056 if (!(nd->flags & LOOKUP_RCU)) { 1057 touch_atime(&last->link); 1058 cond_resched(); 1059 } else if (atime_needs_update(&last->link, inode)) { 1060 if (unlikely(unlazy_walk(nd))) 1061 return ERR_PTR(-ECHILD); 1062 touch_atime(&last->link); 1063 } 1064 1065 error = security_inode_follow_link(dentry, inode, 1066 nd->flags & LOOKUP_RCU); 1067 if (unlikely(error)) 1068 return ERR_PTR(error); 1069 1070 nd->last_type = LAST_BIND; 1071 res = inode->i_link; 1072 if (!res) { 1073 const char * (*get)(struct dentry *, struct inode *, 1074 struct delayed_call *); 1075 get = inode->i_op->get_link; 1076 if (nd->flags & LOOKUP_RCU) { 1077 res = get(NULL, inode, &last->done); 1078 if (res == ERR_PTR(-ECHILD)) { 1079 if (unlikely(unlazy_walk(nd))) 1080 return ERR_PTR(-ECHILD); 1081 res = get(dentry, inode, &last->done); 1082 } 1083 } else { 1084 res = get(dentry, inode, &last->done); 1085 } 1086 if (IS_ERR_OR_NULL(res)) 1087 return res; 1088 } 1089 if (*res == '/') { 1090 if (!nd->root.mnt) 1091 set_root(nd); 1092 if (unlikely(nd_jump_root(nd))) 1093 return ERR_PTR(-ECHILD); 1094 while (unlikely(*++res == '/')) 1095 ; 1096 } 1097 if (!*res) 1098 res = NULL; 1099 return res; 1100 } 1101 1102 /* 1103 * follow_up - Find the mountpoint of path's vfsmount 1104 * 1105 * Given a path, find the mountpoint of its source file system. 1106 * Replace @path with the path of the mountpoint in the parent mount. 1107 * Up is towards /. 1108 * 1109 * Return 1 if we went up a level and 0 if we were already at the 1110 * root. 1111 */ 1112 int follow_up(struct path *path) 1113 { 1114 struct mount *mnt = real_mount(path->mnt); 1115 struct mount *parent; 1116 struct dentry *mountpoint; 1117 1118 read_seqlock_excl(&mount_lock); 1119 parent = mnt->mnt_parent; 1120 if (parent == mnt) { 1121 read_sequnlock_excl(&mount_lock); 1122 return 0; 1123 } 1124 mntget(&parent->mnt); 1125 mountpoint = dget(mnt->mnt_mountpoint); 1126 read_sequnlock_excl(&mount_lock); 1127 dput(path->dentry); 1128 path->dentry = mountpoint; 1129 mntput(path->mnt); 1130 path->mnt = &parent->mnt; 1131 return 1; 1132 } 1133 EXPORT_SYMBOL(follow_up); 1134 1135 /* 1136 * Perform an automount 1137 * - return -EISDIR to tell follow_managed() to stop and return the path we 1138 * were called with. 1139 */ 1140 static int follow_automount(struct path *path, struct nameidata *nd, 1141 bool *need_mntput) 1142 { 1143 struct vfsmount *mnt; 1144 int err; 1145 1146 if (!path->dentry->d_op || !path->dentry->d_op->d_automount) 1147 return -EREMOTE; 1148 1149 /* We don't want to mount if someone's just doing a stat - 1150 * unless they're stat'ing a directory and appended a '/' to 1151 * the name. 1152 * 1153 * We do, however, want to mount if someone wants to open or 1154 * create a file of any type under the mountpoint, wants to 1155 * traverse through the mountpoint or wants to open the 1156 * mounted directory. Also, autofs may mark negative dentries 1157 * as being automount points. These will need the attentions 1158 * of the daemon to instantiate them before they can be used. 1159 */ 1160 if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY | 1161 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) && 1162 path->dentry->d_inode) 1163 return -EISDIR; 1164 1165 nd->total_link_count++; 1166 if (nd->total_link_count >= 40) 1167 return -ELOOP; 1168 1169 mnt = path->dentry->d_op->d_automount(path); 1170 if (IS_ERR(mnt)) { 1171 /* 1172 * The filesystem is allowed to return -EISDIR here to indicate 1173 * it doesn't want to automount. For instance, autofs would do 1174 * this so that its userspace daemon can mount on this dentry. 1175 * 1176 * However, we can only permit this if it's a terminal point in 1177 * the path being looked up; if it wasn't then the remainder of 1178 * the path is inaccessible and we should say so. 1179 */ 1180 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT)) 1181 return -EREMOTE; 1182 return PTR_ERR(mnt); 1183 } 1184 1185 if (!mnt) /* mount collision */ 1186 return 0; 1187 1188 if (!*need_mntput) { 1189 /* lock_mount() may release path->mnt on error */ 1190 mntget(path->mnt); 1191 *need_mntput = true; 1192 } 1193 err = finish_automount(mnt, path); 1194 1195 switch (err) { 1196 case -EBUSY: 1197 /* Someone else made a mount here whilst we were busy */ 1198 return 0; 1199 case 0: 1200 path_put(path); 1201 path->mnt = mnt; 1202 path->dentry = dget(mnt->mnt_root); 1203 return 0; 1204 default: 1205 return err; 1206 } 1207 1208 } 1209 1210 /* 1211 * Handle a dentry that is managed in some way. 1212 * - Flagged for transit management (autofs) 1213 * - Flagged as mountpoint 1214 * - Flagged as automount point 1215 * 1216 * This may only be called in refwalk mode. 1217 * 1218 * Serialization is taken care of in namespace.c 1219 */ 1220 static int follow_managed(struct path *path, struct nameidata *nd) 1221 { 1222 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */ 1223 unsigned managed; 1224 bool need_mntput = false; 1225 int ret = 0; 1226 1227 /* Given that we're not holding a lock here, we retain the value in a 1228 * local variable for each dentry as we look at it so that we don't see 1229 * the components of that value change under us */ 1230 while (managed = READ_ONCE(path->dentry->d_flags), 1231 managed &= DCACHE_MANAGED_DENTRY, 1232 unlikely(managed != 0)) { 1233 /* Allow the filesystem to manage the transit without i_mutex 1234 * being held. */ 1235 if (managed & DCACHE_MANAGE_TRANSIT) { 1236 BUG_ON(!path->dentry->d_op); 1237 BUG_ON(!path->dentry->d_op->d_manage); 1238 ret = path->dentry->d_op->d_manage(path, false); 1239 if (ret < 0) 1240 break; 1241 } 1242 1243 /* Transit to a mounted filesystem. */ 1244 if (managed & DCACHE_MOUNTED) { 1245 struct vfsmount *mounted = lookup_mnt(path); 1246 if (mounted) { 1247 dput(path->dentry); 1248 if (need_mntput) 1249 mntput(path->mnt); 1250 path->mnt = mounted; 1251 path->dentry = dget(mounted->mnt_root); 1252 need_mntput = true; 1253 continue; 1254 } 1255 1256 /* Something is mounted on this dentry in another 1257 * namespace and/or whatever was mounted there in this 1258 * namespace got unmounted before lookup_mnt() could 1259 * get it */ 1260 } 1261 1262 /* Handle an automount point */ 1263 if (managed & DCACHE_NEED_AUTOMOUNT) { 1264 ret = follow_automount(path, nd, &need_mntput); 1265 if (ret < 0) 1266 break; 1267 continue; 1268 } 1269 1270 /* We didn't change the current path point */ 1271 break; 1272 } 1273 1274 if (need_mntput && path->mnt == mnt) 1275 mntput(path->mnt); 1276 if (ret == -EISDIR || !ret) 1277 ret = 1; 1278 if (need_mntput) 1279 nd->flags |= LOOKUP_JUMPED; 1280 if (unlikely(ret < 0)) 1281 path_put_conditional(path, nd); 1282 return ret; 1283 } 1284 1285 int follow_down_one(struct path *path) 1286 { 1287 struct vfsmount *mounted; 1288 1289 mounted = lookup_mnt(path); 1290 if (mounted) { 1291 dput(path->dentry); 1292 mntput(path->mnt); 1293 path->mnt = mounted; 1294 path->dentry = dget(mounted->mnt_root); 1295 return 1; 1296 } 1297 return 0; 1298 } 1299 EXPORT_SYMBOL(follow_down_one); 1300 1301 static inline int managed_dentry_rcu(const struct path *path) 1302 { 1303 return (path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) ? 1304 path->dentry->d_op->d_manage(path, true) : 0; 1305 } 1306 1307 /* 1308 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if 1309 * we meet a managed dentry that would need blocking. 1310 */ 1311 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path, 1312 struct inode **inode, unsigned *seqp) 1313 { 1314 for (;;) { 1315 struct mount *mounted; 1316 /* 1317 * Don't forget we might have a non-mountpoint managed dentry 1318 * that wants to block transit. 1319 */ 1320 switch (managed_dentry_rcu(path)) { 1321 case -ECHILD: 1322 default: 1323 return false; 1324 case -EISDIR: 1325 return true; 1326 case 0: 1327 break; 1328 } 1329 1330 if (!d_mountpoint(path->dentry)) 1331 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT); 1332 1333 mounted = __lookup_mnt(path->mnt, path->dentry); 1334 if (!mounted) 1335 break; 1336 path->mnt = &mounted->mnt; 1337 path->dentry = mounted->mnt.mnt_root; 1338 nd->flags |= LOOKUP_JUMPED; 1339 *seqp = read_seqcount_begin(&path->dentry->d_seq); 1340 /* 1341 * Update the inode too. We don't need to re-check the 1342 * dentry sequence number here after this d_inode read, 1343 * because a mount-point is always pinned. 1344 */ 1345 *inode = path->dentry->d_inode; 1346 } 1347 return !read_seqretry(&mount_lock, nd->m_seq) && 1348 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT); 1349 } 1350 1351 static int follow_dotdot_rcu(struct nameidata *nd) 1352 { 1353 struct inode *inode = nd->inode; 1354 1355 while (1) { 1356 if (path_equal(&nd->path, &nd->root)) 1357 break; 1358 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1359 struct dentry *old = nd->path.dentry; 1360 struct dentry *parent = old->d_parent; 1361 unsigned seq; 1362 1363 inode = parent->d_inode; 1364 seq = read_seqcount_begin(&parent->d_seq); 1365 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq))) 1366 return -ECHILD; 1367 nd->path.dentry = parent; 1368 nd->seq = seq; 1369 if (unlikely(!path_connected(&nd->path))) 1370 return -ENOENT; 1371 break; 1372 } else { 1373 struct mount *mnt = real_mount(nd->path.mnt); 1374 struct mount *mparent = mnt->mnt_parent; 1375 struct dentry *mountpoint = mnt->mnt_mountpoint; 1376 struct inode *inode2 = mountpoint->d_inode; 1377 unsigned seq = read_seqcount_begin(&mountpoint->d_seq); 1378 if (unlikely(read_seqretry(&mount_lock, nd->m_seq))) 1379 return -ECHILD; 1380 if (&mparent->mnt == nd->path.mnt) 1381 break; 1382 /* we know that mountpoint was pinned */ 1383 nd->path.dentry = mountpoint; 1384 nd->path.mnt = &mparent->mnt; 1385 inode = inode2; 1386 nd->seq = seq; 1387 } 1388 } 1389 while (unlikely(d_mountpoint(nd->path.dentry))) { 1390 struct mount *mounted; 1391 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry); 1392 if (unlikely(read_seqretry(&mount_lock, nd->m_seq))) 1393 return -ECHILD; 1394 if (!mounted) 1395 break; 1396 nd->path.mnt = &mounted->mnt; 1397 nd->path.dentry = mounted->mnt.mnt_root; 1398 inode = nd->path.dentry->d_inode; 1399 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 1400 } 1401 nd->inode = inode; 1402 return 0; 1403 } 1404 1405 /* 1406 * Follow down to the covering mount currently visible to userspace. At each 1407 * point, the filesystem owning that dentry may be queried as to whether the 1408 * caller is permitted to proceed or not. 1409 */ 1410 int follow_down(struct path *path) 1411 { 1412 unsigned managed; 1413 int ret; 1414 1415 while (managed = READ_ONCE(path->dentry->d_flags), 1416 unlikely(managed & DCACHE_MANAGED_DENTRY)) { 1417 /* Allow the filesystem to manage the transit without i_mutex 1418 * being held. 1419 * 1420 * We indicate to the filesystem if someone is trying to mount 1421 * something here. This gives autofs the chance to deny anyone 1422 * other than its daemon the right to mount on its 1423 * superstructure. 1424 * 1425 * The filesystem may sleep at this point. 1426 */ 1427 if (managed & DCACHE_MANAGE_TRANSIT) { 1428 BUG_ON(!path->dentry->d_op); 1429 BUG_ON(!path->dentry->d_op->d_manage); 1430 ret = path->dentry->d_op->d_manage(path, false); 1431 if (ret < 0) 1432 return ret == -EISDIR ? 0 : ret; 1433 } 1434 1435 /* Transit to a mounted filesystem. */ 1436 if (managed & DCACHE_MOUNTED) { 1437 struct vfsmount *mounted = lookup_mnt(path); 1438 if (!mounted) 1439 break; 1440 dput(path->dentry); 1441 mntput(path->mnt); 1442 path->mnt = mounted; 1443 path->dentry = dget(mounted->mnt_root); 1444 continue; 1445 } 1446 1447 /* Don't handle automount points here */ 1448 break; 1449 } 1450 return 0; 1451 } 1452 EXPORT_SYMBOL(follow_down); 1453 1454 /* 1455 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot() 1456 */ 1457 static void follow_mount(struct path *path) 1458 { 1459 while (d_mountpoint(path->dentry)) { 1460 struct vfsmount *mounted = lookup_mnt(path); 1461 if (!mounted) 1462 break; 1463 dput(path->dentry); 1464 mntput(path->mnt); 1465 path->mnt = mounted; 1466 path->dentry = dget(mounted->mnt_root); 1467 } 1468 } 1469 1470 static int path_parent_directory(struct path *path) 1471 { 1472 struct dentry *old = path->dentry; 1473 /* rare case of legitimate dget_parent()... */ 1474 path->dentry = dget_parent(path->dentry); 1475 dput(old); 1476 if (unlikely(!path_connected(path))) 1477 return -ENOENT; 1478 return 0; 1479 } 1480 1481 static int follow_dotdot(struct nameidata *nd) 1482 { 1483 while(1) { 1484 if (path_equal(&nd->path, &nd->root)) 1485 break; 1486 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1487 int ret = path_parent_directory(&nd->path); 1488 if (ret) 1489 return ret; 1490 break; 1491 } 1492 if (!follow_up(&nd->path)) 1493 break; 1494 } 1495 follow_mount(&nd->path); 1496 nd->inode = nd->path.dentry->d_inode; 1497 return 0; 1498 } 1499 1500 /* 1501 * This looks up the name in dcache and possibly revalidates the found dentry. 1502 * NULL is returned if the dentry does not exist in the cache. 1503 */ 1504 static struct dentry *lookup_dcache(const struct qstr *name, 1505 struct dentry *dir, 1506 unsigned int flags) 1507 { 1508 struct dentry *dentry = d_lookup(dir, name); 1509 if (dentry) { 1510 int error = d_revalidate(dentry, flags); 1511 if (unlikely(error <= 0)) { 1512 if (!error) 1513 d_invalidate(dentry); 1514 dput(dentry); 1515 return ERR_PTR(error); 1516 } 1517 } 1518 return dentry; 1519 } 1520 1521 /* 1522 * Parent directory has inode locked exclusive. This is one 1523 * and only case when ->lookup() gets called on non in-lookup 1524 * dentries - as the matter of fact, this only gets called 1525 * when directory is guaranteed to have no in-lookup children 1526 * at all. 1527 */ 1528 static struct dentry *__lookup_hash(const struct qstr *name, 1529 struct dentry *base, unsigned int flags) 1530 { 1531 struct dentry *dentry = lookup_dcache(name, base, flags); 1532 struct dentry *old; 1533 struct inode *dir = base->d_inode; 1534 1535 if (dentry) 1536 return dentry; 1537 1538 /* Don't create child dentry for a dead directory. */ 1539 if (unlikely(IS_DEADDIR(dir))) 1540 return ERR_PTR(-ENOENT); 1541 1542 dentry = d_alloc(base, name); 1543 if (unlikely(!dentry)) 1544 return ERR_PTR(-ENOMEM); 1545 1546 old = dir->i_op->lookup(dir, dentry, flags); 1547 if (unlikely(old)) { 1548 dput(dentry); 1549 dentry = old; 1550 } 1551 return dentry; 1552 } 1553 1554 static int lookup_fast(struct nameidata *nd, 1555 struct path *path, struct inode **inode, 1556 unsigned *seqp) 1557 { 1558 struct vfsmount *mnt = nd->path.mnt; 1559 struct dentry *dentry, *parent = nd->path.dentry; 1560 int status = 1; 1561 int err; 1562 1563 /* 1564 * Rename seqlock is not required here because in the off chance 1565 * of a false negative due to a concurrent rename, the caller is 1566 * going to fall back to non-racy lookup. 1567 */ 1568 if (nd->flags & LOOKUP_RCU) { 1569 unsigned seq; 1570 bool negative; 1571 dentry = __d_lookup_rcu(parent, &nd->last, &seq); 1572 if (unlikely(!dentry)) { 1573 if (unlazy_walk(nd)) 1574 return -ECHILD; 1575 return 0; 1576 } 1577 1578 /* 1579 * This sequence count validates that the inode matches 1580 * the dentry name information from lookup. 1581 */ 1582 *inode = d_backing_inode(dentry); 1583 negative = d_is_negative(dentry); 1584 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) 1585 return -ECHILD; 1586 1587 /* 1588 * This sequence count validates that the parent had no 1589 * changes while we did the lookup of the dentry above. 1590 * 1591 * The memory barrier in read_seqcount_begin of child is 1592 * enough, we can use __read_seqcount_retry here. 1593 */ 1594 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq))) 1595 return -ECHILD; 1596 1597 *seqp = seq; 1598 status = d_revalidate(dentry, nd->flags); 1599 if (likely(status > 0)) { 1600 /* 1601 * Note: do negative dentry check after revalidation in 1602 * case that drops it. 1603 */ 1604 if (unlikely(negative)) 1605 return -ENOENT; 1606 path->mnt = mnt; 1607 path->dentry = dentry; 1608 if (likely(__follow_mount_rcu(nd, path, inode, seqp))) 1609 return 1; 1610 } 1611 if (unlazy_child(nd, dentry, seq)) 1612 return -ECHILD; 1613 if (unlikely(status == -ECHILD)) 1614 /* we'd been told to redo it in non-rcu mode */ 1615 status = d_revalidate(dentry, nd->flags); 1616 } else { 1617 dentry = __d_lookup(parent, &nd->last); 1618 if (unlikely(!dentry)) 1619 return 0; 1620 status = d_revalidate(dentry, nd->flags); 1621 } 1622 if (unlikely(status <= 0)) { 1623 if (!status) 1624 d_invalidate(dentry); 1625 dput(dentry); 1626 return status; 1627 } 1628 if (unlikely(d_is_negative(dentry))) { 1629 dput(dentry); 1630 return -ENOENT; 1631 } 1632 1633 path->mnt = mnt; 1634 path->dentry = dentry; 1635 err = follow_managed(path, nd); 1636 if (likely(err > 0)) 1637 *inode = d_backing_inode(path->dentry); 1638 return err; 1639 } 1640 1641 /* Fast lookup failed, do it the slow way */ 1642 static struct dentry *__lookup_slow(const struct qstr *name, 1643 struct dentry *dir, 1644 unsigned int flags) 1645 { 1646 struct dentry *dentry, *old; 1647 struct inode *inode = dir->d_inode; 1648 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 1649 1650 /* Don't go there if it's already dead */ 1651 if (unlikely(IS_DEADDIR(inode))) 1652 return ERR_PTR(-ENOENT); 1653 again: 1654 dentry = d_alloc_parallel(dir, name, &wq); 1655 if (IS_ERR(dentry)) 1656 return dentry; 1657 if (unlikely(!d_in_lookup(dentry))) { 1658 if (!(flags & LOOKUP_NO_REVAL)) { 1659 int error = d_revalidate(dentry, flags); 1660 if (unlikely(error <= 0)) { 1661 if (!error) { 1662 d_invalidate(dentry); 1663 dput(dentry); 1664 goto again; 1665 } 1666 dput(dentry); 1667 dentry = ERR_PTR(error); 1668 } 1669 } 1670 } else { 1671 old = inode->i_op->lookup(inode, dentry, flags); 1672 d_lookup_done(dentry); 1673 if (unlikely(old)) { 1674 dput(dentry); 1675 dentry = old; 1676 } 1677 } 1678 return dentry; 1679 } 1680 1681 static struct dentry *lookup_slow(const struct qstr *name, 1682 struct dentry *dir, 1683 unsigned int flags) 1684 { 1685 struct inode *inode = dir->d_inode; 1686 struct dentry *res; 1687 inode_lock_shared(inode); 1688 res = __lookup_slow(name, dir, flags); 1689 inode_unlock_shared(inode); 1690 return res; 1691 } 1692 1693 static inline int may_lookup(struct nameidata *nd) 1694 { 1695 if (nd->flags & LOOKUP_RCU) { 1696 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK); 1697 if (err != -ECHILD) 1698 return err; 1699 if (unlazy_walk(nd)) 1700 return -ECHILD; 1701 } 1702 return inode_permission(nd->inode, MAY_EXEC); 1703 } 1704 1705 static inline int handle_dots(struct nameidata *nd, int type) 1706 { 1707 if (type == LAST_DOTDOT) { 1708 if (!nd->root.mnt) 1709 set_root(nd); 1710 if (nd->flags & LOOKUP_RCU) { 1711 return follow_dotdot_rcu(nd); 1712 } else 1713 return follow_dotdot(nd); 1714 } 1715 return 0; 1716 } 1717 1718 static int pick_link(struct nameidata *nd, struct path *link, 1719 struct inode *inode, unsigned seq) 1720 { 1721 int error; 1722 struct saved *last; 1723 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) { 1724 path_to_nameidata(link, nd); 1725 return -ELOOP; 1726 } 1727 if (!(nd->flags & LOOKUP_RCU)) { 1728 if (link->mnt == nd->path.mnt) 1729 mntget(link->mnt); 1730 } 1731 error = nd_alloc_stack(nd); 1732 if (unlikely(error)) { 1733 if (error == -ECHILD) { 1734 if (unlikely(!legitimize_path(nd, link, seq))) { 1735 drop_links(nd); 1736 nd->depth = 0; 1737 nd->flags &= ~LOOKUP_RCU; 1738 nd->path.mnt = NULL; 1739 nd->path.dentry = NULL; 1740 if (!(nd->flags & LOOKUP_ROOT)) 1741 nd->root.mnt = NULL; 1742 rcu_read_unlock(); 1743 } else if (likely(unlazy_walk(nd)) == 0) 1744 error = nd_alloc_stack(nd); 1745 } 1746 if (error) { 1747 path_put(link); 1748 return error; 1749 } 1750 } 1751 1752 last = nd->stack + nd->depth++; 1753 last->link = *link; 1754 clear_delayed_call(&last->done); 1755 nd->link_inode = inode; 1756 last->seq = seq; 1757 return 1; 1758 } 1759 1760 enum {WALK_FOLLOW = 1, WALK_MORE = 2}; 1761 1762 /* 1763 * Do we need to follow links? We _really_ want to be able 1764 * to do this check without having to look at inode->i_op, 1765 * so we keep a cache of "no, this doesn't need follow_link" 1766 * for the common case. 1767 */ 1768 static inline int step_into(struct nameidata *nd, struct path *path, 1769 int flags, struct inode *inode, unsigned seq) 1770 { 1771 if (!(flags & WALK_MORE) && nd->depth) 1772 put_link(nd); 1773 if (likely(!d_is_symlink(path->dentry)) || 1774 !(flags & WALK_FOLLOW || nd->flags & LOOKUP_FOLLOW)) { 1775 /* not a symlink or should not follow */ 1776 path_to_nameidata(path, nd); 1777 nd->inode = inode; 1778 nd->seq = seq; 1779 return 0; 1780 } 1781 /* make sure that d_is_symlink above matches inode */ 1782 if (nd->flags & LOOKUP_RCU) { 1783 if (read_seqcount_retry(&path->dentry->d_seq, seq)) 1784 return -ECHILD; 1785 } 1786 return pick_link(nd, path, inode, seq); 1787 } 1788 1789 static int walk_component(struct nameidata *nd, int flags) 1790 { 1791 struct path path; 1792 struct inode *inode; 1793 unsigned seq; 1794 int err; 1795 /* 1796 * "." and ".." are special - ".." especially so because it has 1797 * to be able to know about the current root directory and 1798 * parent relationships. 1799 */ 1800 if (unlikely(nd->last_type != LAST_NORM)) { 1801 err = handle_dots(nd, nd->last_type); 1802 if (!(flags & WALK_MORE) && nd->depth) 1803 put_link(nd); 1804 return err; 1805 } 1806 err = lookup_fast(nd, &path, &inode, &seq); 1807 if (unlikely(err <= 0)) { 1808 if (err < 0) 1809 return err; 1810 path.dentry = lookup_slow(&nd->last, nd->path.dentry, 1811 nd->flags); 1812 if (IS_ERR(path.dentry)) 1813 return PTR_ERR(path.dentry); 1814 1815 path.mnt = nd->path.mnt; 1816 err = follow_managed(&path, nd); 1817 if (unlikely(err < 0)) 1818 return err; 1819 1820 if (unlikely(d_is_negative(path.dentry))) { 1821 path_to_nameidata(&path, nd); 1822 return -ENOENT; 1823 } 1824 1825 seq = 0; /* we are already out of RCU mode */ 1826 inode = d_backing_inode(path.dentry); 1827 } 1828 1829 return step_into(nd, &path, flags, inode, seq); 1830 } 1831 1832 /* 1833 * We can do the critical dentry name comparison and hashing 1834 * operations one word at a time, but we are limited to: 1835 * 1836 * - Architectures with fast unaligned word accesses. We could 1837 * do a "get_unaligned()" if this helps and is sufficiently 1838 * fast. 1839 * 1840 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we 1841 * do not trap on the (extremely unlikely) case of a page 1842 * crossing operation. 1843 * 1844 * - Furthermore, we need an efficient 64-bit compile for the 1845 * 64-bit case in order to generate the "number of bytes in 1846 * the final mask". Again, that could be replaced with a 1847 * efficient population count instruction or similar. 1848 */ 1849 #ifdef CONFIG_DCACHE_WORD_ACCESS 1850 1851 #include <asm/word-at-a-time.h> 1852 1853 #ifdef HASH_MIX 1854 1855 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */ 1856 1857 #elif defined(CONFIG_64BIT) 1858 /* 1859 * Register pressure in the mixing function is an issue, particularly 1860 * on 32-bit x86, but almost any function requires one state value and 1861 * one temporary. Instead, use a function designed for two state values 1862 * and no temporaries. 1863 * 1864 * This function cannot create a collision in only two iterations, so 1865 * we have two iterations to achieve avalanche. In those two iterations, 1866 * we have six layers of mixing, which is enough to spread one bit's 1867 * influence out to 2^6 = 64 state bits. 1868 * 1869 * Rotate constants are scored by considering either 64 one-bit input 1870 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the 1871 * probability of that delta causing a change to each of the 128 output 1872 * bits, using a sample of random initial states. 1873 * 1874 * The Shannon entropy of the computed probabilities is then summed 1875 * to produce a score. Ideally, any input change has a 50% chance of 1876 * toggling any given output bit. 1877 * 1878 * Mixing scores (in bits) for (12,45): 1879 * Input delta: 1-bit 2-bit 1880 * 1 round: 713.3 42542.6 1881 * 2 rounds: 2753.7 140389.8 1882 * 3 rounds: 5954.1 233458.2 1883 * 4 rounds: 7862.6 256672.2 1884 * Perfect: 8192 258048 1885 * (64*128) (64*63/2 * 128) 1886 */ 1887 #define HASH_MIX(x, y, a) \ 1888 ( x ^= (a), \ 1889 y ^= x, x = rol64(x,12),\ 1890 x += y, y = rol64(y,45),\ 1891 y *= 9 ) 1892 1893 /* 1894 * Fold two longs into one 32-bit hash value. This must be fast, but 1895 * latency isn't quite as critical, as there is a fair bit of additional 1896 * work done before the hash value is used. 1897 */ 1898 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 1899 { 1900 y ^= x * GOLDEN_RATIO_64; 1901 y *= GOLDEN_RATIO_64; 1902 return y >> 32; 1903 } 1904 1905 #else /* 32-bit case */ 1906 1907 /* 1908 * Mixing scores (in bits) for (7,20): 1909 * Input delta: 1-bit 2-bit 1910 * 1 round: 330.3 9201.6 1911 * 2 rounds: 1246.4 25475.4 1912 * 3 rounds: 1907.1 31295.1 1913 * 4 rounds: 2042.3 31718.6 1914 * Perfect: 2048 31744 1915 * (32*64) (32*31/2 * 64) 1916 */ 1917 #define HASH_MIX(x, y, a) \ 1918 ( x ^= (a), \ 1919 y ^= x, x = rol32(x, 7),\ 1920 x += y, y = rol32(y,20),\ 1921 y *= 9 ) 1922 1923 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 1924 { 1925 /* Use arch-optimized multiply if one exists */ 1926 return __hash_32(y ^ __hash_32(x)); 1927 } 1928 1929 #endif 1930 1931 /* 1932 * Return the hash of a string of known length. This is carfully 1933 * designed to match hash_name(), which is the more critical function. 1934 * In particular, we must end by hashing a final word containing 0..7 1935 * payload bytes, to match the way that hash_name() iterates until it 1936 * finds the delimiter after the name. 1937 */ 1938 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 1939 { 1940 unsigned long a, x = 0, y = (unsigned long)salt; 1941 1942 for (;;) { 1943 if (!len) 1944 goto done; 1945 a = load_unaligned_zeropad(name); 1946 if (len < sizeof(unsigned long)) 1947 break; 1948 HASH_MIX(x, y, a); 1949 name += sizeof(unsigned long); 1950 len -= sizeof(unsigned long); 1951 } 1952 x ^= a & bytemask_from_count(len); 1953 done: 1954 return fold_hash(x, y); 1955 } 1956 EXPORT_SYMBOL(full_name_hash); 1957 1958 /* Return the "hash_len" (hash and length) of a null-terminated string */ 1959 u64 hashlen_string(const void *salt, const char *name) 1960 { 1961 unsigned long a = 0, x = 0, y = (unsigned long)salt; 1962 unsigned long adata, mask, len; 1963 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 1964 1965 len = 0; 1966 goto inside; 1967 1968 do { 1969 HASH_MIX(x, y, a); 1970 len += sizeof(unsigned long); 1971 inside: 1972 a = load_unaligned_zeropad(name+len); 1973 } while (!has_zero(a, &adata, &constants)); 1974 1975 adata = prep_zero_mask(a, adata, &constants); 1976 mask = create_zero_mask(adata); 1977 x ^= a & zero_bytemask(mask); 1978 1979 return hashlen_create(fold_hash(x, y), len + find_zero(mask)); 1980 } 1981 EXPORT_SYMBOL(hashlen_string); 1982 1983 /* 1984 * Calculate the length and hash of the path component, and 1985 * return the "hash_len" as the result. 1986 */ 1987 static inline u64 hash_name(const void *salt, const char *name) 1988 { 1989 unsigned long a = 0, b, x = 0, y = (unsigned long)salt; 1990 unsigned long adata, bdata, mask, len; 1991 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 1992 1993 len = 0; 1994 goto inside; 1995 1996 do { 1997 HASH_MIX(x, y, a); 1998 len += sizeof(unsigned long); 1999 inside: 2000 a = load_unaligned_zeropad(name+len); 2001 b = a ^ REPEAT_BYTE('/'); 2002 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants))); 2003 2004 adata = prep_zero_mask(a, adata, &constants); 2005 bdata = prep_zero_mask(b, bdata, &constants); 2006 mask = create_zero_mask(adata | bdata); 2007 x ^= a & zero_bytemask(mask); 2008 2009 return hashlen_create(fold_hash(x, y), len + find_zero(mask)); 2010 } 2011 2012 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */ 2013 2014 /* Return the hash of a string of known length */ 2015 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 2016 { 2017 unsigned long hash = init_name_hash(salt); 2018 while (len--) 2019 hash = partial_name_hash((unsigned char)*name++, hash); 2020 return end_name_hash(hash); 2021 } 2022 EXPORT_SYMBOL(full_name_hash); 2023 2024 /* Return the "hash_len" (hash and length) of a null-terminated string */ 2025 u64 hashlen_string(const void *salt, const char *name) 2026 { 2027 unsigned long hash = init_name_hash(salt); 2028 unsigned long len = 0, c; 2029 2030 c = (unsigned char)*name; 2031 while (c) { 2032 len++; 2033 hash = partial_name_hash(c, hash); 2034 c = (unsigned char)name[len]; 2035 } 2036 return hashlen_create(end_name_hash(hash), len); 2037 } 2038 EXPORT_SYMBOL(hashlen_string); 2039 2040 /* 2041 * We know there's a real path component here of at least 2042 * one character. 2043 */ 2044 static inline u64 hash_name(const void *salt, const char *name) 2045 { 2046 unsigned long hash = init_name_hash(salt); 2047 unsigned long len = 0, c; 2048 2049 c = (unsigned char)*name; 2050 do { 2051 len++; 2052 hash = partial_name_hash(c, hash); 2053 c = (unsigned char)name[len]; 2054 } while (c && c != '/'); 2055 return hashlen_create(end_name_hash(hash), len); 2056 } 2057 2058 #endif 2059 2060 /* 2061 * Name resolution. 2062 * This is the basic name resolution function, turning a pathname into 2063 * the final dentry. We expect 'base' to be positive and a directory. 2064 * 2065 * Returns 0 and nd will have valid dentry and mnt on success. 2066 * Returns error and drops reference to input namei data on failure. 2067 */ 2068 static int link_path_walk(const char *name, struct nameidata *nd) 2069 { 2070 int err; 2071 2072 if (IS_ERR(name)) 2073 return PTR_ERR(name); 2074 while (*name=='/') 2075 name++; 2076 if (!*name) 2077 return 0; 2078 2079 /* At this point we know we have a real path component. */ 2080 for(;;) { 2081 u64 hash_len; 2082 int type; 2083 2084 err = may_lookup(nd); 2085 if (err) 2086 return err; 2087 2088 hash_len = hash_name(nd->path.dentry, name); 2089 2090 type = LAST_NORM; 2091 if (name[0] == '.') switch (hashlen_len(hash_len)) { 2092 case 2: 2093 if (name[1] == '.') { 2094 type = LAST_DOTDOT; 2095 nd->flags |= LOOKUP_JUMPED; 2096 } 2097 break; 2098 case 1: 2099 type = LAST_DOT; 2100 } 2101 if (likely(type == LAST_NORM)) { 2102 struct dentry *parent = nd->path.dentry; 2103 nd->flags &= ~LOOKUP_JUMPED; 2104 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { 2105 struct qstr this = { { .hash_len = hash_len }, .name = name }; 2106 err = parent->d_op->d_hash(parent, &this); 2107 if (err < 0) 2108 return err; 2109 hash_len = this.hash_len; 2110 name = this.name; 2111 } 2112 } 2113 2114 nd->last.hash_len = hash_len; 2115 nd->last.name = name; 2116 nd->last_type = type; 2117 2118 name += hashlen_len(hash_len); 2119 if (!*name) 2120 goto OK; 2121 /* 2122 * If it wasn't NUL, we know it was '/'. Skip that 2123 * slash, and continue until no more slashes. 2124 */ 2125 do { 2126 name++; 2127 } while (unlikely(*name == '/')); 2128 if (unlikely(!*name)) { 2129 OK: 2130 /* pathname body, done */ 2131 if (!nd->depth) 2132 return 0; 2133 name = nd->stack[nd->depth - 1].name; 2134 /* trailing symlink, done */ 2135 if (!name) 2136 return 0; 2137 /* last component of nested symlink */ 2138 err = walk_component(nd, WALK_FOLLOW); 2139 } else { 2140 /* not the last component */ 2141 err = walk_component(nd, WALK_FOLLOW | WALK_MORE); 2142 } 2143 if (err < 0) 2144 return err; 2145 2146 if (err) { 2147 const char *s = get_link(nd); 2148 2149 if (IS_ERR(s)) 2150 return PTR_ERR(s); 2151 err = 0; 2152 if (unlikely(!s)) { 2153 /* jumped */ 2154 put_link(nd); 2155 } else { 2156 nd->stack[nd->depth - 1].name = name; 2157 name = s; 2158 continue; 2159 } 2160 } 2161 if (unlikely(!d_can_lookup(nd->path.dentry))) { 2162 if (nd->flags & LOOKUP_RCU) { 2163 if (unlazy_walk(nd)) 2164 return -ECHILD; 2165 } 2166 return -ENOTDIR; 2167 } 2168 } 2169 } 2170 2171 /* must be paired with terminate_walk() */ 2172 static const char *path_init(struct nameidata *nd, unsigned flags) 2173 { 2174 const char *s = nd->name->name; 2175 2176 if (!*s) 2177 flags &= ~LOOKUP_RCU; 2178 if (flags & LOOKUP_RCU) 2179 rcu_read_lock(); 2180 2181 nd->last_type = LAST_ROOT; /* if there are only slashes... */ 2182 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT; 2183 nd->depth = 0; 2184 if (flags & LOOKUP_ROOT) { 2185 struct dentry *root = nd->root.dentry; 2186 struct inode *inode = root->d_inode; 2187 if (*s && unlikely(!d_can_lookup(root))) 2188 return ERR_PTR(-ENOTDIR); 2189 nd->path = nd->root; 2190 nd->inode = inode; 2191 if (flags & LOOKUP_RCU) { 2192 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 2193 nd->root_seq = nd->seq; 2194 nd->m_seq = read_seqbegin(&mount_lock); 2195 } else { 2196 path_get(&nd->path); 2197 } 2198 return s; 2199 } 2200 2201 nd->root.mnt = NULL; 2202 nd->path.mnt = NULL; 2203 nd->path.dentry = NULL; 2204 2205 nd->m_seq = read_seqbegin(&mount_lock); 2206 if (*s == '/') { 2207 set_root(nd); 2208 if (likely(!nd_jump_root(nd))) 2209 return s; 2210 return ERR_PTR(-ECHILD); 2211 } else if (nd->dfd == AT_FDCWD) { 2212 if (flags & LOOKUP_RCU) { 2213 struct fs_struct *fs = current->fs; 2214 unsigned seq; 2215 2216 do { 2217 seq = read_seqcount_begin(&fs->seq); 2218 nd->path = fs->pwd; 2219 nd->inode = nd->path.dentry->d_inode; 2220 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 2221 } while (read_seqcount_retry(&fs->seq, seq)); 2222 } else { 2223 get_fs_pwd(current->fs, &nd->path); 2224 nd->inode = nd->path.dentry->d_inode; 2225 } 2226 return s; 2227 } else { 2228 /* Caller must check execute permissions on the starting path component */ 2229 struct fd f = fdget_raw(nd->dfd); 2230 struct dentry *dentry; 2231 2232 if (!f.file) 2233 return ERR_PTR(-EBADF); 2234 2235 dentry = f.file->f_path.dentry; 2236 2237 if (*s && unlikely(!d_can_lookup(dentry))) { 2238 fdput(f); 2239 return ERR_PTR(-ENOTDIR); 2240 } 2241 2242 nd->path = f.file->f_path; 2243 if (flags & LOOKUP_RCU) { 2244 nd->inode = nd->path.dentry->d_inode; 2245 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 2246 } else { 2247 path_get(&nd->path); 2248 nd->inode = nd->path.dentry->d_inode; 2249 } 2250 fdput(f); 2251 return s; 2252 } 2253 } 2254 2255 static const char *trailing_symlink(struct nameidata *nd) 2256 { 2257 const char *s; 2258 int error = may_follow_link(nd); 2259 if (unlikely(error)) 2260 return ERR_PTR(error); 2261 nd->flags |= LOOKUP_PARENT; 2262 nd->stack[0].name = NULL; 2263 s = get_link(nd); 2264 return s ? s : ""; 2265 } 2266 2267 static inline int lookup_last(struct nameidata *nd) 2268 { 2269 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len]) 2270 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 2271 2272 nd->flags &= ~LOOKUP_PARENT; 2273 return walk_component(nd, 0); 2274 } 2275 2276 static int handle_lookup_down(struct nameidata *nd) 2277 { 2278 struct path path = nd->path; 2279 struct inode *inode = nd->inode; 2280 unsigned seq = nd->seq; 2281 int err; 2282 2283 if (nd->flags & LOOKUP_RCU) { 2284 /* 2285 * don't bother with unlazy_walk on failure - we are 2286 * at the very beginning of walk, so we lose nothing 2287 * if we simply redo everything in non-RCU mode 2288 */ 2289 if (unlikely(!__follow_mount_rcu(nd, &path, &inode, &seq))) 2290 return -ECHILD; 2291 } else { 2292 dget(path.dentry); 2293 err = follow_managed(&path, nd); 2294 if (unlikely(err < 0)) 2295 return err; 2296 inode = d_backing_inode(path.dentry); 2297 seq = 0; 2298 } 2299 path_to_nameidata(&path, nd); 2300 nd->inode = inode; 2301 nd->seq = seq; 2302 return 0; 2303 } 2304 2305 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2306 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path) 2307 { 2308 const char *s = path_init(nd, flags); 2309 int err; 2310 2311 if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) { 2312 err = handle_lookup_down(nd); 2313 if (unlikely(err < 0)) 2314 s = ERR_PTR(err); 2315 } 2316 2317 while (!(err = link_path_walk(s, nd)) 2318 && ((err = lookup_last(nd)) > 0)) { 2319 s = trailing_symlink(nd); 2320 } 2321 if (!err) 2322 err = complete_walk(nd); 2323 2324 if (!err && nd->flags & LOOKUP_DIRECTORY) 2325 if (!d_can_lookup(nd->path.dentry)) 2326 err = -ENOTDIR; 2327 if (!err) { 2328 *path = nd->path; 2329 nd->path.mnt = NULL; 2330 nd->path.dentry = NULL; 2331 } 2332 terminate_walk(nd); 2333 return err; 2334 } 2335 2336 static int filename_lookup(int dfd, struct filename *name, unsigned flags, 2337 struct path *path, struct path *root) 2338 { 2339 int retval; 2340 struct nameidata nd; 2341 if (IS_ERR(name)) 2342 return PTR_ERR(name); 2343 if (unlikely(root)) { 2344 nd.root = *root; 2345 flags |= LOOKUP_ROOT; 2346 } 2347 set_nameidata(&nd, dfd, name); 2348 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path); 2349 if (unlikely(retval == -ECHILD)) 2350 retval = path_lookupat(&nd, flags, path); 2351 if (unlikely(retval == -ESTALE)) 2352 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path); 2353 2354 if (likely(!retval)) 2355 audit_inode(name, path->dentry, flags & LOOKUP_PARENT); 2356 restore_nameidata(); 2357 putname(name); 2358 return retval; 2359 } 2360 2361 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2362 static int path_parentat(struct nameidata *nd, unsigned flags, 2363 struct path *parent) 2364 { 2365 const char *s = path_init(nd, flags); 2366 int err = link_path_walk(s, nd); 2367 if (!err) 2368 err = complete_walk(nd); 2369 if (!err) { 2370 *parent = nd->path; 2371 nd->path.mnt = NULL; 2372 nd->path.dentry = NULL; 2373 } 2374 terminate_walk(nd); 2375 return err; 2376 } 2377 2378 static struct filename *filename_parentat(int dfd, struct filename *name, 2379 unsigned int flags, struct path *parent, 2380 struct qstr *last, int *type) 2381 { 2382 int retval; 2383 struct nameidata nd; 2384 2385 if (IS_ERR(name)) 2386 return name; 2387 set_nameidata(&nd, dfd, name); 2388 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent); 2389 if (unlikely(retval == -ECHILD)) 2390 retval = path_parentat(&nd, flags, parent); 2391 if (unlikely(retval == -ESTALE)) 2392 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent); 2393 if (likely(!retval)) { 2394 *last = nd.last; 2395 *type = nd.last_type; 2396 audit_inode(name, parent->dentry, LOOKUP_PARENT); 2397 } else { 2398 putname(name); 2399 name = ERR_PTR(retval); 2400 } 2401 restore_nameidata(); 2402 return name; 2403 } 2404 2405 /* does lookup, returns the object with parent locked */ 2406 struct dentry *kern_path_locked(const char *name, struct path *path) 2407 { 2408 struct filename *filename; 2409 struct dentry *d; 2410 struct qstr last; 2411 int type; 2412 2413 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path, 2414 &last, &type); 2415 if (IS_ERR(filename)) 2416 return ERR_CAST(filename); 2417 if (unlikely(type != LAST_NORM)) { 2418 path_put(path); 2419 putname(filename); 2420 return ERR_PTR(-EINVAL); 2421 } 2422 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 2423 d = __lookup_hash(&last, path->dentry, 0); 2424 if (IS_ERR(d)) { 2425 inode_unlock(path->dentry->d_inode); 2426 path_put(path); 2427 } 2428 putname(filename); 2429 return d; 2430 } 2431 2432 int kern_path(const char *name, unsigned int flags, struct path *path) 2433 { 2434 return filename_lookup(AT_FDCWD, getname_kernel(name), 2435 flags, path, NULL); 2436 } 2437 EXPORT_SYMBOL(kern_path); 2438 2439 /** 2440 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 2441 * @dentry: pointer to dentry of the base directory 2442 * @mnt: pointer to vfs mount of the base directory 2443 * @name: pointer to file name 2444 * @flags: lookup flags 2445 * @path: pointer to struct path to fill 2446 */ 2447 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 2448 const char *name, unsigned int flags, 2449 struct path *path) 2450 { 2451 struct path root = {.mnt = mnt, .dentry = dentry}; 2452 /* the first argument of filename_lookup() is ignored with root */ 2453 return filename_lookup(AT_FDCWD, getname_kernel(name), 2454 flags , path, &root); 2455 } 2456 EXPORT_SYMBOL(vfs_path_lookup); 2457 2458 static int lookup_one_len_common(const char *name, struct dentry *base, 2459 int len, struct qstr *this) 2460 { 2461 this->name = name; 2462 this->len = len; 2463 this->hash = full_name_hash(base, name, len); 2464 if (!len) 2465 return -EACCES; 2466 2467 if (unlikely(name[0] == '.')) { 2468 if (len < 2 || (len == 2 && name[1] == '.')) 2469 return -EACCES; 2470 } 2471 2472 while (len--) { 2473 unsigned int c = *(const unsigned char *)name++; 2474 if (c == '/' || c == '\0') 2475 return -EACCES; 2476 } 2477 /* 2478 * See if the low-level filesystem might want 2479 * to use its own hash.. 2480 */ 2481 if (base->d_flags & DCACHE_OP_HASH) { 2482 int err = base->d_op->d_hash(base, this); 2483 if (err < 0) 2484 return err; 2485 } 2486 2487 return inode_permission(base->d_inode, MAY_EXEC); 2488 } 2489 2490 /** 2491 * try_lookup_one_len - filesystem helper to lookup single pathname component 2492 * @name: pathname component to lookup 2493 * @base: base directory to lookup from 2494 * @len: maximum length @len should be interpreted to 2495 * 2496 * Look up a dentry by name in the dcache, returning NULL if it does not 2497 * currently exist. The function does not try to create a dentry. 2498 * 2499 * Note that this routine is purely a helper for filesystem usage and should 2500 * not be called by generic code. 2501 * 2502 * The caller must hold base->i_mutex. 2503 */ 2504 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len) 2505 { 2506 struct qstr this; 2507 int err; 2508 2509 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2510 2511 err = lookup_one_len_common(name, base, len, &this); 2512 if (err) 2513 return ERR_PTR(err); 2514 2515 return lookup_dcache(&this, base, 0); 2516 } 2517 EXPORT_SYMBOL(try_lookup_one_len); 2518 2519 /** 2520 * lookup_one_len - filesystem helper to lookup single pathname component 2521 * @name: pathname component to lookup 2522 * @base: base directory to lookup from 2523 * @len: maximum length @len should be interpreted to 2524 * 2525 * Note that this routine is purely a helper for filesystem usage and should 2526 * not be called by generic code. 2527 * 2528 * The caller must hold base->i_mutex. 2529 */ 2530 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 2531 { 2532 struct dentry *dentry; 2533 struct qstr this; 2534 int err; 2535 2536 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2537 2538 err = lookup_one_len_common(name, base, len, &this); 2539 if (err) 2540 return ERR_PTR(err); 2541 2542 dentry = lookup_dcache(&this, base, 0); 2543 return dentry ? dentry : __lookup_slow(&this, base, 0); 2544 } 2545 EXPORT_SYMBOL(lookup_one_len); 2546 2547 /** 2548 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component 2549 * @name: pathname component to lookup 2550 * @base: base directory to lookup from 2551 * @len: maximum length @len should be interpreted to 2552 * 2553 * Note that this routine is purely a helper for filesystem usage and should 2554 * not be called by generic code. 2555 * 2556 * Unlike lookup_one_len, it should be called without the parent 2557 * i_mutex held, and will take the i_mutex itself if necessary. 2558 */ 2559 struct dentry *lookup_one_len_unlocked(const char *name, 2560 struct dentry *base, int len) 2561 { 2562 struct qstr this; 2563 int err; 2564 struct dentry *ret; 2565 2566 err = lookup_one_len_common(name, base, len, &this); 2567 if (err) 2568 return ERR_PTR(err); 2569 2570 ret = lookup_dcache(&this, base, 0); 2571 if (!ret) 2572 ret = lookup_slow(&this, base, 0); 2573 return ret; 2574 } 2575 EXPORT_SYMBOL(lookup_one_len_unlocked); 2576 2577 #ifdef CONFIG_UNIX98_PTYS 2578 int path_pts(struct path *path) 2579 { 2580 /* Find something mounted on "pts" in the same directory as 2581 * the input path. 2582 */ 2583 struct dentry *child, *parent; 2584 struct qstr this; 2585 int ret; 2586 2587 ret = path_parent_directory(path); 2588 if (ret) 2589 return ret; 2590 2591 parent = path->dentry; 2592 this.name = "pts"; 2593 this.len = 3; 2594 child = d_hash_and_lookup(parent, &this); 2595 if (!child) 2596 return -ENOENT; 2597 2598 path->dentry = child; 2599 dput(parent); 2600 follow_mount(path); 2601 return 0; 2602 } 2603 #endif 2604 2605 int user_path_at_empty(int dfd, const char __user *name, unsigned flags, 2606 struct path *path, int *empty) 2607 { 2608 return filename_lookup(dfd, getname_flags(name, flags, empty), 2609 flags, path, NULL); 2610 } 2611 EXPORT_SYMBOL(user_path_at_empty); 2612 2613 /** 2614 * mountpoint_last - look up last component for umount 2615 * @nd: pathwalk nameidata - currently pointing at parent directory of "last" 2616 * 2617 * This is a special lookup_last function just for umount. In this case, we 2618 * need to resolve the path without doing any revalidation. 2619 * 2620 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since 2621 * mountpoints are always pinned in the dcache, their ancestors are too. Thus, 2622 * in almost all cases, this lookup will be served out of the dcache. The only 2623 * cases where it won't are if nd->last refers to a symlink or the path is 2624 * bogus and it doesn't exist. 2625 * 2626 * Returns: 2627 * -error: if there was an error during lookup. This includes -ENOENT if the 2628 * lookup found a negative dentry. 2629 * 2630 * 0: if we successfully resolved nd->last and found it to not to be a 2631 * symlink that needs to be followed. 2632 * 2633 * 1: if we successfully resolved nd->last and found it to be a symlink 2634 * that needs to be followed. 2635 */ 2636 static int 2637 mountpoint_last(struct nameidata *nd) 2638 { 2639 int error = 0; 2640 struct dentry *dir = nd->path.dentry; 2641 struct path path; 2642 2643 /* If we're in rcuwalk, drop out of it to handle last component */ 2644 if (nd->flags & LOOKUP_RCU) { 2645 if (unlazy_walk(nd)) 2646 return -ECHILD; 2647 } 2648 2649 nd->flags &= ~LOOKUP_PARENT; 2650 2651 if (unlikely(nd->last_type != LAST_NORM)) { 2652 error = handle_dots(nd, nd->last_type); 2653 if (error) 2654 return error; 2655 path.dentry = dget(nd->path.dentry); 2656 } else { 2657 path.dentry = d_lookup(dir, &nd->last); 2658 if (!path.dentry) { 2659 /* 2660 * No cached dentry. Mounted dentries are pinned in the 2661 * cache, so that means that this dentry is probably 2662 * a symlink or the path doesn't actually point 2663 * to a mounted dentry. 2664 */ 2665 path.dentry = lookup_slow(&nd->last, dir, 2666 nd->flags | LOOKUP_NO_REVAL); 2667 if (IS_ERR(path.dentry)) 2668 return PTR_ERR(path.dentry); 2669 } 2670 } 2671 if (d_is_negative(path.dentry)) { 2672 dput(path.dentry); 2673 return -ENOENT; 2674 } 2675 path.mnt = nd->path.mnt; 2676 return step_into(nd, &path, 0, d_backing_inode(path.dentry), 0); 2677 } 2678 2679 /** 2680 * path_mountpoint - look up a path to be umounted 2681 * @nd: lookup context 2682 * @flags: lookup flags 2683 * @path: pointer to container for result 2684 * 2685 * Look up the given name, but don't attempt to revalidate the last component. 2686 * Returns 0 and "path" will be valid on success; Returns error otherwise. 2687 */ 2688 static int 2689 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path) 2690 { 2691 const char *s = path_init(nd, flags); 2692 int err; 2693 2694 while (!(err = link_path_walk(s, nd)) && 2695 (err = mountpoint_last(nd)) > 0) { 2696 s = trailing_symlink(nd); 2697 } 2698 if (!err) { 2699 *path = nd->path; 2700 nd->path.mnt = NULL; 2701 nd->path.dentry = NULL; 2702 follow_mount(path); 2703 } 2704 terminate_walk(nd); 2705 return err; 2706 } 2707 2708 static int 2709 filename_mountpoint(int dfd, struct filename *name, struct path *path, 2710 unsigned int flags) 2711 { 2712 struct nameidata nd; 2713 int error; 2714 if (IS_ERR(name)) 2715 return PTR_ERR(name); 2716 set_nameidata(&nd, dfd, name); 2717 error = path_mountpoint(&nd, flags | LOOKUP_RCU, path); 2718 if (unlikely(error == -ECHILD)) 2719 error = path_mountpoint(&nd, flags, path); 2720 if (unlikely(error == -ESTALE)) 2721 error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path); 2722 if (likely(!error)) 2723 audit_inode(name, path->dentry, 0); 2724 restore_nameidata(); 2725 putname(name); 2726 return error; 2727 } 2728 2729 /** 2730 * user_path_mountpoint_at - lookup a path from userland in order to umount it 2731 * @dfd: directory file descriptor 2732 * @name: pathname from userland 2733 * @flags: lookup flags 2734 * @path: pointer to container to hold result 2735 * 2736 * A umount is a special case for path walking. We're not actually interested 2737 * in the inode in this situation, and ESTALE errors can be a problem. We 2738 * simply want track down the dentry and vfsmount attached at the mountpoint 2739 * and avoid revalidating the last component. 2740 * 2741 * Returns 0 and populates "path" on success. 2742 */ 2743 int 2744 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags, 2745 struct path *path) 2746 { 2747 return filename_mountpoint(dfd, getname(name), path, flags); 2748 } 2749 2750 int 2751 kern_path_mountpoint(int dfd, const char *name, struct path *path, 2752 unsigned int flags) 2753 { 2754 return filename_mountpoint(dfd, getname_kernel(name), path, flags); 2755 } 2756 EXPORT_SYMBOL(kern_path_mountpoint); 2757 2758 int __check_sticky(struct inode *dir, struct inode *inode) 2759 { 2760 kuid_t fsuid = current_fsuid(); 2761 2762 if (uid_eq(inode->i_uid, fsuid)) 2763 return 0; 2764 if (uid_eq(dir->i_uid, fsuid)) 2765 return 0; 2766 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER); 2767 } 2768 EXPORT_SYMBOL(__check_sticky); 2769 2770 /* 2771 * Check whether we can remove a link victim from directory dir, check 2772 * whether the type of victim is right. 2773 * 1. We can't do it if dir is read-only (done in permission()) 2774 * 2. We should have write and exec permissions on dir 2775 * 3. We can't remove anything from append-only dir 2776 * 4. We can't do anything with immutable dir (done in permission()) 2777 * 5. If the sticky bit on dir is set we should either 2778 * a. be owner of dir, or 2779 * b. be owner of victim, or 2780 * c. have CAP_FOWNER capability 2781 * 6. If the victim is append-only or immutable we can't do antyhing with 2782 * links pointing to it. 2783 * 7. If the victim has an unknown uid or gid we can't change the inode. 2784 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR. 2785 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR. 2786 * 10. We can't remove a root or mountpoint. 2787 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by 2788 * nfs_async_unlink(). 2789 */ 2790 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir) 2791 { 2792 struct inode *inode = d_backing_inode(victim); 2793 int error; 2794 2795 if (d_is_negative(victim)) 2796 return -ENOENT; 2797 BUG_ON(!inode); 2798 2799 BUG_ON(victim->d_parent->d_inode != dir); 2800 2801 /* Inode writeback is not safe when the uid or gid are invalid. */ 2802 if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid)) 2803 return -EOVERFLOW; 2804 2805 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 2806 2807 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 2808 if (error) 2809 return error; 2810 if (IS_APPEND(dir)) 2811 return -EPERM; 2812 2813 if (check_sticky(dir, inode) || IS_APPEND(inode) || 2814 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode)) 2815 return -EPERM; 2816 if (isdir) { 2817 if (!d_is_dir(victim)) 2818 return -ENOTDIR; 2819 if (IS_ROOT(victim)) 2820 return -EBUSY; 2821 } else if (d_is_dir(victim)) 2822 return -EISDIR; 2823 if (IS_DEADDIR(dir)) 2824 return -ENOENT; 2825 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 2826 return -EBUSY; 2827 return 0; 2828 } 2829 2830 /* Check whether we can create an object with dentry child in directory 2831 * dir. 2832 * 1. We can't do it if child already exists (open has special treatment for 2833 * this case, but since we are inlined it's OK) 2834 * 2. We can't do it if dir is read-only (done in permission()) 2835 * 3. We can't do it if the fs can't represent the fsuid or fsgid. 2836 * 4. We should have write and exec permissions on dir 2837 * 5. We can't do it if dir is immutable (done in permission()) 2838 */ 2839 static inline int may_create(struct inode *dir, struct dentry *child) 2840 { 2841 struct user_namespace *s_user_ns; 2842 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE); 2843 if (child->d_inode) 2844 return -EEXIST; 2845 if (IS_DEADDIR(dir)) 2846 return -ENOENT; 2847 s_user_ns = dir->i_sb->s_user_ns; 2848 if (!kuid_has_mapping(s_user_ns, current_fsuid()) || 2849 !kgid_has_mapping(s_user_ns, current_fsgid())) 2850 return -EOVERFLOW; 2851 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 2852 } 2853 2854 /* 2855 * p1 and p2 should be directories on the same fs. 2856 */ 2857 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 2858 { 2859 struct dentry *p; 2860 2861 if (p1 == p2) { 2862 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2863 return NULL; 2864 } 2865 2866 mutex_lock(&p1->d_sb->s_vfs_rename_mutex); 2867 2868 p = d_ancestor(p2, p1); 2869 if (p) { 2870 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT); 2871 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD); 2872 return p; 2873 } 2874 2875 p = d_ancestor(p1, p2); 2876 if (p) { 2877 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2878 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD); 2879 return p; 2880 } 2881 2882 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2883 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2); 2884 return NULL; 2885 } 2886 EXPORT_SYMBOL(lock_rename); 2887 2888 void unlock_rename(struct dentry *p1, struct dentry *p2) 2889 { 2890 inode_unlock(p1->d_inode); 2891 if (p1 != p2) { 2892 inode_unlock(p2->d_inode); 2893 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex); 2894 } 2895 } 2896 EXPORT_SYMBOL(unlock_rename); 2897 2898 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2899 bool want_excl) 2900 { 2901 int error = may_create(dir, dentry); 2902 if (error) 2903 return error; 2904 2905 if (!dir->i_op->create) 2906 return -EACCES; /* shouldn't it be ENOSYS? */ 2907 mode &= S_IALLUGO; 2908 mode |= S_IFREG; 2909 error = security_inode_create(dir, dentry, mode); 2910 if (error) 2911 return error; 2912 error = dir->i_op->create(dir, dentry, mode, want_excl); 2913 if (!error) 2914 fsnotify_create(dir, dentry); 2915 return error; 2916 } 2917 EXPORT_SYMBOL(vfs_create); 2918 2919 int vfs_mkobj(struct dentry *dentry, umode_t mode, 2920 int (*f)(struct dentry *, umode_t, void *), 2921 void *arg) 2922 { 2923 struct inode *dir = dentry->d_parent->d_inode; 2924 int error = may_create(dir, dentry); 2925 if (error) 2926 return error; 2927 2928 mode &= S_IALLUGO; 2929 mode |= S_IFREG; 2930 error = security_inode_create(dir, dentry, mode); 2931 if (error) 2932 return error; 2933 error = f(dentry, mode, arg); 2934 if (!error) 2935 fsnotify_create(dir, dentry); 2936 return error; 2937 } 2938 EXPORT_SYMBOL(vfs_mkobj); 2939 2940 bool may_open_dev(const struct path *path) 2941 { 2942 return !(path->mnt->mnt_flags & MNT_NODEV) && 2943 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV); 2944 } 2945 2946 static int may_open(const struct path *path, int acc_mode, int flag) 2947 { 2948 struct dentry *dentry = path->dentry; 2949 struct inode *inode = dentry->d_inode; 2950 int error; 2951 2952 if (!inode) 2953 return -ENOENT; 2954 2955 switch (inode->i_mode & S_IFMT) { 2956 case S_IFLNK: 2957 return -ELOOP; 2958 case S_IFDIR: 2959 if (acc_mode & MAY_WRITE) 2960 return -EISDIR; 2961 break; 2962 case S_IFBLK: 2963 case S_IFCHR: 2964 if (!may_open_dev(path)) 2965 return -EACCES; 2966 /*FALLTHRU*/ 2967 case S_IFIFO: 2968 case S_IFSOCK: 2969 flag &= ~O_TRUNC; 2970 break; 2971 } 2972 2973 error = inode_permission(inode, MAY_OPEN | acc_mode); 2974 if (error) 2975 return error; 2976 2977 /* 2978 * An append-only file must be opened in append mode for writing. 2979 */ 2980 if (IS_APPEND(inode)) { 2981 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 2982 return -EPERM; 2983 if (flag & O_TRUNC) 2984 return -EPERM; 2985 } 2986 2987 /* O_NOATIME can only be set by the owner or superuser */ 2988 if (flag & O_NOATIME && !inode_owner_or_capable(inode)) 2989 return -EPERM; 2990 2991 return 0; 2992 } 2993 2994 static int handle_truncate(struct file *filp) 2995 { 2996 const struct path *path = &filp->f_path; 2997 struct inode *inode = path->dentry->d_inode; 2998 int error = get_write_access(inode); 2999 if (error) 3000 return error; 3001 /* 3002 * Refuse to truncate files with mandatory locks held on them. 3003 */ 3004 error = locks_verify_locked(filp); 3005 if (!error) 3006 error = security_path_truncate(path); 3007 if (!error) { 3008 error = do_truncate(path->dentry, 0, 3009 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 3010 filp); 3011 } 3012 put_write_access(inode); 3013 return error; 3014 } 3015 3016 static inline int open_to_namei_flags(int flag) 3017 { 3018 if ((flag & O_ACCMODE) == 3) 3019 flag--; 3020 return flag; 3021 } 3022 3023 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode) 3024 { 3025 struct user_namespace *s_user_ns; 3026 int error = security_path_mknod(dir, dentry, mode, 0); 3027 if (error) 3028 return error; 3029 3030 s_user_ns = dir->dentry->d_sb->s_user_ns; 3031 if (!kuid_has_mapping(s_user_ns, current_fsuid()) || 3032 !kgid_has_mapping(s_user_ns, current_fsgid())) 3033 return -EOVERFLOW; 3034 3035 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC); 3036 if (error) 3037 return error; 3038 3039 return security_inode_create(dir->dentry->d_inode, dentry, mode); 3040 } 3041 3042 /* 3043 * Attempt to atomically look up, create and open a file from a negative 3044 * dentry. 3045 * 3046 * Returns 0 if successful. The file will have been created and attached to 3047 * @file by the filesystem calling finish_open(). 3048 * 3049 * If the file was looked up only or didn't need creating, FMODE_OPENED won't 3050 * be set. The caller will need to perform the open themselves. @path will 3051 * have been updated to point to the new dentry. This may be negative. 3052 * 3053 * Returns an error code otherwise. 3054 */ 3055 static int atomic_open(struct nameidata *nd, struct dentry *dentry, 3056 struct path *path, struct file *file, 3057 const struct open_flags *op, 3058 int open_flag, umode_t mode) 3059 { 3060 struct dentry *const DENTRY_NOT_SET = (void *) -1UL; 3061 struct inode *dir = nd->path.dentry->d_inode; 3062 int error; 3063 3064 if (!(~open_flag & (O_EXCL | O_CREAT))) /* both O_EXCL and O_CREAT */ 3065 open_flag &= ~O_TRUNC; 3066 3067 if (nd->flags & LOOKUP_DIRECTORY) 3068 open_flag |= O_DIRECTORY; 3069 3070 file->f_path.dentry = DENTRY_NOT_SET; 3071 file->f_path.mnt = nd->path.mnt; 3072 error = dir->i_op->atomic_open(dir, dentry, file, 3073 open_to_namei_flags(open_flag), mode); 3074 d_lookup_done(dentry); 3075 if (!error) { 3076 if (file->f_mode & FMODE_OPENED) { 3077 /* 3078 * We didn't have the inode before the open, so check open 3079 * permission here. 3080 */ 3081 int acc_mode = op->acc_mode; 3082 if (file->f_mode & FMODE_CREATED) { 3083 WARN_ON(!(open_flag & O_CREAT)); 3084 fsnotify_create(dir, dentry); 3085 acc_mode = 0; 3086 } 3087 error = may_open(&file->f_path, acc_mode, open_flag); 3088 if (WARN_ON(error > 0)) 3089 error = -EINVAL; 3090 } else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) { 3091 error = -EIO; 3092 } else { 3093 if (file->f_path.dentry) { 3094 dput(dentry); 3095 dentry = file->f_path.dentry; 3096 } 3097 if (file->f_mode & FMODE_CREATED) 3098 fsnotify_create(dir, dentry); 3099 if (unlikely(d_is_negative(dentry))) { 3100 error = -ENOENT; 3101 } else { 3102 path->dentry = dentry; 3103 path->mnt = nd->path.mnt; 3104 return 0; 3105 } 3106 } 3107 } 3108 dput(dentry); 3109 return error; 3110 } 3111 3112 /* 3113 * Look up and maybe create and open the last component. 3114 * 3115 * Must be called with parent locked (exclusive in O_CREAT case). 3116 * 3117 * Returns 0 on success, that is, if 3118 * the file was successfully atomically created (if necessary) and opened, or 3119 * the file was not completely opened at this time, though lookups and 3120 * creations were performed. 3121 * These case are distinguished by presence of FMODE_OPENED on file->f_mode. 3122 * In the latter case dentry returned in @path might be negative if O_CREAT 3123 * hadn't been specified. 3124 * 3125 * An error code is returned on failure. 3126 */ 3127 static int lookup_open(struct nameidata *nd, struct path *path, 3128 struct file *file, 3129 const struct open_flags *op, 3130 bool got_write) 3131 { 3132 struct dentry *dir = nd->path.dentry; 3133 struct inode *dir_inode = dir->d_inode; 3134 int open_flag = op->open_flag; 3135 struct dentry *dentry; 3136 int error, create_error = 0; 3137 umode_t mode = op->mode; 3138 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 3139 3140 if (unlikely(IS_DEADDIR(dir_inode))) 3141 return -ENOENT; 3142 3143 file->f_mode &= ~FMODE_CREATED; 3144 dentry = d_lookup(dir, &nd->last); 3145 for (;;) { 3146 if (!dentry) { 3147 dentry = d_alloc_parallel(dir, &nd->last, &wq); 3148 if (IS_ERR(dentry)) 3149 return PTR_ERR(dentry); 3150 } 3151 if (d_in_lookup(dentry)) 3152 break; 3153 3154 error = d_revalidate(dentry, nd->flags); 3155 if (likely(error > 0)) 3156 break; 3157 if (error) 3158 goto out_dput; 3159 d_invalidate(dentry); 3160 dput(dentry); 3161 dentry = NULL; 3162 } 3163 if (dentry->d_inode) { 3164 /* Cached positive dentry: will open in f_op->open */ 3165 goto out_no_open; 3166 } 3167 3168 /* 3169 * Checking write permission is tricky, bacuse we don't know if we are 3170 * going to actually need it: O_CREAT opens should work as long as the 3171 * file exists. But checking existence breaks atomicity. The trick is 3172 * to check access and if not granted clear O_CREAT from the flags. 3173 * 3174 * Another problem is returing the "right" error value (e.g. for an 3175 * O_EXCL open we want to return EEXIST not EROFS). 3176 */ 3177 if (open_flag & O_CREAT) { 3178 if (!IS_POSIXACL(dir->d_inode)) 3179 mode &= ~current_umask(); 3180 if (unlikely(!got_write)) { 3181 create_error = -EROFS; 3182 open_flag &= ~O_CREAT; 3183 if (open_flag & (O_EXCL | O_TRUNC)) 3184 goto no_open; 3185 /* No side effects, safe to clear O_CREAT */ 3186 } else { 3187 create_error = may_o_create(&nd->path, dentry, mode); 3188 if (create_error) { 3189 open_flag &= ~O_CREAT; 3190 if (open_flag & O_EXCL) 3191 goto no_open; 3192 } 3193 } 3194 } else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) && 3195 unlikely(!got_write)) { 3196 /* 3197 * No O_CREATE -> atomicity not a requirement -> fall 3198 * back to lookup + open 3199 */ 3200 goto no_open; 3201 } 3202 3203 if (dir_inode->i_op->atomic_open) { 3204 error = atomic_open(nd, dentry, path, file, op, open_flag, 3205 mode); 3206 if (unlikely(error == -ENOENT) && create_error) 3207 error = create_error; 3208 return error; 3209 } 3210 3211 no_open: 3212 if (d_in_lookup(dentry)) { 3213 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry, 3214 nd->flags); 3215 d_lookup_done(dentry); 3216 if (unlikely(res)) { 3217 if (IS_ERR(res)) { 3218 error = PTR_ERR(res); 3219 goto out_dput; 3220 } 3221 dput(dentry); 3222 dentry = res; 3223 } 3224 } 3225 3226 /* Negative dentry, just create the file */ 3227 if (!dentry->d_inode && (open_flag & O_CREAT)) { 3228 file->f_mode |= FMODE_CREATED; 3229 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE); 3230 if (!dir_inode->i_op->create) { 3231 error = -EACCES; 3232 goto out_dput; 3233 } 3234 error = dir_inode->i_op->create(dir_inode, dentry, mode, 3235 open_flag & O_EXCL); 3236 if (error) 3237 goto out_dput; 3238 fsnotify_create(dir_inode, dentry); 3239 } 3240 if (unlikely(create_error) && !dentry->d_inode) { 3241 error = create_error; 3242 goto out_dput; 3243 } 3244 out_no_open: 3245 path->dentry = dentry; 3246 path->mnt = nd->path.mnt; 3247 return 0; 3248 3249 out_dput: 3250 dput(dentry); 3251 return error; 3252 } 3253 3254 /* 3255 * Handle the last step of open() 3256 */ 3257 static int do_last(struct nameidata *nd, 3258 struct file *file, const struct open_flags *op) 3259 { 3260 struct dentry *dir = nd->path.dentry; 3261 int open_flag = op->open_flag; 3262 bool will_truncate = (open_flag & O_TRUNC) != 0; 3263 bool got_write = false; 3264 int acc_mode = op->acc_mode; 3265 unsigned seq; 3266 struct inode *inode; 3267 struct path path; 3268 int error; 3269 3270 nd->flags &= ~LOOKUP_PARENT; 3271 nd->flags |= op->intent; 3272 3273 if (nd->last_type != LAST_NORM) { 3274 error = handle_dots(nd, nd->last_type); 3275 if (unlikely(error)) 3276 return error; 3277 goto finish_open; 3278 } 3279 3280 if (!(open_flag & O_CREAT)) { 3281 if (nd->last.name[nd->last.len]) 3282 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 3283 /* we _can_ be in RCU mode here */ 3284 error = lookup_fast(nd, &path, &inode, &seq); 3285 if (likely(error > 0)) 3286 goto finish_lookup; 3287 3288 if (error < 0) 3289 return error; 3290 3291 BUG_ON(nd->inode != dir->d_inode); 3292 BUG_ON(nd->flags & LOOKUP_RCU); 3293 } else { 3294 /* create side of things */ 3295 /* 3296 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED 3297 * has been cleared when we got to the last component we are 3298 * about to look up 3299 */ 3300 error = complete_walk(nd); 3301 if (error) 3302 return error; 3303 3304 audit_inode(nd->name, dir, LOOKUP_PARENT); 3305 /* trailing slashes? */ 3306 if (unlikely(nd->last.name[nd->last.len])) 3307 return -EISDIR; 3308 } 3309 3310 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) { 3311 error = mnt_want_write(nd->path.mnt); 3312 if (!error) 3313 got_write = true; 3314 /* 3315 * do _not_ fail yet - we might not need that or fail with 3316 * a different error; let lookup_open() decide; we'll be 3317 * dropping this one anyway. 3318 */ 3319 } 3320 if (open_flag & O_CREAT) 3321 inode_lock(dir->d_inode); 3322 else 3323 inode_lock_shared(dir->d_inode); 3324 error = lookup_open(nd, &path, file, op, got_write); 3325 if (open_flag & O_CREAT) 3326 inode_unlock(dir->d_inode); 3327 else 3328 inode_unlock_shared(dir->d_inode); 3329 3330 if (error) 3331 goto out; 3332 3333 if (file->f_mode & FMODE_OPENED) { 3334 if ((file->f_mode & FMODE_CREATED) || 3335 !S_ISREG(file_inode(file)->i_mode)) 3336 will_truncate = false; 3337 3338 audit_inode(nd->name, file->f_path.dentry, 0); 3339 goto opened; 3340 } 3341 3342 if (file->f_mode & FMODE_CREATED) { 3343 /* Don't check for write permission, don't truncate */ 3344 open_flag &= ~O_TRUNC; 3345 will_truncate = false; 3346 acc_mode = 0; 3347 path_to_nameidata(&path, nd); 3348 goto finish_open_created; 3349 } 3350 3351 /* 3352 * If atomic_open() acquired write access it is dropped now due to 3353 * possible mount and symlink following (this might be optimized away if 3354 * necessary...) 3355 */ 3356 if (got_write) { 3357 mnt_drop_write(nd->path.mnt); 3358 got_write = false; 3359 } 3360 3361 error = follow_managed(&path, nd); 3362 if (unlikely(error < 0)) 3363 return error; 3364 3365 if (unlikely(d_is_negative(path.dentry))) { 3366 path_to_nameidata(&path, nd); 3367 return -ENOENT; 3368 } 3369 3370 /* 3371 * create/update audit record if it already exists. 3372 */ 3373 audit_inode(nd->name, path.dentry, 0); 3374 3375 if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) { 3376 path_to_nameidata(&path, nd); 3377 return -EEXIST; 3378 } 3379 3380 seq = 0; /* out of RCU mode, so the value doesn't matter */ 3381 inode = d_backing_inode(path.dentry); 3382 finish_lookup: 3383 error = step_into(nd, &path, 0, inode, seq); 3384 if (unlikely(error)) 3385 return error; 3386 finish_open: 3387 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */ 3388 error = complete_walk(nd); 3389 if (error) 3390 return error; 3391 audit_inode(nd->name, nd->path.dentry, 0); 3392 if (open_flag & O_CREAT) { 3393 error = -EISDIR; 3394 if (d_is_dir(nd->path.dentry)) 3395 goto out; 3396 error = may_create_in_sticky(dir, 3397 d_backing_inode(nd->path.dentry)); 3398 if (unlikely(error)) 3399 goto out; 3400 } 3401 error = -ENOTDIR; 3402 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry)) 3403 goto out; 3404 if (!d_is_reg(nd->path.dentry)) 3405 will_truncate = false; 3406 3407 if (will_truncate) { 3408 error = mnt_want_write(nd->path.mnt); 3409 if (error) 3410 goto out; 3411 got_write = true; 3412 } 3413 finish_open_created: 3414 error = may_open(&nd->path, acc_mode, open_flag); 3415 if (error) 3416 goto out; 3417 BUG_ON(file->f_mode & FMODE_OPENED); /* once it's opened, it's opened */ 3418 error = vfs_open(&nd->path, file); 3419 if (error) 3420 goto out; 3421 opened: 3422 error = ima_file_check(file, op->acc_mode); 3423 if (!error && will_truncate) 3424 error = handle_truncate(file); 3425 out: 3426 if (unlikely(error > 0)) { 3427 WARN_ON(1); 3428 error = -EINVAL; 3429 } 3430 if (got_write) 3431 mnt_drop_write(nd->path.mnt); 3432 return error; 3433 } 3434 3435 struct dentry *vfs_tmpfile(struct dentry *dentry, umode_t mode, int open_flag) 3436 { 3437 struct dentry *child = NULL; 3438 struct inode *dir = dentry->d_inode; 3439 struct inode *inode; 3440 int error; 3441 3442 /* we want directory to be writable */ 3443 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 3444 if (error) 3445 goto out_err; 3446 error = -EOPNOTSUPP; 3447 if (!dir->i_op->tmpfile) 3448 goto out_err; 3449 error = -ENOMEM; 3450 child = d_alloc(dentry, &slash_name); 3451 if (unlikely(!child)) 3452 goto out_err; 3453 error = dir->i_op->tmpfile(dir, child, mode); 3454 if (error) 3455 goto out_err; 3456 error = -ENOENT; 3457 inode = child->d_inode; 3458 if (unlikely(!inode)) 3459 goto out_err; 3460 if (!(open_flag & O_EXCL)) { 3461 spin_lock(&inode->i_lock); 3462 inode->i_state |= I_LINKABLE; 3463 spin_unlock(&inode->i_lock); 3464 } 3465 return child; 3466 3467 out_err: 3468 dput(child); 3469 return ERR_PTR(error); 3470 } 3471 EXPORT_SYMBOL(vfs_tmpfile); 3472 3473 static int do_tmpfile(struct nameidata *nd, unsigned flags, 3474 const struct open_flags *op, 3475 struct file *file) 3476 { 3477 struct dentry *child; 3478 struct path path; 3479 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path); 3480 if (unlikely(error)) 3481 return error; 3482 error = mnt_want_write(path.mnt); 3483 if (unlikely(error)) 3484 goto out; 3485 child = vfs_tmpfile(path.dentry, op->mode, op->open_flag); 3486 error = PTR_ERR(child); 3487 if (IS_ERR(child)) 3488 goto out2; 3489 dput(path.dentry); 3490 path.dentry = child; 3491 audit_inode(nd->name, child, 0); 3492 /* Don't check for other permissions, the inode was just created */ 3493 error = may_open(&path, 0, op->open_flag); 3494 if (error) 3495 goto out2; 3496 file->f_path.mnt = path.mnt; 3497 error = finish_open(file, child, NULL); 3498 out2: 3499 mnt_drop_write(path.mnt); 3500 out: 3501 path_put(&path); 3502 return error; 3503 } 3504 3505 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file) 3506 { 3507 struct path path; 3508 int error = path_lookupat(nd, flags, &path); 3509 if (!error) { 3510 audit_inode(nd->name, path.dentry, 0); 3511 error = vfs_open(&path, file); 3512 path_put(&path); 3513 } 3514 return error; 3515 } 3516 3517 static struct file *path_openat(struct nameidata *nd, 3518 const struct open_flags *op, unsigned flags) 3519 { 3520 struct file *file; 3521 int error; 3522 3523 file = alloc_empty_file(op->open_flag, current_cred()); 3524 if (IS_ERR(file)) 3525 return file; 3526 3527 if (unlikely(file->f_flags & __O_TMPFILE)) { 3528 error = do_tmpfile(nd, flags, op, file); 3529 } else if (unlikely(file->f_flags & O_PATH)) { 3530 error = do_o_path(nd, flags, file); 3531 } else { 3532 const char *s = path_init(nd, flags); 3533 while (!(error = link_path_walk(s, nd)) && 3534 (error = do_last(nd, file, op)) > 0) { 3535 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL); 3536 s = trailing_symlink(nd); 3537 } 3538 terminate_walk(nd); 3539 } 3540 if (likely(!error)) { 3541 if (likely(file->f_mode & FMODE_OPENED)) 3542 return file; 3543 WARN_ON(1); 3544 error = -EINVAL; 3545 } 3546 fput(file); 3547 if (error == -EOPENSTALE) { 3548 if (flags & LOOKUP_RCU) 3549 error = -ECHILD; 3550 else 3551 error = -ESTALE; 3552 } 3553 return ERR_PTR(error); 3554 } 3555 3556 struct file *do_filp_open(int dfd, struct filename *pathname, 3557 const struct open_flags *op) 3558 { 3559 struct nameidata nd; 3560 int flags = op->lookup_flags; 3561 struct file *filp; 3562 3563 set_nameidata(&nd, dfd, pathname); 3564 filp = path_openat(&nd, op, flags | LOOKUP_RCU); 3565 if (unlikely(filp == ERR_PTR(-ECHILD))) 3566 filp = path_openat(&nd, op, flags); 3567 if (unlikely(filp == ERR_PTR(-ESTALE))) 3568 filp = path_openat(&nd, op, flags | LOOKUP_REVAL); 3569 restore_nameidata(); 3570 return filp; 3571 } 3572 3573 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt, 3574 const char *name, const struct open_flags *op) 3575 { 3576 struct nameidata nd; 3577 struct file *file; 3578 struct filename *filename; 3579 int flags = op->lookup_flags | LOOKUP_ROOT; 3580 3581 nd.root.mnt = mnt; 3582 nd.root.dentry = dentry; 3583 3584 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN) 3585 return ERR_PTR(-ELOOP); 3586 3587 filename = getname_kernel(name); 3588 if (IS_ERR(filename)) 3589 return ERR_CAST(filename); 3590 3591 set_nameidata(&nd, -1, filename); 3592 file = path_openat(&nd, op, flags | LOOKUP_RCU); 3593 if (unlikely(file == ERR_PTR(-ECHILD))) 3594 file = path_openat(&nd, op, flags); 3595 if (unlikely(file == ERR_PTR(-ESTALE))) 3596 file = path_openat(&nd, op, flags | LOOKUP_REVAL); 3597 restore_nameidata(); 3598 putname(filename); 3599 return file; 3600 } 3601 3602 static struct dentry *filename_create(int dfd, struct filename *name, 3603 struct path *path, unsigned int lookup_flags) 3604 { 3605 struct dentry *dentry = ERR_PTR(-EEXIST); 3606 struct qstr last; 3607 int type; 3608 int err2; 3609 int error; 3610 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY); 3611 3612 /* 3613 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any 3614 * other flags passed in are ignored! 3615 */ 3616 lookup_flags &= LOOKUP_REVAL; 3617 3618 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type); 3619 if (IS_ERR(name)) 3620 return ERR_CAST(name); 3621 3622 /* 3623 * Yucky last component or no last component at all? 3624 * (foo/., foo/.., /////) 3625 */ 3626 if (unlikely(type != LAST_NORM)) 3627 goto out; 3628 3629 /* don't fail immediately if it's r/o, at least try to report other errors */ 3630 err2 = mnt_want_write(path->mnt); 3631 /* 3632 * Do the final lookup. 3633 */ 3634 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL; 3635 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 3636 dentry = __lookup_hash(&last, path->dentry, lookup_flags); 3637 if (IS_ERR(dentry)) 3638 goto unlock; 3639 3640 error = -EEXIST; 3641 if (d_is_positive(dentry)) 3642 goto fail; 3643 3644 /* 3645 * Special case - lookup gave negative, but... we had foo/bar/ 3646 * From the vfs_mknod() POV we just have a negative dentry - 3647 * all is fine. Let's be bastards - you had / on the end, you've 3648 * been asking for (non-existent) directory. -ENOENT for you. 3649 */ 3650 if (unlikely(!is_dir && last.name[last.len])) { 3651 error = -ENOENT; 3652 goto fail; 3653 } 3654 if (unlikely(err2)) { 3655 error = err2; 3656 goto fail; 3657 } 3658 putname(name); 3659 return dentry; 3660 fail: 3661 dput(dentry); 3662 dentry = ERR_PTR(error); 3663 unlock: 3664 inode_unlock(path->dentry->d_inode); 3665 if (!err2) 3666 mnt_drop_write(path->mnt); 3667 out: 3668 path_put(path); 3669 putname(name); 3670 return dentry; 3671 } 3672 3673 struct dentry *kern_path_create(int dfd, const char *pathname, 3674 struct path *path, unsigned int lookup_flags) 3675 { 3676 return filename_create(dfd, getname_kernel(pathname), 3677 path, lookup_flags); 3678 } 3679 EXPORT_SYMBOL(kern_path_create); 3680 3681 void done_path_create(struct path *path, struct dentry *dentry) 3682 { 3683 dput(dentry); 3684 inode_unlock(path->dentry->d_inode); 3685 mnt_drop_write(path->mnt); 3686 path_put(path); 3687 } 3688 EXPORT_SYMBOL(done_path_create); 3689 3690 inline struct dentry *user_path_create(int dfd, const char __user *pathname, 3691 struct path *path, unsigned int lookup_flags) 3692 { 3693 return filename_create(dfd, getname(pathname), path, lookup_flags); 3694 } 3695 EXPORT_SYMBOL(user_path_create); 3696 3697 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 3698 { 3699 int error = may_create(dir, dentry); 3700 3701 if (error) 3702 return error; 3703 3704 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD)) 3705 return -EPERM; 3706 3707 if (!dir->i_op->mknod) 3708 return -EPERM; 3709 3710 error = devcgroup_inode_mknod(mode, dev); 3711 if (error) 3712 return error; 3713 3714 error = security_inode_mknod(dir, dentry, mode, dev); 3715 if (error) 3716 return error; 3717 3718 error = dir->i_op->mknod(dir, dentry, mode, dev); 3719 if (!error) 3720 fsnotify_create(dir, dentry); 3721 return error; 3722 } 3723 EXPORT_SYMBOL(vfs_mknod); 3724 3725 static int may_mknod(umode_t mode) 3726 { 3727 switch (mode & S_IFMT) { 3728 case S_IFREG: 3729 case S_IFCHR: 3730 case S_IFBLK: 3731 case S_IFIFO: 3732 case S_IFSOCK: 3733 case 0: /* zero mode translates to S_IFREG */ 3734 return 0; 3735 case S_IFDIR: 3736 return -EPERM; 3737 default: 3738 return -EINVAL; 3739 } 3740 } 3741 3742 long do_mknodat(int dfd, const char __user *filename, umode_t mode, 3743 unsigned int dev) 3744 { 3745 struct dentry *dentry; 3746 struct path path; 3747 int error; 3748 unsigned int lookup_flags = 0; 3749 3750 error = may_mknod(mode); 3751 if (error) 3752 return error; 3753 retry: 3754 dentry = user_path_create(dfd, filename, &path, lookup_flags); 3755 if (IS_ERR(dentry)) 3756 return PTR_ERR(dentry); 3757 3758 if (!IS_POSIXACL(path.dentry->d_inode)) 3759 mode &= ~current_umask(); 3760 error = security_path_mknod(&path, dentry, mode, dev); 3761 if (error) 3762 goto out; 3763 switch (mode & S_IFMT) { 3764 case 0: case S_IFREG: 3765 error = vfs_create(path.dentry->d_inode,dentry,mode,true); 3766 if (!error) 3767 ima_post_path_mknod(dentry); 3768 break; 3769 case S_IFCHR: case S_IFBLK: 3770 error = vfs_mknod(path.dentry->d_inode,dentry,mode, 3771 new_decode_dev(dev)); 3772 break; 3773 case S_IFIFO: case S_IFSOCK: 3774 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0); 3775 break; 3776 } 3777 out: 3778 done_path_create(&path, dentry); 3779 if (retry_estale(error, lookup_flags)) { 3780 lookup_flags |= LOOKUP_REVAL; 3781 goto retry; 3782 } 3783 return error; 3784 } 3785 3786 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode, 3787 unsigned int, dev) 3788 { 3789 return do_mknodat(dfd, filename, mode, dev); 3790 } 3791 3792 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev) 3793 { 3794 return do_mknodat(AT_FDCWD, filename, mode, dev); 3795 } 3796 3797 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 3798 { 3799 int error = may_create(dir, dentry); 3800 unsigned max_links = dir->i_sb->s_max_links; 3801 3802 if (error) 3803 return error; 3804 3805 if (!dir->i_op->mkdir) 3806 return -EPERM; 3807 3808 mode &= (S_IRWXUGO|S_ISVTX); 3809 error = security_inode_mkdir(dir, dentry, mode); 3810 if (error) 3811 return error; 3812 3813 if (max_links && dir->i_nlink >= max_links) 3814 return -EMLINK; 3815 3816 error = dir->i_op->mkdir(dir, dentry, mode); 3817 if (!error) 3818 fsnotify_mkdir(dir, dentry); 3819 return error; 3820 } 3821 EXPORT_SYMBOL(vfs_mkdir); 3822 3823 long do_mkdirat(int dfd, const char __user *pathname, umode_t mode) 3824 { 3825 struct dentry *dentry; 3826 struct path path; 3827 int error; 3828 unsigned int lookup_flags = LOOKUP_DIRECTORY; 3829 3830 retry: 3831 dentry = user_path_create(dfd, pathname, &path, lookup_flags); 3832 if (IS_ERR(dentry)) 3833 return PTR_ERR(dentry); 3834 3835 if (!IS_POSIXACL(path.dentry->d_inode)) 3836 mode &= ~current_umask(); 3837 error = security_path_mkdir(&path, dentry, mode); 3838 if (!error) 3839 error = vfs_mkdir(path.dentry->d_inode, dentry, mode); 3840 done_path_create(&path, dentry); 3841 if (retry_estale(error, lookup_flags)) { 3842 lookup_flags |= LOOKUP_REVAL; 3843 goto retry; 3844 } 3845 return error; 3846 } 3847 3848 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode) 3849 { 3850 return do_mkdirat(dfd, pathname, mode); 3851 } 3852 3853 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode) 3854 { 3855 return do_mkdirat(AT_FDCWD, pathname, mode); 3856 } 3857 3858 int vfs_rmdir(struct inode *dir, struct dentry *dentry) 3859 { 3860 int error = may_delete(dir, dentry, 1); 3861 3862 if (error) 3863 return error; 3864 3865 if (!dir->i_op->rmdir) 3866 return -EPERM; 3867 3868 dget(dentry); 3869 inode_lock(dentry->d_inode); 3870 3871 error = -EBUSY; 3872 if (is_local_mountpoint(dentry)) 3873 goto out; 3874 3875 error = security_inode_rmdir(dir, dentry); 3876 if (error) 3877 goto out; 3878 3879 error = dir->i_op->rmdir(dir, dentry); 3880 if (error) 3881 goto out; 3882 3883 shrink_dcache_parent(dentry); 3884 dentry->d_inode->i_flags |= S_DEAD; 3885 dont_mount(dentry); 3886 detach_mounts(dentry); 3887 3888 out: 3889 inode_unlock(dentry->d_inode); 3890 dput(dentry); 3891 if (!error) 3892 d_delete(dentry); 3893 return error; 3894 } 3895 EXPORT_SYMBOL(vfs_rmdir); 3896 3897 long do_rmdir(int dfd, const char __user *pathname) 3898 { 3899 int error = 0; 3900 struct filename *name; 3901 struct dentry *dentry; 3902 struct path path; 3903 struct qstr last; 3904 int type; 3905 unsigned int lookup_flags = 0; 3906 retry: 3907 name = filename_parentat(dfd, getname(pathname), lookup_flags, 3908 &path, &last, &type); 3909 if (IS_ERR(name)) 3910 return PTR_ERR(name); 3911 3912 switch (type) { 3913 case LAST_DOTDOT: 3914 error = -ENOTEMPTY; 3915 goto exit1; 3916 case LAST_DOT: 3917 error = -EINVAL; 3918 goto exit1; 3919 case LAST_ROOT: 3920 error = -EBUSY; 3921 goto exit1; 3922 } 3923 3924 error = mnt_want_write(path.mnt); 3925 if (error) 3926 goto exit1; 3927 3928 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 3929 dentry = __lookup_hash(&last, path.dentry, lookup_flags); 3930 error = PTR_ERR(dentry); 3931 if (IS_ERR(dentry)) 3932 goto exit2; 3933 if (!dentry->d_inode) { 3934 error = -ENOENT; 3935 goto exit3; 3936 } 3937 error = security_path_rmdir(&path, dentry); 3938 if (error) 3939 goto exit3; 3940 error = vfs_rmdir(path.dentry->d_inode, dentry); 3941 exit3: 3942 dput(dentry); 3943 exit2: 3944 inode_unlock(path.dentry->d_inode); 3945 mnt_drop_write(path.mnt); 3946 exit1: 3947 path_put(&path); 3948 putname(name); 3949 if (retry_estale(error, lookup_flags)) { 3950 lookup_flags |= LOOKUP_REVAL; 3951 goto retry; 3952 } 3953 return error; 3954 } 3955 3956 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 3957 { 3958 return do_rmdir(AT_FDCWD, pathname); 3959 } 3960 3961 /** 3962 * vfs_unlink - unlink a filesystem object 3963 * @dir: parent directory 3964 * @dentry: victim 3965 * @delegated_inode: returns victim inode, if the inode is delegated. 3966 * 3967 * The caller must hold dir->i_mutex. 3968 * 3969 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and 3970 * return a reference to the inode in delegated_inode. The caller 3971 * should then break the delegation on that inode and retry. Because 3972 * breaking a delegation may take a long time, the caller should drop 3973 * dir->i_mutex before doing so. 3974 * 3975 * Alternatively, a caller may pass NULL for delegated_inode. This may 3976 * be appropriate for callers that expect the underlying filesystem not 3977 * to be NFS exported. 3978 */ 3979 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode) 3980 { 3981 struct inode *target = dentry->d_inode; 3982 int error = may_delete(dir, dentry, 0); 3983 3984 if (error) 3985 return error; 3986 3987 if (!dir->i_op->unlink) 3988 return -EPERM; 3989 3990 inode_lock(target); 3991 if (is_local_mountpoint(dentry)) 3992 error = -EBUSY; 3993 else { 3994 error = security_inode_unlink(dir, dentry); 3995 if (!error) { 3996 error = try_break_deleg(target, delegated_inode); 3997 if (error) 3998 goto out; 3999 error = dir->i_op->unlink(dir, dentry); 4000 if (!error) { 4001 dont_mount(dentry); 4002 detach_mounts(dentry); 4003 } 4004 } 4005 } 4006 out: 4007 inode_unlock(target); 4008 4009 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 4010 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) { 4011 fsnotify_link_count(target); 4012 d_delete(dentry); 4013 } 4014 4015 return error; 4016 } 4017 EXPORT_SYMBOL(vfs_unlink); 4018 4019 /* 4020 * Make sure that the actual truncation of the file will occur outside its 4021 * directory's i_mutex. Truncate can take a long time if there is a lot of 4022 * writeout happening, and we don't want to prevent access to the directory 4023 * while waiting on the I/O. 4024 */ 4025 long do_unlinkat(int dfd, struct filename *name) 4026 { 4027 int error; 4028 struct dentry *dentry; 4029 struct path path; 4030 struct qstr last; 4031 int type; 4032 struct inode *inode = NULL; 4033 struct inode *delegated_inode = NULL; 4034 unsigned int lookup_flags = 0; 4035 retry: 4036 name = filename_parentat(dfd, name, lookup_flags, &path, &last, &type); 4037 if (IS_ERR(name)) 4038 return PTR_ERR(name); 4039 4040 error = -EISDIR; 4041 if (type != LAST_NORM) 4042 goto exit1; 4043 4044 error = mnt_want_write(path.mnt); 4045 if (error) 4046 goto exit1; 4047 retry_deleg: 4048 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 4049 dentry = __lookup_hash(&last, path.dentry, lookup_flags); 4050 error = PTR_ERR(dentry); 4051 if (!IS_ERR(dentry)) { 4052 /* Why not before? Because we want correct error value */ 4053 if (last.name[last.len]) 4054 goto slashes; 4055 inode = dentry->d_inode; 4056 if (d_is_negative(dentry)) 4057 goto slashes; 4058 ihold(inode); 4059 error = security_path_unlink(&path, dentry); 4060 if (error) 4061 goto exit2; 4062 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode); 4063 exit2: 4064 dput(dentry); 4065 } 4066 inode_unlock(path.dentry->d_inode); 4067 if (inode) 4068 iput(inode); /* truncate the inode here */ 4069 inode = NULL; 4070 if (delegated_inode) { 4071 error = break_deleg_wait(&delegated_inode); 4072 if (!error) 4073 goto retry_deleg; 4074 } 4075 mnt_drop_write(path.mnt); 4076 exit1: 4077 path_put(&path); 4078 if (retry_estale(error, lookup_flags)) { 4079 lookup_flags |= LOOKUP_REVAL; 4080 inode = NULL; 4081 goto retry; 4082 } 4083 putname(name); 4084 return error; 4085 4086 slashes: 4087 if (d_is_negative(dentry)) 4088 error = -ENOENT; 4089 else if (d_is_dir(dentry)) 4090 error = -EISDIR; 4091 else 4092 error = -ENOTDIR; 4093 goto exit2; 4094 } 4095 4096 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 4097 { 4098 if ((flag & ~AT_REMOVEDIR) != 0) 4099 return -EINVAL; 4100 4101 if (flag & AT_REMOVEDIR) 4102 return do_rmdir(dfd, pathname); 4103 4104 return do_unlinkat(dfd, getname(pathname)); 4105 } 4106 4107 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 4108 { 4109 return do_unlinkat(AT_FDCWD, getname(pathname)); 4110 } 4111 4112 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname) 4113 { 4114 int error = may_create(dir, dentry); 4115 4116 if (error) 4117 return error; 4118 4119 if (!dir->i_op->symlink) 4120 return -EPERM; 4121 4122 error = security_inode_symlink(dir, dentry, oldname); 4123 if (error) 4124 return error; 4125 4126 error = dir->i_op->symlink(dir, dentry, oldname); 4127 if (!error) 4128 fsnotify_create(dir, dentry); 4129 return error; 4130 } 4131 EXPORT_SYMBOL(vfs_symlink); 4132 4133 long do_symlinkat(const char __user *oldname, int newdfd, 4134 const char __user *newname) 4135 { 4136 int error; 4137 struct filename *from; 4138 struct dentry *dentry; 4139 struct path path; 4140 unsigned int lookup_flags = 0; 4141 4142 from = getname(oldname); 4143 if (IS_ERR(from)) 4144 return PTR_ERR(from); 4145 retry: 4146 dentry = user_path_create(newdfd, newname, &path, lookup_flags); 4147 error = PTR_ERR(dentry); 4148 if (IS_ERR(dentry)) 4149 goto out_putname; 4150 4151 error = security_path_symlink(&path, dentry, from->name); 4152 if (!error) 4153 error = vfs_symlink(path.dentry->d_inode, dentry, from->name); 4154 done_path_create(&path, dentry); 4155 if (retry_estale(error, lookup_flags)) { 4156 lookup_flags |= LOOKUP_REVAL; 4157 goto retry; 4158 } 4159 out_putname: 4160 putname(from); 4161 return error; 4162 } 4163 4164 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 4165 int, newdfd, const char __user *, newname) 4166 { 4167 return do_symlinkat(oldname, newdfd, newname); 4168 } 4169 4170 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 4171 { 4172 return do_symlinkat(oldname, AT_FDCWD, newname); 4173 } 4174 4175 /** 4176 * vfs_link - create a new link 4177 * @old_dentry: object to be linked 4178 * @dir: new parent 4179 * @new_dentry: where to create the new link 4180 * @delegated_inode: returns inode needing a delegation break 4181 * 4182 * The caller must hold dir->i_mutex 4183 * 4184 * If vfs_link discovers a delegation on the to-be-linked file in need 4185 * of breaking, it will return -EWOULDBLOCK and return a reference to the 4186 * inode in delegated_inode. The caller should then break the delegation 4187 * and retry. Because breaking a delegation may take a long time, the 4188 * caller should drop the i_mutex before doing so. 4189 * 4190 * Alternatively, a caller may pass NULL for delegated_inode. This may 4191 * be appropriate for callers that expect the underlying filesystem not 4192 * to be NFS exported. 4193 */ 4194 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode) 4195 { 4196 struct inode *inode = old_dentry->d_inode; 4197 unsigned max_links = dir->i_sb->s_max_links; 4198 int error; 4199 4200 if (!inode) 4201 return -ENOENT; 4202 4203 error = may_create(dir, new_dentry); 4204 if (error) 4205 return error; 4206 4207 if (dir->i_sb != inode->i_sb) 4208 return -EXDEV; 4209 4210 /* 4211 * A link to an append-only or immutable file cannot be created. 4212 */ 4213 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 4214 return -EPERM; 4215 /* 4216 * Updating the link count will likely cause i_uid and i_gid to 4217 * be writen back improperly if their true value is unknown to 4218 * the vfs. 4219 */ 4220 if (HAS_UNMAPPED_ID(inode)) 4221 return -EPERM; 4222 if (!dir->i_op->link) 4223 return -EPERM; 4224 if (S_ISDIR(inode->i_mode)) 4225 return -EPERM; 4226 4227 error = security_inode_link(old_dentry, dir, new_dentry); 4228 if (error) 4229 return error; 4230 4231 inode_lock(inode); 4232 /* Make sure we don't allow creating hardlink to an unlinked file */ 4233 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE)) 4234 error = -ENOENT; 4235 else if (max_links && inode->i_nlink >= max_links) 4236 error = -EMLINK; 4237 else { 4238 error = try_break_deleg(inode, delegated_inode); 4239 if (!error) 4240 error = dir->i_op->link(old_dentry, dir, new_dentry); 4241 } 4242 4243 if (!error && (inode->i_state & I_LINKABLE)) { 4244 spin_lock(&inode->i_lock); 4245 inode->i_state &= ~I_LINKABLE; 4246 spin_unlock(&inode->i_lock); 4247 } 4248 inode_unlock(inode); 4249 if (!error) 4250 fsnotify_link(dir, inode, new_dentry); 4251 return error; 4252 } 4253 EXPORT_SYMBOL(vfs_link); 4254 4255 /* 4256 * Hardlinks are often used in delicate situations. We avoid 4257 * security-related surprises by not following symlinks on the 4258 * newname. --KAB 4259 * 4260 * We don't follow them on the oldname either to be compatible 4261 * with linux 2.0, and to avoid hard-linking to directories 4262 * and other special files. --ADM 4263 */ 4264 int do_linkat(int olddfd, const char __user *oldname, int newdfd, 4265 const char __user *newname, int flags) 4266 { 4267 struct dentry *new_dentry; 4268 struct path old_path, new_path; 4269 struct inode *delegated_inode = NULL; 4270 int how = 0; 4271 int error; 4272 4273 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) 4274 return -EINVAL; 4275 /* 4276 * To use null names we require CAP_DAC_READ_SEARCH 4277 * This ensures that not everyone will be able to create 4278 * handlink using the passed filedescriptor. 4279 */ 4280 if (flags & AT_EMPTY_PATH) { 4281 if (!capable(CAP_DAC_READ_SEARCH)) 4282 return -ENOENT; 4283 how = LOOKUP_EMPTY; 4284 } 4285 4286 if (flags & AT_SYMLINK_FOLLOW) 4287 how |= LOOKUP_FOLLOW; 4288 retry: 4289 error = user_path_at(olddfd, oldname, how, &old_path); 4290 if (error) 4291 return error; 4292 4293 new_dentry = user_path_create(newdfd, newname, &new_path, 4294 (how & LOOKUP_REVAL)); 4295 error = PTR_ERR(new_dentry); 4296 if (IS_ERR(new_dentry)) 4297 goto out; 4298 4299 error = -EXDEV; 4300 if (old_path.mnt != new_path.mnt) 4301 goto out_dput; 4302 error = may_linkat(&old_path); 4303 if (unlikely(error)) 4304 goto out_dput; 4305 error = security_path_link(old_path.dentry, &new_path, new_dentry); 4306 if (error) 4307 goto out_dput; 4308 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode); 4309 out_dput: 4310 done_path_create(&new_path, new_dentry); 4311 if (delegated_inode) { 4312 error = break_deleg_wait(&delegated_inode); 4313 if (!error) { 4314 path_put(&old_path); 4315 goto retry; 4316 } 4317 } 4318 if (retry_estale(error, how)) { 4319 path_put(&old_path); 4320 how |= LOOKUP_REVAL; 4321 goto retry; 4322 } 4323 out: 4324 path_put(&old_path); 4325 4326 return error; 4327 } 4328 4329 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 4330 int, newdfd, const char __user *, newname, int, flags) 4331 { 4332 return do_linkat(olddfd, oldname, newdfd, newname, flags); 4333 } 4334 4335 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 4336 { 4337 return do_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 4338 } 4339 4340 /** 4341 * vfs_rename - rename a filesystem object 4342 * @old_dir: parent of source 4343 * @old_dentry: source 4344 * @new_dir: parent of destination 4345 * @new_dentry: destination 4346 * @delegated_inode: returns an inode needing a delegation break 4347 * @flags: rename flags 4348 * 4349 * The caller must hold multiple mutexes--see lock_rename()). 4350 * 4351 * If vfs_rename discovers a delegation in need of breaking at either 4352 * the source or destination, it will return -EWOULDBLOCK and return a 4353 * reference to the inode in delegated_inode. The caller should then 4354 * break the delegation and retry. Because breaking a delegation may 4355 * take a long time, the caller should drop all locks before doing 4356 * so. 4357 * 4358 * Alternatively, a caller may pass NULL for delegated_inode. This may 4359 * be appropriate for callers that expect the underlying filesystem not 4360 * to be NFS exported. 4361 * 4362 * The worst of all namespace operations - renaming directory. "Perverted" 4363 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 4364 * Problems: 4365 * 4366 * a) we can get into loop creation. 4367 * b) race potential - two innocent renames can create a loop together. 4368 * That's where 4.4 screws up. Current fix: serialization on 4369 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 4370 * story. 4371 * c) we have to lock _four_ objects - parents and victim (if it exists), 4372 * and source (if it is not a directory). 4373 * And that - after we got ->i_mutex on parents (until then we don't know 4374 * whether the target exists). Solution: try to be smart with locking 4375 * order for inodes. We rely on the fact that tree topology may change 4376 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 4377 * move will be locked. Thus we can rank directories by the tree 4378 * (ancestors first) and rank all non-directories after them. 4379 * That works since everybody except rename does "lock parent, lookup, 4380 * lock child" and rename is under ->s_vfs_rename_mutex. 4381 * HOWEVER, it relies on the assumption that any object with ->lookup() 4382 * has no more than 1 dentry. If "hybrid" objects will ever appear, 4383 * we'd better make sure that there's no link(2) for them. 4384 * d) conversion from fhandle to dentry may come in the wrong moment - when 4385 * we are removing the target. Solution: we will have to grab ->i_mutex 4386 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 4387 * ->i_mutex on parents, which works but leads to some truly excessive 4388 * locking]. 4389 */ 4390 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry, 4391 struct inode *new_dir, struct dentry *new_dentry, 4392 struct inode **delegated_inode, unsigned int flags) 4393 { 4394 int error; 4395 bool is_dir = d_is_dir(old_dentry); 4396 struct inode *source = old_dentry->d_inode; 4397 struct inode *target = new_dentry->d_inode; 4398 bool new_is_dir = false; 4399 unsigned max_links = new_dir->i_sb->s_max_links; 4400 struct name_snapshot old_name; 4401 4402 if (source == target) 4403 return 0; 4404 4405 error = may_delete(old_dir, old_dentry, is_dir); 4406 if (error) 4407 return error; 4408 4409 if (!target) { 4410 error = may_create(new_dir, new_dentry); 4411 } else { 4412 new_is_dir = d_is_dir(new_dentry); 4413 4414 if (!(flags & RENAME_EXCHANGE)) 4415 error = may_delete(new_dir, new_dentry, is_dir); 4416 else 4417 error = may_delete(new_dir, new_dentry, new_is_dir); 4418 } 4419 if (error) 4420 return error; 4421 4422 if (!old_dir->i_op->rename) 4423 return -EPERM; 4424 4425 /* 4426 * If we are going to change the parent - check write permissions, 4427 * we'll need to flip '..'. 4428 */ 4429 if (new_dir != old_dir) { 4430 if (is_dir) { 4431 error = inode_permission(source, MAY_WRITE); 4432 if (error) 4433 return error; 4434 } 4435 if ((flags & RENAME_EXCHANGE) && new_is_dir) { 4436 error = inode_permission(target, MAY_WRITE); 4437 if (error) 4438 return error; 4439 } 4440 } 4441 4442 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry, 4443 flags); 4444 if (error) 4445 return error; 4446 4447 take_dentry_name_snapshot(&old_name, old_dentry); 4448 dget(new_dentry); 4449 if (!is_dir || (flags & RENAME_EXCHANGE)) 4450 lock_two_nondirectories(source, target); 4451 else if (target) 4452 inode_lock(target); 4453 4454 error = -EBUSY; 4455 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry)) 4456 goto out; 4457 4458 if (max_links && new_dir != old_dir) { 4459 error = -EMLINK; 4460 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links) 4461 goto out; 4462 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir && 4463 old_dir->i_nlink >= max_links) 4464 goto out; 4465 } 4466 if (!is_dir) { 4467 error = try_break_deleg(source, delegated_inode); 4468 if (error) 4469 goto out; 4470 } 4471 if (target && !new_is_dir) { 4472 error = try_break_deleg(target, delegated_inode); 4473 if (error) 4474 goto out; 4475 } 4476 error = old_dir->i_op->rename(old_dir, old_dentry, 4477 new_dir, new_dentry, flags); 4478 if (error) 4479 goto out; 4480 4481 if (!(flags & RENAME_EXCHANGE) && target) { 4482 if (is_dir) { 4483 shrink_dcache_parent(new_dentry); 4484 target->i_flags |= S_DEAD; 4485 } 4486 dont_mount(new_dentry); 4487 detach_mounts(new_dentry); 4488 } 4489 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) { 4490 if (!(flags & RENAME_EXCHANGE)) 4491 d_move(old_dentry, new_dentry); 4492 else 4493 d_exchange(old_dentry, new_dentry); 4494 } 4495 out: 4496 if (!is_dir || (flags & RENAME_EXCHANGE)) 4497 unlock_two_nondirectories(source, target); 4498 else if (target) 4499 inode_unlock(target); 4500 dput(new_dentry); 4501 if (!error) { 4502 fsnotify_move(old_dir, new_dir, old_name.name, is_dir, 4503 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry); 4504 if (flags & RENAME_EXCHANGE) { 4505 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name, 4506 new_is_dir, NULL, new_dentry); 4507 } 4508 } 4509 release_dentry_name_snapshot(&old_name); 4510 4511 return error; 4512 } 4513 EXPORT_SYMBOL(vfs_rename); 4514 4515 static int do_renameat2(int olddfd, const char __user *oldname, int newdfd, 4516 const char __user *newname, unsigned int flags) 4517 { 4518 struct dentry *old_dentry, *new_dentry; 4519 struct dentry *trap; 4520 struct path old_path, new_path; 4521 struct qstr old_last, new_last; 4522 int old_type, new_type; 4523 struct inode *delegated_inode = NULL; 4524 struct filename *from; 4525 struct filename *to; 4526 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET; 4527 bool should_retry = false; 4528 int error; 4529 4530 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 4531 return -EINVAL; 4532 4533 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) && 4534 (flags & RENAME_EXCHANGE)) 4535 return -EINVAL; 4536 4537 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD)) 4538 return -EPERM; 4539 4540 if (flags & RENAME_EXCHANGE) 4541 target_flags = 0; 4542 4543 retry: 4544 from = filename_parentat(olddfd, getname(oldname), lookup_flags, 4545 &old_path, &old_last, &old_type); 4546 if (IS_ERR(from)) { 4547 error = PTR_ERR(from); 4548 goto exit; 4549 } 4550 4551 to = filename_parentat(newdfd, getname(newname), lookup_flags, 4552 &new_path, &new_last, &new_type); 4553 if (IS_ERR(to)) { 4554 error = PTR_ERR(to); 4555 goto exit1; 4556 } 4557 4558 error = -EXDEV; 4559 if (old_path.mnt != new_path.mnt) 4560 goto exit2; 4561 4562 error = -EBUSY; 4563 if (old_type != LAST_NORM) 4564 goto exit2; 4565 4566 if (flags & RENAME_NOREPLACE) 4567 error = -EEXIST; 4568 if (new_type != LAST_NORM) 4569 goto exit2; 4570 4571 error = mnt_want_write(old_path.mnt); 4572 if (error) 4573 goto exit2; 4574 4575 retry_deleg: 4576 trap = lock_rename(new_path.dentry, old_path.dentry); 4577 4578 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags); 4579 error = PTR_ERR(old_dentry); 4580 if (IS_ERR(old_dentry)) 4581 goto exit3; 4582 /* source must exist */ 4583 error = -ENOENT; 4584 if (d_is_negative(old_dentry)) 4585 goto exit4; 4586 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags); 4587 error = PTR_ERR(new_dentry); 4588 if (IS_ERR(new_dentry)) 4589 goto exit4; 4590 error = -EEXIST; 4591 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry)) 4592 goto exit5; 4593 if (flags & RENAME_EXCHANGE) { 4594 error = -ENOENT; 4595 if (d_is_negative(new_dentry)) 4596 goto exit5; 4597 4598 if (!d_is_dir(new_dentry)) { 4599 error = -ENOTDIR; 4600 if (new_last.name[new_last.len]) 4601 goto exit5; 4602 } 4603 } 4604 /* unless the source is a directory trailing slashes give -ENOTDIR */ 4605 if (!d_is_dir(old_dentry)) { 4606 error = -ENOTDIR; 4607 if (old_last.name[old_last.len]) 4608 goto exit5; 4609 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len]) 4610 goto exit5; 4611 } 4612 /* source should not be ancestor of target */ 4613 error = -EINVAL; 4614 if (old_dentry == trap) 4615 goto exit5; 4616 /* target should not be an ancestor of source */ 4617 if (!(flags & RENAME_EXCHANGE)) 4618 error = -ENOTEMPTY; 4619 if (new_dentry == trap) 4620 goto exit5; 4621 4622 error = security_path_rename(&old_path, old_dentry, 4623 &new_path, new_dentry, flags); 4624 if (error) 4625 goto exit5; 4626 error = vfs_rename(old_path.dentry->d_inode, old_dentry, 4627 new_path.dentry->d_inode, new_dentry, 4628 &delegated_inode, flags); 4629 exit5: 4630 dput(new_dentry); 4631 exit4: 4632 dput(old_dentry); 4633 exit3: 4634 unlock_rename(new_path.dentry, old_path.dentry); 4635 if (delegated_inode) { 4636 error = break_deleg_wait(&delegated_inode); 4637 if (!error) 4638 goto retry_deleg; 4639 } 4640 mnt_drop_write(old_path.mnt); 4641 exit2: 4642 if (retry_estale(error, lookup_flags)) 4643 should_retry = true; 4644 path_put(&new_path); 4645 putname(to); 4646 exit1: 4647 path_put(&old_path); 4648 putname(from); 4649 if (should_retry) { 4650 should_retry = false; 4651 lookup_flags |= LOOKUP_REVAL; 4652 goto retry; 4653 } 4654 exit: 4655 return error; 4656 } 4657 4658 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname, 4659 int, newdfd, const char __user *, newname, unsigned int, flags) 4660 { 4661 return do_renameat2(olddfd, oldname, newdfd, newname, flags); 4662 } 4663 4664 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 4665 int, newdfd, const char __user *, newname) 4666 { 4667 return do_renameat2(olddfd, oldname, newdfd, newname, 0); 4668 } 4669 4670 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 4671 { 4672 return do_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 4673 } 4674 4675 int vfs_whiteout(struct inode *dir, struct dentry *dentry) 4676 { 4677 int error = may_create(dir, dentry); 4678 if (error) 4679 return error; 4680 4681 if (!dir->i_op->mknod) 4682 return -EPERM; 4683 4684 return dir->i_op->mknod(dir, dentry, 4685 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 4686 } 4687 EXPORT_SYMBOL(vfs_whiteout); 4688 4689 int readlink_copy(char __user *buffer, int buflen, const char *link) 4690 { 4691 int len = PTR_ERR(link); 4692 if (IS_ERR(link)) 4693 goto out; 4694 4695 len = strlen(link); 4696 if (len > (unsigned) buflen) 4697 len = buflen; 4698 if (copy_to_user(buffer, link, len)) 4699 len = -EFAULT; 4700 out: 4701 return len; 4702 } 4703 4704 /** 4705 * vfs_readlink - copy symlink body into userspace buffer 4706 * @dentry: dentry on which to get symbolic link 4707 * @buffer: user memory pointer 4708 * @buflen: size of buffer 4709 * 4710 * Does not touch atime. That's up to the caller if necessary 4711 * 4712 * Does not call security hook. 4713 */ 4714 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4715 { 4716 struct inode *inode = d_inode(dentry); 4717 DEFINE_DELAYED_CALL(done); 4718 const char *link; 4719 int res; 4720 4721 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) { 4722 if (unlikely(inode->i_op->readlink)) 4723 return inode->i_op->readlink(dentry, buffer, buflen); 4724 4725 if (!d_is_symlink(dentry)) 4726 return -EINVAL; 4727 4728 spin_lock(&inode->i_lock); 4729 inode->i_opflags |= IOP_DEFAULT_READLINK; 4730 spin_unlock(&inode->i_lock); 4731 } 4732 4733 link = inode->i_link; 4734 if (!link) { 4735 link = inode->i_op->get_link(dentry, inode, &done); 4736 if (IS_ERR(link)) 4737 return PTR_ERR(link); 4738 } 4739 res = readlink_copy(buffer, buflen, link); 4740 do_delayed_call(&done); 4741 return res; 4742 } 4743 EXPORT_SYMBOL(vfs_readlink); 4744 4745 /** 4746 * vfs_get_link - get symlink body 4747 * @dentry: dentry on which to get symbolic link 4748 * @done: caller needs to free returned data with this 4749 * 4750 * Calls security hook and i_op->get_link() on the supplied inode. 4751 * 4752 * It does not touch atime. That's up to the caller if necessary. 4753 * 4754 * Does not work on "special" symlinks like /proc/$$/fd/N 4755 */ 4756 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done) 4757 { 4758 const char *res = ERR_PTR(-EINVAL); 4759 struct inode *inode = d_inode(dentry); 4760 4761 if (d_is_symlink(dentry)) { 4762 res = ERR_PTR(security_inode_readlink(dentry)); 4763 if (!res) 4764 res = inode->i_op->get_link(dentry, inode, done); 4765 } 4766 return res; 4767 } 4768 EXPORT_SYMBOL(vfs_get_link); 4769 4770 /* get the link contents into pagecache */ 4771 const char *page_get_link(struct dentry *dentry, struct inode *inode, 4772 struct delayed_call *callback) 4773 { 4774 char *kaddr; 4775 struct page *page; 4776 struct address_space *mapping = inode->i_mapping; 4777 4778 if (!dentry) { 4779 page = find_get_page(mapping, 0); 4780 if (!page) 4781 return ERR_PTR(-ECHILD); 4782 if (!PageUptodate(page)) { 4783 put_page(page); 4784 return ERR_PTR(-ECHILD); 4785 } 4786 } else { 4787 page = read_mapping_page(mapping, 0, NULL); 4788 if (IS_ERR(page)) 4789 return (char*)page; 4790 } 4791 set_delayed_call(callback, page_put_link, page); 4792 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM); 4793 kaddr = page_address(page); 4794 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1); 4795 return kaddr; 4796 } 4797 4798 EXPORT_SYMBOL(page_get_link); 4799 4800 void page_put_link(void *arg) 4801 { 4802 put_page(arg); 4803 } 4804 EXPORT_SYMBOL(page_put_link); 4805 4806 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4807 { 4808 DEFINE_DELAYED_CALL(done); 4809 int res = readlink_copy(buffer, buflen, 4810 page_get_link(dentry, d_inode(dentry), 4811 &done)); 4812 do_delayed_call(&done); 4813 return res; 4814 } 4815 EXPORT_SYMBOL(page_readlink); 4816 4817 /* 4818 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS 4819 */ 4820 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs) 4821 { 4822 struct address_space *mapping = inode->i_mapping; 4823 struct page *page; 4824 void *fsdata; 4825 int err; 4826 unsigned int flags = 0; 4827 if (nofs) 4828 flags |= AOP_FLAG_NOFS; 4829 4830 retry: 4831 err = pagecache_write_begin(NULL, mapping, 0, len-1, 4832 flags, &page, &fsdata); 4833 if (err) 4834 goto fail; 4835 4836 memcpy(page_address(page), symname, len-1); 4837 4838 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1, 4839 page, fsdata); 4840 if (err < 0) 4841 goto fail; 4842 if (err < len-1) 4843 goto retry; 4844 4845 mark_inode_dirty(inode); 4846 return 0; 4847 fail: 4848 return err; 4849 } 4850 EXPORT_SYMBOL(__page_symlink); 4851 4852 int page_symlink(struct inode *inode, const char *symname, int len) 4853 { 4854 return __page_symlink(inode, symname, len, 4855 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS)); 4856 } 4857 EXPORT_SYMBOL(page_symlink); 4858 4859 const struct inode_operations page_symlink_inode_operations = { 4860 .get_link = page_get_link, 4861 }; 4862 EXPORT_SYMBOL(page_symlink_inode_operations); 4863