xref: /openbmc/linux/fs/namei.c (revision cc8bbe1a)
1 /*
2  *  linux/fs/namei.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * Some corrections by tytso.
9  */
10 
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12  * lookup logic.
13  */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15  */
16 
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <asm/uaccess.h>
39 
40 #include "internal.h"
41 #include "mount.h"
42 
43 /* [Feb-1997 T. Schoebel-Theuer]
44  * Fundamental changes in the pathname lookup mechanisms (namei)
45  * were necessary because of omirr.  The reason is that omirr needs
46  * to know the _real_ pathname, not the user-supplied one, in case
47  * of symlinks (and also when transname replacements occur).
48  *
49  * The new code replaces the old recursive symlink resolution with
50  * an iterative one (in case of non-nested symlink chains).  It does
51  * this with calls to <fs>_follow_link().
52  * As a side effect, dir_namei(), _namei() and follow_link() are now
53  * replaced with a single function lookup_dentry() that can handle all
54  * the special cases of the former code.
55  *
56  * With the new dcache, the pathname is stored at each inode, at least as
57  * long as the refcount of the inode is positive.  As a side effect, the
58  * size of the dcache depends on the inode cache and thus is dynamic.
59  *
60  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
61  * resolution to correspond with current state of the code.
62  *
63  * Note that the symlink resolution is not *completely* iterative.
64  * There is still a significant amount of tail- and mid- recursion in
65  * the algorithm.  Also, note that <fs>_readlink() is not used in
66  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
67  * may return different results than <fs>_follow_link().  Many virtual
68  * filesystems (including /proc) exhibit this behavior.
69  */
70 
71 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
72  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
73  * and the name already exists in form of a symlink, try to create the new
74  * name indicated by the symlink. The old code always complained that the
75  * name already exists, due to not following the symlink even if its target
76  * is nonexistent.  The new semantics affects also mknod() and link() when
77  * the name is a symlink pointing to a non-existent name.
78  *
79  * I don't know which semantics is the right one, since I have no access
80  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
81  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
82  * "old" one. Personally, I think the new semantics is much more logical.
83  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
84  * file does succeed in both HP-UX and SunOs, but not in Solaris
85  * and in the old Linux semantics.
86  */
87 
88 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
89  * semantics.  See the comments in "open_namei" and "do_link" below.
90  *
91  * [10-Sep-98 Alan Modra] Another symlink change.
92  */
93 
94 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
95  *	inside the path - always follow.
96  *	in the last component in creation/removal/renaming - never follow.
97  *	if LOOKUP_FOLLOW passed - follow.
98  *	if the pathname has trailing slashes - follow.
99  *	otherwise - don't follow.
100  * (applied in that order).
101  *
102  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
103  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
104  * During the 2.4 we need to fix the userland stuff depending on it -
105  * hopefully we will be able to get rid of that wart in 2.5. So far only
106  * XEmacs seems to be relying on it...
107  */
108 /*
109  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
110  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
111  * any extra contention...
112  */
113 
114 /* In order to reduce some races, while at the same time doing additional
115  * checking and hopefully speeding things up, we copy filenames to the
116  * kernel data space before using them..
117  *
118  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
119  * PATH_MAX includes the nul terminator --RR.
120  */
121 
122 #define EMBEDDED_NAME_MAX	(PATH_MAX - offsetof(struct filename, iname))
123 
124 struct filename *
125 getname_flags(const char __user *filename, int flags, int *empty)
126 {
127 	struct filename *result;
128 	char *kname;
129 	int len;
130 
131 	result = audit_reusename(filename);
132 	if (result)
133 		return result;
134 
135 	result = __getname();
136 	if (unlikely(!result))
137 		return ERR_PTR(-ENOMEM);
138 
139 	/*
140 	 * First, try to embed the struct filename inside the names_cache
141 	 * allocation
142 	 */
143 	kname = (char *)result->iname;
144 	result->name = kname;
145 
146 	len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
147 	if (unlikely(len < 0)) {
148 		__putname(result);
149 		return ERR_PTR(len);
150 	}
151 
152 	/*
153 	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
154 	 * separate struct filename so we can dedicate the entire
155 	 * names_cache allocation for the pathname, and re-do the copy from
156 	 * userland.
157 	 */
158 	if (unlikely(len == EMBEDDED_NAME_MAX)) {
159 		const size_t size = offsetof(struct filename, iname[1]);
160 		kname = (char *)result;
161 
162 		/*
163 		 * size is chosen that way we to guarantee that
164 		 * result->iname[0] is within the same object and that
165 		 * kname can't be equal to result->iname, no matter what.
166 		 */
167 		result = kzalloc(size, GFP_KERNEL);
168 		if (unlikely(!result)) {
169 			__putname(kname);
170 			return ERR_PTR(-ENOMEM);
171 		}
172 		result->name = kname;
173 		len = strncpy_from_user(kname, filename, PATH_MAX);
174 		if (unlikely(len < 0)) {
175 			__putname(kname);
176 			kfree(result);
177 			return ERR_PTR(len);
178 		}
179 		if (unlikely(len == PATH_MAX)) {
180 			__putname(kname);
181 			kfree(result);
182 			return ERR_PTR(-ENAMETOOLONG);
183 		}
184 	}
185 
186 	result->refcnt = 1;
187 	/* The empty path is special. */
188 	if (unlikely(!len)) {
189 		if (empty)
190 			*empty = 1;
191 		if (!(flags & LOOKUP_EMPTY)) {
192 			putname(result);
193 			return ERR_PTR(-ENOENT);
194 		}
195 	}
196 
197 	result->uptr = filename;
198 	result->aname = NULL;
199 	audit_getname(result);
200 	return result;
201 }
202 
203 struct filename *
204 getname(const char __user * filename)
205 {
206 	return getname_flags(filename, 0, NULL);
207 }
208 
209 struct filename *
210 getname_kernel(const char * filename)
211 {
212 	struct filename *result;
213 	int len = strlen(filename) + 1;
214 
215 	result = __getname();
216 	if (unlikely(!result))
217 		return ERR_PTR(-ENOMEM);
218 
219 	if (len <= EMBEDDED_NAME_MAX) {
220 		result->name = (char *)result->iname;
221 	} else if (len <= PATH_MAX) {
222 		struct filename *tmp;
223 
224 		tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
225 		if (unlikely(!tmp)) {
226 			__putname(result);
227 			return ERR_PTR(-ENOMEM);
228 		}
229 		tmp->name = (char *)result;
230 		result = tmp;
231 	} else {
232 		__putname(result);
233 		return ERR_PTR(-ENAMETOOLONG);
234 	}
235 	memcpy((char *)result->name, filename, len);
236 	result->uptr = NULL;
237 	result->aname = NULL;
238 	result->refcnt = 1;
239 	audit_getname(result);
240 
241 	return result;
242 }
243 
244 void putname(struct filename *name)
245 {
246 	BUG_ON(name->refcnt <= 0);
247 
248 	if (--name->refcnt > 0)
249 		return;
250 
251 	if (name->name != name->iname) {
252 		__putname(name->name);
253 		kfree(name);
254 	} else
255 		__putname(name);
256 }
257 
258 static int check_acl(struct inode *inode, int mask)
259 {
260 #ifdef CONFIG_FS_POSIX_ACL
261 	struct posix_acl *acl;
262 
263 	if (mask & MAY_NOT_BLOCK) {
264 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
265 	        if (!acl)
266 	                return -EAGAIN;
267 		/* no ->get_acl() calls in RCU mode... */
268 		if (acl == ACL_NOT_CACHED)
269 			return -ECHILD;
270 	        return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
271 	}
272 
273 	acl = get_acl(inode, ACL_TYPE_ACCESS);
274 	if (IS_ERR(acl))
275 		return PTR_ERR(acl);
276 	if (acl) {
277 	        int error = posix_acl_permission(inode, acl, mask);
278 	        posix_acl_release(acl);
279 	        return error;
280 	}
281 #endif
282 
283 	return -EAGAIN;
284 }
285 
286 /*
287  * This does the basic permission checking
288  */
289 static int acl_permission_check(struct inode *inode, int mask)
290 {
291 	unsigned int mode = inode->i_mode;
292 
293 	if (likely(uid_eq(current_fsuid(), inode->i_uid)))
294 		mode >>= 6;
295 	else {
296 		if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
297 			int error = check_acl(inode, mask);
298 			if (error != -EAGAIN)
299 				return error;
300 		}
301 
302 		if (in_group_p(inode->i_gid))
303 			mode >>= 3;
304 	}
305 
306 	/*
307 	 * If the DACs are ok we don't need any capability check.
308 	 */
309 	if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
310 		return 0;
311 	return -EACCES;
312 }
313 
314 /**
315  * generic_permission -  check for access rights on a Posix-like filesystem
316  * @inode:	inode to check access rights for
317  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
318  *
319  * Used to check for read/write/execute permissions on a file.
320  * We use "fsuid" for this, letting us set arbitrary permissions
321  * for filesystem access without changing the "normal" uids which
322  * are used for other things.
323  *
324  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
325  * request cannot be satisfied (eg. requires blocking or too much complexity).
326  * It would then be called again in ref-walk mode.
327  */
328 int generic_permission(struct inode *inode, int mask)
329 {
330 	int ret;
331 
332 	/*
333 	 * Do the basic permission checks.
334 	 */
335 	ret = acl_permission_check(inode, mask);
336 	if (ret != -EACCES)
337 		return ret;
338 
339 	if (S_ISDIR(inode->i_mode)) {
340 		/* DACs are overridable for directories */
341 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
342 			return 0;
343 		if (!(mask & MAY_WRITE))
344 			if (capable_wrt_inode_uidgid(inode,
345 						     CAP_DAC_READ_SEARCH))
346 				return 0;
347 		return -EACCES;
348 	}
349 	/*
350 	 * Read/write DACs are always overridable.
351 	 * Executable DACs are overridable when there is
352 	 * at least one exec bit set.
353 	 */
354 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
355 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
356 			return 0;
357 
358 	/*
359 	 * Searching includes executable on directories, else just read.
360 	 */
361 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
362 	if (mask == MAY_READ)
363 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
364 			return 0;
365 
366 	return -EACCES;
367 }
368 EXPORT_SYMBOL(generic_permission);
369 
370 /*
371  * We _really_ want to just do "generic_permission()" without
372  * even looking at the inode->i_op values. So we keep a cache
373  * flag in inode->i_opflags, that says "this has not special
374  * permission function, use the fast case".
375  */
376 static inline int do_inode_permission(struct inode *inode, int mask)
377 {
378 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
379 		if (likely(inode->i_op->permission))
380 			return inode->i_op->permission(inode, mask);
381 
382 		/* This gets set once for the inode lifetime */
383 		spin_lock(&inode->i_lock);
384 		inode->i_opflags |= IOP_FASTPERM;
385 		spin_unlock(&inode->i_lock);
386 	}
387 	return generic_permission(inode, mask);
388 }
389 
390 /**
391  * __inode_permission - Check for access rights to a given inode
392  * @inode: Inode to check permission on
393  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
394  *
395  * Check for read/write/execute permissions on an inode.
396  *
397  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
398  *
399  * This does not check for a read-only file system.  You probably want
400  * inode_permission().
401  */
402 int __inode_permission(struct inode *inode, int mask)
403 {
404 	int retval;
405 
406 	if (unlikely(mask & MAY_WRITE)) {
407 		/*
408 		 * Nobody gets write access to an immutable file.
409 		 */
410 		if (IS_IMMUTABLE(inode))
411 			return -EACCES;
412 	}
413 
414 	retval = do_inode_permission(inode, mask);
415 	if (retval)
416 		return retval;
417 
418 	retval = devcgroup_inode_permission(inode, mask);
419 	if (retval)
420 		return retval;
421 
422 	return security_inode_permission(inode, mask);
423 }
424 EXPORT_SYMBOL(__inode_permission);
425 
426 /**
427  * sb_permission - Check superblock-level permissions
428  * @sb: Superblock of inode to check permission on
429  * @inode: Inode to check permission on
430  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
431  *
432  * Separate out file-system wide checks from inode-specific permission checks.
433  */
434 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
435 {
436 	if (unlikely(mask & MAY_WRITE)) {
437 		umode_t mode = inode->i_mode;
438 
439 		/* Nobody gets write access to a read-only fs. */
440 		if ((sb->s_flags & MS_RDONLY) &&
441 		    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
442 			return -EROFS;
443 	}
444 	return 0;
445 }
446 
447 /**
448  * inode_permission - Check for access rights to a given inode
449  * @inode: Inode to check permission on
450  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
451  *
452  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
453  * this, letting us set arbitrary permissions for filesystem access without
454  * changing the "normal" UIDs which are used for other things.
455  *
456  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
457  */
458 int inode_permission(struct inode *inode, int mask)
459 {
460 	int retval;
461 
462 	retval = sb_permission(inode->i_sb, inode, mask);
463 	if (retval)
464 		return retval;
465 	return __inode_permission(inode, mask);
466 }
467 EXPORT_SYMBOL(inode_permission);
468 
469 /**
470  * path_get - get a reference to a path
471  * @path: path to get the reference to
472  *
473  * Given a path increment the reference count to the dentry and the vfsmount.
474  */
475 void path_get(const struct path *path)
476 {
477 	mntget(path->mnt);
478 	dget(path->dentry);
479 }
480 EXPORT_SYMBOL(path_get);
481 
482 /**
483  * path_put - put a reference to a path
484  * @path: path to put the reference to
485  *
486  * Given a path decrement the reference count to the dentry and the vfsmount.
487  */
488 void path_put(const struct path *path)
489 {
490 	dput(path->dentry);
491 	mntput(path->mnt);
492 }
493 EXPORT_SYMBOL(path_put);
494 
495 #define EMBEDDED_LEVELS 2
496 struct nameidata {
497 	struct path	path;
498 	struct qstr	last;
499 	struct path	root;
500 	struct inode	*inode; /* path.dentry.d_inode */
501 	unsigned int	flags;
502 	unsigned	seq, m_seq;
503 	int		last_type;
504 	unsigned	depth;
505 	int		total_link_count;
506 	struct saved {
507 		struct path link;
508 		struct delayed_call done;
509 		const char *name;
510 		unsigned seq;
511 	} *stack, internal[EMBEDDED_LEVELS];
512 	struct filename	*name;
513 	struct nameidata *saved;
514 	struct inode	*link_inode;
515 	unsigned	root_seq;
516 	int		dfd;
517 };
518 
519 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
520 {
521 	struct nameidata *old = current->nameidata;
522 	p->stack = p->internal;
523 	p->dfd = dfd;
524 	p->name = name;
525 	p->total_link_count = old ? old->total_link_count : 0;
526 	p->saved = old;
527 	current->nameidata = p;
528 }
529 
530 static void restore_nameidata(void)
531 {
532 	struct nameidata *now = current->nameidata, *old = now->saved;
533 
534 	current->nameidata = old;
535 	if (old)
536 		old->total_link_count = now->total_link_count;
537 	if (now->stack != now->internal)
538 		kfree(now->stack);
539 }
540 
541 static int __nd_alloc_stack(struct nameidata *nd)
542 {
543 	struct saved *p;
544 
545 	if (nd->flags & LOOKUP_RCU) {
546 		p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
547 				  GFP_ATOMIC);
548 		if (unlikely(!p))
549 			return -ECHILD;
550 	} else {
551 		p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
552 				  GFP_KERNEL);
553 		if (unlikely(!p))
554 			return -ENOMEM;
555 	}
556 	memcpy(p, nd->internal, sizeof(nd->internal));
557 	nd->stack = p;
558 	return 0;
559 }
560 
561 /**
562  * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
563  * @path: nameidate to verify
564  *
565  * Rename can sometimes move a file or directory outside of a bind
566  * mount, path_connected allows those cases to be detected.
567  */
568 static bool path_connected(const struct path *path)
569 {
570 	struct vfsmount *mnt = path->mnt;
571 
572 	/* Only bind mounts can have disconnected paths */
573 	if (mnt->mnt_root == mnt->mnt_sb->s_root)
574 		return true;
575 
576 	return is_subdir(path->dentry, mnt->mnt_root);
577 }
578 
579 static inline int nd_alloc_stack(struct nameidata *nd)
580 {
581 	if (likely(nd->depth != EMBEDDED_LEVELS))
582 		return 0;
583 	if (likely(nd->stack != nd->internal))
584 		return 0;
585 	return __nd_alloc_stack(nd);
586 }
587 
588 static void drop_links(struct nameidata *nd)
589 {
590 	int i = nd->depth;
591 	while (i--) {
592 		struct saved *last = nd->stack + i;
593 		do_delayed_call(&last->done);
594 		clear_delayed_call(&last->done);
595 	}
596 }
597 
598 static void terminate_walk(struct nameidata *nd)
599 {
600 	drop_links(nd);
601 	if (!(nd->flags & LOOKUP_RCU)) {
602 		int i;
603 		path_put(&nd->path);
604 		for (i = 0; i < nd->depth; i++)
605 			path_put(&nd->stack[i].link);
606 		if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
607 			path_put(&nd->root);
608 			nd->root.mnt = NULL;
609 		}
610 	} else {
611 		nd->flags &= ~LOOKUP_RCU;
612 		if (!(nd->flags & LOOKUP_ROOT))
613 			nd->root.mnt = NULL;
614 		rcu_read_unlock();
615 	}
616 	nd->depth = 0;
617 }
618 
619 /* path_put is needed afterwards regardless of success or failure */
620 static bool legitimize_path(struct nameidata *nd,
621 			    struct path *path, unsigned seq)
622 {
623 	int res = __legitimize_mnt(path->mnt, nd->m_seq);
624 	if (unlikely(res)) {
625 		if (res > 0)
626 			path->mnt = NULL;
627 		path->dentry = NULL;
628 		return false;
629 	}
630 	if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
631 		path->dentry = NULL;
632 		return false;
633 	}
634 	return !read_seqcount_retry(&path->dentry->d_seq, seq);
635 }
636 
637 static bool legitimize_links(struct nameidata *nd)
638 {
639 	int i;
640 	for (i = 0; i < nd->depth; i++) {
641 		struct saved *last = nd->stack + i;
642 		if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
643 			drop_links(nd);
644 			nd->depth = i + 1;
645 			return false;
646 		}
647 	}
648 	return true;
649 }
650 
651 /*
652  * Path walking has 2 modes, rcu-walk and ref-walk (see
653  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
654  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
655  * normal reference counts on dentries and vfsmounts to transition to ref-walk
656  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
657  * got stuck, so ref-walk may continue from there. If this is not successful
658  * (eg. a seqcount has changed), then failure is returned and it's up to caller
659  * to restart the path walk from the beginning in ref-walk mode.
660  */
661 
662 /**
663  * unlazy_walk - try to switch to ref-walk mode.
664  * @nd: nameidata pathwalk data
665  * @dentry: child of nd->path.dentry or NULL
666  * @seq: seq number to check dentry against
667  * Returns: 0 on success, -ECHILD on failure
668  *
669  * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
670  * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
671  * @nd or NULL.  Must be called from rcu-walk context.
672  * Nothing should touch nameidata between unlazy_walk() failure and
673  * terminate_walk().
674  */
675 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry, unsigned seq)
676 {
677 	struct dentry *parent = nd->path.dentry;
678 
679 	BUG_ON(!(nd->flags & LOOKUP_RCU));
680 
681 	nd->flags &= ~LOOKUP_RCU;
682 	if (unlikely(!legitimize_links(nd)))
683 		goto out2;
684 	if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
685 		goto out2;
686 	if (unlikely(!lockref_get_not_dead(&parent->d_lockref)))
687 		goto out1;
688 
689 	/*
690 	 * For a negative lookup, the lookup sequence point is the parents
691 	 * sequence point, and it only needs to revalidate the parent dentry.
692 	 *
693 	 * For a positive lookup, we need to move both the parent and the
694 	 * dentry from the RCU domain to be properly refcounted. And the
695 	 * sequence number in the dentry validates *both* dentry counters,
696 	 * since we checked the sequence number of the parent after we got
697 	 * the child sequence number. So we know the parent must still
698 	 * be valid if the child sequence number is still valid.
699 	 */
700 	if (!dentry) {
701 		if (read_seqcount_retry(&parent->d_seq, nd->seq))
702 			goto out;
703 		BUG_ON(nd->inode != parent->d_inode);
704 	} else {
705 		if (!lockref_get_not_dead(&dentry->d_lockref))
706 			goto out;
707 		if (read_seqcount_retry(&dentry->d_seq, seq))
708 			goto drop_dentry;
709 	}
710 
711 	/*
712 	 * Sequence counts matched. Now make sure that the root is
713 	 * still valid and get it if required.
714 	 */
715 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
716 		if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) {
717 			rcu_read_unlock();
718 			dput(dentry);
719 			return -ECHILD;
720 		}
721 	}
722 
723 	rcu_read_unlock();
724 	return 0;
725 
726 drop_dentry:
727 	rcu_read_unlock();
728 	dput(dentry);
729 	goto drop_root_mnt;
730 out2:
731 	nd->path.mnt = NULL;
732 out1:
733 	nd->path.dentry = NULL;
734 out:
735 	rcu_read_unlock();
736 drop_root_mnt:
737 	if (!(nd->flags & LOOKUP_ROOT))
738 		nd->root.mnt = NULL;
739 	return -ECHILD;
740 }
741 
742 static int unlazy_link(struct nameidata *nd, struct path *link, unsigned seq)
743 {
744 	if (unlikely(!legitimize_path(nd, link, seq))) {
745 		drop_links(nd);
746 		nd->depth = 0;
747 		nd->flags &= ~LOOKUP_RCU;
748 		nd->path.mnt = NULL;
749 		nd->path.dentry = NULL;
750 		if (!(nd->flags & LOOKUP_ROOT))
751 			nd->root.mnt = NULL;
752 		rcu_read_unlock();
753 	} else if (likely(unlazy_walk(nd, NULL, 0)) == 0) {
754 		return 0;
755 	}
756 	path_put(link);
757 	return -ECHILD;
758 }
759 
760 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
761 {
762 	return dentry->d_op->d_revalidate(dentry, flags);
763 }
764 
765 /**
766  * complete_walk - successful completion of path walk
767  * @nd:  pointer nameidata
768  *
769  * If we had been in RCU mode, drop out of it and legitimize nd->path.
770  * Revalidate the final result, unless we'd already done that during
771  * the path walk or the filesystem doesn't ask for it.  Return 0 on
772  * success, -error on failure.  In case of failure caller does not
773  * need to drop nd->path.
774  */
775 static int complete_walk(struct nameidata *nd)
776 {
777 	struct dentry *dentry = nd->path.dentry;
778 	int status;
779 
780 	if (nd->flags & LOOKUP_RCU) {
781 		if (!(nd->flags & LOOKUP_ROOT))
782 			nd->root.mnt = NULL;
783 		if (unlikely(unlazy_walk(nd, NULL, 0)))
784 			return -ECHILD;
785 	}
786 
787 	if (likely(!(nd->flags & LOOKUP_JUMPED)))
788 		return 0;
789 
790 	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
791 		return 0;
792 
793 	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
794 	if (status > 0)
795 		return 0;
796 
797 	if (!status)
798 		status = -ESTALE;
799 
800 	return status;
801 }
802 
803 static void set_root(struct nameidata *nd)
804 {
805 	struct fs_struct *fs = current->fs;
806 
807 	if (nd->flags & LOOKUP_RCU) {
808 		unsigned seq;
809 
810 		do {
811 			seq = read_seqcount_begin(&fs->seq);
812 			nd->root = fs->root;
813 			nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
814 		} while (read_seqcount_retry(&fs->seq, seq));
815 	} else {
816 		get_fs_root(fs, &nd->root);
817 	}
818 }
819 
820 static void path_put_conditional(struct path *path, struct nameidata *nd)
821 {
822 	dput(path->dentry);
823 	if (path->mnt != nd->path.mnt)
824 		mntput(path->mnt);
825 }
826 
827 static inline void path_to_nameidata(const struct path *path,
828 					struct nameidata *nd)
829 {
830 	if (!(nd->flags & LOOKUP_RCU)) {
831 		dput(nd->path.dentry);
832 		if (nd->path.mnt != path->mnt)
833 			mntput(nd->path.mnt);
834 	}
835 	nd->path.mnt = path->mnt;
836 	nd->path.dentry = path->dentry;
837 }
838 
839 static int nd_jump_root(struct nameidata *nd)
840 {
841 	if (nd->flags & LOOKUP_RCU) {
842 		struct dentry *d;
843 		nd->path = nd->root;
844 		d = nd->path.dentry;
845 		nd->inode = d->d_inode;
846 		nd->seq = nd->root_seq;
847 		if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
848 			return -ECHILD;
849 	} else {
850 		path_put(&nd->path);
851 		nd->path = nd->root;
852 		path_get(&nd->path);
853 		nd->inode = nd->path.dentry->d_inode;
854 	}
855 	nd->flags |= LOOKUP_JUMPED;
856 	return 0;
857 }
858 
859 /*
860  * Helper to directly jump to a known parsed path from ->get_link,
861  * caller must have taken a reference to path beforehand.
862  */
863 void nd_jump_link(struct path *path)
864 {
865 	struct nameidata *nd = current->nameidata;
866 	path_put(&nd->path);
867 
868 	nd->path = *path;
869 	nd->inode = nd->path.dentry->d_inode;
870 	nd->flags |= LOOKUP_JUMPED;
871 }
872 
873 static inline void put_link(struct nameidata *nd)
874 {
875 	struct saved *last = nd->stack + --nd->depth;
876 	do_delayed_call(&last->done);
877 	if (!(nd->flags & LOOKUP_RCU))
878 		path_put(&last->link);
879 }
880 
881 int sysctl_protected_symlinks __read_mostly = 0;
882 int sysctl_protected_hardlinks __read_mostly = 0;
883 
884 /**
885  * may_follow_link - Check symlink following for unsafe situations
886  * @nd: nameidata pathwalk data
887  *
888  * In the case of the sysctl_protected_symlinks sysctl being enabled,
889  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
890  * in a sticky world-writable directory. This is to protect privileged
891  * processes from failing races against path names that may change out
892  * from under them by way of other users creating malicious symlinks.
893  * It will permit symlinks to be followed only when outside a sticky
894  * world-writable directory, or when the uid of the symlink and follower
895  * match, or when the directory owner matches the symlink's owner.
896  *
897  * Returns 0 if following the symlink is allowed, -ve on error.
898  */
899 static inline int may_follow_link(struct nameidata *nd)
900 {
901 	const struct inode *inode;
902 	const struct inode *parent;
903 
904 	if (!sysctl_protected_symlinks)
905 		return 0;
906 
907 	/* Allowed if owner and follower match. */
908 	inode = nd->link_inode;
909 	if (uid_eq(current_cred()->fsuid, inode->i_uid))
910 		return 0;
911 
912 	/* Allowed if parent directory not sticky and world-writable. */
913 	parent = nd->inode;
914 	if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
915 		return 0;
916 
917 	/* Allowed if parent directory and link owner match. */
918 	if (uid_eq(parent->i_uid, inode->i_uid))
919 		return 0;
920 
921 	if (nd->flags & LOOKUP_RCU)
922 		return -ECHILD;
923 
924 	audit_log_link_denied("follow_link", &nd->stack[0].link);
925 	return -EACCES;
926 }
927 
928 /**
929  * safe_hardlink_source - Check for safe hardlink conditions
930  * @inode: the source inode to hardlink from
931  *
932  * Return false if at least one of the following conditions:
933  *    - inode is not a regular file
934  *    - inode is setuid
935  *    - inode is setgid and group-exec
936  *    - access failure for read and write
937  *
938  * Otherwise returns true.
939  */
940 static bool safe_hardlink_source(struct inode *inode)
941 {
942 	umode_t mode = inode->i_mode;
943 
944 	/* Special files should not get pinned to the filesystem. */
945 	if (!S_ISREG(mode))
946 		return false;
947 
948 	/* Setuid files should not get pinned to the filesystem. */
949 	if (mode & S_ISUID)
950 		return false;
951 
952 	/* Executable setgid files should not get pinned to the filesystem. */
953 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
954 		return false;
955 
956 	/* Hardlinking to unreadable or unwritable sources is dangerous. */
957 	if (inode_permission(inode, MAY_READ | MAY_WRITE))
958 		return false;
959 
960 	return true;
961 }
962 
963 /**
964  * may_linkat - Check permissions for creating a hardlink
965  * @link: the source to hardlink from
966  *
967  * Block hardlink when all of:
968  *  - sysctl_protected_hardlinks enabled
969  *  - fsuid does not match inode
970  *  - hardlink source is unsafe (see safe_hardlink_source() above)
971  *  - not CAP_FOWNER in a namespace with the inode owner uid mapped
972  *
973  * Returns 0 if successful, -ve on error.
974  */
975 static int may_linkat(struct path *link)
976 {
977 	struct inode *inode;
978 
979 	if (!sysctl_protected_hardlinks)
980 		return 0;
981 
982 	inode = link->dentry->d_inode;
983 
984 	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
985 	 * otherwise, it must be a safe source.
986 	 */
987 	if (inode_owner_or_capable(inode) || safe_hardlink_source(inode))
988 		return 0;
989 
990 	audit_log_link_denied("linkat", link);
991 	return -EPERM;
992 }
993 
994 static __always_inline
995 const char *get_link(struct nameidata *nd)
996 {
997 	struct saved *last = nd->stack + nd->depth - 1;
998 	struct dentry *dentry = last->link.dentry;
999 	struct inode *inode = nd->link_inode;
1000 	int error;
1001 	const char *res;
1002 
1003 	if (!(nd->flags & LOOKUP_RCU)) {
1004 		touch_atime(&last->link);
1005 		cond_resched();
1006 	} else if (atime_needs_update(&last->link, inode)) {
1007 		if (unlikely(unlazy_walk(nd, NULL, 0)))
1008 			return ERR_PTR(-ECHILD);
1009 		touch_atime(&last->link);
1010 	}
1011 
1012 	error = security_inode_follow_link(dentry, inode,
1013 					   nd->flags & LOOKUP_RCU);
1014 	if (unlikely(error))
1015 		return ERR_PTR(error);
1016 
1017 	nd->last_type = LAST_BIND;
1018 	res = inode->i_link;
1019 	if (!res) {
1020 		const char * (*get)(struct dentry *, struct inode *,
1021 				struct delayed_call *);
1022 		get = inode->i_op->get_link;
1023 		if (nd->flags & LOOKUP_RCU) {
1024 			res = get(NULL, inode, &last->done);
1025 			if (res == ERR_PTR(-ECHILD)) {
1026 				if (unlikely(unlazy_walk(nd, NULL, 0)))
1027 					return ERR_PTR(-ECHILD);
1028 				res = get(dentry, inode, &last->done);
1029 			}
1030 		} else {
1031 			res = get(dentry, inode, &last->done);
1032 		}
1033 		if (IS_ERR_OR_NULL(res))
1034 			return res;
1035 	}
1036 	if (*res == '/') {
1037 		if (!nd->root.mnt)
1038 			set_root(nd);
1039 		if (unlikely(nd_jump_root(nd)))
1040 			return ERR_PTR(-ECHILD);
1041 		while (unlikely(*++res == '/'))
1042 			;
1043 	}
1044 	if (!*res)
1045 		res = NULL;
1046 	return res;
1047 }
1048 
1049 /*
1050  * follow_up - Find the mountpoint of path's vfsmount
1051  *
1052  * Given a path, find the mountpoint of its source file system.
1053  * Replace @path with the path of the mountpoint in the parent mount.
1054  * Up is towards /.
1055  *
1056  * Return 1 if we went up a level and 0 if we were already at the
1057  * root.
1058  */
1059 int follow_up(struct path *path)
1060 {
1061 	struct mount *mnt = real_mount(path->mnt);
1062 	struct mount *parent;
1063 	struct dentry *mountpoint;
1064 
1065 	read_seqlock_excl(&mount_lock);
1066 	parent = mnt->mnt_parent;
1067 	if (parent == mnt) {
1068 		read_sequnlock_excl(&mount_lock);
1069 		return 0;
1070 	}
1071 	mntget(&parent->mnt);
1072 	mountpoint = dget(mnt->mnt_mountpoint);
1073 	read_sequnlock_excl(&mount_lock);
1074 	dput(path->dentry);
1075 	path->dentry = mountpoint;
1076 	mntput(path->mnt);
1077 	path->mnt = &parent->mnt;
1078 	return 1;
1079 }
1080 EXPORT_SYMBOL(follow_up);
1081 
1082 /*
1083  * Perform an automount
1084  * - return -EISDIR to tell follow_managed() to stop and return the path we
1085  *   were called with.
1086  */
1087 static int follow_automount(struct path *path, struct nameidata *nd,
1088 			    bool *need_mntput)
1089 {
1090 	struct vfsmount *mnt;
1091 	int err;
1092 
1093 	if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1094 		return -EREMOTE;
1095 
1096 	/* We don't want to mount if someone's just doing a stat -
1097 	 * unless they're stat'ing a directory and appended a '/' to
1098 	 * the name.
1099 	 *
1100 	 * We do, however, want to mount if someone wants to open or
1101 	 * create a file of any type under the mountpoint, wants to
1102 	 * traverse through the mountpoint or wants to open the
1103 	 * mounted directory.  Also, autofs may mark negative dentries
1104 	 * as being automount points.  These will need the attentions
1105 	 * of the daemon to instantiate them before they can be used.
1106 	 */
1107 	if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1108 			   LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1109 	    path->dentry->d_inode)
1110 		return -EISDIR;
1111 
1112 	nd->total_link_count++;
1113 	if (nd->total_link_count >= 40)
1114 		return -ELOOP;
1115 
1116 	mnt = path->dentry->d_op->d_automount(path);
1117 	if (IS_ERR(mnt)) {
1118 		/*
1119 		 * The filesystem is allowed to return -EISDIR here to indicate
1120 		 * it doesn't want to automount.  For instance, autofs would do
1121 		 * this so that its userspace daemon can mount on this dentry.
1122 		 *
1123 		 * However, we can only permit this if it's a terminal point in
1124 		 * the path being looked up; if it wasn't then the remainder of
1125 		 * the path is inaccessible and we should say so.
1126 		 */
1127 		if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1128 			return -EREMOTE;
1129 		return PTR_ERR(mnt);
1130 	}
1131 
1132 	if (!mnt) /* mount collision */
1133 		return 0;
1134 
1135 	if (!*need_mntput) {
1136 		/* lock_mount() may release path->mnt on error */
1137 		mntget(path->mnt);
1138 		*need_mntput = true;
1139 	}
1140 	err = finish_automount(mnt, path);
1141 
1142 	switch (err) {
1143 	case -EBUSY:
1144 		/* Someone else made a mount here whilst we were busy */
1145 		return 0;
1146 	case 0:
1147 		path_put(path);
1148 		path->mnt = mnt;
1149 		path->dentry = dget(mnt->mnt_root);
1150 		return 0;
1151 	default:
1152 		return err;
1153 	}
1154 
1155 }
1156 
1157 /*
1158  * Handle a dentry that is managed in some way.
1159  * - Flagged for transit management (autofs)
1160  * - Flagged as mountpoint
1161  * - Flagged as automount point
1162  *
1163  * This may only be called in refwalk mode.
1164  *
1165  * Serialization is taken care of in namespace.c
1166  */
1167 static int follow_managed(struct path *path, struct nameidata *nd)
1168 {
1169 	struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1170 	unsigned managed;
1171 	bool need_mntput = false;
1172 	int ret = 0;
1173 
1174 	/* Given that we're not holding a lock here, we retain the value in a
1175 	 * local variable for each dentry as we look at it so that we don't see
1176 	 * the components of that value change under us */
1177 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1178 	       managed &= DCACHE_MANAGED_DENTRY,
1179 	       unlikely(managed != 0)) {
1180 		/* Allow the filesystem to manage the transit without i_mutex
1181 		 * being held. */
1182 		if (managed & DCACHE_MANAGE_TRANSIT) {
1183 			BUG_ON(!path->dentry->d_op);
1184 			BUG_ON(!path->dentry->d_op->d_manage);
1185 			ret = path->dentry->d_op->d_manage(path->dentry, false);
1186 			if (ret < 0)
1187 				break;
1188 		}
1189 
1190 		/* Transit to a mounted filesystem. */
1191 		if (managed & DCACHE_MOUNTED) {
1192 			struct vfsmount *mounted = lookup_mnt(path);
1193 			if (mounted) {
1194 				dput(path->dentry);
1195 				if (need_mntput)
1196 					mntput(path->mnt);
1197 				path->mnt = mounted;
1198 				path->dentry = dget(mounted->mnt_root);
1199 				need_mntput = true;
1200 				continue;
1201 			}
1202 
1203 			/* Something is mounted on this dentry in another
1204 			 * namespace and/or whatever was mounted there in this
1205 			 * namespace got unmounted before lookup_mnt() could
1206 			 * get it */
1207 		}
1208 
1209 		/* Handle an automount point */
1210 		if (managed & DCACHE_NEED_AUTOMOUNT) {
1211 			ret = follow_automount(path, nd, &need_mntput);
1212 			if (ret < 0)
1213 				break;
1214 			continue;
1215 		}
1216 
1217 		/* We didn't change the current path point */
1218 		break;
1219 	}
1220 
1221 	if (need_mntput && path->mnt == mnt)
1222 		mntput(path->mnt);
1223 	if (ret == -EISDIR)
1224 		ret = 0;
1225 	if (need_mntput)
1226 		nd->flags |= LOOKUP_JUMPED;
1227 	if (unlikely(ret < 0))
1228 		path_put_conditional(path, nd);
1229 	return ret;
1230 }
1231 
1232 int follow_down_one(struct path *path)
1233 {
1234 	struct vfsmount *mounted;
1235 
1236 	mounted = lookup_mnt(path);
1237 	if (mounted) {
1238 		dput(path->dentry);
1239 		mntput(path->mnt);
1240 		path->mnt = mounted;
1241 		path->dentry = dget(mounted->mnt_root);
1242 		return 1;
1243 	}
1244 	return 0;
1245 }
1246 EXPORT_SYMBOL(follow_down_one);
1247 
1248 static inline int managed_dentry_rcu(struct dentry *dentry)
1249 {
1250 	return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1251 		dentry->d_op->d_manage(dentry, true) : 0;
1252 }
1253 
1254 /*
1255  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1256  * we meet a managed dentry that would need blocking.
1257  */
1258 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1259 			       struct inode **inode, unsigned *seqp)
1260 {
1261 	for (;;) {
1262 		struct mount *mounted;
1263 		/*
1264 		 * Don't forget we might have a non-mountpoint managed dentry
1265 		 * that wants to block transit.
1266 		 */
1267 		switch (managed_dentry_rcu(path->dentry)) {
1268 		case -ECHILD:
1269 		default:
1270 			return false;
1271 		case -EISDIR:
1272 			return true;
1273 		case 0:
1274 			break;
1275 		}
1276 
1277 		if (!d_mountpoint(path->dentry))
1278 			return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1279 
1280 		mounted = __lookup_mnt(path->mnt, path->dentry);
1281 		if (!mounted)
1282 			break;
1283 		path->mnt = &mounted->mnt;
1284 		path->dentry = mounted->mnt.mnt_root;
1285 		nd->flags |= LOOKUP_JUMPED;
1286 		*seqp = read_seqcount_begin(&path->dentry->d_seq);
1287 		/*
1288 		 * Update the inode too. We don't need to re-check the
1289 		 * dentry sequence number here after this d_inode read,
1290 		 * because a mount-point is always pinned.
1291 		 */
1292 		*inode = path->dentry->d_inode;
1293 	}
1294 	return !read_seqretry(&mount_lock, nd->m_seq) &&
1295 		!(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1296 }
1297 
1298 static int follow_dotdot_rcu(struct nameidata *nd)
1299 {
1300 	struct inode *inode = nd->inode;
1301 
1302 	while (1) {
1303 		if (path_equal(&nd->path, &nd->root))
1304 			break;
1305 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1306 			struct dentry *old = nd->path.dentry;
1307 			struct dentry *parent = old->d_parent;
1308 			unsigned seq;
1309 
1310 			inode = parent->d_inode;
1311 			seq = read_seqcount_begin(&parent->d_seq);
1312 			if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1313 				return -ECHILD;
1314 			nd->path.dentry = parent;
1315 			nd->seq = seq;
1316 			if (unlikely(!path_connected(&nd->path)))
1317 				return -ENOENT;
1318 			break;
1319 		} else {
1320 			struct mount *mnt = real_mount(nd->path.mnt);
1321 			struct mount *mparent = mnt->mnt_parent;
1322 			struct dentry *mountpoint = mnt->mnt_mountpoint;
1323 			struct inode *inode2 = mountpoint->d_inode;
1324 			unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1325 			if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1326 				return -ECHILD;
1327 			if (&mparent->mnt == nd->path.mnt)
1328 				break;
1329 			/* we know that mountpoint was pinned */
1330 			nd->path.dentry = mountpoint;
1331 			nd->path.mnt = &mparent->mnt;
1332 			inode = inode2;
1333 			nd->seq = seq;
1334 		}
1335 	}
1336 	while (unlikely(d_mountpoint(nd->path.dentry))) {
1337 		struct mount *mounted;
1338 		mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1339 		if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1340 			return -ECHILD;
1341 		if (!mounted)
1342 			break;
1343 		nd->path.mnt = &mounted->mnt;
1344 		nd->path.dentry = mounted->mnt.mnt_root;
1345 		inode = nd->path.dentry->d_inode;
1346 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1347 	}
1348 	nd->inode = inode;
1349 	return 0;
1350 }
1351 
1352 /*
1353  * Follow down to the covering mount currently visible to userspace.  At each
1354  * point, the filesystem owning that dentry may be queried as to whether the
1355  * caller is permitted to proceed or not.
1356  */
1357 int follow_down(struct path *path)
1358 {
1359 	unsigned managed;
1360 	int ret;
1361 
1362 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1363 	       unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1364 		/* Allow the filesystem to manage the transit without i_mutex
1365 		 * being held.
1366 		 *
1367 		 * We indicate to the filesystem if someone is trying to mount
1368 		 * something here.  This gives autofs the chance to deny anyone
1369 		 * other than its daemon the right to mount on its
1370 		 * superstructure.
1371 		 *
1372 		 * The filesystem may sleep at this point.
1373 		 */
1374 		if (managed & DCACHE_MANAGE_TRANSIT) {
1375 			BUG_ON(!path->dentry->d_op);
1376 			BUG_ON(!path->dentry->d_op->d_manage);
1377 			ret = path->dentry->d_op->d_manage(
1378 				path->dentry, false);
1379 			if (ret < 0)
1380 				return ret == -EISDIR ? 0 : ret;
1381 		}
1382 
1383 		/* Transit to a mounted filesystem. */
1384 		if (managed & DCACHE_MOUNTED) {
1385 			struct vfsmount *mounted = lookup_mnt(path);
1386 			if (!mounted)
1387 				break;
1388 			dput(path->dentry);
1389 			mntput(path->mnt);
1390 			path->mnt = mounted;
1391 			path->dentry = dget(mounted->mnt_root);
1392 			continue;
1393 		}
1394 
1395 		/* Don't handle automount points here */
1396 		break;
1397 	}
1398 	return 0;
1399 }
1400 EXPORT_SYMBOL(follow_down);
1401 
1402 /*
1403  * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1404  */
1405 static void follow_mount(struct path *path)
1406 {
1407 	while (d_mountpoint(path->dentry)) {
1408 		struct vfsmount *mounted = lookup_mnt(path);
1409 		if (!mounted)
1410 			break;
1411 		dput(path->dentry);
1412 		mntput(path->mnt);
1413 		path->mnt = mounted;
1414 		path->dentry = dget(mounted->mnt_root);
1415 	}
1416 }
1417 
1418 static int follow_dotdot(struct nameidata *nd)
1419 {
1420 	while(1) {
1421 		struct dentry *old = nd->path.dentry;
1422 
1423 		if (nd->path.dentry == nd->root.dentry &&
1424 		    nd->path.mnt == nd->root.mnt) {
1425 			break;
1426 		}
1427 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1428 			/* rare case of legitimate dget_parent()... */
1429 			nd->path.dentry = dget_parent(nd->path.dentry);
1430 			dput(old);
1431 			if (unlikely(!path_connected(&nd->path)))
1432 				return -ENOENT;
1433 			break;
1434 		}
1435 		if (!follow_up(&nd->path))
1436 			break;
1437 	}
1438 	follow_mount(&nd->path);
1439 	nd->inode = nd->path.dentry->d_inode;
1440 	return 0;
1441 }
1442 
1443 /*
1444  * This looks up the name in dcache, possibly revalidates the old dentry and
1445  * allocates a new one if not found or not valid.  In the need_lookup argument
1446  * returns whether i_op->lookup is necessary.
1447  *
1448  * dir->d_inode->i_mutex must be held
1449  */
1450 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1451 				    unsigned int flags, bool *need_lookup)
1452 {
1453 	struct dentry *dentry;
1454 	int error;
1455 
1456 	*need_lookup = false;
1457 	dentry = d_lookup(dir, name);
1458 	if (dentry) {
1459 		if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1460 			error = d_revalidate(dentry, flags);
1461 			if (unlikely(error <= 0)) {
1462 				if (error < 0) {
1463 					dput(dentry);
1464 					return ERR_PTR(error);
1465 				} else {
1466 					d_invalidate(dentry);
1467 					dput(dentry);
1468 					dentry = NULL;
1469 				}
1470 			}
1471 		}
1472 	}
1473 
1474 	if (!dentry) {
1475 		dentry = d_alloc(dir, name);
1476 		if (unlikely(!dentry))
1477 			return ERR_PTR(-ENOMEM);
1478 
1479 		*need_lookup = true;
1480 	}
1481 	return dentry;
1482 }
1483 
1484 /*
1485  * Call i_op->lookup on the dentry.  The dentry must be negative and
1486  * unhashed.
1487  *
1488  * dir->d_inode->i_mutex must be held
1489  */
1490 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1491 				  unsigned int flags)
1492 {
1493 	struct dentry *old;
1494 
1495 	/* Don't create child dentry for a dead directory. */
1496 	if (unlikely(IS_DEADDIR(dir))) {
1497 		dput(dentry);
1498 		return ERR_PTR(-ENOENT);
1499 	}
1500 
1501 	old = dir->i_op->lookup(dir, dentry, flags);
1502 	if (unlikely(old)) {
1503 		dput(dentry);
1504 		dentry = old;
1505 	}
1506 	return dentry;
1507 }
1508 
1509 static struct dentry *__lookup_hash(struct qstr *name,
1510 		struct dentry *base, unsigned int flags)
1511 {
1512 	bool need_lookup;
1513 	struct dentry *dentry;
1514 
1515 	dentry = lookup_dcache(name, base, flags, &need_lookup);
1516 	if (!need_lookup)
1517 		return dentry;
1518 
1519 	return lookup_real(base->d_inode, dentry, flags);
1520 }
1521 
1522 /*
1523  *  It's more convoluted than I'd like it to be, but... it's still fairly
1524  *  small and for now I'd prefer to have fast path as straight as possible.
1525  *  It _is_ time-critical.
1526  */
1527 static int lookup_fast(struct nameidata *nd,
1528 		       struct path *path, struct inode **inode,
1529 		       unsigned *seqp)
1530 {
1531 	struct vfsmount *mnt = nd->path.mnt;
1532 	struct dentry *dentry, *parent = nd->path.dentry;
1533 	int need_reval = 1;
1534 	int status = 1;
1535 	int err;
1536 
1537 	/*
1538 	 * Rename seqlock is not required here because in the off chance
1539 	 * of a false negative due to a concurrent rename, we're going to
1540 	 * do the non-racy lookup, below.
1541 	 */
1542 	if (nd->flags & LOOKUP_RCU) {
1543 		unsigned seq;
1544 		bool negative;
1545 		dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1546 		if (!dentry)
1547 			goto unlazy;
1548 
1549 		/*
1550 		 * This sequence count validates that the inode matches
1551 		 * the dentry name information from lookup.
1552 		 */
1553 		*inode = d_backing_inode(dentry);
1554 		negative = d_is_negative(dentry);
1555 		if (read_seqcount_retry(&dentry->d_seq, seq))
1556 			return -ECHILD;
1557 
1558 		/*
1559 		 * This sequence count validates that the parent had no
1560 		 * changes while we did the lookup of the dentry above.
1561 		 *
1562 		 * The memory barrier in read_seqcount_begin of child is
1563 		 *  enough, we can use __read_seqcount_retry here.
1564 		 */
1565 		if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1566 			return -ECHILD;
1567 
1568 		*seqp = seq;
1569 		if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1570 			status = d_revalidate(dentry, nd->flags);
1571 			if (unlikely(status <= 0)) {
1572 				if (status != -ECHILD)
1573 					need_reval = 0;
1574 				goto unlazy;
1575 			}
1576 		}
1577 		/*
1578 		 * Note: do negative dentry check after revalidation in
1579 		 * case that drops it.
1580 		 */
1581 		if (negative)
1582 			return -ENOENT;
1583 		path->mnt = mnt;
1584 		path->dentry = dentry;
1585 		if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1586 			return 0;
1587 unlazy:
1588 		if (unlazy_walk(nd, dentry, seq))
1589 			return -ECHILD;
1590 	} else {
1591 		dentry = __d_lookup(parent, &nd->last);
1592 	}
1593 
1594 	if (unlikely(!dentry))
1595 		goto need_lookup;
1596 
1597 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1598 		status = d_revalidate(dentry, nd->flags);
1599 	if (unlikely(status <= 0)) {
1600 		if (status < 0) {
1601 			dput(dentry);
1602 			return status;
1603 		}
1604 		d_invalidate(dentry);
1605 		dput(dentry);
1606 		goto need_lookup;
1607 	}
1608 
1609 	if (unlikely(d_is_negative(dentry))) {
1610 		dput(dentry);
1611 		return -ENOENT;
1612 	}
1613 	path->mnt = mnt;
1614 	path->dentry = dentry;
1615 	err = follow_managed(path, nd);
1616 	if (likely(!err))
1617 		*inode = d_backing_inode(path->dentry);
1618 	return err;
1619 
1620 need_lookup:
1621 	return 1;
1622 }
1623 
1624 /* Fast lookup failed, do it the slow way */
1625 static int lookup_slow(struct nameidata *nd, struct path *path)
1626 {
1627 	struct dentry *dentry, *parent;
1628 
1629 	parent = nd->path.dentry;
1630 	BUG_ON(nd->inode != parent->d_inode);
1631 
1632 	inode_lock(parent->d_inode);
1633 	dentry = __lookup_hash(&nd->last, parent, nd->flags);
1634 	inode_unlock(parent->d_inode);
1635 	if (IS_ERR(dentry))
1636 		return PTR_ERR(dentry);
1637 	path->mnt = nd->path.mnt;
1638 	path->dentry = dentry;
1639 	return follow_managed(path, nd);
1640 }
1641 
1642 static inline int may_lookup(struct nameidata *nd)
1643 {
1644 	if (nd->flags & LOOKUP_RCU) {
1645 		int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1646 		if (err != -ECHILD)
1647 			return err;
1648 		if (unlazy_walk(nd, NULL, 0))
1649 			return -ECHILD;
1650 	}
1651 	return inode_permission(nd->inode, MAY_EXEC);
1652 }
1653 
1654 static inline int handle_dots(struct nameidata *nd, int type)
1655 {
1656 	if (type == LAST_DOTDOT) {
1657 		if (!nd->root.mnt)
1658 			set_root(nd);
1659 		if (nd->flags & LOOKUP_RCU) {
1660 			return follow_dotdot_rcu(nd);
1661 		} else
1662 			return follow_dotdot(nd);
1663 	}
1664 	return 0;
1665 }
1666 
1667 static int pick_link(struct nameidata *nd, struct path *link,
1668 		     struct inode *inode, unsigned seq)
1669 {
1670 	int error;
1671 	struct saved *last;
1672 	if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1673 		path_to_nameidata(link, nd);
1674 		return -ELOOP;
1675 	}
1676 	if (!(nd->flags & LOOKUP_RCU)) {
1677 		if (link->mnt == nd->path.mnt)
1678 			mntget(link->mnt);
1679 	}
1680 	error = nd_alloc_stack(nd);
1681 	if (unlikely(error)) {
1682 		if (error == -ECHILD) {
1683 			if (unlikely(unlazy_link(nd, link, seq)))
1684 				return -ECHILD;
1685 			error = nd_alloc_stack(nd);
1686 		}
1687 		if (error) {
1688 			path_put(link);
1689 			return error;
1690 		}
1691 	}
1692 
1693 	last = nd->stack + nd->depth++;
1694 	last->link = *link;
1695 	clear_delayed_call(&last->done);
1696 	nd->link_inode = inode;
1697 	last->seq = seq;
1698 	return 1;
1699 }
1700 
1701 /*
1702  * Do we need to follow links? We _really_ want to be able
1703  * to do this check without having to look at inode->i_op,
1704  * so we keep a cache of "no, this doesn't need follow_link"
1705  * for the common case.
1706  */
1707 static inline int should_follow_link(struct nameidata *nd, struct path *link,
1708 				     int follow,
1709 				     struct inode *inode, unsigned seq)
1710 {
1711 	if (likely(!d_is_symlink(link->dentry)))
1712 		return 0;
1713 	if (!follow)
1714 		return 0;
1715 	return pick_link(nd, link, inode, seq);
1716 }
1717 
1718 enum {WALK_GET = 1, WALK_PUT = 2};
1719 
1720 static int walk_component(struct nameidata *nd, int flags)
1721 {
1722 	struct path path;
1723 	struct inode *inode;
1724 	unsigned seq;
1725 	int err;
1726 	/*
1727 	 * "." and ".." are special - ".." especially so because it has
1728 	 * to be able to know about the current root directory and
1729 	 * parent relationships.
1730 	 */
1731 	if (unlikely(nd->last_type != LAST_NORM)) {
1732 		err = handle_dots(nd, nd->last_type);
1733 		if (flags & WALK_PUT)
1734 			put_link(nd);
1735 		return err;
1736 	}
1737 	err = lookup_fast(nd, &path, &inode, &seq);
1738 	if (unlikely(err)) {
1739 		if (err < 0)
1740 			return err;
1741 
1742 		err = lookup_slow(nd, &path);
1743 		if (err < 0)
1744 			return err;
1745 
1746 		inode = d_backing_inode(path.dentry);
1747 		seq = 0;	/* we are already out of RCU mode */
1748 		err = -ENOENT;
1749 		if (d_is_negative(path.dentry))
1750 			goto out_path_put;
1751 	}
1752 
1753 	if (flags & WALK_PUT)
1754 		put_link(nd);
1755 	err = should_follow_link(nd, &path, flags & WALK_GET, inode, seq);
1756 	if (unlikely(err))
1757 		return err;
1758 	path_to_nameidata(&path, nd);
1759 	nd->inode = inode;
1760 	nd->seq = seq;
1761 	return 0;
1762 
1763 out_path_put:
1764 	path_to_nameidata(&path, nd);
1765 	return err;
1766 }
1767 
1768 /*
1769  * We can do the critical dentry name comparison and hashing
1770  * operations one word at a time, but we are limited to:
1771  *
1772  * - Architectures with fast unaligned word accesses. We could
1773  *   do a "get_unaligned()" if this helps and is sufficiently
1774  *   fast.
1775  *
1776  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1777  *   do not trap on the (extremely unlikely) case of a page
1778  *   crossing operation.
1779  *
1780  * - Furthermore, we need an efficient 64-bit compile for the
1781  *   64-bit case in order to generate the "number of bytes in
1782  *   the final mask". Again, that could be replaced with a
1783  *   efficient population count instruction or similar.
1784  */
1785 #ifdef CONFIG_DCACHE_WORD_ACCESS
1786 
1787 #include <asm/word-at-a-time.h>
1788 
1789 #ifdef CONFIG_64BIT
1790 
1791 static inline unsigned int fold_hash(unsigned long hash)
1792 {
1793 	return hash_64(hash, 32);
1794 }
1795 
1796 #else	/* 32-bit case */
1797 
1798 #define fold_hash(x) (x)
1799 
1800 #endif
1801 
1802 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1803 {
1804 	unsigned long a, mask;
1805 	unsigned long hash = 0;
1806 
1807 	for (;;) {
1808 		a = load_unaligned_zeropad(name);
1809 		if (len < sizeof(unsigned long))
1810 			break;
1811 		hash += a;
1812 		hash *= 9;
1813 		name += sizeof(unsigned long);
1814 		len -= sizeof(unsigned long);
1815 		if (!len)
1816 			goto done;
1817 	}
1818 	mask = bytemask_from_count(len);
1819 	hash += mask & a;
1820 done:
1821 	return fold_hash(hash);
1822 }
1823 EXPORT_SYMBOL(full_name_hash);
1824 
1825 /*
1826  * Calculate the length and hash of the path component, and
1827  * return the "hash_len" as the result.
1828  */
1829 static inline u64 hash_name(const char *name)
1830 {
1831 	unsigned long a, b, adata, bdata, mask, hash, len;
1832 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1833 
1834 	hash = a = 0;
1835 	len = -sizeof(unsigned long);
1836 	do {
1837 		hash = (hash + a) * 9;
1838 		len += sizeof(unsigned long);
1839 		a = load_unaligned_zeropad(name+len);
1840 		b = a ^ REPEAT_BYTE('/');
1841 	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1842 
1843 	adata = prep_zero_mask(a, adata, &constants);
1844 	bdata = prep_zero_mask(b, bdata, &constants);
1845 
1846 	mask = create_zero_mask(adata | bdata);
1847 
1848 	hash += a & zero_bytemask(mask);
1849 	len += find_zero(mask);
1850 	return hashlen_create(fold_hash(hash), len);
1851 }
1852 
1853 #else
1854 
1855 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1856 {
1857 	unsigned long hash = init_name_hash();
1858 	while (len--)
1859 		hash = partial_name_hash(*name++, hash);
1860 	return end_name_hash(hash);
1861 }
1862 EXPORT_SYMBOL(full_name_hash);
1863 
1864 /*
1865  * We know there's a real path component here of at least
1866  * one character.
1867  */
1868 static inline u64 hash_name(const char *name)
1869 {
1870 	unsigned long hash = init_name_hash();
1871 	unsigned long len = 0, c;
1872 
1873 	c = (unsigned char)*name;
1874 	do {
1875 		len++;
1876 		hash = partial_name_hash(c, hash);
1877 		c = (unsigned char)name[len];
1878 	} while (c && c != '/');
1879 	return hashlen_create(end_name_hash(hash), len);
1880 }
1881 
1882 #endif
1883 
1884 /*
1885  * Name resolution.
1886  * This is the basic name resolution function, turning a pathname into
1887  * the final dentry. We expect 'base' to be positive and a directory.
1888  *
1889  * Returns 0 and nd will have valid dentry and mnt on success.
1890  * Returns error and drops reference to input namei data on failure.
1891  */
1892 static int link_path_walk(const char *name, struct nameidata *nd)
1893 {
1894 	int err;
1895 
1896 	while (*name=='/')
1897 		name++;
1898 	if (!*name)
1899 		return 0;
1900 
1901 	/* At this point we know we have a real path component. */
1902 	for(;;) {
1903 		u64 hash_len;
1904 		int type;
1905 
1906 		err = may_lookup(nd);
1907  		if (err)
1908 			return err;
1909 
1910 		hash_len = hash_name(name);
1911 
1912 		type = LAST_NORM;
1913 		if (name[0] == '.') switch (hashlen_len(hash_len)) {
1914 			case 2:
1915 				if (name[1] == '.') {
1916 					type = LAST_DOTDOT;
1917 					nd->flags |= LOOKUP_JUMPED;
1918 				}
1919 				break;
1920 			case 1:
1921 				type = LAST_DOT;
1922 		}
1923 		if (likely(type == LAST_NORM)) {
1924 			struct dentry *parent = nd->path.dentry;
1925 			nd->flags &= ~LOOKUP_JUMPED;
1926 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1927 				struct qstr this = { { .hash_len = hash_len }, .name = name };
1928 				err = parent->d_op->d_hash(parent, &this);
1929 				if (err < 0)
1930 					return err;
1931 				hash_len = this.hash_len;
1932 				name = this.name;
1933 			}
1934 		}
1935 
1936 		nd->last.hash_len = hash_len;
1937 		nd->last.name = name;
1938 		nd->last_type = type;
1939 
1940 		name += hashlen_len(hash_len);
1941 		if (!*name)
1942 			goto OK;
1943 		/*
1944 		 * If it wasn't NUL, we know it was '/'. Skip that
1945 		 * slash, and continue until no more slashes.
1946 		 */
1947 		do {
1948 			name++;
1949 		} while (unlikely(*name == '/'));
1950 		if (unlikely(!*name)) {
1951 OK:
1952 			/* pathname body, done */
1953 			if (!nd->depth)
1954 				return 0;
1955 			name = nd->stack[nd->depth - 1].name;
1956 			/* trailing symlink, done */
1957 			if (!name)
1958 				return 0;
1959 			/* last component of nested symlink */
1960 			err = walk_component(nd, WALK_GET | WALK_PUT);
1961 		} else {
1962 			err = walk_component(nd, WALK_GET);
1963 		}
1964 		if (err < 0)
1965 			return err;
1966 
1967 		if (err) {
1968 			const char *s = get_link(nd);
1969 
1970 			if (IS_ERR(s))
1971 				return PTR_ERR(s);
1972 			err = 0;
1973 			if (unlikely(!s)) {
1974 				/* jumped */
1975 				put_link(nd);
1976 			} else {
1977 				nd->stack[nd->depth - 1].name = name;
1978 				name = s;
1979 				continue;
1980 			}
1981 		}
1982 		if (unlikely(!d_can_lookup(nd->path.dentry))) {
1983 			if (nd->flags & LOOKUP_RCU) {
1984 				if (unlazy_walk(nd, NULL, 0))
1985 					return -ECHILD;
1986 			}
1987 			return -ENOTDIR;
1988 		}
1989 	}
1990 }
1991 
1992 static const char *path_init(struct nameidata *nd, unsigned flags)
1993 {
1994 	int retval = 0;
1995 	const char *s = nd->name->name;
1996 
1997 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
1998 	nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
1999 	nd->depth = 0;
2000 	if (flags & LOOKUP_ROOT) {
2001 		struct dentry *root = nd->root.dentry;
2002 		struct inode *inode = root->d_inode;
2003 		if (*s) {
2004 			if (!d_can_lookup(root))
2005 				return ERR_PTR(-ENOTDIR);
2006 			retval = inode_permission(inode, MAY_EXEC);
2007 			if (retval)
2008 				return ERR_PTR(retval);
2009 		}
2010 		nd->path = nd->root;
2011 		nd->inode = inode;
2012 		if (flags & LOOKUP_RCU) {
2013 			rcu_read_lock();
2014 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2015 			nd->root_seq = nd->seq;
2016 			nd->m_seq = read_seqbegin(&mount_lock);
2017 		} else {
2018 			path_get(&nd->path);
2019 		}
2020 		return s;
2021 	}
2022 
2023 	nd->root.mnt = NULL;
2024 	nd->path.mnt = NULL;
2025 	nd->path.dentry = NULL;
2026 
2027 	nd->m_seq = read_seqbegin(&mount_lock);
2028 	if (*s == '/') {
2029 		if (flags & LOOKUP_RCU)
2030 			rcu_read_lock();
2031 		set_root(nd);
2032 		if (likely(!nd_jump_root(nd)))
2033 			return s;
2034 		nd->root.mnt = NULL;
2035 		rcu_read_unlock();
2036 		return ERR_PTR(-ECHILD);
2037 	} else if (nd->dfd == AT_FDCWD) {
2038 		if (flags & LOOKUP_RCU) {
2039 			struct fs_struct *fs = current->fs;
2040 			unsigned seq;
2041 
2042 			rcu_read_lock();
2043 
2044 			do {
2045 				seq = read_seqcount_begin(&fs->seq);
2046 				nd->path = fs->pwd;
2047 				nd->inode = nd->path.dentry->d_inode;
2048 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2049 			} while (read_seqcount_retry(&fs->seq, seq));
2050 		} else {
2051 			get_fs_pwd(current->fs, &nd->path);
2052 			nd->inode = nd->path.dentry->d_inode;
2053 		}
2054 		return s;
2055 	} else {
2056 		/* Caller must check execute permissions on the starting path component */
2057 		struct fd f = fdget_raw(nd->dfd);
2058 		struct dentry *dentry;
2059 
2060 		if (!f.file)
2061 			return ERR_PTR(-EBADF);
2062 
2063 		dentry = f.file->f_path.dentry;
2064 
2065 		if (*s) {
2066 			if (!d_can_lookup(dentry)) {
2067 				fdput(f);
2068 				return ERR_PTR(-ENOTDIR);
2069 			}
2070 		}
2071 
2072 		nd->path = f.file->f_path;
2073 		if (flags & LOOKUP_RCU) {
2074 			rcu_read_lock();
2075 			nd->inode = nd->path.dentry->d_inode;
2076 			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2077 		} else {
2078 			path_get(&nd->path);
2079 			nd->inode = nd->path.dentry->d_inode;
2080 		}
2081 		fdput(f);
2082 		return s;
2083 	}
2084 }
2085 
2086 static const char *trailing_symlink(struct nameidata *nd)
2087 {
2088 	const char *s;
2089 	int error = may_follow_link(nd);
2090 	if (unlikely(error))
2091 		return ERR_PTR(error);
2092 	nd->flags |= LOOKUP_PARENT;
2093 	nd->stack[0].name = NULL;
2094 	s = get_link(nd);
2095 	return s ? s : "";
2096 }
2097 
2098 static inline int lookup_last(struct nameidata *nd)
2099 {
2100 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2101 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2102 
2103 	nd->flags &= ~LOOKUP_PARENT;
2104 	return walk_component(nd,
2105 			nd->flags & LOOKUP_FOLLOW
2106 				? nd->depth
2107 					? WALK_PUT | WALK_GET
2108 					: WALK_GET
2109 				: 0);
2110 }
2111 
2112 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2113 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2114 {
2115 	const char *s = path_init(nd, flags);
2116 	int err;
2117 
2118 	if (IS_ERR(s))
2119 		return PTR_ERR(s);
2120 	while (!(err = link_path_walk(s, nd))
2121 		&& ((err = lookup_last(nd)) > 0)) {
2122 		s = trailing_symlink(nd);
2123 		if (IS_ERR(s)) {
2124 			err = PTR_ERR(s);
2125 			break;
2126 		}
2127 	}
2128 	if (!err)
2129 		err = complete_walk(nd);
2130 
2131 	if (!err && nd->flags & LOOKUP_DIRECTORY)
2132 		if (!d_can_lookup(nd->path.dentry))
2133 			err = -ENOTDIR;
2134 	if (!err) {
2135 		*path = nd->path;
2136 		nd->path.mnt = NULL;
2137 		nd->path.dentry = NULL;
2138 	}
2139 	terminate_walk(nd);
2140 	return err;
2141 }
2142 
2143 static int filename_lookup(int dfd, struct filename *name, unsigned flags,
2144 			   struct path *path, struct path *root)
2145 {
2146 	int retval;
2147 	struct nameidata nd;
2148 	if (IS_ERR(name))
2149 		return PTR_ERR(name);
2150 	if (unlikely(root)) {
2151 		nd.root = *root;
2152 		flags |= LOOKUP_ROOT;
2153 	}
2154 	set_nameidata(&nd, dfd, name);
2155 	retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2156 	if (unlikely(retval == -ECHILD))
2157 		retval = path_lookupat(&nd, flags, path);
2158 	if (unlikely(retval == -ESTALE))
2159 		retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2160 
2161 	if (likely(!retval))
2162 		audit_inode(name, path->dentry, flags & LOOKUP_PARENT);
2163 	restore_nameidata();
2164 	putname(name);
2165 	return retval;
2166 }
2167 
2168 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2169 static int path_parentat(struct nameidata *nd, unsigned flags,
2170 				struct path *parent)
2171 {
2172 	const char *s = path_init(nd, flags);
2173 	int err;
2174 	if (IS_ERR(s))
2175 		return PTR_ERR(s);
2176 	err = link_path_walk(s, nd);
2177 	if (!err)
2178 		err = complete_walk(nd);
2179 	if (!err) {
2180 		*parent = nd->path;
2181 		nd->path.mnt = NULL;
2182 		nd->path.dentry = NULL;
2183 	}
2184 	terminate_walk(nd);
2185 	return err;
2186 }
2187 
2188 static struct filename *filename_parentat(int dfd, struct filename *name,
2189 				unsigned int flags, struct path *parent,
2190 				struct qstr *last, int *type)
2191 {
2192 	int retval;
2193 	struct nameidata nd;
2194 
2195 	if (IS_ERR(name))
2196 		return name;
2197 	set_nameidata(&nd, dfd, name);
2198 	retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2199 	if (unlikely(retval == -ECHILD))
2200 		retval = path_parentat(&nd, flags, parent);
2201 	if (unlikely(retval == -ESTALE))
2202 		retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2203 	if (likely(!retval)) {
2204 		*last = nd.last;
2205 		*type = nd.last_type;
2206 		audit_inode(name, parent->dentry, LOOKUP_PARENT);
2207 	} else {
2208 		putname(name);
2209 		name = ERR_PTR(retval);
2210 	}
2211 	restore_nameidata();
2212 	return name;
2213 }
2214 
2215 /* does lookup, returns the object with parent locked */
2216 struct dentry *kern_path_locked(const char *name, struct path *path)
2217 {
2218 	struct filename *filename;
2219 	struct dentry *d;
2220 	struct qstr last;
2221 	int type;
2222 
2223 	filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2224 				    &last, &type);
2225 	if (IS_ERR(filename))
2226 		return ERR_CAST(filename);
2227 	if (unlikely(type != LAST_NORM)) {
2228 		path_put(path);
2229 		putname(filename);
2230 		return ERR_PTR(-EINVAL);
2231 	}
2232 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2233 	d = __lookup_hash(&last, path->dentry, 0);
2234 	if (IS_ERR(d)) {
2235 		inode_unlock(path->dentry->d_inode);
2236 		path_put(path);
2237 	}
2238 	putname(filename);
2239 	return d;
2240 }
2241 
2242 int kern_path(const char *name, unsigned int flags, struct path *path)
2243 {
2244 	return filename_lookup(AT_FDCWD, getname_kernel(name),
2245 			       flags, path, NULL);
2246 }
2247 EXPORT_SYMBOL(kern_path);
2248 
2249 /**
2250  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2251  * @dentry:  pointer to dentry of the base directory
2252  * @mnt: pointer to vfs mount of the base directory
2253  * @name: pointer to file name
2254  * @flags: lookup flags
2255  * @path: pointer to struct path to fill
2256  */
2257 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2258 		    const char *name, unsigned int flags,
2259 		    struct path *path)
2260 {
2261 	struct path root = {.mnt = mnt, .dentry = dentry};
2262 	/* the first argument of filename_lookup() is ignored with root */
2263 	return filename_lookup(AT_FDCWD, getname_kernel(name),
2264 			       flags , path, &root);
2265 }
2266 EXPORT_SYMBOL(vfs_path_lookup);
2267 
2268 /**
2269  * lookup_one_len - filesystem helper to lookup single pathname component
2270  * @name:	pathname component to lookup
2271  * @base:	base directory to lookup from
2272  * @len:	maximum length @len should be interpreted to
2273  *
2274  * Note that this routine is purely a helper for filesystem usage and should
2275  * not be called by generic code.
2276  *
2277  * The caller must hold base->i_mutex.
2278  */
2279 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2280 {
2281 	struct qstr this;
2282 	unsigned int c;
2283 	int err;
2284 
2285 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2286 
2287 	this.name = name;
2288 	this.len = len;
2289 	this.hash = full_name_hash(name, len);
2290 	if (!len)
2291 		return ERR_PTR(-EACCES);
2292 
2293 	if (unlikely(name[0] == '.')) {
2294 		if (len < 2 || (len == 2 && name[1] == '.'))
2295 			return ERR_PTR(-EACCES);
2296 	}
2297 
2298 	while (len--) {
2299 		c = *(const unsigned char *)name++;
2300 		if (c == '/' || c == '\0')
2301 			return ERR_PTR(-EACCES);
2302 	}
2303 	/*
2304 	 * See if the low-level filesystem might want
2305 	 * to use its own hash..
2306 	 */
2307 	if (base->d_flags & DCACHE_OP_HASH) {
2308 		int err = base->d_op->d_hash(base, &this);
2309 		if (err < 0)
2310 			return ERR_PTR(err);
2311 	}
2312 
2313 	err = inode_permission(base->d_inode, MAY_EXEC);
2314 	if (err)
2315 		return ERR_PTR(err);
2316 
2317 	return __lookup_hash(&this, base, 0);
2318 }
2319 EXPORT_SYMBOL(lookup_one_len);
2320 
2321 /**
2322  * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2323  * @name:	pathname component to lookup
2324  * @base:	base directory to lookup from
2325  * @len:	maximum length @len should be interpreted to
2326  *
2327  * Note that this routine is purely a helper for filesystem usage and should
2328  * not be called by generic code.
2329  *
2330  * Unlike lookup_one_len, it should be called without the parent
2331  * i_mutex held, and will take the i_mutex itself if necessary.
2332  */
2333 struct dentry *lookup_one_len_unlocked(const char *name,
2334 				       struct dentry *base, int len)
2335 {
2336 	struct qstr this;
2337 	unsigned int c;
2338 	int err;
2339 	struct dentry *ret;
2340 
2341 	this.name = name;
2342 	this.len = len;
2343 	this.hash = full_name_hash(name, len);
2344 	if (!len)
2345 		return ERR_PTR(-EACCES);
2346 
2347 	if (unlikely(name[0] == '.')) {
2348 		if (len < 2 || (len == 2 && name[1] == '.'))
2349 			return ERR_PTR(-EACCES);
2350 	}
2351 
2352 	while (len--) {
2353 		c = *(const unsigned char *)name++;
2354 		if (c == '/' || c == '\0')
2355 			return ERR_PTR(-EACCES);
2356 	}
2357 	/*
2358 	 * See if the low-level filesystem might want
2359 	 * to use its own hash..
2360 	 */
2361 	if (base->d_flags & DCACHE_OP_HASH) {
2362 		int err = base->d_op->d_hash(base, &this);
2363 		if (err < 0)
2364 			return ERR_PTR(err);
2365 	}
2366 
2367 	err = inode_permission(base->d_inode, MAY_EXEC);
2368 	if (err)
2369 		return ERR_PTR(err);
2370 
2371 	/*
2372 	 * __d_lookup() is used to try to get a quick answer and avoid the
2373 	 * mutex.  A false-negative does no harm.
2374 	 */
2375 	ret = __d_lookup(base, &this);
2376 	if (ret && unlikely(ret->d_flags & DCACHE_OP_REVALIDATE)) {
2377 		dput(ret);
2378 		ret = NULL;
2379 	}
2380 	if (ret)
2381 		return ret;
2382 
2383 	inode_lock(base->d_inode);
2384 	ret =  __lookup_hash(&this, base, 0);
2385 	inode_unlock(base->d_inode);
2386 	return ret;
2387 }
2388 EXPORT_SYMBOL(lookup_one_len_unlocked);
2389 
2390 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2391 		 struct path *path, int *empty)
2392 {
2393 	return filename_lookup(dfd, getname_flags(name, flags, empty),
2394 			       flags, path, NULL);
2395 }
2396 EXPORT_SYMBOL(user_path_at_empty);
2397 
2398 /*
2399  * NB: most callers don't do anything directly with the reference to the
2400  *     to struct filename, but the nd->last pointer points into the name string
2401  *     allocated by getname. So we must hold the reference to it until all
2402  *     path-walking is complete.
2403  */
2404 static inline struct filename *
2405 user_path_parent(int dfd, const char __user *path,
2406 		 struct path *parent,
2407 		 struct qstr *last,
2408 		 int *type,
2409 		 unsigned int flags)
2410 {
2411 	/* only LOOKUP_REVAL is allowed in extra flags */
2412 	return filename_parentat(dfd, getname(path), flags & LOOKUP_REVAL,
2413 				 parent, last, type);
2414 }
2415 
2416 /**
2417  * mountpoint_last - look up last component for umount
2418  * @nd:   pathwalk nameidata - currently pointing at parent directory of "last"
2419  * @path: pointer to container for result
2420  *
2421  * This is a special lookup_last function just for umount. In this case, we
2422  * need to resolve the path without doing any revalidation.
2423  *
2424  * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2425  * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2426  * in almost all cases, this lookup will be served out of the dcache. The only
2427  * cases where it won't are if nd->last refers to a symlink or the path is
2428  * bogus and it doesn't exist.
2429  *
2430  * Returns:
2431  * -error: if there was an error during lookup. This includes -ENOENT if the
2432  *         lookup found a negative dentry. The nd->path reference will also be
2433  *         put in this case.
2434  *
2435  * 0:      if we successfully resolved nd->path and found it to not to be a
2436  *         symlink that needs to be followed. "path" will also be populated.
2437  *         The nd->path reference will also be put.
2438  *
2439  * 1:      if we successfully resolved nd->last and found it to be a symlink
2440  *         that needs to be followed. "path" will be populated with the path
2441  *         to the link, and nd->path will *not* be put.
2442  */
2443 static int
2444 mountpoint_last(struct nameidata *nd, struct path *path)
2445 {
2446 	int error = 0;
2447 	struct dentry *dentry;
2448 	struct dentry *dir = nd->path.dentry;
2449 
2450 	/* If we're in rcuwalk, drop out of it to handle last component */
2451 	if (nd->flags & LOOKUP_RCU) {
2452 		if (unlazy_walk(nd, NULL, 0))
2453 			return -ECHILD;
2454 	}
2455 
2456 	nd->flags &= ~LOOKUP_PARENT;
2457 
2458 	if (unlikely(nd->last_type != LAST_NORM)) {
2459 		error = handle_dots(nd, nd->last_type);
2460 		if (error)
2461 			return error;
2462 		dentry = dget(nd->path.dentry);
2463 		goto done;
2464 	}
2465 
2466 	inode_lock(dir->d_inode);
2467 	dentry = d_lookup(dir, &nd->last);
2468 	if (!dentry) {
2469 		/*
2470 		 * No cached dentry. Mounted dentries are pinned in the cache,
2471 		 * so that means that this dentry is probably a symlink or the
2472 		 * path doesn't actually point to a mounted dentry.
2473 		 */
2474 		dentry = d_alloc(dir, &nd->last);
2475 		if (!dentry) {
2476 			inode_unlock(dir->d_inode);
2477 			return -ENOMEM;
2478 		}
2479 		dentry = lookup_real(dir->d_inode, dentry, nd->flags);
2480 		if (IS_ERR(dentry)) {
2481 			inode_unlock(dir->d_inode);
2482 			return PTR_ERR(dentry);
2483 		}
2484 	}
2485 	inode_unlock(dir->d_inode);
2486 
2487 done:
2488 	if (d_is_negative(dentry)) {
2489 		dput(dentry);
2490 		return -ENOENT;
2491 	}
2492 	if (nd->depth)
2493 		put_link(nd);
2494 	path->dentry = dentry;
2495 	path->mnt = nd->path.mnt;
2496 	error = should_follow_link(nd, path, nd->flags & LOOKUP_FOLLOW,
2497 				   d_backing_inode(dentry), 0);
2498 	if (unlikely(error))
2499 		return error;
2500 	mntget(path->mnt);
2501 	follow_mount(path);
2502 	return 0;
2503 }
2504 
2505 /**
2506  * path_mountpoint - look up a path to be umounted
2507  * @nd:		lookup context
2508  * @flags:	lookup flags
2509  * @path:	pointer to container for result
2510  *
2511  * Look up the given name, but don't attempt to revalidate the last component.
2512  * Returns 0 and "path" will be valid on success; Returns error otherwise.
2513  */
2514 static int
2515 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2516 {
2517 	const char *s = path_init(nd, flags);
2518 	int err;
2519 	if (IS_ERR(s))
2520 		return PTR_ERR(s);
2521 	while (!(err = link_path_walk(s, nd)) &&
2522 		(err = mountpoint_last(nd, path)) > 0) {
2523 		s = trailing_symlink(nd);
2524 		if (IS_ERR(s)) {
2525 			err = PTR_ERR(s);
2526 			break;
2527 		}
2528 	}
2529 	terminate_walk(nd);
2530 	return err;
2531 }
2532 
2533 static int
2534 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2535 			unsigned int flags)
2536 {
2537 	struct nameidata nd;
2538 	int error;
2539 	if (IS_ERR(name))
2540 		return PTR_ERR(name);
2541 	set_nameidata(&nd, dfd, name);
2542 	error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2543 	if (unlikely(error == -ECHILD))
2544 		error = path_mountpoint(&nd, flags, path);
2545 	if (unlikely(error == -ESTALE))
2546 		error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2547 	if (likely(!error))
2548 		audit_inode(name, path->dentry, 0);
2549 	restore_nameidata();
2550 	putname(name);
2551 	return error;
2552 }
2553 
2554 /**
2555  * user_path_mountpoint_at - lookup a path from userland in order to umount it
2556  * @dfd:	directory file descriptor
2557  * @name:	pathname from userland
2558  * @flags:	lookup flags
2559  * @path:	pointer to container to hold result
2560  *
2561  * A umount is a special case for path walking. We're not actually interested
2562  * in the inode in this situation, and ESTALE errors can be a problem. We
2563  * simply want track down the dentry and vfsmount attached at the mountpoint
2564  * and avoid revalidating the last component.
2565  *
2566  * Returns 0 and populates "path" on success.
2567  */
2568 int
2569 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2570 			struct path *path)
2571 {
2572 	return filename_mountpoint(dfd, getname(name), path, flags);
2573 }
2574 
2575 int
2576 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2577 			unsigned int flags)
2578 {
2579 	return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2580 }
2581 EXPORT_SYMBOL(kern_path_mountpoint);
2582 
2583 int __check_sticky(struct inode *dir, struct inode *inode)
2584 {
2585 	kuid_t fsuid = current_fsuid();
2586 
2587 	if (uid_eq(inode->i_uid, fsuid))
2588 		return 0;
2589 	if (uid_eq(dir->i_uid, fsuid))
2590 		return 0;
2591 	return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2592 }
2593 EXPORT_SYMBOL(__check_sticky);
2594 
2595 /*
2596  *	Check whether we can remove a link victim from directory dir, check
2597  *  whether the type of victim is right.
2598  *  1. We can't do it if dir is read-only (done in permission())
2599  *  2. We should have write and exec permissions on dir
2600  *  3. We can't remove anything from append-only dir
2601  *  4. We can't do anything with immutable dir (done in permission())
2602  *  5. If the sticky bit on dir is set we should either
2603  *	a. be owner of dir, or
2604  *	b. be owner of victim, or
2605  *	c. have CAP_FOWNER capability
2606  *  6. If the victim is append-only or immutable we can't do antyhing with
2607  *     links pointing to it.
2608  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2609  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2610  *  9. We can't remove a root or mountpoint.
2611  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2612  *     nfs_async_unlink().
2613  */
2614 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2615 {
2616 	struct inode *inode = d_backing_inode(victim);
2617 	int error;
2618 
2619 	if (d_is_negative(victim))
2620 		return -ENOENT;
2621 	BUG_ON(!inode);
2622 
2623 	BUG_ON(victim->d_parent->d_inode != dir);
2624 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2625 
2626 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2627 	if (error)
2628 		return error;
2629 	if (IS_APPEND(dir))
2630 		return -EPERM;
2631 
2632 	if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2633 	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2634 		return -EPERM;
2635 	if (isdir) {
2636 		if (!d_is_dir(victim))
2637 			return -ENOTDIR;
2638 		if (IS_ROOT(victim))
2639 			return -EBUSY;
2640 	} else if (d_is_dir(victim))
2641 		return -EISDIR;
2642 	if (IS_DEADDIR(dir))
2643 		return -ENOENT;
2644 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2645 		return -EBUSY;
2646 	return 0;
2647 }
2648 
2649 /*	Check whether we can create an object with dentry child in directory
2650  *  dir.
2651  *  1. We can't do it if child already exists (open has special treatment for
2652  *     this case, but since we are inlined it's OK)
2653  *  2. We can't do it if dir is read-only (done in permission())
2654  *  3. We should have write and exec permissions on dir
2655  *  4. We can't do it if dir is immutable (done in permission())
2656  */
2657 static inline int may_create(struct inode *dir, struct dentry *child)
2658 {
2659 	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2660 	if (child->d_inode)
2661 		return -EEXIST;
2662 	if (IS_DEADDIR(dir))
2663 		return -ENOENT;
2664 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2665 }
2666 
2667 /*
2668  * p1 and p2 should be directories on the same fs.
2669  */
2670 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2671 {
2672 	struct dentry *p;
2673 
2674 	if (p1 == p2) {
2675 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2676 		return NULL;
2677 	}
2678 
2679 	mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2680 
2681 	p = d_ancestor(p2, p1);
2682 	if (p) {
2683 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2684 		inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2685 		return p;
2686 	}
2687 
2688 	p = d_ancestor(p1, p2);
2689 	if (p) {
2690 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2691 		inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2692 		return p;
2693 	}
2694 
2695 	inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2696 	inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2697 	return NULL;
2698 }
2699 EXPORT_SYMBOL(lock_rename);
2700 
2701 void unlock_rename(struct dentry *p1, struct dentry *p2)
2702 {
2703 	inode_unlock(p1->d_inode);
2704 	if (p1 != p2) {
2705 		inode_unlock(p2->d_inode);
2706 		mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2707 	}
2708 }
2709 EXPORT_SYMBOL(unlock_rename);
2710 
2711 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2712 		bool want_excl)
2713 {
2714 	int error = may_create(dir, dentry);
2715 	if (error)
2716 		return error;
2717 
2718 	if (!dir->i_op->create)
2719 		return -EACCES;	/* shouldn't it be ENOSYS? */
2720 	mode &= S_IALLUGO;
2721 	mode |= S_IFREG;
2722 	error = security_inode_create(dir, dentry, mode);
2723 	if (error)
2724 		return error;
2725 	error = dir->i_op->create(dir, dentry, mode, want_excl);
2726 	if (!error)
2727 		fsnotify_create(dir, dentry);
2728 	return error;
2729 }
2730 EXPORT_SYMBOL(vfs_create);
2731 
2732 static int may_open(struct path *path, int acc_mode, int flag)
2733 {
2734 	struct dentry *dentry = path->dentry;
2735 	struct inode *inode = dentry->d_inode;
2736 	int error;
2737 
2738 	if (!inode)
2739 		return -ENOENT;
2740 
2741 	switch (inode->i_mode & S_IFMT) {
2742 	case S_IFLNK:
2743 		return -ELOOP;
2744 	case S_IFDIR:
2745 		if (acc_mode & MAY_WRITE)
2746 			return -EISDIR;
2747 		break;
2748 	case S_IFBLK:
2749 	case S_IFCHR:
2750 		if (path->mnt->mnt_flags & MNT_NODEV)
2751 			return -EACCES;
2752 		/*FALLTHRU*/
2753 	case S_IFIFO:
2754 	case S_IFSOCK:
2755 		flag &= ~O_TRUNC;
2756 		break;
2757 	}
2758 
2759 	error = inode_permission(inode, MAY_OPEN | acc_mode);
2760 	if (error)
2761 		return error;
2762 
2763 	/*
2764 	 * An append-only file must be opened in append mode for writing.
2765 	 */
2766 	if (IS_APPEND(inode)) {
2767 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2768 			return -EPERM;
2769 		if (flag & O_TRUNC)
2770 			return -EPERM;
2771 	}
2772 
2773 	/* O_NOATIME can only be set by the owner or superuser */
2774 	if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2775 		return -EPERM;
2776 
2777 	return 0;
2778 }
2779 
2780 static int handle_truncate(struct file *filp)
2781 {
2782 	struct path *path = &filp->f_path;
2783 	struct inode *inode = path->dentry->d_inode;
2784 	int error = get_write_access(inode);
2785 	if (error)
2786 		return error;
2787 	/*
2788 	 * Refuse to truncate files with mandatory locks held on them.
2789 	 */
2790 	error = locks_verify_locked(filp);
2791 	if (!error)
2792 		error = security_path_truncate(path);
2793 	if (!error) {
2794 		error = do_truncate(path->dentry, 0,
2795 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2796 				    filp);
2797 	}
2798 	put_write_access(inode);
2799 	return error;
2800 }
2801 
2802 static inline int open_to_namei_flags(int flag)
2803 {
2804 	if ((flag & O_ACCMODE) == 3)
2805 		flag--;
2806 	return flag;
2807 }
2808 
2809 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2810 {
2811 	int error = security_path_mknod(dir, dentry, mode, 0);
2812 	if (error)
2813 		return error;
2814 
2815 	error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2816 	if (error)
2817 		return error;
2818 
2819 	return security_inode_create(dir->dentry->d_inode, dentry, mode);
2820 }
2821 
2822 /*
2823  * Attempt to atomically look up, create and open a file from a negative
2824  * dentry.
2825  *
2826  * Returns 0 if successful.  The file will have been created and attached to
2827  * @file by the filesystem calling finish_open().
2828  *
2829  * Returns 1 if the file was looked up only or didn't need creating.  The
2830  * caller will need to perform the open themselves.  @path will have been
2831  * updated to point to the new dentry.  This may be negative.
2832  *
2833  * Returns an error code otherwise.
2834  */
2835 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2836 			struct path *path, struct file *file,
2837 			const struct open_flags *op,
2838 			bool got_write, bool need_lookup,
2839 			int *opened)
2840 {
2841 	struct inode *dir =  nd->path.dentry->d_inode;
2842 	unsigned open_flag = open_to_namei_flags(op->open_flag);
2843 	umode_t mode;
2844 	int error;
2845 	int acc_mode;
2846 	int create_error = 0;
2847 	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2848 	bool excl;
2849 
2850 	BUG_ON(dentry->d_inode);
2851 
2852 	/* Don't create child dentry for a dead directory. */
2853 	if (unlikely(IS_DEADDIR(dir))) {
2854 		error = -ENOENT;
2855 		goto out;
2856 	}
2857 
2858 	mode = op->mode;
2859 	if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2860 		mode &= ~current_umask();
2861 
2862 	excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT);
2863 	if (excl)
2864 		open_flag &= ~O_TRUNC;
2865 
2866 	/*
2867 	 * Checking write permission is tricky, bacuse we don't know if we are
2868 	 * going to actually need it: O_CREAT opens should work as long as the
2869 	 * file exists.  But checking existence breaks atomicity.  The trick is
2870 	 * to check access and if not granted clear O_CREAT from the flags.
2871 	 *
2872 	 * Another problem is returing the "right" error value (e.g. for an
2873 	 * O_EXCL open we want to return EEXIST not EROFS).
2874 	 */
2875 	if (((open_flag & (O_CREAT | O_TRUNC)) ||
2876 	    (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2877 		if (!(open_flag & O_CREAT)) {
2878 			/*
2879 			 * No O_CREATE -> atomicity not a requirement -> fall
2880 			 * back to lookup + open
2881 			 */
2882 			goto no_open;
2883 		} else if (open_flag & (O_EXCL | O_TRUNC)) {
2884 			/* Fall back and fail with the right error */
2885 			create_error = -EROFS;
2886 			goto no_open;
2887 		} else {
2888 			/* No side effects, safe to clear O_CREAT */
2889 			create_error = -EROFS;
2890 			open_flag &= ~O_CREAT;
2891 		}
2892 	}
2893 
2894 	if (open_flag & O_CREAT) {
2895 		error = may_o_create(&nd->path, dentry, mode);
2896 		if (error) {
2897 			create_error = error;
2898 			if (open_flag & O_EXCL)
2899 				goto no_open;
2900 			open_flag &= ~O_CREAT;
2901 		}
2902 	}
2903 
2904 	if (nd->flags & LOOKUP_DIRECTORY)
2905 		open_flag |= O_DIRECTORY;
2906 
2907 	file->f_path.dentry = DENTRY_NOT_SET;
2908 	file->f_path.mnt = nd->path.mnt;
2909 	error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2910 				      opened);
2911 	if (error < 0) {
2912 		if (create_error && error == -ENOENT)
2913 			error = create_error;
2914 		goto out;
2915 	}
2916 
2917 	if (error) {	/* returned 1, that is */
2918 		if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2919 			error = -EIO;
2920 			goto out;
2921 		}
2922 		if (file->f_path.dentry) {
2923 			dput(dentry);
2924 			dentry = file->f_path.dentry;
2925 		}
2926 		if (*opened & FILE_CREATED)
2927 			fsnotify_create(dir, dentry);
2928 		if (!dentry->d_inode) {
2929 			WARN_ON(*opened & FILE_CREATED);
2930 			if (create_error) {
2931 				error = create_error;
2932 				goto out;
2933 			}
2934 		} else {
2935 			if (excl && !(*opened & FILE_CREATED)) {
2936 				error = -EEXIST;
2937 				goto out;
2938 			}
2939 		}
2940 		goto looked_up;
2941 	}
2942 
2943 	/*
2944 	 * We didn't have the inode before the open, so check open permission
2945 	 * here.
2946 	 */
2947 	acc_mode = op->acc_mode;
2948 	if (*opened & FILE_CREATED) {
2949 		WARN_ON(!(open_flag & O_CREAT));
2950 		fsnotify_create(dir, dentry);
2951 		acc_mode = 0;
2952 	}
2953 	error = may_open(&file->f_path, acc_mode, open_flag);
2954 	if (error)
2955 		fput(file);
2956 
2957 out:
2958 	dput(dentry);
2959 	return error;
2960 
2961 no_open:
2962 	if (need_lookup) {
2963 		dentry = lookup_real(dir, dentry, nd->flags);
2964 		if (IS_ERR(dentry))
2965 			return PTR_ERR(dentry);
2966 
2967 		if (create_error) {
2968 			int open_flag = op->open_flag;
2969 
2970 			error = create_error;
2971 			if ((open_flag & O_EXCL)) {
2972 				if (!dentry->d_inode)
2973 					goto out;
2974 			} else if (!dentry->d_inode) {
2975 				goto out;
2976 			} else if ((open_flag & O_TRUNC) &&
2977 				   d_is_reg(dentry)) {
2978 				goto out;
2979 			}
2980 			/* will fail later, go on to get the right error */
2981 		}
2982 	}
2983 looked_up:
2984 	path->dentry = dentry;
2985 	path->mnt = nd->path.mnt;
2986 	return 1;
2987 }
2988 
2989 /*
2990  * Look up and maybe create and open the last component.
2991  *
2992  * Must be called with i_mutex held on parent.
2993  *
2994  * Returns 0 if the file was successfully atomically created (if necessary) and
2995  * opened.  In this case the file will be returned attached to @file.
2996  *
2997  * Returns 1 if the file was not completely opened at this time, though lookups
2998  * and creations will have been performed and the dentry returned in @path will
2999  * be positive upon return if O_CREAT was specified.  If O_CREAT wasn't
3000  * specified then a negative dentry may be returned.
3001  *
3002  * An error code is returned otherwise.
3003  *
3004  * FILE_CREATE will be set in @*opened if the dentry was created and will be
3005  * cleared otherwise prior to returning.
3006  */
3007 static int lookup_open(struct nameidata *nd, struct path *path,
3008 			struct file *file,
3009 			const struct open_flags *op,
3010 			bool got_write, int *opened)
3011 {
3012 	struct dentry *dir = nd->path.dentry;
3013 	struct inode *dir_inode = dir->d_inode;
3014 	struct dentry *dentry;
3015 	int error;
3016 	bool need_lookup;
3017 
3018 	*opened &= ~FILE_CREATED;
3019 	dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
3020 	if (IS_ERR(dentry))
3021 		return PTR_ERR(dentry);
3022 
3023 	/* Cached positive dentry: will open in f_op->open */
3024 	if (!need_lookup && dentry->d_inode)
3025 		goto out_no_open;
3026 
3027 	if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
3028 		return atomic_open(nd, dentry, path, file, op, got_write,
3029 				   need_lookup, opened);
3030 	}
3031 
3032 	if (need_lookup) {
3033 		BUG_ON(dentry->d_inode);
3034 
3035 		dentry = lookup_real(dir_inode, dentry, nd->flags);
3036 		if (IS_ERR(dentry))
3037 			return PTR_ERR(dentry);
3038 	}
3039 
3040 	/* Negative dentry, just create the file */
3041 	if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
3042 		umode_t mode = op->mode;
3043 		if (!IS_POSIXACL(dir->d_inode))
3044 			mode &= ~current_umask();
3045 		/*
3046 		 * This write is needed to ensure that a
3047 		 * rw->ro transition does not occur between
3048 		 * the time when the file is created and when
3049 		 * a permanent write count is taken through
3050 		 * the 'struct file' in finish_open().
3051 		 */
3052 		if (!got_write) {
3053 			error = -EROFS;
3054 			goto out_dput;
3055 		}
3056 		*opened |= FILE_CREATED;
3057 		error = security_path_mknod(&nd->path, dentry, mode, 0);
3058 		if (error)
3059 			goto out_dput;
3060 		error = vfs_create(dir->d_inode, dentry, mode,
3061 				   nd->flags & LOOKUP_EXCL);
3062 		if (error)
3063 			goto out_dput;
3064 	}
3065 out_no_open:
3066 	path->dentry = dentry;
3067 	path->mnt = nd->path.mnt;
3068 	return 1;
3069 
3070 out_dput:
3071 	dput(dentry);
3072 	return error;
3073 }
3074 
3075 /*
3076  * Handle the last step of open()
3077  */
3078 static int do_last(struct nameidata *nd,
3079 		   struct file *file, const struct open_flags *op,
3080 		   int *opened)
3081 {
3082 	struct dentry *dir = nd->path.dentry;
3083 	int open_flag = op->open_flag;
3084 	bool will_truncate = (open_flag & O_TRUNC) != 0;
3085 	bool got_write = false;
3086 	int acc_mode = op->acc_mode;
3087 	unsigned seq;
3088 	struct inode *inode;
3089 	struct path save_parent = { .dentry = NULL, .mnt = NULL };
3090 	struct path path;
3091 	bool retried = false;
3092 	int error;
3093 
3094 	nd->flags &= ~LOOKUP_PARENT;
3095 	nd->flags |= op->intent;
3096 
3097 	if (nd->last_type != LAST_NORM) {
3098 		error = handle_dots(nd, nd->last_type);
3099 		if (unlikely(error))
3100 			return error;
3101 		goto finish_open;
3102 	}
3103 
3104 	if (!(open_flag & O_CREAT)) {
3105 		if (nd->last.name[nd->last.len])
3106 			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3107 		/* we _can_ be in RCU mode here */
3108 		error = lookup_fast(nd, &path, &inode, &seq);
3109 		if (likely(!error))
3110 			goto finish_lookup;
3111 
3112 		if (error < 0)
3113 			return error;
3114 
3115 		BUG_ON(nd->inode != dir->d_inode);
3116 	} else {
3117 		/* create side of things */
3118 		/*
3119 		 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3120 		 * has been cleared when we got to the last component we are
3121 		 * about to look up
3122 		 */
3123 		error = complete_walk(nd);
3124 		if (error)
3125 			return error;
3126 
3127 		audit_inode(nd->name, dir, LOOKUP_PARENT);
3128 		/* trailing slashes? */
3129 		if (unlikely(nd->last.name[nd->last.len]))
3130 			return -EISDIR;
3131 	}
3132 
3133 retry_lookup:
3134 	if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3135 		error = mnt_want_write(nd->path.mnt);
3136 		if (!error)
3137 			got_write = true;
3138 		/*
3139 		 * do _not_ fail yet - we might not need that or fail with
3140 		 * a different error; let lookup_open() decide; we'll be
3141 		 * dropping this one anyway.
3142 		 */
3143 	}
3144 	inode_lock(dir->d_inode);
3145 	error = lookup_open(nd, &path, file, op, got_write, opened);
3146 	inode_unlock(dir->d_inode);
3147 
3148 	if (error <= 0) {
3149 		if (error)
3150 			goto out;
3151 
3152 		if ((*opened & FILE_CREATED) ||
3153 		    !S_ISREG(file_inode(file)->i_mode))
3154 			will_truncate = false;
3155 
3156 		audit_inode(nd->name, file->f_path.dentry, 0);
3157 		goto opened;
3158 	}
3159 
3160 	if (*opened & FILE_CREATED) {
3161 		/* Don't check for write permission, don't truncate */
3162 		open_flag &= ~O_TRUNC;
3163 		will_truncate = false;
3164 		acc_mode = 0;
3165 		path_to_nameidata(&path, nd);
3166 		goto finish_open_created;
3167 	}
3168 
3169 	/*
3170 	 * create/update audit record if it already exists.
3171 	 */
3172 	if (d_is_positive(path.dentry))
3173 		audit_inode(nd->name, path.dentry, 0);
3174 
3175 	/*
3176 	 * If atomic_open() acquired write access it is dropped now due to
3177 	 * possible mount and symlink following (this might be optimized away if
3178 	 * necessary...)
3179 	 */
3180 	if (got_write) {
3181 		mnt_drop_write(nd->path.mnt);
3182 		got_write = false;
3183 	}
3184 
3185 	if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3186 		path_to_nameidata(&path, nd);
3187 		return -EEXIST;
3188 	}
3189 
3190 	error = follow_managed(&path, nd);
3191 	if (unlikely(error < 0))
3192 		return error;
3193 
3194 	BUG_ON(nd->flags & LOOKUP_RCU);
3195 	inode = d_backing_inode(path.dentry);
3196 	seq = 0;	/* out of RCU mode, so the value doesn't matter */
3197 	if (unlikely(d_is_negative(path.dentry))) {
3198 		path_to_nameidata(&path, nd);
3199 		return -ENOENT;
3200 	}
3201 finish_lookup:
3202 	if (nd->depth)
3203 		put_link(nd);
3204 	error = should_follow_link(nd, &path, nd->flags & LOOKUP_FOLLOW,
3205 				   inode, seq);
3206 	if (unlikely(error))
3207 		return error;
3208 
3209 	if (unlikely(d_is_symlink(path.dentry)) && !(open_flag & O_PATH)) {
3210 		path_to_nameidata(&path, nd);
3211 		return -ELOOP;
3212 	}
3213 
3214 	if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path.mnt) {
3215 		path_to_nameidata(&path, nd);
3216 	} else {
3217 		save_parent.dentry = nd->path.dentry;
3218 		save_parent.mnt = mntget(path.mnt);
3219 		nd->path.dentry = path.dentry;
3220 
3221 	}
3222 	nd->inode = inode;
3223 	nd->seq = seq;
3224 	/* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
3225 finish_open:
3226 	error = complete_walk(nd);
3227 	if (error) {
3228 		path_put(&save_parent);
3229 		return error;
3230 	}
3231 	audit_inode(nd->name, nd->path.dentry, 0);
3232 	error = -EISDIR;
3233 	if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3234 		goto out;
3235 	error = -ENOTDIR;
3236 	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3237 		goto out;
3238 	if (!d_is_reg(nd->path.dentry))
3239 		will_truncate = false;
3240 
3241 	if (will_truncate) {
3242 		error = mnt_want_write(nd->path.mnt);
3243 		if (error)
3244 			goto out;
3245 		got_write = true;
3246 	}
3247 finish_open_created:
3248 	if (likely(!(open_flag & O_PATH))) {
3249 		error = may_open(&nd->path, acc_mode, open_flag);
3250 		if (error)
3251 			goto out;
3252 	}
3253 	BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3254 	error = vfs_open(&nd->path, file, current_cred());
3255 	if (!error) {
3256 		*opened |= FILE_OPENED;
3257 	} else {
3258 		if (error == -EOPENSTALE)
3259 			goto stale_open;
3260 		goto out;
3261 	}
3262 opened:
3263 	error = open_check_o_direct(file);
3264 	if (error)
3265 		goto exit_fput;
3266 	error = ima_file_check(file, op->acc_mode, *opened);
3267 	if (error)
3268 		goto exit_fput;
3269 
3270 	if (will_truncate) {
3271 		error = handle_truncate(file);
3272 		if (error)
3273 			goto exit_fput;
3274 	}
3275 out:
3276 	if (got_write)
3277 		mnt_drop_write(nd->path.mnt);
3278 	path_put(&save_parent);
3279 	return error;
3280 
3281 exit_fput:
3282 	fput(file);
3283 	goto out;
3284 
3285 stale_open:
3286 	/* If no saved parent or already retried then can't retry */
3287 	if (!save_parent.dentry || retried)
3288 		goto out;
3289 
3290 	BUG_ON(save_parent.dentry != dir);
3291 	path_put(&nd->path);
3292 	nd->path = save_parent;
3293 	nd->inode = dir->d_inode;
3294 	save_parent.mnt = NULL;
3295 	save_parent.dentry = NULL;
3296 	if (got_write) {
3297 		mnt_drop_write(nd->path.mnt);
3298 		got_write = false;
3299 	}
3300 	retried = true;
3301 	goto retry_lookup;
3302 }
3303 
3304 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3305 		const struct open_flags *op,
3306 		struct file *file, int *opened)
3307 {
3308 	static const struct qstr name = QSTR_INIT("/", 1);
3309 	struct dentry *child;
3310 	struct inode *dir;
3311 	struct path path;
3312 	int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3313 	if (unlikely(error))
3314 		return error;
3315 	error = mnt_want_write(path.mnt);
3316 	if (unlikely(error))
3317 		goto out;
3318 	dir = path.dentry->d_inode;
3319 	/* we want directory to be writable */
3320 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3321 	if (error)
3322 		goto out2;
3323 	if (!dir->i_op->tmpfile) {
3324 		error = -EOPNOTSUPP;
3325 		goto out2;
3326 	}
3327 	child = d_alloc(path.dentry, &name);
3328 	if (unlikely(!child)) {
3329 		error = -ENOMEM;
3330 		goto out2;
3331 	}
3332 	dput(path.dentry);
3333 	path.dentry = child;
3334 	error = dir->i_op->tmpfile(dir, child, op->mode);
3335 	if (error)
3336 		goto out2;
3337 	audit_inode(nd->name, child, 0);
3338 	/* Don't check for other permissions, the inode was just created */
3339 	error = may_open(&path, 0, op->open_flag);
3340 	if (error)
3341 		goto out2;
3342 	file->f_path.mnt = path.mnt;
3343 	error = finish_open(file, child, NULL, opened);
3344 	if (error)
3345 		goto out2;
3346 	error = open_check_o_direct(file);
3347 	if (error) {
3348 		fput(file);
3349 	} else if (!(op->open_flag & O_EXCL)) {
3350 		struct inode *inode = file_inode(file);
3351 		spin_lock(&inode->i_lock);
3352 		inode->i_state |= I_LINKABLE;
3353 		spin_unlock(&inode->i_lock);
3354 	}
3355 out2:
3356 	mnt_drop_write(path.mnt);
3357 out:
3358 	path_put(&path);
3359 	return error;
3360 }
3361 
3362 static struct file *path_openat(struct nameidata *nd,
3363 			const struct open_flags *op, unsigned flags)
3364 {
3365 	const char *s;
3366 	struct file *file;
3367 	int opened = 0;
3368 	int error;
3369 
3370 	file = get_empty_filp();
3371 	if (IS_ERR(file))
3372 		return file;
3373 
3374 	file->f_flags = op->open_flag;
3375 
3376 	if (unlikely(file->f_flags & __O_TMPFILE)) {
3377 		error = do_tmpfile(nd, flags, op, file, &opened);
3378 		goto out2;
3379 	}
3380 
3381 	s = path_init(nd, flags);
3382 	if (IS_ERR(s)) {
3383 		put_filp(file);
3384 		return ERR_CAST(s);
3385 	}
3386 	while (!(error = link_path_walk(s, nd)) &&
3387 		(error = do_last(nd, file, op, &opened)) > 0) {
3388 		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3389 		s = trailing_symlink(nd);
3390 		if (IS_ERR(s)) {
3391 			error = PTR_ERR(s);
3392 			break;
3393 		}
3394 	}
3395 	terminate_walk(nd);
3396 out2:
3397 	if (!(opened & FILE_OPENED)) {
3398 		BUG_ON(!error);
3399 		put_filp(file);
3400 	}
3401 	if (unlikely(error)) {
3402 		if (error == -EOPENSTALE) {
3403 			if (flags & LOOKUP_RCU)
3404 				error = -ECHILD;
3405 			else
3406 				error = -ESTALE;
3407 		}
3408 		file = ERR_PTR(error);
3409 	}
3410 	return file;
3411 }
3412 
3413 struct file *do_filp_open(int dfd, struct filename *pathname,
3414 		const struct open_flags *op)
3415 {
3416 	struct nameidata nd;
3417 	int flags = op->lookup_flags;
3418 	struct file *filp;
3419 
3420 	set_nameidata(&nd, dfd, pathname);
3421 	filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3422 	if (unlikely(filp == ERR_PTR(-ECHILD)))
3423 		filp = path_openat(&nd, op, flags);
3424 	if (unlikely(filp == ERR_PTR(-ESTALE)))
3425 		filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3426 	restore_nameidata();
3427 	return filp;
3428 }
3429 
3430 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3431 		const char *name, const struct open_flags *op)
3432 {
3433 	struct nameidata nd;
3434 	struct file *file;
3435 	struct filename *filename;
3436 	int flags = op->lookup_flags | LOOKUP_ROOT;
3437 
3438 	nd.root.mnt = mnt;
3439 	nd.root.dentry = dentry;
3440 
3441 	if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3442 		return ERR_PTR(-ELOOP);
3443 
3444 	filename = getname_kernel(name);
3445 	if (IS_ERR(filename))
3446 		return ERR_CAST(filename);
3447 
3448 	set_nameidata(&nd, -1, filename);
3449 	file = path_openat(&nd, op, flags | LOOKUP_RCU);
3450 	if (unlikely(file == ERR_PTR(-ECHILD)))
3451 		file = path_openat(&nd, op, flags);
3452 	if (unlikely(file == ERR_PTR(-ESTALE)))
3453 		file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3454 	restore_nameidata();
3455 	putname(filename);
3456 	return file;
3457 }
3458 
3459 static struct dentry *filename_create(int dfd, struct filename *name,
3460 				struct path *path, unsigned int lookup_flags)
3461 {
3462 	struct dentry *dentry = ERR_PTR(-EEXIST);
3463 	struct qstr last;
3464 	int type;
3465 	int err2;
3466 	int error;
3467 	bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3468 
3469 	/*
3470 	 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3471 	 * other flags passed in are ignored!
3472 	 */
3473 	lookup_flags &= LOOKUP_REVAL;
3474 
3475 	name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3476 	if (IS_ERR(name))
3477 		return ERR_CAST(name);
3478 
3479 	/*
3480 	 * Yucky last component or no last component at all?
3481 	 * (foo/., foo/.., /////)
3482 	 */
3483 	if (unlikely(type != LAST_NORM))
3484 		goto out;
3485 
3486 	/* don't fail immediately if it's r/o, at least try to report other errors */
3487 	err2 = mnt_want_write(path->mnt);
3488 	/*
3489 	 * Do the final lookup.
3490 	 */
3491 	lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3492 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3493 	dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3494 	if (IS_ERR(dentry))
3495 		goto unlock;
3496 
3497 	error = -EEXIST;
3498 	if (d_is_positive(dentry))
3499 		goto fail;
3500 
3501 	/*
3502 	 * Special case - lookup gave negative, but... we had foo/bar/
3503 	 * From the vfs_mknod() POV we just have a negative dentry -
3504 	 * all is fine. Let's be bastards - you had / on the end, you've
3505 	 * been asking for (non-existent) directory. -ENOENT for you.
3506 	 */
3507 	if (unlikely(!is_dir && last.name[last.len])) {
3508 		error = -ENOENT;
3509 		goto fail;
3510 	}
3511 	if (unlikely(err2)) {
3512 		error = err2;
3513 		goto fail;
3514 	}
3515 	putname(name);
3516 	return dentry;
3517 fail:
3518 	dput(dentry);
3519 	dentry = ERR_PTR(error);
3520 unlock:
3521 	inode_unlock(path->dentry->d_inode);
3522 	if (!err2)
3523 		mnt_drop_write(path->mnt);
3524 out:
3525 	path_put(path);
3526 	putname(name);
3527 	return dentry;
3528 }
3529 
3530 struct dentry *kern_path_create(int dfd, const char *pathname,
3531 				struct path *path, unsigned int lookup_flags)
3532 {
3533 	return filename_create(dfd, getname_kernel(pathname),
3534 				path, lookup_flags);
3535 }
3536 EXPORT_SYMBOL(kern_path_create);
3537 
3538 void done_path_create(struct path *path, struct dentry *dentry)
3539 {
3540 	dput(dentry);
3541 	inode_unlock(path->dentry->d_inode);
3542 	mnt_drop_write(path->mnt);
3543 	path_put(path);
3544 }
3545 EXPORT_SYMBOL(done_path_create);
3546 
3547 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3548 				struct path *path, unsigned int lookup_flags)
3549 {
3550 	return filename_create(dfd, getname(pathname), path, lookup_flags);
3551 }
3552 EXPORT_SYMBOL(user_path_create);
3553 
3554 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3555 {
3556 	int error = may_create(dir, dentry);
3557 
3558 	if (error)
3559 		return error;
3560 
3561 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3562 		return -EPERM;
3563 
3564 	if (!dir->i_op->mknod)
3565 		return -EPERM;
3566 
3567 	error = devcgroup_inode_mknod(mode, dev);
3568 	if (error)
3569 		return error;
3570 
3571 	error = security_inode_mknod(dir, dentry, mode, dev);
3572 	if (error)
3573 		return error;
3574 
3575 	error = dir->i_op->mknod(dir, dentry, mode, dev);
3576 	if (!error)
3577 		fsnotify_create(dir, dentry);
3578 	return error;
3579 }
3580 EXPORT_SYMBOL(vfs_mknod);
3581 
3582 static int may_mknod(umode_t mode)
3583 {
3584 	switch (mode & S_IFMT) {
3585 	case S_IFREG:
3586 	case S_IFCHR:
3587 	case S_IFBLK:
3588 	case S_IFIFO:
3589 	case S_IFSOCK:
3590 	case 0: /* zero mode translates to S_IFREG */
3591 		return 0;
3592 	case S_IFDIR:
3593 		return -EPERM;
3594 	default:
3595 		return -EINVAL;
3596 	}
3597 }
3598 
3599 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3600 		unsigned, dev)
3601 {
3602 	struct dentry *dentry;
3603 	struct path path;
3604 	int error;
3605 	unsigned int lookup_flags = 0;
3606 
3607 	error = may_mknod(mode);
3608 	if (error)
3609 		return error;
3610 retry:
3611 	dentry = user_path_create(dfd, filename, &path, lookup_flags);
3612 	if (IS_ERR(dentry))
3613 		return PTR_ERR(dentry);
3614 
3615 	if (!IS_POSIXACL(path.dentry->d_inode))
3616 		mode &= ~current_umask();
3617 	error = security_path_mknod(&path, dentry, mode, dev);
3618 	if (error)
3619 		goto out;
3620 	switch (mode & S_IFMT) {
3621 		case 0: case S_IFREG:
3622 			error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3623 			break;
3624 		case S_IFCHR: case S_IFBLK:
3625 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3626 					new_decode_dev(dev));
3627 			break;
3628 		case S_IFIFO: case S_IFSOCK:
3629 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3630 			break;
3631 	}
3632 out:
3633 	done_path_create(&path, dentry);
3634 	if (retry_estale(error, lookup_flags)) {
3635 		lookup_flags |= LOOKUP_REVAL;
3636 		goto retry;
3637 	}
3638 	return error;
3639 }
3640 
3641 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3642 {
3643 	return sys_mknodat(AT_FDCWD, filename, mode, dev);
3644 }
3645 
3646 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3647 {
3648 	int error = may_create(dir, dentry);
3649 	unsigned max_links = dir->i_sb->s_max_links;
3650 
3651 	if (error)
3652 		return error;
3653 
3654 	if (!dir->i_op->mkdir)
3655 		return -EPERM;
3656 
3657 	mode &= (S_IRWXUGO|S_ISVTX);
3658 	error = security_inode_mkdir(dir, dentry, mode);
3659 	if (error)
3660 		return error;
3661 
3662 	if (max_links && dir->i_nlink >= max_links)
3663 		return -EMLINK;
3664 
3665 	error = dir->i_op->mkdir(dir, dentry, mode);
3666 	if (!error)
3667 		fsnotify_mkdir(dir, dentry);
3668 	return error;
3669 }
3670 EXPORT_SYMBOL(vfs_mkdir);
3671 
3672 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3673 {
3674 	struct dentry *dentry;
3675 	struct path path;
3676 	int error;
3677 	unsigned int lookup_flags = LOOKUP_DIRECTORY;
3678 
3679 retry:
3680 	dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3681 	if (IS_ERR(dentry))
3682 		return PTR_ERR(dentry);
3683 
3684 	if (!IS_POSIXACL(path.dentry->d_inode))
3685 		mode &= ~current_umask();
3686 	error = security_path_mkdir(&path, dentry, mode);
3687 	if (!error)
3688 		error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3689 	done_path_create(&path, dentry);
3690 	if (retry_estale(error, lookup_flags)) {
3691 		lookup_flags |= LOOKUP_REVAL;
3692 		goto retry;
3693 	}
3694 	return error;
3695 }
3696 
3697 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3698 {
3699 	return sys_mkdirat(AT_FDCWD, pathname, mode);
3700 }
3701 
3702 /*
3703  * The dentry_unhash() helper will try to drop the dentry early: we
3704  * should have a usage count of 1 if we're the only user of this
3705  * dentry, and if that is true (possibly after pruning the dcache),
3706  * then we drop the dentry now.
3707  *
3708  * A low-level filesystem can, if it choses, legally
3709  * do a
3710  *
3711  *	if (!d_unhashed(dentry))
3712  *		return -EBUSY;
3713  *
3714  * if it cannot handle the case of removing a directory
3715  * that is still in use by something else..
3716  */
3717 void dentry_unhash(struct dentry *dentry)
3718 {
3719 	shrink_dcache_parent(dentry);
3720 	spin_lock(&dentry->d_lock);
3721 	if (dentry->d_lockref.count == 1)
3722 		__d_drop(dentry);
3723 	spin_unlock(&dentry->d_lock);
3724 }
3725 EXPORT_SYMBOL(dentry_unhash);
3726 
3727 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3728 {
3729 	int error = may_delete(dir, dentry, 1);
3730 
3731 	if (error)
3732 		return error;
3733 
3734 	if (!dir->i_op->rmdir)
3735 		return -EPERM;
3736 
3737 	dget(dentry);
3738 	inode_lock(dentry->d_inode);
3739 
3740 	error = -EBUSY;
3741 	if (is_local_mountpoint(dentry))
3742 		goto out;
3743 
3744 	error = security_inode_rmdir(dir, dentry);
3745 	if (error)
3746 		goto out;
3747 
3748 	shrink_dcache_parent(dentry);
3749 	error = dir->i_op->rmdir(dir, dentry);
3750 	if (error)
3751 		goto out;
3752 
3753 	dentry->d_inode->i_flags |= S_DEAD;
3754 	dont_mount(dentry);
3755 	detach_mounts(dentry);
3756 
3757 out:
3758 	inode_unlock(dentry->d_inode);
3759 	dput(dentry);
3760 	if (!error)
3761 		d_delete(dentry);
3762 	return error;
3763 }
3764 EXPORT_SYMBOL(vfs_rmdir);
3765 
3766 static long do_rmdir(int dfd, const char __user *pathname)
3767 {
3768 	int error = 0;
3769 	struct filename *name;
3770 	struct dentry *dentry;
3771 	struct path path;
3772 	struct qstr last;
3773 	int type;
3774 	unsigned int lookup_flags = 0;
3775 retry:
3776 	name = user_path_parent(dfd, pathname,
3777 				&path, &last, &type, lookup_flags);
3778 	if (IS_ERR(name))
3779 		return PTR_ERR(name);
3780 
3781 	switch (type) {
3782 	case LAST_DOTDOT:
3783 		error = -ENOTEMPTY;
3784 		goto exit1;
3785 	case LAST_DOT:
3786 		error = -EINVAL;
3787 		goto exit1;
3788 	case LAST_ROOT:
3789 		error = -EBUSY;
3790 		goto exit1;
3791 	}
3792 
3793 	error = mnt_want_write(path.mnt);
3794 	if (error)
3795 		goto exit1;
3796 
3797 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3798 	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3799 	error = PTR_ERR(dentry);
3800 	if (IS_ERR(dentry))
3801 		goto exit2;
3802 	if (!dentry->d_inode) {
3803 		error = -ENOENT;
3804 		goto exit3;
3805 	}
3806 	error = security_path_rmdir(&path, dentry);
3807 	if (error)
3808 		goto exit3;
3809 	error = vfs_rmdir(path.dentry->d_inode, dentry);
3810 exit3:
3811 	dput(dentry);
3812 exit2:
3813 	inode_unlock(path.dentry->d_inode);
3814 	mnt_drop_write(path.mnt);
3815 exit1:
3816 	path_put(&path);
3817 	putname(name);
3818 	if (retry_estale(error, lookup_flags)) {
3819 		lookup_flags |= LOOKUP_REVAL;
3820 		goto retry;
3821 	}
3822 	return error;
3823 }
3824 
3825 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3826 {
3827 	return do_rmdir(AT_FDCWD, pathname);
3828 }
3829 
3830 /**
3831  * vfs_unlink - unlink a filesystem object
3832  * @dir:	parent directory
3833  * @dentry:	victim
3834  * @delegated_inode: returns victim inode, if the inode is delegated.
3835  *
3836  * The caller must hold dir->i_mutex.
3837  *
3838  * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3839  * return a reference to the inode in delegated_inode.  The caller
3840  * should then break the delegation on that inode and retry.  Because
3841  * breaking a delegation may take a long time, the caller should drop
3842  * dir->i_mutex before doing so.
3843  *
3844  * Alternatively, a caller may pass NULL for delegated_inode.  This may
3845  * be appropriate for callers that expect the underlying filesystem not
3846  * to be NFS exported.
3847  */
3848 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3849 {
3850 	struct inode *target = dentry->d_inode;
3851 	int error = may_delete(dir, dentry, 0);
3852 
3853 	if (error)
3854 		return error;
3855 
3856 	if (!dir->i_op->unlink)
3857 		return -EPERM;
3858 
3859 	inode_lock(target);
3860 	if (is_local_mountpoint(dentry))
3861 		error = -EBUSY;
3862 	else {
3863 		error = security_inode_unlink(dir, dentry);
3864 		if (!error) {
3865 			error = try_break_deleg(target, delegated_inode);
3866 			if (error)
3867 				goto out;
3868 			error = dir->i_op->unlink(dir, dentry);
3869 			if (!error) {
3870 				dont_mount(dentry);
3871 				detach_mounts(dentry);
3872 			}
3873 		}
3874 	}
3875 out:
3876 	inode_unlock(target);
3877 
3878 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
3879 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3880 		fsnotify_link_count(target);
3881 		d_delete(dentry);
3882 	}
3883 
3884 	return error;
3885 }
3886 EXPORT_SYMBOL(vfs_unlink);
3887 
3888 /*
3889  * Make sure that the actual truncation of the file will occur outside its
3890  * directory's i_mutex.  Truncate can take a long time if there is a lot of
3891  * writeout happening, and we don't want to prevent access to the directory
3892  * while waiting on the I/O.
3893  */
3894 static long do_unlinkat(int dfd, const char __user *pathname)
3895 {
3896 	int error;
3897 	struct filename *name;
3898 	struct dentry *dentry;
3899 	struct path path;
3900 	struct qstr last;
3901 	int type;
3902 	struct inode *inode = NULL;
3903 	struct inode *delegated_inode = NULL;
3904 	unsigned int lookup_flags = 0;
3905 retry:
3906 	name = user_path_parent(dfd, pathname,
3907 				&path, &last, &type, lookup_flags);
3908 	if (IS_ERR(name))
3909 		return PTR_ERR(name);
3910 
3911 	error = -EISDIR;
3912 	if (type != LAST_NORM)
3913 		goto exit1;
3914 
3915 	error = mnt_want_write(path.mnt);
3916 	if (error)
3917 		goto exit1;
3918 retry_deleg:
3919 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3920 	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3921 	error = PTR_ERR(dentry);
3922 	if (!IS_ERR(dentry)) {
3923 		/* Why not before? Because we want correct error value */
3924 		if (last.name[last.len])
3925 			goto slashes;
3926 		inode = dentry->d_inode;
3927 		if (d_is_negative(dentry))
3928 			goto slashes;
3929 		ihold(inode);
3930 		error = security_path_unlink(&path, dentry);
3931 		if (error)
3932 			goto exit2;
3933 		error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
3934 exit2:
3935 		dput(dentry);
3936 	}
3937 	inode_unlock(path.dentry->d_inode);
3938 	if (inode)
3939 		iput(inode);	/* truncate the inode here */
3940 	inode = NULL;
3941 	if (delegated_inode) {
3942 		error = break_deleg_wait(&delegated_inode);
3943 		if (!error)
3944 			goto retry_deleg;
3945 	}
3946 	mnt_drop_write(path.mnt);
3947 exit1:
3948 	path_put(&path);
3949 	putname(name);
3950 	if (retry_estale(error, lookup_flags)) {
3951 		lookup_flags |= LOOKUP_REVAL;
3952 		inode = NULL;
3953 		goto retry;
3954 	}
3955 	return error;
3956 
3957 slashes:
3958 	if (d_is_negative(dentry))
3959 		error = -ENOENT;
3960 	else if (d_is_dir(dentry))
3961 		error = -EISDIR;
3962 	else
3963 		error = -ENOTDIR;
3964 	goto exit2;
3965 }
3966 
3967 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3968 {
3969 	if ((flag & ~AT_REMOVEDIR) != 0)
3970 		return -EINVAL;
3971 
3972 	if (flag & AT_REMOVEDIR)
3973 		return do_rmdir(dfd, pathname);
3974 
3975 	return do_unlinkat(dfd, pathname);
3976 }
3977 
3978 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3979 {
3980 	return do_unlinkat(AT_FDCWD, pathname);
3981 }
3982 
3983 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3984 {
3985 	int error = may_create(dir, dentry);
3986 
3987 	if (error)
3988 		return error;
3989 
3990 	if (!dir->i_op->symlink)
3991 		return -EPERM;
3992 
3993 	error = security_inode_symlink(dir, dentry, oldname);
3994 	if (error)
3995 		return error;
3996 
3997 	error = dir->i_op->symlink(dir, dentry, oldname);
3998 	if (!error)
3999 		fsnotify_create(dir, dentry);
4000 	return error;
4001 }
4002 EXPORT_SYMBOL(vfs_symlink);
4003 
4004 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4005 		int, newdfd, const char __user *, newname)
4006 {
4007 	int error;
4008 	struct filename *from;
4009 	struct dentry *dentry;
4010 	struct path path;
4011 	unsigned int lookup_flags = 0;
4012 
4013 	from = getname(oldname);
4014 	if (IS_ERR(from))
4015 		return PTR_ERR(from);
4016 retry:
4017 	dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4018 	error = PTR_ERR(dentry);
4019 	if (IS_ERR(dentry))
4020 		goto out_putname;
4021 
4022 	error = security_path_symlink(&path, dentry, from->name);
4023 	if (!error)
4024 		error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
4025 	done_path_create(&path, dentry);
4026 	if (retry_estale(error, lookup_flags)) {
4027 		lookup_flags |= LOOKUP_REVAL;
4028 		goto retry;
4029 	}
4030 out_putname:
4031 	putname(from);
4032 	return error;
4033 }
4034 
4035 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4036 {
4037 	return sys_symlinkat(oldname, AT_FDCWD, newname);
4038 }
4039 
4040 /**
4041  * vfs_link - create a new link
4042  * @old_dentry:	object to be linked
4043  * @dir:	new parent
4044  * @new_dentry:	where to create the new link
4045  * @delegated_inode: returns inode needing a delegation break
4046  *
4047  * The caller must hold dir->i_mutex
4048  *
4049  * If vfs_link discovers a delegation on the to-be-linked file in need
4050  * of breaking, it will return -EWOULDBLOCK and return a reference to the
4051  * inode in delegated_inode.  The caller should then break the delegation
4052  * and retry.  Because breaking a delegation may take a long time, the
4053  * caller should drop the i_mutex before doing so.
4054  *
4055  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4056  * be appropriate for callers that expect the underlying filesystem not
4057  * to be NFS exported.
4058  */
4059 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4060 {
4061 	struct inode *inode = old_dentry->d_inode;
4062 	unsigned max_links = dir->i_sb->s_max_links;
4063 	int error;
4064 
4065 	if (!inode)
4066 		return -ENOENT;
4067 
4068 	error = may_create(dir, new_dentry);
4069 	if (error)
4070 		return error;
4071 
4072 	if (dir->i_sb != inode->i_sb)
4073 		return -EXDEV;
4074 
4075 	/*
4076 	 * A link to an append-only or immutable file cannot be created.
4077 	 */
4078 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4079 		return -EPERM;
4080 	if (!dir->i_op->link)
4081 		return -EPERM;
4082 	if (S_ISDIR(inode->i_mode))
4083 		return -EPERM;
4084 
4085 	error = security_inode_link(old_dentry, dir, new_dentry);
4086 	if (error)
4087 		return error;
4088 
4089 	inode_lock(inode);
4090 	/* Make sure we don't allow creating hardlink to an unlinked file */
4091 	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4092 		error =  -ENOENT;
4093 	else if (max_links && inode->i_nlink >= max_links)
4094 		error = -EMLINK;
4095 	else {
4096 		error = try_break_deleg(inode, delegated_inode);
4097 		if (!error)
4098 			error = dir->i_op->link(old_dentry, dir, new_dentry);
4099 	}
4100 
4101 	if (!error && (inode->i_state & I_LINKABLE)) {
4102 		spin_lock(&inode->i_lock);
4103 		inode->i_state &= ~I_LINKABLE;
4104 		spin_unlock(&inode->i_lock);
4105 	}
4106 	inode_unlock(inode);
4107 	if (!error)
4108 		fsnotify_link(dir, inode, new_dentry);
4109 	return error;
4110 }
4111 EXPORT_SYMBOL(vfs_link);
4112 
4113 /*
4114  * Hardlinks are often used in delicate situations.  We avoid
4115  * security-related surprises by not following symlinks on the
4116  * newname.  --KAB
4117  *
4118  * We don't follow them on the oldname either to be compatible
4119  * with linux 2.0, and to avoid hard-linking to directories
4120  * and other special files.  --ADM
4121  */
4122 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4123 		int, newdfd, const char __user *, newname, int, flags)
4124 {
4125 	struct dentry *new_dentry;
4126 	struct path old_path, new_path;
4127 	struct inode *delegated_inode = NULL;
4128 	int how = 0;
4129 	int error;
4130 
4131 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4132 		return -EINVAL;
4133 	/*
4134 	 * To use null names we require CAP_DAC_READ_SEARCH
4135 	 * This ensures that not everyone will be able to create
4136 	 * handlink using the passed filedescriptor.
4137 	 */
4138 	if (flags & AT_EMPTY_PATH) {
4139 		if (!capable(CAP_DAC_READ_SEARCH))
4140 			return -ENOENT;
4141 		how = LOOKUP_EMPTY;
4142 	}
4143 
4144 	if (flags & AT_SYMLINK_FOLLOW)
4145 		how |= LOOKUP_FOLLOW;
4146 retry:
4147 	error = user_path_at(olddfd, oldname, how, &old_path);
4148 	if (error)
4149 		return error;
4150 
4151 	new_dentry = user_path_create(newdfd, newname, &new_path,
4152 					(how & LOOKUP_REVAL));
4153 	error = PTR_ERR(new_dentry);
4154 	if (IS_ERR(new_dentry))
4155 		goto out;
4156 
4157 	error = -EXDEV;
4158 	if (old_path.mnt != new_path.mnt)
4159 		goto out_dput;
4160 	error = may_linkat(&old_path);
4161 	if (unlikely(error))
4162 		goto out_dput;
4163 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
4164 	if (error)
4165 		goto out_dput;
4166 	error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4167 out_dput:
4168 	done_path_create(&new_path, new_dentry);
4169 	if (delegated_inode) {
4170 		error = break_deleg_wait(&delegated_inode);
4171 		if (!error) {
4172 			path_put(&old_path);
4173 			goto retry;
4174 		}
4175 	}
4176 	if (retry_estale(error, how)) {
4177 		path_put(&old_path);
4178 		how |= LOOKUP_REVAL;
4179 		goto retry;
4180 	}
4181 out:
4182 	path_put(&old_path);
4183 
4184 	return error;
4185 }
4186 
4187 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4188 {
4189 	return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4190 }
4191 
4192 /**
4193  * vfs_rename - rename a filesystem object
4194  * @old_dir:	parent of source
4195  * @old_dentry:	source
4196  * @new_dir:	parent of destination
4197  * @new_dentry:	destination
4198  * @delegated_inode: returns an inode needing a delegation break
4199  * @flags:	rename flags
4200  *
4201  * The caller must hold multiple mutexes--see lock_rename()).
4202  *
4203  * If vfs_rename discovers a delegation in need of breaking at either
4204  * the source or destination, it will return -EWOULDBLOCK and return a
4205  * reference to the inode in delegated_inode.  The caller should then
4206  * break the delegation and retry.  Because breaking a delegation may
4207  * take a long time, the caller should drop all locks before doing
4208  * so.
4209  *
4210  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4211  * be appropriate for callers that expect the underlying filesystem not
4212  * to be NFS exported.
4213  *
4214  * The worst of all namespace operations - renaming directory. "Perverted"
4215  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4216  * Problems:
4217  *	a) we can get into loop creation.
4218  *	b) race potential - two innocent renames can create a loop together.
4219  *	   That's where 4.4 screws up. Current fix: serialization on
4220  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4221  *	   story.
4222  *	c) we have to lock _four_ objects - parents and victim (if it exists),
4223  *	   and source (if it is not a directory).
4224  *	   And that - after we got ->i_mutex on parents (until then we don't know
4225  *	   whether the target exists).  Solution: try to be smart with locking
4226  *	   order for inodes.  We rely on the fact that tree topology may change
4227  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
4228  *	   move will be locked.  Thus we can rank directories by the tree
4229  *	   (ancestors first) and rank all non-directories after them.
4230  *	   That works since everybody except rename does "lock parent, lookup,
4231  *	   lock child" and rename is under ->s_vfs_rename_mutex.
4232  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
4233  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
4234  *	   we'd better make sure that there's no link(2) for them.
4235  *	d) conversion from fhandle to dentry may come in the wrong moment - when
4236  *	   we are removing the target. Solution: we will have to grab ->i_mutex
4237  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4238  *	   ->i_mutex on parents, which works but leads to some truly excessive
4239  *	   locking].
4240  */
4241 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4242 	       struct inode *new_dir, struct dentry *new_dentry,
4243 	       struct inode **delegated_inode, unsigned int flags)
4244 {
4245 	int error;
4246 	bool is_dir = d_is_dir(old_dentry);
4247 	const unsigned char *old_name;
4248 	struct inode *source = old_dentry->d_inode;
4249 	struct inode *target = new_dentry->d_inode;
4250 	bool new_is_dir = false;
4251 	unsigned max_links = new_dir->i_sb->s_max_links;
4252 
4253 	if (source == target)
4254 		return 0;
4255 
4256 	error = may_delete(old_dir, old_dentry, is_dir);
4257 	if (error)
4258 		return error;
4259 
4260 	if (!target) {
4261 		error = may_create(new_dir, new_dentry);
4262 	} else {
4263 		new_is_dir = d_is_dir(new_dentry);
4264 
4265 		if (!(flags & RENAME_EXCHANGE))
4266 			error = may_delete(new_dir, new_dentry, is_dir);
4267 		else
4268 			error = may_delete(new_dir, new_dentry, new_is_dir);
4269 	}
4270 	if (error)
4271 		return error;
4272 
4273 	if (!old_dir->i_op->rename && !old_dir->i_op->rename2)
4274 		return -EPERM;
4275 
4276 	if (flags && !old_dir->i_op->rename2)
4277 		return -EINVAL;
4278 
4279 	/*
4280 	 * If we are going to change the parent - check write permissions,
4281 	 * we'll need to flip '..'.
4282 	 */
4283 	if (new_dir != old_dir) {
4284 		if (is_dir) {
4285 			error = inode_permission(source, MAY_WRITE);
4286 			if (error)
4287 				return error;
4288 		}
4289 		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4290 			error = inode_permission(target, MAY_WRITE);
4291 			if (error)
4292 				return error;
4293 		}
4294 	}
4295 
4296 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4297 				      flags);
4298 	if (error)
4299 		return error;
4300 
4301 	old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4302 	dget(new_dentry);
4303 	if (!is_dir || (flags & RENAME_EXCHANGE))
4304 		lock_two_nondirectories(source, target);
4305 	else if (target)
4306 		inode_lock(target);
4307 
4308 	error = -EBUSY;
4309 	if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4310 		goto out;
4311 
4312 	if (max_links && new_dir != old_dir) {
4313 		error = -EMLINK;
4314 		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4315 			goto out;
4316 		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4317 		    old_dir->i_nlink >= max_links)
4318 			goto out;
4319 	}
4320 	if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4321 		shrink_dcache_parent(new_dentry);
4322 	if (!is_dir) {
4323 		error = try_break_deleg(source, delegated_inode);
4324 		if (error)
4325 			goto out;
4326 	}
4327 	if (target && !new_is_dir) {
4328 		error = try_break_deleg(target, delegated_inode);
4329 		if (error)
4330 			goto out;
4331 	}
4332 	if (!old_dir->i_op->rename2) {
4333 		error = old_dir->i_op->rename(old_dir, old_dentry,
4334 					      new_dir, new_dentry);
4335 	} else {
4336 		WARN_ON(old_dir->i_op->rename != NULL);
4337 		error = old_dir->i_op->rename2(old_dir, old_dentry,
4338 					       new_dir, new_dentry, flags);
4339 	}
4340 	if (error)
4341 		goto out;
4342 
4343 	if (!(flags & RENAME_EXCHANGE) && target) {
4344 		if (is_dir)
4345 			target->i_flags |= S_DEAD;
4346 		dont_mount(new_dentry);
4347 		detach_mounts(new_dentry);
4348 	}
4349 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4350 		if (!(flags & RENAME_EXCHANGE))
4351 			d_move(old_dentry, new_dentry);
4352 		else
4353 			d_exchange(old_dentry, new_dentry);
4354 	}
4355 out:
4356 	if (!is_dir || (flags & RENAME_EXCHANGE))
4357 		unlock_two_nondirectories(source, target);
4358 	else if (target)
4359 		inode_unlock(target);
4360 	dput(new_dentry);
4361 	if (!error) {
4362 		fsnotify_move(old_dir, new_dir, old_name, is_dir,
4363 			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4364 		if (flags & RENAME_EXCHANGE) {
4365 			fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4366 				      new_is_dir, NULL, new_dentry);
4367 		}
4368 	}
4369 	fsnotify_oldname_free(old_name);
4370 
4371 	return error;
4372 }
4373 EXPORT_SYMBOL(vfs_rename);
4374 
4375 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4376 		int, newdfd, const char __user *, newname, unsigned int, flags)
4377 {
4378 	struct dentry *old_dentry, *new_dentry;
4379 	struct dentry *trap;
4380 	struct path old_path, new_path;
4381 	struct qstr old_last, new_last;
4382 	int old_type, new_type;
4383 	struct inode *delegated_inode = NULL;
4384 	struct filename *from;
4385 	struct filename *to;
4386 	unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4387 	bool should_retry = false;
4388 	int error;
4389 
4390 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4391 		return -EINVAL;
4392 
4393 	if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4394 	    (flags & RENAME_EXCHANGE))
4395 		return -EINVAL;
4396 
4397 	if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4398 		return -EPERM;
4399 
4400 	if (flags & RENAME_EXCHANGE)
4401 		target_flags = 0;
4402 
4403 retry:
4404 	from = user_path_parent(olddfd, oldname,
4405 				&old_path, &old_last, &old_type, lookup_flags);
4406 	if (IS_ERR(from)) {
4407 		error = PTR_ERR(from);
4408 		goto exit;
4409 	}
4410 
4411 	to = user_path_parent(newdfd, newname,
4412 				&new_path, &new_last, &new_type, lookup_flags);
4413 	if (IS_ERR(to)) {
4414 		error = PTR_ERR(to);
4415 		goto exit1;
4416 	}
4417 
4418 	error = -EXDEV;
4419 	if (old_path.mnt != new_path.mnt)
4420 		goto exit2;
4421 
4422 	error = -EBUSY;
4423 	if (old_type != LAST_NORM)
4424 		goto exit2;
4425 
4426 	if (flags & RENAME_NOREPLACE)
4427 		error = -EEXIST;
4428 	if (new_type != LAST_NORM)
4429 		goto exit2;
4430 
4431 	error = mnt_want_write(old_path.mnt);
4432 	if (error)
4433 		goto exit2;
4434 
4435 retry_deleg:
4436 	trap = lock_rename(new_path.dentry, old_path.dentry);
4437 
4438 	old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4439 	error = PTR_ERR(old_dentry);
4440 	if (IS_ERR(old_dentry))
4441 		goto exit3;
4442 	/* source must exist */
4443 	error = -ENOENT;
4444 	if (d_is_negative(old_dentry))
4445 		goto exit4;
4446 	new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4447 	error = PTR_ERR(new_dentry);
4448 	if (IS_ERR(new_dentry))
4449 		goto exit4;
4450 	error = -EEXIST;
4451 	if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4452 		goto exit5;
4453 	if (flags & RENAME_EXCHANGE) {
4454 		error = -ENOENT;
4455 		if (d_is_negative(new_dentry))
4456 			goto exit5;
4457 
4458 		if (!d_is_dir(new_dentry)) {
4459 			error = -ENOTDIR;
4460 			if (new_last.name[new_last.len])
4461 				goto exit5;
4462 		}
4463 	}
4464 	/* unless the source is a directory trailing slashes give -ENOTDIR */
4465 	if (!d_is_dir(old_dentry)) {
4466 		error = -ENOTDIR;
4467 		if (old_last.name[old_last.len])
4468 			goto exit5;
4469 		if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4470 			goto exit5;
4471 	}
4472 	/* source should not be ancestor of target */
4473 	error = -EINVAL;
4474 	if (old_dentry == trap)
4475 		goto exit5;
4476 	/* target should not be an ancestor of source */
4477 	if (!(flags & RENAME_EXCHANGE))
4478 		error = -ENOTEMPTY;
4479 	if (new_dentry == trap)
4480 		goto exit5;
4481 
4482 	error = security_path_rename(&old_path, old_dentry,
4483 				     &new_path, new_dentry, flags);
4484 	if (error)
4485 		goto exit5;
4486 	error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4487 			   new_path.dentry->d_inode, new_dentry,
4488 			   &delegated_inode, flags);
4489 exit5:
4490 	dput(new_dentry);
4491 exit4:
4492 	dput(old_dentry);
4493 exit3:
4494 	unlock_rename(new_path.dentry, old_path.dentry);
4495 	if (delegated_inode) {
4496 		error = break_deleg_wait(&delegated_inode);
4497 		if (!error)
4498 			goto retry_deleg;
4499 	}
4500 	mnt_drop_write(old_path.mnt);
4501 exit2:
4502 	if (retry_estale(error, lookup_flags))
4503 		should_retry = true;
4504 	path_put(&new_path);
4505 	putname(to);
4506 exit1:
4507 	path_put(&old_path);
4508 	putname(from);
4509 	if (should_retry) {
4510 		should_retry = false;
4511 		lookup_flags |= LOOKUP_REVAL;
4512 		goto retry;
4513 	}
4514 exit:
4515 	return error;
4516 }
4517 
4518 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4519 		int, newdfd, const char __user *, newname)
4520 {
4521 	return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4522 }
4523 
4524 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4525 {
4526 	return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4527 }
4528 
4529 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4530 {
4531 	int error = may_create(dir, dentry);
4532 	if (error)
4533 		return error;
4534 
4535 	if (!dir->i_op->mknod)
4536 		return -EPERM;
4537 
4538 	return dir->i_op->mknod(dir, dentry,
4539 				S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4540 }
4541 EXPORT_SYMBOL(vfs_whiteout);
4542 
4543 int readlink_copy(char __user *buffer, int buflen, const char *link)
4544 {
4545 	int len = PTR_ERR(link);
4546 	if (IS_ERR(link))
4547 		goto out;
4548 
4549 	len = strlen(link);
4550 	if (len > (unsigned) buflen)
4551 		len = buflen;
4552 	if (copy_to_user(buffer, link, len))
4553 		len = -EFAULT;
4554 out:
4555 	return len;
4556 }
4557 EXPORT_SYMBOL(readlink_copy);
4558 
4559 /*
4560  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
4561  * have ->get_link() not calling nd_jump_link().  Using (or not using) it
4562  * for any given inode is up to filesystem.
4563  */
4564 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4565 {
4566 	DEFINE_DELAYED_CALL(done);
4567 	struct inode *inode = d_inode(dentry);
4568 	const char *link = inode->i_link;
4569 	int res;
4570 
4571 	if (!link) {
4572 		link = inode->i_op->get_link(dentry, inode, &done);
4573 		if (IS_ERR(link))
4574 			return PTR_ERR(link);
4575 	}
4576 	res = readlink_copy(buffer, buflen, link);
4577 	do_delayed_call(&done);
4578 	return res;
4579 }
4580 EXPORT_SYMBOL(generic_readlink);
4581 
4582 /* get the link contents into pagecache */
4583 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4584 			  struct delayed_call *callback)
4585 {
4586 	char *kaddr;
4587 	struct page *page;
4588 	struct address_space *mapping = inode->i_mapping;
4589 
4590 	if (!dentry) {
4591 		page = find_get_page(mapping, 0);
4592 		if (!page)
4593 			return ERR_PTR(-ECHILD);
4594 		if (!PageUptodate(page)) {
4595 			put_page(page);
4596 			return ERR_PTR(-ECHILD);
4597 		}
4598 	} else {
4599 		page = read_mapping_page(mapping, 0, NULL);
4600 		if (IS_ERR(page))
4601 			return (char*)page;
4602 	}
4603 	set_delayed_call(callback, page_put_link, page);
4604 	BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4605 	kaddr = page_address(page);
4606 	nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4607 	return kaddr;
4608 }
4609 
4610 EXPORT_SYMBOL(page_get_link);
4611 
4612 void page_put_link(void *arg)
4613 {
4614 	put_page(arg);
4615 }
4616 EXPORT_SYMBOL(page_put_link);
4617 
4618 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4619 {
4620 	DEFINE_DELAYED_CALL(done);
4621 	int res = readlink_copy(buffer, buflen,
4622 				page_get_link(dentry, d_inode(dentry),
4623 					      &done));
4624 	do_delayed_call(&done);
4625 	return res;
4626 }
4627 EXPORT_SYMBOL(page_readlink);
4628 
4629 /*
4630  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4631  */
4632 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4633 {
4634 	struct address_space *mapping = inode->i_mapping;
4635 	struct page *page;
4636 	void *fsdata;
4637 	int err;
4638 	unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4639 	if (nofs)
4640 		flags |= AOP_FLAG_NOFS;
4641 
4642 retry:
4643 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
4644 				flags, &page, &fsdata);
4645 	if (err)
4646 		goto fail;
4647 
4648 	memcpy(page_address(page), symname, len-1);
4649 
4650 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4651 							page, fsdata);
4652 	if (err < 0)
4653 		goto fail;
4654 	if (err < len-1)
4655 		goto retry;
4656 
4657 	mark_inode_dirty(inode);
4658 	return 0;
4659 fail:
4660 	return err;
4661 }
4662 EXPORT_SYMBOL(__page_symlink);
4663 
4664 int page_symlink(struct inode *inode, const char *symname, int len)
4665 {
4666 	return __page_symlink(inode, symname, len,
4667 			!mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4668 }
4669 EXPORT_SYMBOL(page_symlink);
4670 
4671 const struct inode_operations page_symlink_inode_operations = {
4672 	.readlink	= generic_readlink,
4673 	.get_link	= page_get_link,
4674 };
4675 EXPORT_SYMBOL(page_symlink_inode_operations);
4676