1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/namei.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * Some corrections by tytso. 10 */ 11 12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 13 * lookup logic. 14 */ 15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 16 */ 17 18 #include <linux/init.h> 19 #include <linux/export.h> 20 #include <linux/kernel.h> 21 #include <linux/slab.h> 22 #include <linux/fs.h> 23 #include <linux/namei.h> 24 #include <linux/pagemap.h> 25 #include <linux/fsnotify.h> 26 #include <linux/personality.h> 27 #include <linux/security.h> 28 #include <linux/ima.h> 29 #include <linux/syscalls.h> 30 #include <linux/mount.h> 31 #include <linux/audit.h> 32 #include <linux/capability.h> 33 #include <linux/file.h> 34 #include <linux/fcntl.h> 35 #include <linux/device_cgroup.h> 36 #include <linux/fs_struct.h> 37 #include <linux/posix_acl.h> 38 #include <linux/hash.h> 39 #include <linux/bitops.h> 40 #include <linux/init_task.h> 41 #include <linux/uaccess.h> 42 #include <linux/build_bug.h> 43 44 #include "internal.h" 45 #include "mount.h" 46 47 /* [Feb-1997 T. Schoebel-Theuer] 48 * Fundamental changes in the pathname lookup mechanisms (namei) 49 * were necessary because of omirr. The reason is that omirr needs 50 * to know the _real_ pathname, not the user-supplied one, in case 51 * of symlinks (and also when transname replacements occur). 52 * 53 * The new code replaces the old recursive symlink resolution with 54 * an iterative one (in case of non-nested symlink chains). It does 55 * this with calls to <fs>_follow_link(). 56 * As a side effect, dir_namei(), _namei() and follow_link() are now 57 * replaced with a single function lookup_dentry() that can handle all 58 * the special cases of the former code. 59 * 60 * With the new dcache, the pathname is stored at each inode, at least as 61 * long as the refcount of the inode is positive. As a side effect, the 62 * size of the dcache depends on the inode cache and thus is dynamic. 63 * 64 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 65 * resolution to correspond with current state of the code. 66 * 67 * Note that the symlink resolution is not *completely* iterative. 68 * There is still a significant amount of tail- and mid- recursion in 69 * the algorithm. Also, note that <fs>_readlink() is not used in 70 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 71 * may return different results than <fs>_follow_link(). Many virtual 72 * filesystems (including /proc) exhibit this behavior. 73 */ 74 75 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 76 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 77 * and the name already exists in form of a symlink, try to create the new 78 * name indicated by the symlink. The old code always complained that the 79 * name already exists, due to not following the symlink even if its target 80 * is nonexistent. The new semantics affects also mknod() and link() when 81 * the name is a symlink pointing to a non-existent name. 82 * 83 * I don't know which semantics is the right one, since I have no access 84 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 85 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 86 * "old" one. Personally, I think the new semantics is much more logical. 87 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 88 * file does succeed in both HP-UX and SunOs, but not in Solaris 89 * and in the old Linux semantics. 90 */ 91 92 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 93 * semantics. See the comments in "open_namei" and "do_link" below. 94 * 95 * [10-Sep-98 Alan Modra] Another symlink change. 96 */ 97 98 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 99 * inside the path - always follow. 100 * in the last component in creation/removal/renaming - never follow. 101 * if LOOKUP_FOLLOW passed - follow. 102 * if the pathname has trailing slashes - follow. 103 * otherwise - don't follow. 104 * (applied in that order). 105 * 106 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 107 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 108 * During the 2.4 we need to fix the userland stuff depending on it - 109 * hopefully we will be able to get rid of that wart in 2.5. So far only 110 * XEmacs seems to be relying on it... 111 */ 112 /* 113 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 114 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 115 * any extra contention... 116 */ 117 118 /* In order to reduce some races, while at the same time doing additional 119 * checking and hopefully speeding things up, we copy filenames to the 120 * kernel data space before using them.. 121 * 122 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 123 * PATH_MAX includes the nul terminator --RR. 124 */ 125 126 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname)) 127 128 struct filename * 129 getname_flags(const char __user *filename, int flags, int *empty) 130 { 131 struct filename *result; 132 char *kname; 133 int len; 134 BUILD_BUG_ON(offsetof(struct filename, iname) % sizeof(long) != 0); 135 136 result = audit_reusename(filename); 137 if (result) 138 return result; 139 140 result = __getname(); 141 if (unlikely(!result)) 142 return ERR_PTR(-ENOMEM); 143 144 /* 145 * First, try to embed the struct filename inside the names_cache 146 * allocation 147 */ 148 kname = (char *)result->iname; 149 result->name = kname; 150 151 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX); 152 if (unlikely(len < 0)) { 153 __putname(result); 154 return ERR_PTR(len); 155 } 156 157 /* 158 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a 159 * separate struct filename so we can dedicate the entire 160 * names_cache allocation for the pathname, and re-do the copy from 161 * userland. 162 */ 163 if (unlikely(len == EMBEDDED_NAME_MAX)) { 164 const size_t size = offsetof(struct filename, iname[1]); 165 kname = (char *)result; 166 167 /* 168 * size is chosen that way we to guarantee that 169 * result->iname[0] is within the same object and that 170 * kname can't be equal to result->iname, no matter what. 171 */ 172 result = kzalloc(size, GFP_KERNEL); 173 if (unlikely(!result)) { 174 __putname(kname); 175 return ERR_PTR(-ENOMEM); 176 } 177 result->name = kname; 178 len = strncpy_from_user(kname, filename, PATH_MAX); 179 if (unlikely(len < 0)) { 180 __putname(kname); 181 kfree(result); 182 return ERR_PTR(len); 183 } 184 if (unlikely(len == PATH_MAX)) { 185 __putname(kname); 186 kfree(result); 187 return ERR_PTR(-ENAMETOOLONG); 188 } 189 } 190 191 result->refcnt = 1; 192 /* The empty path is special. */ 193 if (unlikely(!len)) { 194 if (empty) 195 *empty = 1; 196 if (!(flags & LOOKUP_EMPTY)) { 197 putname(result); 198 return ERR_PTR(-ENOENT); 199 } 200 } 201 202 result->uptr = filename; 203 result->aname = NULL; 204 audit_getname(result); 205 return result; 206 } 207 208 struct filename * 209 getname(const char __user * filename) 210 { 211 return getname_flags(filename, 0, NULL); 212 } 213 214 struct filename * 215 getname_kernel(const char * filename) 216 { 217 struct filename *result; 218 int len = strlen(filename) + 1; 219 220 result = __getname(); 221 if (unlikely(!result)) 222 return ERR_PTR(-ENOMEM); 223 224 if (len <= EMBEDDED_NAME_MAX) { 225 result->name = (char *)result->iname; 226 } else if (len <= PATH_MAX) { 227 const size_t size = offsetof(struct filename, iname[1]); 228 struct filename *tmp; 229 230 tmp = kmalloc(size, GFP_KERNEL); 231 if (unlikely(!tmp)) { 232 __putname(result); 233 return ERR_PTR(-ENOMEM); 234 } 235 tmp->name = (char *)result; 236 result = tmp; 237 } else { 238 __putname(result); 239 return ERR_PTR(-ENAMETOOLONG); 240 } 241 memcpy((char *)result->name, filename, len); 242 result->uptr = NULL; 243 result->aname = NULL; 244 result->refcnt = 1; 245 audit_getname(result); 246 247 return result; 248 } 249 250 void putname(struct filename *name) 251 { 252 BUG_ON(name->refcnt <= 0); 253 254 if (--name->refcnt > 0) 255 return; 256 257 if (name->name != name->iname) { 258 __putname(name->name); 259 kfree(name); 260 } else 261 __putname(name); 262 } 263 264 static int check_acl(struct inode *inode, int mask) 265 { 266 #ifdef CONFIG_FS_POSIX_ACL 267 struct posix_acl *acl; 268 269 if (mask & MAY_NOT_BLOCK) { 270 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS); 271 if (!acl) 272 return -EAGAIN; 273 /* no ->get_acl() calls in RCU mode... */ 274 if (is_uncached_acl(acl)) 275 return -ECHILD; 276 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK); 277 } 278 279 acl = get_acl(inode, ACL_TYPE_ACCESS); 280 if (IS_ERR(acl)) 281 return PTR_ERR(acl); 282 if (acl) { 283 int error = posix_acl_permission(inode, acl, mask); 284 posix_acl_release(acl); 285 return error; 286 } 287 #endif 288 289 return -EAGAIN; 290 } 291 292 /* 293 * This does the basic permission checking 294 */ 295 static int acl_permission_check(struct inode *inode, int mask) 296 { 297 unsigned int mode = inode->i_mode; 298 299 if (likely(uid_eq(current_fsuid(), inode->i_uid))) 300 mode >>= 6; 301 else { 302 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) { 303 int error = check_acl(inode, mask); 304 if (error != -EAGAIN) 305 return error; 306 } 307 308 if (in_group_p(inode->i_gid)) 309 mode >>= 3; 310 } 311 312 /* 313 * If the DACs are ok we don't need any capability check. 314 */ 315 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 316 return 0; 317 return -EACCES; 318 } 319 320 /** 321 * generic_permission - check for access rights on a Posix-like filesystem 322 * @inode: inode to check access rights for 323 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...) 324 * 325 * Used to check for read/write/execute permissions on a file. 326 * We use "fsuid" for this, letting us set arbitrary permissions 327 * for filesystem access without changing the "normal" uids which 328 * are used for other things. 329 * 330 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk 331 * request cannot be satisfied (eg. requires blocking or too much complexity). 332 * It would then be called again in ref-walk mode. 333 */ 334 int generic_permission(struct inode *inode, int mask) 335 { 336 int ret; 337 338 /* 339 * Do the basic permission checks. 340 */ 341 ret = acl_permission_check(inode, mask); 342 if (ret != -EACCES) 343 return ret; 344 345 if (S_ISDIR(inode->i_mode)) { 346 /* DACs are overridable for directories */ 347 if (!(mask & MAY_WRITE)) 348 if (capable_wrt_inode_uidgid(inode, 349 CAP_DAC_READ_SEARCH)) 350 return 0; 351 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE)) 352 return 0; 353 return -EACCES; 354 } 355 356 /* 357 * Searching includes executable on directories, else just read. 358 */ 359 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 360 if (mask == MAY_READ) 361 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH)) 362 return 0; 363 /* 364 * Read/write DACs are always overridable. 365 * Executable DACs are overridable when there is 366 * at least one exec bit set. 367 */ 368 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO)) 369 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE)) 370 return 0; 371 372 return -EACCES; 373 } 374 EXPORT_SYMBOL(generic_permission); 375 376 /* 377 * We _really_ want to just do "generic_permission()" without 378 * even looking at the inode->i_op values. So we keep a cache 379 * flag in inode->i_opflags, that says "this has not special 380 * permission function, use the fast case". 381 */ 382 static inline int do_inode_permission(struct inode *inode, int mask) 383 { 384 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) { 385 if (likely(inode->i_op->permission)) 386 return inode->i_op->permission(inode, mask); 387 388 /* This gets set once for the inode lifetime */ 389 spin_lock(&inode->i_lock); 390 inode->i_opflags |= IOP_FASTPERM; 391 spin_unlock(&inode->i_lock); 392 } 393 return generic_permission(inode, mask); 394 } 395 396 /** 397 * sb_permission - Check superblock-level permissions 398 * @sb: Superblock of inode to check permission on 399 * @inode: Inode to check permission on 400 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 401 * 402 * Separate out file-system wide checks from inode-specific permission checks. 403 */ 404 static int sb_permission(struct super_block *sb, struct inode *inode, int mask) 405 { 406 if (unlikely(mask & MAY_WRITE)) { 407 umode_t mode = inode->i_mode; 408 409 /* Nobody gets write access to a read-only fs. */ 410 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 411 return -EROFS; 412 } 413 return 0; 414 } 415 416 /** 417 * inode_permission - Check for access rights to a given inode 418 * @inode: Inode to check permission on 419 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 420 * 421 * Check for read/write/execute permissions on an inode. We use fs[ug]id for 422 * this, letting us set arbitrary permissions for filesystem access without 423 * changing the "normal" UIDs which are used for other things. 424 * 425 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 426 */ 427 int inode_permission(struct inode *inode, int mask) 428 { 429 int retval; 430 431 retval = sb_permission(inode->i_sb, inode, mask); 432 if (retval) 433 return retval; 434 435 if (unlikely(mask & MAY_WRITE)) { 436 /* 437 * Nobody gets write access to an immutable file. 438 */ 439 if (IS_IMMUTABLE(inode)) 440 return -EPERM; 441 442 /* 443 * Updating mtime will likely cause i_uid and i_gid to be 444 * written back improperly if their true value is unknown 445 * to the vfs. 446 */ 447 if (HAS_UNMAPPED_ID(inode)) 448 return -EACCES; 449 } 450 451 retval = do_inode_permission(inode, mask); 452 if (retval) 453 return retval; 454 455 retval = devcgroup_inode_permission(inode, mask); 456 if (retval) 457 return retval; 458 459 return security_inode_permission(inode, mask); 460 } 461 EXPORT_SYMBOL(inode_permission); 462 463 /** 464 * path_get - get a reference to a path 465 * @path: path to get the reference to 466 * 467 * Given a path increment the reference count to the dentry and the vfsmount. 468 */ 469 void path_get(const struct path *path) 470 { 471 mntget(path->mnt); 472 dget(path->dentry); 473 } 474 EXPORT_SYMBOL(path_get); 475 476 /** 477 * path_put - put a reference to a path 478 * @path: path to put the reference to 479 * 480 * Given a path decrement the reference count to the dentry and the vfsmount. 481 */ 482 void path_put(const struct path *path) 483 { 484 dput(path->dentry); 485 mntput(path->mnt); 486 } 487 EXPORT_SYMBOL(path_put); 488 489 #define EMBEDDED_LEVELS 2 490 struct nameidata { 491 struct path path; 492 struct qstr last; 493 struct path root; 494 struct inode *inode; /* path.dentry.d_inode */ 495 unsigned int flags; 496 unsigned seq, m_seq; 497 int last_type; 498 unsigned depth; 499 int total_link_count; 500 struct saved { 501 struct path link; 502 struct delayed_call done; 503 const char *name; 504 unsigned seq; 505 } *stack, internal[EMBEDDED_LEVELS]; 506 struct filename *name; 507 struct nameidata *saved; 508 struct inode *link_inode; 509 unsigned root_seq; 510 int dfd; 511 } __randomize_layout; 512 513 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name) 514 { 515 struct nameidata *old = current->nameidata; 516 p->stack = p->internal; 517 p->dfd = dfd; 518 p->name = name; 519 p->total_link_count = old ? old->total_link_count : 0; 520 p->saved = old; 521 current->nameidata = p; 522 } 523 524 static void restore_nameidata(void) 525 { 526 struct nameidata *now = current->nameidata, *old = now->saved; 527 528 current->nameidata = old; 529 if (old) 530 old->total_link_count = now->total_link_count; 531 if (now->stack != now->internal) 532 kfree(now->stack); 533 } 534 535 static int __nd_alloc_stack(struct nameidata *nd) 536 { 537 struct saved *p; 538 539 if (nd->flags & LOOKUP_RCU) { 540 p= kmalloc(MAXSYMLINKS * sizeof(struct saved), 541 GFP_ATOMIC); 542 if (unlikely(!p)) 543 return -ECHILD; 544 } else { 545 p= kmalloc(MAXSYMLINKS * sizeof(struct saved), 546 GFP_KERNEL); 547 if (unlikely(!p)) 548 return -ENOMEM; 549 } 550 memcpy(p, nd->internal, sizeof(nd->internal)); 551 nd->stack = p; 552 return 0; 553 } 554 555 /** 556 * path_connected - Verify that a path->dentry is below path->mnt.mnt_root 557 * @path: nameidate to verify 558 * 559 * Rename can sometimes move a file or directory outside of a bind 560 * mount, path_connected allows those cases to be detected. 561 */ 562 static bool path_connected(const struct path *path) 563 { 564 struct vfsmount *mnt = path->mnt; 565 struct super_block *sb = mnt->mnt_sb; 566 567 /* Bind mounts and multi-root filesystems can have disconnected paths */ 568 if (!(sb->s_iflags & SB_I_MULTIROOT) && (mnt->mnt_root == sb->s_root)) 569 return true; 570 571 return is_subdir(path->dentry, mnt->mnt_root); 572 } 573 574 static inline int nd_alloc_stack(struct nameidata *nd) 575 { 576 if (likely(nd->depth != EMBEDDED_LEVELS)) 577 return 0; 578 if (likely(nd->stack != nd->internal)) 579 return 0; 580 return __nd_alloc_stack(nd); 581 } 582 583 static void drop_links(struct nameidata *nd) 584 { 585 int i = nd->depth; 586 while (i--) { 587 struct saved *last = nd->stack + i; 588 do_delayed_call(&last->done); 589 clear_delayed_call(&last->done); 590 } 591 } 592 593 static void terminate_walk(struct nameidata *nd) 594 { 595 drop_links(nd); 596 if (!(nd->flags & LOOKUP_RCU)) { 597 int i; 598 path_put(&nd->path); 599 for (i = 0; i < nd->depth; i++) 600 path_put(&nd->stack[i].link); 601 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 602 path_put(&nd->root); 603 nd->root.mnt = NULL; 604 } 605 } else { 606 nd->flags &= ~LOOKUP_RCU; 607 if (!(nd->flags & LOOKUP_ROOT)) 608 nd->root.mnt = NULL; 609 rcu_read_unlock(); 610 } 611 nd->depth = 0; 612 } 613 614 /* path_put is needed afterwards regardless of success or failure */ 615 static bool legitimize_path(struct nameidata *nd, 616 struct path *path, unsigned seq) 617 { 618 int res = __legitimize_mnt(path->mnt, nd->m_seq); 619 if (unlikely(res)) { 620 if (res > 0) 621 path->mnt = NULL; 622 path->dentry = NULL; 623 return false; 624 } 625 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) { 626 path->dentry = NULL; 627 return false; 628 } 629 return !read_seqcount_retry(&path->dentry->d_seq, seq); 630 } 631 632 static bool legitimize_links(struct nameidata *nd) 633 { 634 int i; 635 for (i = 0; i < nd->depth; i++) { 636 struct saved *last = nd->stack + i; 637 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) { 638 drop_links(nd); 639 nd->depth = i + 1; 640 return false; 641 } 642 } 643 return true; 644 } 645 646 /* 647 * Path walking has 2 modes, rcu-walk and ref-walk (see 648 * Documentation/filesystems/path-lookup.txt). In situations when we can't 649 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab 650 * normal reference counts on dentries and vfsmounts to transition to ref-walk 651 * mode. Refcounts are grabbed at the last known good point before rcu-walk 652 * got stuck, so ref-walk may continue from there. If this is not successful 653 * (eg. a seqcount has changed), then failure is returned and it's up to caller 654 * to restart the path walk from the beginning in ref-walk mode. 655 */ 656 657 /** 658 * unlazy_walk - try to switch to ref-walk mode. 659 * @nd: nameidata pathwalk data 660 * Returns: 0 on success, -ECHILD on failure 661 * 662 * unlazy_walk attempts to legitimize the current nd->path and nd->root 663 * for ref-walk mode. 664 * Must be called from rcu-walk context. 665 * Nothing should touch nameidata between unlazy_walk() failure and 666 * terminate_walk(). 667 */ 668 static int unlazy_walk(struct nameidata *nd) 669 { 670 struct dentry *parent = nd->path.dentry; 671 672 BUG_ON(!(nd->flags & LOOKUP_RCU)); 673 674 nd->flags &= ~LOOKUP_RCU; 675 if (unlikely(!legitimize_links(nd))) 676 goto out2; 677 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq))) 678 goto out1; 679 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 680 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) 681 goto out; 682 } 683 rcu_read_unlock(); 684 BUG_ON(nd->inode != parent->d_inode); 685 return 0; 686 687 out2: 688 nd->path.mnt = NULL; 689 nd->path.dentry = NULL; 690 out1: 691 if (!(nd->flags & LOOKUP_ROOT)) 692 nd->root.mnt = NULL; 693 out: 694 rcu_read_unlock(); 695 return -ECHILD; 696 } 697 698 /** 699 * unlazy_child - try to switch to ref-walk mode. 700 * @nd: nameidata pathwalk data 701 * @dentry: child of nd->path.dentry 702 * @seq: seq number to check dentry against 703 * Returns: 0 on success, -ECHILD on failure 704 * 705 * unlazy_child attempts to legitimize the current nd->path, nd->root and dentry 706 * for ref-walk mode. @dentry must be a path found by a do_lookup call on 707 * @nd. Must be called from rcu-walk context. 708 * Nothing should touch nameidata between unlazy_child() failure and 709 * terminate_walk(). 710 */ 711 static int unlazy_child(struct nameidata *nd, struct dentry *dentry, unsigned seq) 712 { 713 BUG_ON(!(nd->flags & LOOKUP_RCU)); 714 715 nd->flags &= ~LOOKUP_RCU; 716 if (unlikely(!legitimize_links(nd))) 717 goto out2; 718 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq))) 719 goto out2; 720 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref))) 721 goto out1; 722 723 /* 724 * We need to move both the parent and the dentry from the RCU domain 725 * to be properly refcounted. And the sequence number in the dentry 726 * validates *both* dentry counters, since we checked the sequence 727 * number of the parent after we got the child sequence number. So we 728 * know the parent must still be valid if the child sequence number is 729 */ 730 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) 731 goto out; 732 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) { 733 rcu_read_unlock(); 734 dput(dentry); 735 goto drop_root_mnt; 736 } 737 /* 738 * Sequence counts matched. Now make sure that the root is 739 * still valid and get it if required. 740 */ 741 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 742 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) { 743 rcu_read_unlock(); 744 dput(dentry); 745 return -ECHILD; 746 } 747 } 748 749 rcu_read_unlock(); 750 return 0; 751 752 out2: 753 nd->path.mnt = NULL; 754 out1: 755 nd->path.dentry = NULL; 756 out: 757 rcu_read_unlock(); 758 drop_root_mnt: 759 if (!(nd->flags & LOOKUP_ROOT)) 760 nd->root.mnt = NULL; 761 return -ECHILD; 762 } 763 764 static inline int d_revalidate(struct dentry *dentry, unsigned int flags) 765 { 766 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) 767 return dentry->d_op->d_revalidate(dentry, flags); 768 else 769 return 1; 770 } 771 772 /** 773 * complete_walk - successful completion of path walk 774 * @nd: pointer nameidata 775 * 776 * If we had been in RCU mode, drop out of it and legitimize nd->path. 777 * Revalidate the final result, unless we'd already done that during 778 * the path walk or the filesystem doesn't ask for it. Return 0 on 779 * success, -error on failure. In case of failure caller does not 780 * need to drop nd->path. 781 */ 782 static int complete_walk(struct nameidata *nd) 783 { 784 struct dentry *dentry = nd->path.dentry; 785 int status; 786 787 if (nd->flags & LOOKUP_RCU) { 788 if (!(nd->flags & LOOKUP_ROOT)) 789 nd->root.mnt = NULL; 790 if (unlikely(unlazy_walk(nd))) 791 return -ECHILD; 792 } 793 794 if (likely(!(nd->flags & LOOKUP_JUMPED))) 795 return 0; 796 797 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE))) 798 return 0; 799 800 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags); 801 if (status > 0) 802 return 0; 803 804 if (!status) 805 status = -ESTALE; 806 807 return status; 808 } 809 810 static void set_root(struct nameidata *nd) 811 { 812 struct fs_struct *fs = current->fs; 813 814 if (nd->flags & LOOKUP_RCU) { 815 unsigned seq; 816 817 do { 818 seq = read_seqcount_begin(&fs->seq); 819 nd->root = fs->root; 820 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq); 821 } while (read_seqcount_retry(&fs->seq, seq)); 822 } else { 823 get_fs_root(fs, &nd->root); 824 } 825 } 826 827 static void path_put_conditional(struct path *path, struct nameidata *nd) 828 { 829 dput(path->dentry); 830 if (path->mnt != nd->path.mnt) 831 mntput(path->mnt); 832 } 833 834 static inline void path_to_nameidata(const struct path *path, 835 struct nameidata *nd) 836 { 837 if (!(nd->flags & LOOKUP_RCU)) { 838 dput(nd->path.dentry); 839 if (nd->path.mnt != path->mnt) 840 mntput(nd->path.mnt); 841 } 842 nd->path.mnt = path->mnt; 843 nd->path.dentry = path->dentry; 844 } 845 846 static int nd_jump_root(struct nameidata *nd) 847 { 848 if (nd->flags & LOOKUP_RCU) { 849 struct dentry *d; 850 nd->path = nd->root; 851 d = nd->path.dentry; 852 nd->inode = d->d_inode; 853 nd->seq = nd->root_seq; 854 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq))) 855 return -ECHILD; 856 } else { 857 path_put(&nd->path); 858 nd->path = nd->root; 859 path_get(&nd->path); 860 nd->inode = nd->path.dentry->d_inode; 861 } 862 nd->flags |= LOOKUP_JUMPED; 863 return 0; 864 } 865 866 /* 867 * Helper to directly jump to a known parsed path from ->get_link, 868 * caller must have taken a reference to path beforehand. 869 */ 870 void nd_jump_link(struct path *path) 871 { 872 struct nameidata *nd = current->nameidata; 873 path_put(&nd->path); 874 875 nd->path = *path; 876 nd->inode = nd->path.dentry->d_inode; 877 nd->flags |= LOOKUP_JUMPED; 878 } 879 880 static inline void put_link(struct nameidata *nd) 881 { 882 struct saved *last = nd->stack + --nd->depth; 883 do_delayed_call(&last->done); 884 if (!(nd->flags & LOOKUP_RCU)) 885 path_put(&last->link); 886 } 887 888 int sysctl_protected_symlinks __read_mostly = 0; 889 int sysctl_protected_hardlinks __read_mostly = 0; 890 891 /** 892 * may_follow_link - Check symlink following for unsafe situations 893 * @nd: nameidata pathwalk data 894 * 895 * In the case of the sysctl_protected_symlinks sysctl being enabled, 896 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is 897 * in a sticky world-writable directory. This is to protect privileged 898 * processes from failing races against path names that may change out 899 * from under them by way of other users creating malicious symlinks. 900 * It will permit symlinks to be followed only when outside a sticky 901 * world-writable directory, or when the uid of the symlink and follower 902 * match, or when the directory owner matches the symlink's owner. 903 * 904 * Returns 0 if following the symlink is allowed, -ve on error. 905 */ 906 static inline int may_follow_link(struct nameidata *nd) 907 { 908 const struct inode *inode; 909 const struct inode *parent; 910 kuid_t puid; 911 912 if (!sysctl_protected_symlinks) 913 return 0; 914 915 /* Allowed if owner and follower match. */ 916 inode = nd->link_inode; 917 if (uid_eq(current_cred()->fsuid, inode->i_uid)) 918 return 0; 919 920 /* Allowed if parent directory not sticky and world-writable. */ 921 parent = nd->inode; 922 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH)) 923 return 0; 924 925 /* Allowed if parent directory and link owner match. */ 926 puid = parent->i_uid; 927 if (uid_valid(puid) && uid_eq(puid, inode->i_uid)) 928 return 0; 929 930 if (nd->flags & LOOKUP_RCU) 931 return -ECHILD; 932 933 audit_inode(nd->name, nd->stack[0].link.dentry, 0); 934 audit_log_link_denied("follow_link"); 935 return -EACCES; 936 } 937 938 /** 939 * safe_hardlink_source - Check for safe hardlink conditions 940 * @inode: the source inode to hardlink from 941 * 942 * Return false if at least one of the following conditions: 943 * - inode is not a regular file 944 * - inode is setuid 945 * - inode is setgid and group-exec 946 * - access failure for read and write 947 * 948 * Otherwise returns true. 949 */ 950 static bool safe_hardlink_source(struct inode *inode) 951 { 952 umode_t mode = inode->i_mode; 953 954 /* Special files should not get pinned to the filesystem. */ 955 if (!S_ISREG(mode)) 956 return false; 957 958 /* Setuid files should not get pinned to the filesystem. */ 959 if (mode & S_ISUID) 960 return false; 961 962 /* Executable setgid files should not get pinned to the filesystem. */ 963 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) 964 return false; 965 966 /* Hardlinking to unreadable or unwritable sources is dangerous. */ 967 if (inode_permission(inode, MAY_READ | MAY_WRITE)) 968 return false; 969 970 return true; 971 } 972 973 /** 974 * may_linkat - Check permissions for creating a hardlink 975 * @link: the source to hardlink from 976 * 977 * Block hardlink when all of: 978 * - sysctl_protected_hardlinks enabled 979 * - fsuid does not match inode 980 * - hardlink source is unsafe (see safe_hardlink_source() above) 981 * - not CAP_FOWNER in a namespace with the inode owner uid mapped 982 * 983 * Returns 0 if successful, -ve on error. 984 */ 985 static int may_linkat(struct path *link) 986 { 987 struct inode *inode; 988 989 if (!sysctl_protected_hardlinks) 990 return 0; 991 992 inode = link->dentry->d_inode; 993 994 /* Source inode owner (or CAP_FOWNER) can hardlink all they like, 995 * otherwise, it must be a safe source. 996 */ 997 if (safe_hardlink_source(inode) || inode_owner_or_capable(inode)) 998 return 0; 999 1000 audit_log_link_denied("linkat"); 1001 return -EPERM; 1002 } 1003 1004 static __always_inline 1005 const char *get_link(struct nameidata *nd) 1006 { 1007 struct saved *last = nd->stack + nd->depth - 1; 1008 struct dentry *dentry = last->link.dentry; 1009 struct inode *inode = nd->link_inode; 1010 int error; 1011 const char *res; 1012 1013 if (!(nd->flags & LOOKUP_RCU)) { 1014 touch_atime(&last->link); 1015 cond_resched(); 1016 } else if (atime_needs_update_rcu(&last->link, inode)) { 1017 if (unlikely(unlazy_walk(nd))) 1018 return ERR_PTR(-ECHILD); 1019 touch_atime(&last->link); 1020 } 1021 1022 error = security_inode_follow_link(dentry, inode, 1023 nd->flags & LOOKUP_RCU); 1024 if (unlikely(error)) 1025 return ERR_PTR(error); 1026 1027 nd->last_type = LAST_BIND; 1028 res = inode->i_link; 1029 if (!res) { 1030 const char * (*get)(struct dentry *, struct inode *, 1031 struct delayed_call *); 1032 get = inode->i_op->get_link; 1033 if (nd->flags & LOOKUP_RCU) { 1034 res = get(NULL, inode, &last->done); 1035 if (res == ERR_PTR(-ECHILD)) { 1036 if (unlikely(unlazy_walk(nd))) 1037 return ERR_PTR(-ECHILD); 1038 res = get(dentry, inode, &last->done); 1039 } 1040 } else { 1041 res = get(dentry, inode, &last->done); 1042 } 1043 if (IS_ERR_OR_NULL(res)) 1044 return res; 1045 } 1046 if (*res == '/') { 1047 if (!nd->root.mnt) 1048 set_root(nd); 1049 if (unlikely(nd_jump_root(nd))) 1050 return ERR_PTR(-ECHILD); 1051 while (unlikely(*++res == '/')) 1052 ; 1053 } 1054 if (!*res) 1055 res = NULL; 1056 return res; 1057 } 1058 1059 /* 1060 * follow_up - Find the mountpoint of path's vfsmount 1061 * 1062 * Given a path, find the mountpoint of its source file system. 1063 * Replace @path with the path of the mountpoint in the parent mount. 1064 * Up is towards /. 1065 * 1066 * Return 1 if we went up a level and 0 if we were already at the 1067 * root. 1068 */ 1069 int follow_up(struct path *path) 1070 { 1071 struct mount *mnt = real_mount(path->mnt); 1072 struct mount *parent; 1073 struct dentry *mountpoint; 1074 1075 read_seqlock_excl(&mount_lock); 1076 parent = mnt->mnt_parent; 1077 if (parent == mnt) { 1078 read_sequnlock_excl(&mount_lock); 1079 return 0; 1080 } 1081 mntget(&parent->mnt); 1082 mountpoint = dget(mnt->mnt_mountpoint); 1083 read_sequnlock_excl(&mount_lock); 1084 dput(path->dentry); 1085 path->dentry = mountpoint; 1086 mntput(path->mnt); 1087 path->mnt = &parent->mnt; 1088 return 1; 1089 } 1090 EXPORT_SYMBOL(follow_up); 1091 1092 /* 1093 * Perform an automount 1094 * - return -EISDIR to tell follow_managed() to stop and return the path we 1095 * were called with. 1096 */ 1097 static int follow_automount(struct path *path, struct nameidata *nd, 1098 bool *need_mntput) 1099 { 1100 struct vfsmount *mnt; 1101 int err; 1102 1103 if (!path->dentry->d_op || !path->dentry->d_op->d_automount) 1104 return -EREMOTE; 1105 1106 /* We don't want to mount if someone's just doing a stat - 1107 * unless they're stat'ing a directory and appended a '/' to 1108 * the name. 1109 * 1110 * We do, however, want to mount if someone wants to open or 1111 * create a file of any type under the mountpoint, wants to 1112 * traverse through the mountpoint or wants to open the 1113 * mounted directory. Also, autofs may mark negative dentries 1114 * as being automount points. These will need the attentions 1115 * of the daemon to instantiate them before they can be used. 1116 */ 1117 if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY | 1118 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) && 1119 path->dentry->d_inode) 1120 return -EISDIR; 1121 1122 nd->total_link_count++; 1123 if (nd->total_link_count >= 40) 1124 return -ELOOP; 1125 1126 mnt = path->dentry->d_op->d_automount(path); 1127 if (IS_ERR(mnt)) { 1128 /* 1129 * The filesystem is allowed to return -EISDIR here to indicate 1130 * it doesn't want to automount. For instance, autofs would do 1131 * this so that its userspace daemon can mount on this dentry. 1132 * 1133 * However, we can only permit this if it's a terminal point in 1134 * the path being looked up; if it wasn't then the remainder of 1135 * the path is inaccessible and we should say so. 1136 */ 1137 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT)) 1138 return -EREMOTE; 1139 return PTR_ERR(mnt); 1140 } 1141 1142 if (!mnt) /* mount collision */ 1143 return 0; 1144 1145 if (!*need_mntput) { 1146 /* lock_mount() may release path->mnt on error */ 1147 mntget(path->mnt); 1148 *need_mntput = true; 1149 } 1150 err = finish_automount(mnt, path); 1151 1152 switch (err) { 1153 case -EBUSY: 1154 /* Someone else made a mount here whilst we were busy */ 1155 return 0; 1156 case 0: 1157 path_put(path); 1158 path->mnt = mnt; 1159 path->dentry = dget(mnt->mnt_root); 1160 return 0; 1161 default: 1162 return err; 1163 } 1164 1165 } 1166 1167 /* 1168 * Handle a dentry that is managed in some way. 1169 * - Flagged for transit management (autofs) 1170 * - Flagged as mountpoint 1171 * - Flagged as automount point 1172 * 1173 * This may only be called in refwalk mode. 1174 * 1175 * Serialization is taken care of in namespace.c 1176 */ 1177 static int follow_managed(struct path *path, struct nameidata *nd) 1178 { 1179 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */ 1180 unsigned managed; 1181 bool need_mntput = false; 1182 int ret = 0; 1183 1184 /* Given that we're not holding a lock here, we retain the value in a 1185 * local variable for each dentry as we look at it so that we don't see 1186 * the components of that value change under us */ 1187 while (managed = READ_ONCE(path->dentry->d_flags), 1188 managed &= DCACHE_MANAGED_DENTRY, 1189 unlikely(managed != 0)) { 1190 /* Allow the filesystem to manage the transit without i_mutex 1191 * being held. */ 1192 if (managed & DCACHE_MANAGE_TRANSIT) { 1193 BUG_ON(!path->dentry->d_op); 1194 BUG_ON(!path->dentry->d_op->d_manage); 1195 ret = path->dentry->d_op->d_manage(path, false); 1196 if (ret < 0) 1197 break; 1198 } 1199 1200 /* Transit to a mounted filesystem. */ 1201 if (managed & DCACHE_MOUNTED) { 1202 struct vfsmount *mounted = lookup_mnt(path); 1203 if (mounted) { 1204 dput(path->dentry); 1205 if (need_mntput) 1206 mntput(path->mnt); 1207 path->mnt = mounted; 1208 path->dentry = dget(mounted->mnt_root); 1209 need_mntput = true; 1210 continue; 1211 } 1212 1213 /* Something is mounted on this dentry in another 1214 * namespace and/or whatever was mounted there in this 1215 * namespace got unmounted before lookup_mnt() could 1216 * get it */ 1217 } 1218 1219 /* Handle an automount point */ 1220 if (managed & DCACHE_NEED_AUTOMOUNT) { 1221 ret = follow_automount(path, nd, &need_mntput); 1222 if (ret < 0) 1223 break; 1224 continue; 1225 } 1226 1227 /* We didn't change the current path point */ 1228 break; 1229 } 1230 1231 if (need_mntput && path->mnt == mnt) 1232 mntput(path->mnt); 1233 if (ret == -EISDIR || !ret) 1234 ret = 1; 1235 if (need_mntput) 1236 nd->flags |= LOOKUP_JUMPED; 1237 if (unlikely(ret < 0)) 1238 path_put_conditional(path, nd); 1239 return ret; 1240 } 1241 1242 int follow_down_one(struct path *path) 1243 { 1244 struct vfsmount *mounted; 1245 1246 mounted = lookup_mnt(path); 1247 if (mounted) { 1248 dput(path->dentry); 1249 mntput(path->mnt); 1250 path->mnt = mounted; 1251 path->dentry = dget(mounted->mnt_root); 1252 return 1; 1253 } 1254 return 0; 1255 } 1256 EXPORT_SYMBOL(follow_down_one); 1257 1258 static inline int managed_dentry_rcu(const struct path *path) 1259 { 1260 return (path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) ? 1261 path->dentry->d_op->d_manage(path, true) : 0; 1262 } 1263 1264 /* 1265 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if 1266 * we meet a managed dentry that would need blocking. 1267 */ 1268 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path, 1269 struct inode **inode, unsigned *seqp) 1270 { 1271 for (;;) { 1272 struct mount *mounted; 1273 /* 1274 * Don't forget we might have a non-mountpoint managed dentry 1275 * that wants to block transit. 1276 */ 1277 switch (managed_dentry_rcu(path)) { 1278 case -ECHILD: 1279 default: 1280 return false; 1281 case -EISDIR: 1282 return true; 1283 case 0: 1284 break; 1285 } 1286 1287 if (!d_mountpoint(path->dentry)) 1288 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT); 1289 1290 mounted = __lookup_mnt(path->mnt, path->dentry); 1291 if (!mounted) 1292 break; 1293 path->mnt = &mounted->mnt; 1294 path->dentry = mounted->mnt.mnt_root; 1295 nd->flags |= LOOKUP_JUMPED; 1296 *seqp = read_seqcount_begin(&path->dentry->d_seq); 1297 /* 1298 * Update the inode too. We don't need to re-check the 1299 * dentry sequence number here after this d_inode read, 1300 * because a mount-point is always pinned. 1301 */ 1302 *inode = path->dentry->d_inode; 1303 } 1304 return !read_seqretry(&mount_lock, nd->m_seq) && 1305 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT); 1306 } 1307 1308 static int follow_dotdot_rcu(struct nameidata *nd) 1309 { 1310 struct inode *inode = nd->inode; 1311 1312 while (1) { 1313 if (path_equal(&nd->path, &nd->root)) 1314 break; 1315 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1316 struct dentry *old = nd->path.dentry; 1317 struct dentry *parent = old->d_parent; 1318 unsigned seq; 1319 1320 inode = parent->d_inode; 1321 seq = read_seqcount_begin(&parent->d_seq); 1322 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq))) 1323 return -ECHILD; 1324 nd->path.dentry = parent; 1325 nd->seq = seq; 1326 if (unlikely(!path_connected(&nd->path))) 1327 return -ENOENT; 1328 break; 1329 } else { 1330 struct mount *mnt = real_mount(nd->path.mnt); 1331 struct mount *mparent = mnt->mnt_parent; 1332 struct dentry *mountpoint = mnt->mnt_mountpoint; 1333 struct inode *inode2 = mountpoint->d_inode; 1334 unsigned seq = read_seqcount_begin(&mountpoint->d_seq); 1335 if (unlikely(read_seqretry(&mount_lock, nd->m_seq))) 1336 return -ECHILD; 1337 if (&mparent->mnt == nd->path.mnt) 1338 break; 1339 /* we know that mountpoint was pinned */ 1340 nd->path.dentry = mountpoint; 1341 nd->path.mnt = &mparent->mnt; 1342 inode = inode2; 1343 nd->seq = seq; 1344 } 1345 } 1346 while (unlikely(d_mountpoint(nd->path.dentry))) { 1347 struct mount *mounted; 1348 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry); 1349 if (unlikely(read_seqretry(&mount_lock, nd->m_seq))) 1350 return -ECHILD; 1351 if (!mounted) 1352 break; 1353 nd->path.mnt = &mounted->mnt; 1354 nd->path.dentry = mounted->mnt.mnt_root; 1355 inode = nd->path.dentry->d_inode; 1356 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 1357 } 1358 nd->inode = inode; 1359 return 0; 1360 } 1361 1362 /* 1363 * Follow down to the covering mount currently visible to userspace. At each 1364 * point, the filesystem owning that dentry may be queried as to whether the 1365 * caller is permitted to proceed or not. 1366 */ 1367 int follow_down(struct path *path) 1368 { 1369 unsigned managed; 1370 int ret; 1371 1372 while (managed = READ_ONCE(path->dentry->d_flags), 1373 unlikely(managed & DCACHE_MANAGED_DENTRY)) { 1374 /* Allow the filesystem to manage the transit without i_mutex 1375 * being held. 1376 * 1377 * We indicate to the filesystem if someone is trying to mount 1378 * something here. This gives autofs the chance to deny anyone 1379 * other than its daemon the right to mount on its 1380 * superstructure. 1381 * 1382 * The filesystem may sleep at this point. 1383 */ 1384 if (managed & DCACHE_MANAGE_TRANSIT) { 1385 BUG_ON(!path->dentry->d_op); 1386 BUG_ON(!path->dentry->d_op->d_manage); 1387 ret = path->dentry->d_op->d_manage(path, false); 1388 if (ret < 0) 1389 return ret == -EISDIR ? 0 : ret; 1390 } 1391 1392 /* Transit to a mounted filesystem. */ 1393 if (managed & DCACHE_MOUNTED) { 1394 struct vfsmount *mounted = lookup_mnt(path); 1395 if (!mounted) 1396 break; 1397 dput(path->dentry); 1398 mntput(path->mnt); 1399 path->mnt = mounted; 1400 path->dentry = dget(mounted->mnt_root); 1401 continue; 1402 } 1403 1404 /* Don't handle automount points here */ 1405 break; 1406 } 1407 return 0; 1408 } 1409 EXPORT_SYMBOL(follow_down); 1410 1411 /* 1412 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot() 1413 */ 1414 static void follow_mount(struct path *path) 1415 { 1416 while (d_mountpoint(path->dentry)) { 1417 struct vfsmount *mounted = lookup_mnt(path); 1418 if (!mounted) 1419 break; 1420 dput(path->dentry); 1421 mntput(path->mnt); 1422 path->mnt = mounted; 1423 path->dentry = dget(mounted->mnt_root); 1424 } 1425 } 1426 1427 static int path_parent_directory(struct path *path) 1428 { 1429 struct dentry *old = path->dentry; 1430 /* rare case of legitimate dget_parent()... */ 1431 path->dentry = dget_parent(path->dentry); 1432 dput(old); 1433 if (unlikely(!path_connected(path))) 1434 return -ENOENT; 1435 return 0; 1436 } 1437 1438 static int follow_dotdot(struct nameidata *nd) 1439 { 1440 while(1) { 1441 if (nd->path.dentry == nd->root.dentry && 1442 nd->path.mnt == nd->root.mnt) { 1443 break; 1444 } 1445 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1446 int ret = path_parent_directory(&nd->path); 1447 if (ret) 1448 return ret; 1449 break; 1450 } 1451 if (!follow_up(&nd->path)) 1452 break; 1453 } 1454 follow_mount(&nd->path); 1455 nd->inode = nd->path.dentry->d_inode; 1456 return 0; 1457 } 1458 1459 /* 1460 * This looks up the name in dcache and possibly revalidates the found dentry. 1461 * NULL is returned if the dentry does not exist in the cache. 1462 */ 1463 static struct dentry *lookup_dcache(const struct qstr *name, 1464 struct dentry *dir, 1465 unsigned int flags) 1466 { 1467 struct dentry *dentry = d_lookup(dir, name); 1468 if (dentry) { 1469 int error = d_revalidate(dentry, flags); 1470 if (unlikely(error <= 0)) { 1471 if (!error) 1472 d_invalidate(dentry); 1473 dput(dentry); 1474 return ERR_PTR(error); 1475 } 1476 } 1477 return dentry; 1478 } 1479 1480 /* 1481 * Parent directory has inode locked exclusive. This is one 1482 * and only case when ->lookup() gets called on non in-lookup 1483 * dentries - as the matter of fact, this only gets called 1484 * when directory is guaranteed to have no in-lookup children 1485 * at all. 1486 */ 1487 static struct dentry *__lookup_hash(const struct qstr *name, 1488 struct dentry *base, unsigned int flags) 1489 { 1490 struct dentry *dentry = lookup_dcache(name, base, flags); 1491 struct dentry *old; 1492 struct inode *dir = base->d_inode; 1493 1494 if (dentry) 1495 return dentry; 1496 1497 /* Don't create child dentry for a dead directory. */ 1498 if (unlikely(IS_DEADDIR(dir))) 1499 return ERR_PTR(-ENOENT); 1500 1501 dentry = d_alloc(base, name); 1502 if (unlikely(!dentry)) 1503 return ERR_PTR(-ENOMEM); 1504 1505 old = dir->i_op->lookup(dir, dentry, flags); 1506 if (unlikely(old)) { 1507 dput(dentry); 1508 dentry = old; 1509 } 1510 return dentry; 1511 } 1512 1513 static int lookup_fast(struct nameidata *nd, 1514 struct path *path, struct inode **inode, 1515 unsigned *seqp) 1516 { 1517 struct vfsmount *mnt = nd->path.mnt; 1518 struct dentry *dentry, *parent = nd->path.dentry; 1519 int status = 1; 1520 int err; 1521 1522 /* 1523 * Rename seqlock is not required here because in the off chance 1524 * of a false negative due to a concurrent rename, the caller is 1525 * going to fall back to non-racy lookup. 1526 */ 1527 if (nd->flags & LOOKUP_RCU) { 1528 unsigned seq; 1529 bool negative; 1530 dentry = __d_lookup_rcu(parent, &nd->last, &seq); 1531 if (unlikely(!dentry)) { 1532 if (unlazy_walk(nd)) 1533 return -ECHILD; 1534 return 0; 1535 } 1536 1537 /* 1538 * This sequence count validates that the inode matches 1539 * the dentry name information from lookup. 1540 */ 1541 *inode = d_backing_inode(dentry); 1542 negative = d_is_negative(dentry); 1543 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) 1544 return -ECHILD; 1545 1546 /* 1547 * This sequence count validates that the parent had no 1548 * changes while we did the lookup of the dentry above. 1549 * 1550 * The memory barrier in read_seqcount_begin of child is 1551 * enough, we can use __read_seqcount_retry here. 1552 */ 1553 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq))) 1554 return -ECHILD; 1555 1556 *seqp = seq; 1557 status = d_revalidate(dentry, nd->flags); 1558 if (likely(status > 0)) { 1559 /* 1560 * Note: do negative dentry check after revalidation in 1561 * case that drops it. 1562 */ 1563 if (unlikely(negative)) 1564 return -ENOENT; 1565 path->mnt = mnt; 1566 path->dentry = dentry; 1567 if (likely(__follow_mount_rcu(nd, path, inode, seqp))) 1568 return 1; 1569 } 1570 if (unlazy_child(nd, dentry, seq)) 1571 return -ECHILD; 1572 if (unlikely(status == -ECHILD)) 1573 /* we'd been told to redo it in non-rcu mode */ 1574 status = d_revalidate(dentry, nd->flags); 1575 } else { 1576 dentry = __d_lookup(parent, &nd->last); 1577 if (unlikely(!dentry)) 1578 return 0; 1579 status = d_revalidate(dentry, nd->flags); 1580 } 1581 if (unlikely(status <= 0)) { 1582 if (!status) 1583 d_invalidate(dentry); 1584 dput(dentry); 1585 return status; 1586 } 1587 if (unlikely(d_is_negative(dentry))) { 1588 dput(dentry); 1589 return -ENOENT; 1590 } 1591 1592 path->mnt = mnt; 1593 path->dentry = dentry; 1594 err = follow_managed(path, nd); 1595 if (likely(err > 0)) 1596 *inode = d_backing_inode(path->dentry); 1597 return err; 1598 } 1599 1600 /* Fast lookup failed, do it the slow way */ 1601 static struct dentry *__lookup_slow(const struct qstr *name, 1602 struct dentry *dir, 1603 unsigned int flags) 1604 { 1605 struct dentry *dentry, *old; 1606 struct inode *inode = dir->d_inode; 1607 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 1608 1609 /* Don't go there if it's already dead */ 1610 if (unlikely(IS_DEADDIR(inode))) 1611 return ERR_PTR(-ENOENT); 1612 again: 1613 dentry = d_alloc_parallel(dir, name, &wq); 1614 if (IS_ERR(dentry)) 1615 return dentry; 1616 if (unlikely(!d_in_lookup(dentry))) { 1617 if (!(flags & LOOKUP_NO_REVAL)) { 1618 int error = d_revalidate(dentry, flags); 1619 if (unlikely(error <= 0)) { 1620 if (!error) { 1621 d_invalidate(dentry); 1622 dput(dentry); 1623 goto again; 1624 } 1625 dput(dentry); 1626 dentry = ERR_PTR(error); 1627 } 1628 } 1629 } else { 1630 old = inode->i_op->lookup(inode, dentry, flags); 1631 d_lookup_done(dentry); 1632 if (unlikely(old)) { 1633 dput(dentry); 1634 dentry = old; 1635 } 1636 } 1637 return dentry; 1638 } 1639 1640 static struct dentry *lookup_slow(const struct qstr *name, 1641 struct dentry *dir, 1642 unsigned int flags) 1643 { 1644 struct inode *inode = dir->d_inode; 1645 struct dentry *res; 1646 inode_lock_shared(inode); 1647 res = __lookup_slow(name, dir, flags); 1648 inode_unlock_shared(inode); 1649 return res; 1650 } 1651 1652 static inline int may_lookup(struct nameidata *nd) 1653 { 1654 if (nd->flags & LOOKUP_RCU) { 1655 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK); 1656 if (err != -ECHILD) 1657 return err; 1658 if (unlazy_walk(nd)) 1659 return -ECHILD; 1660 } 1661 return inode_permission(nd->inode, MAY_EXEC); 1662 } 1663 1664 static inline int handle_dots(struct nameidata *nd, int type) 1665 { 1666 if (type == LAST_DOTDOT) { 1667 if (!nd->root.mnt) 1668 set_root(nd); 1669 if (nd->flags & LOOKUP_RCU) { 1670 return follow_dotdot_rcu(nd); 1671 } else 1672 return follow_dotdot(nd); 1673 } 1674 return 0; 1675 } 1676 1677 static int pick_link(struct nameidata *nd, struct path *link, 1678 struct inode *inode, unsigned seq) 1679 { 1680 int error; 1681 struct saved *last; 1682 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) { 1683 path_to_nameidata(link, nd); 1684 return -ELOOP; 1685 } 1686 if (!(nd->flags & LOOKUP_RCU)) { 1687 if (link->mnt == nd->path.mnt) 1688 mntget(link->mnt); 1689 } 1690 error = nd_alloc_stack(nd); 1691 if (unlikely(error)) { 1692 if (error == -ECHILD) { 1693 if (unlikely(!legitimize_path(nd, link, seq))) { 1694 drop_links(nd); 1695 nd->depth = 0; 1696 nd->flags &= ~LOOKUP_RCU; 1697 nd->path.mnt = NULL; 1698 nd->path.dentry = NULL; 1699 if (!(nd->flags & LOOKUP_ROOT)) 1700 nd->root.mnt = NULL; 1701 rcu_read_unlock(); 1702 } else if (likely(unlazy_walk(nd)) == 0) 1703 error = nd_alloc_stack(nd); 1704 } 1705 if (error) { 1706 path_put(link); 1707 return error; 1708 } 1709 } 1710 1711 last = nd->stack + nd->depth++; 1712 last->link = *link; 1713 clear_delayed_call(&last->done); 1714 nd->link_inode = inode; 1715 last->seq = seq; 1716 return 1; 1717 } 1718 1719 enum {WALK_FOLLOW = 1, WALK_MORE = 2}; 1720 1721 /* 1722 * Do we need to follow links? We _really_ want to be able 1723 * to do this check without having to look at inode->i_op, 1724 * so we keep a cache of "no, this doesn't need follow_link" 1725 * for the common case. 1726 */ 1727 static inline int step_into(struct nameidata *nd, struct path *path, 1728 int flags, struct inode *inode, unsigned seq) 1729 { 1730 if (!(flags & WALK_MORE) && nd->depth) 1731 put_link(nd); 1732 if (likely(!d_is_symlink(path->dentry)) || 1733 !(flags & WALK_FOLLOW || nd->flags & LOOKUP_FOLLOW)) { 1734 /* not a symlink or should not follow */ 1735 path_to_nameidata(path, nd); 1736 nd->inode = inode; 1737 nd->seq = seq; 1738 return 0; 1739 } 1740 /* make sure that d_is_symlink above matches inode */ 1741 if (nd->flags & LOOKUP_RCU) { 1742 if (read_seqcount_retry(&path->dentry->d_seq, seq)) 1743 return -ECHILD; 1744 } 1745 return pick_link(nd, path, inode, seq); 1746 } 1747 1748 static int walk_component(struct nameidata *nd, int flags) 1749 { 1750 struct path path; 1751 struct inode *inode; 1752 unsigned seq; 1753 int err; 1754 /* 1755 * "." and ".." are special - ".." especially so because it has 1756 * to be able to know about the current root directory and 1757 * parent relationships. 1758 */ 1759 if (unlikely(nd->last_type != LAST_NORM)) { 1760 err = handle_dots(nd, nd->last_type); 1761 if (!(flags & WALK_MORE) && nd->depth) 1762 put_link(nd); 1763 return err; 1764 } 1765 err = lookup_fast(nd, &path, &inode, &seq); 1766 if (unlikely(err <= 0)) { 1767 if (err < 0) 1768 return err; 1769 path.dentry = lookup_slow(&nd->last, nd->path.dentry, 1770 nd->flags); 1771 if (IS_ERR(path.dentry)) 1772 return PTR_ERR(path.dentry); 1773 1774 path.mnt = nd->path.mnt; 1775 err = follow_managed(&path, nd); 1776 if (unlikely(err < 0)) 1777 return err; 1778 1779 if (unlikely(d_is_negative(path.dentry))) { 1780 path_to_nameidata(&path, nd); 1781 return -ENOENT; 1782 } 1783 1784 seq = 0; /* we are already out of RCU mode */ 1785 inode = d_backing_inode(path.dentry); 1786 } 1787 1788 return step_into(nd, &path, flags, inode, seq); 1789 } 1790 1791 /* 1792 * We can do the critical dentry name comparison and hashing 1793 * operations one word at a time, but we are limited to: 1794 * 1795 * - Architectures with fast unaligned word accesses. We could 1796 * do a "get_unaligned()" if this helps and is sufficiently 1797 * fast. 1798 * 1799 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we 1800 * do not trap on the (extremely unlikely) case of a page 1801 * crossing operation. 1802 * 1803 * - Furthermore, we need an efficient 64-bit compile for the 1804 * 64-bit case in order to generate the "number of bytes in 1805 * the final mask". Again, that could be replaced with a 1806 * efficient population count instruction or similar. 1807 */ 1808 #ifdef CONFIG_DCACHE_WORD_ACCESS 1809 1810 #include <asm/word-at-a-time.h> 1811 1812 #ifdef HASH_MIX 1813 1814 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */ 1815 1816 #elif defined(CONFIG_64BIT) 1817 /* 1818 * Register pressure in the mixing function is an issue, particularly 1819 * on 32-bit x86, but almost any function requires one state value and 1820 * one temporary. Instead, use a function designed for two state values 1821 * and no temporaries. 1822 * 1823 * This function cannot create a collision in only two iterations, so 1824 * we have two iterations to achieve avalanche. In those two iterations, 1825 * we have six layers of mixing, which is enough to spread one bit's 1826 * influence out to 2^6 = 64 state bits. 1827 * 1828 * Rotate constants are scored by considering either 64 one-bit input 1829 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the 1830 * probability of that delta causing a change to each of the 128 output 1831 * bits, using a sample of random initial states. 1832 * 1833 * The Shannon entropy of the computed probabilities is then summed 1834 * to produce a score. Ideally, any input change has a 50% chance of 1835 * toggling any given output bit. 1836 * 1837 * Mixing scores (in bits) for (12,45): 1838 * Input delta: 1-bit 2-bit 1839 * 1 round: 713.3 42542.6 1840 * 2 rounds: 2753.7 140389.8 1841 * 3 rounds: 5954.1 233458.2 1842 * 4 rounds: 7862.6 256672.2 1843 * Perfect: 8192 258048 1844 * (64*128) (64*63/2 * 128) 1845 */ 1846 #define HASH_MIX(x, y, a) \ 1847 ( x ^= (a), \ 1848 y ^= x, x = rol64(x,12),\ 1849 x += y, y = rol64(y,45),\ 1850 y *= 9 ) 1851 1852 /* 1853 * Fold two longs into one 32-bit hash value. This must be fast, but 1854 * latency isn't quite as critical, as there is a fair bit of additional 1855 * work done before the hash value is used. 1856 */ 1857 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 1858 { 1859 y ^= x * GOLDEN_RATIO_64; 1860 y *= GOLDEN_RATIO_64; 1861 return y >> 32; 1862 } 1863 1864 #else /* 32-bit case */ 1865 1866 /* 1867 * Mixing scores (in bits) for (7,20): 1868 * Input delta: 1-bit 2-bit 1869 * 1 round: 330.3 9201.6 1870 * 2 rounds: 1246.4 25475.4 1871 * 3 rounds: 1907.1 31295.1 1872 * 4 rounds: 2042.3 31718.6 1873 * Perfect: 2048 31744 1874 * (32*64) (32*31/2 * 64) 1875 */ 1876 #define HASH_MIX(x, y, a) \ 1877 ( x ^= (a), \ 1878 y ^= x, x = rol32(x, 7),\ 1879 x += y, y = rol32(y,20),\ 1880 y *= 9 ) 1881 1882 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 1883 { 1884 /* Use arch-optimized multiply if one exists */ 1885 return __hash_32(y ^ __hash_32(x)); 1886 } 1887 1888 #endif 1889 1890 /* 1891 * Return the hash of a string of known length. This is carfully 1892 * designed to match hash_name(), which is the more critical function. 1893 * In particular, we must end by hashing a final word containing 0..7 1894 * payload bytes, to match the way that hash_name() iterates until it 1895 * finds the delimiter after the name. 1896 */ 1897 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 1898 { 1899 unsigned long a, x = 0, y = (unsigned long)salt; 1900 1901 for (;;) { 1902 if (!len) 1903 goto done; 1904 a = load_unaligned_zeropad(name); 1905 if (len < sizeof(unsigned long)) 1906 break; 1907 HASH_MIX(x, y, a); 1908 name += sizeof(unsigned long); 1909 len -= sizeof(unsigned long); 1910 } 1911 x ^= a & bytemask_from_count(len); 1912 done: 1913 return fold_hash(x, y); 1914 } 1915 EXPORT_SYMBOL(full_name_hash); 1916 1917 /* Return the "hash_len" (hash and length) of a null-terminated string */ 1918 u64 hashlen_string(const void *salt, const char *name) 1919 { 1920 unsigned long a = 0, x = 0, y = (unsigned long)salt; 1921 unsigned long adata, mask, len; 1922 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 1923 1924 len = 0; 1925 goto inside; 1926 1927 do { 1928 HASH_MIX(x, y, a); 1929 len += sizeof(unsigned long); 1930 inside: 1931 a = load_unaligned_zeropad(name+len); 1932 } while (!has_zero(a, &adata, &constants)); 1933 1934 adata = prep_zero_mask(a, adata, &constants); 1935 mask = create_zero_mask(adata); 1936 x ^= a & zero_bytemask(mask); 1937 1938 return hashlen_create(fold_hash(x, y), len + find_zero(mask)); 1939 } 1940 EXPORT_SYMBOL(hashlen_string); 1941 1942 /* 1943 * Calculate the length and hash of the path component, and 1944 * return the "hash_len" as the result. 1945 */ 1946 static inline u64 hash_name(const void *salt, const char *name) 1947 { 1948 unsigned long a = 0, b, x = 0, y = (unsigned long)salt; 1949 unsigned long adata, bdata, mask, len; 1950 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 1951 1952 len = 0; 1953 goto inside; 1954 1955 do { 1956 HASH_MIX(x, y, a); 1957 len += sizeof(unsigned long); 1958 inside: 1959 a = load_unaligned_zeropad(name+len); 1960 b = a ^ REPEAT_BYTE('/'); 1961 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants))); 1962 1963 adata = prep_zero_mask(a, adata, &constants); 1964 bdata = prep_zero_mask(b, bdata, &constants); 1965 mask = create_zero_mask(adata | bdata); 1966 x ^= a & zero_bytemask(mask); 1967 1968 return hashlen_create(fold_hash(x, y), len + find_zero(mask)); 1969 } 1970 1971 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */ 1972 1973 /* Return the hash of a string of known length */ 1974 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 1975 { 1976 unsigned long hash = init_name_hash(salt); 1977 while (len--) 1978 hash = partial_name_hash((unsigned char)*name++, hash); 1979 return end_name_hash(hash); 1980 } 1981 EXPORT_SYMBOL(full_name_hash); 1982 1983 /* Return the "hash_len" (hash and length) of a null-terminated string */ 1984 u64 hashlen_string(const void *salt, const char *name) 1985 { 1986 unsigned long hash = init_name_hash(salt); 1987 unsigned long len = 0, c; 1988 1989 c = (unsigned char)*name; 1990 while (c) { 1991 len++; 1992 hash = partial_name_hash(c, hash); 1993 c = (unsigned char)name[len]; 1994 } 1995 return hashlen_create(end_name_hash(hash), len); 1996 } 1997 EXPORT_SYMBOL(hashlen_string); 1998 1999 /* 2000 * We know there's a real path component here of at least 2001 * one character. 2002 */ 2003 static inline u64 hash_name(const void *salt, const char *name) 2004 { 2005 unsigned long hash = init_name_hash(salt); 2006 unsigned long len = 0, c; 2007 2008 c = (unsigned char)*name; 2009 do { 2010 len++; 2011 hash = partial_name_hash(c, hash); 2012 c = (unsigned char)name[len]; 2013 } while (c && c != '/'); 2014 return hashlen_create(end_name_hash(hash), len); 2015 } 2016 2017 #endif 2018 2019 /* 2020 * Name resolution. 2021 * This is the basic name resolution function, turning a pathname into 2022 * the final dentry. We expect 'base' to be positive and a directory. 2023 * 2024 * Returns 0 and nd will have valid dentry and mnt on success. 2025 * Returns error and drops reference to input namei data on failure. 2026 */ 2027 static int link_path_walk(const char *name, struct nameidata *nd) 2028 { 2029 int err; 2030 2031 while (*name=='/') 2032 name++; 2033 if (!*name) 2034 return 0; 2035 2036 /* At this point we know we have a real path component. */ 2037 for(;;) { 2038 u64 hash_len; 2039 int type; 2040 2041 err = may_lookup(nd); 2042 if (err) 2043 return err; 2044 2045 hash_len = hash_name(nd->path.dentry, name); 2046 2047 type = LAST_NORM; 2048 if (name[0] == '.') switch (hashlen_len(hash_len)) { 2049 case 2: 2050 if (name[1] == '.') { 2051 type = LAST_DOTDOT; 2052 nd->flags |= LOOKUP_JUMPED; 2053 } 2054 break; 2055 case 1: 2056 type = LAST_DOT; 2057 } 2058 if (likely(type == LAST_NORM)) { 2059 struct dentry *parent = nd->path.dentry; 2060 nd->flags &= ~LOOKUP_JUMPED; 2061 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { 2062 struct qstr this = { { .hash_len = hash_len }, .name = name }; 2063 err = parent->d_op->d_hash(parent, &this); 2064 if (err < 0) 2065 return err; 2066 hash_len = this.hash_len; 2067 name = this.name; 2068 } 2069 } 2070 2071 nd->last.hash_len = hash_len; 2072 nd->last.name = name; 2073 nd->last_type = type; 2074 2075 name += hashlen_len(hash_len); 2076 if (!*name) 2077 goto OK; 2078 /* 2079 * If it wasn't NUL, we know it was '/'. Skip that 2080 * slash, and continue until no more slashes. 2081 */ 2082 do { 2083 name++; 2084 } while (unlikely(*name == '/')); 2085 if (unlikely(!*name)) { 2086 OK: 2087 /* pathname body, done */ 2088 if (!nd->depth) 2089 return 0; 2090 name = nd->stack[nd->depth - 1].name; 2091 /* trailing symlink, done */ 2092 if (!name) 2093 return 0; 2094 /* last component of nested symlink */ 2095 err = walk_component(nd, WALK_FOLLOW); 2096 } else { 2097 /* not the last component */ 2098 err = walk_component(nd, WALK_FOLLOW | WALK_MORE); 2099 } 2100 if (err < 0) 2101 return err; 2102 2103 if (err) { 2104 const char *s = get_link(nd); 2105 2106 if (IS_ERR(s)) 2107 return PTR_ERR(s); 2108 err = 0; 2109 if (unlikely(!s)) { 2110 /* jumped */ 2111 put_link(nd); 2112 } else { 2113 nd->stack[nd->depth - 1].name = name; 2114 name = s; 2115 continue; 2116 } 2117 } 2118 if (unlikely(!d_can_lookup(nd->path.dentry))) { 2119 if (nd->flags & LOOKUP_RCU) { 2120 if (unlazy_walk(nd)) 2121 return -ECHILD; 2122 } 2123 return -ENOTDIR; 2124 } 2125 } 2126 } 2127 2128 static const char *path_init(struct nameidata *nd, unsigned flags) 2129 { 2130 const char *s = nd->name->name; 2131 2132 if (!*s) 2133 flags &= ~LOOKUP_RCU; 2134 2135 nd->last_type = LAST_ROOT; /* if there are only slashes... */ 2136 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT; 2137 nd->depth = 0; 2138 if (flags & LOOKUP_ROOT) { 2139 struct dentry *root = nd->root.dentry; 2140 struct inode *inode = root->d_inode; 2141 if (*s && unlikely(!d_can_lookup(root))) 2142 return ERR_PTR(-ENOTDIR); 2143 nd->path = nd->root; 2144 nd->inode = inode; 2145 if (flags & LOOKUP_RCU) { 2146 rcu_read_lock(); 2147 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 2148 nd->root_seq = nd->seq; 2149 nd->m_seq = read_seqbegin(&mount_lock); 2150 } else { 2151 path_get(&nd->path); 2152 } 2153 return s; 2154 } 2155 2156 nd->root.mnt = NULL; 2157 nd->path.mnt = NULL; 2158 nd->path.dentry = NULL; 2159 2160 nd->m_seq = read_seqbegin(&mount_lock); 2161 if (*s == '/') { 2162 if (flags & LOOKUP_RCU) 2163 rcu_read_lock(); 2164 set_root(nd); 2165 if (likely(!nd_jump_root(nd))) 2166 return s; 2167 nd->root.mnt = NULL; 2168 rcu_read_unlock(); 2169 return ERR_PTR(-ECHILD); 2170 } else if (nd->dfd == AT_FDCWD) { 2171 if (flags & LOOKUP_RCU) { 2172 struct fs_struct *fs = current->fs; 2173 unsigned seq; 2174 2175 rcu_read_lock(); 2176 2177 do { 2178 seq = read_seqcount_begin(&fs->seq); 2179 nd->path = fs->pwd; 2180 nd->inode = nd->path.dentry->d_inode; 2181 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 2182 } while (read_seqcount_retry(&fs->seq, seq)); 2183 } else { 2184 get_fs_pwd(current->fs, &nd->path); 2185 nd->inode = nd->path.dentry->d_inode; 2186 } 2187 return s; 2188 } else { 2189 /* Caller must check execute permissions on the starting path component */ 2190 struct fd f = fdget_raw(nd->dfd); 2191 struct dentry *dentry; 2192 2193 if (!f.file) 2194 return ERR_PTR(-EBADF); 2195 2196 dentry = f.file->f_path.dentry; 2197 2198 if (*s) { 2199 if (!d_can_lookup(dentry)) { 2200 fdput(f); 2201 return ERR_PTR(-ENOTDIR); 2202 } 2203 } 2204 2205 nd->path = f.file->f_path; 2206 if (flags & LOOKUP_RCU) { 2207 rcu_read_lock(); 2208 nd->inode = nd->path.dentry->d_inode; 2209 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 2210 } else { 2211 path_get(&nd->path); 2212 nd->inode = nd->path.dentry->d_inode; 2213 } 2214 fdput(f); 2215 return s; 2216 } 2217 } 2218 2219 static const char *trailing_symlink(struct nameidata *nd) 2220 { 2221 const char *s; 2222 int error = may_follow_link(nd); 2223 if (unlikely(error)) 2224 return ERR_PTR(error); 2225 nd->flags |= LOOKUP_PARENT; 2226 nd->stack[0].name = NULL; 2227 s = get_link(nd); 2228 return s ? s : ""; 2229 } 2230 2231 static inline int lookup_last(struct nameidata *nd) 2232 { 2233 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len]) 2234 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 2235 2236 nd->flags &= ~LOOKUP_PARENT; 2237 return walk_component(nd, 0); 2238 } 2239 2240 static int handle_lookup_down(struct nameidata *nd) 2241 { 2242 struct path path = nd->path; 2243 struct inode *inode = nd->inode; 2244 unsigned seq = nd->seq; 2245 int err; 2246 2247 if (nd->flags & LOOKUP_RCU) { 2248 /* 2249 * don't bother with unlazy_walk on failure - we are 2250 * at the very beginning of walk, so we lose nothing 2251 * if we simply redo everything in non-RCU mode 2252 */ 2253 if (unlikely(!__follow_mount_rcu(nd, &path, &inode, &seq))) 2254 return -ECHILD; 2255 } else { 2256 dget(path.dentry); 2257 err = follow_managed(&path, nd); 2258 if (unlikely(err < 0)) 2259 return err; 2260 inode = d_backing_inode(path.dentry); 2261 seq = 0; 2262 } 2263 path_to_nameidata(&path, nd); 2264 nd->inode = inode; 2265 nd->seq = seq; 2266 return 0; 2267 } 2268 2269 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2270 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path) 2271 { 2272 const char *s = path_init(nd, flags); 2273 int err; 2274 2275 if (IS_ERR(s)) 2276 return PTR_ERR(s); 2277 2278 if (unlikely(flags & LOOKUP_DOWN)) { 2279 err = handle_lookup_down(nd); 2280 if (unlikely(err < 0)) { 2281 terminate_walk(nd); 2282 return err; 2283 } 2284 } 2285 2286 while (!(err = link_path_walk(s, nd)) 2287 && ((err = lookup_last(nd)) > 0)) { 2288 s = trailing_symlink(nd); 2289 if (IS_ERR(s)) { 2290 err = PTR_ERR(s); 2291 break; 2292 } 2293 } 2294 if (!err) 2295 err = complete_walk(nd); 2296 2297 if (!err && nd->flags & LOOKUP_DIRECTORY) 2298 if (!d_can_lookup(nd->path.dentry)) 2299 err = -ENOTDIR; 2300 if (!err) { 2301 *path = nd->path; 2302 nd->path.mnt = NULL; 2303 nd->path.dentry = NULL; 2304 } 2305 terminate_walk(nd); 2306 return err; 2307 } 2308 2309 static int filename_lookup(int dfd, struct filename *name, unsigned flags, 2310 struct path *path, struct path *root) 2311 { 2312 int retval; 2313 struct nameidata nd; 2314 if (IS_ERR(name)) 2315 return PTR_ERR(name); 2316 if (unlikely(root)) { 2317 nd.root = *root; 2318 flags |= LOOKUP_ROOT; 2319 } 2320 set_nameidata(&nd, dfd, name); 2321 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path); 2322 if (unlikely(retval == -ECHILD)) 2323 retval = path_lookupat(&nd, flags, path); 2324 if (unlikely(retval == -ESTALE)) 2325 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path); 2326 2327 if (likely(!retval)) 2328 audit_inode(name, path->dentry, flags & LOOKUP_PARENT); 2329 restore_nameidata(); 2330 putname(name); 2331 return retval; 2332 } 2333 2334 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2335 static int path_parentat(struct nameidata *nd, unsigned flags, 2336 struct path *parent) 2337 { 2338 const char *s = path_init(nd, flags); 2339 int err; 2340 if (IS_ERR(s)) 2341 return PTR_ERR(s); 2342 err = link_path_walk(s, nd); 2343 if (!err) 2344 err = complete_walk(nd); 2345 if (!err) { 2346 *parent = nd->path; 2347 nd->path.mnt = NULL; 2348 nd->path.dentry = NULL; 2349 } 2350 terminate_walk(nd); 2351 return err; 2352 } 2353 2354 static struct filename *filename_parentat(int dfd, struct filename *name, 2355 unsigned int flags, struct path *parent, 2356 struct qstr *last, int *type) 2357 { 2358 int retval; 2359 struct nameidata nd; 2360 2361 if (IS_ERR(name)) 2362 return name; 2363 set_nameidata(&nd, dfd, name); 2364 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent); 2365 if (unlikely(retval == -ECHILD)) 2366 retval = path_parentat(&nd, flags, parent); 2367 if (unlikely(retval == -ESTALE)) 2368 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent); 2369 if (likely(!retval)) { 2370 *last = nd.last; 2371 *type = nd.last_type; 2372 audit_inode(name, parent->dentry, LOOKUP_PARENT); 2373 } else { 2374 putname(name); 2375 name = ERR_PTR(retval); 2376 } 2377 restore_nameidata(); 2378 return name; 2379 } 2380 2381 /* does lookup, returns the object with parent locked */ 2382 struct dentry *kern_path_locked(const char *name, struct path *path) 2383 { 2384 struct filename *filename; 2385 struct dentry *d; 2386 struct qstr last; 2387 int type; 2388 2389 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path, 2390 &last, &type); 2391 if (IS_ERR(filename)) 2392 return ERR_CAST(filename); 2393 if (unlikely(type != LAST_NORM)) { 2394 path_put(path); 2395 putname(filename); 2396 return ERR_PTR(-EINVAL); 2397 } 2398 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 2399 d = __lookup_hash(&last, path->dentry, 0); 2400 if (IS_ERR(d)) { 2401 inode_unlock(path->dentry->d_inode); 2402 path_put(path); 2403 } 2404 putname(filename); 2405 return d; 2406 } 2407 2408 int kern_path(const char *name, unsigned int flags, struct path *path) 2409 { 2410 return filename_lookup(AT_FDCWD, getname_kernel(name), 2411 flags, path, NULL); 2412 } 2413 EXPORT_SYMBOL(kern_path); 2414 2415 /** 2416 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 2417 * @dentry: pointer to dentry of the base directory 2418 * @mnt: pointer to vfs mount of the base directory 2419 * @name: pointer to file name 2420 * @flags: lookup flags 2421 * @path: pointer to struct path to fill 2422 */ 2423 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 2424 const char *name, unsigned int flags, 2425 struct path *path) 2426 { 2427 struct path root = {.mnt = mnt, .dentry = dentry}; 2428 /* the first argument of filename_lookup() is ignored with root */ 2429 return filename_lookup(AT_FDCWD, getname_kernel(name), 2430 flags , path, &root); 2431 } 2432 EXPORT_SYMBOL(vfs_path_lookup); 2433 2434 static int lookup_one_len_common(const char *name, struct dentry *base, 2435 int len, struct qstr *this) 2436 { 2437 this->name = name; 2438 this->len = len; 2439 this->hash = full_name_hash(base, name, len); 2440 if (!len) 2441 return -EACCES; 2442 2443 if (unlikely(name[0] == '.')) { 2444 if (len < 2 || (len == 2 && name[1] == '.')) 2445 return -EACCES; 2446 } 2447 2448 while (len--) { 2449 unsigned int c = *(const unsigned char *)name++; 2450 if (c == '/' || c == '\0') 2451 return -EACCES; 2452 } 2453 /* 2454 * See if the low-level filesystem might want 2455 * to use its own hash.. 2456 */ 2457 if (base->d_flags & DCACHE_OP_HASH) { 2458 int err = base->d_op->d_hash(base, this); 2459 if (err < 0) 2460 return err; 2461 } 2462 2463 return inode_permission(base->d_inode, MAY_EXEC); 2464 } 2465 2466 /** 2467 * lookup_one_len - filesystem helper to lookup single pathname component 2468 * @name: pathname component to lookup 2469 * @base: base directory to lookup from 2470 * @len: maximum length @len should be interpreted to 2471 * 2472 * Note that this routine is purely a helper for filesystem usage and should 2473 * not be called by generic code. 2474 * 2475 * The caller must hold base->i_mutex. 2476 */ 2477 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 2478 { 2479 struct dentry *dentry; 2480 struct qstr this; 2481 int err; 2482 2483 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2484 2485 err = lookup_one_len_common(name, base, len, &this); 2486 if (err) 2487 return ERR_PTR(err); 2488 2489 dentry = lookup_dcache(&this, base, 0); 2490 return dentry ? dentry : __lookup_slow(&this, base, 0); 2491 } 2492 EXPORT_SYMBOL(lookup_one_len); 2493 2494 /** 2495 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component 2496 * @name: pathname component to lookup 2497 * @base: base directory to lookup from 2498 * @len: maximum length @len should be interpreted to 2499 * 2500 * Note that this routine is purely a helper for filesystem usage and should 2501 * not be called by generic code. 2502 * 2503 * Unlike lookup_one_len, it should be called without the parent 2504 * i_mutex held, and will take the i_mutex itself if necessary. 2505 */ 2506 struct dentry *lookup_one_len_unlocked(const char *name, 2507 struct dentry *base, int len) 2508 { 2509 struct qstr this; 2510 int err; 2511 struct dentry *ret; 2512 2513 err = lookup_one_len_common(name, base, len, &this); 2514 if (err) 2515 return ERR_PTR(err); 2516 2517 ret = lookup_dcache(&this, base, 0); 2518 if (!ret) 2519 ret = lookup_slow(&this, base, 0); 2520 return ret; 2521 } 2522 EXPORT_SYMBOL(lookup_one_len_unlocked); 2523 2524 #ifdef CONFIG_UNIX98_PTYS 2525 int path_pts(struct path *path) 2526 { 2527 /* Find something mounted on "pts" in the same directory as 2528 * the input path. 2529 */ 2530 struct dentry *child, *parent; 2531 struct qstr this; 2532 int ret; 2533 2534 ret = path_parent_directory(path); 2535 if (ret) 2536 return ret; 2537 2538 parent = path->dentry; 2539 this.name = "pts"; 2540 this.len = 3; 2541 child = d_hash_and_lookup(parent, &this); 2542 if (!child) 2543 return -ENOENT; 2544 2545 path->dentry = child; 2546 dput(parent); 2547 follow_mount(path); 2548 return 0; 2549 } 2550 #endif 2551 2552 int user_path_at_empty(int dfd, const char __user *name, unsigned flags, 2553 struct path *path, int *empty) 2554 { 2555 return filename_lookup(dfd, getname_flags(name, flags, empty), 2556 flags, path, NULL); 2557 } 2558 EXPORT_SYMBOL(user_path_at_empty); 2559 2560 /** 2561 * mountpoint_last - look up last component for umount 2562 * @nd: pathwalk nameidata - currently pointing at parent directory of "last" 2563 * 2564 * This is a special lookup_last function just for umount. In this case, we 2565 * need to resolve the path without doing any revalidation. 2566 * 2567 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since 2568 * mountpoints are always pinned in the dcache, their ancestors are too. Thus, 2569 * in almost all cases, this lookup will be served out of the dcache. The only 2570 * cases where it won't are if nd->last refers to a symlink or the path is 2571 * bogus and it doesn't exist. 2572 * 2573 * Returns: 2574 * -error: if there was an error during lookup. This includes -ENOENT if the 2575 * lookup found a negative dentry. 2576 * 2577 * 0: if we successfully resolved nd->last and found it to not to be a 2578 * symlink that needs to be followed. 2579 * 2580 * 1: if we successfully resolved nd->last and found it to be a symlink 2581 * that needs to be followed. 2582 */ 2583 static int 2584 mountpoint_last(struct nameidata *nd) 2585 { 2586 int error = 0; 2587 struct dentry *dir = nd->path.dentry; 2588 struct path path; 2589 2590 /* If we're in rcuwalk, drop out of it to handle last component */ 2591 if (nd->flags & LOOKUP_RCU) { 2592 if (unlazy_walk(nd)) 2593 return -ECHILD; 2594 } 2595 2596 nd->flags &= ~LOOKUP_PARENT; 2597 2598 if (unlikely(nd->last_type != LAST_NORM)) { 2599 error = handle_dots(nd, nd->last_type); 2600 if (error) 2601 return error; 2602 path.dentry = dget(nd->path.dentry); 2603 } else { 2604 path.dentry = d_lookup(dir, &nd->last); 2605 if (!path.dentry) { 2606 /* 2607 * No cached dentry. Mounted dentries are pinned in the 2608 * cache, so that means that this dentry is probably 2609 * a symlink or the path doesn't actually point 2610 * to a mounted dentry. 2611 */ 2612 path.dentry = lookup_slow(&nd->last, dir, 2613 nd->flags | LOOKUP_NO_REVAL); 2614 if (IS_ERR(path.dentry)) 2615 return PTR_ERR(path.dentry); 2616 } 2617 } 2618 if (d_is_negative(path.dentry)) { 2619 dput(path.dentry); 2620 return -ENOENT; 2621 } 2622 path.mnt = nd->path.mnt; 2623 return step_into(nd, &path, 0, d_backing_inode(path.dentry), 0); 2624 } 2625 2626 /** 2627 * path_mountpoint - look up a path to be umounted 2628 * @nd: lookup context 2629 * @flags: lookup flags 2630 * @path: pointer to container for result 2631 * 2632 * Look up the given name, but don't attempt to revalidate the last component. 2633 * Returns 0 and "path" will be valid on success; Returns error otherwise. 2634 */ 2635 static int 2636 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path) 2637 { 2638 const char *s = path_init(nd, flags); 2639 int err; 2640 if (IS_ERR(s)) 2641 return PTR_ERR(s); 2642 while (!(err = link_path_walk(s, nd)) && 2643 (err = mountpoint_last(nd)) > 0) { 2644 s = trailing_symlink(nd); 2645 if (IS_ERR(s)) { 2646 err = PTR_ERR(s); 2647 break; 2648 } 2649 } 2650 if (!err) { 2651 *path = nd->path; 2652 nd->path.mnt = NULL; 2653 nd->path.dentry = NULL; 2654 follow_mount(path); 2655 } 2656 terminate_walk(nd); 2657 return err; 2658 } 2659 2660 static int 2661 filename_mountpoint(int dfd, struct filename *name, struct path *path, 2662 unsigned int flags) 2663 { 2664 struct nameidata nd; 2665 int error; 2666 if (IS_ERR(name)) 2667 return PTR_ERR(name); 2668 set_nameidata(&nd, dfd, name); 2669 error = path_mountpoint(&nd, flags | LOOKUP_RCU, path); 2670 if (unlikely(error == -ECHILD)) 2671 error = path_mountpoint(&nd, flags, path); 2672 if (unlikely(error == -ESTALE)) 2673 error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path); 2674 if (likely(!error)) 2675 audit_inode(name, path->dentry, 0); 2676 restore_nameidata(); 2677 putname(name); 2678 return error; 2679 } 2680 2681 /** 2682 * user_path_mountpoint_at - lookup a path from userland in order to umount it 2683 * @dfd: directory file descriptor 2684 * @name: pathname from userland 2685 * @flags: lookup flags 2686 * @path: pointer to container to hold result 2687 * 2688 * A umount is a special case for path walking. We're not actually interested 2689 * in the inode in this situation, and ESTALE errors can be a problem. We 2690 * simply want track down the dentry and vfsmount attached at the mountpoint 2691 * and avoid revalidating the last component. 2692 * 2693 * Returns 0 and populates "path" on success. 2694 */ 2695 int 2696 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags, 2697 struct path *path) 2698 { 2699 return filename_mountpoint(dfd, getname(name), path, flags); 2700 } 2701 2702 int 2703 kern_path_mountpoint(int dfd, const char *name, struct path *path, 2704 unsigned int flags) 2705 { 2706 return filename_mountpoint(dfd, getname_kernel(name), path, flags); 2707 } 2708 EXPORT_SYMBOL(kern_path_mountpoint); 2709 2710 int __check_sticky(struct inode *dir, struct inode *inode) 2711 { 2712 kuid_t fsuid = current_fsuid(); 2713 2714 if (uid_eq(inode->i_uid, fsuid)) 2715 return 0; 2716 if (uid_eq(dir->i_uid, fsuid)) 2717 return 0; 2718 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER); 2719 } 2720 EXPORT_SYMBOL(__check_sticky); 2721 2722 /* 2723 * Check whether we can remove a link victim from directory dir, check 2724 * whether the type of victim is right. 2725 * 1. We can't do it if dir is read-only (done in permission()) 2726 * 2. We should have write and exec permissions on dir 2727 * 3. We can't remove anything from append-only dir 2728 * 4. We can't do anything with immutable dir (done in permission()) 2729 * 5. If the sticky bit on dir is set we should either 2730 * a. be owner of dir, or 2731 * b. be owner of victim, or 2732 * c. have CAP_FOWNER capability 2733 * 6. If the victim is append-only or immutable we can't do antyhing with 2734 * links pointing to it. 2735 * 7. If the victim has an unknown uid or gid we can't change the inode. 2736 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR. 2737 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR. 2738 * 10. We can't remove a root or mountpoint. 2739 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by 2740 * nfs_async_unlink(). 2741 */ 2742 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir) 2743 { 2744 struct inode *inode = d_backing_inode(victim); 2745 int error; 2746 2747 if (d_is_negative(victim)) 2748 return -ENOENT; 2749 BUG_ON(!inode); 2750 2751 BUG_ON(victim->d_parent->d_inode != dir); 2752 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 2753 2754 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 2755 if (error) 2756 return error; 2757 if (IS_APPEND(dir)) 2758 return -EPERM; 2759 2760 if (check_sticky(dir, inode) || IS_APPEND(inode) || 2761 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode)) 2762 return -EPERM; 2763 if (isdir) { 2764 if (!d_is_dir(victim)) 2765 return -ENOTDIR; 2766 if (IS_ROOT(victim)) 2767 return -EBUSY; 2768 } else if (d_is_dir(victim)) 2769 return -EISDIR; 2770 if (IS_DEADDIR(dir)) 2771 return -ENOENT; 2772 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 2773 return -EBUSY; 2774 return 0; 2775 } 2776 2777 /* Check whether we can create an object with dentry child in directory 2778 * dir. 2779 * 1. We can't do it if child already exists (open has special treatment for 2780 * this case, but since we are inlined it's OK) 2781 * 2. We can't do it if dir is read-only (done in permission()) 2782 * 3. We can't do it if the fs can't represent the fsuid or fsgid. 2783 * 4. We should have write and exec permissions on dir 2784 * 5. We can't do it if dir is immutable (done in permission()) 2785 */ 2786 static inline int may_create(struct inode *dir, struct dentry *child) 2787 { 2788 struct user_namespace *s_user_ns; 2789 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE); 2790 if (child->d_inode) 2791 return -EEXIST; 2792 if (IS_DEADDIR(dir)) 2793 return -ENOENT; 2794 s_user_ns = dir->i_sb->s_user_ns; 2795 if (!kuid_has_mapping(s_user_ns, current_fsuid()) || 2796 !kgid_has_mapping(s_user_ns, current_fsgid())) 2797 return -EOVERFLOW; 2798 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 2799 } 2800 2801 /* 2802 * p1 and p2 should be directories on the same fs. 2803 */ 2804 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 2805 { 2806 struct dentry *p; 2807 2808 if (p1 == p2) { 2809 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2810 return NULL; 2811 } 2812 2813 mutex_lock(&p1->d_sb->s_vfs_rename_mutex); 2814 2815 p = d_ancestor(p2, p1); 2816 if (p) { 2817 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT); 2818 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD); 2819 return p; 2820 } 2821 2822 p = d_ancestor(p1, p2); 2823 if (p) { 2824 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2825 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD); 2826 return p; 2827 } 2828 2829 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2830 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2); 2831 return NULL; 2832 } 2833 EXPORT_SYMBOL(lock_rename); 2834 2835 void unlock_rename(struct dentry *p1, struct dentry *p2) 2836 { 2837 inode_unlock(p1->d_inode); 2838 if (p1 != p2) { 2839 inode_unlock(p2->d_inode); 2840 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex); 2841 } 2842 } 2843 EXPORT_SYMBOL(unlock_rename); 2844 2845 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2846 bool want_excl) 2847 { 2848 int error = may_create(dir, dentry); 2849 if (error) 2850 return error; 2851 2852 if (!dir->i_op->create) 2853 return -EACCES; /* shouldn't it be ENOSYS? */ 2854 mode &= S_IALLUGO; 2855 mode |= S_IFREG; 2856 error = security_inode_create(dir, dentry, mode); 2857 if (error) 2858 return error; 2859 error = dir->i_op->create(dir, dentry, mode, want_excl); 2860 if (!error) 2861 fsnotify_create(dir, dentry); 2862 return error; 2863 } 2864 EXPORT_SYMBOL(vfs_create); 2865 2866 int vfs_mkobj(struct dentry *dentry, umode_t mode, 2867 int (*f)(struct dentry *, umode_t, void *), 2868 void *arg) 2869 { 2870 struct inode *dir = dentry->d_parent->d_inode; 2871 int error = may_create(dir, dentry); 2872 if (error) 2873 return error; 2874 2875 mode &= S_IALLUGO; 2876 mode |= S_IFREG; 2877 error = security_inode_create(dir, dentry, mode); 2878 if (error) 2879 return error; 2880 error = f(dentry, mode, arg); 2881 if (!error) 2882 fsnotify_create(dir, dentry); 2883 return error; 2884 } 2885 EXPORT_SYMBOL(vfs_mkobj); 2886 2887 bool may_open_dev(const struct path *path) 2888 { 2889 return !(path->mnt->mnt_flags & MNT_NODEV) && 2890 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV); 2891 } 2892 2893 static int may_open(const struct path *path, int acc_mode, int flag) 2894 { 2895 struct dentry *dentry = path->dentry; 2896 struct inode *inode = dentry->d_inode; 2897 int error; 2898 2899 if (!inode) 2900 return -ENOENT; 2901 2902 switch (inode->i_mode & S_IFMT) { 2903 case S_IFLNK: 2904 return -ELOOP; 2905 case S_IFDIR: 2906 if (acc_mode & MAY_WRITE) 2907 return -EISDIR; 2908 break; 2909 case S_IFBLK: 2910 case S_IFCHR: 2911 if (!may_open_dev(path)) 2912 return -EACCES; 2913 /*FALLTHRU*/ 2914 case S_IFIFO: 2915 case S_IFSOCK: 2916 flag &= ~O_TRUNC; 2917 break; 2918 } 2919 2920 error = inode_permission(inode, MAY_OPEN | acc_mode); 2921 if (error) 2922 return error; 2923 2924 /* 2925 * An append-only file must be opened in append mode for writing. 2926 */ 2927 if (IS_APPEND(inode)) { 2928 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 2929 return -EPERM; 2930 if (flag & O_TRUNC) 2931 return -EPERM; 2932 } 2933 2934 /* O_NOATIME can only be set by the owner or superuser */ 2935 if (flag & O_NOATIME && !inode_owner_or_capable(inode)) 2936 return -EPERM; 2937 2938 return 0; 2939 } 2940 2941 static int handle_truncate(struct file *filp) 2942 { 2943 const struct path *path = &filp->f_path; 2944 struct inode *inode = path->dentry->d_inode; 2945 int error = get_write_access(inode); 2946 if (error) 2947 return error; 2948 /* 2949 * Refuse to truncate files with mandatory locks held on them. 2950 */ 2951 error = locks_verify_locked(filp); 2952 if (!error) 2953 error = security_path_truncate(path); 2954 if (!error) { 2955 error = do_truncate(path->dentry, 0, 2956 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 2957 filp); 2958 } 2959 put_write_access(inode); 2960 return error; 2961 } 2962 2963 static inline int open_to_namei_flags(int flag) 2964 { 2965 if ((flag & O_ACCMODE) == 3) 2966 flag--; 2967 return flag; 2968 } 2969 2970 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode) 2971 { 2972 struct user_namespace *s_user_ns; 2973 int error = security_path_mknod(dir, dentry, mode, 0); 2974 if (error) 2975 return error; 2976 2977 s_user_ns = dir->dentry->d_sb->s_user_ns; 2978 if (!kuid_has_mapping(s_user_ns, current_fsuid()) || 2979 !kgid_has_mapping(s_user_ns, current_fsgid())) 2980 return -EOVERFLOW; 2981 2982 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC); 2983 if (error) 2984 return error; 2985 2986 return security_inode_create(dir->dentry->d_inode, dentry, mode); 2987 } 2988 2989 /* 2990 * Attempt to atomically look up, create and open a file from a negative 2991 * dentry. 2992 * 2993 * Returns 0 if successful. The file will have been created and attached to 2994 * @file by the filesystem calling finish_open(). 2995 * 2996 * Returns 1 if the file was looked up only or didn't need creating. The 2997 * caller will need to perform the open themselves. @path will have been 2998 * updated to point to the new dentry. This may be negative. 2999 * 3000 * Returns an error code otherwise. 3001 */ 3002 static int atomic_open(struct nameidata *nd, struct dentry *dentry, 3003 struct path *path, struct file *file, 3004 const struct open_flags *op, 3005 int open_flag, umode_t mode, 3006 int *opened) 3007 { 3008 struct dentry *const DENTRY_NOT_SET = (void *) -1UL; 3009 struct inode *dir = nd->path.dentry->d_inode; 3010 int error; 3011 3012 if (!(~open_flag & (O_EXCL | O_CREAT))) /* both O_EXCL and O_CREAT */ 3013 open_flag &= ~O_TRUNC; 3014 3015 if (nd->flags & LOOKUP_DIRECTORY) 3016 open_flag |= O_DIRECTORY; 3017 3018 file->f_path.dentry = DENTRY_NOT_SET; 3019 file->f_path.mnt = nd->path.mnt; 3020 error = dir->i_op->atomic_open(dir, dentry, file, 3021 open_to_namei_flags(open_flag), 3022 mode, opened); 3023 d_lookup_done(dentry); 3024 if (!error) { 3025 /* 3026 * We didn't have the inode before the open, so check open 3027 * permission here. 3028 */ 3029 int acc_mode = op->acc_mode; 3030 if (*opened & FILE_CREATED) { 3031 WARN_ON(!(open_flag & O_CREAT)); 3032 fsnotify_create(dir, dentry); 3033 acc_mode = 0; 3034 } 3035 error = may_open(&file->f_path, acc_mode, open_flag); 3036 if (WARN_ON(error > 0)) 3037 error = -EINVAL; 3038 } else if (error > 0) { 3039 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) { 3040 error = -EIO; 3041 } else { 3042 if (file->f_path.dentry) { 3043 dput(dentry); 3044 dentry = file->f_path.dentry; 3045 } 3046 if (*opened & FILE_CREATED) 3047 fsnotify_create(dir, dentry); 3048 if (unlikely(d_is_negative(dentry))) { 3049 error = -ENOENT; 3050 } else { 3051 path->dentry = dentry; 3052 path->mnt = nd->path.mnt; 3053 return 1; 3054 } 3055 } 3056 } 3057 dput(dentry); 3058 return error; 3059 } 3060 3061 /* 3062 * Look up and maybe create and open the last component. 3063 * 3064 * Must be called with i_mutex held on parent. 3065 * 3066 * Returns 0 if the file was successfully atomically created (if necessary) and 3067 * opened. In this case the file will be returned attached to @file. 3068 * 3069 * Returns 1 if the file was not completely opened at this time, though lookups 3070 * and creations will have been performed and the dentry returned in @path will 3071 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't 3072 * specified then a negative dentry may be returned. 3073 * 3074 * An error code is returned otherwise. 3075 * 3076 * FILE_CREATE will be set in @*opened if the dentry was created and will be 3077 * cleared otherwise prior to returning. 3078 */ 3079 static int lookup_open(struct nameidata *nd, struct path *path, 3080 struct file *file, 3081 const struct open_flags *op, 3082 bool got_write, int *opened) 3083 { 3084 struct dentry *dir = nd->path.dentry; 3085 struct inode *dir_inode = dir->d_inode; 3086 int open_flag = op->open_flag; 3087 struct dentry *dentry; 3088 int error, create_error = 0; 3089 umode_t mode = op->mode; 3090 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 3091 3092 if (unlikely(IS_DEADDIR(dir_inode))) 3093 return -ENOENT; 3094 3095 *opened &= ~FILE_CREATED; 3096 dentry = d_lookup(dir, &nd->last); 3097 for (;;) { 3098 if (!dentry) { 3099 dentry = d_alloc_parallel(dir, &nd->last, &wq); 3100 if (IS_ERR(dentry)) 3101 return PTR_ERR(dentry); 3102 } 3103 if (d_in_lookup(dentry)) 3104 break; 3105 3106 error = d_revalidate(dentry, nd->flags); 3107 if (likely(error > 0)) 3108 break; 3109 if (error) 3110 goto out_dput; 3111 d_invalidate(dentry); 3112 dput(dentry); 3113 dentry = NULL; 3114 } 3115 if (dentry->d_inode) { 3116 /* Cached positive dentry: will open in f_op->open */ 3117 goto out_no_open; 3118 } 3119 3120 /* 3121 * Checking write permission is tricky, bacuse we don't know if we are 3122 * going to actually need it: O_CREAT opens should work as long as the 3123 * file exists. But checking existence breaks atomicity. The trick is 3124 * to check access and if not granted clear O_CREAT from the flags. 3125 * 3126 * Another problem is returing the "right" error value (e.g. for an 3127 * O_EXCL open we want to return EEXIST not EROFS). 3128 */ 3129 if (open_flag & O_CREAT) { 3130 if (!IS_POSIXACL(dir->d_inode)) 3131 mode &= ~current_umask(); 3132 if (unlikely(!got_write)) { 3133 create_error = -EROFS; 3134 open_flag &= ~O_CREAT; 3135 if (open_flag & (O_EXCL | O_TRUNC)) 3136 goto no_open; 3137 /* No side effects, safe to clear O_CREAT */ 3138 } else { 3139 create_error = may_o_create(&nd->path, dentry, mode); 3140 if (create_error) { 3141 open_flag &= ~O_CREAT; 3142 if (open_flag & O_EXCL) 3143 goto no_open; 3144 } 3145 } 3146 } else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) && 3147 unlikely(!got_write)) { 3148 /* 3149 * No O_CREATE -> atomicity not a requirement -> fall 3150 * back to lookup + open 3151 */ 3152 goto no_open; 3153 } 3154 3155 if (dir_inode->i_op->atomic_open) { 3156 error = atomic_open(nd, dentry, path, file, op, open_flag, 3157 mode, opened); 3158 if (unlikely(error == -ENOENT) && create_error) 3159 error = create_error; 3160 return error; 3161 } 3162 3163 no_open: 3164 if (d_in_lookup(dentry)) { 3165 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry, 3166 nd->flags); 3167 d_lookup_done(dentry); 3168 if (unlikely(res)) { 3169 if (IS_ERR(res)) { 3170 error = PTR_ERR(res); 3171 goto out_dput; 3172 } 3173 dput(dentry); 3174 dentry = res; 3175 } 3176 } 3177 3178 /* Negative dentry, just create the file */ 3179 if (!dentry->d_inode && (open_flag & O_CREAT)) { 3180 *opened |= FILE_CREATED; 3181 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE); 3182 if (!dir_inode->i_op->create) { 3183 error = -EACCES; 3184 goto out_dput; 3185 } 3186 error = dir_inode->i_op->create(dir_inode, dentry, mode, 3187 open_flag & O_EXCL); 3188 if (error) 3189 goto out_dput; 3190 fsnotify_create(dir_inode, dentry); 3191 } 3192 if (unlikely(create_error) && !dentry->d_inode) { 3193 error = create_error; 3194 goto out_dput; 3195 } 3196 out_no_open: 3197 path->dentry = dentry; 3198 path->mnt = nd->path.mnt; 3199 return 1; 3200 3201 out_dput: 3202 dput(dentry); 3203 return error; 3204 } 3205 3206 /* 3207 * Handle the last step of open() 3208 */ 3209 static int do_last(struct nameidata *nd, 3210 struct file *file, const struct open_flags *op, 3211 int *opened) 3212 { 3213 struct dentry *dir = nd->path.dentry; 3214 int open_flag = op->open_flag; 3215 bool will_truncate = (open_flag & O_TRUNC) != 0; 3216 bool got_write = false; 3217 int acc_mode = op->acc_mode; 3218 unsigned seq; 3219 struct inode *inode; 3220 struct path path; 3221 int error; 3222 3223 nd->flags &= ~LOOKUP_PARENT; 3224 nd->flags |= op->intent; 3225 3226 if (nd->last_type != LAST_NORM) { 3227 error = handle_dots(nd, nd->last_type); 3228 if (unlikely(error)) 3229 return error; 3230 goto finish_open; 3231 } 3232 3233 if (!(open_flag & O_CREAT)) { 3234 if (nd->last.name[nd->last.len]) 3235 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 3236 /* we _can_ be in RCU mode here */ 3237 error = lookup_fast(nd, &path, &inode, &seq); 3238 if (likely(error > 0)) 3239 goto finish_lookup; 3240 3241 if (error < 0) 3242 return error; 3243 3244 BUG_ON(nd->inode != dir->d_inode); 3245 BUG_ON(nd->flags & LOOKUP_RCU); 3246 } else { 3247 /* create side of things */ 3248 /* 3249 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED 3250 * has been cleared when we got to the last component we are 3251 * about to look up 3252 */ 3253 error = complete_walk(nd); 3254 if (error) 3255 return error; 3256 3257 audit_inode(nd->name, dir, LOOKUP_PARENT); 3258 /* trailing slashes? */ 3259 if (unlikely(nd->last.name[nd->last.len])) 3260 return -EISDIR; 3261 } 3262 3263 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) { 3264 error = mnt_want_write(nd->path.mnt); 3265 if (!error) 3266 got_write = true; 3267 /* 3268 * do _not_ fail yet - we might not need that or fail with 3269 * a different error; let lookup_open() decide; we'll be 3270 * dropping this one anyway. 3271 */ 3272 } 3273 if (open_flag & O_CREAT) 3274 inode_lock(dir->d_inode); 3275 else 3276 inode_lock_shared(dir->d_inode); 3277 error = lookup_open(nd, &path, file, op, got_write, opened); 3278 if (open_flag & O_CREAT) 3279 inode_unlock(dir->d_inode); 3280 else 3281 inode_unlock_shared(dir->d_inode); 3282 3283 if (error <= 0) { 3284 if (error) 3285 goto out; 3286 3287 if ((*opened & FILE_CREATED) || 3288 !S_ISREG(file_inode(file)->i_mode)) 3289 will_truncate = false; 3290 3291 audit_inode(nd->name, file->f_path.dentry, 0); 3292 goto opened; 3293 } 3294 3295 if (*opened & FILE_CREATED) { 3296 /* Don't check for write permission, don't truncate */ 3297 open_flag &= ~O_TRUNC; 3298 will_truncate = false; 3299 acc_mode = 0; 3300 path_to_nameidata(&path, nd); 3301 goto finish_open_created; 3302 } 3303 3304 /* 3305 * If atomic_open() acquired write access it is dropped now due to 3306 * possible mount and symlink following (this might be optimized away if 3307 * necessary...) 3308 */ 3309 if (got_write) { 3310 mnt_drop_write(nd->path.mnt); 3311 got_write = false; 3312 } 3313 3314 error = follow_managed(&path, nd); 3315 if (unlikely(error < 0)) 3316 return error; 3317 3318 if (unlikely(d_is_negative(path.dentry))) { 3319 path_to_nameidata(&path, nd); 3320 return -ENOENT; 3321 } 3322 3323 /* 3324 * create/update audit record if it already exists. 3325 */ 3326 audit_inode(nd->name, path.dentry, 0); 3327 3328 if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) { 3329 path_to_nameidata(&path, nd); 3330 return -EEXIST; 3331 } 3332 3333 seq = 0; /* out of RCU mode, so the value doesn't matter */ 3334 inode = d_backing_inode(path.dentry); 3335 finish_lookup: 3336 error = step_into(nd, &path, 0, inode, seq); 3337 if (unlikely(error)) 3338 return error; 3339 finish_open: 3340 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */ 3341 error = complete_walk(nd); 3342 if (error) 3343 return error; 3344 audit_inode(nd->name, nd->path.dentry, 0); 3345 error = -EISDIR; 3346 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry)) 3347 goto out; 3348 error = -ENOTDIR; 3349 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry)) 3350 goto out; 3351 if (!d_is_reg(nd->path.dentry)) 3352 will_truncate = false; 3353 3354 if (will_truncate) { 3355 error = mnt_want_write(nd->path.mnt); 3356 if (error) 3357 goto out; 3358 got_write = true; 3359 } 3360 finish_open_created: 3361 error = may_open(&nd->path, acc_mode, open_flag); 3362 if (error) 3363 goto out; 3364 BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */ 3365 error = vfs_open(&nd->path, file, current_cred()); 3366 if (error) 3367 goto out; 3368 *opened |= FILE_OPENED; 3369 opened: 3370 error = ima_file_check(file, op->acc_mode, *opened); 3371 if (!error && will_truncate) 3372 error = handle_truncate(file); 3373 out: 3374 if (unlikely(error) && (*opened & FILE_OPENED)) 3375 fput(file); 3376 if (unlikely(error > 0)) { 3377 WARN_ON(1); 3378 error = -EINVAL; 3379 } 3380 if (got_write) 3381 mnt_drop_write(nd->path.mnt); 3382 return error; 3383 } 3384 3385 struct dentry *vfs_tmpfile(struct dentry *dentry, umode_t mode, int open_flag) 3386 { 3387 struct dentry *child = NULL; 3388 struct inode *dir = dentry->d_inode; 3389 struct inode *inode; 3390 int error; 3391 3392 /* we want directory to be writable */ 3393 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 3394 if (error) 3395 goto out_err; 3396 error = -EOPNOTSUPP; 3397 if (!dir->i_op->tmpfile) 3398 goto out_err; 3399 error = -ENOMEM; 3400 child = d_alloc(dentry, &slash_name); 3401 if (unlikely(!child)) 3402 goto out_err; 3403 error = dir->i_op->tmpfile(dir, child, mode); 3404 if (error) 3405 goto out_err; 3406 error = -ENOENT; 3407 inode = child->d_inode; 3408 if (unlikely(!inode)) 3409 goto out_err; 3410 if (!(open_flag & O_EXCL)) { 3411 spin_lock(&inode->i_lock); 3412 inode->i_state |= I_LINKABLE; 3413 spin_unlock(&inode->i_lock); 3414 } 3415 return child; 3416 3417 out_err: 3418 dput(child); 3419 return ERR_PTR(error); 3420 } 3421 EXPORT_SYMBOL(vfs_tmpfile); 3422 3423 static int do_tmpfile(struct nameidata *nd, unsigned flags, 3424 const struct open_flags *op, 3425 struct file *file, int *opened) 3426 { 3427 struct dentry *child; 3428 struct path path; 3429 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path); 3430 if (unlikely(error)) 3431 return error; 3432 error = mnt_want_write(path.mnt); 3433 if (unlikely(error)) 3434 goto out; 3435 child = vfs_tmpfile(path.dentry, op->mode, op->open_flag); 3436 error = PTR_ERR(child); 3437 if (IS_ERR(child)) 3438 goto out2; 3439 dput(path.dentry); 3440 path.dentry = child; 3441 audit_inode(nd->name, child, 0); 3442 /* Don't check for other permissions, the inode was just created */ 3443 error = may_open(&path, 0, op->open_flag); 3444 if (error) 3445 goto out2; 3446 file->f_path.mnt = path.mnt; 3447 error = finish_open(file, child, NULL, opened); 3448 if (error) 3449 goto out2; 3450 out2: 3451 mnt_drop_write(path.mnt); 3452 out: 3453 path_put(&path); 3454 return error; 3455 } 3456 3457 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file) 3458 { 3459 struct path path; 3460 int error = path_lookupat(nd, flags, &path); 3461 if (!error) { 3462 audit_inode(nd->name, path.dentry, 0); 3463 error = vfs_open(&path, file, current_cred()); 3464 path_put(&path); 3465 } 3466 return error; 3467 } 3468 3469 static struct file *path_openat(struct nameidata *nd, 3470 const struct open_flags *op, unsigned flags) 3471 { 3472 const char *s; 3473 struct file *file; 3474 int opened = 0; 3475 int error; 3476 3477 file = get_empty_filp(); 3478 if (IS_ERR(file)) 3479 return file; 3480 3481 file->f_flags = op->open_flag; 3482 3483 if (unlikely(file->f_flags & __O_TMPFILE)) { 3484 error = do_tmpfile(nd, flags, op, file, &opened); 3485 goto out2; 3486 } 3487 3488 if (unlikely(file->f_flags & O_PATH)) { 3489 error = do_o_path(nd, flags, file); 3490 if (!error) 3491 opened |= FILE_OPENED; 3492 goto out2; 3493 } 3494 3495 s = path_init(nd, flags); 3496 if (IS_ERR(s)) { 3497 put_filp(file); 3498 return ERR_CAST(s); 3499 } 3500 while (!(error = link_path_walk(s, nd)) && 3501 (error = do_last(nd, file, op, &opened)) > 0) { 3502 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL); 3503 s = trailing_symlink(nd); 3504 if (IS_ERR(s)) { 3505 error = PTR_ERR(s); 3506 break; 3507 } 3508 } 3509 terminate_walk(nd); 3510 out2: 3511 if (!(opened & FILE_OPENED)) { 3512 BUG_ON(!error); 3513 put_filp(file); 3514 } 3515 if (unlikely(error)) { 3516 if (error == -EOPENSTALE) { 3517 if (flags & LOOKUP_RCU) 3518 error = -ECHILD; 3519 else 3520 error = -ESTALE; 3521 } 3522 file = ERR_PTR(error); 3523 } 3524 return file; 3525 } 3526 3527 struct file *do_filp_open(int dfd, struct filename *pathname, 3528 const struct open_flags *op) 3529 { 3530 struct nameidata nd; 3531 int flags = op->lookup_flags; 3532 struct file *filp; 3533 3534 set_nameidata(&nd, dfd, pathname); 3535 filp = path_openat(&nd, op, flags | LOOKUP_RCU); 3536 if (unlikely(filp == ERR_PTR(-ECHILD))) 3537 filp = path_openat(&nd, op, flags); 3538 if (unlikely(filp == ERR_PTR(-ESTALE))) 3539 filp = path_openat(&nd, op, flags | LOOKUP_REVAL); 3540 restore_nameidata(); 3541 return filp; 3542 } 3543 3544 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt, 3545 const char *name, const struct open_flags *op) 3546 { 3547 struct nameidata nd; 3548 struct file *file; 3549 struct filename *filename; 3550 int flags = op->lookup_flags | LOOKUP_ROOT; 3551 3552 nd.root.mnt = mnt; 3553 nd.root.dentry = dentry; 3554 3555 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN) 3556 return ERR_PTR(-ELOOP); 3557 3558 filename = getname_kernel(name); 3559 if (IS_ERR(filename)) 3560 return ERR_CAST(filename); 3561 3562 set_nameidata(&nd, -1, filename); 3563 file = path_openat(&nd, op, flags | LOOKUP_RCU); 3564 if (unlikely(file == ERR_PTR(-ECHILD))) 3565 file = path_openat(&nd, op, flags); 3566 if (unlikely(file == ERR_PTR(-ESTALE))) 3567 file = path_openat(&nd, op, flags | LOOKUP_REVAL); 3568 restore_nameidata(); 3569 putname(filename); 3570 return file; 3571 } 3572 3573 static struct dentry *filename_create(int dfd, struct filename *name, 3574 struct path *path, unsigned int lookup_flags) 3575 { 3576 struct dentry *dentry = ERR_PTR(-EEXIST); 3577 struct qstr last; 3578 int type; 3579 int err2; 3580 int error; 3581 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY); 3582 3583 /* 3584 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any 3585 * other flags passed in are ignored! 3586 */ 3587 lookup_flags &= LOOKUP_REVAL; 3588 3589 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type); 3590 if (IS_ERR(name)) 3591 return ERR_CAST(name); 3592 3593 /* 3594 * Yucky last component or no last component at all? 3595 * (foo/., foo/.., /////) 3596 */ 3597 if (unlikely(type != LAST_NORM)) 3598 goto out; 3599 3600 /* don't fail immediately if it's r/o, at least try to report other errors */ 3601 err2 = mnt_want_write(path->mnt); 3602 /* 3603 * Do the final lookup. 3604 */ 3605 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL; 3606 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 3607 dentry = __lookup_hash(&last, path->dentry, lookup_flags); 3608 if (IS_ERR(dentry)) 3609 goto unlock; 3610 3611 error = -EEXIST; 3612 if (d_is_positive(dentry)) 3613 goto fail; 3614 3615 /* 3616 * Special case - lookup gave negative, but... we had foo/bar/ 3617 * From the vfs_mknod() POV we just have a negative dentry - 3618 * all is fine. Let's be bastards - you had / on the end, you've 3619 * been asking for (non-existent) directory. -ENOENT for you. 3620 */ 3621 if (unlikely(!is_dir && last.name[last.len])) { 3622 error = -ENOENT; 3623 goto fail; 3624 } 3625 if (unlikely(err2)) { 3626 error = err2; 3627 goto fail; 3628 } 3629 putname(name); 3630 return dentry; 3631 fail: 3632 dput(dentry); 3633 dentry = ERR_PTR(error); 3634 unlock: 3635 inode_unlock(path->dentry->d_inode); 3636 if (!err2) 3637 mnt_drop_write(path->mnt); 3638 out: 3639 path_put(path); 3640 putname(name); 3641 return dentry; 3642 } 3643 3644 struct dentry *kern_path_create(int dfd, const char *pathname, 3645 struct path *path, unsigned int lookup_flags) 3646 { 3647 return filename_create(dfd, getname_kernel(pathname), 3648 path, lookup_flags); 3649 } 3650 EXPORT_SYMBOL(kern_path_create); 3651 3652 void done_path_create(struct path *path, struct dentry *dentry) 3653 { 3654 dput(dentry); 3655 inode_unlock(path->dentry->d_inode); 3656 mnt_drop_write(path->mnt); 3657 path_put(path); 3658 } 3659 EXPORT_SYMBOL(done_path_create); 3660 3661 inline struct dentry *user_path_create(int dfd, const char __user *pathname, 3662 struct path *path, unsigned int lookup_flags) 3663 { 3664 return filename_create(dfd, getname(pathname), path, lookup_flags); 3665 } 3666 EXPORT_SYMBOL(user_path_create); 3667 3668 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 3669 { 3670 int error = may_create(dir, dentry); 3671 3672 if (error) 3673 return error; 3674 3675 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD)) 3676 return -EPERM; 3677 3678 if (!dir->i_op->mknod) 3679 return -EPERM; 3680 3681 error = devcgroup_inode_mknod(mode, dev); 3682 if (error) 3683 return error; 3684 3685 error = security_inode_mknod(dir, dentry, mode, dev); 3686 if (error) 3687 return error; 3688 3689 error = dir->i_op->mknod(dir, dentry, mode, dev); 3690 if (!error) 3691 fsnotify_create(dir, dentry); 3692 return error; 3693 } 3694 EXPORT_SYMBOL(vfs_mknod); 3695 3696 static int may_mknod(umode_t mode) 3697 { 3698 switch (mode & S_IFMT) { 3699 case S_IFREG: 3700 case S_IFCHR: 3701 case S_IFBLK: 3702 case S_IFIFO: 3703 case S_IFSOCK: 3704 case 0: /* zero mode translates to S_IFREG */ 3705 return 0; 3706 case S_IFDIR: 3707 return -EPERM; 3708 default: 3709 return -EINVAL; 3710 } 3711 } 3712 3713 long do_mknodat(int dfd, const char __user *filename, umode_t mode, 3714 unsigned int dev) 3715 { 3716 struct dentry *dentry; 3717 struct path path; 3718 int error; 3719 unsigned int lookup_flags = 0; 3720 3721 error = may_mknod(mode); 3722 if (error) 3723 return error; 3724 retry: 3725 dentry = user_path_create(dfd, filename, &path, lookup_flags); 3726 if (IS_ERR(dentry)) 3727 return PTR_ERR(dentry); 3728 3729 if (!IS_POSIXACL(path.dentry->d_inode)) 3730 mode &= ~current_umask(); 3731 error = security_path_mknod(&path, dentry, mode, dev); 3732 if (error) 3733 goto out; 3734 switch (mode & S_IFMT) { 3735 case 0: case S_IFREG: 3736 error = vfs_create(path.dentry->d_inode,dentry,mode,true); 3737 if (!error) 3738 ima_post_path_mknod(dentry); 3739 break; 3740 case S_IFCHR: case S_IFBLK: 3741 error = vfs_mknod(path.dentry->d_inode,dentry,mode, 3742 new_decode_dev(dev)); 3743 break; 3744 case S_IFIFO: case S_IFSOCK: 3745 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0); 3746 break; 3747 } 3748 out: 3749 done_path_create(&path, dentry); 3750 if (retry_estale(error, lookup_flags)) { 3751 lookup_flags |= LOOKUP_REVAL; 3752 goto retry; 3753 } 3754 return error; 3755 } 3756 3757 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode, 3758 unsigned int, dev) 3759 { 3760 return do_mknodat(dfd, filename, mode, dev); 3761 } 3762 3763 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev) 3764 { 3765 return do_mknodat(AT_FDCWD, filename, mode, dev); 3766 } 3767 3768 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 3769 { 3770 int error = may_create(dir, dentry); 3771 unsigned max_links = dir->i_sb->s_max_links; 3772 3773 if (error) 3774 return error; 3775 3776 if (!dir->i_op->mkdir) 3777 return -EPERM; 3778 3779 mode &= (S_IRWXUGO|S_ISVTX); 3780 error = security_inode_mkdir(dir, dentry, mode); 3781 if (error) 3782 return error; 3783 3784 if (max_links && dir->i_nlink >= max_links) 3785 return -EMLINK; 3786 3787 error = dir->i_op->mkdir(dir, dentry, mode); 3788 if (!error) 3789 fsnotify_mkdir(dir, dentry); 3790 return error; 3791 } 3792 EXPORT_SYMBOL(vfs_mkdir); 3793 3794 long do_mkdirat(int dfd, const char __user *pathname, umode_t mode) 3795 { 3796 struct dentry *dentry; 3797 struct path path; 3798 int error; 3799 unsigned int lookup_flags = LOOKUP_DIRECTORY; 3800 3801 retry: 3802 dentry = user_path_create(dfd, pathname, &path, lookup_flags); 3803 if (IS_ERR(dentry)) 3804 return PTR_ERR(dentry); 3805 3806 if (!IS_POSIXACL(path.dentry->d_inode)) 3807 mode &= ~current_umask(); 3808 error = security_path_mkdir(&path, dentry, mode); 3809 if (!error) 3810 error = vfs_mkdir(path.dentry->d_inode, dentry, mode); 3811 done_path_create(&path, dentry); 3812 if (retry_estale(error, lookup_flags)) { 3813 lookup_flags |= LOOKUP_REVAL; 3814 goto retry; 3815 } 3816 return error; 3817 } 3818 3819 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode) 3820 { 3821 return do_mkdirat(dfd, pathname, mode); 3822 } 3823 3824 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode) 3825 { 3826 return do_mkdirat(AT_FDCWD, pathname, mode); 3827 } 3828 3829 int vfs_rmdir(struct inode *dir, struct dentry *dentry) 3830 { 3831 int error = may_delete(dir, dentry, 1); 3832 3833 if (error) 3834 return error; 3835 3836 if (!dir->i_op->rmdir) 3837 return -EPERM; 3838 3839 dget(dentry); 3840 inode_lock(dentry->d_inode); 3841 3842 error = -EBUSY; 3843 if (is_local_mountpoint(dentry)) 3844 goto out; 3845 3846 error = security_inode_rmdir(dir, dentry); 3847 if (error) 3848 goto out; 3849 3850 shrink_dcache_parent(dentry); 3851 error = dir->i_op->rmdir(dir, dentry); 3852 if (error) 3853 goto out; 3854 3855 dentry->d_inode->i_flags |= S_DEAD; 3856 dont_mount(dentry); 3857 detach_mounts(dentry); 3858 3859 out: 3860 inode_unlock(dentry->d_inode); 3861 dput(dentry); 3862 if (!error) 3863 d_delete(dentry); 3864 return error; 3865 } 3866 EXPORT_SYMBOL(vfs_rmdir); 3867 3868 long do_rmdir(int dfd, const char __user *pathname) 3869 { 3870 int error = 0; 3871 struct filename *name; 3872 struct dentry *dentry; 3873 struct path path; 3874 struct qstr last; 3875 int type; 3876 unsigned int lookup_flags = 0; 3877 retry: 3878 name = filename_parentat(dfd, getname(pathname), lookup_flags, 3879 &path, &last, &type); 3880 if (IS_ERR(name)) 3881 return PTR_ERR(name); 3882 3883 switch (type) { 3884 case LAST_DOTDOT: 3885 error = -ENOTEMPTY; 3886 goto exit1; 3887 case LAST_DOT: 3888 error = -EINVAL; 3889 goto exit1; 3890 case LAST_ROOT: 3891 error = -EBUSY; 3892 goto exit1; 3893 } 3894 3895 error = mnt_want_write(path.mnt); 3896 if (error) 3897 goto exit1; 3898 3899 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 3900 dentry = __lookup_hash(&last, path.dentry, lookup_flags); 3901 error = PTR_ERR(dentry); 3902 if (IS_ERR(dentry)) 3903 goto exit2; 3904 if (!dentry->d_inode) { 3905 error = -ENOENT; 3906 goto exit3; 3907 } 3908 error = security_path_rmdir(&path, dentry); 3909 if (error) 3910 goto exit3; 3911 error = vfs_rmdir(path.dentry->d_inode, dentry); 3912 exit3: 3913 dput(dentry); 3914 exit2: 3915 inode_unlock(path.dentry->d_inode); 3916 mnt_drop_write(path.mnt); 3917 exit1: 3918 path_put(&path); 3919 putname(name); 3920 if (retry_estale(error, lookup_flags)) { 3921 lookup_flags |= LOOKUP_REVAL; 3922 goto retry; 3923 } 3924 return error; 3925 } 3926 3927 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 3928 { 3929 return do_rmdir(AT_FDCWD, pathname); 3930 } 3931 3932 /** 3933 * vfs_unlink - unlink a filesystem object 3934 * @dir: parent directory 3935 * @dentry: victim 3936 * @delegated_inode: returns victim inode, if the inode is delegated. 3937 * 3938 * The caller must hold dir->i_mutex. 3939 * 3940 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and 3941 * return a reference to the inode in delegated_inode. The caller 3942 * should then break the delegation on that inode and retry. Because 3943 * breaking a delegation may take a long time, the caller should drop 3944 * dir->i_mutex before doing so. 3945 * 3946 * Alternatively, a caller may pass NULL for delegated_inode. This may 3947 * be appropriate for callers that expect the underlying filesystem not 3948 * to be NFS exported. 3949 */ 3950 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode) 3951 { 3952 struct inode *target = dentry->d_inode; 3953 int error = may_delete(dir, dentry, 0); 3954 3955 if (error) 3956 return error; 3957 3958 if (!dir->i_op->unlink) 3959 return -EPERM; 3960 3961 inode_lock(target); 3962 if (is_local_mountpoint(dentry)) 3963 error = -EBUSY; 3964 else { 3965 error = security_inode_unlink(dir, dentry); 3966 if (!error) { 3967 error = try_break_deleg(target, delegated_inode); 3968 if (error) 3969 goto out; 3970 error = dir->i_op->unlink(dir, dentry); 3971 if (!error) { 3972 dont_mount(dentry); 3973 detach_mounts(dentry); 3974 } 3975 } 3976 } 3977 out: 3978 inode_unlock(target); 3979 3980 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 3981 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) { 3982 fsnotify_link_count(target); 3983 d_delete(dentry); 3984 } 3985 3986 return error; 3987 } 3988 EXPORT_SYMBOL(vfs_unlink); 3989 3990 /* 3991 * Make sure that the actual truncation of the file will occur outside its 3992 * directory's i_mutex. Truncate can take a long time if there is a lot of 3993 * writeout happening, and we don't want to prevent access to the directory 3994 * while waiting on the I/O. 3995 */ 3996 long do_unlinkat(int dfd, struct filename *name) 3997 { 3998 int error; 3999 struct dentry *dentry; 4000 struct path path; 4001 struct qstr last; 4002 int type; 4003 struct inode *inode = NULL; 4004 struct inode *delegated_inode = NULL; 4005 unsigned int lookup_flags = 0; 4006 retry: 4007 name = filename_parentat(dfd, name, lookup_flags, &path, &last, &type); 4008 if (IS_ERR(name)) 4009 return PTR_ERR(name); 4010 4011 error = -EISDIR; 4012 if (type != LAST_NORM) 4013 goto exit1; 4014 4015 error = mnt_want_write(path.mnt); 4016 if (error) 4017 goto exit1; 4018 retry_deleg: 4019 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 4020 dentry = __lookup_hash(&last, path.dentry, lookup_flags); 4021 error = PTR_ERR(dentry); 4022 if (!IS_ERR(dentry)) { 4023 /* Why not before? Because we want correct error value */ 4024 if (last.name[last.len]) 4025 goto slashes; 4026 inode = dentry->d_inode; 4027 if (d_is_negative(dentry)) 4028 goto slashes; 4029 ihold(inode); 4030 error = security_path_unlink(&path, dentry); 4031 if (error) 4032 goto exit2; 4033 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode); 4034 exit2: 4035 dput(dentry); 4036 } 4037 inode_unlock(path.dentry->d_inode); 4038 if (inode) 4039 iput(inode); /* truncate the inode here */ 4040 inode = NULL; 4041 if (delegated_inode) { 4042 error = break_deleg_wait(&delegated_inode); 4043 if (!error) 4044 goto retry_deleg; 4045 } 4046 mnt_drop_write(path.mnt); 4047 exit1: 4048 path_put(&path); 4049 if (retry_estale(error, lookup_flags)) { 4050 lookup_flags |= LOOKUP_REVAL; 4051 inode = NULL; 4052 goto retry; 4053 } 4054 putname(name); 4055 return error; 4056 4057 slashes: 4058 if (d_is_negative(dentry)) 4059 error = -ENOENT; 4060 else if (d_is_dir(dentry)) 4061 error = -EISDIR; 4062 else 4063 error = -ENOTDIR; 4064 goto exit2; 4065 } 4066 4067 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 4068 { 4069 if ((flag & ~AT_REMOVEDIR) != 0) 4070 return -EINVAL; 4071 4072 if (flag & AT_REMOVEDIR) 4073 return do_rmdir(dfd, pathname); 4074 4075 return do_unlinkat(dfd, getname(pathname)); 4076 } 4077 4078 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 4079 { 4080 return do_unlinkat(AT_FDCWD, getname(pathname)); 4081 } 4082 4083 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname) 4084 { 4085 int error = may_create(dir, dentry); 4086 4087 if (error) 4088 return error; 4089 4090 if (!dir->i_op->symlink) 4091 return -EPERM; 4092 4093 error = security_inode_symlink(dir, dentry, oldname); 4094 if (error) 4095 return error; 4096 4097 error = dir->i_op->symlink(dir, dentry, oldname); 4098 if (!error) 4099 fsnotify_create(dir, dentry); 4100 return error; 4101 } 4102 EXPORT_SYMBOL(vfs_symlink); 4103 4104 long do_symlinkat(const char __user *oldname, int newdfd, 4105 const char __user *newname) 4106 { 4107 int error; 4108 struct filename *from; 4109 struct dentry *dentry; 4110 struct path path; 4111 unsigned int lookup_flags = 0; 4112 4113 from = getname(oldname); 4114 if (IS_ERR(from)) 4115 return PTR_ERR(from); 4116 retry: 4117 dentry = user_path_create(newdfd, newname, &path, lookup_flags); 4118 error = PTR_ERR(dentry); 4119 if (IS_ERR(dentry)) 4120 goto out_putname; 4121 4122 error = security_path_symlink(&path, dentry, from->name); 4123 if (!error) 4124 error = vfs_symlink(path.dentry->d_inode, dentry, from->name); 4125 done_path_create(&path, dentry); 4126 if (retry_estale(error, lookup_flags)) { 4127 lookup_flags |= LOOKUP_REVAL; 4128 goto retry; 4129 } 4130 out_putname: 4131 putname(from); 4132 return error; 4133 } 4134 4135 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 4136 int, newdfd, const char __user *, newname) 4137 { 4138 return do_symlinkat(oldname, newdfd, newname); 4139 } 4140 4141 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 4142 { 4143 return do_symlinkat(oldname, AT_FDCWD, newname); 4144 } 4145 4146 /** 4147 * vfs_link - create a new link 4148 * @old_dentry: object to be linked 4149 * @dir: new parent 4150 * @new_dentry: where to create the new link 4151 * @delegated_inode: returns inode needing a delegation break 4152 * 4153 * The caller must hold dir->i_mutex 4154 * 4155 * If vfs_link discovers a delegation on the to-be-linked file in need 4156 * of breaking, it will return -EWOULDBLOCK and return a reference to the 4157 * inode in delegated_inode. The caller should then break the delegation 4158 * and retry. Because breaking a delegation may take a long time, the 4159 * caller should drop the i_mutex before doing so. 4160 * 4161 * Alternatively, a caller may pass NULL for delegated_inode. This may 4162 * be appropriate for callers that expect the underlying filesystem not 4163 * to be NFS exported. 4164 */ 4165 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode) 4166 { 4167 struct inode *inode = old_dentry->d_inode; 4168 unsigned max_links = dir->i_sb->s_max_links; 4169 int error; 4170 4171 if (!inode) 4172 return -ENOENT; 4173 4174 error = may_create(dir, new_dentry); 4175 if (error) 4176 return error; 4177 4178 if (dir->i_sb != inode->i_sb) 4179 return -EXDEV; 4180 4181 /* 4182 * A link to an append-only or immutable file cannot be created. 4183 */ 4184 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 4185 return -EPERM; 4186 /* 4187 * Updating the link count will likely cause i_uid and i_gid to 4188 * be writen back improperly if their true value is unknown to 4189 * the vfs. 4190 */ 4191 if (HAS_UNMAPPED_ID(inode)) 4192 return -EPERM; 4193 if (!dir->i_op->link) 4194 return -EPERM; 4195 if (S_ISDIR(inode->i_mode)) 4196 return -EPERM; 4197 4198 error = security_inode_link(old_dentry, dir, new_dentry); 4199 if (error) 4200 return error; 4201 4202 inode_lock(inode); 4203 /* Make sure we don't allow creating hardlink to an unlinked file */ 4204 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE)) 4205 error = -ENOENT; 4206 else if (max_links && inode->i_nlink >= max_links) 4207 error = -EMLINK; 4208 else { 4209 error = try_break_deleg(inode, delegated_inode); 4210 if (!error) 4211 error = dir->i_op->link(old_dentry, dir, new_dentry); 4212 } 4213 4214 if (!error && (inode->i_state & I_LINKABLE)) { 4215 spin_lock(&inode->i_lock); 4216 inode->i_state &= ~I_LINKABLE; 4217 spin_unlock(&inode->i_lock); 4218 } 4219 inode_unlock(inode); 4220 if (!error) 4221 fsnotify_link(dir, inode, new_dentry); 4222 return error; 4223 } 4224 EXPORT_SYMBOL(vfs_link); 4225 4226 /* 4227 * Hardlinks are often used in delicate situations. We avoid 4228 * security-related surprises by not following symlinks on the 4229 * newname. --KAB 4230 * 4231 * We don't follow them on the oldname either to be compatible 4232 * with linux 2.0, and to avoid hard-linking to directories 4233 * and other special files. --ADM 4234 */ 4235 int do_linkat(int olddfd, const char __user *oldname, int newdfd, 4236 const char __user *newname, int flags) 4237 { 4238 struct dentry *new_dentry; 4239 struct path old_path, new_path; 4240 struct inode *delegated_inode = NULL; 4241 int how = 0; 4242 int error; 4243 4244 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) 4245 return -EINVAL; 4246 /* 4247 * To use null names we require CAP_DAC_READ_SEARCH 4248 * This ensures that not everyone will be able to create 4249 * handlink using the passed filedescriptor. 4250 */ 4251 if (flags & AT_EMPTY_PATH) { 4252 if (!capable(CAP_DAC_READ_SEARCH)) 4253 return -ENOENT; 4254 how = LOOKUP_EMPTY; 4255 } 4256 4257 if (flags & AT_SYMLINK_FOLLOW) 4258 how |= LOOKUP_FOLLOW; 4259 retry: 4260 error = user_path_at(olddfd, oldname, how, &old_path); 4261 if (error) 4262 return error; 4263 4264 new_dentry = user_path_create(newdfd, newname, &new_path, 4265 (how & LOOKUP_REVAL)); 4266 error = PTR_ERR(new_dentry); 4267 if (IS_ERR(new_dentry)) 4268 goto out; 4269 4270 error = -EXDEV; 4271 if (old_path.mnt != new_path.mnt) 4272 goto out_dput; 4273 error = may_linkat(&old_path); 4274 if (unlikely(error)) 4275 goto out_dput; 4276 error = security_path_link(old_path.dentry, &new_path, new_dentry); 4277 if (error) 4278 goto out_dput; 4279 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode); 4280 out_dput: 4281 done_path_create(&new_path, new_dentry); 4282 if (delegated_inode) { 4283 error = break_deleg_wait(&delegated_inode); 4284 if (!error) { 4285 path_put(&old_path); 4286 goto retry; 4287 } 4288 } 4289 if (retry_estale(error, how)) { 4290 path_put(&old_path); 4291 how |= LOOKUP_REVAL; 4292 goto retry; 4293 } 4294 out: 4295 path_put(&old_path); 4296 4297 return error; 4298 } 4299 4300 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 4301 int, newdfd, const char __user *, newname, int, flags) 4302 { 4303 return do_linkat(olddfd, oldname, newdfd, newname, flags); 4304 } 4305 4306 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 4307 { 4308 return do_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 4309 } 4310 4311 /** 4312 * vfs_rename - rename a filesystem object 4313 * @old_dir: parent of source 4314 * @old_dentry: source 4315 * @new_dir: parent of destination 4316 * @new_dentry: destination 4317 * @delegated_inode: returns an inode needing a delegation break 4318 * @flags: rename flags 4319 * 4320 * The caller must hold multiple mutexes--see lock_rename()). 4321 * 4322 * If vfs_rename discovers a delegation in need of breaking at either 4323 * the source or destination, it will return -EWOULDBLOCK and return a 4324 * reference to the inode in delegated_inode. The caller should then 4325 * break the delegation and retry. Because breaking a delegation may 4326 * take a long time, the caller should drop all locks before doing 4327 * so. 4328 * 4329 * Alternatively, a caller may pass NULL for delegated_inode. This may 4330 * be appropriate for callers that expect the underlying filesystem not 4331 * to be NFS exported. 4332 * 4333 * The worst of all namespace operations - renaming directory. "Perverted" 4334 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 4335 * Problems: 4336 * 4337 * a) we can get into loop creation. 4338 * b) race potential - two innocent renames can create a loop together. 4339 * That's where 4.4 screws up. Current fix: serialization on 4340 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 4341 * story. 4342 * c) we have to lock _four_ objects - parents and victim (if it exists), 4343 * and source (if it is not a directory). 4344 * And that - after we got ->i_mutex on parents (until then we don't know 4345 * whether the target exists). Solution: try to be smart with locking 4346 * order for inodes. We rely on the fact that tree topology may change 4347 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 4348 * move will be locked. Thus we can rank directories by the tree 4349 * (ancestors first) and rank all non-directories after them. 4350 * That works since everybody except rename does "lock parent, lookup, 4351 * lock child" and rename is under ->s_vfs_rename_mutex. 4352 * HOWEVER, it relies on the assumption that any object with ->lookup() 4353 * has no more than 1 dentry. If "hybrid" objects will ever appear, 4354 * we'd better make sure that there's no link(2) for them. 4355 * d) conversion from fhandle to dentry may come in the wrong moment - when 4356 * we are removing the target. Solution: we will have to grab ->i_mutex 4357 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 4358 * ->i_mutex on parents, which works but leads to some truly excessive 4359 * locking]. 4360 */ 4361 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry, 4362 struct inode *new_dir, struct dentry *new_dentry, 4363 struct inode **delegated_inode, unsigned int flags) 4364 { 4365 int error; 4366 bool is_dir = d_is_dir(old_dentry); 4367 struct inode *source = old_dentry->d_inode; 4368 struct inode *target = new_dentry->d_inode; 4369 bool new_is_dir = false; 4370 unsigned max_links = new_dir->i_sb->s_max_links; 4371 struct name_snapshot old_name; 4372 4373 if (source == target) 4374 return 0; 4375 4376 error = may_delete(old_dir, old_dentry, is_dir); 4377 if (error) 4378 return error; 4379 4380 if (!target) { 4381 error = may_create(new_dir, new_dentry); 4382 } else { 4383 new_is_dir = d_is_dir(new_dentry); 4384 4385 if (!(flags & RENAME_EXCHANGE)) 4386 error = may_delete(new_dir, new_dentry, is_dir); 4387 else 4388 error = may_delete(new_dir, new_dentry, new_is_dir); 4389 } 4390 if (error) 4391 return error; 4392 4393 if (!old_dir->i_op->rename) 4394 return -EPERM; 4395 4396 /* 4397 * If we are going to change the parent - check write permissions, 4398 * we'll need to flip '..'. 4399 */ 4400 if (new_dir != old_dir) { 4401 if (is_dir) { 4402 error = inode_permission(source, MAY_WRITE); 4403 if (error) 4404 return error; 4405 } 4406 if ((flags & RENAME_EXCHANGE) && new_is_dir) { 4407 error = inode_permission(target, MAY_WRITE); 4408 if (error) 4409 return error; 4410 } 4411 } 4412 4413 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry, 4414 flags); 4415 if (error) 4416 return error; 4417 4418 take_dentry_name_snapshot(&old_name, old_dentry); 4419 dget(new_dentry); 4420 if (!is_dir || (flags & RENAME_EXCHANGE)) 4421 lock_two_nondirectories(source, target); 4422 else if (target) 4423 inode_lock(target); 4424 4425 error = -EBUSY; 4426 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry)) 4427 goto out; 4428 4429 if (max_links && new_dir != old_dir) { 4430 error = -EMLINK; 4431 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links) 4432 goto out; 4433 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir && 4434 old_dir->i_nlink >= max_links) 4435 goto out; 4436 } 4437 if (is_dir && !(flags & RENAME_EXCHANGE) && target) 4438 shrink_dcache_parent(new_dentry); 4439 if (!is_dir) { 4440 error = try_break_deleg(source, delegated_inode); 4441 if (error) 4442 goto out; 4443 } 4444 if (target && !new_is_dir) { 4445 error = try_break_deleg(target, delegated_inode); 4446 if (error) 4447 goto out; 4448 } 4449 error = old_dir->i_op->rename(old_dir, old_dentry, 4450 new_dir, new_dentry, flags); 4451 if (error) 4452 goto out; 4453 4454 if (!(flags & RENAME_EXCHANGE) && target) { 4455 if (is_dir) 4456 target->i_flags |= S_DEAD; 4457 dont_mount(new_dentry); 4458 detach_mounts(new_dentry); 4459 } 4460 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) { 4461 if (!(flags & RENAME_EXCHANGE)) 4462 d_move(old_dentry, new_dentry); 4463 else 4464 d_exchange(old_dentry, new_dentry); 4465 } 4466 out: 4467 if (!is_dir || (flags & RENAME_EXCHANGE)) 4468 unlock_two_nondirectories(source, target); 4469 else if (target) 4470 inode_unlock(target); 4471 dput(new_dentry); 4472 if (!error) { 4473 fsnotify_move(old_dir, new_dir, old_name.name, is_dir, 4474 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry); 4475 if (flags & RENAME_EXCHANGE) { 4476 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name, 4477 new_is_dir, NULL, new_dentry); 4478 } 4479 } 4480 release_dentry_name_snapshot(&old_name); 4481 4482 return error; 4483 } 4484 EXPORT_SYMBOL(vfs_rename); 4485 4486 static int do_renameat2(int olddfd, const char __user *oldname, int newdfd, 4487 const char __user *newname, unsigned int flags) 4488 { 4489 struct dentry *old_dentry, *new_dentry; 4490 struct dentry *trap; 4491 struct path old_path, new_path; 4492 struct qstr old_last, new_last; 4493 int old_type, new_type; 4494 struct inode *delegated_inode = NULL; 4495 struct filename *from; 4496 struct filename *to; 4497 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET; 4498 bool should_retry = false; 4499 int error; 4500 4501 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 4502 return -EINVAL; 4503 4504 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) && 4505 (flags & RENAME_EXCHANGE)) 4506 return -EINVAL; 4507 4508 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD)) 4509 return -EPERM; 4510 4511 if (flags & RENAME_EXCHANGE) 4512 target_flags = 0; 4513 4514 retry: 4515 from = filename_parentat(olddfd, getname(oldname), lookup_flags, 4516 &old_path, &old_last, &old_type); 4517 if (IS_ERR(from)) { 4518 error = PTR_ERR(from); 4519 goto exit; 4520 } 4521 4522 to = filename_parentat(newdfd, getname(newname), lookup_flags, 4523 &new_path, &new_last, &new_type); 4524 if (IS_ERR(to)) { 4525 error = PTR_ERR(to); 4526 goto exit1; 4527 } 4528 4529 error = -EXDEV; 4530 if (old_path.mnt != new_path.mnt) 4531 goto exit2; 4532 4533 error = -EBUSY; 4534 if (old_type != LAST_NORM) 4535 goto exit2; 4536 4537 if (flags & RENAME_NOREPLACE) 4538 error = -EEXIST; 4539 if (new_type != LAST_NORM) 4540 goto exit2; 4541 4542 error = mnt_want_write(old_path.mnt); 4543 if (error) 4544 goto exit2; 4545 4546 retry_deleg: 4547 trap = lock_rename(new_path.dentry, old_path.dentry); 4548 4549 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags); 4550 error = PTR_ERR(old_dentry); 4551 if (IS_ERR(old_dentry)) 4552 goto exit3; 4553 /* source must exist */ 4554 error = -ENOENT; 4555 if (d_is_negative(old_dentry)) 4556 goto exit4; 4557 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags); 4558 error = PTR_ERR(new_dentry); 4559 if (IS_ERR(new_dentry)) 4560 goto exit4; 4561 error = -EEXIST; 4562 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry)) 4563 goto exit5; 4564 if (flags & RENAME_EXCHANGE) { 4565 error = -ENOENT; 4566 if (d_is_negative(new_dentry)) 4567 goto exit5; 4568 4569 if (!d_is_dir(new_dentry)) { 4570 error = -ENOTDIR; 4571 if (new_last.name[new_last.len]) 4572 goto exit5; 4573 } 4574 } 4575 /* unless the source is a directory trailing slashes give -ENOTDIR */ 4576 if (!d_is_dir(old_dentry)) { 4577 error = -ENOTDIR; 4578 if (old_last.name[old_last.len]) 4579 goto exit5; 4580 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len]) 4581 goto exit5; 4582 } 4583 /* source should not be ancestor of target */ 4584 error = -EINVAL; 4585 if (old_dentry == trap) 4586 goto exit5; 4587 /* target should not be an ancestor of source */ 4588 if (!(flags & RENAME_EXCHANGE)) 4589 error = -ENOTEMPTY; 4590 if (new_dentry == trap) 4591 goto exit5; 4592 4593 error = security_path_rename(&old_path, old_dentry, 4594 &new_path, new_dentry, flags); 4595 if (error) 4596 goto exit5; 4597 error = vfs_rename(old_path.dentry->d_inode, old_dentry, 4598 new_path.dentry->d_inode, new_dentry, 4599 &delegated_inode, flags); 4600 exit5: 4601 dput(new_dentry); 4602 exit4: 4603 dput(old_dentry); 4604 exit3: 4605 unlock_rename(new_path.dentry, old_path.dentry); 4606 if (delegated_inode) { 4607 error = break_deleg_wait(&delegated_inode); 4608 if (!error) 4609 goto retry_deleg; 4610 } 4611 mnt_drop_write(old_path.mnt); 4612 exit2: 4613 if (retry_estale(error, lookup_flags)) 4614 should_retry = true; 4615 path_put(&new_path); 4616 putname(to); 4617 exit1: 4618 path_put(&old_path); 4619 putname(from); 4620 if (should_retry) { 4621 should_retry = false; 4622 lookup_flags |= LOOKUP_REVAL; 4623 goto retry; 4624 } 4625 exit: 4626 return error; 4627 } 4628 4629 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname, 4630 int, newdfd, const char __user *, newname, unsigned int, flags) 4631 { 4632 return do_renameat2(olddfd, oldname, newdfd, newname, flags); 4633 } 4634 4635 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 4636 int, newdfd, const char __user *, newname) 4637 { 4638 return do_renameat2(olddfd, oldname, newdfd, newname, 0); 4639 } 4640 4641 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 4642 { 4643 return do_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 4644 } 4645 4646 int vfs_whiteout(struct inode *dir, struct dentry *dentry) 4647 { 4648 int error = may_create(dir, dentry); 4649 if (error) 4650 return error; 4651 4652 if (!dir->i_op->mknod) 4653 return -EPERM; 4654 4655 return dir->i_op->mknod(dir, dentry, 4656 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 4657 } 4658 EXPORT_SYMBOL(vfs_whiteout); 4659 4660 int readlink_copy(char __user *buffer, int buflen, const char *link) 4661 { 4662 int len = PTR_ERR(link); 4663 if (IS_ERR(link)) 4664 goto out; 4665 4666 len = strlen(link); 4667 if (len > (unsigned) buflen) 4668 len = buflen; 4669 if (copy_to_user(buffer, link, len)) 4670 len = -EFAULT; 4671 out: 4672 return len; 4673 } 4674 4675 /* 4676 * A helper for ->readlink(). This should be used *ONLY* for symlinks that 4677 * have ->get_link() not calling nd_jump_link(). Using (or not using) it 4678 * for any given inode is up to filesystem. 4679 */ 4680 static int generic_readlink(struct dentry *dentry, char __user *buffer, 4681 int buflen) 4682 { 4683 DEFINE_DELAYED_CALL(done); 4684 struct inode *inode = d_inode(dentry); 4685 const char *link = inode->i_link; 4686 int res; 4687 4688 if (!link) { 4689 link = inode->i_op->get_link(dentry, inode, &done); 4690 if (IS_ERR(link)) 4691 return PTR_ERR(link); 4692 } 4693 res = readlink_copy(buffer, buflen, link); 4694 do_delayed_call(&done); 4695 return res; 4696 } 4697 4698 /** 4699 * vfs_readlink - copy symlink body into userspace buffer 4700 * @dentry: dentry on which to get symbolic link 4701 * @buffer: user memory pointer 4702 * @buflen: size of buffer 4703 * 4704 * Does not touch atime. That's up to the caller if necessary 4705 * 4706 * Does not call security hook. 4707 */ 4708 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4709 { 4710 struct inode *inode = d_inode(dentry); 4711 4712 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) { 4713 if (unlikely(inode->i_op->readlink)) 4714 return inode->i_op->readlink(dentry, buffer, buflen); 4715 4716 if (!d_is_symlink(dentry)) 4717 return -EINVAL; 4718 4719 spin_lock(&inode->i_lock); 4720 inode->i_opflags |= IOP_DEFAULT_READLINK; 4721 spin_unlock(&inode->i_lock); 4722 } 4723 4724 return generic_readlink(dentry, buffer, buflen); 4725 } 4726 EXPORT_SYMBOL(vfs_readlink); 4727 4728 /** 4729 * vfs_get_link - get symlink body 4730 * @dentry: dentry on which to get symbolic link 4731 * @done: caller needs to free returned data with this 4732 * 4733 * Calls security hook and i_op->get_link() on the supplied inode. 4734 * 4735 * It does not touch atime. That's up to the caller if necessary. 4736 * 4737 * Does not work on "special" symlinks like /proc/$$/fd/N 4738 */ 4739 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done) 4740 { 4741 const char *res = ERR_PTR(-EINVAL); 4742 struct inode *inode = d_inode(dentry); 4743 4744 if (d_is_symlink(dentry)) { 4745 res = ERR_PTR(security_inode_readlink(dentry)); 4746 if (!res) 4747 res = inode->i_op->get_link(dentry, inode, done); 4748 } 4749 return res; 4750 } 4751 EXPORT_SYMBOL(vfs_get_link); 4752 4753 /* get the link contents into pagecache */ 4754 const char *page_get_link(struct dentry *dentry, struct inode *inode, 4755 struct delayed_call *callback) 4756 { 4757 char *kaddr; 4758 struct page *page; 4759 struct address_space *mapping = inode->i_mapping; 4760 4761 if (!dentry) { 4762 page = find_get_page(mapping, 0); 4763 if (!page) 4764 return ERR_PTR(-ECHILD); 4765 if (!PageUptodate(page)) { 4766 put_page(page); 4767 return ERR_PTR(-ECHILD); 4768 } 4769 } else { 4770 page = read_mapping_page(mapping, 0, NULL); 4771 if (IS_ERR(page)) 4772 return (char*)page; 4773 } 4774 set_delayed_call(callback, page_put_link, page); 4775 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM); 4776 kaddr = page_address(page); 4777 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1); 4778 return kaddr; 4779 } 4780 4781 EXPORT_SYMBOL(page_get_link); 4782 4783 void page_put_link(void *arg) 4784 { 4785 put_page(arg); 4786 } 4787 EXPORT_SYMBOL(page_put_link); 4788 4789 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4790 { 4791 DEFINE_DELAYED_CALL(done); 4792 int res = readlink_copy(buffer, buflen, 4793 page_get_link(dentry, d_inode(dentry), 4794 &done)); 4795 do_delayed_call(&done); 4796 return res; 4797 } 4798 EXPORT_SYMBOL(page_readlink); 4799 4800 /* 4801 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS 4802 */ 4803 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs) 4804 { 4805 struct address_space *mapping = inode->i_mapping; 4806 struct page *page; 4807 void *fsdata; 4808 int err; 4809 unsigned int flags = 0; 4810 if (nofs) 4811 flags |= AOP_FLAG_NOFS; 4812 4813 retry: 4814 err = pagecache_write_begin(NULL, mapping, 0, len-1, 4815 flags, &page, &fsdata); 4816 if (err) 4817 goto fail; 4818 4819 memcpy(page_address(page), symname, len-1); 4820 4821 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1, 4822 page, fsdata); 4823 if (err < 0) 4824 goto fail; 4825 if (err < len-1) 4826 goto retry; 4827 4828 mark_inode_dirty(inode); 4829 return 0; 4830 fail: 4831 return err; 4832 } 4833 EXPORT_SYMBOL(__page_symlink); 4834 4835 int page_symlink(struct inode *inode, const char *symname, int len) 4836 { 4837 return __page_symlink(inode, symname, len, 4838 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS)); 4839 } 4840 EXPORT_SYMBOL(page_symlink); 4841 4842 const struct inode_operations page_symlink_inode_operations = { 4843 .get_link = page_get_link, 4844 }; 4845 EXPORT_SYMBOL(page_symlink_inode_operations); 4846