xref: /openbmc/linux/fs/namei.c (revision ca79522c)
1 /*
2  *  linux/fs/namei.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * Some corrections by tytso.
9  */
10 
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12  * lookup logic.
13  */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15  */
16 
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <asm/uaccess.h>
38 
39 #include "internal.h"
40 #include "mount.h"
41 
42 /* [Feb-1997 T. Schoebel-Theuer]
43  * Fundamental changes in the pathname lookup mechanisms (namei)
44  * were necessary because of omirr.  The reason is that omirr needs
45  * to know the _real_ pathname, not the user-supplied one, in case
46  * of symlinks (and also when transname replacements occur).
47  *
48  * The new code replaces the old recursive symlink resolution with
49  * an iterative one (in case of non-nested symlink chains).  It does
50  * this with calls to <fs>_follow_link().
51  * As a side effect, dir_namei(), _namei() and follow_link() are now
52  * replaced with a single function lookup_dentry() that can handle all
53  * the special cases of the former code.
54  *
55  * With the new dcache, the pathname is stored at each inode, at least as
56  * long as the refcount of the inode is positive.  As a side effect, the
57  * size of the dcache depends on the inode cache and thus is dynamic.
58  *
59  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
60  * resolution to correspond with current state of the code.
61  *
62  * Note that the symlink resolution is not *completely* iterative.
63  * There is still a significant amount of tail- and mid- recursion in
64  * the algorithm.  Also, note that <fs>_readlink() is not used in
65  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
66  * may return different results than <fs>_follow_link().  Many virtual
67  * filesystems (including /proc) exhibit this behavior.
68  */
69 
70 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
71  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
72  * and the name already exists in form of a symlink, try to create the new
73  * name indicated by the symlink. The old code always complained that the
74  * name already exists, due to not following the symlink even if its target
75  * is nonexistent.  The new semantics affects also mknod() and link() when
76  * the name is a symlink pointing to a non-existent name.
77  *
78  * I don't know which semantics is the right one, since I have no access
79  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
80  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
81  * "old" one. Personally, I think the new semantics is much more logical.
82  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
83  * file does succeed in both HP-UX and SunOs, but not in Solaris
84  * and in the old Linux semantics.
85  */
86 
87 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
88  * semantics.  See the comments in "open_namei" and "do_link" below.
89  *
90  * [10-Sep-98 Alan Modra] Another symlink change.
91  */
92 
93 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
94  *	inside the path - always follow.
95  *	in the last component in creation/removal/renaming - never follow.
96  *	if LOOKUP_FOLLOW passed - follow.
97  *	if the pathname has trailing slashes - follow.
98  *	otherwise - don't follow.
99  * (applied in that order).
100  *
101  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
102  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
103  * During the 2.4 we need to fix the userland stuff depending on it -
104  * hopefully we will be able to get rid of that wart in 2.5. So far only
105  * XEmacs seems to be relying on it...
106  */
107 /*
108  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
109  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
110  * any extra contention...
111  */
112 
113 /* In order to reduce some races, while at the same time doing additional
114  * checking and hopefully speeding things up, we copy filenames to the
115  * kernel data space before using them..
116  *
117  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
118  * PATH_MAX includes the nul terminator --RR.
119  */
120 void final_putname(struct filename *name)
121 {
122 	if (name->separate) {
123 		__putname(name->name);
124 		kfree(name);
125 	} else {
126 		__putname(name);
127 	}
128 }
129 
130 #define EMBEDDED_NAME_MAX	(PATH_MAX - sizeof(struct filename))
131 
132 static struct filename *
133 getname_flags(const char __user *filename, int flags, int *empty)
134 {
135 	struct filename *result, *err;
136 	int len;
137 	long max;
138 	char *kname;
139 
140 	result = audit_reusename(filename);
141 	if (result)
142 		return result;
143 
144 	result = __getname();
145 	if (unlikely(!result))
146 		return ERR_PTR(-ENOMEM);
147 
148 	/*
149 	 * First, try to embed the struct filename inside the names_cache
150 	 * allocation
151 	 */
152 	kname = (char *)result + sizeof(*result);
153 	result->name = kname;
154 	result->separate = false;
155 	max = EMBEDDED_NAME_MAX;
156 
157 recopy:
158 	len = strncpy_from_user(kname, filename, max);
159 	if (unlikely(len < 0)) {
160 		err = ERR_PTR(len);
161 		goto error;
162 	}
163 
164 	/*
165 	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
166 	 * separate struct filename so we can dedicate the entire
167 	 * names_cache allocation for the pathname, and re-do the copy from
168 	 * userland.
169 	 */
170 	if (len == EMBEDDED_NAME_MAX && max == EMBEDDED_NAME_MAX) {
171 		kname = (char *)result;
172 
173 		result = kzalloc(sizeof(*result), GFP_KERNEL);
174 		if (!result) {
175 			err = ERR_PTR(-ENOMEM);
176 			result = (struct filename *)kname;
177 			goto error;
178 		}
179 		result->name = kname;
180 		result->separate = true;
181 		max = PATH_MAX;
182 		goto recopy;
183 	}
184 
185 	/* The empty path is special. */
186 	if (unlikely(!len)) {
187 		if (empty)
188 			*empty = 1;
189 		err = ERR_PTR(-ENOENT);
190 		if (!(flags & LOOKUP_EMPTY))
191 			goto error;
192 	}
193 
194 	err = ERR_PTR(-ENAMETOOLONG);
195 	if (unlikely(len >= PATH_MAX))
196 		goto error;
197 
198 	result->uptr = filename;
199 	audit_getname(result);
200 	return result;
201 
202 error:
203 	final_putname(result);
204 	return err;
205 }
206 
207 struct filename *
208 getname(const char __user * filename)
209 {
210 	return getname_flags(filename, 0, NULL);
211 }
212 EXPORT_SYMBOL(getname);
213 
214 #ifdef CONFIG_AUDITSYSCALL
215 void putname(struct filename *name)
216 {
217 	if (unlikely(!audit_dummy_context()))
218 		return audit_putname(name);
219 	final_putname(name);
220 }
221 #endif
222 
223 static int check_acl(struct inode *inode, int mask)
224 {
225 #ifdef CONFIG_FS_POSIX_ACL
226 	struct posix_acl *acl;
227 
228 	if (mask & MAY_NOT_BLOCK) {
229 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
230 	        if (!acl)
231 	                return -EAGAIN;
232 		/* no ->get_acl() calls in RCU mode... */
233 		if (acl == ACL_NOT_CACHED)
234 			return -ECHILD;
235 	        return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
236 	}
237 
238 	acl = get_cached_acl(inode, ACL_TYPE_ACCESS);
239 
240 	/*
241 	 * A filesystem can force a ACL callback by just never filling the
242 	 * ACL cache. But normally you'd fill the cache either at inode
243 	 * instantiation time, or on the first ->get_acl call.
244 	 *
245 	 * If the filesystem doesn't have a get_acl() function at all, we'll
246 	 * just create the negative cache entry.
247 	 */
248 	if (acl == ACL_NOT_CACHED) {
249 	        if (inode->i_op->get_acl) {
250 			acl = inode->i_op->get_acl(inode, ACL_TYPE_ACCESS);
251 			if (IS_ERR(acl))
252 				return PTR_ERR(acl);
253 		} else {
254 		        set_cached_acl(inode, ACL_TYPE_ACCESS, NULL);
255 		        return -EAGAIN;
256 		}
257 	}
258 
259 	if (acl) {
260 	        int error = posix_acl_permission(inode, acl, mask);
261 	        posix_acl_release(acl);
262 	        return error;
263 	}
264 #endif
265 
266 	return -EAGAIN;
267 }
268 
269 /*
270  * This does the basic permission checking
271  */
272 static int acl_permission_check(struct inode *inode, int mask)
273 {
274 	unsigned int mode = inode->i_mode;
275 
276 	if (likely(uid_eq(current_fsuid(), inode->i_uid)))
277 		mode >>= 6;
278 	else {
279 		if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
280 			int error = check_acl(inode, mask);
281 			if (error != -EAGAIN)
282 				return error;
283 		}
284 
285 		if (in_group_p(inode->i_gid))
286 			mode >>= 3;
287 	}
288 
289 	/*
290 	 * If the DACs are ok we don't need any capability check.
291 	 */
292 	if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
293 		return 0;
294 	return -EACCES;
295 }
296 
297 /**
298  * generic_permission -  check for access rights on a Posix-like filesystem
299  * @inode:	inode to check access rights for
300  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
301  *
302  * Used to check for read/write/execute permissions on a file.
303  * We use "fsuid" for this, letting us set arbitrary permissions
304  * for filesystem access without changing the "normal" uids which
305  * are used for other things.
306  *
307  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
308  * request cannot be satisfied (eg. requires blocking or too much complexity).
309  * It would then be called again in ref-walk mode.
310  */
311 int generic_permission(struct inode *inode, int mask)
312 {
313 	int ret;
314 
315 	/*
316 	 * Do the basic permission checks.
317 	 */
318 	ret = acl_permission_check(inode, mask);
319 	if (ret != -EACCES)
320 		return ret;
321 
322 	if (S_ISDIR(inode->i_mode)) {
323 		/* DACs are overridable for directories */
324 		if (inode_capable(inode, CAP_DAC_OVERRIDE))
325 			return 0;
326 		if (!(mask & MAY_WRITE))
327 			if (inode_capable(inode, CAP_DAC_READ_SEARCH))
328 				return 0;
329 		return -EACCES;
330 	}
331 	/*
332 	 * Read/write DACs are always overridable.
333 	 * Executable DACs are overridable when there is
334 	 * at least one exec bit set.
335 	 */
336 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
337 		if (inode_capable(inode, CAP_DAC_OVERRIDE))
338 			return 0;
339 
340 	/*
341 	 * Searching includes executable on directories, else just read.
342 	 */
343 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
344 	if (mask == MAY_READ)
345 		if (inode_capable(inode, CAP_DAC_READ_SEARCH))
346 			return 0;
347 
348 	return -EACCES;
349 }
350 
351 /*
352  * We _really_ want to just do "generic_permission()" without
353  * even looking at the inode->i_op values. So we keep a cache
354  * flag in inode->i_opflags, that says "this has not special
355  * permission function, use the fast case".
356  */
357 static inline int do_inode_permission(struct inode *inode, int mask)
358 {
359 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
360 		if (likely(inode->i_op->permission))
361 			return inode->i_op->permission(inode, mask);
362 
363 		/* This gets set once for the inode lifetime */
364 		spin_lock(&inode->i_lock);
365 		inode->i_opflags |= IOP_FASTPERM;
366 		spin_unlock(&inode->i_lock);
367 	}
368 	return generic_permission(inode, mask);
369 }
370 
371 /**
372  * __inode_permission - Check for access rights to a given inode
373  * @inode: Inode to check permission on
374  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
375  *
376  * Check for read/write/execute permissions on an inode.
377  *
378  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
379  *
380  * This does not check for a read-only file system.  You probably want
381  * inode_permission().
382  */
383 int __inode_permission(struct inode *inode, int mask)
384 {
385 	int retval;
386 
387 	if (unlikely(mask & MAY_WRITE)) {
388 		/*
389 		 * Nobody gets write access to an immutable file.
390 		 */
391 		if (IS_IMMUTABLE(inode))
392 			return -EACCES;
393 	}
394 
395 	retval = do_inode_permission(inode, mask);
396 	if (retval)
397 		return retval;
398 
399 	retval = devcgroup_inode_permission(inode, mask);
400 	if (retval)
401 		return retval;
402 
403 	return security_inode_permission(inode, mask);
404 }
405 
406 /**
407  * sb_permission - Check superblock-level permissions
408  * @sb: Superblock of inode to check permission on
409  * @inode: Inode to check permission on
410  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
411  *
412  * Separate out file-system wide checks from inode-specific permission checks.
413  */
414 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
415 {
416 	if (unlikely(mask & MAY_WRITE)) {
417 		umode_t mode = inode->i_mode;
418 
419 		/* Nobody gets write access to a read-only fs. */
420 		if ((sb->s_flags & MS_RDONLY) &&
421 		    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
422 			return -EROFS;
423 	}
424 	return 0;
425 }
426 
427 /**
428  * inode_permission - Check for access rights to a given inode
429  * @inode: Inode to check permission on
430  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
431  *
432  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
433  * this, letting us set arbitrary permissions for filesystem access without
434  * changing the "normal" UIDs which are used for other things.
435  *
436  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
437  */
438 int inode_permission(struct inode *inode, int mask)
439 {
440 	int retval;
441 
442 	retval = sb_permission(inode->i_sb, inode, mask);
443 	if (retval)
444 		return retval;
445 	return __inode_permission(inode, mask);
446 }
447 
448 /**
449  * path_get - get a reference to a path
450  * @path: path to get the reference to
451  *
452  * Given a path increment the reference count to the dentry and the vfsmount.
453  */
454 void path_get(const struct path *path)
455 {
456 	mntget(path->mnt);
457 	dget(path->dentry);
458 }
459 EXPORT_SYMBOL(path_get);
460 
461 /**
462  * path_put - put a reference to a path
463  * @path: path to put the reference to
464  *
465  * Given a path decrement the reference count to the dentry and the vfsmount.
466  */
467 void path_put(const struct path *path)
468 {
469 	dput(path->dentry);
470 	mntput(path->mnt);
471 }
472 EXPORT_SYMBOL(path_put);
473 
474 /*
475  * Path walking has 2 modes, rcu-walk and ref-walk (see
476  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
477  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
478  * normal reference counts on dentries and vfsmounts to transition to rcu-walk
479  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
480  * got stuck, so ref-walk may continue from there. If this is not successful
481  * (eg. a seqcount has changed), then failure is returned and it's up to caller
482  * to restart the path walk from the beginning in ref-walk mode.
483  */
484 
485 static inline void lock_rcu_walk(void)
486 {
487 	br_read_lock(&vfsmount_lock);
488 	rcu_read_lock();
489 }
490 
491 static inline void unlock_rcu_walk(void)
492 {
493 	rcu_read_unlock();
494 	br_read_unlock(&vfsmount_lock);
495 }
496 
497 /**
498  * unlazy_walk - try to switch to ref-walk mode.
499  * @nd: nameidata pathwalk data
500  * @dentry: child of nd->path.dentry or NULL
501  * Returns: 0 on success, -ECHILD on failure
502  *
503  * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
504  * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
505  * @nd or NULL.  Must be called from rcu-walk context.
506  */
507 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
508 {
509 	struct fs_struct *fs = current->fs;
510 	struct dentry *parent = nd->path.dentry;
511 	int want_root = 0;
512 
513 	BUG_ON(!(nd->flags & LOOKUP_RCU));
514 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
515 		want_root = 1;
516 		spin_lock(&fs->lock);
517 		if (nd->root.mnt != fs->root.mnt ||
518 				nd->root.dentry != fs->root.dentry)
519 			goto err_root;
520 	}
521 	spin_lock(&parent->d_lock);
522 	if (!dentry) {
523 		if (!__d_rcu_to_refcount(parent, nd->seq))
524 			goto err_parent;
525 		BUG_ON(nd->inode != parent->d_inode);
526 	} else {
527 		if (dentry->d_parent != parent)
528 			goto err_parent;
529 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
530 		if (!__d_rcu_to_refcount(dentry, nd->seq))
531 			goto err_child;
532 		/*
533 		 * If the sequence check on the child dentry passed, then
534 		 * the child has not been removed from its parent. This
535 		 * means the parent dentry must be valid and able to take
536 		 * a reference at this point.
537 		 */
538 		BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent);
539 		BUG_ON(!parent->d_count);
540 		parent->d_count++;
541 		spin_unlock(&dentry->d_lock);
542 	}
543 	spin_unlock(&parent->d_lock);
544 	if (want_root) {
545 		path_get(&nd->root);
546 		spin_unlock(&fs->lock);
547 	}
548 	mntget(nd->path.mnt);
549 
550 	unlock_rcu_walk();
551 	nd->flags &= ~LOOKUP_RCU;
552 	return 0;
553 
554 err_child:
555 	spin_unlock(&dentry->d_lock);
556 err_parent:
557 	spin_unlock(&parent->d_lock);
558 err_root:
559 	if (want_root)
560 		spin_unlock(&fs->lock);
561 	return -ECHILD;
562 }
563 
564 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
565 {
566 	return dentry->d_op->d_revalidate(dentry, flags);
567 }
568 
569 /**
570  * complete_walk - successful completion of path walk
571  * @nd:  pointer nameidata
572  *
573  * If we had been in RCU mode, drop out of it and legitimize nd->path.
574  * Revalidate the final result, unless we'd already done that during
575  * the path walk or the filesystem doesn't ask for it.  Return 0 on
576  * success, -error on failure.  In case of failure caller does not
577  * need to drop nd->path.
578  */
579 static int complete_walk(struct nameidata *nd)
580 {
581 	struct dentry *dentry = nd->path.dentry;
582 	int status;
583 
584 	if (nd->flags & LOOKUP_RCU) {
585 		nd->flags &= ~LOOKUP_RCU;
586 		if (!(nd->flags & LOOKUP_ROOT))
587 			nd->root.mnt = NULL;
588 		spin_lock(&dentry->d_lock);
589 		if (unlikely(!__d_rcu_to_refcount(dentry, nd->seq))) {
590 			spin_unlock(&dentry->d_lock);
591 			unlock_rcu_walk();
592 			return -ECHILD;
593 		}
594 		BUG_ON(nd->inode != dentry->d_inode);
595 		spin_unlock(&dentry->d_lock);
596 		mntget(nd->path.mnt);
597 		unlock_rcu_walk();
598 	}
599 
600 	if (likely(!(nd->flags & LOOKUP_JUMPED)))
601 		return 0;
602 
603 	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
604 		return 0;
605 
606 	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
607 	if (status > 0)
608 		return 0;
609 
610 	if (!status)
611 		status = -ESTALE;
612 
613 	path_put(&nd->path);
614 	return status;
615 }
616 
617 static __always_inline void set_root(struct nameidata *nd)
618 {
619 	if (!nd->root.mnt)
620 		get_fs_root(current->fs, &nd->root);
621 }
622 
623 static int link_path_walk(const char *, struct nameidata *);
624 
625 static __always_inline void set_root_rcu(struct nameidata *nd)
626 {
627 	if (!nd->root.mnt) {
628 		struct fs_struct *fs = current->fs;
629 		unsigned seq;
630 
631 		do {
632 			seq = read_seqcount_begin(&fs->seq);
633 			nd->root = fs->root;
634 			nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
635 		} while (read_seqcount_retry(&fs->seq, seq));
636 	}
637 }
638 
639 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
640 {
641 	int ret;
642 
643 	if (IS_ERR(link))
644 		goto fail;
645 
646 	if (*link == '/') {
647 		set_root(nd);
648 		path_put(&nd->path);
649 		nd->path = nd->root;
650 		path_get(&nd->root);
651 		nd->flags |= LOOKUP_JUMPED;
652 	}
653 	nd->inode = nd->path.dentry->d_inode;
654 
655 	ret = link_path_walk(link, nd);
656 	return ret;
657 fail:
658 	path_put(&nd->path);
659 	return PTR_ERR(link);
660 }
661 
662 static void path_put_conditional(struct path *path, struct nameidata *nd)
663 {
664 	dput(path->dentry);
665 	if (path->mnt != nd->path.mnt)
666 		mntput(path->mnt);
667 }
668 
669 static inline void path_to_nameidata(const struct path *path,
670 					struct nameidata *nd)
671 {
672 	if (!(nd->flags & LOOKUP_RCU)) {
673 		dput(nd->path.dentry);
674 		if (nd->path.mnt != path->mnt)
675 			mntput(nd->path.mnt);
676 	}
677 	nd->path.mnt = path->mnt;
678 	nd->path.dentry = path->dentry;
679 }
680 
681 /*
682  * Helper to directly jump to a known parsed path from ->follow_link,
683  * caller must have taken a reference to path beforehand.
684  */
685 void nd_jump_link(struct nameidata *nd, struct path *path)
686 {
687 	path_put(&nd->path);
688 
689 	nd->path = *path;
690 	nd->inode = nd->path.dentry->d_inode;
691 	nd->flags |= LOOKUP_JUMPED;
692 }
693 
694 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
695 {
696 	struct inode *inode = link->dentry->d_inode;
697 	if (inode->i_op->put_link)
698 		inode->i_op->put_link(link->dentry, nd, cookie);
699 	path_put(link);
700 }
701 
702 int sysctl_protected_symlinks __read_mostly = 0;
703 int sysctl_protected_hardlinks __read_mostly = 0;
704 
705 /**
706  * may_follow_link - Check symlink following for unsafe situations
707  * @link: The path of the symlink
708  * @nd: nameidata pathwalk data
709  *
710  * In the case of the sysctl_protected_symlinks sysctl being enabled,
711  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
712  * in a sticky world-writable directory. This is to protect privileged
713  * processes from failing races against path names that may change out
714  * from under them by way of other users creating malicious symlinks.
715  * It will permit symlinks to be followed only when outside a sticky
716  * world-writable directory, or when the uid of the symlink and follower
717  * match, or when the directory owner matches the symlink's owner.
718  *
719  * Returns 0 if following the symlink is allowed, -ve on error.
720  */
721 static inline int may_follow_link(struct path *link, struct nameidata *nd)
722 {
723 	const struct inode *inode;
724 	const struct inode *parent;
725 
726 	if (!sysctl_protected_symlinks)
727 		return 0;
728 
729 	/* Allowed if owner and follower match. */
730 	inode = link->dentry->d_inode;
731 	if (uid_eq(current_cred()->fsuid, inode->i_uid))
732 		return 0;
733 
734 	/* Allowed if parent directory not sticky and world-writable. */
735 	parent = nd->path.dentry->d_inode;
736 	if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
737 		return 0;
738 
739 	/* Allowed if parent directory and link owner match. */
740 	if (uid_eq(parent->i_uid, inode->i_uid))
741 		return 0;
742 
743 	audit_log_link_denied("follow_link", link);
744 	path_put_conditional(link, nd);
745 	path_put(&nd->path);
746 	return -EACCES;
747 }
748 
749 /**
750  * safe_hardlink_source - Check for safe hardlink conditions
751  * @inode: the source inode to hardlink from
752  *
753  * Return false if at least one of the following conditions:
754  *    - inode is not a regular file
755  *    - inode is setuid
756  *    - inode is setgid and group-exec
757  *    - access failure for read and write
758  *
759  * Otherwise returns true.
760  */
761 static bool safe_hardlink_source(struct inode *inode)
762 {
763 	umode_t mode = inode->i_mode;
764 
765 	/* Special files should not get pinned to the filesystem. */
766 	if (!S_ISREG(mode))
767 		return false;
768 
769 	/* Setuid files should not get pinned to the filesystem. */
770 	if (mode & S_ISUID)
771 		return false;
772 
773 	/* Executable setgid files should not get pinned to the filesystem. */
774 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
775 		return false;
776 
777 	/* Hardlinking to unreadable or unwritable sources is dangerous. */
778 	if (inode_permission(inode, MAY_READ | MAY_WRITE))
779 		return false;
780 
781 	return true;
782 }
783 
784 /**
785  * may_linkat - Check permissions for creating a hardlink
786  * @link: the source to hardlink from
787  *
788  * Block hardlink when all of:
789  *  - sysctl_protected_hardlinks enabled
790  *  - fsuid does not match inode
791  *  - hardlink source is unsafe (see safe_hardlink_source() above)
792  *  - not CAP_FOWNER
793  *
794  * Returns 0 if successful, -ve on error.
795  */
796 static int may_linkat(struct path *link)
797 {
798 	const struct cred *cred;
799 	struct inode *inode;
800 
801 	if (!sysctl_protected_hardlinks)
802 		return 0;
803 
804 	cred = current_cred();
805 	inode = link->dentry->d_inode;
806 
807 	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
808 	 * otherwise, it must be a safe source.
809 	 */
810 	if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) ||
811 	    capable(CAP_FOWNER))
812 		return 0;
813 
814 	audit_log_link_denied("linkat", link);
815 	return -EPERM;
816 }
817 
818 static __always_inline int
819 follow_link(struct path *link, struct nameidata *nd, void **p)
820 {
821 	struct dentry *dentry = link->dentry;
822 	int error;
823 	char *s;
824 
825 	BUG_ON(nd->flags & LOOKUP_RCU);
826 
827 	if (link->mnt == nd->path.mnt)
828 		mntget(link->mnt);
829 
830 	error = -ELOOP;
831 	if (unlikely(current->total_link_count >= 40))
832 		goto out_put_nd_path;
833 
834 	cond_resched();
835 	current->total_link_count++;
836 
837 	touch_atime(link);
838 	nd_set_link(nd, NULL);
839 
840 	error = security_inode_follow_link(link->dentry, nd);
841 	if (error)
842 		goto out_put_nd_path;
843 
844 	nd->last_type = LAST_BIND;
845 	*p = dentry->d_inode->i_op->follow_link(dentry, nd);
846 	error = PTR_ERR(*p);
847 	if (IS_ERR(*p))
848 		goto out_put_nd_path;
849 
850 	error = 0;
851 	s = nd_get_link(nd);
852 	if (s) {
853 		error = __vfs_follow_link(nd, s);
854 		if (unlikely(error))
855 			put_link(nd, link, *p);
856 	}
857 
858 	return error;
859 
860 out_put_nd_path:
861 	*p = NULL;
862 	path_put(&nd->path);
863 	path_put(link);
864 	return error;
865 }
866 
867 static int follow_up_rcu(struct path *path)
868 {
869 	struct mount *mnt = real_mount(path->mnt);
870 	struct mount *parent;
871 	struct dentry *mountpoint;
872 
873 	parent = mnt->mnt_parent;
874 	if (&parent->mnt == path->mnt)
875 		return 0;
876 	mountpoint = mnt->mnt_mountpoint;
877 	path->dentry = mountpoint;
878 	path->mnt = &parent->mnt;
879 	return 1;
880 }
881 
882 /*
883  * follow_up - Find the mountpoint of path's vfsmount
884  *
885  * Given a path, find the mountpoint of its source file system.
886  * Replace @path with the path of the mountpoint in the parent mount.
887  * Up is towards /.
888  *
889  * Return 1 if we went up a level and 0 if we were already at the
890  * root.
891  */
892 int follow_up(struct path *path)
893 {
894 	struct mount *mnt = real_mount(path->mnt);
895 	struct mount *parent;
896 	struct dentry *mountpoint;
897 
898 	br_read_lock(&vfsmount_lock);
899 	parent = mnt->mnt_parent;
900 	if (parent == mnt) {
901 		br_read_unlock(&vfsmount_lock);
902 		return 0;
903 	}
904 	mntget(&parent->mnt);
905 	mountpoint = dget(mnt->mnt_mountpoint);
906 	br_read_unlock(&vfsmount_lock);
907 	dput(path->dentry);
908 	path->dentry = mountpoint;
909 	mntput(path->mnt);
910 	path->mnt = &parent->mnt;
911 	return 1;
912 }
913 
914 /*
915  * Perform an automount
916  * - return -EISDIR to tell follow_managed() to stop and return the path we
917  *   were called with.
918  */
919 static int follow_automount(struct path *path, unsigned flags,
920 			    bool *need_mntput)
921 {
922 	struct vfsmount *mnt;
923 	int err;
924 
925 	if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
926 		return -EREMOTE;
927 
928 	/* We don't want to mount if someone's just doing a stat -
929 	 * unless they're stat'ing a directory and appended a '/' to
930 	 * the name.
931 	 *
932 	 * We do, however, want to mount if someone wants to open or
933 	 * create a file of any type under the mountpoint, wants to
934 	 * traverse through the mountpoint or wants to open the
935 	 * mounted directory.  Also, autofs may mark negative dentries
936 	 * as being automount points.  These will need the attentions
937 	 * of the daemon to instantiate them before they can be used.
938 	 */
939 	if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
940 		     LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
941 	    path->dentry->d_inode)
942 		return -EISDIR;
943 
944 	current->total_link_count++;
945 	if (current->total_link_count >= 40)
946 		return -ELOOP;
947 
948 	mnt = path->dentry->d_op->d_automount(path);
949 	if (IS_ERR(mnt)) {
950 		/*
951 		 * The filesystem is allowed to return -EISDIR here to indicate
952 		 * it doesn't want to automount.  For instance, autofs would do
953 		 * this so that its userspace daemon can mount on this dentry.
954 		 *
955 		 * However, we can only permit this if it's a terminal point in
956 		 * the path being looked up; if it wasn't then the remainder of
957 		 * the path is inaccessible and we should say so.
958 		 */
959 		if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
960 			return -EREMOTE;
961 		return PTR_ERR(mnt);
962 	}
963 
964 	if (!mnt) /* mount collision */
965 		return 0;
966 
967 	if (!*need_mntput) {
968 		/* lock_mount() may release path->mnt on error */
969 		mntget(path->mnt);
970 		*need_mntput = true;
971 	}
972 	err = finish_automount(mnt, path);
973 
974 	switch (err) {
975 	case -EBUSY:
976 		/* Someone else made a mount here whilst we were busy */
977 		return 0;
978 	case 0:
979 		path_put(path);
980 		path->mnt = mnt;
981 		path->dentry = dget(mnt->mnt_root);
982 		return 0;
983 	default:
984 		return err;
985 	}
986 
987 }
988 
989 /*
990  * Handle a dentry that is managed in some way.
991  * - Flagged for transit management (autofs)
992  * - Flagged as mountpoint
993  * - Flagged as automount point
994  *
995  * This may only be called in refwalk mode.
996  *
997  * Serialization is taken care of in namespace.c
998  */
999 static int follow_managed(struct path *path, unsigned flags)
1000 {
1001 	struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1002 	unsigned managed;
1003 	bool need_mntput = false;
1004 	int ret = 0;
1005 
1006 	/* Given that we're not holding a lock here, we retain the value in a
1007 	 * local variable for each dentry as we look at it so that we don't see
1008 	 * the components of that value change under us */
1009 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1010 	       managed &= DCACHE_MANAGED_DENTRY,
1011 	       unlikely(managed != 0)) {
1012 		/* Allow the filesystem to manage the transit without i_mutex
1013 		 * being held. */
1014 		if (managed & DCACHE_MANAGE_TRANSIT) {
1015 			BUG_ON(!path->dentry->d_op);
1016 			BUG_ON(!path->dentry->d_op->d_manage);
1017 			ret = path->dentry->d_op->d_manage(path->dentry, false);
1018 			if (ret < 0)
1019 				break;
1020 		}
1021 
1022 		/* Transit to a mounted filesystem. */
1023 		if (managed & DCACHE_MOUNTED) {
1024 			struct vfsmount *mounted = lookup_mnt(path);
1025 			if (mounted) {
1026 				dput(path->dentry);
1027 				if (need_mntput)
1028 					mntput(path->mnt);
1029 				path->mnt = mounted;
1030 				path->dentry = dget(mounted->mnt_root);
1031 				need_mntput = true;
1032 				continue;
1033 			}
1034 
1035 			/* Something is mounted on this dentry in another
1036 			 * namespace and/or whatever was mounted there in this
1037 			 * namespace got unmounted before we managed to get the
1038 			 * vfsmount_lock */
1039 		}
1040 
1041 		/* Handle an automount point */
1042 		if (managed & DCACHE_NEED_AUTOMOUNT) {
1043 			ret = follow_automount(path, flags, &need_mntput);
1044 			if (ret < 0)
1045 				break;
1046 			continue;
1047 		}
1048 
1049 		/* We didn't change the current path point */
1050 		break;
1051 	}
1052 
1053 	if (need_mntput && path->mnt == mnt)
1054 		mntput(path->mnt);
1055 	if (ret == -EISDIR)
1056 		ret = 0;
1057 	return ret < 0 ? ret : need_mntput;
1058 }
1059 
1060 int follow_down_one(struct path *path)
1061 {
1062 	struct vfsmount *mounted;
1063 
1064 	mounted = lookup_mnt(path);
1065 	if (mounted) {
1066 		dput(path->dentry);
1067 		mntput(path->mnt);
1068 		path->mnt = mounted;
1069 		path->dentry = dget(mounted->mnt_root);
1070 		return 1;
1071 	}
1072 	return 0;
1073 }
1074 
1075 static inline bool managed_dentry_might_block(struct dentry *dentry)
1076 {
1077 	return (dentry->d_flags & DCACHE_MANAGE_TRANSIT &&
1078 		dentry->d_op->d_manage(dentry, true) < 0);
1079 }
1080 
1081 /*
1082  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1083  * we meet a managed dentry that would need blocking.
1084  */
1085 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1086 			       struct inode **inode)
1087 {
1088 	for (;;) {
1089 		struct mount *mounted;
1090 		/*
1091 		 * Don't forget we might have a non-mountpoint managed dentry
1092 		 * that wants to block transit.
1093 		 */
1094 		if (unlikely(managed_dentry_might_block(path->dentry)))
1095 			return false;
1096 
1097 		if (!d_mountpoint(path->dentry))
1098 			break;
1099 
1100 		mounted = __lookup_mnt(path->mnt, path->dentry, 1);
1101 		if (!mounted)
1102 			break;
1103 		path->mnt = &mounted->mnt;
1104 		path->dentry = mounted->mnt.mnt_root;
1105 		nd->flags |= LOOKUP_JUMPED;
1106 		nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1107 		/*
1108 		 * Update the inode too. We don't need to re-check the
1109 		 * dentry sequence number here after this d_inode read,
1110 		 * because a mount-point is always pinned.
1111 		 */
1112 		*inode = path->dentry->d_inode;
1113 	}
1114 	return true;
1115 }
1116 
1117 static void follow_mount_rcu(struct nameidata *nd)
1118 {
1119 	while (d_mountpoint(nd->path.dentry)) {
1120 		struct mount *mounted;
1121 		mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry, 1);
1122 		if (!mounted)
1123 			break;
1124 		nd->path.mnt = &mounted->mnt;
1125 		nd->path.dentry = mounted->mnt.mnt_root;
1126 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1127 	}
1128 }
1129 
1130 static int follow_dotdot_rcu(struct nameidata *nd)
1131 {
1132 	set_root_rcu(nd);
1133 
1134 	while (1) {
1135 		if (nd->path.dentry == nd->root.dentry &&
1136 		    nd->path.mnt == nd->root.mnt) {
1137 			break;
1138 		}
1139 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1140 			struct dentry *old = nd->path.dentry;
1141 			struct dentry *parent = old->d_parent;
1142 			unsigned seq;
1143 
1144 			seq = read_seqcount_begin(&parent->d_seq);
1145 			if (read_seqcount_retry(&old->d_seq, nd->seq))
1146 				goto failed;
1147 			nd->path.dentry = parent;
1148 			nd->seq = seq;
1149 			break;
1150 		}
1151 		if (!follow_up_rcu(&nd->path))
1152 			break;
1153 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1154 	}
1155 	follow_mount_rcu(nd);
1156 	nd->inode = nd->path.dentry->d_inode;
1157 	return 0;
1158 
1159 failed:
1160 	nd->flags &= ~LOOKUP_RCU;
1161 	if (!(nd->flags & LOOKUP_ROOT))
1162 		nd->root.mnt = NULL;
1163 	unlock_rcu_walk();
1164 	return -ECHILD;
1165 }
1166 
1167 /*
1168  * Follow down to the covering mount currently visible to userspace.  At each
1169  * point, the filesystem owning that dentry may be queried as to whether the
1170  * caller is permitted to proceed or not.
1171  */
1172 int follow_down(struct path *path)
1173 {
1174 	unsigned managed;
1175 	int ret;
1176 
1177 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1178 	       unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1179 		/* Allow the filesystem to manage the transit without i_mutex
1180 		 * being held.
1181 		 *
1182 		 * We indicate to the filesystem if someone is trying to mount
1183 		 * something here.  This gives autofs the chance to deny anyone
1184 		 * other than its daemon the right to mount on its
1185 		 * superstructure.
1186 		 *
1187 		 * The filesystem may sleep at this point.
1188 		 */
1189 		if (managed & DCACHE_MANAGE_TRANSIT) {
1190 			BUG_ON(!path->dentry->d_op);
1191 			BUG_ON(!path->dentry->d_op->d_manage);
1192 			ret = path->dentry->d_op->d_manage(
1193 				path->dentry, false);
1194 			if (ret < 0)
1195 				return ret == -EISDIR ? 0 : ret;
1196 		}
1197 
1198 		/* Transit to a mounted filesystem. */
1199 		if (managed & DCACHE_MOUNTED) {
1200 			struct vfsmount *mounted = lookup_mnt(path);
1201 			if (!mounted)
1202 				break;
1203 			dput(path->dentry);
1204 			mntput(path->mnt);
1205 			path->mnt = mounted;
1206 			path->dentry = dget(mounted->mnt_root);
1207 			continue;
1208 		}
1209 
1210 		/* Don't handle automount points here */
1211 		break;
1212 	}
1213 	return 0;
1214 }
1215 
1216 /*
1217  * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1218  */
1219 static void follow_mount(struct path *path)
1220 {
1221 	while (d_mountpoint(path->dentry)) {
1222 		struct vfsmount *mounted = lookup_mnt(path);
1223 		if (!mounted)
1224 			break;
1225 		dput(path->dentry);
1226 		mntput(path->mnt);
1227 		path->mnt = mounted;
1228 		path->dentry = dget(mounted->mnt_root);
1229 	}
1230 }
1231 
1232 static void follow_dotdot(struct nameidata *nd)
1233 {
1234 	set_root(nd);
1235 
1236 	while(1) {
1237 		struct dentry *old = nd->path.dentry;
1238 
1239 		if (nd->path.dentry == nd->root.dentry &&
1240 		    nd->path.mnt == nd->root.mnt) {
1241 			break;
1242 		}
1243 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1244 			/* rare case of legitimate dget_parent()... */
1245 			nd->path.dentry = dget_parent(nd->path.dentry);
1246 			dput(old);
1247 			break;
1248 		}
1249 		if (!follow_up(&nd->path))
1250 			break;
1251 	}
1252 	follow_mount(&nd->path);
1253 	nd->inode = nd->path.dentry->d_inode;
1254 }
1255 
1256 /*
1257  * This looks up the name in dcache, possibly revalidates the old dentry and
1258  * allocates a new one if not found or not valid.  In the need_lookup argument
1259  * returns whether i_op->lookup is necessary.
1260  *
1261  * dir->d_inode->i_mutex must be held
1262  */
1263 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1264 				    unsigned int flags, bool *need_lookup)
1265 {
1266 	struct dentry *dentry;
1267 	int error;
1268 
1269 	*need_lookup = false;
1270 	dentry = d_lookup(dir, name);
1271 	if (dentry) {
1272 		if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1273 			error = d_revalidate(dentry, flags);
1274 			if (unlikely(error <= 0)) {
1275 				if (error < 0) {
1276 					dput(dentry);
1277 					return ERR_PTR(error);
1278 				} else if (!d_invalidate(dentry)) {
1279 					dput(dentry);
1280 					dentry = NULL;
1281 				}
1282 			}
1283 		}
1284 	}
1285 
1286 	if (!dentry) {
1287 		dentry = d_alloc(dir, name);
1288 		if (unlikely(!dentry))
1289 			return ERR_PTR(-ENOMEM);
1290 
1291 		*need_lookup = true;
1292 	}
1293 	return dentry;
1294 }
1295 
1296 /*
1297  * Call i_op->lookup on the dentry.  The dentry must be negative but may be
1298  * hashed if it was pouplated with DCACHE_NEED_LOOKUP.
1299  *
1300  * dir->d_inode->i_mutex must be held
1301  */
1302 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1303 				  unsigned int flags)
1304 {
1305 	struct dentry *old;
1306 
1307 	/* Don't create child dentry for a dead directory. */
1308 	if (unlikely(IS_DEADDIR(dir))) {
1309 		dput(dentry);
1310 		return ERR_PTR(-ENOENT);
1311 	}
1312 
1313 	old = dir->i_op->lookup(dir, dentry, flags);
1314 	if (unlikely(old)) {
1315 		dput(dentry);
1316 		dentry = old;
1317 	}
1318 	return dentry;
1319 }
1320 
1321 static struct dentry *__lookup_hash(struct qstr *name,
1322 		struct dentry *base, unsigned int flags)
1323 {
1324 	bool need_lookup;
1325 	struct dentry *dentry;
1326 
1327 	dentry = lookup_dcache(name, base, flags, &need_lookup);
1328 	if (!need_lookup)
1329 		return dentry;
1330 
1331 	return lookup_real(base->d_inode, dentry, flags);
1332 }
1333 
1334 /*
1335  *  It's more convoluted than I'd like it to be, but... it's still fairly
1336  *  small and for now I'd prefer to have fast path as straight as possible.
1337  *  It _is_ time-critical.
1338  */
1339 static int lookup_fast(struct nameidata *nd,
1340 		       struct path *path, struct inode **inode)
1341 {
1342 	struct vfsmount *mnt = nd->path.mnt;
1343 	struct dentry *dentry, *parent = nd->path.dentry;
1344 	int need_reval = 1;
1345 	int status = 1;
1346 	int err;
1347 
1348 	/*
1349 	 * Rename seqlock is not required here because in the off chance
1350 	 * of a false negative due to a concurrent rename, we're going to
1351 	 * do the non-racy lookup, below.
1352 	 */
1353 	if (nd->flags & LOOKUP_RCU) {
1354 		unsigned seq;
1355 		dentry = __d_lookup_rcu(parent, &nd->last, &seq, nd->inode);
1356 		if (!dentry)
1357 			goto unlazy;
1358 
1359 		/*
1360 		 * This sequence count validates that the inode matches
1361 		 * the dentry name information from lookup.
1362 		 */
1363 		*inode = dentry->d_inode;
1364 		if (read_seqcount_retry(&dentry->d_seq, seq))
1365 			return -ECHILD;
1366 
1367 		/*
1368 		 * This sequence count validates that the parent had no
1369 		 * changes while we did the lookup of the dentry above.
1370 		 *
1371 		 * The memory barrier in read_seqcount_begin of child is
1372 		 *  enough, we can use __read_seqcount_retry here.
1373 		 */
1374 		if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1375 			return -ECHILD;
1376 		nd->seq = seq;
1377 
1378 		if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1379 			status = d_revalidate(dentry, nd->flags);
1380 			if (unlikely(status <= 0)) {
1381 				if (status != -ECHILD)
1382 					need_reval = 0;
1383 				goto unlazy;
1384 			}
1385 		}
1386 		path->mnt = mnt;
1387 		path->dentry = dentry;
1388 		if (unlikely(!__follow_mount_rcu(nd, path, inode)))
1389 			goto unlazy;
1390 		if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1391 			goto unlazy;
1392 		return 0;
1393 unlazy:
1394 		if (unlazy_walk(nd, dentry))
1395 			return -ECHILD;
1396 	} else {
1397 		dentry = __d_lookup(parent, &nd->last);
1398 	}
1399 
1400 	if (unlikely(!dentry))
1401 		goto need_lookup;
1402 
1403 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1404 		status = d_revalidate(dentry, nd->flags);
1405 	if (unlikely(status <= 0)) {
1406 		if (status < 0) {
1407 			dput(dentry);
1408 			return status;
1409 		}
1410 		if (!d_invalidate(dentry)) {
1411 			dput(dentry);
1412 			goto need_lookup;
1413 		}
1414 	}
1415 
1416 	path->mnt = mnt;
1417 	path->dentry = dentry;
1418 	err = follow_managed(path, nd->flags);
1419 	if (unlikely(err < 0)) {
1420 		path_put_conditional(path, nd);
1421 		return err;
1422 	}
1423 	if (err)
1424 		nd->flags |= LOOKUP_JUMPED;
1425 	*inode = path->dentry->d_inode;
1426 	return 0;
1427 
1428 need_lookup:
1429 	return 1;
1430 }
1431 
1432 /* Fast lookup failed, do it the slow way */
1433 static int lookup_slow(struct nameidata *nd, struct path *path)
1434 {
1435 	struct dentry *dentry, *parent;
1436 	int err;
1437 
1438 	parent = nd->path.dentry;
1439 	BUG_ON(nd->inode != parent->d_inode);
1440 
1441 	mutex_lock(&parent->d_inode->i_mutex);
1442 	dentry = __lookup_hash(&nd->last, parent, nd->flags);
1443 	mutex_unlock(&parent->d_inode->i_mutex);
1444 	if (IS_ERR(dentry))
1445 		return PTR_ERR(dentry);
1446 	path->mnt = nd->path.mnt;
1447 	path->dentry = dentry;
1448 	err = follow_managed(path, nd->flags);
1449 	if (unlikely(err < 0)) {
1450 		path_put_conditional(path, nd);
1451 		return err;
1452 	}
1453 	if (err)
1454 		nd->flags |= LOOKUP_JUMPED;
1455 	return 0;
1456 }
1457 
1458 static inline int may_lookup(struct nameidata *nd)
1459 {
1460 	if (nd->flags & LOOKUP_RCU) {
1461 		int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1462 		if (err != -ECHILD)
1463 			return err;
1464 		if (unlazy_walk(nd, NULL))
1465 			return -ECHILD;
1466 	}
1467 	return inode_permission(nd->inode, MAY_EXEC);
1468 }
1469 
1470 static inline int handle_dots(struct nameidata *nd, int type)
1471 {
1472 	if (type == LAST_DOTDOT) {
1473 		if (nd->flags & LOOKUP_RCU) {
1474 			if (follow_dotdot_rcu(nd))
1475 				return -ECHILD;
1476 		} else
1477 			follow_dotdot(nd);
1478 	}
1479 	return 0;
1480 }
1481 
1482 static void terminate_walk(struct nameidata *nd)
1483 {
1484 	if (!(nd->flags & LOOKUP_RCU)) {
1485 		path_put(&nd->path);
1486 	} else {
1487 		nd->flags &= ~LOOKUP_RCU;
1488 		if (!(nd->flags & LOOKUP_ROOT))
1489 			nd->root.mnt = NULL;
1490 		unlock_rcu_walk();
1491 	}
1492 }
1493 
1494 /*
1495  * Do we need to follow links? We _really_ want to be able
1496  * to do this check without having to look at inode->i_op,
1497  * so we keep a cache of "no, this doesn't need follow_link"
1498  * for the common case.
1499  */
1500 static inline int should_follow_link(struct inode *inode, int follow)
1501 {
1502 	if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1503 		if (likely(inode->i_op->follow_link))
1504 			return follow;
1505 
1506 		/* This gets set once for the inode lifetime */
1507 		spin_lock(&inode->i_lock);
1508 		inode->i_opflags |= IOP_NOFOLLOW;
1509 		spin_unlock(&inode->i_lock);
1510 	}
1511 	return 0;
1512 }
1513 
1514 static inline int walk_component(struct nameidata *nd, struct path *path,
1515 		int follow)
1516 {
1517 	struct inode *inode;
1518 	int err;
1519 	/*
1520 	 * "." and ".." are special - ".." especially so because it has
1521 	 * to be able to know about the current root directory and
1522 	 * parent relationships.
1523 	 */
1524 	if (unlikely(nd->last_type != LAST_NORM))
1525 		return handle_dots(nd, nd->last_type);
1526 	err = lookup_fast(nd, path, &inode);
1527 	if (unlikely(err)) {
1528 		if (err < 0)
1529 			goto out_err;
1530 
1531 		err = lookup_slow(nd, path);
1532 		if (err < 0)
1533 			goto out_err;
1534 
1535 		inode = path->dentry->d_inode;
1536 	}
1537 	err = -ENOENT;
1538 	if (!inode)
1539 		goto out_path_put;
1540 
1541 	if (should_follow_link(inode, follow)) {
1542 		if (nd->flags & LOOKUP_RCU) {
1543 			if (unlikely(unlazy_walk(nd, path->dentry))) {
1544 				err = -ECHILD;
1545 				goto out_err;
1546 			}
1547 		}
1548 		BUG_ON(inode != path->dentry->d_inode);
1549 		return 1;
1550 	}
1551 	path_to_nameidata(path, nd);
1552 	nd->inode = inode;
1553 	return 0;
1554 
1555 out_path_put:
1556 	path_to_nameidata(path, nd);
1557 out_err:
1558 	terminate_walk(nd);
1559 	return err;
1560 }
1561 
1562 /*
1563  * This limits recursive symlink follows to 8, while
1564  * limiting consecutive symlinks to 40.
1565  *
1566  * Without that kind of total limit, nasty chains of consecutive
1567  * symlinks can cause almost arbitrarily long lookups.
1568  */
1569 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1570 {
1571 	int res;
1572 
1573 	if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1574 		path_put_conditional(path, nd);
1575 		path_put(&nd->path);
1576 		return -ELOOP;
1577 	}
1578 	BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1579 
1580 	nd->depth++;
1581 	current->link_count++;
1582 
1583 	do {
1584 		struct path link = *path;
1585 		void *cookie;
1586 
1587 		res = follow_link(&link, nd, &cookie);
1588 		if (res)
1589 			break;
1590 		res = walk_component(nd, path, LOOKUP_FOLLOW);
1591 		put_link(nd, &link, cookie);
1592 	} while (res > 0);
1593 
1594 	current->link_count--;
1595 	nd->depth--;
1596 	return res;
1597 }
1598 
1599 /*
1600  * We really don't want to look at inode->i_op->lookup
1601  * when we don't have to. So we keep a cache bit in
1602  * the inode ->i_opflags field that says "yes, we can
1603  * do lookup on this inode".
1604  */
1605 static inline int can_lookup(struct inode *inode)
1606 {
1607 	if (likely(inode->i_opflags & IOP_LOOKUP))
1608 		return 1;
1609 	if (likely(!inode->i_op->lookup))
1610 		return 0;
1611 
1612 	/* We do this once for the lifetime of the inode */
1613 	spin_lock(&inode->i_lock);
1614 	inode->i_opflags |= IOP_LOOKUP;
1615 	spin_unlock(&inode->i_lock);
1616 	return 1;
1617 }
1618 
1619 /*
1620  * We can do the critical dentry name comparison and hashing
1621  * operations one word at a time, but we are limited to:
1622  *
1623  * - Architectures with fast unaligned word accesses. We could
1624  *   do a "get_unaligned()" if this helps and is sufficiently
1625  *   fast.
1626  *
1627  * - Little-endian machines (so that we can generate the mask
1628  *   of low bytes efficiently). Again, we *could* do a byte
1629  *   swapping load on big-endian architectures if that is not
1630  *   expensive enough to make the optimization worthless.
1631  *
1632  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1633  *   do not trap on the (extremely unlikely) case of a page
1634  *   crossing operation.
1635  *
1636  * - Furthermore, we need an efficient 64-bit compile for the
1637  *   64-bit case in order to generate the "number of bytes in
1638  *   the final mask". Again, that could be replaced with a
1639  *   efficient population count instruction or similar.
1640  */
1641 #ifdef CONFIG_DCACHE_WORD_ACCESS
1642 
1643 #include <asm/word-at-a-time.h>
1644 
1645 #ifdef CONFIG_64BIT
1646 
1647 static inline unsigned int fold_hash(unsigned long hash)
1648 {
1649 	hash += hash >> (8*sizeof(int));
1650 	return hash;
1651 }
1652 
1653 #else	/* 32-bit case */
1654 
1655 #define fold_hash(x) (x)
1656 
1657 #endif
1658 
1659 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1660 {
1661 	unsigned long a, mask;
1662 	unsigned long hash = 0;
1663 
1664 	for (;;) {
1665 		a = load_unaligned_zeropad(name);
1666 		if (len < sizeof(unsigned long))
1667 			break;
1668 		hash += a;
1669 		hash *= 9;
1670 		name += sizeof(unsigned long);
1671 		len -= sizeof(unsigned long);
1672 		if (!len)
1673 			goto done;
1674 	}
1675 	mask = ~(~0ul << len*8);
1676 	hash += mask & a;
1677 done:
1678 	return fold_hash(hash);
1679 }
1680 EXPORT_SYMBOL(full_name_hash);
1681 
1682 /*
1683  * Calculate the length and hash of the path component, and
1684  * return the length of the component;
1685  */
1686 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1687 {
1688 	unsigned long a, b, adata, bdata, mask, hash, len;
1689 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1690 
1691 	hash = a = 0;
1692 	len = -sizeof(unsigned long);
1693 	do {
1694 		hash = (hash + a) * 9;
1695 		len += sizeof(unsigned long);
1696 		a = load_unaligned_zeropad(name+len);
1697 		b = a ^ REPEAT_BYTE('/');
1698 	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1699 
1700 	adata = prep_zero_mask(a, adata, &constants);
1701 	bdata = prep_zero_mask(b, bdata, &constants);
1702 
1703 	mask = create_zero_mask(adata | bdata);
1704 
1705 	hash += a & zero_bytemask(mask);
1706 	*hashp = fold_hash(hash);
1707 
1708 	return len + find_zero(mask);
1709 }
1710 
1711 #else
1712 
1713 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1714 {
1715 	unsigned long hash = init_name_hash();
1716 	while (len--)
1717 		hash = partial_name_hash(*name++, hash);
1718 	return end_name_hash(hash);
1719 }
1720 EXPORT_SYMBOL(full_name_hash);
1721 
1722 /*
1723  * We know there's a real path component here of at least
1724  * one character.
1725  */
1726 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1727 {
1728 	unsigned long hash = init_name_hash();
1729 	unsigned long len = 0, c;
1730 
1731 	c = (unsigned char)*name;
1732 	do {
1733 		len++;
1734 		hash = partial_name_hash(c, hash);
1735 		c = (unsigned char)name[len];
1736 	} while (c && c != '/');
1737 	*hashp = end_name_hash(hash);
1738 	return len;
1739 }
1740 
1741 #endif
1742 
1743 /*
1744  * Name resolution.
1745  * This is the basic name resolution function, turning a pathname into
1746  * the final dentry. We expect 'base' to be positive and a directory.
1747  *
1748  * Returns 0 and nd will have valid dentry and mnt on success.
1749  * Returns error and drops reference to input namei data on failure.
1750  */
1751 static int link_path_walk(const char *name, struct nameidata *nd)
1752 {
1753 	struct path next;
1754 	int err;
1755 
1756 	while (*name=='/')
1757 		name++;
1758 	if (!*name)
1759 		return 0;
1760 
1761 	/* At this point we know we have a real path component. */
1762 	for(;;) {
1763 		struct qstr this;
1764 		long len;
1765 		int type;
1766 
1767 		err = may_lookup(nd);
1768  		if (err)
1769 			break;
1770 
1771 		len = hash_name(name, &this.hash);
1772 		this.name = name;
1773 		this.len = len;
1774 
1775 		type = LAST_NORM;
1776 		if (name[0] == '.') switch (len) {
1777 			case 2:
1778 				if (name[1] == '.') {
1779 					type = LAST_DOTDOT;
1780 					nd->flags |= LOOKUP_JUMPED;
1781 				}
1782 				break;
1783 			case 1:
1784 				type = LAST_DOT;
1785 		}
1786 		if (likely(type == LAST_NORM)) {
1787 			struct dentry *parent = nd->path.dentry;
1788 			nd->flags &= ~LOOKUP_JUMPED;
1789 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1790 				err = parent->d_op->d_hash(parent, nd->inode,
1791 							   &this);
1792 				if (err < 0)
1793 					break;
1794 			}
1795 		}
1796 
1797 		nd->last = this;
1798 		nd->last_type = type;
1799 
1800 		if (!name[len])
1801 			return 0;
1802 		/*
1803 		 * If it wasn't NUL, we know it was '/'. Skip that
1804 		 * slash, and continue until no more slashes.
1805 		 */
1806 		do {
1807 			len++;
1808 		} while (unlikely(name[len] == '/'));
1809 		if (!name[len])
1810 			return 0;
1811 
1812 		name += len;
1813 
1814 		err = walk_component(nd, &next, LOOKUP_FOLLOW);
1815 		if (err < 0)
1816 			return err;
1817 
1818 		if (err) {
1819 			err = nested_symlink(&next, nd);
1820 			if (err)
1821 				return err;
1822 		}
1823 		if (!can_lookup(nd->inode)) {
1824 			err = -ENOTDIR;
1825 			break;
1826 		}
1827 	}
1828 	terminate_walk(nd);
1829 	return err;
1830 }
1831 
1832 static int path_init(int dfd, const char *name, unsigned int flags,
1833 		     struct nameidata *nd, struct file **fp)
1834 {
1835 	int retval = 0;
1836 
1837 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
1838 	nd->flags = flags | LOOKUP_JUMPED;
1839 	nd->depth = 0;
1840 	if (flags & LOOKUP_ROOT) {
1841 		struct inode *inode = nd->root.dentry->d_inode;
1842 		if (*name) {
1843 			if (!can_lookup(inode))
1844 				return -ENOTDIR;
1845 			retval = inode_permission(inode, MAY_EXEC);
1846 			if (retval)
1847 				return retval;
1848 		}
1849 		nd->path = nd->root;
1850 		nd->inode = inode;
1851 		if (flags & LOOKUP_RCU) {
1852 			lock_rcu_walk();
1853 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1854 		} else {
1855 			path_get(&nd->path);
1856 		}
1857 		return 0;
1858 	}
1859 
1860 	nd->root.mnt = NULL;
1861 
1862 	if (*name=='/') {
1863 		if (flags & LOOKUP_RCU) {
1864 			lock_rcu_walk();
1865 			set_root_rcu(nd);
1866 		} else {
1867 			set_root(nd);
1868 			path_get(&nd->root);
1869 		}
1870 		nd->path = nd->root;
1871 	} else if (dfd == AT_FDCWD) {
1872 		if (flags & LOOKUP_RCU) {
1873 			struct fs_struct *fs = current->fs;
1874 			unsigned seq;
1875 
1876 			lock_rcu_walk();
1877 
1878 			do {
1879 				seq = read_seqcount_begin(&fs->seq);
1880 				nd->path = fs->pwd;
1881 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1882 			} while (read_seqcount_retry(&fs->seq, seq));
1883 		} else {
1884 			get_fs_pwd(current->fs, &nd->path);
1885 		}
1886 	} else {
1887 		/* Caller must check execute permissions on the starting path component */
1888 		struct fd f = fdget_raw(dfd);
1889 		struct dentry *dentry;
1890 
1891 		if (!f.file)
1892 			return -EBADF;
1893 
1894 		dentry = f.file->f_path.dentry;
1895 
1896 		if (*name) {
1897 			if (!can_lookup(dentry->d_inode)) {
1898 				fdput(f);
1899 				return -ENOTDIR;
1900 			}
1901 		}
1902 
1903 		nd->path = f.file->f_path;
1904 		if (flags & LOOKUP_RCU) {
1905 			if (f.need_put)
1906 				*fp = f.file;
1907 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1908 			lock_rcu_walk();
1909 		} else {
1910 			path_get(&nd->path);
1911 			fdput(f);
1912 		}
1913 	}
1914 
1915 	nd->inode = nd->path.dentry->d_inode;
1916 	return 0;
1917 }
1918 
1919 static inline int lookup_last(struct nameidata *nd, struct path *path)
1920 {
1921 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1922 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1923 
1924 	nd->flags &= ~LOOKUP_PARENT;
1925 	return walk_component(nd, path, nd->flags & LOOKUP_FOLLOW);
1926 }
1927 
1928 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1929 static int path_lookupat(int dfd, const char *name,
1930 				unsigned int flags, struct nameidata *nd)
1931 {
1932 	struct file *base = NULL;
1933 	struct path path;
1934 	int err;
1935 
1936 	/*
1937 	 * Path walking is largely split up into 2 different synchronisation
1938 	 * schemes, rcu-walk and ref-walk (explained in
1939 	 * Documentation/filesystems/path-lookup.txt). These share much of the
1940 	 * path walk code, but some things particularly setup, cleanup, and
1941 	 * following mounts are sufficiently divergent that functions are
1942 	 * duplicated. Typically there is a function foo(), and its RCU
1943 	 * analogue, foo_rcu().
1944 	 *
1945 	 * -ECHILD is the error number of choice (just to avoid clashes) that
1946 	 * is returned if some aspect of an rcu-walk fails. Such an error must
1947 	 * be handled by restarting a traditional ref-walk (which will always
1948 	 * be able to complete).
1949 	 */
1950 	err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1951 
1952 	if (unlikely(err))
1953 		return err;
1954 
1955 	current->total_link_count = 0;
1956 	err = link_path_walk(name, nd);
1957 
1958 	if (!err && !(flags & LOOKUP_PARENT)) {
1959 		err = lookup_last(nd, &path);
1960 		while (err > 0) {
1961 			void *cookie;
1962 			struct path link = path;
1963 			err = may_follow_link(&link, nd);
1964 			if (unlikely(err))
1965 				break;
1966 			nd->flags |= LOOKUP_PARENT;
1967 			err = follow_link(&link, nd, &cookie);
1968 			if (err)
1969 				break;
1970 			err = lookup_last(nd, &path);
1971 			put_link(nd, &link, cookie);
1972 		}
1973 	}
1974 
1975 	if (!err)
1976 		err = complete_walk(nd);
1977 
1978 	if (!err && nd->flags & LOOKUP_DIRECTORY) {
1979 		if (!nd->inode->i_op->lookup) {
1980 			path_put(&nd->path);
1981 			err = -ENOTDIR;
1982 		}
1983 	}
1984 
1985 	if (base)
1986 		fput(base);
1987 
1988 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1989 		path_put(&nd->root);
1990 		nd->root.mnt = NULL;
1991 	}
1992 	return err;
1993 }
1994 
1995 static int filename_lookup(int dfd, struct filename *name,
1996 				unsigned int flags, struct nameidata *nd)
1997 {
1998 	int retval = path_lookupat(dfd, name->name, flags | LOOKUP_RCU, nd);
1999 	if (unlikely(retval == -ECHILD))
2000 		retval = path_lookupat(dfd, name->name, flags, nd);
2001 	if (unlikely(retval == -ESTALE))
2002 		retval = path_lookupat(dfd, name->name,
2003 						flags | LOOKUP_REVAL, nd);
2004 
2005 	if (likely(!retval))
2006 		audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT);
2007 	return retval;
2008 }
2009 
2010 static int do_path_lookup(int dfd, const char *name,
2011 				unsigned int flags, struct nameidata *nd)
2012 {
2013 	struct filename filename = { .name = name };
2014 
2015 	return filename_lookup(dfd, &filename, flags, nd);
2016 }
2017 
2018 /* does lookup, returns the object with parent locked */
2019 struct dentry *kern_path_locked(const char *name, struct path *path)
2020 {
2021 	struct nameidata nd;
2022 	struct dentry *d;
2023 	int err = do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, &nd);
2024 	if (err)
2025 		return ERR_PTR(err);
2026 	if (nd.last_type != LAST_NORM) {
2027 		path_put(&nd.path);
2028 		return ERR_PTR(-EINVAL);
2029 	}
2030 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2031 	d = __lookup_hash(&nd.last, nd.path.dentry, 0);
2032 	if (IS_ERR(d)) {
2033 		mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2034 		path_put(&nd.path);
2035 		return d;
2036 	}
2037 	*path = nd.path;
2038 	return d;
2039 }
2040 
2041 int kern_path(const char *name, unsigned int flags, struct path *path)
2042 {
2043 	struct nameidata nd;
2044 	int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
2045 	if (!res)
2046 		*path = nd.path;
2047 	return res;
2048 }
2049 
2050 /**
2051  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2052  * @dentry:  pointer to dentry of the base directory
2053  * @mnt: pointer to vfs mount of the base directory
2054  * @name: pointer to file name
2055  * @flags: lookup flags
2056  * @path: pointer to struct path to fill
2057  */
2058 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2059 		    const char *name, unsigned int flags,
2060 		    struct path *path)
2061 {
2062 	struct nameidata nd;
2063 	int err;
2064 	nd.root.dentry = dentry;
2065 	nd.root.mnt = mnt;
2066 	BUG_ON(flags & LOOKUP_PARENT);
2067 	/* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
2068 	err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
2069 	if (!err)
2070 		*path = nd.path;
2071 	return err;
2072 }
2073 
2074 /*
2075  * Restricted form of lookup. Doesn't follow links, single-component only,
2076  * needs parent already locked. Doesn't follow mounts.
2077  * SMP-safe.
2078  */
2079 static struct dentry *lookup_hash(struct nameidata *nd)
2080 {
2081 	return __lookup_hash(&nd->last, nd->path.dentry, nd->flags);
2082 }
2083 
2084 /**
2085  * lookup_one_len - filesystem helper to lookup single pathname component
2086  * @name:	pathname component to lookup
2087  * @base:	base directory to lookup from
2088  * @len:	maximum length @len should be interpreted to
2089  *
2090  * Note that this routine is purely a helper for filesystem usage and should
2091  * not be called by generic code.  Also note that by using this function the
2092  * nameidata argument is passed to the filesystem methods and a filesystem
2093  * using this helper needs to be prepared for that.
2094  */
2095 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2096 {
2097 	struct qstr this;
2098 	unsigned int c;
2099 	int err;
2100 
2101 	WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2102 
2103 	this.name = name;
2104 	this.len = len;
2105 	this.hash = full_name_hash(name, len);
2106 	if (!len)
2107 		return ERR_PTR(-EACCES);
2108 
2109 	if (unlikely(name[0] == '.')) {
2110 		if (len < 2 || (len == 2 && name[1] == '.'))
2111 			return ERR_PTR(-EACCES);
2112 	}
2113 
2114 	while (len--) {
2115 		c = *(const unsigned char *)name++;
2116 		if (c == '/' || c == '\0')
2117 			return ERR_PTR(-EACCES);
2118 	}
2119 	/*
2120 	 * See if the low-level filesystem might want
2121 	 * to use its own hash..
2122 	 */
2123 	if (base->d_flags & DCACHE_OP_HASH) {
2124 		int err = base->d_op->d_hash(base, base->d_inode, &this);
2125 		if (err < 0)
2126 			return ERR_PTR(err);
2127 	}
2128 
2129 	err = inode_permission(base->d_inode, MAY_EXEC);
2130 	if (err)
2131 		return ERR_PTR(err);
2132 
2133 	return __lookup_hash(&this, base, 0);
2134 }
2135 
2136 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2137 		 struct path *path, int *empty)
2138 {
2139 	struct nameidata nd;
2140 	struct filename *tmp = getname_flags(name, flags, empty);
2141 	int err = PTR_ERR(tmp);
2142 	if (!IS_ERR(tmp)) {
2143 
2144 		BUG_ON(flags & LOOKUP_PARENT);
2145 
2146 		err = filename_lookup(dfd, tmp, flags, &nd);
2147 		putname(tmp);
2148 		if (!err)
2149 			*path = nd.path;
2150 	}
2151 	return err;
2152 }
2153 
2154 int user_path_at(int dfd, const char __user *name, unsigned flags,
2155 		 struct path *path)
2156 {
2157 	return user_path_at_empty(dfd, name, flags, path, NULL);
2158 }
2159 
2160 /*
2161  * NB: most callers don't do anything directly with the reference to the
2162  *     to struct filename, but the nd->last pointer points into the name string
2163  *     allocated by getname. So we must hold the reference to it until all
2164  *     path-walking is complete.
2165  */
2166 static struct filename *
2167 user_path_parent(int dfd, const char __user *path, struct nameidata *nd,
2168 		 unsigned int flags)
2169 {
2170 	struct filename *s = getname(path);
2171 	int error;
2172 
2173 	/* only LOOKUP_REVAL is allowed in extra flags */
2174 	flags &= LOOKUP_REVAL;
2175 
2176 	if (IS_ERR(s))
2177 		return s;
2178 
2179 	error = filename_lookup(dfd, s, flags | LOOKUP_PARENT, nd);
2180 	if (error) {
2181 		putname(s);
2182 		return ERR_PTR(error);
2183 	}
2184 
2185 	return s;
2186 }
2187 
2188 /*
2189  * It's inline, so penalty for filesystems that don't use sticky bit is
2190  * minimal.
2191  */
2192 static inline int check_sticky(struct inode *dir, struct inode *inode)
2193 {
2194 	kuid_t fsuid = current_fsuid();
2195 
2196 	if (!(dir->i_mode & S_ISVTX))
2197 		return 0;
2198 	if (uid_eq(inode->i_uid, fsuid))
2199 		return 0;
2200 	if (uid_eq(dir->i_uid, fsuid))
2201 		return 0;
2202 	return !inode_capable(inode, CAP_FOWNER);
2203 }
2204 
2205 /*
2206  *	Check whether we can remove a link victim from directory dir, check
2207  *  whether the type of victim is right.
2208  *  1. We can't do it if dir is read-only (done in permission())
2209  *  2. We should have write and exec permissions on dir
2210  *  3. We can't remove anything from append-only dir
2211  *  4. We can't do anything with immutable dir (done in permission())
2212  *  5. If the sticky bit on dir is set we should either
2213  *	a. be owner of dir, or
2214  *	b. be owner of victim, or
2215  *	c. have CAP_FOWNER capability
2216  *  6. If the victim is append-only or immutable we can't do antyhing with
2217  *     links pointing to it.
2218  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2219  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2220  *  9. We can't remove a root or mountpoint.
2221  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2222  *     nfs_async_unlink().
2223  */
2224 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
2225 {
2226 	int error;
2227 
2228 	if (!victim->d_inode)
2229 		return -ENOENT;
2230 
2231 	BUG_ON(victim->d_parent->d_inode != dir);
2232 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2233 
2234 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2235 	if (error)
2236 		return error;
2237 	if (IS_APPEND(dir))
2238 		return -EPERM;
2239 	if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
2240 	    IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
2241 		return -EPERM;
2242 	if (isdir) {
2243 		if (!S_ISDIR(victim->d_inode->i_mode))
2244 			return -ENOTDIR;
2245 		if (IS_ROOT(victim))
2246 			return -EBUSY;
2247 	} else if (S_ISDIR(victim->d_inode->i_mode))
2248 		return -EISDIR;
2249 	if (IS_DEADDIR(dir))
2250 		return -ENOENT;
2251 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2252 		return -EBUSY;
2253 	return 0;
2254 }
2255 
2256 /*	Check whether we can create an object with dentry child in directory
2257  *  dir.
2258  *  1. We can't do it if child already exists (open has special treatment for
2259  *     this case, but since we are inlined it's OK)
2260  *  2. We can't do it if dir is read-only (done in permission())
2261  *  3. We should have write and exec permissions on dir
2262  *  4. We can't do it if dir is immutable (done in permission())
2263  */
2264 static inline int may_create(struct inode *dir, struct dentry *child)
2265 {
2266 	if (child->d_inode)
2267 		return -EEXIST;
2268 	if (IS_DEADDIR(dir))
2269 		return -ENOENT;
2270 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2271 }
2272 
2273 /*
2274  * p1 and p2 should be directories on the same fs.
2275  */
2276 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2277 {
2278 	struct dentry *p;
2279 
2280 	if (p1 == p2) {
2281 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2282 		return NULL;
2283 	}
2284 
2285 	mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2286 
2287 	p = d_ancestor(p2, p1);
2288 	if (p) {
2289 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2290 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2291 		return p;
2292 	}
2293 
2294 	p = d_ancestor(p1, p2);
2295 	if (p) {
2296 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2297 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2298 		return p;
2299 	}
2300 
2301 	mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2302 	mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2303 	return NULL;
2304 }
2305 
2306 void unlock_rename(struct dentry *p1, struct dentry *p2)
2307 {
2308 	mutex_unlock(&p1->d_inode->i_mutex);
2309 	if (p1 != p2) {
2310 		mutex_unlock(&p2->d_inode->i_mutex);
2311 		mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2312 	}
2313 }
2314 
2315 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2316 		bool want_excl)
2317 {
2318 	int error = may_create(dir, dentry);
2319 	if (error)
2320 		return error;
2321 
2322 	if (!dir->i_op->create)
2323 		return -EACCES;	/* shouldn't it be ENOSYS? */
2324 	mode &= S_IALLUGO;
2325 	mode |= S_IFREG;
2326 	error = security_inode_create(dir, dentry, mode);
2327 	if (error)
2328 		return error;
2329 	error = dir->i_op->create(dir, dentry, mode, want_excl);
2330 	if (!error)
2331 		fsnotify_create(dir, dentry);
2332 	return error;
2333 }
2334 
2335 static int may_open(struct path *path, int acc_mode, int flag)
2336 {
2337 	struct dentry *dentry = path->dentry;
2338 	struct inode *inode = dentry->d_inode;
2339 	int error;
2340 
2341 	/* O_PATH? */
2342 	if (!acc_mode)
2343 		return 0;
2344 
2345 	if (!inode)
2346 		return -ENOENT;
2347 
2348 	switch (inode->i_mode & S_IFMT) {
2349 	case S_IFLNK:
2350 		return -ELOOP;
2351 	case S_IFDIR:
2352 		if (acc_mode & MAY_WRITE)
2353 			return -EISDIR;
2354 		break;
2355 	case S_IFBLK:
2356 	case S_IFCHR:
2357 		if (path->mnt->mnt_flags & MNT_NODEV)
2358 			return -EACCES;
2359 		/*FALLTHRU*/
2360 	case S_IFIFO:
2361 	case S_IFSOCK:
2362 		flag &= ~O_TRUNC;
2363 		break;
2364 	}
2365 
2366 	error = inode_permission(inode, acc_mode);
2367 	if (error)
2368 		return error;
2369 
2370 	/*
2371 	 * An append-only file must be opened in append mode for writing.
2372 	 */
2373 	if (IS_APPEND(inode)) {
2374 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2375 			return -EPERM;
2376 		if (flag & O_TRUNC)
2377 			return -EPERM;
2378 	}
2379 
2380 	/* O_NOATIME can only be set by the owner or superuser */
2381 	if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2382 		return -EPERM;
2383 
2384 	return 0;
2385 }
2386 
2387 static int handle_truncate(struct file *filp)
2388 {
2389 	struct path *path = &filp->f_path;
2390 	struct inode *inode = path->dentry->d_inode;
2391 	int error = get_write_access(inode);
2392 	if (error)
2393 		return error;
2394 	/*
2395 	 * Refuse to truncate files with mandatory locks held on them.
2396 	 */
2397 	error = locks_verify_locked(inode);
2398 	if (!error)
2399 		error = security_path_truncate(path);
2400 	if (!error) {
2401 		error = do_truncate(path->dentry, 0,
2402 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2403 				    filp);
2404 	}
2405 	put_write_access(inode);
2406 	return error;
2407 }
2408 
2409 static inline int open_to_namei_flags(int flag)
2410 {
2411 	if ((flag & O_ACCMODE) == 3)
2412 		flag--;
2413 	return flag;
2414 }
2415 
2416 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2417 {
2418 	int error = security_path_mknod(dir, dentry, mode, 0);
2419 	if (error)
2420 		return error;
2421 
2422 	error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2423 	if (error)
2424 		return error;
2425 
2426 	return security_inode_create(dir->dentry->d_inode, dentry, mode);
2427 }
2428 
2429 /*
2430  * Attempt to atomically look up, create and open a file from a negative
2431  * dentry.
2432  *
2433  * Returns 0 if successful.  The file will have been created and attached to
2434  * @file by the filesystem calling finish_open().
2435  *
2436  * Returns 1 if the file was looked up only or didn't need creating.  The
2437  * caller will need to perform the open themselves.  @path will have been
2438  * updated to point to the new dentry.  This may be negative.
2439  *
2440  * Returns an error code otherwise.
2441  */
2442 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2443 			struct path *path, struct file *file,
2444 			const struct open_flags *op,
2445 			bool got_write, bool need_lookup,
2446 			int *opened)
2447 {
2448 	struct inode *dir =  nd->path.dentry->d_inode;
2449 	unsigned open_flag = open_to_namei_flags(op->open_flag);
2450 	umode_t mode;
2451 	int error;
2452 	int acc_mode;
2453 	int create_error = 0;
2454 	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2455 
2456 	BUG_ON(dentry->d_inode);
2457 
2458 	/* Don't create child dentry for a dead directory. */
2459 	if (unlikely(IS_DEADDIR(dir))) {
2460 		error = -ENOENT;
2461 		goto out;
2462 	}
2463 
2464 	mode = op->mode;
2465 	if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2466 		mode &= ~current_umask();
2467 
2468 	if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT)) {
2469 		open_flag &= ~O_TRUNC;
2470 		*opened |= FILE_CREATED;
2471 	}
2472 
2473 	/*
2474 	 * Checking write permission is tricky, bacuse we don't know if we are
2475 	 * going to actually need it: O_CREAT opens should work as long as the
2476 	 * file exists.  But checking existence breaks atomicity.  The trick is
2477 	 * to check access and if not granted clear O_CREAT from the flags.
2478 	 *
2479 	 * Another problem is returing the "right" error value (e.g. for an
2480 	 * O_EXCL open we want to return EEXIST not EROFS).
2481 	 */
2482 	if (((open_flag & (O_CREAT | O_TRUNC)) ||
2483 	    (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2484 		if (!(open_flag & O_CREAT)) {
2485 			/*
2486 			 * No O_CREATE -> atomicity not a requirement -> fall
2487 			 * back to lookup + open
2488 			 */
2489 			goto no_open;
2490 		} else if (open_flag & (O_EXCL | O_TRUNC)) {
2491 			/* Fall back and fail with the right error */
2492 			create_error = -EROFS;
2493 			goto no_open;
2494 		} else {
2495 			/* No side effects, safe to clear O_CREAT */
2496 			create_error = -EROFS;
2497 			open_flag &= ~O_CREAT;
2498 		}
2499 	}
2500 
2501 	if (open_flag & O_CREAT) {
2502 		error = may_o_create(&nd->path, dentry, mode);
2503 		if (error) {
2504 			create_error = error;
2505 			if (open_flag & O_EXCL)
2506 				goto no_open;
2507 			open_flag &= ~O_CREAT;
2508 		}
2509 	}
2510 
2511 	if (nd->flags & LOOKUP_DIRECTORY)
2512 		open_flag |= O_DIRECTORY;
2513 
2514 	file->f_path.dentry = DENTRY_NOT_SET;
2515 	file->f_path.mnt = nd->path.mnt;
2516 	error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2517 				      opened);
2518 	if (error < 0) {
2519 		if (create_error && error == -ENOENT)
2520 			error = create_error;
2521 		goto out;
2522 	}
2523 
2524 	acc_mode = op->acc_mode;
2525 	if (*opened & FILE_CREATED) {
2526 		fsnotify_create(dir, dentry);
2527 		acc_mode = MAY_OPEN;
2528 	}
2529 
2530 	if (error) {	/* returned 1, that is */
2531 		if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2532 			error = -EIO;
2533 			goto out;
2534 		}
2535 		if (file->f_path.dentry) {
2536 			dput(dentry);
2537 			dentry = file->f_path.dentry;
2538 		}
2539 		if (create_error && dentry->d_inode == NULL) {
2540 			error = create_error;
2541 			goto out;
2542 		}
2543 		goto looked_up;
2544 	}
2545 
2546 	/*
2547 	 * We didn't have the inode before the open, so check open permission
2548 	 * here.
2549 	 */
2550 	error = may_open(&file->f_path, acc_mode, open_flag);
2551 	if (error)
2552 		fput(file);
2553 
2554 out:
2555 	dput(dentry);
2556 	return error;
2557 
2558 no_open:
2559 	if (need_lookup) {
2560 		dentry = lookup_real(dir, dentry, nd->flags);
2561 		if (IS_ERR(dentry))
2562 			return PTR_ERR(dentry);
2563 
2564 		if (create_error) {
2565 			int open_flag = op->open_flag;
2566 
2567 			error = create_error;
2568 			if ((open_flag & O_EXCL)) {
2569 				if (!dentry->d_inode)
2570 					goto out;
2571 			} else if (!dentry->d_inode) {
2572 				goto out;
2573 			} else if ((open_flag & O_TRUNC) &&
2574 				   S_ISREG(dentry->d_inode->i_mode)) {
2575 				goto out;
2576 			}
2577 			/* will fail later, go on to get the right error */
2578 		}
2579 	}
2580 looked_up:
2581 	path->dentry = dentry;
2582 	path->mnt = nd->path.mnt;
2583 	return 1;
2584 }
2585 
2586 /*
2587  * Look up and maybe create and open the last component.
2588  *
2589  * Must be called with i_mutex held on parent.
2590  *
2591  * Returns 0 if the file was successfully atomically created (if necessary) and
2592  * opened.  In this case the file will be returned attached to @file.
2593  *
2594  * Returns 1 if the file was not completely opened at this time, though lookups
2595  * and creations will have been performed and the dentry returned in @path will
2596  * be positive upon return if O_CREAT was specified.  If O_CREAT wasn't
2597  * specified then a negative dentry may be returned.
2598  *
2599  * An error code is returned otherwise.
2600  *
2601  * FILE_CREATE will be set in @*opened if the dentry was created and will be
2602  * cleared otherwise prior to returning.
2603  */
2604 static int lookup_open(struct nameidata *nd, struct path *path,
2605 			struct file *file,
2606 			const struct open_flags *op,
2607 			bool got_write, int *opened)
2608 {
2609 	struct dentry *dir = nd->path.dentry;
2610 	struct inode *dir_inode = dir->d_inode;
2611 	struct dentry *dentry;
2612 	int error;
2613 	bool need_lookup;
2614 
2615 	*opened &= ~FILE_CREATED;
2616 	dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2617 	if (IS_ERR(dentry))
2618 		return PTR_ERR(dentry);
2619 
2620 	/* Cached positive dentry: will open in f_op->open */
2621 	if (!need_lookup && dentry->d_inode)
2622 		goto out_no_open;
2623 
2624 	if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2625 		return atomic_open(nd, dentry, path, file, op, got_write,
2626 				   need_lookup, opened);
2627 	}
2628 
2629 	if (need_lookup) {
2630 		BUG_ON(dentry->d_inode);
2631 
2632 		dentry = lookup_real(dir_inode, dentry, nd->flags);
2633 		if (IS_ERR(dentry))
2634 			return PTR_ERR(dentry);
2635 	}
2636 
2637 	/* Negative dentry, just create the file */
2638 	if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2639 		umode_t mode = op->mode;
2640 		if (!IS_POSIXACL(dir->d_inode))
2641 			mode &= ~current_umask();
2642 		/*
2643 		 * This write is needed to ensure that a
2644 		 * rw->ro transition does not occur between
2645 		 * the time when the file is created and when
2646 		 * a permanent write count is taken through
2647 		 * the 'struct file' in finish_open().
2648 		 */
2649 		if (!got_write) {
2650 			error = -EROFS;
2651 			goto out_dput;
2652 		}
2653 		*opened |= FILE_CREATED;
2654 		error = security_path_mknod(&nd->path, dentry, mode, 0);
2655 		if (error)
2656 			goto out_dput;
2657 		error = vfs_create(dir->d_inode, dentry, mode,
2658 				   nd->flags & LOOKUP_EXCL);
2659 		if (error)
2660 			goto out_dput;
2661 	}
2662 out_no_open:
2663 	path->dentry = dentry;
2664 	path->mnt = nd->path.mnt;
2665 	return 1;
2666 
2667 out_dput:
2668 	dput(dentry);
2669 	return error;
2670 }
2671 
2672 /*
2673  * Handle the last step of open()
2674  */
2675 static int do_last(struct nameidata *nd, struct path *path,
2676 		   struct file *file, const struct open_flags *op,
2677 		   int *opened, struct filename *name)
2678 {
2679 	struct dentry *dir = nd->path.dentry;
2680 	int open_flag = op->open_flag;
2681 	bool will_truncate = (open_flag & O_TRUNC) != 0;
2682 	bool got_write = false;
2683 	int acc_mode = op->acc_mode;
2684 	struct inode *inode;
2685 	bool symlink_ok = false;
2686 	struct path save_parent = { .dentry = NULL, .mnt = NULL };
2687 	bool retried = false;
2688 	int error;
2689 
2690 	nd->flags &= ~LOOKUP_PARENT;
2691 	nd->flags |= op->intent;
2692 
2693 	switch (nd->last_type) {
2694 	case LAST_DOTDOT:
2695 	case LAST_DOT:
2696 		error = handle_dots(nd, nd->last_type);
2697 		if (error)
2698 			return error;
2699 		/* fallthrough */
2700 	case LAST_ROOT:
2701 		error = complete_walk(nd);
2702 		if (error)
2703 			return error;
2704 		audit_inode(name, nd->path.dentry, 0);
2705 		if (open_flag & O_CREAT) {
2706 			error = -EISDIR;
2707 			goto out;
2708 		}
2709 		goto finish_open;
2710 	case LAST_BIND:
2711 		error = complete_walk(nd);
2712 		if (error)
2713 			return error;
2714 		audit_inode(name, dir, 0);
2715 		goto finish_open;
2716 	}
2717 
2718 	if (!(open_flag & O_CREAT)) {
2719 		if (nd->last.name[nd->last.len])
2720 			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2721 		if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2722 			symlink_ok = true;
2723 		/* we _can_ be in RCU mode here */
2724 		error = lookup_fast(nd, path, &inode);
2725 		if (likely(!error))
2726 			goto finish_lookup;
2727 
2728 		if (error < 0)
2729 			goto out;
2730 
2731 		BUG_ON(nd->inode != dir->d_inode);
2732 	} else {
2733 		/* create side of things */
2734 		/*
2735 		 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
2736 		 * has been cleared when we got to the last component we are
2737 		 * about to look up
2738 		 */
2739 		error = complete_walk(nd);
2740 		if (error)
2741 			return error;
2742 
2743 		audit_inode(name, dir, LOOKUP_PARENT);
2744 		error = -EISDIR;
2745 		/* trailing slashes? */
2746 		if (nd->last.name[nd->last.len])
2747 			goto out;
2748 	}
2749 
2750 retry_lookup:
2751 	if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
2752 		error = mnt_want_write(nd->path.mnt);
2753 		if (!error)
2754 			got_write = true;
2755 		/*
2756 		 * do _not_ fail yet - we might not need that or fail with
2757 		 * a different error; let lookup_open() decide; we'll be
2758 		 * dropping this one anyway.
2759 		 */
2760 	}
2761 	mutex_lock(&dir->d_inode->i_mutex);
2762 	error = lookup_open(nd, path, file, op, got_write, opened);
2763 	mutex_unlock(&dir->d_inode->i_mutex);
2764 
2765 	if (error <= 0) {
2766 		if (error)
2767 			goto out;
2768 
2769 		if ((*opened & FILE_CREATED) ||
2770 		    !S_ISREG(file_inode(file)->i_mode))
2771 			will_truncate = false;
2772 
2773 		audit_inode(name, file->f_path.dentry, 0);
2774 		goto opened;
2775 	}
2776 
2777 	if (*opened & FILE_CREATED) {
2778 		/* Don't check for write permission, don't truncate */
2779 		open_flag &= ~O_TRUNC;
2780 		will_truncate = false;
2781 		acc_mode = MAY_OPEN;
2782 		path_to_nameidata(path, nd);
2783 		goto finish_open_created;
2784 	}
2785 
2786 	/*
2787 	 * create/update audit record if it already exists.
2788 	 */
2789 	if (path->dentry->d_inode)
2790 		audit_inode(name, path->dentry, 0);
2791 
2792 	/*
2793 	 * If atomic_open() acquired write access it is dropped now due to
2794 	 * possible mount and symlink following (this might be optimized away if
2795 	 * necessary...)
2796 	 */
2797 	if (got_write) {
2798 		mnt_drop_write(nd->path.mnt);
2799 		got_write = false;
2800 	}
2801 
2802 	error = -EEXIST;
2803 	if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))
2804 		goto exit_dput;
2805 
2806 	error = follow_managed(path, nd->flags);
2807 	if (error < 0)
2808 		goto exit_dput;
2809 
2810 	if (error)
2811 		nd->flags |= LOOKUP_JUMPED;
2812 
2813 	BUG_ON(nd->flags & LOOKUP_RCU);
2814 	inode = path->dentry->d_inode;
2815 finish_lookup:
2816 	/* we _can_ be in RCU mode here */
2817 	error = -ENOENT;
2818 	if (!inode) {
2819 		path_to_nameidata(path, nd);
2820 		goto out;
2821 	}
2822 
2823 	if (should_follow_link(inode, !symlink_ok)) {
2824 		if (nd->flags & LOOKUP_RCU) {
2825 			if (unlikely(unlazy_walk(nd, path->dentry))) {
2826 				error = -ECHILD;
2827 				goto out;
2828 			}
2829 		}
2830 		BUG_ON(inode != path->dentry->d_inode);
2831 		return 1;
2832 	}
2833 
2834 	if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) {
2835 		path_to_nameidata(path, nd);
2836 	} else {
2837 		save_parent.dentry = nd->path.dentry;
2838 		save_parent.mnt = mntget(path->mnt);
2839 		nd->path.dentry = path->dentry;
2840 
2841 	}
2842 	nd->inode = inode;
2843 	/* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
2844 	error = complete_walk(nd);
2845 	if (error) {
2846 		path_put(&save_parent);
2847 		return error;
2848 	}
2849 	error = -EISDIR;
2850 	if ((open_flag & O_CREAT) && S_ISDIR(nd->inode->i_mode))
2851 		goto out;
2852 	error = -ENOTDIR;
2853 	if ((nd->flags & LOOKUP_DIRECTORY) && !nd->inode->i_op->lookup)
2854 		goto out;
2855 	audit_inode(name, nd->path.dentry, 0);
2856 finish_open:
2857 	if (!S_ISREG(nd->inode->i_mode))
2858 		will_truncate = false;
2859 
2860 	if (will_truncate) {
2861 		error = mnt_want_write(nd->path.mnt);
2862 		if (error)
2863 			goto out;
2864 		got_write = true;
2865 	}
2866 finish_open_created:
2867 	error = may_open(&nd->path, acc_mode, open_flag);
2868 	if (error)
2869 		goto out;
2870 	file->f_path.mnt = nd->path.mnt;
2871 	error = finish_open(file, nd->path.dentry, NULL, opened);
2872 	if (error) {
2873 		if (error == -EOPENSTALE)
2874 			goto stale_open;
2875 		goto out;
2876 	}
2877 opened:
2878 	error = open_check_o_direct(file);
2879 	if (error)
2880 		goto exit_fput;
2881 	error = ima_file_check(file, op->acc_mode);
2882 	if (error)
2883 		goto exit_fput;
2884 
2885 	if (will_truncate) {
2886 		error = handle_truncate(file);
2887 		if (error)
2888 			goto exit_fput;
2889 	}
2890 out:
2891 	if (got_write)
2892 		mnt_drop_write(nd->path.mnt);
2893 	path_put(&save_parent);
2894 	terminate_walk(nd);
2895 	return error;
2896 
2897 exit_dput:
2898 	path_put_conditional(path, nd);
2899 	goto out;
2900 exit_fput:
2901 	fput(file);
2902 	goto out;
2903 
2904 stale_open:
2905 	/* If no saved parent or already retried then can't retry */
2906 	if (!save_parent.dentry || retried)
2907 		goto out;
2908 
2909 	BUG_ON(save_parent.dentry != dir);
2910 	path_put(&nd->path);
2911 	nd->path = save_parent;
2912 	nd->inode = dir->d_inode;
2913 	save_parent.mnt = NULL;
2914 	save_parent.dentry = NULL;
2915 	if (got_write) {
2916 		mnt_drop_write(nd->path.mnt);
2917 		got_write = false;
2918 	}
2919 	retried = true;
2920 	goto retry_lookup;
2921 }
2922 
2923 static struct file *path_openat(int dfd, struct filename *pathname,
2924 		struct nameidata *nd, const struct open_flags *op, int flags)
2925 {
2926 	struct file *base = NULL;
2927 	struct file *file;
2928 	struct path path;
2929 	int opened = 0;
2930 	int error;
2931 
2932 	file = get_empty_filp();
2933 	if (IS_ERR(file))
2934 		return file;
2935 
2936 	file->f_flags = op->open_flag;
2937 
2938 	error = path_init(dfd, pathname->name, flags | LOOKUP_PARENT, nd, &base);
2939 	if (unlikely(error))
2940 		goto out;
2941 
2942 	current->total_link_count = 0;
2943 	error = link_path_walk(pathname->name, nd);
2944 	if (unlikely(error))
2945 		goto out;
2946 
2947 	error = do_last(nd, &path, file, op, &opened, pathname);
2948 	while (unlikely(error > 0)) { /* trailing symlink */
2949 		struct path link = path;
2950 		void *cookie;
2951 		if (!(nd->flags & LOOKUP_FOLLOW)) {
2952 			path_put_conditional(&path, nd);
2953 			path_put(&nd->path);
2954 			error = -ELOOP;
2955 			break;
2956 		}
2957 		error = may_follow_link(&link, nd);
2958 		if (unlikely(error))
2959 			break;
2960 		nd->flags |= LOOKUP_PARENT;
2961 		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
2962 		error = follow_link(&link, nd, &cookie);
2963 		if (unlikely(error))
2964 			break;
2965 		error = do_last(nd, &path, file, op, &opened, pathname);
2966 		put_link(nd, &link, cookie);
2967 	}
2968 out:
2969 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
2970 		path_put(&nd->root);
2971 	if (base)
2972 		fput(base);
2973 	if (!(opened & FILE_OPENED)) {
2974 		BUG_ON(!error);
2975 		put_filp(file);
2976 	}
2977 	if (unlikely(error)) {
2978 		if (error == -EOPENSTALE) {
2979 			if (flags & LOOKUP_RCU)
2980 				error = -ECHILD;
2981 			else
2982 				error = -ESTALE;
2983 		}
2984 		file = ERR_PTR(error);
2985 	}
2986 	return file;
2987 }
2988 
2989 struct file *do_filp_open(int dfd, struct filename *pathname,
2990 		const struct open_flags *op, int flags)
2991 {
2992 	struct nameidata nd;
2993 	struct file *filp;
2994 
2995 	filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
2996 	if (unlikely(filp == ERR_PTR(-ECHILD)))
2997 		filp = path_openat(dfd, pathname, &nd, op, flags);
2998 	if (unlikely(filp == ERR_PTR(-ESTALE)))
2999 		filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
3000 	return filp;
3001 }
3002 
3003 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3004 		const char *name, const struct open_flags *op, int flags)
3005 {
3006 	struct nameidata nd;
3007 	struct file *file;
3008 	struct filename filename = { .name = name };
3009 
3010 	nd.root.mnt = mnt;
3011 	nd.root.dentry = dentry;
3012 
3013 	flags |= LOOKUP_ROOT;
3014 
3015 	if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN)
3016 		return ERR_PTR(-ELOOP);
3017 
3018 	file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_RCU);
3019 	if (unlikely(file == ERR_PTR(-ECHILD)))
3020 		file = path_openat(-1, &filename, &nd, op, flags);
3021 	if (unlikely(file == ERR_PTR(-ESTALE)))
3022 		file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_REVAL);
3023 	return file;
3024 }
3025 
3026 struct dentry *kern_path_create(int dfd, const char *pathname,
3027 				struct path *path, unsigned int lookup_flags)
3028 {
3029 	struct dentry *dentry = ERR_PTR(-EEXIST);
3030 	struct nameidata nd;
3031 	int err2;
3032 	int error;
3033 	bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3034 
3035 	/*
3036 	 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3037 	 * other flags passed in are ignored!
3038 	 */
3039 	lookup_flags &= LOOKUP_REVAL;
3040 
3041 	error = do_path_lookup(dfd, pathname, LOOKUP_PARENT|lookup_flags, &nd);
3042 	if (error)
3043 		return ERR_PTR(error);
3044 
3045 	/*
3046 	 * Yucky last component or no last component at all?
3047 	 * (foo/., foo/.., /////)
3048 	 */
3049 	if (nd.last_type != LAST_NORM)
3050 		goto out;
3051 	nd.flags &= ~LOOKUP_PARENT;
3052 	nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3053 
3054 	/* don't fail immediately if it's r/o, at least try to report other errors */
3055 	err2 = mnt_want_write(nd.path.mnt);
3056 	/*
3057 	 * Do the final lookup.
3058 	 */
3059 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3060 	dentry = lookup_hash(&nd);
3061 	if (IS_ERR(dentry))
3062 		goto unlock;
3063 
3064 	error = -EEXIST;
3065 	if (dentry->d_inode)
3066 		goto fail;
3067 	/*
3068 	 * Special case - lookup gave negative, but... we had foo/bar/
3069 	 * From the vfs_mknod() POV we just have a negative dentry -
3070 	 * all is fine. Let's be bastards - you had / on the end, you've
3071 	 * been asking for (non-existent) directory. -ENOENT for you.
3072 	 */
3073 	if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
3074 		error = -ENOENT;
3075 		goto fail;
3076 	}
3077 	if (unlikely(err2)) {
3078 		error = err2;
3079 		goto fail;
3080 	}
3081 	*path = nd.path;
3082 	return dentry;
3083 fail:
3084 	dput(dentry);
3085 	dentry = ERR_PTR(error);
3086 unlock:
3087 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3088 	if (!err2)
3089 		mnt_drop_write(nd.path.mnt);
3090 out:
3091 	path_put(&nd.path);
3092 	return dentry;
3093 }
3094 EXPORT_SYMBOL(kern_path_create);
3095 
3096 void done_path_create(struct path *path, struct dentry *dentry)
3097 {
3098 	dput(dentry);
3099 	mutex_unlock(&path->dentry->d_inode->i_mutex);
3100 	mnt_drop_write(path->mnt);
3101 	path_put(path);
3102 }
3103 EXPORT_SYMBOL(done_path_create);
3104 
3105 struct dentry *user_path_create(int dfd, const char __user *pathname,
3106 				struct path *path, unsigned int lookup_flags)
3107 {
3108 	struct filename *tmp = getname(pathname);
3109 	struct dentry *res;
3110 	if (IS_ERR(tmp))
3111 		return ERR_CAST(tmp);
3112 	res = kern_path_create(dfd, tmp->name, path, lookup_flags);
3113 	putname(tmp);
3114 	return res;
3115 }
3116 EXPORT_SYMBOL(user_path_create);
3117 
3118 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3119 {
3120 	int error = may_create(dir, dentry);
3121 
3122 	if (error)
3123 		return error;
3124 
3125 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3126 		return -EPERM;
3127 
3128 	if (!dir->i_op->mknod)
3129 		return -EPERM;
3130 
3131 	error = devcgroup_inode_mknod(mode, dev);
3132 	if (error)
3133 		return error;
3134 
3135 	error = security_inode_mknod(dir, dentry, mode, dev);
3136 	if (error)
3137 		return error;
3138 
3139 	error = dir->i_op->mknod(dir, dentry, mode, dev);
3140 	if (!error)
3141 		fsnotify_create(dir, dentry);
3142 	return error;
3143 }
3144 
3145 static int may_mknod(umode_t mode)
3146 {
3147 	switch (mode & S_IFMT) {
3148 	case S_IFREG:
3149 	case S_IFCHR:
3150 	case S_IFBLK:
3151 	case S_IFIFO:
3152 	case S_IFSOCK:
3153 	case 0: /* zero mode translates to S_IFREG */
3154 		return 0;
3155 	case S_IFDIR:
3156 		return -EPERM;
3157 	default:
3158 		return -EINVAL;
3159 	}
3160 }
3161 
3162 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3163 		unsigned, dev)
3164 {
3165 	struct dentry *dentry;
3166 	struct path path;
3167 	int error;
3168 	unsigned int lookup_flags = 0;
3169 
3170 	error = may_mknod(mode);
3171 	if (error)
3172 		return error;
3173 retry:
3174 	dentry = user_path_create(dfd, filename, &path, lookup_flags);
3175 	if (IS_ERR(dentry))
3176 		return PTR_ERR(dentry);
3177 
3178 	if (!IS_POSIXACL(path.dentry->d_inode))
3179 		mode &= ~current_umask();
3180 	error = security_path_mknod(&path, dentry, mode, dev);
3181 	if (error)
3182 		goto out;
3183 	switch (mode & S_IFMT) {
3184 		case 0: case S_IFREG:
3185 			error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3186 			break;
3187 		case S_IFCHR: case S_IFBLK:
3188 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3189 					new_decode_dev(dev));
3190 			break;
3191 		case S_IFIFO: case S_IFSOCK:
3192 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3193 			break;
3194 	}
3195 out:
3196 	done_path_create(&path, dentry);
3197 	if (retry_estale(error, lookup_flags)) {
3198 		lookup_flags |= LOOKUP_REVAL;
3199 		goto retry;
3200 	}
3201 	return error;
3202 }
3203 
3204 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3205 {
3206 	return sys_mknodat(AT_FDCWD, filename, mode, dev);
3207 }
3208 
3209 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3210 {
3211 	int error = may_create(dir, dentry);
3212 	unsigned max_links = dir->i_sb->s_max_links;
3213 
3214 	if (error)
3215 		return error;
3216 
3217 	if (!dir->i_op->mkdir)
3218 		return -EPERM;
3219 
3220 	mode &= (S_IRWXUGO|S_ISVTX);
3221 	error = security_inode_mkdir(dir, dentry, mode);
3222 	if (error)
3223 		return error;
3224 
3225 	if (max_links && dir->i_nlink >= max_links)
3226 		return -EMLINK;
3227 
3228 	error = dir->i_op->mkdir(dir, dentry, mode);
3229 	if (!error)
3230 		fsnotify_mkdir(dir, dentry);
3231 	return error;
3232 }
3233 
3234 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3235 {
3236 	struct dentry *dentry;
3237 	struct path path;
3238 	int error;
3239 	unsigned int lookup_flags = LOOKUP_DIRECTORY;
3240 
3241 retry:
3242 	dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3243 	if (IS_ERR(dentry))
3244 		return PTR_ERR(dentry);
3245 
3246 	if (!IS_POSIXACL(path.dentry->d_inode))
3247 		mode &= ~current_umask();
3248 	error = security_path_mkdir(&path, dentry, mode);
3249 	if (!error)
3250 		error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3251 	done_path_create(&path, dentry);
3252 	if (retry_estale(error, lookup_flags)) {
3253 		lookup_flags |= LOOKUP_REVAL;
3254 		goto retry;
3255 	}
3256 	return error;
3257 }
3258 
3259 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3260 {
3261 	return sys_mkdirat(AT_FDCWD, pathname, mode);
3262 }
3263 
3264 /*
3265  * The dentry_unhash() helper will try to drop the dentry early: we
3266  * should have a usage count of 1 if we're the only user of this
3267  * dentry, and if that is true (possibly after pruning the dcache),
3268  * then we drop the dentry now.
3269  *
3270  * A low-level filesystem can, if it choses, legally
3271  * do a
3272  *
3273  *	if (!d_unhashed(dentry))
3274  *		return -EBUSY;
3275  *
3276  * if it cannot handle the case of removing a directory
3277  * that is still in use by something else..
3278  */
3279 void dentry_unhash(struct dentry *dentry)
3280 {
3281 	shrink_dcache_parent(dentry);
3282 	spin_lock(&dentry->d_lock);
3283 	if (dentry->d_count == 1)
3284 		__d_drop(dentry);
3285 	spin_unlock(&dentry->d_lock);
3286 }
3287 
3288 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3289 {
3290 	int error = may_delete(dir, dentry, 1);
3291 
3292 	if (error)
3293 		return error;
3294 
3295 	if (!dir->i_op->rmdir)
3296 		return -EPERM;
3297 
3298 	dget(dentry);
3299 	mutex_lock(&dentry->d_inode->i_mutex);
3300 
3301 	error = -EBUSY;
3302 	if (d_mountpoint(dentry))
3303 		goto out;
3304 
3305 	error = security_inode_rmdir(dir, dentry);
3306 	if (error)
3307 		goto out;
3308 
3309 	shrink_dcache_parent(dentry);
3310 	error = dir->i_op->rmdir(dir, dentry);
3311 	if (error)
3312 		goto out;
3313 
3314 	dentry->d_inode->i_flags |= S_DEAD;
3315 	dont_mount(dentry);
3316 
3317 out:
3318 	mutex_unlock(&dentry->d_inode->i_mutex);
3319 	dput(dentry);
3320 	if (!error)
3321 		d_delete(dentry);
3322 	return error;
3323 }
3324 
3325 static long do_rmdir(int dfd, const char __user *pathname)
3326 {
3327 	int error = 0;
3328 	struct filename *name;
3329 	struct dentry *dentry;
3330 	struct nameidata nd;
3331 	unsigned int lookup_flags = 0;
3332 retry:
3333 	name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3334 	if (IS_ERR(name))
3335 		return PTR_ERR(name);
3336 
3337 	switch(nd.last_type) {
3338 	case LAST_DOTDOT:
3339 		error = -ENOTEMPTY;
3340 		goto exit1;
3341 	case LAST_DOT:
3342 		error = -EINVAL;
3343 		goto exit1;
3344 	case LAST_ROOT:
3345 		error = -EBUSY;
3346 		goto exit1;
3347 	}
3348 
3349 	nd.flags &= ~LOOKUP_PARENT;
3350 	error = mnt_want_write(nd.path.mnt);
3351 	if (error)
3352 		goto exit1;
3353 
3354 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3355 	dentry = lookup_hash(&nd);
3356 	error = PTR_ERR(dentry);
3357 	if (IS_ERR(dentry))
3358 		goto exit2;
3359 	if (!dentry->d_inode) {
3360 		error = -ENOENT;
3361 		goto exit3;
3362 	}
3363 	error = security_path_rmdir(&nd.path, dentry);
3364 	if (error)
3365 		goto exit3;
3366 	error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
3367 exit3:
3368 	dput(dentry);
3369 exit2:
3370 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3371 	mnt_drop_write(nd.path.mnt);
3372 exit1:
3373 	path_put(&nd.path);
3374 	putname(name);
3375 	if (retry_estale(error, lookup_flags)) {
3376 		lookup_flags |= LOOKUP_REVAL;
3377 		goto retry;
3378 	}
3379 	return error;
3380 }
3381 
3382 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3383 {
3384 	return do_rmdir(AT_FDCWD, pathname);
3385 }
3386 
3387 int vfs_unlink(struct inode *dir, struct dentry *dentry)
3388 {
3389 	int error = may_delete(dir, dentry, 0);
3390 
3391 	if (error)
3392 		return error;
3393 
3394 	if (!dir->i_op->unlink)
3395 		return -EPERM;
3396 
3397 	mutex_lock(&dentry->d_inode->i_mutex);
3398 	if (d_mountpoint(dentry))
3399 		error = -EBUSY;
3400 	else {
3401 		error = security_inode_unlink(dir, dentry);
3402 		if (!error) {
3403 			error = dir->i_op->unlink(dir, dentry);
3404 			if (!error)
3405 				dont_mount(dentry);
3406 		}
3407 	}
3408 	mutex_unlock(&dentry->d_inode->i_mutex);
3409 
3410 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
3411 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3412 		fsnotify_link_count(dentry->d_inode);
3413 		d_delete(dentry);
3414 	}
3415 
3416 	return error;
3417 }
3418 
3419 /*
3420  * Make sure that the actual truncation of the file will occur outside its
3421  * directory's i_mutex.  Truncate can take a long time if there is a lot of
3422  * writeout happening, and we don't want to prevent access to the directory
3423  * while waiting on the I/O.
3424  */
3425 static long do_unlinkat(int dfd, const char __user *pathname)
3426 {
3427 	int error;
3428 	struct filename *name;
3429 	struct dentry *dentry;
3430 	struct nameidata nd;
3431 	struct inode *inode = NULL;
3432 	unsigned int lookup_flags = 0;
3433 retry:
3434 	name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3435 	if (IS_ERR(name))
3436 		return PTR_ERR(name);
3437 
3438 	error = -EISDIR;
3439 	if (nd.last_type != LAST_NORM)
3440 		goto exit1;
3441 
3442 	nd.flags &= ~LOOKUP_PARENT;
3443 	error = mnt_want_write(nd.path.mnt);
3444 	if (error)
3445 		goto exit1;
3446 
3447 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3448 	dentry = lookup_hash(&nd);
3449 	error = PTR_ERR(dentry);
3450 	if (!IS_ERR(dentry)) {
3451 		/* Why not before? Because we want correct error value */
3452 		if (nd.last.name[nd.last.len])
3453 			goto slashes;
3454 		inode = dentry->d_inode;
3455 		if (!inode)
3456 			goto slashes;
3457 		ihold(inode);
3458 		error = security_path_unlink(&nd.path, dentry);
3459 		if (error)
3460 			goto exit2;
3461 		error = vfs_unlink(nd.path.dentry->d_inode, dentry);
3462 exit2:
3463 		dput(dentry);
3464 	}
3465 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3466 	if (inode)
3467 		iput(inode);	/* truncate the inode here */
3468 	mnt_drop_write(nd.path.mnt);
3469 exit1:
3470 	path_put(&nd.path);
3471 	putname(name);
3472 	if (retry_estale(error, lookup_flags)) {
3473 		lookup_flags |= LOOKUP_REVAL;
3474 		inode = NULL;
3475 		goto retry;
3476 	}
3477 	return error;
3478 
3479 slashes:
3480 	error = !dentry->d_inode ? -ENOENT :
3481 		S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
3482 	goto exit2;
3483 }
3484 
3485 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3486 {
3487 	if ((flag & ~AT_REMOVEDIR) != 0)
3488 		return -EINVAL;
3489 
3490 	if (flag & AT_REMOVEDIR)
3491 		return do_rmdir(dfd, pathname);
3492 
3493 	return do_unlinkat(dfd, pathname);
3494 }
3495 
3496 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3497 {
3498 	return do_unlinkat(AT_FDCWD, pathname);
3499 }
3500 
3501 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3502 {
3503 	int error = may_create(dir, dentry);
3504 
3505 	if (error)
3506 		return error;
3507 
3508 	if (!dir->i_op->symlink)
3509 		return -EPERM;
3510 
3511 	error = security_inode_symlink(dir, dentry, oldname);
3512 	if (error)
3513 		return error;
3514 
3515 	error = dir->i_op->symlink(dir, dentry, oldname);
3516 	if (!error)
3517 		fsnotify_create(dir, dentry);
3518 	return error;
3519 }
3520 
3521 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3522 		int, newdfd, const char __user *, newname)
3523 {
3524 	int error;
3525 	struct filename *from;
3526 	struct dentry *dentry;
3527 	struct path path;
3528 	unsigned int lookup_flags = 0;
3529 
3530 	from = getname(oldname);
3531 	if (IS_ERR(from))
3532 		return PTR_ERR(from);
3533 retry:
3534 	dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3535 	error = PTR_ERR(dentry);
3536 	if (IS_ERR(dentry))
3537 		goto out_putname;
3538 
3539 	error = security_path_symlink(&path, dentry, from->name);
3540 	if (!error)
3541 		error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3542 	done_path_create(&path, dentry);
3543 	if (retry_estale(error, lookup_flags)) {
3544 		lookup_flags |= LOOKUP_REVAL;
3545 		goto retry;
3546 	}
3547 out_putname:
3548 	putname(from);
3549 	return error;
3550 }
3551 
3552 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3553 {
3554 	return sys_symlinkat(oldname, AT_FDCWD, newname);
3555 }
3556 
3557 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3558 {
3559 	struct inode *inode = old_dentry->d_inode;
3560 	unsigned max_links = dir->i_sb->s_max_links;
3561 	int error;
3562 
3563 	if (!inode)
3564 		return -ENOENT;
3565 
3566 	error = may_create(dir, new_dentry);
3567 	if (error)
3568 		return error;
3569 
3570 	if (dir->i_sb != inode->i_sb)
3571 		return -EXDEV;
3572 
3573 	/*
3574 	 * A link to an append-only or immutable file cannot be created.
3575 	 */
3576 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3577 		return -EPERM;
3578 	if (!dir->i_op->link)
3579 		return -EPERM;
3580 	if (S_ISDIR(inode->i_mode))
3581 		return -EPERM;
3582 
3583 	error = security_inode_link(old_dentry, dir, new_dentry);
3584 	if (error)
3585 		return error;
3586 
3587 	mutex_lock(&inode->i_mutex);
3588 	/* Make sure we don't allow creating hardlink to an unlinked file */
3589 	if (inode->i_nlink == 0)
3590 		error =  -ENOENT;
3591 	else if (max_links && inode->i_nlink >= max_links)
3592 		error = -EMLINK;
3593 	else
3594 		error = dir->i_op->link(old_dentry, dir, new_dentry);
3595 	mutex_unlock(&inode->i_mutex);
3596 	if (!error)
3597 		fsnotify_link(dir, inode, new_dentry);
3598 	return error;
3599 }
3600 
3601 /*
3602  * Hardlinks are often used in delicate situations.  We avoid
3603  * security-related surprises by not following symlinks on the
3604  * newname.  --KAB
3605  *
3606  * We don't follow them on the oldname either to be compatible
3607  * with linux 2.0, and to avoid hard-linking to directories
3608  * and other special files.  --ADM
3609  */
3610 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3611 		int, newdfd, const char __user *, newname, int, flags)
3612 {
3613 	struct dentry *new_dentry;
3614 	struct path old_path, new_path;
3615 	int how = 0;
3616 	int error;
3617 
3618 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
3619 		return -EINVAL;
3620 	/*
3621 	 * To use null names we require CAP_DAC_READ_SEARCH
3622 	 * This ensures that not everyone will be able to create
3623 	 * handlink using the passed filedescriptor.
3624 	 */
3625 	if (flags & AT_EMPTY_PATH) {
3626 		if (!capable(CAP_DAC_READ_SEARCH))
3627 			return -ENOENT;
3628 		how = LOOKUP_EMPTY;
3629 	}
3630 
3631 	if (flags & AT_SYMLINK_FOLLOW)
3632 		how |= LOOKUP_FOLLOW;
3633 retry:
3634 	error = user_path_at(olddfd, oldname, how, &old_path);
3635 	if (error)
3636 		return error;
3637 
3638 	new_dentry = user_path_create(newdfd, newname, &new_path,
3639 					(how & LOOKUP_REVAL));
3640 	error = PTR_ERR(new_dentry);
3641 	if (IS_ERR(new_dentry))
3642 		goto out;
3643 
3644 	error = -EXDEV;
3645 	if (old_path.mnt != new_path.mnt)
3646 		goto out_dput;
3647 	error = may_linkat(&old_path);
3648 	if (unlikely(error))
3649 		goto out_dput;
3650 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
3651 	if (error)
3652 		goto out_dput;
3653 	error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry);
3654 out_dput:
3655 	done_path_create(&new_path, new_dentry);
3656 	if (retry_estale(error, how)) {
3657 		how |= LOOKUP_REVAL;
3658 		goto retry;
3659 	}
3660 out:
3661 	path_put(&old_path);
3662 
3663 	return error;
3664 }
3665 
3666 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
3667 {
3668 	return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
3669 }
3670 
3671 /*
3672  * The worst of all namespace operations - renaming directory. "Perverted"
3673  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
3674  * Problems:
3675  *	a) we can get into loop creation. Check is done in is_subdir().
3676  *	b) race potential - two innocent renames can create a loop together.
3677  *	   That's where 4.4 screws up. Current fix: serialization on
3678  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
3679  *	   story.
3680  *	c) we have to lock _three_ objects - parents and victim (if it exists).
3681  *	   And that - after we got ->i_mutex on parents (until then we don't know
3682  *	   whether the target exists).  Solution: try to be smart with locking
3683  *	   order for inodes.  We rely on the fact that tree topology may change
3684  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
3685  *	   move will be locked.  Thus we can rank directories by the tree
3686  *	   (ancestors first) and rank all non-directories after them.
3687  *	   That works since everybody except rename does "lock parent, lookup,
3688  *	   lock child" and rename is under ->s_vfs_rename_mutex.
3689  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
3690  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
3691  *	   we'd better make sure that there's no link(2) for them.
3692  *	d) conversion from fhandle to dentry may come in the wrong moment - when
3693  *	   we are removing the target. Solution: we will have to grab ->i_mutex
3694  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3695  *	   ->i_mutex on parents, which works but leads to some truly excessive
3696  *	   locking].
3697  */
3698 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
3699 			  struct inode *new_dir, struct dentry *new_dentry)
3700 {
3701 	int error = 0;
3702 	struct inode *target = new_dentry->d_inode;
3703 	unsigned max_links = new_dir->i_sb->s_max_links;
3704 
3705 	/*
3706 	 * If we are going to change the parent - check write permissions,
3707 	 * we'll need to flip '..'.
3708 	 */
3709 	if (new_dir != old_dir) {
3710 		error = inode_permission(old_dentry->d_inode, MAY_WRITE);
3711 		if (error)
3712 			return error;
3713 	}
3714 
3715 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3716 	if (error)
3717 		return error;
3718 
3719 	dget(new_dentry);
3720 	if (target)
3721 		mutex_lock(&target->i_mutex);
3722 
3723 	error = -EBUSY;
3724 	if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
3725 		goto out;
3726 
3727 	error = -EMLINK;
3728 	if (max_links && !target && new_dir != old_dir &&
3729 	    new_dir->i_nlink >= max_links)
3730 		goto out;
3731 
3732 	if (target)
3733 		shrink_dcache_parent(new_dentry);
3734 	error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3735 	if (error)
3736 		goto out;
3737 
3738 	if (target) {
3739 		target->i_flags |= S_DEAD;
3740 		dont_mount(new_dentry);
3741 	}
3742 out:
3743 	if (target)
3744 		mutex_unlock(&target->i_mutex);
3745 	dput(new_dentry);
3746 	if (!error)
3747 		if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3748 			d_move(old_dentry,new_dentry);
3749 	return error;
3750 }
3751 
3752 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
3753 			    struct inode *new_dir, struct dentry *new_dentry)
3754 {
3755 	struct inode *target = new_dentry->d_inode;
3756 	int error;
3757 
3758 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3759 	if (error)
3760 		return error;
3761 
3762 	dget(new_dentry);
3763 	if (target)
3764 		mutex_lock(&target->i_mutex);
3765 
3766 	error = -EBUSY;
3767 	if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3768 		goto out;
3769 
3770 	error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3771 	if (error)
3772 		goto out;
3773 
3774 	if (target)
3775 		dont_mount(new_dentry);
3776 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3777 		d_move(old_dentry, new_dentry);
3778 out:
3779 	if (target)
3780 		mutex_unlock(&target->i_mutex);
3781 	dput(new_dentry);
3782 	return error;
3783 }
3784 
3785 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
3786 	       struct inode *new_dir, struct dentry *new_dentry)
3787 {
3788 	int error;
3789 	int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
3790 	const unsigned char *old_name;
3791 
3792 	if (old_dentry->d_inode == new_dentry->d_inode)
3793  		return 0;
3794 
3795 	error = may_delete(old_dir, old_dentry, is_dir);
3796 	if (error)
3797 		return error;
3798 
3799 	if (!new_dentry->d_inode)
3800 		error = may_create(new_dir, new_dentry);
3801 	else
3802 		error = may_delete(new_dir, new_dentry, is_dir);
3803 	if (error)
3804 		return error;
3805 
3806 	if (!old_dir->i_op->rename)
3807 		return -EPERM;
3808 
3809 	old_name = fsnotify_oldname_init(old_dentry->d_name.name);
3810 
3811 	if (is_dir)
3812 		error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
3813 	else
3814 		error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
3815 	if (!error)
3816 		fsnotify_move(old_dir, new_dir, old_name, is_dir,
3817 			      new_dentry->d_inode, old_dentry);
3818 	fsnotify_oldname_free(old_name);
3819 
3820 	return error;
3821 }
3822 
3823 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
3824 		int, newdfd, const char __user *, newname)
3825 {
3826 	struct dentry *old_dir, *new_dir;
3827 	struct dentry *old_dentry, *new_dentry;
3828 	struct dentry *trap;
3829 	struct nameidata oldnd, newnd;
3830 	struct filename *from;
3831 	struct filename *to;
3832 	unsigned int lookup_flags = 0;
3833 	bool should_retry = false;
3834 	int error;
3835 retry:
3836 	from = user_path_parent(olddfd, oldname, &oldnd, lookup_flags);
3837 	if (IS_ERR(from)) {
3838 		error = PTR_ERR(from);
3839 		goto exit;
3840 	}
3841 
3842 	to = user_path_parent(newdfd, newname, &newnd, lookup_flags);
3843 	if (IS_ERR(to)) {
3844 		error = PTR_ERR(to);
3845 		goto exit1;
3846 	}
3847 
3848 	error = -EXDEV;
3849 	if (oldnd.path.mnt != newnd.path.mnt)
3850 		goto exit2;
3851 
3852 	old_dir = oldnd.path.dentry;
3853 	error = -EBUSY;
3854 	if (oldnd.last_type != LAST_NORM)
3855 		goto exit2;
3856 
3857 	new_dir = newnd.path.dentry;
3858 	if (newnd.last_type != LAST_NORM)
3859 		goto exit2;
3860 
3861 	error = mnt_want_write(oldnd.path.mnt);
3862 	if (error)
3863 		goto exit2;
3864 
3865 	oldnd.flags &= ~LOOKUP_PARENT;
3866 	newnd.flags &= ~LOOKUP_PARENT;
3867 	newnd.flags |= LOOKUP_RENAME_TARGET;
3868 
3869 	trap = lock_rename(new_dir, old_dir);
3870 
3871 	old_dentry = lookup_hash(&oldnd);
3872 	error = PTR_ERR(old_dentry);
3873 	if (IS_ERR(old_dentry))
3874 		goto exit3;
3875 	/* source must exist */
3876 	error = -ENOENT;
3877 	if (!old_dentry->d_inode)
3878 		goto exit4;
3879 	/* unless the source is a directory trailing slashes give -ENOTDIR */
3880 	if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
3881 		error = -ENOTDIR;
3882 		if (oldnd.last.name[oldnd.last.len])
3883 			goto exit4;
3884 		if (newnd.last.name[newnd.last.len])
3885 			goto exit4;
3886 	}
3887 	/* source should not be ancestor of target */
3888 	error = -EINVAL;
3889 	if (old_dentry == trap)
3890 		goto exit4;
3891 	new_dentry = lookup_hash(&newnd);
3892 	error = PTR_ERR(new_dentry);
3893 	if (IS_ERR(new_dentry))
3894 		goto exit4;
3895 	/* target should not be an ancestor of source */
3896 	error = -ENOTEMPTY;
3897 	if (new_dentry == trap)
3898 		goto exit5;
3899 
3900 	error = security_path_rename(&oldnd.path, old_dentry,
3901 				     &newnd.path, new_dentry);
3902 	if (error)
3903 		goto exit5;
3904 	error = vfs_rename(old_dir->d_inode, old_dentry,
3905 				   new_dir->d_inode, new_dentry);
3906 exit5:
3907 	dput(new_dentry);
3908 exit4:
3909 	dput(old_dentry);
3910 exit3:
3911 	unlock_rename(new_dir, old_dir);
3912 	mnt_drop_write(oldnd.path.mnt);
3913 exit2:
3914 	if (retry_estale(error, lookup_flags))
3915 		should_retry = true;
3916 	path_put(&newnd.path);
3917 	putname(to);
3918 exit1:
3919 	path_put(&oldnd.path);
3920 	putname(from);
3921 	if (should_retry) {
3922 		should_retry = false;
3923 		lookup_flags |= LOOKUP_REVAL;
3924 		goto retry;
3925 	}
3926 exit:
3927 	return error;
3928 }
3929 
3930 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
3931 {
3932 	return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
3933 }
3934 
3935 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
3936 {
3937 	int len;
3938 
3939 	len = PTR_ERR(link);
3940 	if (IS_ERR(link))
3941 		goto out;
3942 
3943 	len = strlen(link);
3944 	if (len > (unsigned) buflen)
3945 		len = buflen;
3946 	if (copy_to_user(buffer, link, len))
3947 		len = -EFAULT;
3948 out:
3949 	return len;
3950 }
3951 
3952 /*
3953  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
3954  * have ->follow_link() touching nd only in nd_set_link().  Using (or not
3955  * using) it for any given inode is up to filesystem.
3956  */
3957 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3958 {
3959 	struct nameidata nd;
3960 	void *cookie;
3961 	int res;
3962 
3963 	nd.depth = 0;
3964 	cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
3965 	if (IS_ERR(cookie))
3966 		return PTR_ERR(cookie);
3967 
3968 	res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
3969 	if (dentry->d_inode->i_op->put_link)
3970 		dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
3971 	return res;
3972 }
3973 
3974 int vfs_follow_link(struct nameidata *nd, const char *link)
3975 {
3976 	return __vfs_follow_link(nd, link);
3977 }
3978 
3979 /* get the link contents into pagecache */
3980 static char *page_getlink(struct dentry * dentry, struct page **ppage)
3981 {
3982 	char *kaddr;
3983 	struct page *page;
3984 	struct address_space *mapping = dentry->d_inode->i_mapping;
3985 	page = read_mapping_page(mapping, 0, NULL);
3986 	if (IS_ERR(page))
3987 		return (char*)page;
3988 	*ppage = page;
3989 	kaddr = kmap(page);
3990 	nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
3991 	return kaddr;
3992 }
3993 
3994 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3995 {
3996 	struct page *page = NULL;
3997 	char *s = page_getlink(dentry, &page);
3998 	int res = vfs_readlink(dentry,buffer,buflen,s);
3999 	if (page) {
4000 		kunmap(page);
4001 		page_cache_release(page);
4002 	}
4003 	return res;
4004 }
4005 
4006 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
4007 {
4008 	struct page *page = NULL;
4009 	nd_set_link(nd, page_getlink(dentry, &page));
4010 	return page;
4011 }
4012 
4013 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
4014 {
4015 	struct page *page = cookie;
4016 
4017 	if (page) {
4018 		kunmap(page);
4019 		page_cache_release(page);
4020 	}
4021 }
4022 
4023 /*
4024  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4025  */
4026 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4027 {
4028 	struct address_space *mapping = inode->i_mapping;
4029 	struct page *page;
4030 	void *fsdata;
4031 	int err;
4032 	char *kaddr;
4033 	unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4034 	if (nofs)
4035 		flags |= AOP_FLAG_NOFS;
4036 
4037 retry:
4038 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
4039 				flags, &page, &fsdata);
4040 	if (err)
4041 		goto fail;
4042 
4043 	kaddr = kmap_atomic(page);
4044 	memcpy(kaddr, symname, len-1);
4045 	kunmap_atomic(kaddr);
4046 
4047 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4048 							page, fsdata);
4049 	if (err < 0)
4050 		goto fail;
4051 	if (err < len-1)
4052 		goto retry;
4053 
4054 	mark_inode_dirty(inode);
4055 	return 0;
4056 fail:
4057 	return err;
4058 }
4059 
4060 int page_symlink(struct inode *inode, const char *symname, int len)
4061 {
4062 	return __page_symlink(inode, symname, len,
4063 			!(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
4064 }
4065 
4066 const struct inode_operations page_symlink_inode_operations = {
4067 	.readlink	= generic_readlink,
4068 	.follow_link	= page_follow_link_light,
4069 	.put_link	= page_put_link,
4070 };
4071 
4072 EXPORT_SYMBOL(user_path_at);
4073 EXPORT_SYMBOL(follow_down_one);
4074 EXPORT_SYMBOL(follow_down);
4075 EXPORT_SYMBOL(follow_up);
4076 EXPORT_SYMBOL(get_write_access); /* nfsd */
4077 EXPORT_SYMBOL(lock_rename);
4078 EXPORT_SYMBOL(lookup_one_len);
4079 EXPORT_SYMBOL(page_follow_link_light);
4080 EXPORT_SYMBOL(page_put_link);
4081 EXPORT_SYMBOL(page_readlink);
4082 EXPORT_SYMBOL(__page_symlink);
4083 EXPORT_SYMBOL(page_symlink);
4084 EXPORT_SYMBOL(page_symlink_inode_operations);
4085 EXPORT_SYMBOL(kern_path);
4086 EXPORT_SYMBOL(vfs_path_lookup);
4087 EXPORT_SYMBOL(inode_permission);
4088 EXPORT_SYMBOL(unlock_rename);
4089 EXPORT_SYMBOL(vfs_create);
4090 EXPORT_SYMBOL(vfs_follow_link);
4091 EXPORT_SYMBOL(vfs_link);
4092 EXPORT_SYMBOL(vfs_mkdir);
4093 EXPORT_SYMBOL(vfs_mknod);
4094 EXPORT_SYMBOL(generic_permission);
4095 EXPORT_SYMBOL(vfs_readlink);
4096 EXPORT_SYMBOL(vfs_rename);
4097 EXPORT_SYMBOL(vfs_rmdir);
4098 EXPORT_SYMBOL(vfs_symlink);
4099 EXPORT_SYMBOL(vfs_unlink);
4100 EXPORT_SYMBOL(dentry_unhash);
4101 EXPORT_SYMBOL(generic_readlink);
4102