xref: /openbmc/linux/fs/namei.c (revision c5c87812)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/namei.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * Some corrections by tytso.
10  */
11 
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13  * lookup logic.
14  */
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
16  */
17 
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
22 #include <linux/fs.h>
23 #include <linux/namei.h>
24 #include <linux/pagemap.h>
25 #include <linux/fsnotify.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/ima.h>
29 #include <linux/syscalls.h>
30 #include <linux/mount.h>
31 #include <linux/audit.h>
32 #include <linux/capability.h>
33 #include <linux/file.h>
34 #include <linux/fcntl.h>
35 #include <linux/device_cgroup.h>
36 #include <linux/fs_struct.h>
37 #include <linux/posix_acl.h>
38 #include <linux/hash.h>
39 #include <linux/bitops.h>
40 #include <linux/init_task.h>
41 #include <linux/uaccess.h>
42 
43 #include "internal.h"
44 #include "mount.h"
45 
46 /* [Feb-1997 T. Schoebel-Theuer]
47  * Fundamental changes in the pathname lookup mechanisms (namei)
48  * were necessary because of omirr.  The reason is that omirr needs
49  * to know the _real_ pathname, not the user-supplied one, in case
50  * of symlinks (and also when transname replacements occur).
51  *
52  * The new code replaces the old recursive symlink resolution with
53  * an iterative one (in case of non-nested symlink chains).  It does
54  * this with calls to <fs>_follow_link().
55  * As a side effect, dir_namei(), _namei() and follow_link() are now
56  * replaced with a single function lookup_dentry() that can handle all
57  * the special cases of the former code.
58  *
59  * With the new dcache, the pathname is stored at each inode, at least as
60  * long as the refcount of the inode is positive.  As a side effect, the
61  * size of the dcache depends on the inode cache and thus is dynamic.
62  *
63  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
64  * resolution to correspond with current state of the code.
65  *
66  * Note that the symlink resolution is not *completely* iterative.
67  * There is still a significant amount of tail- and mid- recursion in
68  * the algorithm.  Also, note that <fs>_readlink() is not used in
69  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
70  * may return different results than <fs>_follow_link().  Many virtual
71  * filesystems (including /proc) exhibit this behavior.
72  */
73 
74 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
75  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
76  * and the name already exists in form of a symlink, try to create the new
77  * name indicated by the symlink. The old code always complained that the
78  * name already exists, due to not following the symlink even if its target
79  * is nonexistent.  The new semantics affects also mknod() and link() when
80  * the name is a symlink pointing to a non-existent name.
81  *
82  * I don't know which semantics is the right one, since I have no access
83  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
84  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
85  * "old" one. Personally, I think the new semantics is much more logical.
86  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
87  * file does succeed in both HP-UX and SunOs, but not in Solaris
88  * and in the old Linux semantics.
89  */
90 
91 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
92  * semantics.  See the comments in "open_namei" and "do_link" below.
93  *
94  * [10-Sep-98 Alan Modra] Another symlink change.
95  */
96 
97 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
98  *	inside the path - always follow.
99  *	in the last component in creation/removal/renaming - never follow.
100  *	if LOOKUP_FOLLOW passed - follow.
101  *	if the pathname has trailing slashes - follow.
102  *	otherwise - don't follow.
103  * (applied in that order).
104  *
105  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
106  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
107  * During the 2.4 we need to fix the userland stuff depending on it -
108  * hopefully we will be able to get rid of that wart in 2.5. So far only
109  * XEmacs seems to be relying on it...
110  */
111 /*
112  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
113  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
114  * any extra contention...
115  */
116 
117 /* In order to reduce some races, while at the same time doing additional
118  * checking and hopefully speeding things up, we copy filenames to the
119  * kernel data space before using them..
120  *
121  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
122  * PATH_MAX includes the nul terminator --RR.
123  */
124 
125 #define EMBEDDED_NAME_MAX	(PATH_MAX - offsetof(struct filename, iname))
126 
127 struct filename *
128 getname_flags(const char __user *filename, int flags, int *empty)
129 {
130 	struct filename *result;
131 	char *kname;
132 	int len;
133 
134 	result = audit_reusename(filename);
135 	if (result)
136 		return result;
137 
138 	result = __getname();
139 	if (unlikely(!result))
140 		return ERR_PTR(-ENOMEM);
141 
142 	/*
143 	 * First, try to embed the struct filename inside the names_cache
144 	 * allocation
145 	 */
146 	kname = (char *)result->iname;
147 	result->name = kname;
148 
149 	len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
150 	if (unlikely(len < 0)) {
151 		__putname(result);
152 		return ERR_PTR(len);
153 	}
154 
155 	/*
156 	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
157 	 * separate struct filename so we can dedicate the entire
158 	 * names_cache allocation for the pathname, and re-do the copy from
159 	 * userland.
160 	 */
161 	if (unlikely(len == EMBEDDED_NAME_MAX)) {
162 		const size_t size = offsetof(struct filename, iname[1]);
163 		kname = (char *)result;
164 
165 		/*
166 		 * size is chosen that way we to guarantee that
167 		 * result->iname[0] is within the same object and that
168 		 * kname can't be equal to result->iname, no matter what.
169 		 */
170 		result = kzalloc(size, GFP_KERNEL);
171 		if (unlikely(!result)) {
172 			__putname(kname);
173 			return ERR_PTR(-ENOMEM);
174 		}
175 		result->name = kname;
176 		len = strncpy_from_user(kname, filename, PATH_MAX);
177 		if (unlikely(len < 0)) {
178 			__putname(kname);
179 			kfree(result);
180 			return ERR_PTR(len);
181 		}
182 		if (unlikely(len == PATH_MAX)) {
183 			__putname(kname);
184 			kfree(result);
185 			return ERR_PTR(-ENAMETOOLONG);
186 		}
187 	}
188 
189 	result->refcnt = 1;
190 	/* The empty path is special. */
191 	if (unlikely(!len)) {
192 		if (empty)
193 			*empty = 1;
194 		if (!(flags & LOOKUP_EMPTY)) {
195 			putname(result);
196 			return ERR_PTR(-ENOENT);
197 		}
198 	}
199 
200 	result->uptr = filename;
201 	result->aname = NULL;
202 	audit_getname(result);
203 	return result;
204 }
205 
206 struct filename *
207 getname(const char __user * filename)
208 {
209 	return getname_flags(filename, 0, NULL);
210 }
211 
212 struct filename *
213 getname_kernel(const char * filename)
214 {
215 	struct filename *result;
216 	int len = strlen(filename) + 1;
217 
218 	result = __getname();
219 	if (unlikely(!result))
220 		return ERR_PTR(-ENOMEM);
221 
222 	if (len <= EMBEDDED_NAME_MAX) {
223 		result->name = (char *)result->iname;
224 	} else if (len <= PATH_MAX) {
225 		const size_t size = offsetof(struct filename, iname[1]);
226 		struct filename *tmp;
227 
228 		tmp = kmalloc(size, GFP_KERNEL);
229 		if (unlikely(!tmp)) {
230 			__putname(result);
231 			return ERR_PTR(-ENOMEM);
232 		}
233 		tmp->name = (char *)result;
234 		result = tmp;
235 	} else {
236 		__putname(result);
237 		return ERR_PTR(-ENAMETOOLONG);
238 	}
239 	memcpy((char *)result->name, filename, len);
240 	result->uptr = NULL;
241 	result->aname = NULL;
242 	result->refcnt = 1;
243 	audit_getname(result);
244 
245 	return result;
246 }
247 
248 void putname(struct filename *name)
249 {
250 	BUG_ON(name->refcnt <= 0);
251 
252 	if (--name->refcnt > 0)
253 		return;
254 
255 	if (name->name != name->iname) {
256 		__putname(name->name);
257 		kfree(name);
258 	} else
259 		__putname(name);
260 }
261 
262 static int check_acl(struct inode *inode, int mask)
263 {
264 #ifdef CONFIG_FS_POSIX_ACL
265 	struct posix_acl *acl;
266 
267 	if (mask & MAY_NOT_BLOCK) {
268 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
269 	        if (!acl)
270 	                return -EAGAIN;
271 		/* no ->get_acl() calls in RCU mode... */
272 		if (is_uncached_acl(acl))
273 			return -ECHILD;
274 	        return posix_acl_permission(inode, acl, mask);
275 	}
276 
277 	acl = get_acl(inode, ACL_TYPE_ACCESS);
278 	if (IS_ERR(acl))
279 		return PTR_ERR(acl);
280 	if (acl) {
281 	        int error = posix_acl_permission(inode, acl, mask);
282 	        posix_acl_release(acl);
283 	        return error;
284 	}
285 #endif
286 
287 	return -EAGAIN;
288 }
289 
290 /*
291  * This does the basic UNIX permission checking.
292  *
293  * Note that the POSIX ACL check cares about the MAY_NOT_BLOCK bit,
294  * for RCU walking.
295  */
296 static int acl_permission_check(struct inode *inode, int mask)
297 {
298 	unsigned int mode = inode->i_mode;
299 
300 	/* Are we the owner? If so, ACL's don't matter */
301 	if (likely(uid_eq(current_fsuid(), inode->i_uid))) {
302 		mask &= 7;
303 		mode >>= 6;
304 		return (mask & ~mode) ? -EACCES : 0;
305 	}
306 
307 	/* Do we have ACL's? */
308 	if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
309 		int error = check_acl(inode, mask);
310 		if (error != -EAGAIN)
311 			return error;
312 	}
313 
314 	/* Only RWX matters for group/other mode bits */
315 	mask &= 7;
316 
317 	/*
318 	 * Are the group permissions different from
319 	 * the other permissions in the bits we care
320 	 * about? Need to check group ownership if so.
321 	 */
322 	if (mask & (mode ^ (mode >> 3))) {
323 		if (in_group_p(inode->i_gid))
324 			mode >>= 3;
325 	}
326 
327 	/* Bits in 'mode' clear that we require? */
328 	return (mask & ~mode) ? -EACCES : 0;
329 }
330 
331 /**
332  * generic_permission -  check for access rights on a Posix-like filesystem
333  * @inode:	inode to check access rights for
334  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC,
335  *		%MAY_NOT_BLOCK ...)
336  *
337  * Used to check for read/write/execute permissions on a file.
338  * We use "fsuid" for this, letting us set arbitrary permissions
339  * for filesystem access without changing the "normal" uids which
340  * are used for other things.
341  *
342  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
343  * request cannot be satisfied (eg. requires blocking or too much complexity).
344  * It would then be called again in ref-walk mode.
345  */
346 int generic_permission(struct inode *inode, int mask)
347 {
348 	int ret;
349 
350 	/*
351 	 * Do the basic permission checks.
352 	 */
353 	ret = acl_permission_check(inode, mask);
354 	if (ret != -EACCES)
355 		return ret;
356 
357 	if (S_ISDIR(inode->i_mode)) {
358 		/* DACs are overridable for directories */
359 		if (!(mask & MAY_WRITE))
360 			if (capable_wrt_inode_uidgid(inode,
361 						     CAP_DAC_READ_SEARCH))
362 				return 0;
363 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
364 			return 0;
365 		return -EACCES;
366 	}
367 
368 	/*
369 	 * Searching includes executable on directories, else just read.
370 	 */
371 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
372 	if (mask == MAY_READ)
373 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
374 			return 0;
375 	/*
376 	 * Read/write DACs are always overridable.
377 	 * Executable DACs are overridable when there is
378 	 * at least one exec bit set.
379 	 */
380 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
381 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
382 			return 0;
383 
384 	return -EACCES;
385 }
386 EXPORT_SYMBOL(generic_permission);
387 
388 /*
389  * We _really_ want to just do "generic_permission()" without
390  * even looking at the inode->i_op values. So we keep a cache
391  * flag in inode->i_opflags, that says "this has not special
392  * permission function, use the fast case".
393  */
394 static inline int do_inode_permission(struct inode *inode, int mask)
395 {
396 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
397 		if (likely(inode->i_op->permission))
398 			return inode->i_op->permission(inode, mask);
399 
400 		/* This gets set once for the inode lifetime */
401 		spin_lock(&inode->i_lock);
402 		inode->i_opflags |= IOP_FASTPERM;
403 		spin_unlock(&inode->i_lock);
404 	}
405 	return generic_permission(inode, mask);
406 }
407 
408 /**
409  * sb_permission - Check superblock-level permissions
410  * @sb: Superblock of inode to check permission on
411  * @inode: Inode to check permission on
412  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
413  *
414  * Separate out file-system wide checks from inode-specific permission checks.
415  */
416 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
417 {
418 	if (unlikely(mask & MAY_WRITE)) {
419 		umode_t mode = inode->i_mode;
420 
421 		/* Nobody gets write access to a read-only fs. */
422 		if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
423 			return -EROFS;
424 	}
425 	return 0;
426 }
427 
428 /**
429  * inode_permission - Check for access rights to a given inode
430  * @inode: Inode to check permission on
431  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
432  *
433  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
434  * this, letting us set arbitrary permissions for filesystem access without
435  * changing the "normal" UIDs which are used for other things.
436  *
437  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
438  */
439 int inode_permission(struct inode *inode, int mask)
440 {
441 	int retval;
442 
443 	retval = sb_permission(inode->i_sb, inode, mask);
444 	if (retval)
445 		return retval;
446 
447 	if (unlikely(mask & MAY_WRITE)) {
448 		/*
449 		 * Nobody gets write access to an immutable file.
450 		 */
451 		if (IS_IMMUTABLE(inode))
452 			return -EPERM;
453 
454 		/*
455 		 * Updating mtime will likely cause i_uid and i_gid to be
456 		 * written back improperly if their true value is unknown
457 		 * to the vfs.
458 		 */
459 		if (HAS_UNMAPPED_ID(inode))
460 			return -EACCES;
461 	}
462 
463 	retval = do_inode_permission(inode, mask);
464 	if (retval)
465 		return retval;
466 
467 	retval = devcgroup_inode_permission(inode, mask);
468 	if (retval)
469 		return retval;
470 
471 	return security_inode_permission(inode, mask);
472 }
473 EXPORT_SYMBOL(inode_permission);
474 
475 /**
476  * path_get - get a reference to a path
477  * @path: path to get the reference to
478  *
479  * Given a path increment the reference count to the dentry and the vfsmount.
480  */
481 void path_get(const struct path *path)
482 {
483 	mntget(path->mnt);
484 	dget(path->dentry);
485 }
486 EXPORT_SYMBOL(path_get);
487 
488 /**
489  * path_put - put a reference to a path
490  * @path: path to put the reference to
491  *
492  * Given a path decrement the reference count to the dentry and the vfsmount.
493  */
494 void path_put(const struct path *path)
495 {
496 	dput(path->dentry);
497 	mntput(path->mnt);
498 }
499 EXPORT_SYMBOL(path_put);
500 
501 #define EMBEDDED_LEVELS 2
502 struct nameidata {
503 	struct path	path;
504 	struct qstr	last;
505 	struct path	root;
506 	struct inode	*inode; /* path.dentry.d_inode */
507 	unsigned int	flags;
508 	unsigned	seq, m_seq, r_seq;
509 	int		last_type;
510 	unsigned	depth;
511 	int		total_link_count;
512 	struct saved {
513 		struct path link;
514 		struct delayed_call done;
515 		const char *name;
516 		unsigned seq;
517 	} *stack, internal[EMBEDDED_LEVELS];
518 	struct filename	*name;
519 	struct nameidata *saved;
520 	unsigned	root_seq;
521 	int		dfd;
522 	kuid_t		dir_uid;
523 	umode_t		dir_mode;
524 } __randomize_layout;
525 
526 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
527 {
528 	struct nameidata *old = current->nameidata;
529 	p->stack = p->internal;
530 	p->dfd = dfd;
531 	p->name = name;
532 	p->total_link_count = old ? old->total_link_count : 0;
533 	p->saved = old;
534 	current->nameidata = p;
535 }
536 
537 static void restore_nameidata(void)
538 {
539 	struct nameidata *now = current->nameidata, *old = now->saved;
540 
541 	current->nameidata = old;
542 	if (old)
543 		old->total_link_count = now->total_link_count;
544 	if (now->stack != now->internal)
545 		kfree(now->stack);
546 }
547 
548 static bool nd_alloc_stack(struct nameidata *nd)
549 {
550 	struct saved *p;
551 
552 	p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
553 			 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL);
554 	if (unlikely(!p))
555 		return false;
556 	memcpy(p, nd->internal, sizeof(nd->internal));
557 	nd->stack = p;
558 	return true;
559 }
560 
561 /**
562  * path_connected - Verify that a dentry is below mnt.mnt_root
563  *
564  * Rename can sometimes move a file or directory outside of a bind
565  * mount, path_connected allows those cases to be detected.
566  */
567 static bool path_connected(struct vfsmount *mnt, struct dentry *dentry)
568 {
569 	struct super_block *sb = mnt->mnt_sb;
570 
571 	/* Bind mounts can have disconnected paths */
572 	if (mnt->mnt_root == sb->s_root)
573 		return true;
574 
575 	return is_subdir(dentry, mnt->mnt_root);
576 }
577 
578 static void drop_links(struct nameidata *nd)
579 {
580 	int i = nd->depth;
581 	while (i--) {
582 		struct saved *last = nd->stack + i;
583 		do_delayed_call(&last->done);
584 		clear_delayed_call(&last->done);
585 	}
586 }
587 
588 static void terminate_walk(struct nameidata *nd)
589 {
590 	drop_links(nd);
591 	if (!(nd->flags & LOOKUP_RCU)) {
592 		int i;
593 		path_put(&nd->path);
594 		for (i = 0; i < nd->depth; i++)
595 			path_put(&nd->stack[i].link);
596 		if (nd->flags & LOOKUP_ROOT_GRABBED) {
597 			path_put(&nd->root);
598 			nd->flags &= ~LOOKUP_ROOT_GRABBED;
599 		}
600 	} else {
601 		nd->flags &= ~LOOKUP_RCU;
602 		rcu_read_unlock();
603 	}
604 	nd->depth = 0;
605 }
606 
607 /* path_put is needed afterwards regardless of success or failure */
608 static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq)
609 {
610 	int res = __legitimize_mnt(path->mnt, mseq);
611 	if (unlikely(res)) {
612 		if (res > 0)
613 			path->mnt = NULL;
614 		path->dentry = NULL;
615 		return false;
616 	}
617 	if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
618 		path->dentry = NULL;
619 		return false;
620 	}
621 	return !read_seqcount_retry(&path->dentry->d_seq, seq);
622 }
623 
624 static inline bool legitimize_path(struct nameidata *nd,
625 			    struct path *path, unsigned seq)
626 {
627 	return __legitimize_path(path, seq, nd->m_seq);
628 }
629 
630 static bool legitimize_links(struct nameidata *nd)
631 {
632 	int i;
633 	for (i = 0; i < nd->depth; i++) {
634 		struct saved *last = nd->stack + i;
635 		if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
636 			drop_links(nd);
637 			nd->depth = i + 1;
638 			return false;
639 		}
640 	}
641 	return true;
642 }
643 
644 static bool legitimize_root(struct nameidata *nd)
645 {
646 	/*
647 	 * For scoped-lookups (where nd->root has been zeroed), we need to
648 	 * restart the whole lookup from scratch -- because set_root() is wrong
649 	 * for these lookups (nd->dfd is the root, not the filesystem root).
650 	 */
651 	if (!nd->root.mnt && (nd->flags & LOOKUP_IS_SCOPED))
652 		return false;
653 	/* Nothing to do if nd->root is zero or is managed by the VFS user. */
654 	if (!nd->root.mnt || (nd->flags & LOOKUP_ROOT))
655 		return true;
656 	nd->flags |= LOOKUP_ROOT_GRABBED;
657 	return legitimize_path(nd, &nd->root, nd->root_seq);
658 }
659 
660 /*
661  * Path walking has 2 modes, rcu-walk and ref-walk (see
662  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
663  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
664  * normal reference counts on dentries and vfsmounts to transition to ref-walk
665  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
666  * got stuck, so ref-walk may continue from there. If this is not successful
667  * (eg. a seqcount has changed), then failure is returned and it's up to caller
668  * to restart the path walk from the beginning in ref-walk mode.
669  */
670 
671 /**
672  * unlazy_walk - try to switch to ref-walk mode.
673  * @nd: nameidata pathwalk data
674  * Returns: 0 on success, -ECHILD on failure
675  *
676  * unlazy_walk attempts to legitimize the current nd->path and nd->root
677  * for ref-walk mode.
678  * Must be called from rcu-walk context.
679  * Nothing should touch nameidata between unlazy_walk() failure and
680  * terminate_walk().
681  */
682 static int unlazy_walk(struct nameidata *nd)
683 {
684 	struct dentry *parent = nd->path.dentry;
685 
686 	BUG_ON(!(nd->flags & LOOKUP_RCU));
687 
688 	nd->flags &= ~LOOKUP_RCU;
689 	if (unlikely(!legitimize_links(nd)))
690 		goto out1;
691 	if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
692 		goto out;
693 	if (unlikely(!legitimize_root(nd)))
694 		goto out;
695 	rcu_read_unlock();
696 	BUG_ON(nd->inode != parent->d_inode);
697 	return 0;
698 
699 out1:
700 	nd->path.mnt = NULL;
701 	nd->path.dentry = NULL;
702 out:
703 	rcu_read_unlock();
704 	return -ECHILD;
705 }
706 
707 /**
708  * unlazy_child - try to switch to ref-walk mode.
709  * @nd: nameidata pathwalk data
710  * @dentry: child of nd->path.dentry
711  * @seq: seq number to check dentry against
712  * Returns: 0 on success, -ECHILD on failure
713  *
714  * unlazy_child attempts to legitimize the current nd->path, nd->root and dentry
715  * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
716  * @nd.  Must be called from rcu-walk context.
717  * Nothing should touch nameidata between unlazy_child() failure and
718  * terminate_walk().
719  */
720 static int unlazy_child(struct nameidata *nd, struct dentry *dentry, unsigned seq)
721 {
722 	BUG_ON(!(nd->flags & LOOKUP_RCU));
723 
724 	nd->flags &= ~LOOKUP_RCU;
725 	if (unlikely(!legitimize_links(nd)))
726 		goto out2;
727 	if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
728 		goto out2;
729 	if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
730 		goto out1;
731 
732 	/*
733 	 * We need to move both the parent and the dentry from the RCU domain
734 	 * to be properly refcounted. And the sequence number in the dentry
735 	 * validates *both* dentry counters, since we checked the sequence
736 	 * number of the parent after we got the child sequence number. So we
737 	 * know the parent must still be valid if the child sequence number is
738 	 */
739 	if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
740 		goto out;
741 	if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
742 		goto out_dput;
743 	/*
744 	 * Sequence counts matched. Now make sure that the root is
745 	 * still valid and get it if required.
746 	 */
747 	if (unlikely(!legitimize_root(nd)))
748 		goto out_dput;
749 	rcu_read_unlock();
750 	return 0;
751 
752 out2:
753 	nd->path.mnt = NULL;
754 out1:
755 	nd->path.dentry = NULL;
756 out:
757 	rcu_read_unlock();
758 	return -ECHILD;
759 out_dput:
760 	rcu_read_unlock();
761 	dput(dentry);
762 	return -ECHILD;
763 }
764 
765 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
766 {
767 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
768 		return dentry->d_op->d_revalidate(dentry, flags);
769 	else
770 		return 1;
771 }
772 
773 /**
774  * complete_walk - successful completion of path walk
775  * @nd:  pointer nameidata
776  *
777  * If we had been in RCU mode, drop out of it and legitimize nd->path.
778  * Revalidate the final result, unless we'd already done that during
779  * the path walk or the filesystem doesn't ask for it.  Return 0 on
780  * success, -error on failure.  In case of failure caller does not
781  * need to drop nd->path.
782  */
783 static int complete_walk(struct nameidata *nd)
784 {
785 	struct dentry *dentry = nd->path.dentry;
786 	int status;
787 
788 	if (nd->flags & LOOKUP_RCU) {
789 		/*
790 		 * We don't want to zero nd->root for scoped-lookups or
791 		 * externally-managed nd->root.
792 		 */
793 		if (!(nd->flags & (LOOKUP_ROOT | LOOKUP_IS_SCOPED)))
794 			nd->root.mnt = NULL;
795 		if (unlikely(unlazy_walk(nd)))
796 			return -ECHILD;
797 	}
798 
799 	if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
800 		/*
801 		 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't
802 		 * ever step outside the root during lookup" and should already
803 		 * be guaranteed by the rest of namei, we want to avoid a namei
804 		 * BUG resulting in userspace being given a path that was not
805 		 * scoped within the root at some point during the lookup.
806 		 *
807 		 * So, do a final sanity-check to make sure that in the
808 		 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED)
809 		 * we won't silently return an fd completely outside of the
810 		 * requested root to userspace.
811 		 *
812 		 * Userspace could move the path outside the root after this
813 		 * check, but as discussed elsewhere this is not a concern (the
814 		 * resolved file was inside the root at some point).
815 		 */
816 		if (!path_is_under(&nd->path, &nd->root))
817 			return -EXDEV;
818 	}
819 
820 	if (likely(!(nd->flags & LOOKUP_JUMPED)))
821 		return 0;
822 
823 	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
824 		return 0;
825 
826 	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
827 	if (status > 0)
828 		return 0;
829 
830 	if (!status)
831 		status = -ESTALE;
832 
833 	return status;
834 }
835 
836 static int set_root(struct nameidata *nd)
837 {
838 	struct fs_struct *fs = current->fs;
839 
840 	/*
841 	 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we
842 	 * still have to ensure it doesn't happen because it will cause a breakout
843 	 * from the dirfd.
844 	 */
845 	if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED))
846 		return -ENOTRECOVERABLE;
847 
848 	if (nd->flags & LOOKUP_RCU) {
849 		unsigned seq;
850 
851 		do {
852 			seq = read_seqcount_begin(&fs->seq);
853 			nd->root = fs->root;
854 			nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
855 		} while (read_seqcount_retry(&fs->seq, seq));
856 	} else {
857 		get_fs_root(fs, &nd->root);
858 		nd->flags |= LOOKUP_ROOT_GRABBED;
859 	}
860 	return 0;
861 }
862 
863 static int nd_jump_root(struct nameidata *nd)
864 {
865 	if (unlikely(nd->flags & LOOKUP_BENEATH))
866 		return -EXDEV;
867 	if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
868 		/* Absolute path arguments to path_init() are allowed. */
869 		if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt)
870 			return -EXDEV;
871 	}
872 	if (!nd->root.mnt) {
873 		int error = set_root(nd);
874 		if (error)
875 			return error;
876 	}
877 	if (nd->flags & LOOKUP_RCU) {
878 		struct dentry *d;
879 		nd->path = nd->root;
880 		d = nd->path.dentry;
881 		nd->inode = d->d_inode;
882 		nd->seq = nd->root_seq;
883 		if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
884 			return -ECHILD;
885 	} else {
886 		path_put(&nd->path);
887 		nd->path = nd->root;
888 		path_get(&nd->path);
889 		nd->inode = nd->path.dentry->d_inode;
890 	}
891 	nd->flags |= LOOKUP_JUMPED;
892 	return 0;
893 }
894 
895 /*
896  * Helper to directly jump to a known parsed path from ->get_link,
897  * caller must have taken a reference to path beforehand.
898  */
899 int nd_jump_link(struct path *path)
900 {
901 	int error = -ELOOP;
902 	struct nameidata *nd = current->nameidata;
903 
904 	if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS))
905 		goto err;
906 
907 	error = -EXDEV;
908 	if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
909 		if (nd->path.mnt != path->mnt)
910 			goto err;
911 	}
912 	/* Not currently safe for scoped-lookups. */
913 	if (unlikely(nd->flags & LOOKUP_IS_SCOPED))
914 		goto err;
915 
916 	path_put(&nd->path);
917 	nd->path = *path;
918 	nd->inode = nd->path.dentry->d_inode;
919 	nd->flags |= LOOKUP_JUMPED;
920 	return 0;
921 
922 err:
923 	path_put(path);
924 	return error;
925 }
926 
927 static inline void put_link(struct nameidata *nd)
928 {
929 	struct saved *last = nd->stack + --nd->depth;
930 	do_delayed_call(&last->done);
931 	if (!(nd->flags & LOOKUP_RCU))
932 		path_put(&last->link);
933 }
934 
935 int sysctl_protected_symlinks __read_mostly = 0;
936 int sysctl_protected_hardlinks __read_mostly = 0;
937 int sysctl_protected_fifos __read_mostly;
938 int sysctl_protected_regular __read_mostly;
939 
940 /**
941  * may_follow_link - Check symlink following for unsafe situations
942  * @nd: nameidata pathwalk data
943  *
944  * In the case of the sysctl_protected_symlinks sysctl being enabled,
945  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
946  * in a sticky world-writable directory. This is to protect privileged
947  * processes from failing races against path names that may change out
948  * from under them by way of other users creating malicious symlinks.
949  * It will permit symlinks to be followed only when outside a sticky
950  * world-writable directory, or when the uid of the symlink and follower
951  * match, or when the directory owner matches the symlink's owner.
952  *
953  * Returns 0 if following the symlink is allowed, -ve on error.
954  */
955 static inline int may_follow_link(struct nameidata *nd, const struct inode *inode)
956 {
957 	if (!sysctl_protected_symlinks)
958 		return 0;
959 
960 	/* Allowed if owner and follower match. */
961 	if (uid_eq(current_cred()->fsuid, inode->i_uid))
962 		return 0;
963 
964 	/* Allowed if parent directory not sticky and world-writable. */
965 	if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
966 		return 0;
967 
968 	/* Allowed if parent directory and link owner match. */
969 	if (uid_valid(nd->dir_uid) && uid_eq(nd->dir_uid, inode->i_uid))
970 		return 0;
971 
972 	if (nd->flags & LOOKUP_RCU)
973 		return -ECHILD;
974 
975 	audit_inode(nd->name, nd->stack[0].link.dentry, 0);
976 	audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link");
977 	return -EACCES;
978 }
979 
980 /**
981  * safe_hardlink_source - Check for safe hardlink conditions
982  * @inode: the source inode to hardlink from
983  *
984  * Return false if at least one of the following conditions:
985  *    - inode is not a regular file
986  *    - inode is setuid
987  *    - inode is setgid and group-exec
988  *    - access failure for read and write
989  *
990  * Otherwise returns true.
991  */
992 static bool safe_hardlink_source(struct inode *inode)
993 {
994 	umode_t mode = inode->i_mode;
995 
996 	/* Special files should not get pinned to the filesystem. */
997 	if (!S_ISREG(mode))
998 		return false;
999 
1000 	/* Setuid files should not get pinned to the filesystem. */
1001 	if (mode & S_ISUID)
1002 		return false;
1003 
1004 	/* Executable setgid files should not get pinned to the filesystem. */
1005 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
1006 		return false;
1007 
1008 	/* Hardlinking to unreadable or unwritable sources is dangerous. */
1009 	if (inode_permission(inode, MAY_READ | MAY_WRITE))
1010 		return false;
1011 
1012 	return true;
1013 }
1014 
1015 /**
1016  * may_linkat - Check permissions for creating a hardlink
1017  * @link: the source to hardlink from
1018  *
1019  * Block hardlink when all of:
1020  *  - sysctl_protected_hardlinks enabled
1021  *  - fsuid does not match inode
1022  *  - hardlink source is unsafe (see safe_hardlink_source() above)
1023  *  - not CAP_FOWNER in a namespace with the inode owner uid mapped
1024  *
1025  * Returns 0 if successful, -ve on error.
1026  */
1027 int may_linkat(struct path *link)
1028 {
1029 	struct inode *inode = link->dentry->d_inode;
1030 
1031 	/* Inode writeback is not safe when the uid or gid are invalid. */
1032 	if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
1033 		return -EOVERFLOW;
1034 
1035 	if (!sysctl_protected_hardlinks)
1036 		return 0;
1037 
1038 	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1039 	 * otherwise, it must be a safe source.
1040 	 */
1041 	if (safe_hardlink_source(inode) || inode_owner_or_capable(inode))
1042 		return 0;
1043 
1044 	audit_log_path_denied(AUDIT_ANOM_LINK, "linkat");
1045 	return -EPERM;
1046 }
1047 
1048 /**
1049  * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1050  *			  should be allowed, or not, on files that already
1051  *			  exist.
1052  * @dir_mode: mode bits of directory
1053  * @dir_uid: owner of directory
1054  * @inode: the inode of the file to open
1055  *
1056  * Block an O_CREAT open of a FIFO (or a regular file) when:
1057  *   - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1058  *   - the file already exists
1059  *   - we are in a sticky directory
1060  *   - we don't own the file
1061  *   - the owner of the directory doesn't own the file
1062  *   - the directory is world writable
1063  * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1064  * the directory doesn't have to be world writable: being group writable will
1065  * be enough.
1066  *
1067  * Returns 0 if the open is allowed, -ve on error.
1068  */
1069 static int may_create_in_sticky(umode_t dir_mode, kuid_t dir_uid,
1070 				struct inode * const inode)
1071 {
1072 	if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) ||
1073 	    (!sysctl_protected_regular && S_ISREG(inode->i_mode)) ||
1074 	    likely(!(dir_mode & S_ISVTX)) ||
1075 	    uid_eq(inode->i_uid, dir_uid) ||
1076 	    uid_eq(current_fsuid(), inode->i_uid))
1077 		return 0;
1078 
1079 	if (likely(dir_mode & 0002) ||
1080 	    (dir_mode & 0020 &&
1081 	     ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) ||
1082 	      (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) {
1083 		const char *operation = S_ISFIFO(inode->i_mode) ?
1084 					"sticky_create_fifo" :
1085 					"sticky_create_regular";
1086 		audit_log_path_denied(AUDIT_ANOM_CREAT, operation);
1087 		return -EACCES;
1088 	}
1089 	return 0;
1090 }
1091 
1092 /*
1093  * follow_up - Find the mountpoint of path's vfsmount
1094  *
1095  * Given a path, find the mountpoint of its source file system.
1096  * Replace @path with the path of the mountpoint in the parent mount.
1097  * Up is towards /.
1098  *
1099  * Return 1 if we went up a level and 0 if we were already at the
1100  * root.
1101  */
1102 int follow_up(struct path *path)
1103 {
1104 	struct mount *mnt = real_mount(path->mnt);
1105 	struct mount *parent;
1106 	struct dentry *mountpoint;
1107 
1108 	read_seqlock_excl(&mount_lock);
1109 	parent = mnt->mnt_parent;
1110 	if (parent == mnt) {
1111 		read_sequnlock_excl(&mount_lock);
1112 		return 0;
1113 	}
1114 	mntget(&parent->mnt);
1115 	mountpoint = dget(mnt->mnt_mountpoint);
1116 	read_sequnlock_excl(&mount_lock);
1117 	dput(path->dentry);
1118 	path->dentry = mountpoint;
1119 	mntput(path->mnt);
1120 	path->mnt = &parent->mnt;
1121 	return 1;
1122 }
1123 EXPORT_SYMBOL(follow_up);
1124 
1125 static bool choose_mountpoint_rcu(struct mount *m, const struct path *root,
1126 				  struct path *path, unsigned *seqp)
1127 {
1128 	while (mnt_has_parent(m)) {
1129 		struct dentry *mountpoint = m->mnt_mountpoint;
1130 
1131 		m = m->mnt_parent;
1132 		if (unlikely(root->dentry == mountpoint &&
1133 			     root->mnt == &m->mnt))
1134 			break;
1135 		if (mountpoint != m->mnt.mnt_root) {
1136 			path->mnt = &m->mnt;
1137 			path->dentry = mountpoint;
1138 			*seqp = read_seqcount_begin(&mountpoint->d_seq);
1139 			return true;
1140 		}
1141 	}
1142 	return false;
1143 }
1144 
1145 static bool choose_mountpoint(struct mount *m, const struct path *root,
1146 			      struct path *path)
1147 {
1148 	bool found;
1149 
1150 	rcu_read_lock();
1151 	while (1) {
1152 		unsigned seq, mseq = read_seqbegin(&mount_lock);
1153 
1154 		found = choose_mountpoint_rcu(m, root, path, &seq);
1155 		if (unlikely(!found)) {
1156 			if (!read_seqretry(&mount_lock, mseq))
1157 				break;
1158 		} else {
1159 			if (likely(__legitimize_path(path, seq, mseq)))
1160 				break;
1161 			rcu_read_unlock();
1162 			path_put(path);
1163 			rcu_read_lock();
1164 		}
1165 	}
1166 	rcu_read_unlock();
1167 	return found;
1168 }
1169 
1170 /*
1171  * Perform an automount
1172  * - return -EISDIR to tell follow_managed() to stop and return the path we
1173  *   were called with.
1174  */
1175 static int follow_automount(struct path *path, int *count, unsigned lookup_flags)
1176 {
1177 	struct dentry *dentry = path->dentry;
1178 
1179 	/* We don't want to mount if someone's just doing a stat -
1180 	 * unless they're stat'ing a directory and appended a '/' to
1181 	 * the name.
1182 	 *
1183 	 * We do, however, want to mount if someone wants to open or
1184 	 * create a file of any type under the mountpoint, wants to
1185 	 * traverse through the mountpoint or wants to open the
1186 	 * mounted directory.  Also, autofs may mark negative dentries
1187 	 * as being automount points.  These will need the attentions
1188 	 * of the daemon to instantiate them before they can be used.
1189 	 */
1190 	if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1191 			   LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1192 	    dentry->d_inode)
1193 		return -EISDIR;
1194 
1195 	if (count && (*count)++ >= MAXSYMLINKS)
1196 		return -ELOOP;
1197 
1198 	return finish_automount(dentry->d_op->d_automount(path), path);
1199 }
1200 
1201 /*
1202  * mount traversal - out-of-line part.  One note on ->d_flags accesses -
1203  * dentries are pinned but not locked here, so negative dentry can go
1204  * positive right under us.  Use of smp_load_acquire() provides a barrier
1205  * sufficient for ->d_inode and ->d_flags consistency.
1206  */
1207 static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped,
1208 			     int *count, unsigned lookup_flags)
1209 {
1210 	struct vfsmount *mnt = path->mnt;
1211 	bool need_mntput = false;
1212 	int ret = 0;
1213 
1214 	while (flags & DCACHE_MANAGED_DENTRY) {
1215 		/* Allow the filesystem to manage the transit without i_mutex
1216 		 * being held. */
1217 		if (flags & DCACHE_MANAGE_TRANSIT) {
1218 			ret = path->dentry->d_op->d_manage(path, false);
1219 			flags = smp_load_acquire(&path->dentry->d_flags);
1220 			if (ret < 0)
1221 				break;
1222 		}
1223 
1224 		if (flags & DCACHE_MOUNTED) {	// something's mounted on it..
1225 			struct vfsmount *mounted = lookup_mnt(path);
1226 			if (mounted) {		// ... in our namespace
1227 				dput(path->dentry);
1228 				if (need_mntput)
1229 					mntput(path->mnt);
1230 				path->mnt = mounted;
1231 				path->dentry = dget(mounted->mnt_root);
1232 				// here we know it's positive
1233 				flags = path->dentry->d_flags;
1234 				need_mntput = true;
1235 				continue;
1236 			}
1237 		}
1238 
1239 		if (!(flags & DCACHE_NEED_AUTOMOUNT))
1240 			break;
1241 
1242 		// uncovered automount point
1243 		ret = follow_automount(path, count, lookup_flags);
1244 		flags = smp_load_acquire(&path->dentry->d_flags);
1245 		if (ret < 0)
1246 			break;
1247 	}
1248 
1249 	if (ret == -EISDIR)
1250 		ret = 0;
1251 	// possible if you race with several mount --move
1252 	if (need_mntput && path->mnt == mnt)
1253 		mntput(path->mnt);
1254 	if (!ret && unlikely(d_flags_negative(flags)))
1255 		ret = -ENOENT;
1256 	*jumped = need_mntput;
1257 	return ret;
1258 }
1259 
1260 static inline int traverse_mounts(struct path *path, bool *jumped,
1261 				  int *count, unsigned lookup_flags)
1262 {
1263 	unsigned flags = smp_load_acquire(&path->dentry->d_flags);
1264 
1265 	/* fastpath */
1266 	if (likely(!(flags & DCACHE_MANAGED_DENTRY))) {
1267 		*jumped = false;
1268 		if (unlikely(d_flags_negative(flags)))
1269 			return -ENOENT;
1270 		return 0;
1271 	}
1272 	return __traverse_mounts(path, flags, jumped, count, lookup_flags);
1273 }
1274 
1275 int follow_down_one(struct path *path)
1276 {
1277 	struct vfsmount *mounted;
1278 
1279 	mounted = lookup_mnt(path);
1280 	if (mounted) {
1281 		dput(path->dentry);
1282 		mntput(path->mnt);
1283 		path->mnt = mounted;
1284 		path->dentry = dget(mounted->mnt_root);
1285 		return 1;
1286 	}
1287 	return 0;
1288 }
1289 EXPORT_SYMBOL(follow_down_one);
1290 
1291 /*
1292  * Follow down to the covering mount currently visible to userspace.  At each
1293  * point, the filesystem owning that dentry may be queried as to whether the
1294  * caller is permitted to proceed or not.
1295  */
1296 int follow_down(struct path *path)
1297 {
1298 	struct vfsmount *mnt = path->mnt;
1299 	bool jumped;
1300 	int ret = traverse_mounts(path, &jumped, NULL, 0);
1301 
1302 	if (path->mnt != mnt)
1303 		mntput(mnt);
1304 	return ret;
1305 }
1306 EXPORT_SYMBOL(follow_down);
1307 
1308 /*
1309  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1310  * we meet a managed dentry that would need blocking.
1311  */
1312 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1313 			       struct inode **inode, unsigned *seqp)
1314 {
1315 	struct dentry *dentry = path->dentry;
1316 	unsigned int flags = dentry->d_flags;
1317 
1318 	if (likely(!(flags & DCACHE_MANAGED_DENTRY)))
1319 		return true;
1320 
1321 	if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1322 		return false;
1323 
1324 	for (;;) {
1325 		/*
1326 		 * Don't forget we might have a non-mountpoint managed dentry
1327 		 * that wants to block transit.
1328 		 */
1329 		if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) {
1330 			int res = dentry->d_op->d_manage(path, true);
1331 			if (res)
1332 				return res == -EISDIR;
1333 			flags = dentry->d_flags;
1334 		}
1335 
1336 		if (flags & DCACHE_MOUNTED) {
1337 			struct mount *mounted = __lookup_mnt(path->mnt, dentry);
1338 			if (mounted) {
1339 				path->mnt = &mounted->mnt;
1340 				dentry = path->dentry = mounted->mnt.mnt_root;
1341 				nd->flags |= LOOKUP_JUMPED;
1342 				*seqp = read_seqcount_begin(&dentry->d_seq);
1343 				*inode = dentry->d_inode;
1344 				/*
1345 				 * We don't need to re-check ->d_seq after this
1346 				 * ->d_inode read - there will be an RCU delay
1347 				 * between mount hash removal and ->mnt_root
1348 				 * becoming unpinned.
1349 				 */
1350 				flags = dentry->d_flags;
1351 				continue;
1352 			}
1353 			if (read_seqretry(&mount_lock, nd->m_seq))
1354 				return false;
1355 		}
1356 		return !(flags & DCACHE_NEED_AUTOMOUNT);
1357 	}
1358 }
1359 
1360 static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry,
1361 			  struct path *path, struct inode **inode,
1362 			  unsigned int *seqp)
1363 {
1364 	bool jumped;
1365 	int ret;
1366 
1367 	path->mnt = nd->path.mnt;
1368 	path->dentry = dentry;
1369 	if (nd->flags & LOOKUP_RCU) {
1370 		unsigned int seq = *seqp;
1371 		if (unlikely(!*inode))
1372 			return -ENOENT;
1373 		if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1374 			return 0;
1375 		if (unlazy_child(nd, dentry, seq))
1376 			return -ECHILD;
1377 		// *path might've been clobbered by __follow_mount_rcu()
1378 		path->mnt = nd->path.mnt;
1379 		path->dentry = dentry;
1380 	}
1381 	ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags);
1382 	if (jumped) {
1383 		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1384 			ret = -EXDEV;
1385 		else
1386 			nd->flags |= LOOKUP_JUMPED;
1387 	}
1388 	if (unlikely(ret)) {
1389 		dput(path->dentry);
1390 		if (path->mnt != nd->path.mnt)
1391 			mntput(path->mnt);
1392 	} else {
1393 		*inode = d_backing_inode(path->dentry);
1394 		*seqp = 0; /* out of RCU mode, so the value doesn't matter */
1395 	}
1396 	return ret;
1397 }
1398 
1399 /*
1400  * This looks up the name in dcache and possibly revalidates the found dentry.
1401  * NULL is returned if the dentry does not exist in the cache.
1402  */
1403 static struct dentry *lookup_dcache(const struct qstr *name,
1404 				    struct dentry *dir,
1405 				    unsigned int flags)
1406 {
1407 	struct dentry *dentry = d_lookup(dir, name);
1408 	if (dentry) {
1409 		int error = d_revalidate(dentry, flags);
1410 		if (unlikely(error <= 0)) {
1411 			if (!error)
1412 				d_invalidate(dentry);
1413 			dput(dentry);
1414 			return ERR_PTR(error);
1415 		}
1416 	}
1417 	return dentry;
1418 }
1419 
1420 /*
1421  * Parent directory has inode locked exclusive.  This is one
1422  * and only case when ->lookup() gets called on non in-lookup
1423  * dentries - as the matter of fact, this only gets called
1424  * when directory is guaranteed to have no in-lookup children
1425  * at all.
1426  */
1427 static struct dentry *__lookup_hash(const struct qstr *name,
1428 		struct dentry *base, unsigned int flags)
1429 {
1430 	struct dentry *dentry = lookup_dcache(name, base, flags);
1431 	struct dentry *old;
1432 	struct inode *dir = base->d_inode;
1433 
1434 	if (dentry)
1435 		return dentry;
1436 
1437 	/* Don't create child dentry for a dead directory. */
1438 	if (unlikely(IS_DEADDIR(dir)))
1439 		return ERR_PTR(-ENOENT);
1440 
1441 	dentry = d_alloc(base, name);
1442 	if (unlikely(!dentry))
1443 		return ERR_PTR(-ENOMEM);
1444 
1445 	old = dir->i_op->lookup(dir, dentry, flags);
1446 	if (unlikely(old)) {
1447 		dput(dentry);
1448 		dentry = old;
1449 	}
1450 	return dentry;
1451 }
1452 
1453 static struct dentry *lookup_fast(struct nameidata *nd,
1454 				  struct inode **inode,
1455 			          unsigned *seqp)
1456 {
1457 	struct dentry *dentry, *parent = nd->path.dentry;
1458 	int status = 1;
1459 
1460 	/*
1461 	 * Rename seqlock is not required here because in the off chance
1462 	 * of a false negative due to a concurrent rename, the caller is
1463 	 * going to fall back to non-racy lookup.
1464 	 */
1465 	if (nd->flags & LOOKUP_RCU) {
1466 		unsigned seq;
1467 		dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1468 		if (unlikely(!dentry)) {
1469 			if (unlazy_walk(nd))
1470 				return ERR_PTR(-ECHILD);
1471 			return NULL;
1472 		}
1473 
1474 		/*
1475 		 * This sequence count validates that the inode matches
1476 		 * the dentry name information from lookup.
1477 		 */
1478 		*inode = d_backing_inode(dentry);
1479 		if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1480 			return ERR_PTR(-ECHILD);
1481 
1482 		/*
1483 		 * This sequence count validates that the parent had no
1484 		 * changes while we did the lookup of the dentry above.
1485 		 *
1486 		 * The memory barrier in read_seqcount_begin of child is
1487 		 *  enough, we can use __read_seqcount_retry here.
1488 		 */
1489 		if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1490 			return ERR_PTR(-ECHILD);
1491 
1492 		*seqp = seq;
1493 		status = d_revalidate(dentry, nd->flags);
1494 		if (likely(status > 0))
1495 			return dentry;
1496 		if (unlazy_child(nd, dentry, seq))
1497 			return ERR_PTR(-ECHILD);
1498 		if (unlikely(status == -ECHILD))
1499 			/* we'd been told to redo it in non-rcu mode */
1500 			status = d_revalidate(dentry, nd->flags);
1501 	} else {
1502 		dentry = __d_lookup(parent, &nd->last);
1503 		if (unlikely(!dentry))
1504 			return NULL;
1505 		status = d_revalidate(dentry, nd->flags);
1506 	}
1507 	if (unlikely(status <= 0)) {
1508 		if (!status)
1509 			d_invalidate(dentry);
1510 		dput(dentry);
1511 		return ERR_PTR(status);
1512 	}
1513 	return dentry;
1514 }
1515 
1516 /* Fast lookup failed, do it the slow way */
1517 static struct dentry *__lookup_slow(const struct qstr *name,
1518 				    struct dentry *dir,
1519 				    unsigned int flags)
1520 {
1521 	struct dentry *dentry, *old;
1522 	struct inode *inode = dir->d_inode;
1523 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1524 
1525 	/* Don't go there if it's already dead */
1526 	if (unlikely(IS_DEADDIR(inode)))
1527 		return ERR_PTR(-ENOENT);
1528 again:
1529 	dentry = d_alloc_parallel(dir, name, &wq);
1530 	if (IS_ERR(dentry))
1531 		return dentry;
1532 	if (unlikely(!d_in_lookup(dentry))) {
1533 		int error = d_revalidate(dentry, flags);
1534 		if (unlikely(error <= 0)) {
1535 			if (!error) {
1536 				d_invalidate(dentry);
1537 				dput(dentry);
1538 				goto again;
1539 			}
1540 			dput(dentry);
1541 			dentry = ERR_PTR(error);
1542 		}
1543 	} else {
1544 		old = inode->i_op->lookup(inode, dentry, flags);
1545 		d_lookup_done(dentry);
1546 		if (unlikely(old)) {
1547 			dput(dentry);
1548 			dentry = old;
1549 		}
1550 	}
1551 	return dentry;
1552 }
1553 
1554 static struct dentry *lookup_slow(const struct qstr *name,
1555 				  struct dentry *dir,
1556 				  unsigned int flags)
1557 {
1558 	struct inode *inode = dir->d_inode;
1559 	struct dentry *res;
1560 	inode_lock_shared(inode);
1561 	res = __lookup_slow(name, dir, flags);
1562 	inode_unlock_shared(inode);
1563 	return res;
1564 }
1565 
1566 static inline int may_lookup(struct nameidata *nd)
1567 {
1568 	if (nd->flags & LOOKUP_RCU) {
1569 		int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1570 		if (err != -ECHILD)
1571 			return err;
1572 		if (unlazy_walk(nd))
1573 			return -ECHILD;
1574 	}
1575 	return inode_permission(nd->inode, MAY_EXEC);
1576 }
1577 
1578 static int reserve_stack(struct nameidata *nd, struct path *link, unsigned seq)
1579 {
1580 	if (unlikely(nd->total_link_count++ >= MAXSYMLINKS))
1581 		return -ELOOP;
1582 
1583 	if (likely(nd->depth != EMBEDDED_LEVELS))
1584 		return 0;
1585 	if (likely(nd->stack != nd->internal))
1586 		return 0;
1587 	if (likely(nd_alloc_stack(nd)))
1588 		return 0;
1589 
1590 	if (nd->flags & LOOKUP_RCU) {
1591 		// we need to grab link before we do unlazy.  And we can't skip
1592 		// unlazy even if we fail to grab the link - cleanup needs it
1593 		bool grabbed_link = legitimize_path(nd, link, seq);
1594 
1595 		if (unlazy_walk(nd) != 0 || !grabbed_link)
1596 			return -ECHILD;
1597 
1598 		if (nd_alloc_stack(nd))
1599 			return 0;
1600 	}
1601 	return -ENOMEM;
1602 }
1603 
1604 enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4};
1605 
1606 static const char *pick_link(struct nameidata *nd, struct path *link,
1607 		     struct inode *inode, unsigned seq, int flags)
1608 {
1609 	struct saved *last;
1610 	const char *res;
1611 	int error = reserve_stack(nd, link, seq);
1612 
1613 	if (unlikely(error)) {
1614 		if (!(nd->flags & LOOKUP_RCU))
1615 			path_put(link);
1616 		return ERR_PTR(error);
1617 	}
1618 	last = nd->stack + nd->depth++;
1619 	last->link = *link;
1620 	clear_delayed_call(&last->done);
1621 	last->seq = seq;
1622 
1623 	if (flags & WALK_TRAILING) {
1624 		error = may_follow_link(nd, inode);
1625 		if (unlikely(error))
1626 			return ERR_PTR(error);
1627 	}
1628 
1629 	if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) ||
1630 			unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW))
1631 		return ERR_PTR(-ELOOP);
1632 
1633 	if (!(nd->flags & LOOKUP_RCU)) {
1634 		touch_atime(&last->link);
1635 		cond_resched();
1636 	} else if (atime_needs_update(&last->link, inode)) {
1637 		if (unlikely(unlazy_walk(nd)))
1638 			return ERR_PTR(-ECHILD);
1639 		touch_atime(&last->link);
1640 	}
1641 
1642 	error = security_inode_follow_link(link->dentry, inode,
1643 					   nd->flags & LOOKUP_RCU);
1644 	if (unlikely(error))
1645 		return ERR_PTR(error);
1646 
1647 	res = READ_ONCE(inode->i_link);
1648 	if (!res) {
1649 		const char * (*get)(struct dentry *, struct inode *,
1650 				struct delayed_call *);
1651 		get = inode->i_op->get_link;
1652 		if (nd->flags & LOOKUP_RCU) {
1653 			res = get(NULL, inode, &last->done);
1654 			if (res == ERR_PTR(-ECHILD)) {
1655 				if (unlikely(unlazy_walk(nd)))
1656 					return ERR_PTR(-ECHILD);
1657 				res = get(link->dentry, inode, &last->done);
1658 			}
1659 		} else {
1660 			res = get(link->dentry, inode, &last->done);
1661 		}
1662 		if (!res)
1663 			goto all_done;
1664 		if (IS_ERR(res))
1665 			return res;
1666 	}
1667 	if (*res == '/') {
1668 		error = nd_jump_root(nd);
1669 		if (unlikely(error))
1670 			return ERR_PTR(error);
1671 		while (unlikely(*++res == '/'))
1672 			;
1673 	}
1674 	if (*res)
1675 		return res;
1676 all_done: // pure jump
1677 	put_link(nd);
1678 	return NULL;
1679 }
1680 
1681 /*
1682  * Do we need to follow links? We _really_ want to be able
1683  * to do this check without having to look at inode->i_op,
1684  * so we keep a cache of "no, this doesn't need follow_link"
1685  * for the common case.
1686  */
1687 static const char *step_into(struct nameidata *nd, int flags,
1688 		     struct dentry *dentry, struct inode *inode, unsigned seq)
1689 {
1690 	struct path path;
1691 	int err = handle_mounts(nd, dentry, &path, &inode, &seq);
1692 
1693 	if (err < 0)
1694 		return ERR_PTR(err);
1695 	if (likely(!d_is_symlink(path.dentry)) ||
1696 	   ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) ||
1697 	   (flags & WALK_NOFOLLOW)) {
1698 		/* not a symlink or should not follow */
1699 		if (!(nd->flags & LOOKUP_RCU)) {
1700 			dput(nd->path.dentry);
1701 			if (nd->path.mnt != path.mnt)
1702 				mntput(nd->path.mnt);
1703 		}
1704 		nd->path = path;
1705 		nd->inode = inode;
1706 		nd->seq = seq;
1707 		return NULL;
1708 	}
1709 	if (nd->flags & LOOKUP_RCU) {
1710 		/* make sure that d_is_symlink above matches inode */
1711 		if (read_seqcount_retry(&path.dentry->d_seq, seq))
1712 			return ERR_PTR(-ECHILD);
1713 	} else {
1714 		if (path.mnt == nd->path.mnt)
1715 			mntget(path.mnt);
1716 	}
1717 	return pick_link(nd, &path, inode, seq, flags);
1718 }
1719 
1720 static struct dentry *follow_dotdot_rcu(struct nameidata *nd,
1721 					struct inode **inodep,
1722 					unsigned *seqp)
1723 {
1724 	struct dentry *parent, *old;
1725 
1726 	if (path_equal(&nd->path, &nd->root))
1727 		goto in_root;
1728 	if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1729 		struct path path;
1730 		unsigned seq;
1731 		if (!choose_mountpoint_rcu(real_mount(nd->path.mnt),
1732 					   &nd->root, &path, &seq))
1733 			goto in_root;
1734 		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1735 			return ERR_PTR(-ECHILD);
1736 		nd->path = path;
1737 		nd->inode = path.dentry->d_inode;
1738 		nd->seq = seq;
1739 		if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1740 			return ERR_PTR(-ECHILD);
1741 		/* we know that mountpoint was pinned */
1742 	}
1743 	old = nd->path.dentry;
1744 	parent = old->d_parent;
1745 	*inodep = parent->d_inode;
1746 	*seqp = read_seqcount_begin(&parent->d_seq);
1747 	if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1748 		return ERR_PTR(-ECHILD);
1749 	if (unlikely(!path_connected(nd->path.mnt, parent)))
1750 		return ERR_PTR(-ECHILD);
1751 	return parent;
1752 in_root:
1753 	if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1754 		return ERR_PTR(-ECHILD);
1755 	if (unlikely(nd->flags & LOOKUP_BENEATH))
1756 		return ERR_PTR(-ECHILD);
1757 	return NULL;
1758 }
1759 
1760 static struct dentry *follow_dotdot(struct nameidata *nd,
1761 				 struct inode **inodep,
1762 				 unsigned *seqp)
1763 {
1764 	struct dentry *parent;
1765 
1766 	if (path_equal(&nd->path, &nd->root))
1767 		goto in_root;
1768 	if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1769 		struct path path;
1770 
1771 		if (!choose_mountpoint(real_mount(nd->path.mnt),
1772 				       &nd->root, &path))
1773 			goto in_root;
1774 		path_put(&nd->path);
1775 		nd->path = path;
1776 		nd->inode = path.dentry->d_inode;
1777 		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1778 			return ERR_PTR(-EXDEV);
1779 	}
1780 	/* rare case of legitimate dget_parent()... */
1781 	parent = dget_parent(nd->path.dentry);
1782 	if (unlikely(!path_connected(nd->path.mnt, parent))) {
1783 		dput(parent);
1784 		return ERR_PTR(-ENOENT);
1785 	}
1786 	*seqp = 0;
1787 	*inodep = parent->d_inode;
1788 	return parent;
1789 
1790 in_root:
1791 	if (unlikely(nd->flags & LOOKUP_BENEATH))
1792 		return ERR_PTR(-EXDEV);
1793 	dget(nd->path.dentry);
1794 	return NULL;
1795 }
1796 
1797 static const char *handle_dots(struct nameidata *nd, int type)
1798 {
1799 	if (type == LAST_DOTDOT) {
1800 		const char *error = NULL;
1801 		struct dentry *parent;
1802 		struct inode *inode;
1803 		unsigned seq;
1804 
1805 		if (!nd->root.mnt) {
1806 			error = ERR_PTR(set_root(nd));
1807 			if (error)
1808 				return error;
1809 		}
1810 		if (nd->flags & LOOKUP_RCU)
1811 			parent = follow_dotdot_rcu(nd, &inode, &seq);
1812 		else
1813 			parent = follow_dotdot(nd, &inode, &seq);
1814 		if (IS_ERR(parent))
1815 			return ERR_CAST(parent);
1816 		if (unlikely(!parent))
1817 			error = step_into(nd, WALK_NOFOLLOW,
1818 					 nd->path.dentry, nd->inode, nd->seq);
1819 		else
1820 			error = step_into(nd, WALK_NOFOLLOW,
1821 					 parent, inode, seq);
1822 		if (unlikely(error))
1823 			return error;
1824 
1825 		if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
1826 			/*
1827 			 * If there was a racing rename or mount along our
1828 			 * path, then we can't be sure that ".." hasn't jumped
1829 			 * above nd->root (and so userspace should retry or use
1830 			 * some fallback).
1831 			 */
1832 			smp_rmb();
1833 			if (unlikely(__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq)))
1834 				return ERR_PTR(-EAGAIN);
1835 			if (unlikely(__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq)))
1836 				return ERR_PTR(-EAGAIN);
1837 		}
1838 	}
1839 	return NULL;
1840 }
1841 
1842 static const char *walk_component(struct nameidata *nd, int flags)
1843 {
1844 	struct dentry *dentry;
1845 	struct inode *inode;
1846 	unsigned seq;
1847 	/*
1848 	 * "." and ".." are special - ".." especially so because it has
1849 	 * to be able to know about the current root directory and
1850 	 * parent relationships.
1851 	 */
1852 	if (unlikely(nd->last_type != LAST_NORM)) {
1853 		if (!(flags & WALK_MORE) && nd->depth)
1854 			put_link(nd);
1855 		return handle_dots(nd, nd->last_type);
1856 	}
1857 	dentry = lookup_fast(nd, &inode, &seq);
1858 	if (IS_ERR(dentry))
1859 		return ERR_CAST(dentry);
1860 	if (unlikely(!dentry)) {
1861 		dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags);
1862 		if (IS_ERR(dentry))
1863 			return ERR_CAST(dentry);
1864 	}
1865 	if (!(flags & WALK_MORE) && nd->depth)
1866 		put_link(nd);
1867 	return step_into(nd, flags, dentry, inode, seq);
1868 }
1869 
1870 /*
1871  * We can do the critical dentry name comparison and hashing
1872  * operations one word at a time, but we are limited to:
1873  *
1874  * - Architectures with fast unaligned word accesses. We could
1875  *   do a "get_unaligned()" if this helps and is sufficiently
1876  *   fast.
1877  *
1878  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1879  *   do not trap on the (extremely unlikely) case of a page
1880  *   crossing operation.
1881  *
1882  * - Furthermore, we need an efficient 64-bit compile for the
1883  *   64-bit case in order to generate the "number of bytes in
1884  *   the final mask". Again, that could be replaced with a
1885  *   efficient population count instruction or similar.
1886  */
1887 #ifdef CONFIG_DCACHE_WORD_ACCESS
1888 
1889 #include <asm/word-at-a-time.h>
1890 
1891 #ifdef HASH_MIX
1892 
1893 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1894 
1895 #elif defined(CONFIG_64BIT)
1896 /*
1897  * Register pressure in the mixing function is an issue, particularly
1898  * on 32-bit x86, but almost any function requires one state value and
1899  * one temporary.  Instead, use a function designed for two state values
1900  * and no temporaries.
1901  *
1902  * This function cannot create a collision in only two iterations, so
1903  * we have two iterations to achieve avalanche.  In those two iterations,
1904  * we have six layers of mixing, which is enough to spread one bit's
1905  * influence out to 2^6 = 64 state bits.
1906  *
1907  * Rotate constants are scored by considering either 64 one-bit input
1908  * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
1909  * probability of that delta causing a change to each of the 128 output
1910  * bits, using a sample of random initial states.
1911  *
1912  * The Shannon entropy of the computed probabilities is then summed
1913  * to produce a score.  Ideally, any input change has a 50% chance of
1914  * toggling any given output bit.
1915  *
1916  * Mixing scores (in bits) for (12,45):
1917  * Input delta: 1-bit      2-bit
1918  * 1 round:     713.3    42542.6
1919  * 2 rounds:   2753.7   140389.8
1920  * 3 rounds:   5954.1   233458.2
1921  * 4 rounds:   7862.6   256672.2
1922  * Perfect:    8192     258048
1923  *            (64*128) (64*63/2 * 128)
1924  */
1925 #define HASH_MIX(x, y, a)	\
1926 	(	x ^= (a),	\
1927 	y ^= x,	x = rol64(x,12),\
1928 	x += y,	y = rol64(y,45),\
1929 	y *= 9			)
1930 
1931 /*
1932  * Fold two longs into one 32-bit hash value.  This must be fast, but
1933  * latency isn't quite as critical, as there is a fair bit of additional
1934  * work done before the hash value is used.
1935  */
1936 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1937 {
1938 	y ^= x * GOLDEN_RATIO_64;
1939 	y *= GOLDEN_RATIO_64;
1940 	return y >> 32;
1941 }
1942 
1943 #else	/* 32-bit case */
1944 
1945 /*
1946  * Mixing scores (in bits) for (7,20):
1947  * Input delta: 1-bit      2-bit
1948  * 1 round:     330.3     9201.6
1949  * 2 rounds:   1246.4    25475.4
1950  * 3 rounds:   1907.1    31295.1
1951  * 4 rounds:   2042.3    31718.6
1952  * Perfect:    2048      31744
1953  *            (32*64)   (32*31/2 * 64)
1954  */
1955 #define HASH_MIX(x, y, a)	\
1956 	(	x ^= (a),	\
1957 	y ^= x,	x = rol32(x, 7),\
1958 	x += y,	y = rol32(y,20),\
1959 	y *= 9			)
1960 
1961 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1962 {
1963 	/* Use arch-optimized multiply if one exists */
1964 	return __hash_32(y ^ __hash_32(x));
1965 }
1966 
1967 #endif
1968 
1969 /*
1970  * Return the hash of a string of known length.  This is carfully
1971  * designed to match hash_name(), which is the more critical function.
1972  * In particular, we must end by hashing a final word containing 0..7
1973  * payload bytes, to match the way that hash_name() iterates until it
1974  * finds the delimiter after the name.
1975  */
1976 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1977 {
1978 	unsigned long a, x = 0, y = (unsigned long)salt;
1979 
1980 	for (;;) {
1981 		if (!len)
1982 			goto done;
1983 		a = load_unaligned_zeropad(name);
1984 		if (len < sizeof(unsigned long))
1985 			break;
1986 		HASH_MIX(x, y, a);
1987 		name += sizeof(unsigned long);
1988 		len -= sizeof(unsigned long);
1989 	}
1990 	x ^= a & bytemask_from_count(len);
1991 done:
1992 	return fold_hash(x, y);
1993 }
1994 EXPORT_SYMBOL(full_name_hash);
1995 
1996 /* Return the "hash_len" (hash and length) of a null-terminated string */
1997 u64 hashlen_string(const void *salt, const char *name)
1998 {
1999 	unsigned long a = 0, x = 0, y = (unsigned long)salt;
2000 	unsigned long adata, mask, len;
2001 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2002 
2003 	len = 0;
2004 	goto inside;
2005 
2006 	do {
2007 		HASH_MIX(x, y, a);
2008 		len += sizeof(unsigned long);
2009 inside:
2010 		a = load_unaligned_zeropad(name+len);
2011 	} while (!has_zero(a, &adata, &constants));
2012 
2013 	adata = prep_zero_mask(a, adata, &constants);
2014 	mask = create_zero_mask(adata);
2015 	x ^= a & zero_bytemask(mask);
2016 
2017 	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2018 }
2019 EXPORT_SYMBOL(hashlen_string);
2020 
2021 /*
2022  * Calculate the length and hash of the path component, and
2023  * return the "hash_len" as the result.
2024  */
2025 static inline u64 hash_name(const void *salt, const char *name)
2026 {
2027 	unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
2028 	unsigned long adata, bdata, mask, len;
2029 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2030 
2031 	len = 0;
2032 	goto inside;
2033 
2034 	do {
2035 		HASH_MIX(x, y, a);
2036 		len += sizeof(unsigned long);
2037 inside:
2038 		a = load_unaligned_zeropad(name+len);
2039 		b = a ^ REPEAT_BYTE('/');
2040 	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
2041 
2042 	adata = prep_zero_mask(a, adata, &constants);
2043 	bdata = prep_zero_mask(b, bdata, &constants);
2044 	mask = create_zero_mask(adata | bdata);
2045 	x ^= a & zero_bytemask(mask);
2046 
2047 	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2048 }
2049 
2050 #else	/* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2051 
2052 /* Return the hash of a string of known length */
2053 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2054 {
2055 	unsigned long hash = init_name_hash(salt);
2056 	while (len--)
2057 		hash = partial_name_hash((unsigned char)*name++, hash);
2058 	return end_name_hash(hash);
2059 }
2060 EXPORT_SYMBOL(full_name_hash);
2061 
2062 /* Return the "hash_len" (hash and length) of a null-terminated string */
2063 u64 hashlen_string(const void *salt, const char *name)
2064 {
2065 	unsigned long hash = init_name_hash(salt);
2066 	unsigned long len = 0, c;
2067 
2068 	c = (unsigned char)*name;
2069 	while (c) {
2070 		len++;
2071 		hash = partial_name_hash(c, hash);
2072 		c = (unsigned char)name[len];
2073 	}
2074 	return hashlen_create(end_name_hash(hash), len);
2075 }
2076 EXPORT_SYMBOL(hashlen_string);
2077 
2078 /*
2079  * We know there's a real path component here of at least
2080  * one character.
2081  */
2082 static inline u64 hash_name(const void *salt, const char *name)
2083 {
2084 	unsigned long hash = init_name_hash(salt);
2085 	unsigned long len = 0, c;
2086 
2087 	c = (unsigned char)*name;
2088 	do {
2089 		len++;
2090 		hash = partial_name_hash(c, hash);
2091 		c = (unsigned char)name[len];
2092 	} while (c && c != '/');
2093 	return hashlen_create(end_name_hash(hash), len);
2094 }
2095 
2096 #endif
2097 
2098 /*
2099  * Name resolution.
2100  * This is the basic name resolution function, turning a pathname into
2101  * the final dentry. We expect 'base' to be positive and a directory.
2102  *
2103  * Returns 0 and nd will have valid dentry and mnt on success.
2104  * Returns error and drops reference to input namei data on failure.
2105  */
2106 static int link_path_walk(const char *name, struct nameidata *nd)
2107 {
2108 	int depth = 0; // depth <= nd->depth
2109 	int err;
2110 
2111 	nd->last_type = LAST_ROOT;
2112 	nd->flags |= LOOKUP_PARENT;
2113 	if (IS_ERR(name))
2114 		return PTR_ERR(name);
2115 	while (*name=='/')
2116 		name++;
2117 	if (!*name)
2118 		return 0;
2119 
2120 	/* At this point we know we have a real path component. */
2121 	for(;;) {
2122 		const char *link;
2123 		u64 hash_len;
2124 		int type;
2125 
2126 		err = may_lookup(nd);
2127 		if (err)
2128 			return err;
2129 
2130 		hash_len = hash_name(nd->path.dentry, name);
2131 
2132 		type = LAST_NORM;
2133 		if (name[0] == '.') switch (hashlen_len(hash_len)) {
2134 			case 2:
2135 				if (name[1] == '.') {
2136 					type = LAST_DOTDOT;
2137 					nd->flags |= LOOKUP_JUMPED;
2138 				}
2139 				break;
2140 			case 1:
2141 				type = LAST_DOT;
2142 		}
2143 		if (likely(type == LAST_NORM)) {
2144 			struct dentry *parent = nd->path.dentry;
2145 			nd->flags &= ~LOOKUP_JUMPED;
2146 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2147 				struct qstr this = { { .hash_len = hash_len }, .name = name };
2148 				err = parent->d_op->d_hash(parent, &this);
2149 				if (err < 0)
2150 					return err;
2151 				hash_len = this.hash_len;
2152 				name = this.name;
2153 			}
2154 		}
2155 
2156 		nd->last.hash_len = hash_len;
2157 		nd->last.name = name;
2158 		nd->last_type = type;
2159 
2160 		name += hashlen_len(hash_len);
2161 		if (!*name)
2162 			goto OK;
2163 		/*
2164 		 * If it wasn't NUL, we know it was '/'. Skip that
2165 		 * slash, and continue until no more slashes.
2166 		 */
2167 		do {
2168 			name++;
2169 		} while (unlikely(*name == '/'));
2170 		if (unlikely(!*name)) {
2171 OK:
2172 			/* pathname or trailing symlink, done */
2173 			if (!depth) {
2174 				nd->dir_uid = nd->inode->i_uid;
2175 				nd->dir_mode = nd->inode->i_mode;
2176 				nd->flags &= ~LOOKUP_PARENT;
2177 				return 0;
2178 			}
2179 			/* last component of nested symlink */
2180 			name = nd->stack[--depth].name;
2181 			link = walk_component(nd, 0);
2182 		} else {
2183 			/* not the last component */
2184 			link = walk_component(nd, WALK_MORE);
2185 		}
2186 		if (unlikely(link)) {
2187 			if (IS_ERR(link))
2188 				return PTR_ERR(link);
2189 			/* a symlink to follow */
2190 			nd->stack[depth++].name = name;
2191 			name = link;
2192 			continue;
2193 		}
2194 		if (unlikely(!d_can_lookup(nd->path.dentry))) {
2195 			if (nd->flags & LOOKUP_RCU) {
2196 				if (unlazy_walk(nd))
2197 					return -ECHILD;
2198 			}
2199 			return -ENOTDIR;
2200 		}
2201 	}
2202 }
2203 
2204 /* must be paired with terminate_walk() */
2205 static const char *path_init(struct nameidata *nd, unsigned flags)
2206 {
2207 	int error;
2208 	const char *s = nd->name->name;
2209 
2210 	if (!*s)
2211 		flags &= ~LOOKUP_RCU;
2212 	if (flags & LOOKUP_RCU)
2213 		rcu_read_lock();
2214 
2215 	nd->flags = flags | LOOKUP_JUMPED;
2216 	nd->depth = 0;
2217 
2218 	nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount);
2219 	nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount);
2220 	smp_rmb();
2221 
2222 	if (flags & LOOKUP_ROOT) {
2223 		struct dentry *root = nd->root.dentry;
2224 		struct inode *inode = root->d_inode;
2225 		if (*s && unlikely(!d_can_lookup(root)))
2226 			return ERR_PTR(-ENOTDIR);
2227 		nd->path = nd->root;
2228 		nd->inode = inode;
2229 		if (flags & LOOKUP_RCU) {
2230 			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2231 			nd->root_seq = nd->seq;
2232 		} else {
2233 			path_get(&nd->path);
2234 		}
2235 		return s;
2236 	}
2237 
2238 	nd->root.mnt = NULL;
2239 	nd->path.mnt = NULL;
2240 	nd->path.dentry = NULL;
2241 
2242 	/* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */
2243 	if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) {
2244 		error = nd_jump_root(nd);
2245 		if (unlikely(error))
2246 			return ERR_PTR(error);
2247 		return s;
2248 	}
2249 
2250 	/* Relative pathname -- get the starting-point it is relative to. */
2251 	if (nd->dfd == AT_FDCWD) {
2252 		if (flags & LOOKUP_RCU) {
2253 			struct fs_struct *fs = current->fs;
2254 			unsigned seq;
2255 
2256 			do {
2257 				seq = read_seqcount_begin(&fs->seq);
2258 				nd->path = fs->pwd;
2259 				nd->inode = nd->path.dentry->d_inode;
2260 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2261 			} while (read_seqcount_retry(&fs->seq, seq));
2262 		} else {
2263 			get_fs_pwd(current->fs, &nd->path);
2264 			nd->inode = nd->path.dentry->d_inode;
2265 		}
2266 	} else {
2267 		/* Caller must check execute permissions on the starting path component */
2268 		struct fd f = fdget_raw(nd->dfd);
2269 		struct dentry *dentry;
2270 
2271 		if (!f.file)
2272 			return ERR_PTR(-EBADF);
2273 
2274 		dentry = f.file->f_path.dentry;
2275 
2276 		if (*s && unlikely(!d_can_lookup(dentry))) {
2277 			fdput(f);
2278 			return ERR_PTR(-ENOTDIR);
2279 		}
2280 
2281 		nd->path = f.file->f_path;
2282 		if (flags & LOOKUP_RCU) {
2283 			nd->inode = nd->path.dentry->d_inode;
2284 			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2285 		} else {
2286 			path_get(&nd->path);
2287 			nd->inode = nd->path.dentry->d_inode;
2288 		}
2289 		fdput(f);
2290 	}
2291 
2292 	/* For scoped-lookups we need to set the root to the dirfd as well. */
2293 	if (flags & LOOKUP_IS_SCOPED) {
2294 		nd->root = nd->path;
2295 		if (flags & LOOKUP_RCU) {
2296 			nd->root_seq = nd->seq;
2297 		} else {
2298 			path_get(&nd->root);
2299 			nd->flags |= LOOKUP_ROOT_GRABBED;
2300 		}
2301 	}
2302 	return s;
2303 }
2304 
2305 static inline const char *lookup_last(struct nameidata *nd)
2306 {
2307 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2308 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2309 
2310 	return walk_component(nd, WALK_TRAILING);
2311 }
2312 
2313 static int handle_lookup_down(struct nameidata *nd)
2314 {
2315 	if (!(nd->flags & LOOKUP_RCU))
2316 		dget(nd->path.dentry);
2317 	return PTR_ERR(step_into(nd, WALK_NOFOLLOW,
2318 			nd->path.dentry, nd->inode, nd->seq));
2319 }
2320 
2321 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2322 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2323 {
2324 	const char *s = path_init(nd, flags);
2325 	int err;
2326 
2327 	if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2328 		err = handle_lookup_down(nd);
2329 		if (unlikely(err < 0))
2330 			s = ERR_PTR(err);
2331 	}
2332 
2333 	while (!(err = link_path_walk(s, nd)) &&
2334 	       (s = lookup_last(nd)) != NULL)
2335 		;
2336 	if (!err)
2337 		err = complete_walk(nd);
2338 
2339 	if (!err && nd->flags & LOOKUP_DIRECTORY)
2340 		if (!d_can_lookup(nd->path.dentry))
2341 			err = -ENOTDIR;
2342 	if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) {
2343 		err = handle_lookup_down(nd);
2344 		nd->flags &= ~LOOKUP_JUMPED; // no d_weak_revalidate(), please...
2345 	}
2346 	if (!err) {
2347 		*path = nd->path;
2348 		nd->path.mnt = NULL;
2349 		nd->path.dentry = NULL;
2350 	}
2351 	terminate_walk(nd);
2352 	return err;
2353 }
2354 
2355 int filename_lookup(int dfd, struct filename *name, unsigned flags,
2356 		    struct path *path, struct path *root)
2357 {
2358 	int retval;
2359 	struct nameidata nd;
2360 	if (IS_ERR(name))
2361 		return PTR_ERR(name);
2362 	if (unlikely(root)) {
2363 		nd.root = *root;
2364 		flags |= LOOKUP_ROOT;
2365 	}
2366 	set_nameidata(&nd, dfd, name);
2367 	retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2368 	if (unlikely(retval == -ECHILD))
2369 		retval = path_lookupat(&nd, flags, path);
2370 	if (unlikely(retval == -ESTALE))
2371 		retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2372 
2373 	if (likely(!retval))
2374 		audit_inode(name, path->dentry,
2375 			    flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0);
2376 	restore_nameidata();
2377 	putname(name);
2378 	return retval;
2379 }
2380 
2381 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2382 static int path_parentat(struct nameidata *nd, unsigned flags,
2383 				struct path *parent)
2384 {
2385 	const char *s = path_init(nd, flags);
2386 	int err = link_path_walk(s, nd);
2387 	if (!err)
2388 		err = complete_walk(nd);
2389 	if (!err) {
2390 		*parent = nd->path;
2391 		nd->path.mnt = NULL;
2392 		nd->path.dentry = NULL;
2393 	}
2394 	terminate_walk(nd);
2395 	return err;
2396 }
2397 
2398 static struct filename *filename_parentat(int dfd, struct filename *name,
2399 				unsigned int flags, struct path *parent,
2400 				struct qstr *last, int *type)
2401 {
2402 	int retval;
2403 	struct nameidata nd;
2404 
2405 	if (IS_ERR(name))
2406 		return name;
2407 	set_nameidata(&nd, dfd, name);
2408 	retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2409 	if (unlikely(retval == -ECHILD))
2410 		retval = path_parentat(&nd, flags, parent);
2411 	if (unlikely(retval == -ESTALE))
2412 		retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2413 	if (likely(!retval)) {
2414 		*last = nd.last;
2415 		*type = nd.last_type;
2416 		audit_inode(name, parent->dentry, AUDIT_INODE_PARENT);
2417 	} else {
2418 		putname(name);
2419 		name = ERR_PTR(retval);
2420 	}
2421 	restore_nameidata();
2422 	return name;
2423 }
2424 
2425 /* does lookup, returns the object with parent locked */
2426 struct dentry *kern_path_locked(const char *name, struct path *path)
2427 {
2428 	struct filename *filename;
2429 	struct dentry *d;
2430 	struct qstr last;
2431 	int type;
2432 
2433 	filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2434 				    &last, &type);
2435 	if (IS_ERR(filename))
2436 		return ERR_CAST(filename);
2437 	if (unlikely(type != LAST_NORM)) {
2438 		path_put(path);
2439 		putname(filename);
2440 		return ERR_PTR(-EINVAL);
2441 	}
2442 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2443 	d = __lookup_hash(&last, path->dentry, 0);
2444 	if (IS_ERR(d)) {
2445 		inode_unlock(path->dentry->d_inode);
2446 		path_put(path);
2447 	}
2448 	putname(filename);
2449 	return d;
2450 }
2451 
2452 int kern_path(const char *name, unsigned int flags, struct path *path)
2453 {
2454 	return filename_lookup(AT_FDCWD, getname_kernel(name),
2455 			       flags, path, NULL);
2456 }
2457 EXPORT_SYMBOL(kern_path);
2458 
2459 /**
2460  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2461  * @dentry:  pointer to dentry of the base directory
2462  * @mnt: pointer to vfs mount of the base directory
2463  * @name: pointer to file name
2464  * @flags: lookup flags
2465  * @path: pointer to struct path to fill
2466  */
2467 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2468 		    const char *name, unsigned int flags,
2469 		    struct path *path)
2470 {
2471 	struct path root = {.mnt = mnt, .dentry = dentry};
2472 	/* the first argument of filename_lookup() is ignored with root */
2473 	return filename_lookup(AT_FDCWD, getname_kernel(name),
2474 			       flags , path, &root);
2475 }
2476 EXPORT_SYMBOL(vfs_path_lookup);
2477 
2478 static int lookup_one_len_common(const char *name, struct dentry *base,
2479 				 int len, struct qstr *this)
2480 {
2481 	this->name = name;
2482 	this->len = len;
2483 	this->hash = full_name_hash(base, name, len);
2484 	if (!len)
2485 		return -EACCES;
2486 
2487 	if (unlikely(name[0] == '.')) {
2488 		if (len < 2 || (len == 2 && name[1] == '.'))
2489 			return -EACCES;
2490 	}
2491 
2492 	while (len--) {
2493 		unsigned int c = *(const unsigned char *)name++;
2494 		if (c == '/' || c == '\0')
2495 			return -EACCES;
2496 	}
2497 	/*
2498 	 * See if the low-level filesystem might want
2499 	 * to use its own hash..
2500 	 */
2501 	if (base->d_flags & DCACHE_OP_HASH) {
2502 		int err = base->d_op->d_hash(base, this);
2503 		if (err < 0)
2504 			return err;
2505 	}
2506 
2507 	return inode_permission(base->d_inode, MAY_EXEC);
2508 }
2509 
2510 /**
2511  * try_lookup_one_len - filesystem helper to lookup single pathname component
2512  * @name:	pathname component to lookup
2513  * @base:	base directory to lookup from
2514  * @len:	maximum length @len should be interpreted to
2515  *
2516  * Look up a dentry by name in the dcache, returning NULL if it does not
2517  * currently exist.  The function does not try to create a dentry.
2518  *
2519  * Note that this routine is purely a helper for filesystem usage and should
2520  * not be called by generic code.
2521  *
2522  * The caller must hold base->i_mutex.
2523  */
2524 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
2525 {
2526 	struct qstr this;
2527 	int err;
2528 
2529 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2530 
2531 	err = lookup_one_len_common(name, base, len, &this);
2532 	if (err)
2533 		return ERR_PTR(err);
2534 
2535 	return lookup_dcache(&this, base, 0);
2536 }
2537 EXPORT_SYMBOL(try_lookup_one_len);
2538 
2539 /**
2540  * lookup_one_len - filesystem helper to lookup single pathname component
2541  * @name:	pathname component to lookup
2542  * @base:	base directory to lookup from
2543  * @len:	maximum length @len should be interpreted to
2544  *
2545  * Note that this routine is purely a helper for filesystem usage and should
2546  * not be called by generic code.
2547  *
2548  * The caller must hold base->i_mutex.
2549  */
2550 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2551 {
2552 	struct dentry *dentry;
2553 	struct qstr this;
2554 	int err;
2555 
2556 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2557 
2558 	err = lookup_one_len_common(name, base, len, &this);
2559 	if (err)
2560 		return ERR_PTR(err);
2561 
2562 	dentry = lookup_dcache(&this, base, 0);
2563 	return dentry ? dentry : __lookup_slow(&this, base, 0);
2564 }
2565 EXPORT_SYMBOL(lookup_one_len);
2566 
2567 /**
2568  * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2569  * @name:	pathname component to lookup
2570  * @base:	base directory to lookup from
2571  * @len:	maximum length @len should be interpreted to
2572  *
2573  * Note that this routine is purely a helper for filesystem usage and should
2574  * not be called by generic code.
2575  *
2576  * Unlike lookup_one_len, it should be called without the parent
2577  * i_mutex held, and will take the i_mutex itself if necessary.
2578  */
2579 struct dentry *lookup_one_len_unlocked(const char *name,
2580 				       struct dentry *base, int len)
2581 {
2582 	struct qstr this;
2583 	int err;
2584 	struct dentry *ret;
2585 
2586 	err = lookup_one_len_common(name, base, len, &this);
2587 	if (err)
2588 		return ERR_PTR(err);
2589 
2590 	ret = lookup_dcache(&this, base, 0);
2591 	if (!ret)
2592 		ret = lookup_slow(&this, base, 0);
2593 	return ret;
2594 }
2595 EXPORT_SYMBOL(lookup_one_len_unlocked);
2596 
2597 /*
2598  * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT)
2599  * on negatives.  Returns known positive or ERR_PTR(); that's what
2600  * most of the users want.  Note that pinned negative with unlocked parent
2601  * _can_ become positive at any time, so callers of lookup_one_len_unlocked()
2602  * need to be very careful; pinned positives have ->d_inode stable, so
2603  * this one avoids such problems.
2604  */
2605 struct dentry *lookup_positive_unlocked(const char *name,
2606 				       struct dentry *base, int len)
2607 {
2608 	struct dentry *ret = lookup_one_len_unlocked(name, base, len);
2609 	if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
2610 		dput(ret);
2611 		ret = ERR_PTR(-ENOENT);
2612 	}
2613 	return ret;
2614 }
2615 EXPORT_SYMBOL(lookup_positive_unlocked);
2616 
2617 #ifdef CONFIG_UNIX98_PTYS
2618 int path_pts(struct path *path)
2619 {
2620 	/* Find something mounted on "pts" in the same directory as
2621 	 * the input path.
2622 	 */
2623 	struct dentry *parent = dget_parent(path->dentry);
2624 	struct dentry *child;
2625 	struct qstr this = QSTR_INIT("pts", 3);
2626 
2627 	if (unlikely(!path_connected(path->mnt, parent))) {
2628 		dput(parent);
2629 		return -ENOENT;
2630 	}
2631 	dput(path->dentry);
2632 	path->dentry = parent;
2633 	child = d_hash_and_lookup(parent, &this);
2634 	if (!child)
2635 		return -ENOENT;
2636 
2637 	path->dentry = child;
2638 	dput(parent);
2639 	follow_down(path);
2640 	return 0;
2641 }
2642 #endif
2643 
2644 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2645 		 struct path *path, int *empty)
2646 {
2647 	return filename_lookup(dfd, getname_flags(name, flags, empty),
2648 			       flags, path, NULL);
2649 }
2650 EXPORT_SYMBOL(user_path_at_empty);
2651 
2652 int __check_sticky(struct inode *dir, struct inode *inode)
2653 {
2654 	kuid_t fsuid = current_fsuid();
2655 
2656 	if (uid_eq(inode->i_uid, fsuid))
2657 		return 0;
2658 	if (uid_eq(dir->i_uid, fsuid))
2659 		return 0;
2660 	return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2661 }
2662 EXPORT_SYMBOL(__check_sticky);
2663 
2664 /*
2665  *	Check whether we can remove a link victim from directory dir, check
2666  *  whether the type of victim is right.
2667  *  1. We can't do it if dir is read-only (done in permission())
2668  *  2. We should have write and exec permissions on dir
2669  *  3. We can't remove anything from append-only dir
2670  *  4. We can't do anything with immutable dir (done in permission())
2671  *  5. If the sticky bit on dir is set we should either
2672  *	a. be owner of dir, or
2673  *	b. be owner of victim, or
2674  *	c. have CAP_FOWNER capability
2675  *  6. If the victim is append-only or immutable we can't do antyhing with
2676  *     links pointing to it.
2677  *  7. If the victim has an unknown uid or gid we can't change the inode.
2678  *  8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2679  *  9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2680  * 10. We can't remove a root or mountpoint.
2681  * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2682  *     nfs_async_unlink().
2683  */
2684 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2685 {
2686 	struct inode *inode = d_backing_inode(victim);
2687 	int error;
2688 
2689 	if (d_is_negative(victim))
2690 		return -ENOENT;
2691 	BUG_ON(!inode);
2692 
2693 	BUG_ON(victim->d_parent->d_inode != dir);
2694 
2695 	/* Inode writeback is not safe when the uid or gid are invalid. */
2696 	if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
2697 		return -EOVERFLOW;
2698 
2699 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2700 
2701 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2702 	if (error)
2703 		return error;
2704 	if (IS_APPEND(dir))
2705 		return -EPERM;
2706 
2707 	if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2708 	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode))
2709 		return -EPERM;
2710 	if (isdir) {
2711 		if (!d_is_dir(victim))
2712 			return -ENOTDIR;
2713 		if (IS_ROOT(victim))
2714 			return -EBUSY;
2715 	} else if (d_is_dir(victim))
2716 		return -EISDIR;
2717 	if (IS_DEADDIR(dir))
2718 		return -ENOENT;
2719 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2720 		return -EBUSY;
2721 	return 0;
2722 }
2723 
2724 /*	Check whether we can create an object with dentry child in directory
2725  *  dir.
2726  *  1. We can't do it if child already exists (open has special treatment for
2727  *     this case, but since we are inlined it's OK)
2728  *  2. We can't do it if dir is read-only (done in permission())
2729  *  3. We can't do it if the fs can't represent the fsuid or fsgid.
2730  *  4. We should have write and exec permissions on dir
2731  *  5. We can't do it if dir is immutable (done in permission())
2732  */
2733 static inline int may_create(struct inode *dir, struct dentry *child)
2734 {
2735 	struct user_namespace *s_user_ns;
2736 	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2737 	if (child->d_inode)
2738 		return -EEXIST;
2739 	if (IS_DEADDIR(dir))
2740 		return -ENOENT;
2741 	s_user_ns = dir->i_sb->s_user_ns;
2742 	if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2743 	    !kgid_has_mapping(s_user_ns, current_fsgid()))
2744 		return -EOVERFLOW;
2745 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2746 }
2747 
2748 /*
2749  * p1 and p2 should be directories on the same fs.
2750  */
2751 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2752 {
2753 	struct dentry *p;
2754 
2755 	if (p1 == p2) {
2756 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2757 		return NULL;
2758 	}
2759 
2760 	mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2761 
2762 	p = d_ancestor(p2, p1);
2763 	if (p) {
2764 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2765 		inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2766 		return p;
2767 	}
2768 
2769 	p = d_ancestor(p1, p2);
2770 	if (p) {
2771 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2772 		inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2773 		return p;
2774 	}
2775 
2776 	inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2777 	inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2778 	return NULL;
2779 }
2780 EXPORT_SYMBOL(lock_rename);
2781 
2782 void unlock_rename(struct dentry *p1, struct dentry *p2)
2783 {
2784 	inode_unlock(p1->d_inode);
2785 	if (p1 != p2) {
2786 		inode_unlock(p2->d_inode);
2787 		mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2788 	}
2789 }
2790 EXPORT_SYMBOL(unlock_rename);
2791 
2792 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2793 		bool want_excl)
2794 {
2795 	int error = may_create(dir, dentry);
2796 	if (error)
2797 		return error;
2798 
2799 	if (!dir->i_op->create)
2800 		return -EACCES;	/* shouldn't it be ENOSYS? */
2801 	mode &= S_IALLUGO;
2802 	mode |= S_IFREG;
2803 	error = security_inode_create(dir, dentry, mode);
2804 	if (error)
2805 		return error;
2806 	error = dir->i_op->create(dir, dentry, mode, want_excl);
2807 	if (!error)
2808 		fsnotify_create(dir, dentry);
2809 	return error;
2810 }
2811 EXPORT_SYMBOL(vfs_create);
2812 
2813 int vfs_mkobj(struct dentry *dentry, umode_t mode,
2814 		int (*f)(struct dentry *, umode_t, void *),
2815 		void *arg)
2816 {
2817 	struct inode *dir = dentry->d_parent->d_inode;
2818 	int error = may_create(dir, dentry);
2819 	if (error)
2820 		return error;
2821 
2822 	mode &= S_IALLUGO;
2823 	mode |= S_IFREG;
2824 	error = security_inode_create(dir, dentry, mode);
2825 	if (error)
2826 		return error;
2827 	error = f(dentry, mode, arg);
2828 	if (!error)
2829 		fsnotify_create(dir, dentry);
2830 	return error;
2831 }
2832 EXPORT_SYMBOL(vfs_mkobj);
2833 
2834 bool may_open_dev(const struct path *path)
2835 {
2836 	return !(path->mnt->mnt_flags & MNT_NODEV) &&
2837 		!(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
2838 }
2839 
2840 static int may_open(const struct path *path, int acc_mode, int flag)
2841 {
2842 	struct dentry *dentry = path->dentry;
2843 	struct inode *inode = dentry->d_inode;
2844 	int error;
2845 
2846 	if (!inode)
2847 		return -ENOENT;
2848 
2849 	switch (inode->i_mode & S_IFMT) {
2850 	case S_IFLNK:
2851 		return -ELOOP;
2852 	case S_IFDIR:
2853 		if (acc_mode & MAY_WRITE)
2854 			return -EISDIR;
2855 		if (acc_mode & MAY_EXEC)
2856 			return -EACCES;
2857 		break;
2858 	case S_IFBLK:
2859 	case S_IFCHR:
2860 		if (!may_open_dev(path))
2861 			return -EACCES;
2862 		fallthrough;
2863 	case S_IFIFO:
2864 	case S_IFSOCK:
2865 		if (acc_mode & MAY_EXEC)
2866 			return -EACCES;
2867 		flag &= ~O_TRUNC;
2868 		break;
2869 	case S_IFREG:
2870 		if ((acc_mode & MAY_EXEC) && path_noexec(path))
2871 			return -EACCES;
2872 		break;
2873 	}
2874 
2875 	error = inode_permission(inode, MAY_OPEN | acc_mode);
2876 	if (error)
2877 		return error;
2878 
2879 	/*
2880 	 * An append-only file must be opened in append mode for writing.
2881 	 */
2882 	if (IS_APPEND(inode)) {
2883 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2884 			return -EPERM;
2885 		if (flag & O_TRUNC)
2886 			return -EPERM;
2887 	}
2888 
2889 	/* O_NOATIME can only be set by the owner or superuser */
2890 	if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2891 		return -EPERM;
2892 
2893 	return 0;
2894 }
2895 
2896 static int handle_truncate(struct file *filp)
2897 {
2898 	const struct path *path = &filp->f_path;
2899 	struct inode *inode = path->dentry->d_inode;
2900 	int error = get_write_access(inode);
2901 	if (error)
2902 		return error;
2903 	/*
2904 	 * Refuse to truncate files with mandatory locks held on them.
2905 	 */
2906 	error = locks_verify_locked(filp);
2907 	if (!error)
2908 		error = security_path_truncate(path);
2909 	if (!error) {
2910 		error = do_truncate(path->dentry, 0,
2911 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2912 				    filp);
2913 	}
2914 	put_write_access(inode);
2915 	return error;
2916 }
2917 
2918 static inline int open_to_namei_flags(int flag)
2919 {
2920 	if ((flag & O_ACCMODE) == 3)
2921 		flag--;
2922 	return flag;
2923 }
2924 
2925 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode)
2926 {
2927 	struct user_namespace *s_user_ns;
2928 	int error = security_path_mknod(dir, dentry, mode, 0);
2929 	if (error)
2930 		return error;
2931 
2932 	s_user_ns = dir->dentry->d_sb->s_user_ns;
2933 	if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2934 	    !kgid_has_mapping(s_user_ns, current_fsgid()))
2935 		return -EOVERFLOW;
2936 
2937 	error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2938 	if (error)
2939 		return error;
2940 
2941 	return security_inode_create(dir->dentry->d_inode, dentry, mode);
2942 }
2943 
2944 /*
2945  * Attempt to atomically look up, create and open a file from a negative
2946  * dentry.
2947  *
2948  * Returns 0 if successful.  The file will have been created and attached to
2949  * @file by the filesystem calling finish_open().
2950  *
2951  * If the file was looked up only or didn't need creating, FMODE_OPENED won't
2952  * be set.  The caller will need to perform the open themselves.  @path will
2953  * have been updated to point to the new dentry.  This may be negative.
2954  *
2955  * Returns an error code otherwise.
2956  */
2957 static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry,
2958 				  struct file *file,
2959 				  int open_flag, umode_t mode)
2960 {
2961 	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2962 	struct inode *dir =  nd->path.dentry->d_inode;
2963 	int error;
2964 
2965 	if (nd->flags & LOOKUP_DIRECTORY)
2966 		open_flag |= O_DIRECTORY;
2967 
2968 	file->f_path.dentry = DENTRY_NOT_SET;
2969 	file->f_path.mnt = nd->path.mnt;
2970 	error = dir->i_op->atomic_open(dir, dentry, file,
2971 				       open_to_namei_flags(open_flag), mode);
2972 	d_lookup_done(dentry);
2973 	if (!error) {
2974 		if (file->f_mode & FMODE_OPENED) {
2975 			if (unlikely(dentry != file->f_path.dentry)) {
2976 				dput(dentry);
2977 				dentry = dget(file->f_path.dentry);
2978 			}
2979 		} else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2980 			error = -EIO;
2981 		} else {
2982 			if (file->f_path.dentry) {
2983 				dput(dentry);
2984 				dentry = file->f_path.dentry;
2985 			}
2986 			if (unlikely(d_is_negative(dentry)))
2987 				error = -ENOENT;
2988 		}
2989 	}
2990 	if (error) {
2991 		dput(dentry);
2992 		dentry = ERR_PTR(error);
2993 	}
2994 	return dentry;
2995 }
2996 
2997 /*
2998  * Look up and maybe create and open the last component.
2999  *
3000  * Must be called with parent locked (exclusive in O_CREAT case).
3001  *
3002  * Returns 0 on success, that is, if
3003  *  the file was successfully atomically created (if necessary) and opened, or
3004  *  the file was not completely opened at this time, though lookups and
3005  *  creations were performed.
3006  * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3007  * In the latter case dentry returned in @path might be negative if O_CREAT
3008  * hadn't been specified.
3009  *
3010  * An error code is returned on failure.
3011  */
3012 static struct dentry *lookup_open(struct nameidata *nd, struct file *file,
3013 				  const struct open_flags *op,
3014 				  bool got_write)
3015 {
3016 	struct dentry *dir = nd->path.dentry;
3017 	struct inode *dir_inode = dir->d_inode;
3018 	int open_flag = op->open_flag;
3019 	struct dentry *dentry;
3020 	int error, create_error = 0;
3021 	umode_t mode = op->mode;
3022 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3023 
3024 	if (unlikely(IS_DEADDIR(dir_inode)))
3025 		return ERR_PTR(-ENOENT);
3026 
3027 	file->f_mode &= ~FMODE_CREATED;
3028 	dentry = d_lookup(dir, &nd->last);
3029 	for (;;) {
3030 		if (!dentry) {
3031 			dentry = d_alloc_parallel(dir, &nd->last, &wq);
3032 			if (IS_ERR(dentry))
3033 				return dentry;
3034 		}
3035 		if (d_in_lookup(dentry))
3036 			break;
3037 
3038 		error = d_revalidate(dentry, nd->flags);
3039 		if (likely(error > 0))
3040 			break;
3041 		if (error)
3042 			goto out_dput;
3043 		d_invalidate(dentry);
3044 		dput(dentry);
3045 		dentry = NULL;
3046 	}
3047 	if (dentry->d_inode) {
3048 		/* Cached positive dentry: will open in f_op->open */
3049 		return dentry;
3050 	}
3051 
3052 	/*
3053 	 * Checking write permission is tricky, bacuse we don't know if we are
3054 	 * going to actually need it: O_CREAT opens should work as long as the
3055 	 * file exists.  But checking existence breaks atomicity.  The trick is
3056 	 * to check access and if not granted clear O_CREAT from the flags.
3057 	 *
3058 	 * Another problem is returing the "right" error value (e.g. for an
3059 	 * O_EXCL open we want to return EEXIST not EROFS).
3060 	 */
3061 	if (unlikely(!got_write))
3062 		open_flag &= ~O_TRUNC;
3063 	if (open_flag & O_CREAT) {
3064 		if (open_flag & O_EXCL)
3065 			open_flag &= ~O_TRUNC;
3066 		if (!IS_POSIXACL(dir->d_inode))
3067 			mode &= ~current_umask();
3068 		if (likely(got_write))
3069 			create_error = may_o_create(&nd->path, dentry, mode);
3070 		else
3071 			create_error = -EROFS;
3072 	}
3073 	if (create_error)
3074 		open_flag &= ~O_CREAT;
3075 	if (dir_inode->i_op->atomic_open) {
3076 		dentry = atomic_open(nd, dentry, file, open_flag, mode);
3077 		if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT))
3078 			dentry = ERR_PTR(create_error);
3079 		return dentry;
3080 	}
3081 
3082 	if (d_in_lookup(dentry)) {
3083 		struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3084 							     nd->flags);
3085 		d_lookup_done(dentry);
3086 		if (unlikely(res)) {
3087 			if (IS_ERR(res)) {
3088 				error = PTR_ERR(res);
3089 				goto out_dput;
3090 			}
3091 			dput(dentry);
3092 			dentry = res;
3093 		}
3094 	}
3095 
3096 	/* Negative dentry, just create the file */
3097 	if (!dentry->d_inode && (open_flag & O_CREAT)) {
3098 		file->f_mode |= FMODE_CREATED;
3099 		audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3100 		if (!dir_inode->i_op->create) {
3101 			error = -EACCES;
3102 			goto out_dput;
3103 		}
3104 		error = dir_inode->i_op->create(dir_inode, dentry, mode,
3105 						open_flag & O_EXCL);
3106 		if (error)
3107 			goto out_dput;
3108 	}
3109 	if (unlikely(create_error) && !dentry->d_inode) {
3110 		error = create_error;
3111 		goto out_dput;
3112 	}
3113 	return dentry;
3114 
3115 out_dput:
3116 	dput(dentry);
3117 	return ERR_PTR(error);
3118 }
3119 
3120 static const char *open_last_lookups(struct nameidata *nd,
3121 		   struct file *file, const struct open_flags *op)
3122 {
3123 	struct dentry *dir = nd->path.dentry;
3124 	int open_flag = op->open_flag;
3125 	bool got_write = false;
3126 	unsigned seq;
3127 	struct inode *inode;
3128 	struct dentry *dentry;
3129 	const char *res;
3130 	int error;
3131 
3132 	nd->flags |= op->intent;
3133 
3134 	if (nd->last_type != LAST_NORM) {
3135 		if (nd->depth)
3136 			put_link(nd);
3137 		return handle_dots(nd, nd->last_type);
3138 	}
3139 
3140 	if (!(open_flag & O_CREAT)) {
3141 		if (nd->last.name[nd->last.len])
3142 			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3143 		/* we _can_ be in RCU mode here */
3144 		dentry = lookup_fast(nd, &inode, &seq);
3145 		if (IS_ERR(dentry))
3146 			return ERR_CAST(dentry);
3147 		if (likely(dentry))
3148 			goto finish_lookup;
3149 
3150 		BUG_ON(nd->flags & LOOKUP_RCU);
3151 	} else {
3152 		/* create side of things */
3153 		if (nd->flags & LOOKUP_RCU) {
3154 			error = unlazy_walk(nd);
3155 			if (unlikely(error))
3156 				return ERR_PTR(error);
3157 		}
3158 		audit_inode(nd->name, dir, AUDIT_INODE_PARENT);
3159 		/* trailing slashes? */
3160 		if (unlikely(nd->last.name[nd->last.len]))
3161 			return ERR_PTR(-EISDIR);
3162 	}
3163 
3164 	if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3165 		error = mnt_want_write(nd->path.mnt);
3166 		if (!error)
3167 			got_write = true;
3168 		/*
3169 		 * do _not_ fail yet - we might not need that or fail with
3170 		 * a different error; let lookup_open() decide; we'll be
3171 		 * dropping this one anyway.
3172 		 */
3173 	}
3174 	if (open_flag & O_CREAT)
3175 		inode_lock(dir->d_inode);
3176 	else
3177 		inode_lock_shared(dir->d_inode);
3178 	dentry = lookup_open(nd, file, op, got_write);
3179 	if (!IS_ERR(dentry) && (file->f_mode & FMODE_CREATED))
3180 		fsnotify_create(dir->d_inode, dentry);
3181 	if (open_flag & O_CREAT)
3182 		inode_unlock(dir->d_inode);
3183 	else
3184 		inode_unlock_shared(dir->d_inode);
3185 
3186 	if (got_write)
3187 		mnt_drop_write(nd->path.mnt);
3188 
3189 	if (IS_ERR(dentry))
3190 		return ERR_CAST(dentry);
3191 
3192 	if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) {
3193 		dput(nd->path.dentry);
3194 		nd->path.dentry = dentry;
3195 		return NULL;
3196 	}
3197 
3198 finish_lookup:
3199 	if (nd->depth)
3200 		put_link(nd);
3201 	res = step_into(nd, WALK_TRAILING, dentry, inode, seq);
3202 	if (unlikely(res))
3203 		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3204 	return res;
3205 }
3206 
3207 /*
3208  * Handle the last step of open()
3209  */
3210 static int do_open(struct nameidata *nd,
3211 		   struct file *file, const struct open_flags *op)
3212 {
3213 	int open_flag = op->open_flag;
3214 	bool do_truncate;
3215 	int acc_mode;
3216 	int error;
3217 
3218 	if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) {
3219 		error = complete_walk(nd);
3220 		if (error)
3221 			return error;
3222 	}
3223 	if (!(file->f_mode & FMODE_CREATED))
3224 		audit_inode(nd->name, nd->path.dentry, 0);
3225 	if (open_flag & O_CREAT) {
3226 		if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED))
3227 			return -EEXIST;
3228 		if (d_is_dir(nd->path.dentry))
3229 			return -EISDIR;
3230 		error = may_create_in_sticky(nd->dir_mode, nd->dir_uid,
3231 					     d_backing_inode(nd->path.dentry));
3232 		if (unlikely(error))
3233 			return error;
3234 	}
3235 	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3236 		return -ENOTDIR;
3237 
3238 	do_truncate = false;
3239 	acc_mode = op->acc_mode;
3240 	if (file->f_mode & FMODE_CREATED) {
3241 		/* Don't check for write permission, don't truncate */
3242 		open_flag &= ~O_TRUNC;
3243 		acc_mode = 0;
3244 	} else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) {
3245 		error = mnt_want_write(nd->path.mnt);
3246 		if (error)
3247 			return error;
3248 		do_truncate = true;
3249 	}
3250 	error = may_open(&nd->path, acc_mode, open_flag);
3251 	if (!error && !(file->f_mode & FMODE_OPENED))
3252 		error = vfs_open(&nd->path, file);
3253 	if (!error)
3254 		error = ima_file_check(file, op->acc_mode);
3255 	if (!error && do_truncate)
3256 		error = handle_truncate(file);
3257 	if (unlikely(error > 0)) {
3258 		WARN_ON(1);
3259 		error = -EINVAL;
3260 	}
3261 	if (do_truncate)
3262 		mnt_drop_write(nd->path.mnt);
3263 	return error;
3264 }
3265 
3266 struct dentry *vfs_tmpfile(struct dentry *dentry, umode_t mode, int open_flag)
3267 {
3268 	struct dentry *child = NULL;
3269 	struct inode *dir = dentry->d_inode;
3270 	struct inode *inode;
3271 	int error;
3272 
3273 	/* we want directory to be writable */
3274 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3275 	if (error)
3276 		goto out_err;
3277 	error = -EOPNOTSUPP;
3278 	if (!dir->i_op->tmpfile)
3279 		goto out_err;
3280 	error = -ENOMEM;
3281 	child = d_alloc(dentry, &slash_name);
3282 	if (unlikely(!child))
3283 		goto out_err;
3284 	error = dir->i_op->tmpfile(dir, child, mode);
3285 	if (error)
3286 		goto out_err;
3287 	error = -ENOENT;
3288 	inode = child->d_inode;
3289 	if (unlikely(!inode))
3290 		goto out_err;
3291 	if (!(open_flag & O_EXCL)) {
3292 		spin_lock(&inode->i_lock);
3293 		inode->i_state |= I_LINKABLE;
3294 		spin_unlock(&inode->i_lock);
3295 	}
3296 	ima_post_create_tmpfile(inode);
3297 	return child;
3298 
3299 out_err:
3300 	dput(child);
3301 	return ERR_PTR(error);
3302 }
3303 EXPORT_SYMBOL(vfs_tmpfile);
3304 
3305 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3306 		const struct open_flags *op,
3307 		struct file *file)
3308 {
3309 	struct dentry *child;
3310 	struct path path;
3311 	int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3312 	if (unlikely(error))
3313 		return error;
3314 	error = mnt_want_write(path.mnt);
3315 	if (unlikely(error))
3316 		goto out;
3317 	child = vfs_tmpfile(path.dentry, op->mode, op->open_flag);
3318 	error = PTR_ERR(child);
3319 	if (IS_ERR(child))
3320 		goto out2;
3321 	dput(path.dentry);
3322 	path.dentry = child;
3323 	audit_inode(nd->name, child, 0);
3324 	/* Don't check for other permissions, the inode was just created */
3325 	error = may_open(&path, 0, op->open_flag);
3326 	if (error)
3327 		goto out2;
3328 	file->f_path.mnt = path.mnt;
3329 	error = finish_open(file, child, NULL);
3330 out2:
3331 	mnt_drop_write(path.mnt);
3332 out:
3333 	path_put(&path);
3334 	return error;
3335 }
3336 
3337 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3338 {
3339 	struct path path;
3340 	int error = path_lookupat(nd, flags, &path);
3341 	if (!error) {
3342 		audit_inode(nd->name, path.dentry, 0);
3343 		error = vfs_open(&path, file);
3344 		path_put(&path);
3345 	}
3346 	return error;
3347 }
3348 
3349 static struct file *path_openat(struct nameidata *nd,
3350 			const struct open_flags *op, unsigned flags)
3351 {
3352 	struct file *file;
3353 	int error;
3354 
3355 	file = alloc_empty_file(op->open_flag, current_cred());
3356 	if (IS_ERR(file))
3357 		return file;
3358 
3359 	if (unlikely(file->f_flags & __O_TMPFILE)) {
3360 		error = do_tmpfile(nd, flags, op, file);
3361 	} else if (unlikely(file->f_flags & O_PATH)) {
3362 		error = do_o_path(nd, flags, file);
3363 	} else {
3364 		const char *s = path_init(nd, flags);
3365 		while (!(error = link_path_walk(s, nd)) &&
3366 		       (s = open_last_lookups(nd, file, op)) != NULL)
3367 			;
3368 		if (!error)
3369 			error = do_open(nd, file, op);
3370 		terminate_walk(nd);
3371 	}
3372 	if (likely(!error)) {
3373 		if (likely(file->f_mode & FMODE_OPENED))
3374 			return file;
3375 		WARN_ON(1);
3376 		error = -EINVAL;
3377 	}
3378 	fput(file);
3379 	if (error == -EOPENSTALE) {
3380 		if (flags & LOOKUP_RCU)
3381 			error = -ECHILD;
3382 		else
3383 			error = -ESTALE;
3384 	}
3385 	return ERR_PTR(error);
3386 }
3387 
3388 struct file *do_filp_open(int dfd, struct filename *pathname,
3389 		const struct open_flags *op)
3390 {
3391 	struct nameidata nd;
3392 	int flags = op->lookup_flags;
3393 	struct file *filp;
3394 
3395 	set_nameidata(&nd, dfd, pathname);
3396 	filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3397 	if (unlikely(filp == ERR_PTR(-ECHILD)))
3398 		filp = path_openat(&nd, op, flags);
3399 	if (unlikely(filp == ERR_PTR(-ESTALE)))
3400 		filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3401 	restore_nameidata();
3402 	return filp;
3403 }
3404 
3405 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3406 		const char *name, const struct open_flags *op)
3407 {
3408 	struct nameidata nd;
3409 	struct file *file;
3410 	struct filename *filename;
3411 	int flags = op->lookup_flags | LOOKUP_ROOT;
3412 
3413 	nd.root.mnt = mnt;
3414 	nd.root.dentry = dentry;
3415 
3416 	if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3417 		return ERR_PTR(-ELOOP);
3418 
3419 	filename = getname_kernel(name);
3420 	if (IS_ERR(filename))
3421 		return ERR_CAST(filename);
3422 
3423 	set_nameidata(&nd, -1, filename);
3424 	file = path_openat(&nd, op, flags | LOOKUP_RCU);
3425 	if (unlikely(file == ERR_PTR(-ECHILD)))
3426 		file = path_openat(&nd, op, flags);
3427 	if (unlikely(file == ERR_PTR(-ESTALE)))
3428 		file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3429 	restore_nameidata();
3430 	putname(filename);
3431 	return file;
3432 }
3433 
3434 static struct dentry *filename_create(int dfd, struct filename *name,
3435 				struct path *path, unsigned int lookup_flags)
3436 {
3437 	struct dentry *dentry = ERR_PTR(-EEXIST);
3438 	struct qstr last;
3439 	int type;
3440 	int err2;
3441 	int error;
3442 	bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3443 
3444 	/*
3445 	 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3446 	 * other flags passed in are ignored!
3447 	 */
3448 	lookup_flags &= LOOKUP_REVAL;
3449 
3450 	name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3451 	if (IS_ERR(name))
3452 		return ERR_CAST(name);
3453 
3454 	/*
3455 	 * Yucky last component or no last component at all?
3456 	 * (foo/., foo/.., /////)
3457 	 */
3458 	if (unlikely(type != LAST_NORM))
3459 		goto out;
3460 
3461 	/* don't fail immediately if it's r/o, at least try to report other errors */
3462 	err2 = mnt_want_write(path->mnt);
3463 	/*
3464 	 * Do the final lookup.
3465 	 */
3466 	lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3467 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3468 	dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3469 	if (IS_ERR(dentry))
3470 		goto unlock;
3471 
3472 	error = -EEXIST;
3473 	if (d_is_positive(dentry))
3474 		goto fail;
3475 
3476 	/*
3477 	 * Special case - lookup gave negative, but... we had foo/bar/
3478 	 * From the vfs_mknod() POV we just have a negative dentry -
3479 	 * all is fine. Let's be bastards - you had / on the end, you've
3480 	 * been asking for (non-existent) directory. -ENOENT for you.
3481 	 */
3482 	if (unlikely(!is_dir && last.name[last.len])) {
3483 		error = -ENOENT;
3484 		goto fail;
3485 	}
3486 	if (unlikely(err2)) {
3487 		error = err2;
3488 		goto fail;
3489 	}
3490 	putname(name);
3491 	return dentry;
3492 fail:
3493 	dput(dentry);
3494 	dentry = ERR_PTR(error);
3495 unlock:
3496 	inode_unlock(path->dentry->d_inode);
3497 	if (!err2)
3498 		mnt_drop_write(path->mnt);
3499 out:
3500 	path_put(path);
3501 	putname(name);
3502 	return dentry;
3503 }
3504 
3505 struct dentry *kern_path_create(int dfd, const char *pathname,
3506 				struct path *path, unsigned int lookup_flags)
3507 {
3508 	return filename_create(dfd, getname_kernel(pathname),
3509 				path, lookup_flags);
3510 }
3511 EXPORT_SYMBOL(kern_path_create);
3512 
3513 void done_path_create(struct path *path, struct dentry *dentry)
3514 {
3515 	dput(dentry);
3516 	inode_unlock(path->dentry->d_inode);
3517 	mnt_drop_write(path->mnt);
3518 	path_put(path);
3519 }
3520 EXPORT_SYMBOL(done_path_create);
3521 
3522 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3523 				struct path *path, unsigned int lookup_flags)
3524 {
3525 	return filename_create(dfd, getname(pathname), path, lookup_flags);
3526 }
3527 EXPORT_SYMBOL(user_path_create);
3528 
3529 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3530 {
3531 	bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV;
3532 	int error = may_create(dir, dentry);
3533 
3534 	if (error)
3535 		return error;
3536 
3537 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout &&
3538 	    !capable(CAP_MKNOD))
3539 		return -EPERM;
3540 
3541 	if (!dir->i_op->mknod)
3542 		return -EPERM;
3543 
3544 	error = devcgroup_inode_mknod(mode, dev);
3545 	if (error)
3546 		return error;
3547 
3548 	error = security_inode_mknod(dir, dentry, mode, dev);
3549 	if (error)
3550 		return error;
3551 
3552 	error = dir->i_op->mknod(dir, dentry, mode, dev);
3553 	if (!error)
3554 		fsnotify_create(dir, dentry);
3555 	return error;
3556 }
3557 EXPORT_SYMBOL(vfs_mknod);
3558 
3559 static int may_mknod(umode_t mode)
3560 {
3561 	switch (mode & S_IFMT) {
3562 	case S_IFREG:
3563 	case S_IFCHR:
3564 	case S_IFBLK:
3565 	case S_IFIFO:
3566 	case S_IFSOCK:
3567 	case 0: /* zero mode translates to S_IFREG */
3568 		return 0;
3569 	case S_IFDIR:
3570 		return -EPERM;
3571 	default:
3572 		return -EINVAL;
3573 	}
3574 }
3575 
3576 static long do_mknodat(int dfd, const char __user *filename, umode_t mode,
3577 		unsigned int dev)
3578 {
3579 	struct dentry *dentry;
3580 	struct path path;
3581 	int error;
3582 	unsigned int lookup_flags = 0;
3583 
3584 	error = may_mknod(mode);
3585 	if (error)
3586 		return error;
3587 retry:
3588 	dentry = user_path_create(dfd, filename, &path, lookup_flags);
3589 	if (IS_ERR(dentry))
3590 		return PTR_ERR(dentry);
3591 
3592 	if (!IS_POSIXACL(path.dentry->d_inode))
3593 		mode &= ~current_umask();
3594 	error = security_path_mknod(&path, dentry, mode, dev);
3595 	if (error)
3596 		goto out;
3597 	switch (mode & S_IFMT) {
3598 		case 0: case S_IFREG:
3599 			error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3600 			if (!error)
3601 				ima_post_path_mknod(dentry);
3602 			break;
3603 		case S_IFCHR: case S_IFBLK:
3604 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3605 					new_decode_dev(dev));
3606 			break;
3607 		case S_IFIFO: case S_IFSOCK:
3608 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3609 			break;
3610 	}
3611 out:
3612 	done_path_create(&path, dentry);
3613 	if (retry_estale(error, lookup_flags)) {
3614 		lookup_flags |= LOOKUP_REVAL;
3615 		goto retry;
3616 	}
3617 	return error;
3618 }
3619 
3620 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3621 		unsigned int, dev)
3622 {
3623 	return do_mknodat(dfd, filename, mode, dev);
3624 }
3625 
3626 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3627 {
3628 	return do_mknodat(AT_FDCWD, filename, mode, dev);
3629 }
3630 
3631 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3632 {
3633 	int error = may_create(dir, dentry);
3634 	unsigned max_links = dir->i_sb->s_max_links;
3635 
3636 	if (error)
3637 		return error;
3638 
3639 	if (!dir->i_op->mkdir)
3640 		return -EPERM;
3641 
3642 	mode &= (S_IRWXUGO|S_ISVTX);
3643 	error = security_inode_mkdir(dir, dentry, mode);
3644 	if (error)
3645 		return error;
3646 
3647 	if (max_links && dir->i_nlink >= max_links)
3648 		return -EMLINK;
3649 
3650 	error = dir->i_op->mkdir(dir, dentry, mode);
3651 	if (!error)
3652 		fsnotify_mkdir(dir, dentry);
3653 	return error;
3654 }
3655 EXPORT_SYMBOL(vfs_mkdir);
3656 
3657 static long do_mkdirat(int dfd, const char __user *pathname, umode_t mode)
3658 {
3659 	struct dentry *dentry;
3660 	struct path path;
3661 	int error;
3662 	unsigned int lookup_flags = LOOKUP_DIRECTORY;
3663 
3664 retry:
3665 	dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3666 	if (IS_ERR(dentry))
3667 		return PTR_ERR(dentry);
3668 
3669 	if (!IS_POSIXACL(path.dentry->d_inode))
3670 		mode &= ~current_umask();
3671 	error = security_path_mkdir(&path, dentry, mode);
3672 	if (!error)
3673 		error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3674 	done_path_create(&path, dentry);
3675 	if (retry_estale(error, lookup_flags)) {
3676 		lookup_flags |= LOOKUP_REVAL;
3677 		goto retry;
3678 	}
3679 	return error;
3680 }
3681 
3682 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3683 {
3684 	return do_mkdirat(dfd, pathname, mode);
3685 }
3686 
3687 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3688 {
3689 	return do_mkdirat(AT_FDCWD, pathname, mode);
3690 }
3691 
3692 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3693 {
3694 	int error = may_delete(dir, dentry, 1);
3695 
3696 	if (error)
3697 		return error;
3698 
3699 	if (!dir->i_op->rmdir)
3700 		return -EPERM;
3701 
3702 	dget(dentry);
3703 	inode_lock(dentry->d_inode);
3704 
3705 	error = -EBUSY;
3706 	if (is_local_mountpoint(dentry))
3707 		goto out;
3708 
3709 	error = security_inode_rmdir(dir, dentry);
3710 	if (error)
3711 		goto out;
3712 
3713 	error = dir->i_op->rmdir(dir, dentry);
3714 	if (error)
3715 		goto out;
3716 
3717 	shrink_dcache_parent(dentry);
3718 	dentry->d_inode->i_flags |= S_DEAD;
3719 	dont_mount(dentry);
3720 	detach_mounts(dentry);
3721 	fsnotify_rmdir(dir, dentry);
3722 
3723 out:
3724 	inode_unlock(dentry->d_inode);
3725 	dput(dentry);
3726 	if (!error)
3727 		d_delete(dentry);
3728 	return error;
3729 }
3730 EXPORT_SYMBOL(vfs_rmdir);
3731 
3732 long do_rmdir(int dfd, struct filename *name)
3733 {
3734 	int error = 0;
3735 	struct dentry *dentry;
3736 	struct path path;
3737 	struct qstr last;
3738 	int type;
3739 	unsigned int lookup_flags = 0;
3740 retry:
3741 	name = filename_parentat(dfd, name, lookup_flags,
3742 				&path, &last, &type);
3743 	if (IS_ERR(name))
3744 		return PTR_ERR(name);
3745 
3746 	switch (type) {
3747 	case LAST_DOTDOT:
3748 		error = -ENOTEMPTY;
3749 		goto exit1;
3750 	case LAST_DOT:
3751 		error = -EINVAL;
3752 		goto exit1;
3753 	case LAST_ROOT:
3754 		error = -EBUSY;
3755 		goto exit1;
3756 	}
3757 
3758 	error = mnt_want_write(path.mnt);
3759 	if (error)
3760 		goto exit1;
3761 
3762 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3763 	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3764 	error = PTR_ERR(dentry);
3765 	if (IS_ERR(dentry))
3766 		goto exit2;
3767 	if (!dentry->d_inode) {
3768 		error = -ENOENT;
3769 		goto exit3;
3770 	}
3771 	error = security_path_rmdir(&path, dentry);
3772 	if (error)
3773 		goto exit3;
3774 	error = vfs_rmdir(path.dentry->d_inode, dentry);
3775 exit3:
3776 	dput(dentry);
3777 exit2:
3778 	inode_unlock(path.dentry->d_inode);
3779 	mnt_drop_write(path.mnt);
3780 exit1:
3781 	path_put(&path);
3782 	if (retry_estale(error, lookup_flags)) {
3783 		lookup_flags |= LOOKUP_REVAL;
3784 		goto retry;
3785 	}
3786 	putname(name);
3787 	return error;
3788 }
3789 
3790 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3791 {
3792 	return do_rmdir(AT_FDCWD, getname(pathname));
3793 }
3794 
3795 /**
3796  * vfs_unlink - unlink a filesystem object
3797  * @dir:	parent directory
3798  * @dentry:	victim
3799  * @delegated_inode: returns victim inode, if the inode is delegated.
3800  *
3801  * The caller must hold dir->i_mutex.
3802  *
3803  * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3804  * return a reference to the inode in delegated_inode.  The caller
3805  * should then break the delegation on that inode and retry.  Because
3806  * breaking a delegation may take a long time, the caller should drop
3807  * dir->i_mutex before doing so.
3808  *
3809  * Alternatively, a caller may pass NULL for delegated_inode.  This may
3810  * be appropriate for callers that expect the underlying filesystem not
3811  * to be NFS exported.
3812  */
3813 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3814 {
3815 	struct inode *target = dentry->d_inode;
3816 	int error = may_delete(dir, dentry, 0);
3817 
3818 	if (error)
3819 		return error;
3820 
3821 	if (!dir->i_op->unlink)
3822 		return -EPERM;
3823 
3824 	inode_lock(target);
3825 	if (is_local_mountpoint(dentry))
3826 		error = -EBUSY;
3827 	else {
3828 		error = security_inode_unlink(dir, dentry);
3829 		if (!error) {
3830 			error = try_break_deleg(target, delegated_inode);
3831 			if (error)
3832 				goto out;
3833 			error = dir->i_op->unlink(dir, dentry);
3834 			if (!error) {
3835 				dont_mount(dentry);
3836 				detach_mounts(dentry);
3837 				fsnotify_unlink(dir, dentry);
3838 			}
3839 		}
3840 	}
3841 out:
3842 	inode_unlock(target);
3843 
3844 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
3845 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3846 		fsnotify_link_count(target);
3847 		d_delete(dentry);
3848 	}
3849 
3850 	return error;
3851 }
3852 EXPORT_SYMBOL(vfs_unlink);
3853 
3854 /*
3855  * Make sure that the actual truncation of the file will occur outside its
3856  * directory's i_mutex.  Truncate can take a long time if there is a lot of
3857  * writeout happening, and we don't want to prevent access to the directory
3858  * while waiting on the I/O.
3859  */
3860 long do_unlinkat(int dfd, struct filename *name)
3861 {
3862 	int error;
3863 	struct dentry *dentry;
3864 	struct path path;
3865 	struct qstr last;
3866 	int type;
3867 	struct inode *inode = NULL;
3868 	struct inode *delegated_inode = NULL;
3869 	unsigned int lookup_flags = 0;
3870 retry:
3871 	name = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
3872 	if (IS_ERR(name))
3873 		return PTR_ERR(name);
3874 
3875 	error = -EISDIR;
3876 	if (type != LAST_NORM)
3877 		goto exit1;
3878 
3879 	error = mnt_want_write(path.mnt);
3880 	if (error)
3881 		goto exit1;
3882 retry_deleg:
3883 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3884 	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3885 	error = PTR_ERR(dentry);
3886 	if (!IS_ERR(dentry)) {
3887 		/* Why not before? Because we want correct error value */
3888 		if (last.name[last.len])
3889 			goto slashes;
3890 		inode = dentry->d_inode;
3891 		if (d_is_negative(dentry))
3892 			goto slashes;
3893 		ihold(inode);
3894 		error = security_path_unlink(&path, dentry);
3895 		if (error)
3896 			goto exit2;
3897 		error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
3898 exit2:
3899 		dput(dentry);
3900 	}
3901 	inode_unlock(path.dentry->d_inode);
3902 	if (inode)
3903 		iput(inode);	/* truncate the inode here */
3904 	inode = NULL;
3905 	if (delegated_inode) {
3906 		error = break_deleg_wait(&delegated_inode);
3907 		if (!error)
3908 			goto retry_deleg;
3909 	}
3910 	mnt_drop_write(path.mnt);
3911 exit1:
3912 	path_put(&path);
3913 	if (retry_estale(error, lookup_flags)) {
3914 		lookup_flags |= LOOKUP_REVAL;
3915 		inode = NULL;
3916 		goto retry;
3917 	}
3918 	putname(name);
3919 	return error;
3920 
3921 slashes:
3922 	if (d_is_negative(dentry))
3923 		error = -ENOENT;
3924 	else if (d_is_dir(dentry))
3925 		error = -EISDIR;
3926 	else
3927 		error = -ENOTDIR;
3928 	goto exit2;
3929 }
3930 
3931 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3932 {
3933 	if ((flag & ~AT_REMOVEDIR) != 0)
3934 		return -EINVAL;
3935 
3936 	if (flag & AT_REMOVEDIR)
3937 		return do_rmdir(dfd, getname(pathname));
3938 	return do_unlinkat(dfd, getname(pathname));
3939 }
3940 
3941 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3942 {
3943 	return do_unlinkat(AT_FDCWD, getname(pathname));
3944 }
3945 
3946 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3947 {
3948 	int error = may_create(dir, dentry);
3949 
3950 	if (error)
3951 		return error;
3952 
3953 	if (!dir->i_op->symlink)
3954 		return -EPERM;
3955 
3956 	error = security_inode_symlink(dir, dentry, oldname);
3957 	if (error)
3958 		return error;
3959 
3960 	error = dir->i_op->symlink(dir, dentry, oldname);
3961 	if (!error)
3962 		fsnotify_create(dir, dentry);
3963 	return error;
3964 }
3965 EXPORT_SYMBOL(vfs_symlink);
3966 
3967 static long do_symlinkat(const char __user *oldname, int newdfd,
3968 		  const char __user *newname)
3969 {
3970 	int error;
3971 	struct filename *from;
3972 	struct dentry *dentry;
3973 	struct path path;
3974 	unsigned int lookup_flags = 0;
3975 
3976 	from = getname(oldname);
3977 	if (IS_ERR(from))
3978 		return PTR_ERR(from);
3979 retry:
3980 	dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3981 	error = PTR_ERR(dentry);
3982 	if (IS_ERR(dentry))
3983 		goto out_putname;
3984 
3985 	error = security_path_symlink(&path, dentry, from->name);
3986 	if (!error)
3987 		error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3988 	done_path_create(&path, dentry);
3989 	if (retry_estale(error, lookup_flags)) {
3990 		lookup_flags |= LOOKUP_REVAL;
3991 		goto retry;
3992 	}
3993 out_putname:
3994 	putname(from);
3995 	return error;
3996 }
3997 
3998 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3999 		int, newdfd, const char __user *, newname)
4000 {
4001 	return do_symlinkat(oldname, newdfd, newname);
4002 }
4003 
4004 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4005 {
4006 	return do_symlinkat(oldname, AT_FDCWD, newname);
4007 }
4008 
4009 /**
4010  * vfs_link - create a new link
4011  * @old_dentry:	object to be linked
4012  * @dir:	new parent
4013  * @new_dentry:	where to create the new link
4014  * @delegated_inode: returns inode needing a delegation break
4015  *
4016  * The caller must hold dir->i_mutex
4017  *
4018  * If vfs_link discovers a delegation on the to-be-linked file in need
4019  * of breaking, it will return -EWOULDBLOCK and return a reference to the
4020  * inode in delegated_inode.  The caller should then break the delegation
4021  * and retry.  Because breaking a delegation may take a long time, the
4022  * caller should drop the i_mutex before doing so.
4023  *
4024  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4025  * be appropriate for callers that expect the underlying filesystem not
4026  * to be NFS exported.
4027  */
4028 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4029 {
4030 	struct inode *inode = old_dentry->d_inode;
4031 	unsigned max_links = dir->i_sb->s_max_links;
4032 	int error;
4033 
4034 	if (!inode)
4035 		return -ENOENT;
4036 
4037 	error = may_create(dir, new_dentry);
4038 	if (error)
4039 		return error;
4040 
4041 	if (dir->i_sb != inode->i_sb)
4042 		return -EXDEV;
4043 
4044 	/*
4045 	 * A link to an append-only or immutable file cannot be created.
4046 	 */
4047 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4048 		return -EPERM;
4049 	/*
4050 	 * Updating the link count will likely cause i_uid and i_gid to
4051 	 * be writen back improperly if their true value is unknown to
4052 	 * the vfs.
4053 	 */
4054 	if (HAS_UNMAPPED_ID(inode))
4055 		return -EPERM;
4056 	if (!dir->i_op->link)
4057 		return -EPERM;
4058 	if (S_ISDIR(inode->i_mode))
4059 		return -EPERM;
4060 
4061 	error = security_inode_link(old_dentry, dir, new_dentry);
4062 	if (error)
4063 		return error;
4064 
4065 	inode_lock(inode);
4066 	/* Make sure we don't allow creating hardlink to an unlinked file */
4067 	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4068 		error =  -ENOENT;
4069 	else if (max_links && inode->i_nlink >= max_links)
4070 		error = -EMLINK;
4071 	else {
4072 		error = try_break_deleg(inode, delegated_inode);
4073 		if (!error)
4074 			error = dir->i_op->link(old_dentry, dir, new_dentry);
4075 	}
4076 
4077 	if (!error && (inode->i_state & I_LINKABLE)) {
4078 		spin_lock(&inode->i_lock);
4079 		inode->i_state &= ~I_LINKABLE;
4080 		spin_unlock(&inode->i_lock);
4081 	}
4082 	inode_unlock(inode);
4083 	if (!error)
4084 		fsnotify_link(dir, inode, new_dentry);
4085 	return error;
4086 }
4087 EXPORT_SYMBOL(vfs_link);
4088 
4089 /*
4090  * Hardlinks are often used in delicate situations.  We avoid
4091  * security-related surprises by not following symlinks on the
4092  * newname.  --KAB
4093  *
4094  * We don't follow them on the oldname either to be compatible
4095  * with linux 2.0, and to avoid hard-linking to directories
4096  * and other special files.  --ADM
4097  */
4098 static int do_linkat(int olddfd, const char __user *oldname, int newdfd,
4099 	      const char __user *newname, int flags)
4100 {
4101 	struct dentry *new_dentry;
4102 	struct path old_path, new_path;
4103 	struct inode *delegated_inode = NULL;
4104 	int how = 0;
4105 	int error;
4106 
4107 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4108 		return -EINVAL;
4109 	/*
4110 	 * To use null names we require CAP_DAC_READ_SEARCH
4111 	 * This ensures that not everyone will be able to create
4112 	 * handlink using the passed filedescriptor.
4113 	 */
4114 	if (flags & AT_EMPTY_PATH) {
4115 		if (!capable(CAP_DAC_READ_SEARCH))
4116 			return -ENOENT;
4117 		how = LOOKUP_EMPTY;
4118 	}
4119 
4120 	if (flags & AT_SYMLINK_FOLLOW)
4121 		how |= LOOKUP_FOLLOW;
4122 retry:
4123 	error = user_path_at(olddfd, oldname, how, &old_path);
4124 	if (error)
4125 		return error;
4126 
4127 	new_dentry = user_path_create(newdfd, newname, &new_path,
4128 					(how & LOOKUP_REVAL));
4129 	error = PTR_ERR(new_dentry);
4130 	if (IS_ERR(new_dentry))
4131 		goto out;
4132 
4133 	error = -EXDEV;
4134 	if (old_path.mnt != new_path.mnt)
4135 		goto out_dput;
4136 	error = may_linkat(&old_path);
4137 	if (unlikely(error))
4138 		goto out_dput;
4139 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
4140 	if (error)
4141 		goto out_dput;
4142 	error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4143 out_dput:
4144 	done_path_create(&new_path, new_dentry);
4145 	if (delegated_inode) {
4146 		error = break_deleg_wait(&delegated_inode);
4147 		if (!error) {
4148 			path_put(&old_path);
4149 			goto retry;
4150 		}
4151 	}
4152 	if (retry_estale(error, how)) {
4153 		path_put(&old_path);
4154 		how |= LOOKUP_REVAL;
4155 		goto retry;
4156 	}
4157 out:
4158 	path_put(&old_path);
4159 
4160 	return error;
4161 }
4162 
4163 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4164 		int, newdfd, const char __user *, newname, int, flags)
4165 {
4166 	return do_linkat(olddfd, oldname, newdfd, newname, flags);
4167 }
4168 
4169 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4170 {
4171 	return do_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4172 }
4173 
4174 /**
4175  * vfs_rename - rename a filesystem object
4176  * @old_dir:	parent of source
4177  * @old_dentry:	source
4178  * @new_dir:	parent of destination
4179  * @new_dentry:	destination
4180  * @delegated_inode: returns an inode needing a delegation break
4181  * @flags:	rename flags
4182  *
4183  * The caller must hold multiple mutexes--see lock_rename()).
4184  *
4185  * If vfs_rename discovers a delegation in need of breaking at either
4186  * the source or destination, it will return -EWOULDBLOCK and return a
4187  * reference to the inode in delegated_inode.  The caller should then
4188  * break the delegation and retry.  Because breaking a delegation may
4189  * take a long time, the caller should drop all locks before doing
4190  * so.
4191  *
4192  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4193  * be appropriate for callers that expect the underlying filesystem not
4194  * to be NFS exported.
4195  *
4196  * The worst of all namespace operations - renaming directory. "Perverted"
4197  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4198  * Problems:
4199  *
4200  *	a) we can get into loop creation.
4201  *	b) race potential - two innocent renames can create a loop together.
4202  *	   That's where 4.4 screws up. Current fix: serialization on
4203  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4204  *	   story.
4205  *	c) we have to lock _four_ objects - parents and victim (if it exists),
4206  *	   and source (if it is not a directory).
4207  *	   And that - after we got ->i_mutex on parents (until then we don't know
4208  *	   whether the target exists).  Solution: try to be smart with locking
4209  *	   order for inodes.  We rely on the fact that tree topology may change
4210  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
4211  *	   move will be locked.  Thus we can rank directories by the tree
4212  *	   (ancestors first) and rank all non-directories after them.
4213  *	   That works since everybody except rename does "lock parent, lookup,
4214  *	   lock child" and rename is under ->s_vfs_rename_mutex.
4215  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
4216  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
4217  *	   we'd better make sure that there's no link(2) for them.
4218  *	d) conversion from fhandle to dentry may come in the wrong moment - when
4219  *	   we are removing the target. Solution: we will have to grab ->i_mutex
4220  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4221  *	   ->i_mutex on parents, which works but leads to some truly excessive
4222  *	   locking].
4223  */
4224 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4225 	       struct inode *new_dir, struct dentry *new_dentry,
4226 	       struct inode **delegated_inode, unsigned int flags)
4227 {
4228 	int error;
4229 	bool is_dir = d_is_dir(old_dentry);
4230 	struct inode *source = old_dentry->d_inode;
4231 	struct inode *target = new_dentry->d_inode;
4232 	bool new_is_dir = false;
4233 	unsigned max_links = new_dir->i_sb->s_max_links;
4234 	struct name_snapshot old_name;
4235 
4236 	if (source == target)
4237 		return 0;
4238 
4239 	error = may_delete(old_dir, old_dentry, is_dir);
4240 	if (error)
4241 		return error;
4242 
4243 	if (!target) {
4244 		error = may_create(new_dir, new_dentry);
4245 	} else {
4246 		new_is_dir = d_is_dir(new_dentry);
4247 
4248 		if (!(flags & RENAME_EXCHANGE))
4249 			error = may_delete(new_dir, new_dentry, is_dir);
4250 		else
4251 			error = may_delete(new_dir, new_dentry, new_is_dir);
4252 	}
4253 	if (error)
4254 		return error;
4255 
4256 	if (!old_dir->i_op->rename)
4257 		return -EPERM;
4258 
4259 	/*
4260 	 * If we are going to change the parent - check write permissions,
4261 	 * we'll need to flip '..'.
4262 	 */
4263 	if (new_dir != old_dir) {
4264 		if (is_dir) {
4265 			error = inode_permission(source, MAY_WRITE);
4266 			if (error)
4267 				return error;
4268 		}
4269 		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4270 			error = inode_permission(target, MAY_WRITE);
4271 			if (error)
4272 				return error;
4273 		}
4274 	}
4275 
4276 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4277 				      flags);
4278 	if (error)
4279 		return error;
4280 
4281 	take_dentry_name_snapshot(&old_name, old_dentry);
4282 	dget(new_dentry);
4283 	if (!is_dir || (flags & RENAME_EXCHANGE))
4284 		lock_two_nondirectories(source, target);
4285 	else if (target)
4286 		inode_lock(target);
4287 
4288 	error = -EBUSY;
4289 	if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4290 		goto out;
4291 
4292 	if (max_links && new_dir != old_dir) {
4293 		error = -EMLINK;
4294 		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4295 			goto out;
4296 		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4297 		    old_dir->i_nlink >= max_links)
4298 			goto out;
4299 	}
4300 	if (!is_dir) {
4301 		error = try_break_deleg(source, delegated_inode);
4302 		if (error)
4303 			goto out;
4304 	}
4305 	if (target && !new_is_dir) {
4306 		error = try_break_deleg(target, delegated_inode);
4307 		if (error)
4308 			goto out;
4309 	}
4310 	error = old_dir->i_op->rename(old_dir, old_dentry,
4311 				       new_dir, new_dentry, flags);
4312 	if (error)
4313 		goto out;
4314 
4315 	if (!(flags & RENAME_EXCHANGE) && target) {
4316 		if (is_dir) {
4317 			shrink_dcache_parent(new_dentry);
4318 			target->i_flags |= S_DEAD;
4319 		}
4320 		dont_mount(new_dentry);
4321 		detach_mounts(new_dentry);
4322 	}
4323 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4324 		if (!(flags & RENAME_EXCHANGE))
4325 			d_move(old_dentry, new_dentry);
4326 		else
4327 			d_exchange(old_dentry, new_dentry);
4328 	}
4329 out:
4330 	if (!is_dir || (flags & RENAME_EXCHANGE))
4331 		unlock_two_nondirectories(source, target);
4332 	else if (target)
4333 		inode_unlock(target);
4334 	dput(new_dentry);
4335 	if (!error) {
4336 		fsnotify_move(old_dir, new_dir, &old_name.name, is_dir,
4337 			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4338 		if (flags & RENAME_EXCHANGE) {
4339 			fsnotify_move(new_dir, old_dir, &old_dentry->d_name,
4340 				      new_is_dir, NULL, new_dentry);
4341 		}
4342 	}
4343 	release_dentry_name_snapshot(&old_name);
4344 
4345 	return error;
4346 }
4347 EXPORT_SYMBOL(vfs_rename);
4348 
4349 static int do_renameat2(int olddfd, const char __user *oldname, int newdfd,
4350 			const char __user *newname, unsigned int flags)
4351 {
4352 	struct dentry *old_dentry, *new_dentry;
4353 	struct dentry *trap;
4354 	struct path old_path, new_path;
4355 	struct qstr old_last, new_last;
4356 	int old_type, new_type;
4357 	struct inode *delegated_inode = NULL;
4358 	struct filename *from;
4359 	struct filename *to;
4360 	unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4361 	bool should_retry = false;
4362 	int error;
4363 
4364 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4365 		return -EINVAL;
4366 
4367 	if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4368 	    (flags & RENAME_EXCHANGE))
4369 		return -EINVAL;
4370 
4371 	if (flags & RENAME_EXCHANGE)
4372 		target_flags = 0;
4373 
4374 retry:
4375 	from = filename_parentat(olddfd, getname(oldname), lookup_flags,
4376 				&old_path, &old_last, &old_type);
4377 	if (IS_ERR(from)) {
4378 		error = PTR_ERR(from);
4379 		goto exit;
4380 	}
4381 
4382 	to = filename_parentat(newdfd, getname(newname), lookup_flags,
4383 				&new_path, &new_last, &new_type);
4384 	if (IS_ERR(to)) {
4385 		error = PTR_ERR(to);
4386 		goto exit1;
4387 	}
4388 
4389 	error = -EXDEV;
4390 	if (old_path.mnt != new_path.mnt)
4391 		goto exit2;
4392 
4393 	error = -EBUSY;
4394 	if (old_type != LAST_NORM)
4395 		goto exit2;
4396 
4397 	if (flags & RENAME_NOREPLACE)
4398 		error = -EEXIST;
4399 	if (new_type != LAST_NORM)
4400 		goto exit2;
4401 
4402 	error = mnt_want_write(old_path.mnt);
4403 	if (error)
4404 		goto exit2;
4405 
4406 retry_deleg:
4407 	trap = lock_rename(new_path.dentry, old_path.dentry);
4408 
4409 	old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4410 	error = PTR_ERR(old_dentry);
4411 	if (IS_ERR(old_dentry))
4412 		goto exit3;
4413 	/* source must exist */
4414 	error = -ENOENT;
4415 	if (d_is_negative(old_dentry))
4416 		goto exit4;
4417 	new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4418 	error = PTR_ERR(new_dentry);
4419 	if (IS_ERR(new_dentry))
4420 		goto exit4;
4421 	error = -EEXIST;
4422 	if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4423 		goto exit5;
4424 	if (flags & RENAME_EXCHANGE) {
4425 		error = -ENOENT;
4426 		if (d_is_negative(new_dentry))
4427 			goto exit5;
4428 
4429 		if (!d_is_dir(new_dentry)) {
4430 			error = -ENOTDIR;
4431 			if (new_last.name[new_last.len])
4432 				goto exit5;
4433 		}
4434 	}
4435 	/* unless the source is a directory trailing slashes give -ENOTDIR */
4436 	if (!d_is_dir(old_dentry)) {
4437 		error = -ENOTDIR;
4438 		if (old_last.name[old_last.len])
4439 			goto exit5;
4440 		if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4441 			goto exit5;
4442 	}
4443 	/* source should not be ancestor of target */
4444 	error = -EINVAL;
4445 	if (old_dentry == trap)
4446 		goto exit5;
4447 	/* target should not be an ancestor of source */
4448 	if (!(flags & RENAME_EXCHANGE))
4449 		error = -ENOTEMPTY;
4450 	if (new_dentry == trap)
4451 		goto exit5;
4452 
4453 	error = security_path_rename(&old_path, old_dentry,
4454 				     &new_path, new_dentry, flags);
4455 	if (error)
4456 		goto exit5;
4457 	error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4458 			   new_path.dentry->d_inode, new_dentry,
4459 			   &delegated_inode, flags);
4460 exit5:
4461 	dput(new_dentry);
4462 exit4:
4463 	dput(old_dentry);
4464 exit3:
4465 	unlock_rename(new_path.dentry, old_path.dentry);
4466 	if (delegated_inode) {
4467 		error = break_deleg_wait(&delegated_inode);
4468 		if (!error)
4469 			goto retry_deleg;
4470 	}
4471 	mnt_drop_write(old_path.mnt);
4472 exit2:
4473 	if (retry_estale(error, lookup_flags))
4474 		should_retry = true;
4475 	path_put(&new_path);
4476 	putname(to);
4477 exit1:
4478 	path_put(&old_path);
4479 	putname(from);
4480 	if (should_retry) {
4481 		should_retry = false;
4482 		lookup_flags |= LOOKUP_REVAL;
4483 		goto retry;
4484 	}
4485 exit:
4486 	return error;
4487 }
4488 
4489 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4490 		int, newdfd, const char __user *, newname, unsigned int, flags)
4491 {
4492 	return do_renameat2(olddfd, oldname, newdfd, newname, flags);
4493 }
4494 
4495 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4496 		int, newdfd, const char __user *, newname)
4497 {
4498 	return do_renameat2(olddfd, oldname, newdfd, newname, 0);
4499 }
4500 
4501 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4502 {
4503 	return do_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4504 }
4505 
4506 int readlink_copy(char __user *buffer, int buflen, const char *link)
4507 {
4508 	int len = PTR_ERR(link);
4509 	if (IS_ERR(link))
4510 		goto out;
4511 
4512 	len = strlen(link);
4513 	if (len > (unsigned) buflen)
4514 		len = buflen;
4515 	if (copy_to_user(buffer, link, len))
4516 		len = -EFAULT;
4517 out:
4518 	return len;
4519 }
4520 
4521 /**
4522  * vfs_readlink - copy symlink body into userspace buffer
4523  * @dentry: dentry on which to get symbolic link
4524  * @buffer: user memory pointer
4525  * @buflen: size of buffer
4526  *
4527  * Does not touch atime.  That's up to the caller if necessary
4528  *
4529  * Does not call security hook.
4530  */
4531 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4532 {
4533 	struct inode *inode = d_inode(dentry);
4534 	DEFINE_DELAYED_CALL(done);
4535 	const char *link;
4536 	int res;
4537 
4538 	if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
4539 		if (unlikely(inode->i_op->readlink))
4540 			return inode->i_op->readlink(dentry, buffer, buflen);
4541 
4542 		if (!d_is_symlink(dentry))
4543 			return -EINVAL;
4544 
4545 		spin_lock(&inode->i_lock);
4546 		inode->i_opflags |= IOP_DEFAULT_READLINK;
4547 		spin_unlock(&inode->i_lock);
4548 	}
4549 
4550 	link = READ_ONCE(inode->i_link);
4551 	if (!link) {
4552 		link = inode->i_op->get_link(dentry, inode, &done);
4553 		if (IS_ERR(link))
4554 			return PTR_ERR(link);
4555 	}
4556 	res = readlink_copy(buffer, buflen, link);
4557 	do_delayed_call(&done);
4558 	return res;
4559 }
4560 EXPORT_SYMBOL(vfs_readlink);
4561 
4562 /**
4563  * vfs_get_link - get symlink body
4564  * @dentry: dentry on which to get symbolic link
4565  * @done: caller needs to free returned data with this
4566  *
4567  * Calls security hook and i_op->get_link() on the supplied inode.
4568  *
4569  * It does not touch atime.  That's up to the caller if necessary.
4570  *
4571  * Does not work on "special" symlinks like /proc/$$/fd/N
4572  */
4573 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
4574 {
4575 	const char *res = ERR_PTR(-EINVAL);
4576 	struct inode *inode = d_inode(dentry);
4577 
4578 	if (d_is_symlink(dentry)) {
4579 		res = ERR_PTR(security_inode_readlink(dentry));
4580 		if (!res)
4581 			res = inode->i_op->get_link(dentry, inode, done);
4582 	}
4583 	return res;
4584 }
4585 EXPORT_SYMBOL(vfs_get_link);
4586 
4587 /* get the link contents into pagecache */
4588 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4589 			  struct delayed_call *callback)
4590 {
4591 	char *kaddr;
4592 	struct page *page;
4593 	struct address_space *mapping = inode->i_mapping;
4594 
4595 	if (!dentry) {
4596 		page = find_get_page(mapping, 0);
4597 		if (!page)
4598 			return ERR_PTR(-ECHILD);
4599 		if (!PageUptodate(page)) {
4600 			put_page(page);
4601 			return ERR_PTR(-ECHILD);
4602 		}
4603 	} else {
4604 		page = read_mapping_page(mapping, 0, NULL);
4605 		if (IS_ERR(page))
4606 			return (char*)page;
4607 	}
4608 	set_delayed_call(callback, page_put_link, page);
4609 	BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4610 	kaddr = page_address(page);
4611 	nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4612 	return kaddr;
4613 }
4614 
4615 EXPORT_SYMBOL(page_get_link);
4616 
4617 void page_put_link(void *arg)
4618 {
4619 	put_page(arg);
4620 }
4621 EXPORT_SYMBOL(page_put_link);
4622 
4623 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4624 {
4625 	DEFINE_DELAYED_CALL(done);
4626 	int res = readlink_copy(buffer, buflen,
4627 				page_get_link(dentry, d_inode(dentry),
4628 					      &done));
4629 	do_delayed_call(&done);
4630 	return res;
4631 }
4632 EXPORT_SYMBOL(page_readlink);
4633 
4634 /*
4635  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4636  */
4637 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4638 {
4639 	struct address_space *mapping = inode->i_mapping;
4640 	struct page *page;
4641 	void *fsdata;
4642 	int err;
4643 	unsigned int flags = 0;
4644 	if (nofs)
4645 		flags |= AOP_FLAG_NOFS;
4646 
4647 retry:
4648 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
4649 				flags, &page, &fsdata);
4650 	if (err)
4651 		goto fail;
4652 
4653 	memcpy(page_address(page), symname, len-1);
4654 
4655 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4656 							page, fsdata);
4657 	if (err < 0)
4658 		goto fail;
4659 	if (err < len-1)
4660 		goto retry;
4661 
4662 	mark_inode_dirty(inode);
4663 	return 0;
4664 fail:
4665 	return err;
4666 }
4667 EXPORT_SYMBOL(__page_symlink);
4668 
4669 int page_symlink(struct inode *inode, const char *symname, int len)
4670 {
4671 	return __page_symlink(inode, symname, len,
4672 			!mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4673 }
4674 EXPORT_SYMBOL(page_symlink);
4675 
4676 const struct inode_operations page_symlink_inode_operations = {
4677 	.get_link	= page_get_link,
4678 };
4679 EXPORT_SYMBOL(page_symlink_inode_operations);
4680