1 /* 2 * linux/fs/namei.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * Some corrections by tytso. 9 */ 10 11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 12 * lookup logic. 13 */ 14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 15 */ 16 17 #include <linux/init.h> 18 #include <linux/export.h> 19 #include <linux/kernel.h> 20 #include <linux/slab.h> 21 #include <linux/fs.h> 22 #include <linux/namei.h> 23 #include <linux/pagemap.h> 24 #include <linux/fsnotify.h> 25 #include <linux/personality.h> 26 #include <linux/security.h> 27 #include <linux/ima.h> 28 #include <linux/syscalls.h> 29 #include <linux/mount.h> 30 #include <linux/audit.h> 31 #include <linux/capability.h> 32 #include <linux/file.h> 33 #include <linux/fcntl.h> 34 #include <linux/device_cgroup.h> 35 #include <linux/fs_struct.h> 36 #include <linux/posix_acl.h> 37 #include <linux/hash.h> 38 #include <linux/bitops.h> 39 #include <linux/init_task.h> 40 #include <asm/uaccess.h> 41 42 #include "internal.h" 43 #include "mount.h" 44 45 /* [Feb-1997 T. Schoebel-Theuer] 46 * Fundamental changes in the pathname lookup mechanisms (namei) 47 * were necessary because of omirr. The reason is that omirr needs 48 * to know the _real_ pathname, not the user-supplied one, in case 49 * of symlinks (and also when transname replacements occur). 50 * 51 * The new code replaces the old recursive symlink resolution with 52 * an iterative one (in case of non-nested symlink chains). It does 53 * this with calls to <fs>_follow_link(). 54 * As a side effect, dir_namei(), _namei() and follow_link() are now 55 * replaced with a single function lookup_dentry() that can handle all 56 * the special cases of the former code. 57 * 58 * With the new dcache, the pathname is stored at each inode, at least as 59 * long as the refcount of the inode is positive. As a side effect, the 60 * size of the dcache depends on the inode cache and thus is dynamic. 61 * 62 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 63 * resolution to correspond with current state of the code. 64 * 65 * Note that the symlink resolution is not *completely* iterative. 66 * There is still a significant amount of tail- and mid- recursion in 67 * the algorithm. Also, note that <fs>_readlink() is not used in 68 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 69 * may return different results than <fs>_follow_link(). Many virtual 70 * filesystems (including /proc) exhibit this behavior. 71 */ 72 73 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 74 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 75 * and the name already exists in form of a symlink, try to create the new 76 * name indicated by the symlink. The old code always complained that the 77 * name already exists, due to not following the symlink even if its target 78 * is nonexistent. The new semantics affects also mknod() and link() when 79 * the name is a symlink pointing to a non-existent name. 80 * 81 * I don't know which semantics is the right one, since I have no access 82 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 83 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 84 * "old" one. Personally, I think the new semantics is much more logical. 85 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 86 * file does succeed in both HP-UX and SunOs, but not in Solaris 87 * and in the old Linux semantics. 88 */ 89 90 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 91 * semantics. See the comments in "open_namei" and "do_link" below. 92 * 93 * [10-Sep-98 Alan Modra] Another symlink change. 94 */ 95 96 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 97 * inside the path - always follow. 98 * in the last component in creation/removal/renaming - never follow. 99 * if LOOKUP_FOLLOW passed - follow. 100 * if the pathname has trailing slashes - follow. 101 * otherwise - don't follow. 102 * (applied in that order). 103 * 104 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 105 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 106 * During the 2.4 we need to fix the userland stuff depending on it - 107 * hopefully we will be able to get rid of that wart in 2.5. So far only 108 * XEmacs seems to be relying on it... 109 */ 110 /* 111 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 112 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 113 * any extra contention... 114 */ 115 116 /* In order to reduce some races, while at the same time doing additional 117 * checking and hopefully speeding things up, we copy filenames to the 118 * kernel data space before using them.. 119 * 120 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 121 * PATH_MAX includes the nul terminator --RR. 122 */ 123 124 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname)) 125 126 struct filename * 127 getname_flags(const char __user *filename, int flags, int *empty) 128 { 129 struct filename *result; 130 char *kname; 131 int len; 132 133 result = audit_reusename(filename); 134 if (result) 135 return result; 136 137 result = __getname(); 138 if (unlikely(!result)) 139 return ERR_PTR(-ENOMEM); 140 141 /* 142 * First, try to embed the struct filename inside the names_cache 143 * allocation 144 */ 145 kname = (char *)result->iname; 146 result->name = kname; 147 148 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX); 149 if (unlikely(len < 0)) { 150 __putname(result); 151 return ERR_PTR(len); 152 } 153 154 /* 155 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a 156 * separate struct filename so we can dedicate the entire 157 * names_cache allocation for the pathname, and re-do the copy from 158 * userland. 159 */ 160 if (unlikely(len == EMBEDDED_NAME_MAX)) { 161 const size_t size = offsetof(struct filename, iname[1]); 162 kname = (char *)result; 163 164 /* 165 * size is chosen that way we to guarantee that 166 * result->iname[0] is within the same object and that 167 * kname can't be equal to result->iname, no matter what. 168 */ 169 result = kzalloc(size, GFP_KERNEL); 170 if (unlikely(!result)) { 171 __putname(kname); 172 return ERR_PTR(-ENOMEM); 173 } 174 result->name = kname; 175 len = strncpy_from_user(kname, filename, PATH_MAX); 176 if (unlikely(len < 0)) { 177 __putname(kname); 178 kfree(result); 179 return ERR_PTR(len); 180 } 181 if (unlikely(len == PATH_MAX)) { 182 __putname(kname); 183 kfree(result); 184 return ERR_PTR(-ENAMETOOLONG); 185 } 186 } 187 188 result->refcnt = 1; 189 /* The empty path is special. */ 190 if (unlikely(!len)) { 191 if (empty) 192 *empty = 1; 193 if (!(flags & LOOKUP_EMPTY)) { 194 putname(result); 195 return ERR_PTR(-ENOENT); 196 } 197 } 198 199 result->uptr = filename; 200 result->aname = NULL; 201 audit_getname(result); 202 return result; 203 } 204 205 struct filename * 206 getname(const char __user * filename) 207 { 208 return getname_flags(filename, 0, NULL); 209 } 210 211 struct filename * 212 getname_kernel(const char * filename) 213 { 214 struct filename *result; 215 int len = strlen(filename) + 1; 216 217 result = __getname(); 218 if (unlikely(!result)) 219 return ERR_PTR(-ENOMEM); 220 221 if (len <= EMBEDDED_NAME_MAX) { 222 result->name = (char *)result->iname; 223 } else if (len <= PATH_MAX) { 224 struct filename *tmp; 225 226 tmp = kmalloc(sizeof(*tmp), GFP_KERNEL); 227 if (unlikely(!tmp)) { 228 __putname(result); 229 return ERR_PTR(-ENOMEM); 230 } 231 tmp->name = (char *)result; 232 result = tmp; 233 } else { 234 __putname(result); 235 return ERR_PTR(-ENAMETOOLONG); 236 } 237 memcpy((char *)result->name, filename, len); 238 result->uptr = NULL; 239 result->aname = NULL; 240 result->refcnt = 1; 241 audit_getname(result); 242 243 return result; 244 } 245 246 void putname(struct filename *name) 247 { 248 BUG_ON(name->refcnt <= 0); 249 250 if (--name->refcnt > 0) 251 return; 252 253 if (name->name != name->iname) { 254 __putname(name->name); 255 kfree(name); 256 } else 257 __putname(name); 258 } 259 260 static int check_acl(struct inode *inode, int mask) 261 { 262 #ifdef CONFIG_FS_POSIX_ACL 263 struct posix_acl *acl; 264 265 if (mask & MAY_NOT_BLOCK) { 266 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS); 267 if (!acl) 268 return -EAGAIN; 269 /* no ->get_acl() calls in RCU mode... */ 270 if (is_uncached_acl(acl)) 271 return -ECHILD; 272 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK); 273 } 274 275 acl = get_acl(inode, ACL_TYPE_ACCESS); 276 if (IS_ERR(acl)) 277 return PTR_ERR(acl); 278 if (acl) { 279 int error = posix_acl_permission(inode, acl, mask); 280 posix_acl_release(acl); 281 return error; 282 } 283 #endif 284 285 return -EAGAIN; 286 } 287 288 /* 289 * This does the basic permission checking 290 */ 291 static int acl_permission_check(struct inode *inode, int mask) 292 { 293 unsigned int mode = inode->i_mode; 294 295 if (likely(uid_eq(current_fsuid(), inode->i_uid))) 296 mode >>= 6; 297 else { 298 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) { 299 int error = check_acl(inode, mask); 300 if (error != -EAGAIN) 301 return error; 302 } 303 304 if (in_group_p(inode->i_gid)) 305 mode >>= 3; 306 } 307 308 /* 309 * If the DACs are ok we don't need any capability check. 310 */ 311 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 312 return 0; 313 return -EACCES; 314 } 315 316 /** 317 * generic_permission - check for access rights on a Posix-like filesystem 318 * @inode: inode to check access rights for 319 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...) 320 * 321 * Used to check for read/write/execute permissions on a file. 322 * We use "fsuid" for this, letting us set arbitrary permissions 323 * for filesystem access without changing the "normal" uids which 324 * are used for other things. 325 * 326 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk 327 * request cannot be satisfied (eg. requires blocking or too much complexity). 328 * It would then be called again in ref-walk mode. 329 */ 330 int generic_permission(struct inode *inode, int mask) 331 { 332 int ret; 333 334 /* 335 * Do the basic permission checks. 336 */ 337 ret = acl_permission_check(inode, mask); 338 if (ret != -EACCES) 339 return ret; 340 341 if (S_ISDIR(inode->i_mode)) { 342 /* DACs are overridable for directories */ 343 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE)) 344 return 0; 345 if (!(mask & MAY_WRITE)) 346 if (capable_wrt_inode_uidgid(inode, 347 CAP_DAC_READ_SEARCH)) 348 return 0; 349 return -EACCES; 350 } 351 /* 352 * Read/write DACs are always overridable. 353 * Executable DACs are overridable when there is 354 * at least one exec bit set. 355 */ 356 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO)) 357 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE)) 358 return 0; 359 360 /* 361 * Searching includes executable on directories, else just read. 362 */ 363 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 364 if (mask == MAY_READ) 365 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH)) 366 return 0; 367 368 return -EACCES; 369 } 370 EXPORT_SYMBOL(generic_permission); 371 372 /* 373 * We _really_ want to just do "generic_permission()" without 374 * even looking at the inode->i_op values. So we keep a cache 375 * flag in inode->i_opflags, that says "this has not special 376 * permission function, use the fast case". 377 */ 378 static inline int do_inode_permission(struct inode *inode, int mask) 379 { 380 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) { 381 if (likely(inode->i_op->permission)) 382 return inode->i_op->permission(inode, mask); 383 384 /* This gets set once for the inode lifetime */ 385 spin_lock(&inode->i_lock); 386 inode->i_opflags |= IOP_FASTPERM; 387 spin_unlock(&inode->i_lock); 388 } 389 return generic_permission(inode, mask); 390 } 391 392 /** 393 * __inode_permission - Check for access rights to a given inode 394 * @inode: Inode to check permission on 395 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 396 * 397 * Check for read/write/execute permissions on an inode. 398 * 399 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 400 * 401 * This does not check for a read-only file system. You probably want 402 * inode_permission(). 403 */ 404 int __inode_permission(struct inode *inode, int mask) 405 { 406 int retval; 407 408 if (unlikely(mask & MAY_WRITE)) { 409 /* 410 * Nobody gets write access to an immutable file. 411 */ 412 if (IS_IMMUTABLE(inode)) 413 return -EPERM; 414 415 /* 416 * Updating mtime will likely cause i_uid and i_gid to be 417 * written back improperly if their true value is unknown 418 * to the vfs. 419 */ 420 if (HAS_UNMAPPED_ID(inode)) 421 return -EACCES; 422 } 423 424 retval = do_inode_permission(inode, mask); 425 if (retval) 426 return retval; 427 428 retval = devcgroup_inode_permission(inode, mask); 429 if (retval) 430 return retval; 431 432 return security_inode_permission(inode, mask); 433 } 434 EXPORT_SYMBOL(__inode_permission); 435 436 /** 437 * sb_permission - Check superblock-level permissions 438 * @sb: Superblock of inode to check permission on 439 * @inode: Inode to check permission on 440 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 441 * 442 * Separate out file-system wide checks from inode-specific permission checks. 443 */ 444 static int sb_permission(struct super_block *sb, struct inode *inode, int mask) 445 { 446 if (unlikely(mask & MAY_WRITE)) { 447 umode_t mode = inode->i_mode; 448 449 /* Nobody gets write access to a read-only fs. */ 450 if ((sb->s_flags & MS_RDONLY) && 451 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 452 return -EROFS; 453 } 454 return 0; 455 } 456 457 /** 458 * inode_permission - Check for access rights to a given inode 459 * @inode: Inode to check permission on 460 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 461 * 462 * Check for read/write/execute permissions on an inode. We use fs[ug]id for 463 * this, letting us set arbitrary permissions for filesystem access without 464 * changing the "normal" UIDs which are used for other things. 465 * 466 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 467 */ 468 int inode_permission(struct inode *inode, int mask) 469 { 470 int retval; 471 472 retval = sb_permission(inode->i_sb, inode, mask); 473 if (retval) 474 return retval; 475 return __inode_permission(inode, mask); 476 } 477 EXPORT_SYMBOL(inode_permission); 478 479 /** 480 * path_get - get a reference to a path 481 * @path: path to get the reference to 482 * 483 * Given a path increment the reference count to the dentry and the vfsmount. 484 */ 485 void path_get(const struct path *path) 486 { 487 mntget(path->mnt); 488 dget(path->dentry); 489 } 490 EXPORT_SYMBOL(path_get); 491 492 /** 493 * path_put - put a reference to a path 494 * @path: path to put the reference to 495 * 496 * Given a path decrement the reference count to the dentry and the vfsmount. 497 */ 498 void path_put(const struct path *path) 499 { 500 dput(path->dentry); 501 mntput(path->mnt); 502 } 503 EXPORT_SYMBOL(path_put); 504 505 #define EMBEDDED_LEVELS 2 506 struct nameidata { 507 struct path path; 508 struct qstr last; 509 struct path root; 510 struct inode *inode; /* path.dentry.d_inode */ 511 unsigned int flags; 512 unsigned seq, m_seq; 513 int last_type; 514 unsigned depth; 515 int total_link_count; 516 struct saved { 517 struct path link; 518 struct delayed_call done; 519 const char *name; 520 unsigned seq; 521 } *stack, internal[EMBEDDED_LEVELS]; 522 struct filename *name; 523 struct nameidata *saved; 524 struct inode *link_inode; 525 unsigned root_seq; 526 int dfd; 527 }; 528 529 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name) 530 { 531 struct nameidata *old = current->nameidata; 532 p->stack = p->internal; 533 p->dfd = dfd; 534 p->name = name; 535 p->total_link_count = old ? old->total_link_count : 0; 536 p->saved = old; 537 current->nameidata = p; 538 } 539 540 static void restore_nameidata(void) 541 { 542 struct nameidata *now = current->nameidata, *old = now->saved; 543 544 current->nameidata = old; 545 if (old) 546 old->total_link_count = now->total_link_count; 547 if (now->stack != now->internal) 548 kfree(now->stack); 549 } 550 551 static int __nd_alloc_stack(struct nameidata *nd) 552 { 553 struct saved *p; 554 555 if (nd->flags & LOOKUP_RCU) { 556 p= kmalloc(MAXSYMLINKS * sizeof(struct saved), 557 GFP_ATOMIC); 558 if (unlikely(!p)) 559 return -ECHILD; 560 } else { 561 p= kmalloc(MAXSYMLINKS * sizeof(struct saved), 562 GFP_KERNEL); 563 if (unlikely(!p)) 564 return -ENOMEM; 565 } 566 memcpy(p, nd->internal, sizeof(nd->internal)); 567 nd->stack = p; 568 return 0; 569 } 570 571 /** 572 * path_connected - Verify that a path->dentry is below path->mnt.mnt_root 573 * @path: nameidate to verify 574 * 575 * Rename can sometimes move a file or directory outside of a bind 576 * mount, path_connected allows those cases to be detected. 577 */ 578 static bool path_connected(const struct path *path) 579 { 580 struct vfsmount *mnt = path->mnt; 581 582 /* Only bind mounts can have disconnected paths */ 583 if (mnt->mnt_root == mnt->mnt_sb->s_root) 584 return true; 585 586 return is_subdir(path->dentry, mnt->mnt_root); 587 } 588 589 static inline int nd_alloc_stack(struct nameidata *nd) 590 { 591 if (likely(nd->depth != EMBEDDED_LEVELS)) 592 return 0; 593 if (likely(nd->stack != nd->internal)) 594 return 0; 595 return __nd_alloc_stack(nd); 596 } 597 598 static void drop_links(struct nameidata *nd) 599 { 600 int i = nd->depth; 601 while (i--) { 602 struct saved *last = nd->stack + i; 603 do_delayed_call(&last->done); 604 clear_delayed_call(&last->done); 605 } 606 } 607 608 static void terminate_walk(struct nameidata *nd) 609 { 610 drop_links(nd); 611 if (!(nd->flags & LOOKUP_RCU)) { 612 int i; 613 path_put(&nd->path); 614 for (i = 0; i < nd->depth; i++) 615 path_put(&nd->stack[i].link); 616 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 617 path_put(&nd->root); 618 nd->root.mnt = NULL; 619 } 620 } else { 621 nd->flags &= ~LOOKUP_RCU; 622 if (!(nd->flags & LOOKUP_ROOT)) 623 nd->root.mnt = NULL; 624 rcu_read_unlock(); 625 } 626 nd->depth = 0; 627 } 628 629 /* path_put is needed afterwards regardless of success or failure */ 630 static bool legitimize_path(struct nameidata *nd, 631 struct path *path, unsigned seq) 632 { 633 int res = __legitimize_mnt(path->mnt, nd->m_seq); 634 if (unlikely(res)) { 635 if (res > 0) 636 path->mnt = NULL; 637 path->dentry = NULL; 638 return false; 639 } 640 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) { 641 path->dentry = NULL; 642 return false; 643 } 644 return !read_seqcount_retry(&path->dentry->d_seq, seq); 645 } 646 647 static bool legitimize_links(struct nameidata *nd) 648 { 649 int i; 650 for (i = 0; i < nd->depth; i++) { 651 struct saved *last = nd->stack + i; 652 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) { 653 drop_links(nd); 654 nd->depth = i + 1; 655 return false; 656 } 657 } 658 return true; 659 } 660 661 /* 662 * Path walking has 2 modes, rcu-walk and ref-walk (see 663 * Documentation/filesystems/path-lookup.txt). In situations when we can't 664 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab 665 * normal reference counts on dentries and vfsmounts to transition to ref-walk 666 * mode. Refcounts are grabbed at the last known good point before rcu-walk 667 * got stuck, so ref-walk may continue from there. If this is not successful 668 * (eg. a seqcount has changed), then failure is returned and it's up to caller 669 * to restart the path walk from the beginning in ref-walk mode. 670 */ 671 672 /** 673 * unlazy_walk - try to switch to ref-walk mode. 674 * @nd: nameidata pathwalk data 675 * @dentry: child of nd->path.dentry or NULL 676 * @seq: seq number to check dentry against 677 * Returns: 0 on success, -ECHILD on failure 678 * 679 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry 680 * for ref-walk mode. @dentry must be a path found by a do_lookup call on 681 * @nd or NULL. Must be called from rcu-walk context. 682 * Nothing should touch nameidata between unlazy_walk() failure and 683 * terminate_walk(). 684 */ 685 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry, unsigned seq) 686 { 687 struct dentry *parent = nd->path.dentry; 688 689 BUG_ON(!(nd->flags & LOOKUP_RCU)); 690 691 nd->flags &= ~LOOKUP_RCU; 692 if (unlikely(!legitimize_links(nd))) 693 goto out2; 694 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq))) 695 goto out2; 696 if (unlikely(!lockref_get_not_dead(&parent->d_lockref))) 697 goto out1; 698 699 /* 700 * For a negative lookup, the lookup sequence point is the parents 701 * sequence point, and it only needs to revalidate the parent dentry. 702 * 703 * For a positive lookup, we need to move both the parent and the 704 * dentry from the RCU domain to be properly refcounted. And the 705 * sequence number in the dentry validates *both* dentry counters, 706 * since we checked the sequence number of the parent after we got 707 * the child sequence number. So we know the parent must still 708 * be valid if the child sequence number is still valid. 709 */ 710 if (!dentry) { 711 if (read_seqcount_retry(&parent->d_seq, nd->seq)) 712 goto out; 713 BUG_ON(nd->inode != parent->d_inode); 714 } else { 715 if (!lockref_get_not_dead(&dentry->d_lockref)) 716 goto out; 717 if (read_seqcount_retry(&dentry->d_seq, seq)) 718 goto drop_dentry; 719 } 720 721 /* 722 * Sequence counts matched. Now make sure that the root is 723 * still valid and get it if required. 724 */ 725 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 726 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) { 727 rcu_read_unlock(); 728 dput(dentry); 729 return -ECHILD; 730 } 731 } 732 733 rcu_read_unlock(); 734 return 0; 735 736 drop_dentry: 737 rcu_read_unlock(); 738 dput(dentry); 739 goto drop_root_mnt; 740 out2: 741 nd->path.mnt = NULL; 742 out1: 743 nd->path.dentry = NULL; 744 out: 745 rcu_read_unlock(); 746 drop_root_mnt: 747 if (!(nd->flags & LOOKUP_ROOT)) 748 nd->root.mnt = NULL; 749 return -ECHILD; 750 } 751 752 static int unlazy_link(struct nameidata *nd, struct path *link, unsigned seq) 753 { 754 if (unlikely(!legitimize_path(nd, link, seq))) { 755 drop_links(nd); 756 nd->depth = 0; 757 nd->flags &= ~LOOKUP_RCU; 758 nd->path.mnt = NULL; 759 nd->path.dentry = NULL; 760 if (!(nd->flags & LOOKUP_ROOT)) 761 nd->root.mnt = NULL; 762 rcu_read_unlock(); 763 } else if (likely(unlazy_walk(nd, NULL, 0)) == 0) { 764 return 0; 765 } 766 path_put(link); 767 return -ECHILD; 768 } 769 770 static inline int d_revalidate(struct dentry *dentry, unsigned int flags) 771 { 772 return dentry->d_op->d_revalidate(dentry, flags); 773 } 774 775 /** 776 * complete_walk - successful completion of path walk 777 * @nd: pointer nameidata 778 * 779 * If we had been in RCU mode, drop out of it and legitimize nd->path. 780 * Revalidate the final result, unless we'd already done that during 781 * the path walk or the filesystem doesn't ask for it. Return 0 on 782 * success, -error on failure. In case of failure caller does not 783 * need to drop nd->path. 784 */ 785 static int complete_walk(struct nameidata *nd) 786 { 787 struct dentry *dentry = nd->path.dentry; 788 int status; 789 790 if (nd->flags & LOOKUP_RCU) { 791 if (!(nd->flags & LOOKUP_ROOT)) 792 nd->root.mnt = NULL; 793 if (unlikely(unlazy_walk(nd, NULL, 0))) 794 return -ECHILD; 795 } 796 797 if (likely(!(nd->flags & LOOKUP_JUMPED))) 798 return 0; 799 800 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE))) 801 return 0; 802 803 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags); 804 if (status > 0) 805 return 0; 806 807 if (!status) 808 status = -ESTALE; 809 810 return status; 811 } 812 813 static void set_root(struct nameidata *nd) 814 { 815 struct fs_struct *fs = current->fs; 816 817 if (nd->flags & LOOKUP_RCU) { 818 unsigned seq; 819 820 do { 821 seq = read_seqcount_begin(&fs->seq); 822 nd->root = fs->root; 823 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq); 824 } while (read_seqcount_retry(&fs->seq, seq)); 825 } else { 826 get_fs_root(fs, &nd->root); 827 } 828 } 829 830 static void path_put_conditional(struct path *path, struct nameidata *nd) 831 { 832 dput(path->dentry); 833 if (path->mnt != nd->path.mnt) 834 mntput(path->mnt); 835 } 836 837 static inline void path_to_nameidata(const struct path *path, 838 struct nameidata *nd) 839 { 840 if (!(nd->flags & LOOKUP_RCU)) { 841 dput(nd->path.dentry); 842 if (nd->path.mnt != path->mnt) 843 mntput(nd->path.mnt); 844 } 845 nd->path.mnt = path->mnt; 846 nd->path.dentry = path->dentry; 847 } 848 849 static int nd_jump_root(struct nameidata *nd) 850 { 851 if (nd->flags & LOOKUP_RCU) { 852 struct dentry *d; 853 nd->path = nd->root; 854 d = nd->path.dentry; 855 nd->inode = d->d_inode; 856 nd->seq = nd->root_seq; 857 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq))) 858 return -ECHILD; 859 } else { 860 path_put(&nd->path); 861 nd->path = nd->root; 862 path_get(&nd->path); 863 nd->inode = nd->path.dentry->d_inode; 864 } 865 nd->flags |= LOOKUP_JUMPED; 866 return 0; 867 } 868 869 /* 870 * Helper to directly jump to a known parsed path from ->get_link, 871 * caller must have taken a reference to path beforehand. 872 */ 873 void nd_jump_link(struct path *path) 874 { 875 struct nameidata *nd = current->nameidata; 876 path_put(&nd->path); 877 878 nd->path = *path; 879 nd->inode = nd->path.dentry->d_inode; 880 nd->flags |= LOOKUP_JUMPED; 881 } 882 883 static inline void put_link(struct nameidata *nd) 884 { 885 struct saved *last = nd->stack + --nd->depth; 886 do_delayed_call(&last->done); 887 if (!(nd->flags & LOOKUP_RCU)) 888 path_put(&last->link); 889 } 890 891 int sysctl_protected_symlinks __read_mostly = 0; 892 int sysctl_protected_hardlinks __read_mostly = 0; 893 894 /** 895 * may_follow_link - Check symlink following for unsafe situations 896 * @nd: nameidata pathwalk data 897 * 898 * In the case of the sysctl_protected_symlinks sysctl being enabled, 899 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is 900 * in a sticky world-writable directory. This is to protect privileged 901 * processes from failing races against path names that may change out 902 * from under them by way of other users creating malicious symlinks. 903 * It will permit symlinks to be followed only when outside a sticky 904 * world-writable directory, or when the uid of the symlink and follower 905 * match, or when the directory owner matches the symlink's owner. 906 * 907 * Returns 0 if following the symlink is allowed, -ve on error. 908 */ 909 static inline int may_follow_link(struct nameidata *nd) 910 { 911 const struct inode *inode; 912 const struct inode *parent; 913 kuid_t puid; 914 915 if (!sysctl_protected_symlinks) 916 return 0; 917 918 /* Allowed if owner and follower match. */ 919 inode = nd->link_inode; 920 if (uid_eq(current_cred()->fsuid, inode->i_uid)) 921 return 0; 922 923 /* Allowed if parent directory not sticky and world-writable. */ 924 parent = nd->inode; 925 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH)) 926 return 0; 927 928 /* Allowed if parent directory and link owner match. */ 929 puid = parent->i_uid; 930 if (uid_valid(puid) && uid_eq(puid, inode->i_uid)) 931 return 0; 932 933 if (nd->flags & LOOKUP_RCU) 934 return -ECHILD; 935 936 audit_log_link_denied("follow_link", &nd->stack[0].link); 937 return -EACCES; 938 } 939 940 /** 941 * safe_hardlink_source - Check for safe hardlink conditions 942 * @inode: the source inode to hardlink from 943 * 944 * Return false if at least one of the following conditions: 945 * - inode is not a regular file 946 * - inode is setuid 947 * - inode is setgid and group-exec 948 * - access failure for read and write 949 * 950 * Otherwise returns true. 951 */ 952 static bool safe_hardlink_source(struct inode *inode) 953 { 954 umode_t mode = inode->i_mode; 955 956 /* Special files should not get pinned to the filesystem. */ 957 if (!S_ISREG(mode)) 958 return false; 959 960 /* Setuid files should not get pinned to the filesystem. */ 961 if (mode & S_ISUID) 962 return false; 963 964 /* Executable setgid files should not get pinned to the filesystem. */ 965 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) 966 return false; 967 968 /* Hardlinking to unreadable or unwritable sources is dangerous. */ 969 if (inode_permission(inode, MAY_READ | MAY_WRITE)) 970 return false; 971 972 return true; 973 } 974 975 /** 976 * may_linkat - Check permissions for creating a hardlink 977 * @link: the source to hardlink from 978 * 979 * Block hardlink when all of: 980 * - sysctl_protected_hardlinks enabled 981 * - fsuid does not match inode 982 * - hardlink source is unsafe (see safe_hardlink_source() above) 983 * - not CAP_FOWNER in a namespace with the inode owner uid mapped 984 * 985 * Returns 0 if successful, -ve on error. 986 */ 987 static int may_linkat(struct path *link) 988 { 989 struct inode *inode; 990 991 if (!sysctl_protected_hardlinks) 992 return 0; 993 994 inode = link->dentry->d_inode; 995 996 /* Source inode owner (or CAP_FOWNER) can hardlink all they like, 997 * otherwise, it must be a safe source. 998 */ 999 if (inode_owner_or_capable(inode) || safe_hardlink_source(inode)) 1000 return 0; 1001 1002 audit_log_link_denied("linkat", link); 1003 return -EPERM; 1004 } 1005 1006 static __always_inline 1007 const char *get_link(struct nameidata *nd) 1008 { 1009 struct saved *last = nd->stack + nd->depth - 1; 1010 struct dentry *dentry = last->link.dentry; 1011 struct inode *inode = nd->link_inode; 1012 int error; 1013 const char *res; 1014 1015 if (!(nd->flags & LOOKUP_RCU)) { 1016 touch_atime(&last->link); 1017 cond_resched(); 1018 } else if (atime_needs_update(&last->link, inode)) { 1019 if (unlikely(unlazy_walk(nd, NULL, 0))) 1020 return ERR_PTR(-ECHILD); 1021 touch_atime(&last->link); 1022 } 1023 1024 error = security_inode_follow_link(dentry, inode, 1025 nd->flags & LOOKUP_RCU); 1026 if (unlikely(error)) 1027 return ERR_PTR(error); 1028 1029 nd->last_type = LAST_BIND; 1030 res = inode->i_link; 1031 if (!res) { 1032 const char * (*get)(struct dentry *, struct inode *, 1033 struct delayed_call *); 1034 get = inode->i_op->get_link; 1035 if (nd->flags & LOOKUP_RCU) { 1036 res = get(NULL, inode, &last->done); 1037 if (res == ERR_PTR(-ECHILD)) { 1038 if (unlikely(unlazy_walk(nd, NULL, 0))) 1039 return ERR_PTR(-ECHILD); 1040 res = get(dentry, inode, &last->done); 1041 } 1042 } else { 1043 res = get(dentry, inode, &last->done); 1044 } 1045 if (IS_ERR_OR_NULL(res)) 1046 return res; 1047 } 1048 if (*res == '/') { 1049 if (!nd->root.mnt) 1050 set_root(nd); 1051 if (unlikely(nd_jump_root(nd))) 1052 return ERR_PTR(-ECHILD); 1053 while (unlikely(*++res == '/')) 1054 ; 1055 } 1056 if (!*res) 1057 res = NULL; 1058 return res; 1059 } 1060 1061 /* 1062 * follow_up - Find the mountpoint of path's vfsmount 1063 * 1064 * Given a path, find the mountpoint of its source file system. 1065 * Replace @path with the path of the mountpoint in the parent mount. 1066 * Up is towards /. 1067 * 1068 * Return 1 if we went up a level and 0 if we were already at the 1069 * root. 1070 */ 1071 int follow_up(struct path *path) 1072 { 1073 struct mount *mnt = real_mount(path->mnt); 1074 struct mount *parent; 1075 struct dentry *mountpoint; 1076 1077 read_seqlock_excl(&mount_lock); 1078 parent = mnt->mnt_parent; 1079 if (parent == mnt) { 1080 read_sequnlock_excl(&mount_lock); 1081 return 0; 1082 } 1083 mntget(&parent->mnt); 1084 mountpoint = dget(mnt->mnt_mountpoint); 1085 read_sequnlock_excl(&mount_lock); 1086 dput(path->dentry); 1087 path->dentry = mountpoint; 1088 mntput(path->mnt); 1089 path->mnt = &parent->mnt; 1090 return 1; 1091 } 1092 EXPORT_SYMBOL(follow_up); 1093 1094 /* 1095 * Perform an automount 1096 * - return -EISDIR to tell follow_managed() to stop and return the path we 1097 * were called with. 1098 */ 1099 static int follow_automount(struct path *path, struct nameidata *nd, 1100 bool *need_mntput) 1101 { 1102 struct vfsmount *mnt; 1103 const struct cred *old_cred; 1104 int err; 1105 1106 if (!path->dentry->d_op || !path->dentry->d_op->d_automount) 1107 return -EREMOTE; 1108 1109 /* We don't want to mount if someone's just doing a stat - 1110 * unless they're stat'ing a directory and appended a '/' to 1111 * the name. 1112 * 1113 * We do, however, want to mount if someone wants to open or 1114 * create a file of any type under the mountpoint, wants to 1115 * traverse through the mountpoint or wants to open the 1116 * mounted directory. Also, autofs may mark negative dentries 1117 * as being automount points. These will need the attentions 1118 * of the daemon to instantiate them before they can be used. 1119 */ 1120 if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY | 1121 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) && 1122 path->dentry->d_inode) 1123 return -EISDIR; 1124 1125 if (path->dentry->d_sb->s_user_ns != &init_user_ns) 1126 return -EACCES; 1127 1128 nd->total_link_count++; 1129 if (nd->total_link_count >= 40) 1130 return -ELOOP; 1131 1132 old_cred = override_creds(&init_cred); 1133 mnt = path->dentry->d_op->d_automount(path); 1134 revert_creds(old_cred); 1135 if (IS_ERR(mnt)) { 1136 /* 1137 * The filesystem is allowed to return -EISDIR here to indicate 1138 * it doesn't want to automount. For instance, autofs would do 1139 * this so that its userspace daemon can mount on this dentry. 1140 * 1141 * However, we can only permit this if it's a terminal point in 1142 * the path being looked up; if it wasn't then the remainder of 1143 * the path is inaccessible and we should say so. 1144 */ 1145 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT)) 1146 return -EREMOTE; 1147 return PTR_ERR(mnt); 1148 } 1149 1150 if (!mnt) /* mount collision */ 1151 return 0; 1152 1153 if (!*need_mntput) { 1154 /* lock_mount() may release path->mnt on error */ 1155 mntget(path->mnt); 1156 *need_mntput = true; 1157 } 1158 err = finish_automount(mnt, path); 1159 1160 switch (err) { 1161 case -EBUSY: 1162 /* Someone else made a mount here whilst we were busy */ 1163 return 0; 1164 case 0: 1165 path_put(path); 1166 path->mnt = mnt; 1167 path->dentry = dget(mnt->mnt_root); 1168 return 0; 1169 default: 1170 return err; 1171 } 1172 1173 } 1174 1175 /* 1176 * Handle a dentry that is managed in some way. 1177 * - Flagged for transit management (autofs) 1178 * - Flagged as mountpoint 1179 * - Flagged as automount point 1180 * 1181 * This may only be called in refwalk mode. 1182 * 1183 * Serialization is taken care of in namespace.c 1184 */ 1185 static int follow_managed(struct path *path, struct nameidata *nd) 1186 { 1187 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */ 1188 unsigned managed; 1189 bool need_mntput = false; 1190 int ret = 0; 1191 1192 /* Given that we're not holding a lock here, we retain the value in a 1193 * local variable for each dentry as we look at it so that we don't see 1194 * the components of that value change under us */ 1195 while (managed = ACCESS_ONCE(path->dentry->d_flags), 1196 managed &= DCACHE_MANAGED_DENTRY, 1197 unlikely(managed != 0)) { 1198 /* Allow the filesystem to manage the transit without i_mutex 1199 * being held. */ 1200 if (managed & DCACHE_MANAGE_TRANSIT) { 1201 BUG_ON(!path->dentry->d_op); 1202 BUG_ON(!path->dentry->d_op->d_manage); 1203 ret = path->dentry->d_op->d_manage(path->dentry, false); 1204 if (ret < 0) 1205 break; 1206 } 1207 1208 /* Transit to a mounted filesystem. */ 1209 if (managed & DCACHE_MOUNTED) { 1210 struct vfsmount *mounted = lookup_mnt(path); 1211 if (mounted) { 1212 dput(path->dentry); 1213 if (need_mntput) 1214 mntput(path->mnt); 1215 path->mnt = mounted; 1216 path->dentry = dget(mounted->mnt_root); 1217 need_mntput = true; 1218 continue; 1219 } 1220 1221 /* Something is mounted on this dentry in another 1222 * namespace and/or whatever was mounted there in this 1223 * namespace got unmounted before lookup_mnt() could 1224 * get it */ 1225 } 1226 1227 /* Handle an automount point */ 1228 if (managed & DCACHE_NEED_AUTOMOUNT) { 1229 ret = follow_automount(path, nd, &need_mntput); 1230 if (ret < 0) 1231 break; 1232 continue; 1233 } 1234 1235 /* We didn't change the current path point */ 1236 break; 1237 } 1238 1239 if (need_mntput && path->mnt == mnt) 1240 mntput(path->mnt); 1241 if (ret == -EISDIR || !ret) 1242 ret = 1; 1243 if (need_mntput) 1244 nd->flags |= LOOKUP_JUMPED; 1245 if (unlikely(ret < 0)) 1246 path_put_conditional(path, nd); 1247 return ret; 1248 } 1249 1250 int follow_down_one(struct path *path) 1251 { 1252 struct vfsmount *mounted; 1253 1254 mounted = lookup_mnt(path); 1255 if (mounted) { 1256 dput(path->dentry); 1257 mntput(path->mnt); 1258 path->mnt = mounted; 1259 path->dentry = dget(mounted->mnt_root); 1260 return 1; 1261 } 1262 return 0; 1263 } 1264 EXPORT_SYMBOL(follow_down_one); 1265 1266 static inline int managed_dentry_rcu(struct dentry *dentry) 1267 { 1268 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ? 1269 dentry->d_op->d_manage(dentry, true) : 0; 1270 } 1271 1272 /* 1273 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if 1274 * we meet a managed dentry that would need blocking. 1275 */ 1276 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path, 1277 struct inode **inode, unsigned *seqp) 1278 { 1279 for (;;) { 1280 struct mount *mounted; 1281 /* 1282 * Don't forget we might have a non-mountpoint managed dentry 1283 * that wants to block transit. 1284 */ 1285 switch (managed_dentry_rcu(path->dentry)) { 1286 case -ECHILD: 1287 default: 1288 return false; 1289 case -EISDIR: 1290 return true; 1291 case 0: 1292 break; 1293 } 1294 1295 if (!d_mountpoint(path->dentry)) 1296 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT); 1297 1298 mounted = __lookup_mnt(path->mnt, path->dentry); 1299 if (!mounted) 1300 break; 1301 path->mnt = &mounted->mnt; 1302 path->dentry = mounted->mnt.mnt_root; 1303 nd->flags |= LOOKUP_JUMPED; 1304 *seqp = read_seqcount_begin(&path->dentry->d_seq); 1305 /* 1306 * Update the inode too. We don't need to re-check the 1307 * dentry sequence number here after this d_inode read, 1308 * because a mount-point is always pinned. 1309 */ 1310 *inode = path->dentry->d_inode; 1311 } 1312 return !read_seqretry(&mount_lock, nd->m_seq) && 1313 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT); 1314 } 1315 1316 static int follow_dotdot_rcu(struct nameidata *nd) 1317 { 1318 struct inode *inode = nd->inode; 1319 1320 while (1) { 1321 if (path_equal(&nd->path, &nd->root)) 1322 break; 1323 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1324 struct dentry *old = nd->path.dentry; 1325 struct dentry *parent = old->d_parent; 1326 unsigned seq; 1327 1328 inode = parent->d_inode; 1329 seq = read_seqcount_begin(&parent->d_seq); 1330 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq))) 1331 return -ECHILD; 1332 nd->path.dentry = parent; 1333 nd->seq = seq; 1334 if (unlikely(!path_connected(&nd->path))) 1335 return -ENOENT; 1336 break; 1337 } else { 1338 struct mount *mnt = real_mount(nd->path.mnt); 1339 struct mount *mparent = mnt->mnt_parent; 1340 struct dentry *mountpoint = mnt->mnt_mountpoint; 1341 struct inode *inode2 = mountpoint->d_inode; 1342 unsigned seq = read_seqcount_begin(&mountpoint->d_seq); 1343 if (unlikely(read_seqretry(&mount_lock, nd->m_seq))) 1344 return -ECHILD; 1345 if (&mparent->mnt == nd->path.mnt) 1346 break; 1347 /* we know that mountpoint was pinned */ 1348 nd->path.dentry = mountpoint; 1349 nd->path.mnt = &mparent->mnt; 1350 inode = inode2; 1351 nd->seq = seq; 1352 } 1353 } 1354 while (unlikely(d_mountpoint(nd->path.dentry))) { 1355 struct mount *mounted; 1356 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry); 1357 if (unlikely(read_seqretry(&mount_lock, nd->m_seq))) 1358 return -ECHILD; 1359 if (!mounted) 1360 break; 1361 nd->path.mnt = &mounted->mnt; 1362 nd->path.dentry = mounted->mnt.mnt_root; 1363 inode = nd->path.dentry->d_inode; 1364 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 1365 } 1366 nd->inode = inode; 1367 return 0; 1368 } 1369 1370 /* 1371 * Follow down to the covering mount currently visible to userspace. At each 1372 * point, the filesystem owning that dentry may be queried as to whether the 1373 * caller is permitted to proceed or not. 1374 */ 1375 int follow_down(struct path *path) 1376 { 1377 unsigned managed; 1378 int ret; 1379 1380 while (managed = ACCESS_ONCE(path->dentry->d_flags), 1381 unlikely(managed & DCACHE_MANAGED_DENTRY)) { 1382 /* Allow the filesystem to manage the transit without i_mutex 1383 * being held. 1384 * 1385 * We indicate to the filesystem if someone is trying to mount 1386 * something here. This gives autofs the chance to deny anyone 1387 * other than its daemon the right to mount on its 1388 * superstructure. 1389 * 1390 * The filesystem may sleep at this point. 1391 */ 1392 if (managed & DCACHE_MANAGE_TRANSIT) { 1393 BUG_ON(!path->dentry->d_op); 1394 BUG_ON(!path->dentry->d_op->d_manage); 1395 ret = path->dentry->d_op->d_manage( 1396 path->dentry, false); 1397 if (ret < 0) 1398 return ret == -EISDIR ? 0 : ret; 1399 } 1400 1401 /* Transit to a mounted filesystem. */ 1402 if (managed & DCACHE_MOUNTED) { 1403 struct vfsmount *mounted = lookup_mnt(path); 1404 if (!mounted) 1405 break; 1406 dput(path->dentry); 1407 mntput(path->mnt); 1408 path->mnt = mounted; 1409 path->dentry = dget(mounted->mnt_root); 1410 continue; 1411 } 1412 1413 /* Don't handle automount points here */ 1414 break; 1415 } 1416 return 0; 1417 } 1418 EXPORT_SYMBOL(follow_down); 1419 1420 /* 1421 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot() 1422 */ 1423 static void follow_mount(struct path *path) 1424 { 1425 while (d_mountpoint(path->dentry)) { 1426 struct vfsmount *mounted = lookup_mnt(path); 1427 if (!mounted) 1428 break; 1429 dput(path->dentry); 1430 mntput(path->mnt); 1431 path->mnt = mounted; 1432 path->dentry = dget(mounted->mnt_root); 1433 } 1434 } 1435 1436 static int path_parent_directory(struct path *path) 1437 { 1438 struct dentry *old = path->dentry; 1439 /* rare case of legitimate dget_parent()... */ 1440 path->dentry = dget_parent(path->dentry); 1441 dput(old); 1442 if (unlikely(!path_connected(path))) 1443 return -ENOENT; 1444 return 0; 1445 } 1446 1447 static int follow_dotdot(struct nameidata *nd) 1448 { 1449 while(1) { 1450 if (nd->path.dentry == nd->root.dentry && 1451 nd->path.mnt == nd->root.mnt) { 1452 break; 1453 } 1454 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1455 int ret = path_parent_directory(&nd->path); 1456 if (ret) 1457 return ret; 1458 break; 1459 } 1460 if (!follow_up(&nd->path)) 1461 break; 1462 } 1463 follow_mount(&nd->path); 1464 nd->inode = nd->path.dentry->d_inode; 1465 return 0; 1466 } 1467 1468 /* 1469 * This looks up the name in dcache and possibly revalidates the found dentry. 1470 * NULL is returned if the dentry does not exist in the cache. 1471 */ 1472 static struct dentry *lookup_dcache(const struct qstr *name, 1473 struct dentry *dir, 1474 unsigned int flags) 1475 { 1476 struct dentry *dentry; 1477 int error; 1478 1479 dentry = d_lookup(dir, name); 1480 if (dentry) { 1481 if (dentry->d_flags & DCACHE_OP_REVALIDATE) { 1482 error = d_revalidate(dentry, flags); 1483 if (unlikely(error <= 0)) { 1484 if (!error) 1485 d_invalidate(dentry); 1486 dput(dentry); 1487 return ERR_PTR(error); 1488 } 1489 } 1490 } 1491 return dentry; 1492 } 1493 1494 /* 1495 * Call i_op->lookup on the dentry. The dentry must be negative and 1496 * unhashed. 1497 * 1498 * dir->d_inode->i_mutex must be held 1499 */ 1500 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry, 1501 unsigned int flags) 1502 { 1503 struct dentry *old; 1504 1505 /* Don't create child dentry for a dead directory. */ 1506 if (unlikely(IS_DEADDIR(dir))) { 1507 dput(dentry); 1508 return ERR_PTR(-ENOENT); 1509 } 1510 1511 old = dir->i_op->lookup(dir, dentry, flags); 1512 if (unlikely(old)) { 1513 dput(dentry); 1514 dentry = old; 1515 } 1516 return dentry; 1517 } 1518 1519 static struct dentry *__lookup_hash(const struct qstr *name, 1520 struct dentry *base, unsigned int flags) 1521 { 1522 struct dentry *dentry = lookup_dcache(name, base, flags); 1523 1524 if (dentry) 1525 return dentry; 1526 1527 dentry = d_alloc(base, name); 1528 if (unlikely(!dentry)) 1529 return ERR_PTR(-ENOMEM); 1530 1531 return lookup_real(base->d_inode, dentry, flags); 1532 } 1533 1534 static int lookup_fast(struct nameidata *nd, 1535 struct path *path, struct inode **inode, 1536 unsigned *seqp) 1537 { 1538 struct vfsmount *mnt = nd->path.mnt; 1539 struct dentry *dentry, *parent = nd->path.dentry; 1540 int status = 1; 1541 int err; 1542 1543 /* 1544 * Rename seqlock is not required here because in the off chance 1545 * of a false negative due to a concurrent rename, the caller is 1546 * going to fall back to non-racy lookup. 1547 */ 1548 if (nd->flags & LOOKUP_RCU) { 1549 unsigned seq; 1550 bool negative; 1551 dentry = __d_lookup_rcu(parent, &nd->last, &seq); 1552 if (unlikely(!dentry)) { 1553 if (unlazy_walk(nd, NULL, 0)) 1554 return -ECHILD; 1555 return 0; 1556 } 1557 1558 /* 1559 * This sequence count validates that the inode matches 1560 * the dentry name information from lookup. 1561 */ 1562 *inode = d_backing_inode(dentry); 1563 negative = d_is_negative(dentry); 1564 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) 1565 return -ECHILD; 1566 1567 /* 1568 * This sequence count validates that the parent had no 1569 * changes while we did the lookup of the dentry above. 1570 * 1571 * The memory barrier in read_seqcount_begin of child is 1572 * enough, we can use __read_seqcount_retry here. 1573 */ 1574 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq))) 1575 return -ECHILD; 1576 1577 *seqp = seq; 1578 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) 1579 status = d_revalidate(dentry, nd->flags); 1580 if (unlikely(status <= 0)) { 1581 if (unlazy_walk(nd, dentry, seq)) 1582 return -ECHILD; 1583 if (status == -ECHILD) 1584 status = d_revalidate(dentry, nd->flags); 1585 } else { 1586 /* 1587 * Note: do negative dentry check after revalidation in 1588 * case that drops it. 1589 */ 1590 if (unlikely(negative)) 1591 return -ENOENT; 1592 path->mnt = mnt; 1593 path->dentry = dentry; 1594 if (likely(__follow_mount_rcu(nd, path, inode, seqp))) 1595 return 1; 1596 if (unlazy_walk(nd, dentry, seq)) 1597 return -ECHILD; 1598 } 1599 } else { 1600 dentry = __d_lookup(parent, &nd->last); 1601 if (unlikely(!dentry)) 1602 return 0; 1603 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) 1604 status = d_revalidate(dentry, nd->flags); 1605 } 1606 if (unlikely(status <= 0)) { 1607 if (!status) 1608 d_invalidate(dentry); 1609 dput(dentry); 1610 return status; 1611 } 1612 if (unlikely(d_is_negative(dentry))) { 1613 dput(dentry); 1614 return -ENOENT; 1615 } 1616 1617 path->mnt = mnt; 1618 path->dentry = dentry; 1619 err = follow_managed(path, nd); 1620 if (likely(err > 0)) 1621 *inode = d_backing_inode(path->dentry); 1622 return err; 1623 } 1624 1625 /* Fast lookup failed, do it the slow way */ 1626 static struct dentry *lookup_slow(const struct qstr *name, 1627 struct dentry *dir, 1628 unsigned int flags) 1629 { 1630 struct dentry *dentry = ERR_PTR(-ENOENT), *old; 1631 struct inode *inode = dir->d_inode; 1632 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 1633 1634 inode_lock_shared(inode); 1635 /* Don't go there if it's already dead */ 1636 if (unlikely(IS_DEADDIR(inode))) 1637 goto out; 1638 again: 1639 dentry = d_alloc_parallel(dir, name, &wq); 1640 if (IS_ERR(dentry)) 1641 goto out; 1642 if (unlikely(!d_in_lookup(dentry))) { 1643 if ((dentry->d_flags & DCACHE_OP_REVALIDATE) && 1644 !(flags & LOOKUP_NO_REVAL)) { 1645 int error = d_revalidate(dentry, flags); 1646 if (unlikely(error <= 0)) { 1647 if (!error) { 1648 d_invalidate(dentry); 1649 dput(dentry); 1650 goto again; 1651 } 1652 dput(dentry); 1653 dentry = ERR_PTR(error); 1654 } 1655 } 1656 } else { 1657 old = inode->i_op->lookup(inode, dentry, flags); 1658 d_lookup_done(dentry); 1659 if (unlikely(old)) { 1660 dput(dentry); 1661 dentry = old; 1662 } 1663 } 1664 out: 1665 inode_unlock_shared(inode); 1666 return dentry; 1667 } 1668 1669 static inline int may_lookup(struct nameidata *nd) 1670 { 1671 if (nd->flags & LOOKUP_RCU) { 1672 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK); 1673 if (err != -ECHILD) 1674 return err; 1675 if (unlazy_walk(nd, NULL, 0)) 1676 return -ECHILD; 1677 } 1678 return inode_permission(nd->inode, MAY_EXEC); 1679 } 1680 1681 static inline int handle_dots(struct nameidata *nd, int type) 1682 { 1683 if (type == LAST_DOTDOT) { 1684 if (!nd->root.mnt) 1685 set_root(nd); 1686 if (nd->flags & LOOKUP_RCU) { 1687 return follow_dotdot_rcu(nd); 1688 } else 1689 return follow_dotdot(nd); 1690 } 1691 return 0; 1692 } 1693 1694 static int pick_link(struct nameidata *nd, struct path *link, 1695 struct inode *inode, unsigned seq) 1696 { 1697 int error; 1698 struct saved *last; 1699 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) { 1700 path_to_nameidata(link, nd); 1701 return -ELOOP; 1702 } 1703 if (!(nd->flags & LOOKUP_RCU)) { 1704 if (link->mnt == nd->path.mnt) 1705 mntget(link->mnt); 1706 } 1707 error = nd_alloc_stack(nd); 1708 if (unlikely(error)) { 1709 if (error == -ECHILD) { 1710 if (unlikely(unlazy_link(nd, link, seq))) 1711 return -ECHILD; 1712 error = nd_alloc_stack(nd); 1713 } 1714 if (error) { 1715 path_put(link); 1716 return error; 1717 } 1718 } 1719 1720 last = nd->stack + nd->depth++; 1721 last->link = *link; 1722 clear_delayed_call(&last->done); 1723 nd->link_inode = inode; 1724 last->seq = seq; 1725 return 1; 1726 } 1727 1728 /* 1729 * Do we need to follow links? We _really_ want to be able 1730 * to do this check without having to look at inode->i_op, 1731 * so we keep a cache of "no, this doesn't need follow_link" 1732 * for the common case. 1733 */ 1734 static inline int should_follow_link(struct nameidata *nd, struct path *link, 1735 int follow, 1736 struct inode *inode, unsigned seq) 1737 { 1738 if (likely(!d_is_symlink(link->dentry))) 1739 return 0; 1740 if (!follow) 1741 return 0; 1742 /* make sure that d_is_symlink above matches inode */ 1743 if (nd->flags & LOOKUP_RCU) { 1744 if (read_seqcount_retry(&link->dentry->d_seq, seq)) 1745 return -ECHILD; 1746 } 1747 return pick_link(nd, link, inode, seq); 1748 } 1749 1750 enum {WALK_GET = 1, WALK_PUT = 2}; 1751 1752 static int walk_component(struct nameidata *nd, int flags) 1753 { 1754 struct path path; 1755 struct inode *inode; 1756 unsigned seq; 1757 int err; 1758 /* 1759 * "." and ".." are special - ".." especially so because it has 1760 * to be able to know about the current root directory and 1761 * parent relationships. 1762 */ 1763 if (unlikely(nd->last_type != LAST_NORM)) { 1764 err = handle_dots(nd, nd->last_type); 1765 if (flags & WALK_PUT) 1766 put_link(nd); 1767 return err; 1768 } 1769 err = lookup_fast(nd, &path, &inode, &seq); 1770 if (unlikely(err <= 0)) { 1771 if (err < 0) 1772 return err; 1773 path.dentry = lookup_slow(&nd->last, nd->path.dentry, 1774 nd->flags); 1775 if (IS_ERR(path.dentry)) 1776 return PTR_ERR(path.dentry); 1777 1778 path.mnt = nd->path.mnt; 1779 err = follow_managed(&path, nd); 1780 if (unlikely(err < 0)) 1781 return err; 1782 1783 if (unlikely(d_is_negative(path.dentry))) { 1784 path_to_nameidata(&path, nd); 1785 return -ENOENT; 1786 } 1787 1788 seq = 0; /* we are already out of RCU mode */ 1789 inode = d_backing_inode(path.dentry); 1790 } 1791 1792 if (flags & WALK_PUT) 1793 put_link(nd); 1794 err = should_follow_link(nd, &path, flags & WALK_GET, inode, seq); 1795 if (unlikely(err)) 1796 return err; 1797 path_to_nameidata(&path, nd); 1798 nd->inode = inode; 1799 nd->seq = seq; 1800 return 0; 1801 } 1802 1803 /* 1804 * We can do the critical dentry name comparison and hashing 1805 * operations one word at a time, but we are limited to: 1806 * 1807 * - Architectures with fast unaligned word accesses. We could 1808 * do a "get_unaligned()" if this helps and is sufficiently 1809 * fast. 1810 * 1811 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we 1812 * do not trap on the (extremely unlikely) case of a page 1813 * crossing operation. 1814 * 1815 * - Furthermore, we need an efficient 64-bit compile for the 1816 * 64-bit case in order to generate the "number of bytes in 1817 * the final mask". Again, that could be replaced with a 1818 * efficient population count instruction or similar. 1819 */ 1820 #ifdef CONFIG_DCACHE_WORD_ACCESS 1821 1822 #include <asm/word-at-a-time.h> 1823 1824 #ifdef HASH_MIX 1825 1826 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */ 1827 1828 #elif defined(CONFIG_64BIT) 1829 /* 1830 * Register pressure in the mixing function is an issue, particularly 1831 * on 32-bit x86, but almost any function requires one state value and 1832 * one temporary. Instead, use a function designed for two state values 1833 * and no temporaries. 1834 * 1835 * This function cannot create a collision in only two iterations, so 1836 * we have two iterations to achieve avalanche. In those two iterations, 1837 * we have six layers of mixing, which is enough to spread one bit's 1838 * influence out to 2^6 = 64 state bits. 1839 * 1840 * Rotate constants are scored by considering either 64 one-bit input 1841 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the 1842 * probability of that delta causing a change to each of the 128 output 1843 * bits, using a sample of random initial states. 1844 * 1845 * The Shannon entropy of the computed probabilities is then summed 1846 * to produce a score. Ideally, any input change has a 50% chance of 1847 * toggling any given output bit. 1848 * 1849 * Mixing scores (in bits) for (12,45): 1850 * Input delta: 1-bit 2-bit 1851 * 1 round: 713.3 42542.6 1852 * 2 rounds: 2753.7 140389.8 1853 * 3 rounds: 5954.1 233458.2 1854 * 4 rounds: 7862.6 256672.2 1855 * Perfect: 8192 258048 1856 * (64*128) (64*63/2 * 128) 1857 */ 1858 #define HASH_MIX(x, y, a) \ 1859 ( x ^= (a), \ 1860 y ^= x, x = rol64(x,12),\ 1861 x += y, y = rol64(y,45),\ 1862 y *= 9 ) 1863 1864 /* 1865 * Fold two longs into one 32-bit hash value. This must be fast, but 1866 * latency isn't quite as critical, as there is a fair bit of additional 1867 * work done before the hash value is used. 1868 */ 1869 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 1870 { 1871 y ^= x * GOLDEN_RATIO_64; 1872 y *= GOLDEN_RATIO_64; 1873 return y >> 32; 1874 } 1875 1876 #else /* 32-bit case */ 1877 1878 /* 1879 * Mixing scores (in bits) for (7,20): 1880 * Input delta: 1-bit 2-bit 1881 * 1 round: 330.3 9201.6 1882 * 2 rounds: 1246.4 25475.4 1883 * 3 rounds: 1907.1 31295.1 1884 * 4 rounds: 2042.3 31718.6 1885 * Perfect: 2048 31744 1886 * (32*64) (32*31/2 * 64) 1887 */ 1888 #define HASH_MIX(x, y, a) \ 1889 ( x ^= (a), \ 1890 y ^= x, x = rol32(x, 7),\ 1891 x += y, y = rol32(y,20),\ 1892 y *= 9 ) 1893 1894 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 1895 { 1896 /* Use arch-optimized multiply if one exists */ 1897 return __hash_32(y ^ __hash_32(x)); 1898 } 1899 1900 #endif 1901 1902 /* 1903 * Return the hash of a string of known length. This is carfully 1904 * designed to match hash_name(), which is the more critical function. 1905 * In particular, we must end by hashing a final word containing 0..7 1906 * payload bytes, to match the way that hash_name() iterates until it 1907 * finds the delimiter after the name. 1908 */ 1909 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 1910 { 1911 unsigned long a, x = 0, y = (unsigned long)salt; 1912 1913 for (;;) { 1914 if (!len) 1915 goto done; 1916 a = load_unaligned_zeropad(name); 1917 if (len < sizeof(unsigned long)) 1918 break; 1919 HASH_MIX(x, y, a); 1920 name += sizeof(unsigned long); 1921 len -= sizeof(unsigned long); 1922 } 1923 x ^= a & bytemask_from_count(len); 1924 done: 1925 return fold_hash(x, y); 1926 } 1927 EXPORT_SYMBOL(full_name_hash); 1928 1929 /* Return the "hash_len" (hash and length) of a null-terminated string */ 1930 u64 hashlen_string(const void *salt, const char *name) 1931 { 1932 unsigned long a = 0, x = 0, y = (unsigned long)salt; 1933 unsigned long adata, mask, len; 1934 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 1935 1936 len = 0; 1937 goto inside; 1938 1939 do { 1940 HASH_MIX(x, y, a); 1941 len += sizeof(unsigned long); 1942 inside: 1943 a = load_unaligned_zeropad(name+len); 1944 } while (!has_zero(a, &adata, &constants)); 1945 1946 adata = prep_zero_mask(a, adata, &constants); 1947 mask = create_zero_mask(adata); 1948 x ^= a & zero_bytemask(mask); 1949 1950 return hashlen_create(fold_hash(x, y), len + find_zero(mask)); 1951 } 1952 EXPORT_SYMBOL(hashlen_string); 1953 1954 /* 1955 * Calculate the length and hash of the path component, and 1956 * return the "hash_len" as the result. 1957 */ 1958 static inline u64 hash_name(const void *salt, const char *name) 1959 { 1960 unsigned long a = 0, b, x = 0, y = (unsigned long)salt; 1961 unsigned long adata, bdata, mask, len; 1962 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 1963 1964 len = 0; 1965 goto inside; 1966 1967 do { 1968 HASH_MIX(x, y, a); 1969 len += sizeof(unsigned long); 1970 inside: 1971 a = load_unaligned_zeropad(name+len); 1972 b = a ^ REPEAT_BYTE('/'); 1973 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants))); 1974 1975 adata = prep_zero_mask(a, adata, &constants); 1976 bdata = prep_zero_mask(b, bdata, &constants); 1977 mask = create_zero_mask(adata | bdata); 1978 x ^= a & zero_bytemask(mask); 1979 1980 return hashlen_create(fold_hash(x, y), len + find_zero(mask)); 1981 } 1982 1983 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */ 1984 1985 /* Return the hash of a string of known length */ 1986 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 1987 { 1988 unsigned long hash = init_name_hash(salt); 1989 while (len--) 1990 hash = partial_name_hash((unsigned char)*name++, hash); 1991 return end_name_hash(hash); 1992 } 1993 EXPORT_SYMBOL(full_name_hash); 1994 1995 /* Return the "hash_len" (hash and length) of a null-terminated string */ 1996 u64 hashlen_string(const void *salt, const char *name) 1997 { 1998 unsigned long hash = init_name_hash(salt); 1999 unsigned long len = 0, c; 2000 2001 c = (unsigned char)*name; 2002 while (c) { 2003 len++; 2004 hash = partial_name_hash(c, hash); 2005 c = (unsigned char)name[len]; 2006 } 2007 return hashlen_create(end_name_hash(hash), len); 2008 } 2009 EXPORT_SYMBOL(hashlen_string); 2010 2011 /* 2012 * We know there's a real path component here of at least 2013 * one character. 2014 */ 2015 static inline u64 hash_name(const void *salt, const char *name) 2016 { 2017 unsigned long hash = init_name_hash(salt); 2018 unsigned long len = 0, c; 2019 2020 c = (unsigned char)*name; 2021 do { 2022 len++; 2023 hash = partial_name_hash(c, hash); 2024 c = (unsigned char)name[len]; 2025 } while (c && c != '/'); 2026 return hashlen_create(end_name_hash(hash), len); 2027 } 2028 2029 #endif 2030 2031 /* 2032 * Name resolution. 2033 * This is the basic name resolution function, turning a pathname into 2034 * the final dentry. We expect 'base' to be positive and a directory. 2035 * 2036 * Returns 0 and nd will have valid dentry and mnt on success. 2037 * Returns error and drops reference to input namei data on failure. 2038 */ 2039 static int link_path_walk(const char *name, struct nameidata *nd) 2040 { 2041 int err; 2042 2043 while (*name=='/') 2044 name++; 2045 if (!*name) 2046 return 0; 2047 2048 /* At this point we know we have a real path component. */ 2049 for(;;) { 2050 u64 hash_len; 2051 int type; 2052 2053 err = may_lookup(nd); 2054 if (err) 2055 return err; 2056 2057 hash_len = hash_name(nd->path.dentry, name); 2058 2059 type = LAST_NORM; 2060 if (name[0] == '.') switch (hashlen_len(hash_len)) { 2061 case 2: 2062 if (name[1] == '.') { 2063 type = LAST_DOTDOT; 2064 nd->flags |= LOOKUP_JUMPED; 2065 } 2066 break; 2067 case 1: 2068 type = LAST_DOT; 2069 } 2070 if (likely(type == LAST_NORM)) { 2071 struct dentry *parent = nd->path.dentry; 2072 nd->flags &= ~LOOKUP_JUMPED; 2073 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { 2074 struct qstr this = { { .hash_len = hash_len }, .name = name }; 2075 err = parent->d_op->d_hash(parent, &this); 2076 if (err < 0) 2077 return err; 2078 hash_len = this.hash_len; 2079 name = this.name; 2080 } 2081 } 2082 2083 nd->last.hash_len = hash_len; 2084 nd->last.name = name; 2085 nd->last_type = type; 2086 2087 name += hashlen_len(hash_len); 2088 if (!*name) 2089 goto OK; 2090 /* 2091 * If it wasn't NUL, we know it was '/'. Skip that 2092 * slash, and continue until no more slashes. 2093 */ 2094 do { 2095 name++; 2096 } while (unlikely(*name == '/')); 2097 if (unlikely(!*name)) { 2098 OK: 2099 /* pathname body, done */ 2100 if (!nd->depth) 2101 return 0; 2102 name = nd->stack[nd->depth - 1].name; 2103 /* trailing symlink, done */ 2104 if (!name) 2105 return 0; 2106 /* last component of nested symlink */ 2107 err = walk_component(nd, WALK_GET | WALK_PUT); 2108 } else { 2109 err = walk_component(nd, WALK_GET); 2110 } 2111 if (err < 0) 2112 return err; 2113 2114 if (err) { 2115 const char *s = get_link(nd); 2116 2117 if (IS_ERR(s)) 2118 return PTR_ERR(s); 2119 err = 0; 2120 if (unlikely(!s)) { 2121 /* jumped */ 2122 put_link(nd); 2123 } else { 2124 nd->stack[nd->depth - 1].name = name; 2125 name = s; 2126 continue; 2127 } 2128 } 2129 if (unlikely(!d_can_lookup(nd->path.dentry))) { 2130 if (nd->flags & LOOKUP_RCU) { 2131 if (unlazy_walk(nd, NULL, 0)) 2132 return -ECHILD; 2133 } 2134 return -ENOTDIR; 2135 } 2136 } 2137 } 2138 2139 static const char *path_init(struct nameidata *nd, unsigned flags) 2140 { 2141 int retval = 0; 2142 const char *s = nd->name->name; 2143 2144 nd->last_type = LAST_ROOT; /* if there are only slashes... */ 2145 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT; 2146 nd->depth = 0; 2147 if (flags & LOOKUP_ROOT) { 2148 struct dentry *root = nd->root.dentry; 2149 struct inode *inode = root->d_inode; 2150 if (*s) { 2151 if (!d_can_lookup(root)) 2152 return ERR_PTR(-ENOTDIR); 2153 retval = inode_permission(inode, MAY_EXEC); 2154 if (retval) 2155 return ERR_PTR(retval); 2156 } 2157 nd->path = nd->root; 2158 nd->inode = inode; 2159 if (flags & LOOKUP_RCU) { 2160 rcu_read_lock(); 2161 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 2162 nd->root_seq = nd->seq; 2163 nd->m_seq = read_seqbegin(&mount_lock); 2164 } else { 2165 path_get(&nd->path); 2166 } 2167 return s; 2168 } 2169 2170 nd->root.mnt = NULL; 2171 nd->path.mnt = NULL; 2172 nd->path.dentry = NULL; 2173 2174 nd->m_seq = read_seqbegin(&mount_lock); 2175 if (*s == '/') { 2176 if (flags & LOOKUP_RCU) 2177 rcu_read_lock(); 2178 set_root(nd); 2179 if (likely(!nd_jump_root(nd))) 2180 return s; 2181 nd->root.mnt = NULL; 2182 rcu_read_unlock(); 2183 return ERR_PTR(-ECHILD); 2184 } else if (nd->dfd == AT_FDCWD) { 2185 if (flags & LOOKUP_RCU) { 2186 struct fs_struct *fs = current->fs; 2187 unsigned seq; 2188 2189 rcu_read_lock(); 2190 2191 do { 2192 seq = read_seqcount_begin(&fs->seq); 2193 nd->path = fs->pwd; 2194 nd->inode = nd->path.dentry->d_inode; 2195 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 2196 } while (read_seqcount_retry(&fs->seq, seq)); 2197 } else { 2198 get_fs_pwd(current->fs, &nd->path); 2199 nd->inode = nd->path.dentry->d_inode; 2200 } 2201 return s; 2202 } else { 2203 /* Caller must check execute permissions on the starting path component */ 2204 struct fd f = fdget_raw(nd->dfd); 2205 struct dentry *dentry; 2206 2207 if (!f.file) 2208 return ERR_PTR(-EBADF); 2209 2210 dentry = f.file->f_path.dentry; 2211 2212 if (*s) { 2213 if (!d_can_lookup(dentry)) { 2214 fdput(f); 2215 return ERR_PTR(-ENOTDIR); 2216 } 2217 } 2218 2219 nd->path = f.file->f_path; 2220 if (flags & LOOKUP_RCU) { 2221 rcu_read_lock(); 2222 nd->inode = nd->path.dentry->d_inode; 2223 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 2224 } else { 2225 path_get(&nd->path); 2226 nd->inode = nd->path.dentry->d_inode; 2227 } 2228 fdput(f); 2229 return s; 2230 } 2231 } 2232 2233 static const char *trailing_symlink(struct nameidata *nd) 2234 { 2235 const char *s; 2236 int error = may_follow_link(nd); 2237 if (unlikely(error)) 2238 return ERR_PTR(error); 2239 nd->flags |= LOOKUP_PARENT; 2240 nd->stack[0].name = NULL; 2241 s = get_link(nd); 2242 return s ? s : ""; 2243 } 2244 2245 static inline int lookup_last(struct nameidata *nd) 2246 { 2247 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len]) 2248 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 2249 2250 nd->flags &= ~LOOKUP_PARENT; 2251 return walk_component(nd, 2252 nd->flags & LOOKUP_FOLLOW 2253 ? nd->depth 2254 ? WALK_PUT | WALK_GET 2255 : WALK_GET 2256 : 0); 2257 } 2258 2259 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2260 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path) 2261 { 2262 const char *s = path_init(nd, flags); 2263 int err; 2264 2265 if (IS_ERR(s)) 2266 return PTR_ERR(s); 2267 while (!(err = link_path_walk(s, nd)) 2268 && ((err = lookup_last(nd)) > 0)) { 2269 s = trailing_symlink(nd); 2270 if (IS_ERR(s)) { 2271 err = PTR_ERR(s); 2272 break; 2273 } 2274 } 2275 if (!err) 2276 err = complete_walk(nd); 2277 2278 if (!err && nd->flags & LOOKUP_DIRECTORY) 2279 if (!d_can_lookup(nd->path.dentry)) 2280 err = -ENOTDIR; 2281 if (!err) { 2282 *path = nd->path; 2283 nd->path.mnt = NULL; 2284 nd->path.dentry = NULL; 2285 } 2286 terminate_walk(nd); 2287 return err; 2288 } 2289 2290 static int filename_lookup(int dfd, struct filename *name, unsigned flags, 2291 struct path *path, struct path *root) 2292 { 2293 int retval; 2294 struct nameidata nd; 2295 if (IS_ERR(name)) 2296 return PTR_ERR(name); 2297 if (unlikely(root)) { 2298 nd.root = *root; 2299 flags |= LOOKUP_ROOT; 2300 } 2301 set_nameidata(&nd, dfd, name); 2302 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path); 2303 if (unlikely(retval == -ECHILD)) 2304 retval = path_lookupat(&nd, flags, path); 2305 if (unlikely(retval == -ESTALE)) 2306 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path); 2307 2308 if (likely(!retval)) 2309 audit_inode(name, path->dentry, flags & LOOKUP_PARENT); 2310 restore_nameidata(); 2311 putname(name); 2312 return retval; 2313 } 2314 2315 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2316 static int path_parentat(struct nameidata *nd, unsigned flags, 2317 struct path *parent) 2318 { 2319 const char *s = path_init(nd, flags); 2320 int err; 2321 if (IS_ERR(s)) 2322 return PTR_ERR(s); 2323 err = link_path_walk(s, nd); 2324 if (!err) 2325 err = complete_walk(nd); 2326 if (!err) { 2327 *parent = nd->path; 2328 nd->path.mnt = NULL; 2329 nd->path.dentry = NULL; 2330 } 2331 terminate_walk(nd); 2332 return err; 2333 } 2334 2335 static struct filename *filename_parentat(int dfd, struct filename *name, 2336 unsigned int flags, struct path *parent, 2337 struct qstr *last, int *type) 2338 { 2339 int retval; 2340 struct nameidata nd; 2341 2342 if (IS_ERR(name)) 2343 return name; 2344 set_nameidata(&nd, dfd, name); 2345 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent); 2346 if (unlikely(retval == -ECHILD)) 2347 retval = path_parentat(&nd, flags, parent); 2348 if (unlikely(retval == -ESTALE)) 2349 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent); 2350 if (likely(!retval)) { 2351 *last = nd.last; 2352 *type = nd.last_type; 2353 audit_inode(name, parent->dentry, LOOKUP_PARENT); 2354 } else { 2355 putname(name); 2356 name = ERR_PTR(retval); 2357 } 2358 restore_nameidata(); 2359 return name; 2360 } 2361 2362 /* does lookup, returns the object with parent locked */ 2363 struct dentry *kern_path_locked(const char *name, struct path *path) 2364 { 2365 struct filename *filename; 2366 struct dentry *d; 2367 struct qstr last; 2368 int type; 2369 2370 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path, 2371 &last, &type); 2372 if (IS_ERR(filename)) 2373 return ERR_CAST(filename); 2374 if (unlikely(type != LAST_NORM)) { 2375 path_put(path); 2376 putname(filename); 2377 return ERR_PTR(-EINVAL); 2378 } 2379 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 2380 d = __lookup_hash(&last, path->dentry, 0); 2381 if (IS_ERR(d)) { 2382 inode_unlock(path->dentry->d_inode); 2383 path_put(path); 2384 } 2385 putname(filename); 2386 return d; 2387 } 2388 2389 int kern_path(const char *name, unsigned int flags, struct path *path) 2390 { 2391 return filename_lookup(AT_FDCWD, getname_kernel(name), 2392 flags, path, NULL); 2393 } 2394 EXPORT_SYMBOL(kern_path); 2395 2396 /** 2397 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 2398 * @dentry: pointer to dentry of the base directory 2399 * @mnt: pointer to vfs mount of the base directory 2400 * @name: pointer to file name 2401 * @flags: lookup flags 2402 * @path: pointer to struct path to fill 2403 */ 2404 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 2405 const char *name, unsigned int flags, 2406 struct path *path) 2407 { 2408 struct path root = {.mnt = mnt, .dentry = dentry}; 2409 /* the first argument of filename_lookup() is ignored with root */ 2410 return filename_lookup(AT_FDCWD, getname_kernel(name), 2411 flags , path, &root); 2412 } 2413 EXPORT_SYMBOL(vfs_path_lookup); 2414 2415 /** 2416 * lookup_one_len - filesystem helper to lookup single pathname component 2417 * @name: pathname component to lookup 2418 * @base: base directory to lookup from 2419 * @len: maximum length @len should be interpreted to 2420 * 2421 * Note that this routine is purely a helper for filesystem usage and should 2422 * not be called by generic code. 2423 * 2424 * The caller must hold base->i_mutex. 2425 */ 2426 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 2427 { 2428 struct qstr this; 2429 unsigned int c; 2430 int err; 2431 2432 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2433 2434 this.name = name; 2435 this.len = len; 2436 this.hash = full_name_hash(base, name, len); 2437 if (!len) 2438 return ERR_PTR(-EACCES); 2439 2440 if (unlikely(name[0] == '.')) { 2441 if (len < 2 || (len == 2 && name[1] == '.')) 2442 return ERR_PTR(-EACCES); 2443 } 2444 2445 while (len--) { 2446 c = *(const unsigned char *)name++; 2447 if (c == '/' || c == '\0') 2448 return ERR_PTR(-EACCES); 2449 } 2450 /* 2451 * See if the low-level filesystem might want 2452 * to use its own hash.. 2453 */ 2454 if (base->d_flags & DCACHE_OP_HASH) { 2455 int err = base->d_op->d_hash(base, &this); 2456 if (err < 0) 2457 return ERR_PTR(err); 2458 } 2459 2460 err = inode_permission(base->d_inode, MAY_EXEC); 2461 if (err) 2462 return ERR_PTR(err); 2463 2464 return __lookup_hash(&this, base, 0); 2465 } 2466 EXPORT_SYMBOL(lookup_one_len); 2467 2468 /** 2469 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component 2470 * @name: pathname component to lookup 2471 * @base: base directory to lookup from 2472 * @len: maximum length @len should be interpreted to 2473 * 2474 * Note that this routine is purely a helper for filesystem usage and should 2475 * not be called by generic code. 2476 * 2477 * Unlike lookup_one_len, it should be called without the parent 2478 * i_mutex held, and will take the i_mutex itself if necessary. 2479 */ 2480 struct dentry *lookup_one_len_unlocked(const char *name, 2481 struct dentry *base, int len) 2482 { 2483 struct qstr this; 2484 unsigned int c; 2485 int err; 2486 struct dentry *ret; 2487 2488 this.name = name; 2489 this.len = len; 2490 this.hash = full_name_hash(base, name, len); 2491 if (!len) 2492 return ERR_PTR(-EACCES); 2493 2494 if (unlikely(name[0] == '.')) { 2495 if (len < 2 || (len == 2 && name[1] == '.')) 2496 return ERR_PTR(-EACCES); 2497 } 2498 2499 while (len--) { 2500 c = *(const unsigned char *)name++; 2501 if (c == '/' || c == '\0') 2502 return ERR_PTR(-EACCES); 2503 } 2504 /* 2505 * See if the low-level filesystem might want 2506 * to use its own hash.. 2507 */ 2508 if (base->d_flags & DCACHE_OP_HASH) { 2509 int err = base->d_op->d_hash(base, &this); 2510 if (err < 0) 2511 return ERR_PTR(err); 2512 } 2513 2514 err = inode_permission(base->d_inode, MAY_EXEC); 2515 if (err) 2516 return ERR_PTR(err); 2517 2518 ret = lookup_dcache(&this, base, 0); 2519 if (!ret) 2520 ret = lookup_slow(&this, base, 0); 2521 return ret; 2522 } 2523 EXPORT_SYMBOL(lookup_one_len_unlocked); 2524 2525 #ifdef CONFIG_UNIX98_PTYS 2526 int path_pts(struct path *path) 2527 { 2528 /* Find something mounted on "pts" in the same directory as 2529 * the input path. 2530 */ 2531 struct dentry *child, *parent; 2532 struct qstr this; 2533 int ret; 2534 2535 ret = path_parent_directory(path); 2536 if (ret) 2537 return ret; 2538 2539 parent = path->dentry; 2540 this.name = "pts"; 2541 this.len = 3; 2542 child = d_hash_and_lookup(parent, &this); 2543 if (!child) 2544 return -ENOENT; 2545 2546 path->dentry = child; 2547 dput(parent); 2548 follow_mount(path); 2549 return 0; 2550 } 2551 #endif 2552 2553 int user_path_at_empty(int dfd, const char __user *name, unsigned flags, 2554 struct path *path, int *empty) 2555 { 2556 return filename_lookup(dfd, getname_flags(name, flags, empty), 2557 flags, path, NULL); 2558 } 2559 EXPORT_SYMBOL(user_path_at_empty); 2560 2561 /* 2562 * NB: most callers don't do anything directly with the reference to the 2563 * to struct filename, but the nd->last pointer points into the name string 2564 * allocated by getname. So we must hold the reference to it until all 2565 * path-walking is complete. 2566 */ 2567 static inline struct filename * 2568 user_path_parent(int dfd, const char __user *path, 2569 struct path *parent, 2570 struct qstr *last, 2571 int *type, 2572 unsigned int flags) 2573 { 2574 /* only LOOKUP_REVAL is allowed in extra flags */ 2575 return filename_parentat(dfd, getname(path), flags & LOOKUP_REVAL, 2576 parent, last, type); 2577 } 2578 2579 /** 2580 * mountpoint_last - look up last component for umount 2581 * @nd: pathwalk nameidata - currently pointing at parent directory of "last" 2582 * @path: pointer to container for result 2583 * 2584 * This is a special lookup_last function just for umount. In this case, we 2585 * need to resolve the path without doing any revalidation. 2586 * 2587 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since 2588 * mountpoints are always pinned in the dcache, their ancestors are too. Thus, 2589 * in almost all cases, this lookup will be served out of the dcache. The only 2590 * cases where it won't are if nd->last refers to a symlink or the path is 2591 * bogus and it doesn't exist. 2592 * 2593 * Returns: 2594 * -error: if there was an error during lookup. This includes -ENOENT if the 2595 * lookup found a negative dentry. The nd->path reference will also be 2596 * put in this case. 2597 * 2598 * 0: if we successfully resolved nd->path and found it to not to be a 2599 * symlink that needs to be followed. "path" will also be populated. 2600 * The nd->path reference will also be put. 2601 * 2602 * 1: if we successfully resolved nd->last and found it to be a symlink 2603 * that needs to be followed. "path" will be populated with the path 2604 * to the link, and nd->path will *not* be put. 2605 */ 2606 static int 2607 mountpoint_last(struct nameidata *nd, struct path *path) 2608 { 2609 int error = 0; 2610 struct dentry *dentry; 2611 struct dentry *dir = nd->path.dentry; 2612 2613 /* If we're in rcuwalk, drop out of it to handle last component */ 2614 if (nd->flags & LOOKUP_RCU) { 2615 if (unlazy_walk(nd, NULL, 0)) 2616 return -ECHILD; 2617 } 2618 2619 nd->flags &= ~LOOKUP_PARENT; 2620 2621 if (unlikely(nd->last_type != LAST_NORM)) { 2622 error = handle_dots(nd, nd->last_type); 2623 if (error) 2624 return error; 2625 dentry = dget(nd->path.dentry); 2626 } else { 2627 dentry = d_lookup(dir, &nd->last); 2628 if (!dentry) { 2629 /* 2630 * No cached dentry. Mounted dentries are pinned in the 2631 * cache, so that means that this dentry is probably 2632 * a symlink or the path doesn't actually point 2633 * to a mounted dentry. 2634 */ 2635 dentry = lookup_slow(&nd->last, dir, 2636 nd->flags | LOOKUP_NO_REVAL); 2637 if (IS_ERR(dentry)) 2638 return PTR_ERR(dentry); 2639 } 2640 } 2641 if (d_is_negative(dentry)) { 2642 dput(dentry); 2643 return -ENOENT; 2644 } 2645 if (nd->depth) 2646 put_link(nd); 2647 path->dentry = dentry; 2648 path->mnt = nd->path.mnt; 2649 error = should_follow_link(nd, path, nd->flags & LOOKUP_FOLLOW, 2650 d_backing_inode(dentry), 0); 2651 if (unlikely(error)) 2652 return error; 2653 mntget(path->mnt); 2654 follow_mount(path); 2655 return 0; 2656 } 2657 2658 /** 2659 * path_mountpoint - look up a path to be umounted 2660 * @nd: lookup context 2661 * @flags: lookup flags 2662 * @path: pointer to container for result 2663 * 2664 * Look up the given name, but don't attempt to revalidate the last component. 2665 * Returns 0 and "path" will be valid on success; Returns error otherwise. 2666 */ 2667 static int 2668 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path) 2669 { 2670 const char *s = path_init(nd, flags); 2671 int err; 2672 if (IS_ERR(s)) 2673 return PTR_ERR(s); 2674 while (!(err = link_path_walk(s, nd)) && 2675 (err = mountpoint_last(nd, path)) > 0) { 2676 s = trailing_symlink(nd); 2677 if (IS_ERR(s)) { 2678 err = PTR_ERR(s); 2679 break; 2680 } 2681 } 2682 terminate_walk(nd); 2683 return err; 2684 } 2685 2686 static int 2687 filename_mountpoint(int dfd, struct filename *name, struct path *path, 2688 unsigned int flags) 2689 { 2690 struct nameidata nd; 2691 int error; 2692 if (IS_ERR(name)) 2693 return PTR_ERR(name); 2694 set_nameidata(&nd, dfd, name); 2695 error = path_mountpoint(&nd, flags | LOOKUP_RCU, path); 2696 if (unlikely(error == -ECHILD)) 2697 error = path_mountpoint(&nd, flags, path); 2698 if (unlikely(error == -ESTALE)) 2699 error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path); 2700 if (likely(!error)) 2701 audit_inode(name, path->dentry, 0); 2702 restore_nameidata(); 2703 putname(name); 2704 return error; 2705 } 2706 2707 /** 2708 * user_path_mountpoint_at - lookup a path from userland in order to umount it 2709 * @dfd: directory file descriptor 2710 * @name: pathname from userland 2711 * @flags: lookup flags 2712 * @path: pointer to container to hold result 2713 * 2714 * A umount is a special case for path walking. We're not actually interested 2715 * in the inode in this situation, and ESTALE errors can be a problem. We 2716 * simply want track down the dentry and vfsmount attached at the mountpoint 2717 * and avoid revalidating the last component. 2718 * 2719 * Returns 0 and populates "path" on success. 2720 */ 2721 int 2722 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags, 2723 struct path *path) 2724 { 2725 return filename_mountpoint(dfd, getname(name), path, flags); 2726 } 2727 2728 int 2729 kern_path_mountpoint(int dfd, const char *name, struct path *path, 2730 unsigned int flags) 2731 { 2732 return filename_mountpoint(dfd, getname_kernel(name), path, flags); 2733 } 2734 EXPORT_SYMBOL(kern_path_mountpoint); 2735 2736 int __check_sticky(struct inode *dir, struct inode *inode) 2737 { 2738 kuid_t fsuid = current_fsuid(); 2739 2740 if (uid_eq(inode->i_uid, fsuid)) 2741 return 0; 2742 if (uid_eq(dir->i_uid, fsuid)) 2743 return 0; 2744 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER); 2745 } 2746 EXPORT_SYMBOL(__check_sticky); 2747 2748 /* 2749 * Check whether we can remove a link victim from directory dir, check 2750 * whether the type of victim is right. 2751 * 1. We can't do it if dir is read-only (done in permission()) 2752 * 2. We should have write and exec permissions on dir 2753 * 3. We can't remove anything from append-only dir 2754 * 4. We can't do anything with immutable dir (done in permission()) 2755 * 5. If the sticky bit on dir is set we should either 2756 * a. be owner of dir, or 2757 * b. be owner of victim, or 2758 * c. have CAP_FOWNER capability 2759 * 6. If the victim is append-only or immutable we can't do antyhing with 2760 * links pointing to it. 2761 * 7. If the victim has an unknown uid or gid we can't change the inode. 2762 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR. 2763 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR. 2764 * 10. We can't remove a root or mountpoint. 2765 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by 2766 * nfs_async_unlink(). 2767 */ 2768 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir) 2769 { 2770 struct inode *inode = d_backing_inode(victim); 2771 int error; 2772 2773 if (d_is_negative(victim)) 2774 return -ENOENT; 2775 BUG_ON(!inode); 2776 2777 BUG_ON(victim->d_parent->d_inode != dir); 2778 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 2779 2780 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 2781 if (error) 2782 return error; 2783 if (IS_APPEND(dir)) 2784 return -EPERM; 2785 2786 if (check_sticky(dir, inode) || IS_APPEND(inode) || 2787 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode)) 2788 return -EPERM; 2789 if (isdir) { 2790 if (!d_is_dir(victim)) 2791 return -ENOTDIR; 2792 if (IS_ROOT(victim)) 2793 return -EBUSY; 2794 } else if (d_is_dir(victim)) 2795 return -EISDIR; 2796 if (IS_DEADDIR(dir)) 2797 return -ENOENT; 2798 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 2799 return -EBUSY; 2800 return 0; 2801 } 2802 2803 /* Check whether we can create an object with dentry child in directory 2804 * dir. 2805 * 1. We can't do it if child already exists (open has special treatment for 2806 * this case, but since we are inlined it's OK) 2807 * 2. We can't do it if dir is read-only (done in permission()) 2808 * 3. We can't do it if the fs can't represent the fsuid or fsgid. 2809 * 4. We should have write and exec permissions on dir 2810 * 5. We can't do it if dir is immutable (done in permission()) 2811 */ 2812 static inline int may_create(struct inode *dir, struct dentry *child) 2813 { 2814 struct user_namespace *s_user_ns; 2815 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE); 2816 if (child->d_inode) 2817 return -EEXIST; 2818 if (IS_DEADDIR(dir)) 2819 return -ENOENT; 2820 s_user_ns = dir->i_sb->s_user_ns; 2821 if (!kuid_has_mapping(s_user_ns, current_fsuid()) || 2822 !kgid_has_mapping(s_user_ns, current_fsgid())) 2823 return -EOVERFLOW; 2824 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 2825 } 2826 2827 /* 2828 * p1 and p2 should be directories on the same fs. 2829 */ 2830 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 2831 { 2832 struct dentry *p; 2833 2834 if (p1 == p2) { 2835 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2836 return NULL; 2837 } 2838 2839 mutex_lock(&p1->d_sb->s_vfs_rename_mutex); 2840 2841 p = d_ancestor(p2, p1); 2842 if (p) { 2843 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT); 2844 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD); 2845 return p; 2846 } 2847 2848 p = d_ancestor(p1, p2); 2849 if (p) { 2850 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2851 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD); 2852 return p; 2853 } 2854 2855 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2856 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2); 2857 return NULL; 2858 } 2859 EXPORT_SYMBOL(lock_rename); 2860 2861 void unlock_rename(struct dentry *p1, struct dentry *p2) 2862 { 2863 inode_unlock(p1->d_inode); 2864 if (p1 != p2) { 2865 inode_unlock(p2->d_inode); 2866 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex); 2867 } 2868 } 2869 EXPORT_SYMBOL(unlock_rename); 2870 2871 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2872 bool want_excl) 2873 { 2874 int error = may_create(dir, dentry); 2875 if (error) 2876 return error; 2877 2878 if (!dir->i_op->create) 2879 return -EACCES; /* shouldn't it be ENOSYS? */ 2880 mode &= S_IALLUGO; 2881 mode |= S_IFREG; 2882 error = security_inode_create(dir, dentry, mode); 2883 if (error) 2884 return error; 2885 error = dir->i_op->create(dir, dentry, mode, want_excl); 2886 if (!error) 2887 fsnotify_create(dir, dentry); 2888 return error; 2889 } 2890 EXPORT_SYMBOL(vfs_create); 2891 2892 bool may_open_dev(const struct path *path) 2893 { 2894 return !(path->mnt->mnt_flags & MNT_NODEV) && 2895 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV); 2896 } 2897 2898 static int may_open(struct path *path, int acc_mode, int flag) 2899 { 2900 struct dentry *dentry = path->dentry; 2901 struct inode *inode = dentry->d_inode; 2902 int error; 2903 2904 if (!inode) 2905 return -ENOENT; 2906 2907 switch (inode->i_mode & S_IFMT) { 2908 case S_IFLNK: 2909 return -ELOOP; 2910 case S_IFDIR: 2911 if (acc_mode & MAY_WRITE) 2912 return -EISDIR; 2913 break; 2914 case S_IFBLK: 2915 case S_IFCHR: 2916 if (!may_open_dev(path)) 2917 return -EACCES; 2918 /*FALLTHRU*/ 2919 case S_IFIFO: 2920 case S_IFSOCK: 2921 flag &= ~O_TRUNC; 2922 break; 2923 } 2924 2925 error = inode_permission(inode, MAY_OPEN | acc_mode); 2926 if (error) 2927 return error; 2928 2929 /* 2930 * An append-only file must be opened in append mode for writing. 2931 */ 2932 if (IS_APPEND(inode)) { 2933 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 2934 return -EPERM; 2935 if (flag & O_TRUNC) 2936 return -EPERM; 2937 } 2938 2939 /* O_NOATIME can only be set by the owner or superuser */ 2940 if (flag & O_NOATIME && !inode_owner_or_capable(inode)) 2941 return -EPERM; 2942 2943 return 0; 2944 } 2945 2946 static int handle_truncate(struct file *filp) 2947 { 2948 struct path *path = &filp->f_path; 2949 struct inode *inode = path->dentry->d_inode; 2950 int error = get_write_access(inode); 2951 if (error) 2952 return error; 2953 /* 2954 * Refuse to truncate files with mandatory locks held on them. 2955 */ 2956 error = locks_verify_locked(filp); 2957 if (!error) 2958 error = security_path_truncate(path); 2959 if (!error) { 2960 error = do_truncate(path->dentry, 0, 2961 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 2962 filp); 2963 } 2964 put_write_access(inode); 2965 return error; 2966 } 2967 2968 static inline int open_to_namei_flags(int flag) 2969 { 2970 if ((flag & O_ACCMODE) == 3) 2971 flag--; 2972 return flag; 2973 } 2974 2975 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode) 2976 { 2977 int error = security_path_mknod(dir, dentry, mode, 0); 2978 if (error) 2979 return error; 2980 2981 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC); 2982 if (error) 2983 return error; 2984 2985 return security_inode_create(dir->dentry->d_inode, dentry, mode); 2986 } 2987 2988 /* 2989 * Attempt to atomically look up, create and open a file from a negative 2990 * dentry. 2991 * 2992 * Returns 0 if successful. The file will have been created and attached to 2993 * @file by the filesystem calling finish_open(). 2994 * 2995 * Returns 1 if the file was looked up only or didn't need creating. The 2996 * caller will need to perform the open themselves. @path will have been 2997 * updated to point to the new dentry. This may be negative. 2998 * 2999 * Returns an error code otherwise. 3000 */ 3001 static int atomic_open(struct nameidata *nd, struct dentry *dentry, 3002 struct path *path, struct file *file, 3003 const struct open_flags *op, 3004 int open_flag, umode_t mode, 3005 int *opened) 3006 { 3007 struct dentry *const DENTRY_NOT_SET = (void *) -1UL; 3008 struct inode *dir = nd->path.dentry->d_inode; 3009 int error; 3010 3011 if (!(~open_flag & (O_EXCL | O_CREAT))) /* both O_EXCL and O_CREAT */ 3012 open_flag &= ~O_TRUNC; 3013 3014 if (nd->flags & LOOKUP_DIRECTORY) 3015 open_flag |= O_DIRECTORY; 3016 3017 file->f_path.dentry = DENTRY_NOT_SET; 3018 file->f_path.mnt = nd->path.mnt; 3019 error = dir->i_op->atomic_open(dir, dentry, file, 3020 open_to_namei_flags(open_flag), 3021 mode, opened); 3022 d_lookup_done(dentry); 3023 if (!error) { 3024 /* 3025 * We didn't have the inode before the open, so check open 3026 * permission here. 3027 */ 3028 int acc_mode = op->acc_mode; 3029 if (*opened & FILE_CREATED) { 3030 WARN_ON(!(open_flag & O_CREAT)); 3031 fsnotify_create(dir, dentry); 3032 acc_mode = 0; 3033 } 3034 error = may_open(&file->f_path, acc_mode, open_flag); 3035 if (WARN_ON(error > 0)) 3036 error = -EINVAL; 3037 } else if (error > 0) { 3038 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) { 3039 error = -EIO; 3040 } else { 3041 if (file->f_path.dentry) { 3042 dput(dentry); 3043 dentry = file->f_path.dentry; 3044 } 3045 if (*opened & FILE_CREATED) 3046 fsnotify_create(dir, dentry); 3047 if (unlikely(d_is_negative(dentry))) { 3048 error = -ENOENT; 3049 } else { 3050 path->dentry = dentry; 3051 path->mnt = nd->path.mnt; 3052 return 1; 3053 } 3054 } 3055 } 3056 dput(dentry); 3057 return error; 3058 } 3059 3060 /* 3061 * Look up and maybe create and open the last component. 3062 * 3063 * Must be called with i_mutex held on parent. 3064 * 3065 * Returns 0 if the file was successfully atomically created (if necessary) and 3066 * opened. In this case the file will be returned attached to @file. 3067 * 3068 * Returns 1 if the file was not completely opened at this time, though lookups 3069 * and creations will have been performed and the dentry returned in @path will 3070 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't 3071 * specified then a negative dentry may be returned. 3072 * 3073 * An error code is returned otherwise. 3074 * 3075 * FILE_CREATE will be set in @*opened if the dentry was created and will be 3076 * cleared otherwise prior to returning. 3077 */ 3078 static int lookup_open(struct nameidata *nd, struct path *path, 3079 struct file *file, 3080 const struct open_flags *op, 3081 bool got_write, int *opened) 3082 { 3083 struct dentry *dir = nd->path.dentry; 3084 struct inode *dir_inode = dir->d_inode; 3085 int open_flag = op->open_flag; 3086 struct dentry *dentry; 3087 int error, create_error = 0; 3088 umode_t mode = op->mode; 3089 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 3090 3091 if (unlikely(IS_DEADDIR(dir_inode))) 3092 return -ENOENT; 3093 3094 *opened &= ~FILE_CREATED; 3095 dentry = d_lookup(dir, &nd->last); 3096 for (;;) { 3097 if (!dentry) { 3098 dentry = d_alloc_parallel(dir, &nd->last, &wq); 3099 if (IS_ERR(dentry)) 3100 return PTR_ERR(dentry); 3101 } 3102 if (d_in_lookup(dentry)) 3103 break; 3104 3105 if (!(dentry->d_flags & DCACHE_OP_REVALIDATE)) 3106 break; 3107 3108 error = d_revalidate(dentry, nd->flags); 3109 if (likely(error > 0)) 3110 break; 3111 if (error) 3112 goto out_dput; 3113 d_invalidate(dentry); 3114 dput(dentry); 3115 dentry = NULL; 3116 } 3117 if (dentry->d_inode) { 3118 /* Cached positive dentry: will open in f_op->open */ 3119 goto out_no_open; 3120 } 3121 3122 /* 3123 * Checking write permission is tricky, bacuse we don't know if we are 3124 * going to actually need it: O_CREAT opens should work as long as the 3125 * file exists. But checking existence breaks atomicity. The trick is 3126 * to check access and if not granted clear O_CREAT from the flags. 3127 * 3128 * Another problem is returing the "right" error value (e.g. for an 3129 * O_EXCL open we want to return EEXIST not EROFS). 3130 */ 3131 if (open_flag & O_CREAT) { 3132 if (!IS_POSIXACL(dir->d_inode)) 3133 mode &= ~current_umask(); 3134 if (unlikely(!got_write)) { 3135 create_error = -EROFS; 3136 open_flag &= ~O_CREAT; 3137 if (open_flag & (O_EXCL | O_TRUNC)) 3138 goto no_open; 3139 /* No side effects, safe to clear O_CREAT */ 3140 } else { 3141 create_error = may_o_create(&nd->path, dentry, mode); 3142 if (create_error) { 3143 open_flag &= ~O_CREAT; 3144 if (open_flag & O_EXCL) 3145 goto no_open; 3146 } 3147 } 3148 } else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) && 3149 unlikely(!got_write)) { 3150 /* 3151 * No O_CREATE -> atomicity not a requirement -> fall 3152 * back to lookup + open 3153 */ 3154 goto no_open; 3155 } 3156 3157 if (dir_inode->i_op->atomic_open) { 3158 error = atomic_open(nd, dentry, path, file, op, open_flag, 3159 mode, opened); 3160 if (unlikely(error == -ENOENT) && create_error) 3161 error = create_error; 3162 return error; 3163 } 3164 3165 no_open: 3166 if (d_in_lookup(dentry)) { 3167 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry, 3168 nd->flags); 3169 d_lookup_done(dentry); 3170 if (unlikely(res)) { 3171 if (IS_ERR(res)) { 3172 error = PTR_ERR(res); 3173 goto out_dput; 3174 } 3175 dput(dentry); 3176 dentry = res; 3177 } 3178 } 3179 3180 /* Negative dentry, just create the file */ 3181 if (!dentry->d_inode && (open_flag & O_CREAT)) { 3182 *opened |= FILE_CREATED; 3183 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE); 3184 if (!dir_inode->i_op->create) { 3185 error = -EACCES; 3186 goto out_dput; 3187 } 3188 error = dir_inode->i_op->create(dir_inode, dentry, mode, 3189 open_flag & O_EXCL); 3190 if (error) 3191 goto out_dput; 3192 fsnotify_create(dir_inode, dentry); 3193 } 3194 if (unlikely(create_error) && !dentry->d_inode) { 3195 error = create_error; 3196 goto out_dput; 3197 } 3198 out_no_open: 3199 path->dentry = dentry; 3200 path->mnt = nd->path.mnt; 3201 return 1; 3202 3203 out_dput: 3204 dput(dentry); 3205 return error; 3206 } 3207 3208 /* 3209 * Handle the last step of open() 3210 */ 3211 static int do_last(struct nameidata *nd, 3212 struct file *file, const struct open_flags *op, 3213 int *opened) 3214 { 3215 struct dentry *dir = nd->path.dentry; 3216 int open_flag = op->open_flag; 3217 bool will_truncate = (open_flag & O_TRUNC) != 0; 3218 bool got_write = false; 3219 int acc_mode = op->acc_mode; 3220 unsigned seq; 3221 struct inode *inode; 3222 struct path path; 3223 int error; 3224 3225 nd->flags &= ~LOOKUP_PARENT; 3226 nd->flags |= op->intent; 3227 3228 if (nd->last_type != LAST_NORM) { 3229 error = handle_dots(nd, nd->last_type); 3230 if (unlikely(error)) 3231 return error; 3232 goto finish_open; 3233 } 3234 3235 if (!(open_flag & O_CREAT)) { 3236 if (nd->last.name[nd->last.len]) 3237 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 3238 /* we _can_ be in RCU mode here */ 3239 error = lookup_fast(nd, &path, &inode, &seq); 3240 if (likely(error > 0)) 3241 goto finish_lookup; 3242 3243 if (error < 0) 3244 return error; 3245 3246 BUG_ON(nd->inode != dir->d_inode); 3247 BUG_ON(nd->flags & LOOKUP_RCU); 3248 } else { 3249 /* create side of things */ 3250 /* 3251 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED 3252 * has been cleared when we got to the last component we are 3253 * about to look up 3254 */ 3255 error = complete_walk(nd); 3256 if (error) 3257 return error; 3258 3259 audit_inode(nd->name, dir, LOOKUP_PARENT); 3260 /* trailing slashes? */ 3261 if (unlikely(nd->last.name[nd->last.len])) 3262 return -EISDIR; 3263 } 3264 3265 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) { 3266 error = mnt_want_write(nd->path.mnt); 3267 if (!error) 3268 got_write = true; 3269 /* 3270 * do _not_ fail yet - we might not need that or fail with 3271 * a different error; let lookup_open() decide; we'll be 3272 * dropping this one anyway. 3273 */ 3274 } 3275 if (open_flag & O_CREAT) 3276 inode_lock(dir->d_inode); 3277 else 3278 inode_lock_shared(dir->d_inode); 3279 error = lookup_open(nd, &path, file, op, got_write, opened); 3280 if (open_flag & O_CREAT) 3281 inode_unlock(dir->d_inode); 3282 else 3283 inode_unlock_shared(dir->d_inode); 3284 3285 if (error <= 0) { 3286 if (error) 3287 goto out; 3288 3289 if ((*opened & FILE_CREATED) || 3290 !S_ISREG(file_inode(file)->i_mode)) 3291 will_truncate = false; 3292 3293 audit_inode(nd->name, file->f_path.dentry, 0); 3294 goto opened; 3295 } 3296 3297 if (*opened & FILE_CREATED) { 3298 /* Don't check for write permission, don't truncate */ 3299 open_flag &= ~O_TRUNC; 3300 will_truncate = false; 3301 acc_mode = 0; 3302 path_to_nameidata(&path, nd); 3303 goto finish_open_created; 3304 } 3305 3306 /* 3307 * If atomic_open() acquired write access it is dropped now due to 3308 * possible mount and symlink following (this might be optimized away if 3309 * necessary...) 3310 */ 3311 if (got_write) { 3312 mnt_drop_write(nd->path.mnt); 3313 got_write = false; 3314 } 3315 3316 error = follow_managed(&path, nd); 3317 if (unlikely(error < 0)) 3318 return error; 3319 3320 if (unlikely(d_is_negative(path.dentry))) { 3321 path_to_nameidata(&path, nd); 3322 return -ENOENT; 3323 } 3324 3325 /* 3326 * create/update audit record if it already exists. 3327 */ 3328 audit_inode(nd->name, path.dentry, 0); 3329 3330 if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) { 3331 path_to_nameidata(&path, nd); 3332 return -EEXIST; 3333 } 3334 3335 seq = 0; /* out of RCU mode, so the value doesn't matter */ 3336 inode = d_backing_inode(path.dentry); 3337 finish_lookup: 3338 if (nd->depth) 3339 put_link(nd); 3340 error = should_follow_link(nd, &path, nd->flags & LOOKUP_FOLLOW, 3341 inode, seq); 3342 if (unlikely(error)) 3343 return error; 3344 3345 path_to_nameidata(&path, nd); 3346 nd->inode = inode; 3347 nd->seq = seq; 3348 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */ 3349 finish_open: 3350 error = complete_walk(nd); 3351 if (error) 3352 return error; 3353 audit_inode(nd->name, nd->path.dentry, 0); 3354 error = -EISDIR; 3355 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry)) 3356 goto out; 3357 error = -ENOTDIR; 3358 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry)) 3359 goto out; 3360 if (!d_is_reg(nd->path.dentry)) 3361 will_truncate = false; 3362 3363 if (will_truncate) { 3364 error = mnt_want_write(nd->path.mnt); 3365 if (error) 3366 goto out; 3367 got_write = true; 3368 } 3369 finish_open_created: 3370 error = may_open(&nd->path, acc_mode, open_flag); 3371 if (error) 3372 goto out; 3373 BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */ 3374 error = vfs_open(&nd->path, file, current_cred()); 3375 if (error) 3376 goto out; 3377 *opened |= FILE_OPENED; 3378 opened: 3379 error = open_check_o_direct(file); 3380 if (!error) 3381 error = ima_file_check(file, op->acc_mode, *opened); 3382 if (!error && will_truncate) 3383 error = handle_truncate(file); 3384 out: 3385 if (unlikely(error) && (*opened & FILE_OPENED)) 3386 fput(file); 3387 if (unlikely(error > 0)) { 3388 WARN_ON(1); 3389 error = -EINVAL; 3390 } 3391 if (got_write) 3392 mnt_drop_write(nd->path.mnt); 3393 return error; 3394 } 3395 3396 static int do_tmpfile(struct nameidata *nd, unsigned flags, 3397 const struct open_flags *op, 3398 struct file *file, int *opened) 3399 { 3400 static const struct qstr name = QSTR_INIT("/", 1); 3401 struct dentry *child; 3402 struct inode *dir; 3403 struct path path; 3404 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path); 3405 if (unlikely(error)) 3406 return error; 3407 error = mnt_want_write(path.mnt); 3408 if (unlikely(error)) 3409 goto out; 3410 dir = path.dentry->d_inode; 3411 /* we want directory to be writable */ 3412 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 3413 if (error) 3414 goto out2; 3415 if (!dir->i_op->tmpfile) { 3416 error = -EOPNOTSUPP; 3417 goto out2; 3418 } 3419 child = d_alloc(path.dentry, &name); 3420 if (unlikely(!child)) { 3421 error = -ENOMEM; 3422 goto out2; 3423 } 3424 dput(path.dentry); 3425 path.dentry = child; 3426 error = dir->i_op->tmpfile(dir, child, op->mode); 3427 if (error) 3428 goto out2; 3429 audit_inode(nd->name, child, 0); 3430 /* Don't check for other permissions, the inode was just created */ 3431 error = may_open(&path, 0, op->open_flag); 3432 if (error) 3433 goto out2; 3434 file->f_path.mnt = path.mnt; 3435 error = finish_open(file, child, NULL, opened); 3436 if (error) 3437 goto out2; 3438 error = open_check_o_direct(file); 3439 if (error) { 3440 fput(file); 3441 } else if (!(op->open_flag & O_EXCL)) { 3442 struct inode *inode = file_inode(file); 3443 spin_lock(&inode->i_lock); 3444 inode->i_state |= I_LINKABLE; 3445 spin_unlock(&inode->i_lock); 3446 } 3447 out2: 3448 mnt_drop_write(path.mnt); 3449 out: 3450 path_put(&path); 3451 return error; 3452 } 3453 3454 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file) 3455 { 3456 struct path path; 3457 int error = path_lookupat(nd, flags, &path); 3458 if (!error) { 3459 audit_inode(nd->name, path.dentry, 0); 3460 error = vfs_open(&path, file, current_cred()); 3461 path_put(&path); 3462 } 3463 return error; 3464 } 3465 3466 static struct file *path_openat(struct nameidata *nd, 3467 const struct open_flags *op, unsigned flags) 3468 { 3469 const char *s; 3470 struct file *file; 3471 int opened = 0; 3472 int error; 3473 3474 file = get_empty_filp(); 3475 if (IS_ERR(file)) 3476 return file; 3477 3478 file->f_flags = op->open_flag; 3479 3480 if (unlikely(file->f_flags & __O_TMPFILE)) { 3481 error = do_tmpfile(nd, flags, op, file, &opened); 3482 goto out2; 3483 } 3484 3485 if (unlikely(file->f_flags & O_PATH)) { 3486 error = do_o_path(nd, flags, file); 3487 if (!error) 3488 opened |= FILE_OPENED; 3489 goto out2; 3490 } 3491 3492 s = path_init(nd, flags); 3493 if (IS_ERR(s)) { 3494 put_filp(file); 3495 return ERR_CAST(s); 3496 } 3497 while (!(error = link_path_walk(s, nd)) && 3498 (error = do_last(nd, file, op, &opened)) > 0) { 3499 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL); 3500 s = trailing_symlink(nd); 3501 if (IS_ERR(s)) { 3502 error = PTR_ERR(s); 3503 break; 3504 } 3505 } 3506 terminate_walk(nd); 3507 out2: 3508 if (!(opened & FILE_OPENED)) { 3509 BUG_ON(!error); 3510 put_filp(file); 3511 } 3512 if (unlikely(error)) { 3513 if (error == -EOPENSTALE) { 3514 if (flags & LOOKUP_RCU) 3515 error = -ECHILD; 3516 else 3517 error = -ESTALE; 3518 } 3519 file = ERR_PTR(error); 3520 } 3521 return file; 3522 } 3523 3524 struct file *do_filp_open(int dfd, struct filename *pathname, 3525 const struct open_flags *op) 3526 { 3527 struct nameidata nd; 3528 int flags = op->lookup_flags; 3529 struct file *filp; 3530 3531 set_nameidata(&nd, dfd, pathname); 3532 filp = path_openat(&nd, op, flags | LOOKUP_RCU); 3533 if (unlikely(filp == ERR_PTR(-ECHILD))) 3534 filp = path_openat(&nd, op, flags); 3535 if (unlikely(filp == ERR_PTR(-ESTALE))) 3536 filp = path_openat(&nd, op, flags | LOOKUP_REVAL); 3537 restore_nameidata(); 3538 return filp; 3539 } 3540 3541 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt, 3542 const char *name, const struct open_flags *op) 3543 { 3544 struct nameidata nd; 3545 struct file *file; 3546 struct filename *filename; 3547 int flags = op->lookup_flags | LOOKUP_ROOT; 3548 3549 nd.root.mnt = mnt; 3550 nd.root.dentry = dentry; 3551 3552 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN) 3553 return ERR_PTR(-ELOOP); 3554 3555 filename = getname_kernel(name); 3556 if (IS_ERR(filename)) 3557 return ERR_CAST(filename); 3558 3559 set_nameidata(&nd, -1, filename); 3560 file = path_openat(&nd, op, flags | LOOKUP_RCU); 3561 if (unlikely(file == ERR_PTR(-ECHILD))) 3562 file = path_openat(&nd, op, flags); 3563 if (unlikely(file == ERR_PTR(-ESTALE))) 3564 file = path_openat(&nd, op, flags | LOOKUP_REVAL); 3565 restore_nameidata(); 3566 putname(filename); 3567 return file; 3568 } 3569 3570 static struct dentry *filename_create(int dfd, struct filename *name, 3571 struct path *path, unsigned int lookup_flags) 3572 { 3573 struct dentry *dentry = ERR_PTR(-EEXIST); 3574 struct qstr last; 3575 int type; 3576 int err2; 3577 int error; 3578 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY); 3579 3580 /* 3581 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any 3582 * other flags passed in are ignored! 3583 */ 3584 lookup_flags &= LOOKUP_REVAL; 3585 3586 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type); 3587 if (IS_ERR(name)) 3588 return ERR_CAST(name); 3589 3590 /* 3591 * Yucky last component or no last component at all? 3592 * (foo/., foo/.., /////) 3593 */ 3594 if (unlikely(type != LAST_NORM)) 3595 goto out; 3596 3597 /* don't fail immediately if it's r/o, at least try to report other errors */ 3598 err2 = mnt_want_write(path->mnt); 3599 /* 3600 * Do the final lookup. 3601 */ 3602 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL; 3603 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 3604 dentry = __lookup_hash(&last, path->dentry, lookup_flags); 3605 if (IS_ERR(dentry)) 3606 goto unlock; 3607 3608 error = -EEXIST; 3609 if (d_is_positive(dentry)) 3610 goto fail; 3611 3612 /* 3613 * Special case - lookup gave negative, but... we had foo/bar/ 3614 * From the vfs_mknod() POV we just have a negative dentry - 3615 * all is fine. Let's be bastards - you had / on the end, you've 3616 * been asking for (non-existent) directory. -ENOENT for you. 3617 */ 3618 if (unlikely(!is_dir && last.name[last.len])) { 3619 error = -ENOENT; 3620 goto fail; 3621 } 3622 if (unlikely(err2)) { 3623 error = err2; 3624 goto fail; 3625 } 3626 putname(name); 3627 return dentry; 3628 fail: 3629 dput(dentry); 3630 dentry = ERR_PTR(error); 3631 unlock: 3632 inode_unlock(path->dentry->d_inode); 3633 if (!err2) 3634 mnt_drop_write(path->mnt); 3635 out: 3636 path_put(path); 3637 putname(name); 3638 return dentry; 3639 } 3640 3641 struct dentry *kern_path_create(int dfd, const char *pathname, 3642 struct path *path, unsigned int lookup_flags) 3643 { 3644 return filename_create(dfd, getname_kernel(pathname), 3645 path, lookup_flags); 3646 } 3647 EXPORT_SYMBOL(kern_path_create); 3648 3649 void done_path_create(struct path *path, struct dentry *dentry) 3650 { 3651 dput(dentry); 3652 inode_unlock(path->dentry->d_inode); 3653 mnt_drop_write(path->mnt); 3654 path_put(path); 3655 } 3656 EXPORT_SYMBOL(done_path_create); 3657 3658 inline struct dentry *user_path_create(int dfd, const char __user *pathname, 3659 struct path *path, unsigned int lookup_flags) 3660 { 3661 return filename_create(dfd, getname(pathname), path, lookup_flags); 3662 } 3663 EXPORT_SYMBOL(user_path_create); 3664 3665 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 3666 { 3667 int error = may_create(dir, dentry); 3668 3669 if (error) 3670 return error; 3671 3672 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD)) 3673 return -EPERM; 3674 3675 if (!dir->i_op->mknod) 3676 return -EPERM; 3677 3678 error = devcgroup_inode_mknod(mode, dev); 3679 if (error) 3680 return error; 3681 3682 error = security_inode_mknod(dir, dentry, mode, dev); 3683 if (error) 3684 return error; 3685 3686 error = dir->i_op->mknod(dir, dentry, mode, dev); 3687 if (!error) 3688 fsnotify_create(dir, dentry); 3689 return error; 3690 } 3691 EXPORT_SYMBOL(vfs_mknod); 3692 3693 static int may_mknod(umode_t mode) 3694 { 3695 switch (mode & S_IFMT) { 3696 case S_IFREG: 3697 case S_IFCHR: 3698 case S_IFBLK: 3699 case S_IFIFO: 3700 case S_IFSOCK: 3701 case 0: /* zero mode translates to S_IFREG */ 3702 return 0; 3703 case S_IFDIR: 3704 return -EPERM; 3705 default: 3706 return -EINVAL; 3707 } 3708 } 3709 3710 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode, 3711 unsigned, dev) 3712 { 3713 struct dentry *dentry; 3714 struct path path; 3715 int error; 3716 unsigned int lookup_flags = 0; 3717 3718 error = may_mknod(mode); 3719 if (error) 3720 return error; 3721 retry: 3722 dentry = user_path_create(dfd, filename, &path, lookup_flags); 3723 if (IS_ERR(dentry)) 3724 return PTR_ERR(dentry); 3725 3726 if (!IS_POSIXACL(path.dentry->d_inode)) 3727 mode &= ~current_umask(); 3728 error = security_path_mknod(&path, dentry, mode, dev); 3729 if (error) 3730 goto out; 3731 switch (mode & S_IFMT) { 3732 case 0: case S_IFREG: 3733 error = vfs_create(path.dentry->d_inode,dentry,mode,true); 3734 if (!error) 3735 ima_post_path_mknod(dentry); 3736 break; 3737 case S_IFCHR: case S_IFBLK: 3738 error = vfs_mknod(path.dentry->d_inode,dentry,mode, 3739 new_decode_dev(dev)); 3740 break; 3741 case S_IFIFO: case S_IFSOCK: 3742 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0); 3743 break; 3744 } 3745 out: 3746 done_path_create(&path, dentry); 3747 if (retry_estale(error, lookup_flags)) { 3748 lookup_flags |= LOOKUP_REVAL; 3749 goto retry; 3750 } 3751 return error; 3752 } 3753 3754 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev) 3755 { 3756 return sys_mknodat(AT_FDCWD, filename, mode, dev); 3757 } 3758 3759 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 3760 { 3761 int error = may_create(dir, dentry); 3762 unsigned max_links = dir->i_sb->s_max_links; 3763 3764 if (error) 3765 return error; 3766 3767 if (!dir->i_op->mkdir) 3768 return -EPERM; 3769 3770 mode &= (S_IRWXUGO|S_ISVTX); 3771 error = security_inode_mkdir(dir, dentry, mode); 3772 if (error) 3773 return error; 3774 3775 if (max_links && dir->i_nlink >= max_links) 3776 return -EMLINK; 3777 3778 error = dir->i_op->mkdir(dir, dentry, mode); 3779 if (!error) 3780 fsnotify_mkdir(dir, dentry); 3781 return error; 3782 } 3783 EXPORT_SYMBOL(vfs_mkdir); 3784 3785 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode) 3786 { 3787 struct dentry *dentry; 3788 struct path path; 3789 int error; 3790 unsigned int lookup_flags = LOOKUP_DIRECTORY; 3791 3792 retry: 3793 dentry = user_path_create(dfd, pathname, &path, lookup_flags); 3794 if (IS_ERR(dentry)) 3795 return PTR_ERR(dentry); 3796 3797 if (!IS_POSIXACL(path.dentry->d_inode)) 3798 mode &= ~current_umask(); 3799 error = security_path_mkdir(&path, dentry, mode); 3800 if (!error) 3801 error = vfs_mkdir(path.dentry->d_inode, dentry, mode); 3802 done_path_create(&path, dentry); 3803 if (retry_estale(error, lookup_flags)) { 3804 lookup_flags |= LOOKUP_REVAL; 3805 goto retry; 3806 } 3807 return error; 3808 } 3809 3810 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode) 3811 { 3812 return sys_mkdirat(AT_FDCWD, pathname, mode); 3813 } 3814 3815 int vfs_rmdir(struct inode *dir, struct dentry *dentry) 3816 { 3817 int error = may_delete(dir, dentry, 1); 3818 3819 if (error) 3820 return error; 3821 3822 if (!dir->i_op->rmdir) 3823 return -EPERM; 3824 3825 dget(dentry); 3826 inode_lock(dentry->d_inode); 3827 3828 error = -EBUSY; 3829 if (is_local_mountpoint(dentry)) 3830 goto out; 3831 3832 error = security_inode_rmdir(dir, dentry); 3833 if (error) 3834 goto out; 3835 3836 shrink_dcache_parent(dentry); 3837 error = dir->i_op->rmdir(dir, dentry); 3838 if (error) 3839 goto out; 3840 3841 dentry->d_inode->i_flags |= S_DEAD; 3842 dont_mount(dentry); 3843 detach_mounts(dentry); 3844 3845 out: 3846 inode_unlock(dentry->d_inode); 3847 dput(dentry); 3848 if (!error) 3849 d_delete(dentry); 3850 return error; 3851 } 3852 EXPORT_SYMBOL(vfs_rmdir); 3853 3854 static long do_rmdir(int dfd, const char __user *pathname) 3855 { 3856 int error = 0; 3857 struct filename *name; 3858 struct dentry *dentry; 3859 struct path path; 3860 struct qstr last; 3861 int type; 3862 unsigned int lookup_flags = 0; 3863 retry: 3864 name = user_path_parent(dfd, pathname, 3865 &path, &last, &type, lookup_flags); 3866 if (IS_ERR(name)) 3867 return PTR_ERR(name); 3868 3869 switch (type) { 3870 case LAST_DOTDOT: 3871 error = -ENOTEMPTY; 3872 goto exit1; 3873 case LAST_DOT: 3874 error = -EINVAL; 3875 goto exit1; 3876 case LAST_ROOT: 3877 error = -EBUSY; 3878 goto exit1; 3879 } 3880 3881 error = mnt_want_write(path.mnt); 3882 if (error) 3883 goto exit1; 3884 3885 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 3886 dentry = __lookup_hash(&last, path.dentry, lookup_flags); 3887 error = PTR_ERR(dentry); 3888 if (IS_ERR(dentry)) 3889 goto exit2; 3890 if (!dentry->d_inode) { 3891 error = -ENOENT; 3892 goto exit3; 3893 } 3894 error = security_path_rmdir(&path, dentry); 3895 if (error) 3896 goto exit3; 3897 error = vfs_rmdir(path.dentry->d_inode, dentry); 3898 exit3: 3899 dput(dentry); 3900 exit2: 3901 inode_unlock(path.dentry->d_inode); 3902 mnt_drop_write(path.mnt); 3903 exit1: 3904 path_put(&path); 3905 putname(name); 3906 if (retry_estale(error, lookup_flags)) { 3907 lookup_flags |= LOOKUP_REVAL; 3908 goto retry; 3909 } 3910 return error; 3911 } 3912 3913 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 3914 { 3915 return do_rmdir(AT_FDCWD, pathname); 3916 } 3917 3918 /** 3919 * vfs_unlink - unlink a filesystem object 3920 * @dir: parent directory 3921 * @dentry: victim 3922 * @delegated_inode: returns victim inode, if the inode is delegated. 3923 * 3924 * The caller must hold dir->i_mutex. 3925 * 3926 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and 3927 * return a reference to the inode in delegated_inode. The caller 3928 * should then break the delegation on that inode and retry. Because 3929 * breaking a delegation may take a long time, the caller should drop 3930 * dir->i_mutex before doing so. 3931 * 3932 * Alternatively, a caller may pass NULL for delegated_inode. This may 3933 * be appropriate for callers that expect the underlying filesystem not 3934 * to be NFS exported. 3935 */ 3936 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode) 3937 { 3938 struct inode *target = dentry->d_inode; 3939 int error = may_delete(dir, dentry, 0); 3940 3941 if (error) 3942 return error; 3943 3944 if (!dir->i_op->unlink) 3945 return -EPERM; 3946 3947 inode_lock(target); 3948 if (is_local_mountpoint(dentry)) 3949 error = -EBUSY; 3950 else { 3951 error = security_inode_unlink(dir, dentry); 3952 if (!error) { 3953 error = try_break_deleg(target, delegated_inode); 3954 if (error) 3955 goto out; 3956 error = dir->i_op->unlink(dir, dentry); 3957 if (!error) { 3958 dont_mount(dentry); 3959 detach_mounts(dentry); 3960 } 3961 } 3962 } 3963 out: 3964 inode_unlock(target); 3965 3966 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 3967 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) { 3968 fsnotify_link_count(target); 3969 d_delete(dentry); 3970 } 3971 3972 return error; 3973 } 3974 EXPORT_SYMBOL(vfs_unlink); 3975 3976 /* 3977 * Make sure that the actual truncation of the file will occur outside its 3978 * directory's i_mutex. Truncate can take a long time if there is a lot of 3979 * writeout happening, and we don't want to prevent access to the directory 3980 * while waiting on the I/O. 3981 */ 3982 static long do_unlinkat(int dfd, const char __user *pathname) 3983 { 3984 int error; 3985 struct filename *name; 3986 struct dentry *dentry; 3987 struct path path; 3988 struct qstr last; 3989 int type; 3990 struct inode *inode = NULL; 3991 struct inode *delegated_inode = NULL; 3992 unsigned int lookup_flags = 0; 3993 retry: 3994 name = user_path_parent(dfd, pathname, 3995 &path, &last, &type, lookup_flags); 3996 if (IS_ERR(name)) 3997 return PTR_ERR(name); 3998 3999 error = -EISDIR; 4000 if (type != LAST_NORM) 4001 goto exit1; 4002 4003 error = mnt_want_write(path.mnt); 4004 if (error) 4005 goto exit1; 4006 retry_deleg: 4007 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 4008 dentry = __lookup_hash(&last, path.dentry, lookup_flags); 4009 error = PTR_ERR(dentry); 4010 if (!IS_ERR(dentry)) { 4011 /* Why not before? Because we want correct error value */ 4012 if (last.name[last.len]) 4013 goto slashes; 4014 inode = dentry->d_inode; 4015 if (d_is_negative(dentry)) 4016 goto slashes; 4017 ihold(inode); 4018 error = security_path_unlink(&path, dentry); 4019 if (error) 4020 goto exit2; 4021 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode); 4022 exit2: 4023 dput(dentry); 4024 } 4025 inode_unlock(path.dentry->d_inode); 4026 if (inode) 4027 iput(inode); /* truncate the inode here */ 4028 inode = NULL; 4029 if (delegated_inode) { 4030 error = break_deleg_wait(&delegated_inode); 4031 if (!error) 4032 goto retry_deleg; 4033 } 4034 mnt_drop_write(path.mnt); 4035 exit1: 4036 path_put(&path); 4037 putname(name); 4038 if (retry_estale(error, lookup_flags)) { 4039 lookup_flags |= LOOKUP_REVAL; 4040 inode = NULL; 4041 goto retry; 4042 } 4043 return error; 4044 4045 slashes: 4046 if (d_is_negative(dentry)) 4047 error = -ENOENT; 4048 else if (d_is_dir(dentry)) 4049 error = -EISDIR; 4050 else 4051 error = -ENOTDIR; 4052 goto exit2; 4053 } 4054 4055 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 4056 { 4057 if ((flag & ~AT_REMOVEDIR) != 0) 4058 return -EINVAL; 4059 4060 if (flag & AT_REMOVEDIR) 4061 return do_rmdir(dfd, pathname); 4062 4063 return do_unlinkat(dfd, pathname); 4064 } 4065 4066 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 4067 { 4068 return do_unlinkat(AT_FDCWD, pathname); 4069 } 4070 4071 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname) 4072 { 4073 int error = may_create(dir, dentry); 4074 4075 if (error) 4076 return error; 4077 4078 if (!dir->i_op->symlink) 4079 return -EPERM; 4080 4081 error = security_inode_symlink(dir, dentry, oldname); 4082 if (error) 4083 return error; 4084 4085 error = dir->i_op->symlink(dir, dentry, oldname); 4086 if (!error) 4087 fsnotify_create(dir, dentry); 4088 return error; 4089 } 4090 EXPORT_SYMBOL(vfs_symlink); 4091 4092 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 4093 int, newdfd, const char __user *, newname) 4094 { 4095 int error; 4096 struct filename *from; 4097 struct dentry *dentry; 4098 struct path path; 4099 unsigned int lookup_flags = 0; 4100 4101 from = getname(oldname); 4102 if (IS_ERR(from)) 4103 return PTR_ERR(from); 4104 retry: 4105 dentry = user_path_create(newdfd, newname, &path, lookup_flags); 4106 error = PTR_ERR(dentry); 4107 if (IS_ERR(dentry)) 4108 goto out_putname; 4109 4110 error = security_path_symlink(&path, dentry, from->name); 4111 if (!error) 4112 error = vfs_symlink(path.dentry->d_inode, dentry, from->name); 4113 done_path_create(&path, dentry); 4114 if (retry_estale(error, lookup_flags)) { 4115 lookup_flags |= LOOKUP_REVAL; 4116 goto retry; 4117 } 4118 out_putname: 4119 putname(from); 4120 return error; 4121 } 4122 4123 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 4124 { 4125 return sys_symlinkat(oldname, AT_FDCWD, newname); 4126 } 4127 4128 /** 4129 * vfs_link - create a new link 4130 * @old_dentry: object to be linked 4131 * @dir: new parent 4132 * @new_dentry: where to create the new link 4133 * @delegated_inode: returns inode needing a delegation break 4134 * 4135 * The caller must hold dir->i_mutex 4136 * 4137 * If vfs_link discovers a delegation on the to-be-linked file in need 4138 * of breaking, it will return -EWOULDBLOCK and return a reference to the 4139 * inode in delegated_inode. The caller should then break the delegation 4140 * and retry. Because breaking a delegation may take a long time, the 4141 * caller should drop the i_mutex before doing so. 4142 * 4143 * Alternatively, a caller may pass NULL for delegated_inode. This may 4144 * be appropriate for callers that expect the underlying filesystem not 4145 * to be NFS exported. 4146 */ 4147 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode) 4148 { 4149 struct inode *inode = old_dentry->d_inode; 4150 unsigned max_links = dir->i_sb->s_max_links; 4151 int error; 4152 4153 if (!inode) 4154 return -ENOENT; 4155 4156 error = may_create(dir, new_dentry); 4157 if (error) 4158 return error; 4159 4160 if (dir->i_sb != inode->i_sb) 4161 return -EXDEV; 4162 4163 /* 4164 * A link to an append-only or immutable file cannot be created. 4165 */ 4166 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 4167 return -EPERM; 4168 /* 4169 * Updating the link count will likely cause i_uid and i_gid to 4170 * be writen back improperly if their true value is unknown to 4171 * the vfs. 4172 */ 4173 if (HAS_UNMAPPED_ID(inode)) 4174 return -EPERM; 4175 if (!dir->i_op->link) 4176 return -EPERM; 4177 if (S_ISDIR(inode->i_mode)) 4178 return -EPERM; 4179 4180 error = security_inode_link(old_dentry, dir, new_dentry); 4181 if (error) 4182 return error; 4183 4184 inode_lock(inode); 4185 /* Make sure we don't allow creating hardlink to an unlinked file */ 4186 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE)) 4187 error = -ENOENT; 4188 else if (max_links && inode->i_nlink >= max_links) 4189 error = -EMLINK; 4190 else { 4191 error = try_break_deleg(inode, delegated_inode); 4192 if (!error) 4193 error = dir->i_op->link(old_dentry, dir, new_dentry); 4194 } 4195 4196 if (!error && (inode->i_state & I_LINKABLE)) { 4197 spin_lock(&inode->i_lock); 4198 inode->i_state &= ~I_LINKABLE; 4199 spin_unlock(&inode->i_lock); 4200 } 4201 inode_unlock(inode); 4202 if (!error) 4203 fsnotify_link(dir, inode, new_dentry); 4204 return error; 4205 } 4206 EXPORT_SYMBOL(vfs_link); 4207 4208 /* 4209 * Hardlinks are often used in delicate situations. We avoid 4210 * security-related surprises by not following symlinks on the 4211 * newname. --KAB 4212 * 4213 * We don't follow them on the oldname either to be compatible 4214 * with linux 2.0, and to avoid hard-linking to directories 4215 * and other special files. --ADM 4216 */ 4217 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 4218 int, newdfd, const char __user *, newname, int, flags) 4219 { 4220 struct dentry *new_dentry; 4221 struct path old_path, new_path; 4222 struct inode *delegated_inode = NULL; 4223 int how = 0; 4224 int error; 4225 4226 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) 4227 return -EINVAL; 4228 /* 4229 * To use null names we require CAP_DAC_READ_SEARCH 4230 * This ensures that not everyone will be able to create 4231 * handlink using the passed filedescriptor. 4232 */ 4233 if (flags & AT_EMPTY_PATH) { 4234 if (!capable(CAP_DAC_READ_SEARCH)) 4235 return -ENOENT; 4236 how = LOOKUP_EMPTY; 4237 } 4238 4239 if (flags & AT_SYMLINK_FOLLOW) 4240 how |= LOOKUP_FOLLOW; 4241 retry: 4242 error = user_path_at(olddfd, oldname, how, &old_path); 4243 if (error) 4244 return error; 4245 4246 new_dentry = user_path_create(newdfd, newname, &new_path, 4247 (how & LOOKUP_REVAL)); 4248 error = PTR_ERR(new_dentry); 4249 if (IS_ERR(new_dentry)) 4250 goto out; 4251 4252 error = -EXDEV; 4253 if (old_path.mnt != new_path.mnt) 4254 goto out_dput; 4255 error = may_linkat(&old_path); 4256 if (unlikely(error)) 4257 goto out_dput; 4258 error = security_path_link(old_path.dentry, &new_path, new_dentry); 4259 if (error) 4260 goto out_dput; 4261 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode); 4262 out_dput: 4263 done_path_create(&new_path, new_dentry); 4264 if (delegated_inode) { 4265 error = break_deleg_wait(&delegated_inode); 4266 if (!error) { 4267 path_put(&old_path); 4268 goto retry; 4269 } 4270 } 4271 if (retry_estale(error, how)) { 4272 path_put(&old_path); 4273 how |= LOOKUP_REVAL; 4274 goto retry; 4275 } 4276 out: 4277 path_put(&old_path); 4278 4279 return error; 4280 } 4281 4282 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 4283 { 4284 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 4285 } 4286 4287 /** 4288 * vfs_rename - rename a filesystem object 4289 * @old_dir: parent of source 4290 * @old_dentry: source 4291 * @new_dir: parent of destination 4292 * @new_dentry: destination 4293 * @delegated_inode: returns an inode needing a delegation break 4294 * @flags: rename flags 4295 * 4296 * The caller must hold multiple mutexes--see lock_rename()). 4297 * 4298 * If vfs_rename discovers a delegation in need of breaking at either 4299 * the source or destination, it will return -EWOULDBLOCK and return a 4300 * reference to the inode in delegated_inode. The caller should then 4301 * break the delegation and retry. Because breaking a delegation may 4302 * take a long time, the caller should drop all locks before doing 4303 * so. 4304 * 4305 * Alternatively, a caller may pass NULL for delegated_inode. This may 4306 * be appropriate for callers that expect the underlying filesystem not 4307 * to be NFS exported. 4308 * 4309 * The worst of all namespace operations - renaming directory. "Perverted" 4310 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 4311 * Problems: 4312 * a) we can get into loop creation. 4313 * b) race potential - two innocent renames can create a loop together. 4314 * That's where 4.4 screws up. Current fix: serialization on 4315 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 4316 * story. 4317 * c) we have to lock _four_ objects - parents and victim (if it exists), 4318 * and source (if it is not a directory). 4319 * And that - after we got ->i_mutex on parents (until then we don't know 4320 * whether the target exists). Solution: try to be smart with locking 4321 * order for inodes. We rely on the fact that tree topology may change 4322 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 4323 * move will be locked. Thus we can rank directories by the tree 4324 * (ancestors first) and rank all non-directories after them. 4325 * That works since everybody except rename does "lock parent, lookup, 4326 * lock child" and rename is under ->s_vfs_rename_mutex. 4327 * HOWEVER, it relies on the assumption that any object with ->lookup() 4328 * has no more than 1 dentry. If "hybrid" objects will ever appear, 4329 * we'd better make sure that there's no link(2) for them. 4330 * d) conversion from fhandle to dentry may come in the wrong moment - when 4331 * we are removing the target. Solution: we will have to grab ->i_mutex 4332 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 4333 * ->i_mutex on parents, which works but leads to some truly excessive 4334 * locking]. 4335 */ 4336 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry, 4337 struct inode *new_dir, struct dentry *new_dentry, 4338 struct inode **delegated_inode, unsigned int flags) 4339 { 4340 int error; 4341 bool is_dir = d_is_dir(old_dentry); 4342 const unsigned char *old_name; 4343 struct inode *source = old_dentry->d_inode; 4344 struct inode *target = new_dentry->d_inode; 4345 bool new_is_dir = false; 4346 unsigned max_links = new_dir->i_sb->s_max_links; 4347 4348 /* 4349 * Check source == target. 4350 * On overlayfs need to look at underlying inodes. 4351 */ 4352 if (d_real_inode(old_dentry) == d_real_inode(new_dentry)) 4353 return 0; 4354 4355 error = may_delete(old_dir, old_dentry, is_dir); 4356 if (error) 4357 return error; 4358 4359 if (!target) { 4360 error = may_create(new_dir, new_dentry); 4361 } else { 4362 new_is_dir = d_is_dir(new_dentry); 4363 4364 if (!(flags & RENAME_EXCHANGE)) 4365 error = may_delete(new_dir, new_dentry, is_dir); 4366 else 4367 error = may_delete(new_dir, new_dentry, new_is_dir); 4368 } 4369 if (error) 4370 return error; 4371 4372 if (!old_dir->i_op->rename && !old_dir->i_op->rename2) 4373 return -EPERM; 4374 4375 if (flags && !old_dir->i_op->rename2) 4376 return -EINVAL; 4377 4378 /* 4379 * If we are going to change the parent - check write permissions, 4380 * we'll need to flip '..'. 4381 */ 4382 if (new_dir != old_dir) { 4383 if (is_dir) { 4384 error = inode_permission(source, MAY_WRITE); 4385 if (error) 4386 return error; 4387 } 4388 if ((flags & RENAME_EXCHANGE) && new_is_dir) { 4389 error = inode_permission(target, MAY_WRITE); 4390 if (error) 4391 return error; 4392 } 4393 } 4394 4395 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry, 4396 flags); 4397 if (error) 4398 return error; 4399 4400 old_name = fsnotify_oldname_init(old_dentry->d_name.name); 4401 dget(new_dentry); 4402 if (!is_dir || (flags & RENAME_EXCHANGE)) 4403 lock_two_nondirectories(source, target); 4404 else if (target) 4405 inode_lock(target); 4406 4407 error = -EBUSY; 4408 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry)) 4409 goto out; 4410 4411 if (max_links && new_dir != old_dir) { 4412 error = -EMLINK; 4413 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links) 4414 goto out; 4415 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir && 4416 old_dir->i_nlink >= max_links) 4417 goto out; 4418 } 4419 if (is_dir && !(flags & RENAME_EXCHANGE) && target) 4420 shrink_dcache_parent(new_dentry); 4421 if (!is_dir) { 4422 error = try_break_deleg(source, delegated_inode); 4423 if (error) 4424 goto out; 4425 } 4426 if (target && !new_is_dir) { 4427 error = try_break_deleg(target, delegated_inode); 4428 if (error) 4429 goto out; 4430 } 4431 if (!old_dir->i_op->rename2) { 4432 error = old_dir->i_op->rename(old_dir, old_dentry, 4433 new_dir, new_dentry); 4434 } else { 4435 WARN_ON(old_dir->i_op->rename != NULL); 4436 error = old_dir->i_op->rename2(old_dir, old_dentry, 4437 new_dir, new_dentry, flags); 4438 } 4439 if (error) 4440 goto out; 4441 4442 if (!(flags & RENAME_EXCHANGE) && target) { 4443 if (is_dir) 4444 target->i_flags |= S_DEAD; 4445 dont_mount(new_dentry); 4446 detach_mounts(new_dentry); 4447 } 4448 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) { 4449 if (!(flags & RENAME_EXCHANGE)) 4450 d_move(old_dentry, new_dentry); 4451 else 4452 d_exchange(old_dentry, new_dentry); 4453 } 4454 out: 4455 if (!is_dir || (flags & RENAME_EXCHANGE)) 4456 unlock_two_nondirectories(source, target); 4457 else if (target) 4458 inode_unlock(target); 4459 dput(new_dentry); 4460 if (!error) { 4461 fsnotify_move(old_dir, new_dir, old_name, is_dir, 4462 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry); 4463 if (flags & RENAME_EXCHANGE) { 4464 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name, 4465 new_is_dir, NULL, new_dentry); 4466 } 4467 } 4468 fsnotify_oldname_free(old_name); 4469 4470 return error; 4471 } 4472 EXPORT_SYMBOL(vfs_rename); 4473 4474 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname, 4475 int, newdfd, const char __user *, newname, unsigned int, flags) 4476 { 4477 struct dentry *old_dentry, *new_dentry; 4478 struct dentry *trap; 4479 struct path old_path, new_path; 4480 struct qstr old_last, new_last; 4481 int old_type, new_type; 4482 struct inode *delegated_inode = NULL; 4483 struct filename *from; 4484 struct filename *to; 4485 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET; 4486 bool should_retry = false; 4487 int error; 4488 4489 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 4490 return -EINVAL; 4491 4492 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) && 4493 (flags & RENAME_EXCHANGE)) 4494 return -EINVAL; 4495 4496 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD)) 4497 return -EPERM; 4498 4499 if (flags & RENAME_EXCHANGE) 4500 target_flags = 0; 4501 4502 retry: 4503 from = user_path_parent(olddfd, oldname, 4504 &old_path, &old_last, &old_type, lookup_flags); 4505 if (IS_ERR(from)) { 4506 error = PTR_ERR(from); 4507 goto exit; 4508 } 4509 4510 to = user_path_parent(newdfd, newname, 4511 &new_path, &new_last, &new_type, lookup_flags); 4512 if (IS_ERR(to)) { 4513 error = PTR_ERR(to); 4514 goto exit1; 4515 } 4516 4517 error = -EXDEV; 4518 if (old_path.mnt != new_path.mnt) 4519 goto exit2; 4520 4521 error = -EBUSY; 4522 if (old_type != LAST_NORM) 4523 goto exit2; 4524 4525 if (flags & RENAME_NOREPLACE) 4526 error = -EEXIST; 4527 if (new_type != LAST_NORM) 4528 goto exit2; 4529 4530 error = mnt_want_write(old_path.mnt); 4531 if (error) 4532 goto exit2; 4533 4534 retry_deleg: 4535 trap = lock_rename(new_path.dentry, old_path.dentry); 4536 4537 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags); 4538 error = PTR_ERR(old_dentry); 4539 if (IS_ERR(old_dentry)) 4540 goto exit3; 4541 /* source must exist */ 4542 error = -ENOENT; 4543 if (d_is_negative(old_dentry)) 4544 goto exit4; 4545 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags); 4546 error = PTR_ERR(new_dentry); 4547 if (IS_ERR(new_dentry)) 4548 goto exit4; 4549 error = -EEXIST; 4550 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry)) 4551 goto exit5; 4552 if (flags & RENAME_EXCHANGE) { 4553 error = -ENOENT; 4554 if (d_is_negative(new_dentry)) 4555 goto exit5; 4556 4557 if (!d_is_dir(new_dentry)) { 4558 error = -ENOTDIR; 4559 if (new_last.name[new_last.len]) 4560 goto exit5; 4561 } 4562 } 4563 /* unless the source is a directory trailing slashes give -ENOTDIR */ 4564 if (!d_is_dir(old_dentry)) { 4565 error = -ENOTDIR; 4566 if (old_last.name[old_last.len]) 4567 goto exit5; 4568 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len]) 4569 goto exit5; 4570 } 4571 /* source should not be ancestor of target */ 4572 error = -EINVAL; 4573 if (old_dentry == trap) 4574 goto exit5; 4575 /* target should not be an ancestor of source */ 4576 if (!(flags & RENAME_EXCHANGE)) 4577 error = -ENOTEMPTY; 4578 if (new_dentry == trap) 4579 goto exit5; 4580 4581 error = security_path_rename(&old_path, old_dentry, 4582 &new_path, new_dentry, flags); 4583 if (error) 4584 goto exit5; 4585 error = vfs_rename(old_path.dentry->d_inode, old_dentry, 4586 new_path.dentry->d_inode, new_dentry, 4587 &delegated_inode, flags); 4588 exit5: 4589 dput(new_dentry); 4590 exit4: 4591 dput(old_dentry); 4592 exit3: 4593 unlock_rename(new_path.dentry, old_path.dentry); 4594 if (delegated_inode) { 4595 error = break_deleg_wait(&delegated_inode); 4596 if (!error) 4597 goto retry_deleg; 4598 } 4599 mnt_drop_write(old_path.mnt); 4600 exit2: 4601 if (retry_estale(error, lookup_flags)) 4602 should_retry = true; 4603 path_put(&new_path); 4604 putname(to); 4605 exit1: 4606 path_put(&old_path); 4607 putname(from); 4608 if (should_retry) { 4609 should_retry = false; 4610 lookup_flags |= LOOKUP_REVAL; 4611 goto retry; 4612 } 4613 exit: 4614 return error; 4615 } 4616 4617 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 4618 int, newdfd, const char __user *, newname) 4619 { 4620 return sys_renameat2(olddfd, oldname, newdfd, newname, 0); 4621 } 4622 4623 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 4624 { 4625 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 4626 } 4627 4628 int vfs_whiteout(struct inode *dir, struct dentry *dentry) 4629 { 4630 int error = may_create(dir, dentry); 4631 if (error) 4632 return error; 4633 4634 if (!dir->i_op->mknod) 4635 return -EPERM; 4636 4637 return dir->i_op->mknod(dir, dentry, 4638 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 4639 } 4640 EXPORT_SYMBOL(vfs_whiteout); 4641 4642 int readlink_copy(char __user *buffer, int buflen, const char *link) 4643 { 4644 int len = PTR_ERR(link); 4645 if (IS_ERR(link)) 4646 goto out; 4647 4648 len = strlen(link); 4649 if (len > (unsigned) buflen) 4650 len = buflen; 4651 if (copy_to_user(buffer, link, len)) 4652 len = -EFAULT; 4653 out: 4654 return len; 4655 } 4656 4657 /* 4658 * A helper for ->readlink(). This should be used *ONLY* for symlinks that 4659 * have ->get_link() not calling nd_jump_link(). Using (or not using) it 4660 * for any given inode is up to filesystem. 4661 */ 4662 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4663 { 4664 DEFINE_DELAYED_CALL(done); 4665 struct inode *inode = d_inode(dentry); 4666 const char *link = inode->i_link; 4667 int res; 4668 4669 if (!link) { 4670 link = inode->i_op->get_link(dentry, inode, &done); 4671 if (IS_ERR(link)) 4672 return PTR_ERR(link); 4673 } 4674 res = readlink_copy(buffer, buflen, link); 4675 do_delayed_call(&done); 4676 return res; 4677 } 4678 EXPORT_SYMBOL(generic_readlink); 4679 4680 /* get the link contents into pagecache */ 4681 const char *page_get_link(struct dentry *dentry, struct inode *inode, 4682 struct delayed_call *callback) 4683 { 4684 char *kaddr; 4685 struct page *page; 4686 struct address_space *mapping = inode->i_mapping; 4687 4688 if (!dentry) { 4689 page = find_get_page(mapping, 0); 4690 if (!page) 4691 return ERR_PTR(-ECHILD); 4692 if (!PageUptodate(page)) { 4693 put_page(page); 4694 return ERR_PTR(-ECHILD); 4695 } 4696 } else { 4697 page = read_mapping_page(mapping, 0, NULL); 4698 if (IS_ERR(page)) 4699 return (char*)page; 4700 } 4701 set_delayed_call(callback, page_put_link, page); 4702 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM); 4703 kaddr = page_address(page); 4704 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1); 4705 return kaddr; 4706 } 4707 4708 EXPORT_SYMBOL(page_get_link); 4709 4710 void page_put_link(void *arg) 4711 { 4712 put_page(arg); 4713 } 4714 EXPORT_SYMBOL(page_put_link); 4715 4716 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4717 { 4718 DEFINE_DELAYED_CALL(done); 4719 int res = readlink_copy(buffer, buflen, 4720 page_get_link(dentry, d_inode(dentry), 4721 &done)); 4722 do_delayed_call(&done); 4723 return res; 4724 } 4725 EXPORT_SYMBOL(page_readlink); 4726 4727 /* 4728 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS 4729 */ 4730 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs) 4731 { 4732 struct address_space *mapping = inode->i_mapping; 4733 struct page *page; 4734 void *fsdata; 4735 int err; 4736 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE; 4737 if (nofs) 4738 flags |= AOP_FLAG_NOFS; 4739 4740 retry: 4741 err = pagecache_write_begin(NULL, mapping, 0, len-1, 4742 flags, &page, &fsdata); 4743 if (err) 4744 goto fail; 4745 4746 memcpy(page_address(page), symname, len-1); 4747 4748 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1, 4749 page, fsdata); 4750 if (err < 0) 4751 goto fail; 4752 if (err < len-1) 4753 goto retry; 4754 4755 mark_inode_dirty(inode); 4756 return 0; 4757 fail: 4758 return err; 4759 } 4760 EXPORT_SYMBOL(__page_symlink); 4761 4762 int page_symlink(struct inode *inode, const char *symname, int len) 4763 { 4764 return __page_symlink(inode, symname, len, 4765 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS)); 4766 } 4767 EXPORT_SYMBOL(page_symlink); 4768 4769 const struct inode_operations page_symlink_inode_operations = { 4770 .readlink = generic_readlink, 4771 .get_link = page_get_link, 4772 }; 4773 EXPORT_SYMBOL(page_symlink_inode_operations); 4774