xref: /openbmc/linux/fs/namei.c (revision bc5aa3a0)
1 /*
2  *  linux/fs/namei.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * Some corrections by tytso.
9  */
10 
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12  * lookup logic.
13  */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15  */
16 
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <linux/bitops.h>
39 #include <linux/init_task.h>
40 #include <asm/uaccess.h>
41 
42 #include "internal.h"
43 #include "mount.h"
44 
45 /* [Feb-1997 T. Schoebel-Theuer]
46  * Fundamental changes in the pathname lookup mechanisms (namei)
47  * were necessary because of omirr.  The reason is that omirr needs
48  * to know the _real_ pathname, not the user-supplied one, in case
49  * of symlinks (and also when transname replacements occur).
50  *
51  * The new code replaces the old recursive symlink resolution with
52  * an iterative one (in case of non-nested symlink chains).  It does
53  * this with calls to <fs>_follow_link().
54  * As a side effect, dir_namei(), _namei() and follow_link() are now
55  * replaced with a single function lookup_dentry() that can handle all
56  * the special cases of the former code.
57  *
58  * With the new dcache, the pathname is stored at each inode, at least as
59  * long as the refcount of the inode is positive.  As a side effect, the
60  * size of the dcache depends on the inode cache and thus is dynamic.
61  *
62  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
63  * resolution to correspond with current state of the code.
64  *
65  * Note that the symlink resolution is not *completely* iterative.
66  * There is still a significant amount of tail- and mid- recursion in
67  * the algorithm.  Also, note that <fs>_readlink() is not used in
68  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
69  * may return different results than <fs>_follow_link().  Many virtual
70  * filesystems (including /proc) exhibit this behavior.
71  */
72 
73 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
74  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
75  * and the name already exists in form of a symlink, try to create the new
76  * name indicated by the symlink. The old code always complained that the
77  * name already exists, due to not following the symlink even if its target
78  * is nonexistent.  The new semantics affects also mknod() and link() when
79  * the name is a symlink pointing to a non-existent name.
80  *
81  * I don't know which semantics is the right one, since I have no access
82  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
83  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
84  * "old" one. Personally, I think the new semantics is much more logical.
85  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
86  * file does succeed in both HP-UX and SunOs, but not in Solaris
87  * and in the old Linux semantics.
88  */
89 
90 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
91  * semantics.  See the comments in "open_namei" and "do_link" below.
92  *
93  * [10-Sep-98 Alan Modra] Another symlink change.
94  */
95 
96 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
97  *	inside the path - always follow.
98  *	in the last component in creation/removal/renaming - never follow.
99  *	if LOOKUP_FOLLOW passed - follow.
100  *	if the pathname has trailing slashes - follow.
101  *	otherwise - don't follow.
102  * (applied in that order).
103  *
104  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
105  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
106  * During the 2.4 we need to fix the userland stuff depending on it -
107  * hopefully we will be able to get rid of that wart in 2.5. So far only
108  * XEmacs seems to be relying on it...
109  */
110 /*
111  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
112  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
113  * any extra contention...
114  */
115 
116 /* In order to reduce some races, while at the same time doing additional
117  * checking and hopefully speeding things up, we copy filenames to the
118  * kernel data space before using them..
119  *
120  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
121  * PATH_MAX includes the nul terminator --RR.
122  */
123 
124 #define EMBEDDED_NAME_MAX	(PATH_MAX - offsetof(struct filename, iname))
125 
126 struct filename *
127 getname_flags(const char __user *filename, int flags, int *empty)
128 {
129 	struct filename *result;
130 	char *kname;
131 	int len;
132 
133 	result = audit_reusename(filename);
134 	if (result)
135 		return result;
136 
137 	result = __getname();
138 	if (unlikely(!result))
139 		return ERR_PTR(-ENOMEM);
140 
141 	/*
142 	 * First, try to embed the struct filename inside the names_cache
143 	 * allocation
144 	 */
145 	kname = (char *)result->iname;
146 	result->name = kname;
147 
148 	len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
149 	if (unlikely(len < 0)) {
150 		__putname(result);
151 		return ERR_PTR(len);
152 	}
153 
154 	/*
155 	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
156 	 * separate struct filename so we can dedicate the entire
157 	 * names_cache allocation for the pathname, and re-do the copy from
158 	 * userland.
159 	 */
160 	if (unlikely(len == EMBEDDED_NAME_MAX)) {
161 		const size_t size = offsetof(struct filename, iname[1]);
162 		kname = (char *)result;
163 
164 		/*
165 		 * size is chosen that way we to guarantee that
166 		 * result->iname[0] is within the same object and that
167 		 * kname can't be equal to result->iname, no matter what.
168 		 */
169 		result = kzalloc(size, GFP_KERNEL);
170 		if (unlikely(!result)) {
171 			__putname(kname);
172 			return ERR_PTR(-ENOMEM);
173 		}
174 		result->name = kname;
175 		len = strncpy_from_user(kname, filename, PATH_MAX);
176 		if (unlikely(len < 0)) {
177 			__putname(kname);
178 			kfree(result);
179 			return ERR_PTR(len);
180 		}
181 		if (unlikely(len == PATH_MAX)) {
182 			__putname(kname);
183 			kfree(result);
184 			return ERR_PTR(-ENAMETOOLONG);
185 		}
186 	}
187 
188 	result->refcnt = 1;
189 	/* The empty path is special. */
190 	if (unlikely(!len)) {
191 		if (empty)
192 			*empty = 1;
193 		if (!(flags & LOOKUP_EMPTY)) {
194 			putname(result);
195 			return ERR_PTR(-ENOENT);
196 		}
197 	}
198 
199 	result->uptr = filename;
200 	result->aname = NULL;
201 	audit_getname(result);
202 	return result;
203 }
204 
205 struct filename *
206 getname(const char __user * filename)
207 {
208 	return getname_flags(filename, 0, NULL);
209 }
210 
211 struct filename *
212 getname_kernel(const char * filename)
213 {
214 	struct filename *result;
215 	int len = strlen(filename) + 1;
216 
217 	result = __getname();
218 	if (unlikely(!result))
219 		return ERR_PTR(-ENOMEM);
220 
221 	if (len <= EMBEDDED_NAME_MAX) {
222 		result->name = (char *)result->iname;
223 	} else if (len <= PATH_MAX) {
224 		struct filename *tmp;
225 
226 		tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
227 		if (unlikely(!tmp)) {
228 			__putname(result);
229 			return ERR_PTR(-ENOMEM);
230 		}
231 		tmp->name = (char *)result;
232 		result = tmp;
233 	} else {
234 		__putname(result);
235 		return ERR_PTR(-ENAMETOOLONG);
236 	}
237 	memcpy((char *)result->name, filename, len);
238 	result->uptr = NULL;
239 	result->aname = NULL;
240 	result->refcnt = 1;
241 	audit_getname(result);
242 
243 	return result;
244 }
245 
246 void putname(struct filename *name)
247 {
248 	BUG_ON(name->refcnt <= 0);
249 
250 	if (--name->refcnt > 0)
251 		return;
252 
253 	if (name->name != name->iname) {
254 		__putname(name->name);
255 		kfree(name);
256 	} else
257 		__putname(name);
258 }
259 
260 static int check_acl(struct inode *inode, int mask)
261 {
262 #ifdef CONFIG_FS_POSIX_ACL
263 	struct posix_acl *acl;
264 
265 	if (mask & MAY_NOT_BLOCK) {
266 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
267 	        if (!acl)
268 	                return -EAGAIN;
269 		/* no ->get_acl() calls in RCU mode... */
270 		if (is_uncached_acl(acl))
271 			return -ECHILD;
272 	        return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
273 	}
274 
275 	acl = get_acl(inode, ACL_TYPE_ACCESS);
276 	if (IS_ERR(acl))
277 		return PTR_ERR(acl);
278 	if (acl) {
279 	        int error = posix_acl_permission(inode, acl, mask);
280 	        posix_acl_release(acl);
281 	        return error;
282 	}
283 #endif
284 
285 	return -EAGAIN;
286 }
287 
288 /*
289  * This does the basic permission checking
290  */
291 static int acl_permission_check(struct inode *inode, int mask)
292 {
293 	unsigned int mode = inode->i_mode;
294 
295 	if (likely(uid_eq(current_fsuid(), inode->i_uid)))
296 		mode >>= 6;
297 	else {
298 		if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
299 			int error = check_acl(inode, mask);
300 			if (error != -EAGAIN)
301 				return error;
302 		}
303 
304 		if (in_group_p(inode->i_gid))
305 			mode >>= 3;
306 	}
307 
308 	/*
309 	 * If the DACs are ok we don't need any capability check.
310 	 */
311 	if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
312 		return 0;
313 	return -EACCES;
314 }
315 
316 /**
317  * generic_permission -  check for access rights on a Posix-like filesystem
318  * @inode:	inode to check access rights for
319  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
320  *
321  * Used to check for read/write/execute permissions on a file.
322  * We use "fsuid" for this, letting us set arbitrary permissions
323  * for filesystem access without changing the "normal" uids which
324  * are used for other things.
325  *
326  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
327  * request cannot be satisfied (eg. requires blocking or too much complexity).
328  * It would then be called again in ref-walk mode.
329  */
330 int generic_permission(struct inode *inode, int mask)
331 {
332 	int ret;
333 
334 	/*
335 	 * Do the basic permission checks.
336 	 */
337 	ret = acl_permission_check(inode, mask);
338 	if (ret != -EACCES)
339 		return ret;
340 
341 	if (S_ISDIR(inode->i_mode)) {
342 		/* DACs are overridable for directories */
343 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
344 			return 0;
345 		if (!(mask & MAY_WRITE))
346 			if (capable_wrt_inode_uidgid(inode,
347 						     CAP_DAC_READ_SEARCH))
348 				return 0;
349 		return -EACCES;
350 	}
351 	/*
352 	 * Read/write DACs are always overridable.
353 	 * Executable DACs are overridable when there is
354 	 * at least one exec bit set.
355 	 */
356 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
357 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
358 			return 0;
359 
360 	/*
361 	 * Searching includes executable on directories, else just read.
362 	 */
363 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
364 	if (mask == MAY_READ)
365 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
366 			return 0;
367 
368 	return -EACCES;
369 }
370 EXPORT_SYMBOL(generic_permission);
371 
372 /*
373  * We _really_ want to just do "generic_permission()" without
374  * even looking at the inode->i_op values. So we keep a cache
375  * flag in inode->i_opflags, that says "this has not special
376  * permission function, use the fast case".
377  */
378 static inline int do_inode_permission(struct inode *inode, int mask)
379 {
380 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
381 		if (likely(inode->i_op->permission))
382 			return inode->i_op->permission(inode, mask);
383 
384 		/* This gets set once for the inode lifetime */
385 		spin_lock(&inode->i_lock);
386 		inode->i_opflags |= IOP_FASTPERM;
387 		spin_unlock(&inode->i_lock);
388 	}
389 	return generic_permission(inode, mask);
390 }
391 
392 /**
393  * __inode_permission - Check for access rights to a given inode
394  * @inode: Inode to check permission on
395  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
396  *
397  * Check for read/write/execute permissions on an inode.
398  *
399  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
400  *
401  * This does not check for a read-only file system.  You probably want
402  * inode_permission().
403  */
404 int __inode_permission(struct inode *inode, int mask)
405 {
406 	int retval;
407 
408 	if (unlikely(mask & MAY_WRITE)) {
409 		/*
410 		 * Nobody gets write access to an immutable file.
411 		 */
412 		if (IS_IMMUTABLE(inode))
413 			return -EPERM;
414 
415 		/*
416 		 * Updating mtime will likely cause i_uid and i_gid to be
417 		 * written back improperly if their true value is unknown
418 		 * to the vfs.
419 		 */
420 		if (HAS_UNMAPPED_ID(inode))
421 			return -EACCES;
422 	}
423 
424 	retval = do_inode_permission(inode, mask);
425 	if (retval)
426 		return retval;
427 
428 	retval = devcgroup_inode_permission(inode, mask);
429 	if (retval)
430 		return retval;
431 
432 	return security_inode_permission(inode, mask);
433 }
434 EXPORT_SYMBOL(__inode_permission);
435 
436 /**
437  * sb_permission - Check superblock-level permissions
438  * @sb: Superblock of inode to check permission on
439  * @inode: Inode to check permission on
440  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
441  *
442  * Separate out file-system wide checks from inode-specific permission checks.
443  */
444 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
445 {
446 	if (unlikely(mask & MAY_WRITE)) {
447 		umode_t mode = inode->i_mode;
448 
449 		/* Nobody gets write access to a read-only fs. */
450 		if ((sb->s_flags & MS_RDONLY) &&
451 		    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
452 			return -EROFS;
453 	}
454 	return 0;
455 }
456 
457 /**
458  * inode_permission - Check for access rights to a given inode
459  * @inode: Inode to check permission on
460  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
461  *
462  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
463  * this, letting us set arbitrary permissions for filesystem access without
464  * changing the "normal" UIDs which are used for other things.
465  *
466  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
467  */
468 int inode_permission(struct inode *inode, int mask)
469 {
470 	int retval;
471 
472 	retval = sb_permission(inode->i_sb, inode, mask);
473 	if (retval)
474 		return retval;
475 	return __inode_permission(inode, mask);
476 }
477 EXPORT_SYMBOL(inode_permission);
478 
479 /**
480  * path_get - get a reference to a path
481  * @path: path to get the reference to
482  *
483  * Given a path increment the reference count to the dentry and the vfsmount.
484  */
485 void path_get(const struct path *path)
486 {
487 	mntget(path->mnt);
488 	dget(path->dentry);
489 }
490 EXPORT_SYMBOL(path_get);
491 
492 /**
493  * path_put - put a reference to a path
494  * @path: path to put the reference to
495  *
496  * Given a path decrement the reference count to the dentry and the vfsmount.
497  */
498 void path_put(const struct path *path)
499 {
500 	dput(path->dentry);
501 	mntput(path->mnt);
502 }
503 EXPORT_SYMBOL(path_put);
504 
505 #define EMBEDDED_LEVELS 2
506 struct nameidata {
507 	struct path	path;
508 	struct qstr	last;
509 	struct path	root;
510 	struct inode	*inode; /* path.dentry.d_inode */
511 	unsigned int	flags;
512 	unsigned	seq, m_seq;
513 	int		last_type;
514 	unsigned	depth;
515 	int		total_link_count;
516 	struct saved {
517 		struct path link;
518 		struct delayed_call done;
519 		const char *name;
520 		unsigned seq;
521 	} *stack, internal[EMBEDDED_LEVELS];
522 	struct filename	*name;
523 	struct nameidata *saved;
524 	struct inode	*link_inode;
525 	unsigned	root_seq;
526 	int		dfd;
527 };
528 
529 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
530 {
531 	struct nameidata *old = current->nameidata;
532 	p->stack = p->internal;
533 	p->dfd = dfd;
534 	p->name = name;
535 	p->total_link_count = old ? old->total_link_count : 0;
536 	p->saved = old;
537 	current->nameidata = p;
538 }
539 
540 static void restore_nameidata(void)
541 {
542 	struct nameidata *now = current->nameidata, *old = now->saved;
543 
544 	current->nameidata = old;
545 	if (old)
546 		old->total_link_count = now->total_link_count;
547 	if (now->stack != now->internal)
548 		kfree(now->stack);
549 }
550 
551 static int __nd_alloc_stack(struct nameidata *nd)
552 {
553 	struct saved *p;
554 
555 	if (nd->flags & LOOKUP_RCU) {
556 		p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
557 				  GFP_ATOMIC);
558 		if (unlikely(!p))
559 			return -ECHILD;
560 	} else {
561 		p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
562 				  GFP_KERNEL);
563 		if (unlikely(!p))
564 			return -ENOMEM;
565 	}
566 	memcpy(p, nd->internal, sizeof(nd->internal));
567 	nd->stack = p;
568 	return 0;
569 }
570 
571 /**
572  * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
573  * @path: nameidate to verify
574  *
575  * Rename can sometimes move a file or directory outside of a bind
576  * mount, path_connected allows those cases to be detected.
577  */
578 static bool path_connected(const struct path *path)
579 {
580 	struct vfsmount *mnt = path->mnt;
581 
582 	/* Only bind mounts can have disconnected paths */
583 	if (mnt->mnt_root == mnt->mnt_sb->s_root)
584 		return true;
585 
586 	return is_subdir(path->dentry, mnt->mnt_root);
587 }
588 
589 static inline int nd_alloc_stack(struct nameidata *nd)
590 {
591 	if (likely(nd->depth != EMBEDDED_LEVELS))
592 		return 0;
593 	if (likely(nd->stack != nd->internal))
594 		return 0;
595 	return __nd_alloc_stack(nd);
596 }
597 
598 static void drop_links(struct nameidata *nd)
599 {
600 	int i = nd->depth;
601 	while (i--) {
602 		struct saved *last = nd->stack + i;
603 		do_delayed_call(&last->done);
604 		clear_delayed_call(&last->done);
605 	}
606 }
607 
608 static void terminate_walk(struct nameidata *nd)
609 {
610 	drop_links(nd);
611 	if (!(nd->flags & LOOKUP_RCU)) {
612 		int i;
613 		path_put(&nd->path);
614 		for (i = 0; i < nd->depth; i++)
615 			path_put(&nd->stack[i].link);
616 		if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
617 			path_put(&nd->root);
618 			nd->root.mnt = NULL;
619 		}
620 	} else {
621 		nd->flags &= ~LOOKUP_RCU;
622 		if (!(nd->flags & LOOKUP_ROOT))
623 			nd->root.mnt = NULL;
624 		rcu_read_unlock();
625 	}
626 	nd->depth = 0;
627 }
628 
629 /* path_put is needed afterwards regardless of success or failure */
630 static bool legitimize_path(struct nameidata *nd,
631 			    struct path *path, unsigned seq)
632 {
633 	int res = __legitimize_mnt(path->mnt, nd->m_seq);
634 	if (unlikely(res)) {
635 		if (res > 0)
636 			path->mnt = NULL;
637 		path->dentry = NULL;
638 		return false;
639 	}
640 	if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
641 		path->dentry = NULL;
642 		return false;
643 	}
644 	return !read_seqcount_retry(&path->dentry->d_seq, seq);
645 }
646 
647 static bool legitimize_links(struct nameidata *nd)
648 {
649 	int i;
650 	for (i = 0; i < nd->depth; i++) {
651 		struct saved *last = nd->stack + i;
652 		if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
653 			drop_links(nd);
654 			nd->depth = i + 1;
655 			return false;
656 		}
657 	}
658 	return true;
659 }
660 
661 /*
662  * Path walking has 2 modes, rcu-walk and ref-walk (see
663  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
664  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
665  * normal reference counts on dentries and vfsmounts to transition to ref-walk
666  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
667  * got stuck, so ref-walk may continue from there. If this is not successful
668  * (eg. a seqcount has changed), then failure is returned and it's up to caller
669  * to restart the path walk from the beginning in ref-walk mode.
670  */
671 
672 /**
673  * unlazy_walk - try to switch to ref-walk mode.
674  * @nd: nameidata pathwalk data
675  * @dentry: child of nd->path.dentry or NULL
676  * @seq: seq number to check dentry against
677  * Returns: 0 on success, -ECHILD on failure
678  *
679  * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
680  * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
681  * @nd or NULL.  Must be called from rcu-walk context.
682  * Nothing should touch nameidata between unlazy_walk() failure and
683  * terminate_walk().
684  */
685 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry, unsigned seq)
686 {
687 	struct dentry *parent = nd->path.dentry;
688 
689 	BUG_ON(!(nd->flags & LOOKUP_RCU));
690 
691 	nd->flags &= ~LOOKUP_RCU;
692 	if (unlikely(!legitimize_links(nd)))
693 		goto out2;
694 	if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
695 		goto out2;
696 	if (unlikely(!lockref_get_not_dead(&parent->d_lockref)))
697 		goto out1;
698 
699 	/*
700 	 * For a negative lookup, the lookup sequence point is the parents
701 	 * sequence point, and it only needs to revalidate the parent dentry.
702 	 *
703 	 * For a positive lookup, we need to move both the parent and the
704 	 * dentry from the RCU domain to be properly refcounted. And the
705 	 * sequence number in the dentry validates *both* dentry counters,
706 	 * since we checked the sequence number of the parent after we got
707 	 * the child sequence number. So we know the parent must still
708 	 * be valid if the child sequence number is still valid.
709 	 */
710 	if (!dentry) {
711 		if (read_seqcount_retry(&parent->d_seq, nd->seq))
712 			goto out;
713 		BUG_ON(nd->inode != parent->d_inode);
714 	} else {
715 		if (!lockref_get_not_dead(&dentry->d_lockref))
716 			goto out;
717 		if (read_seqcount_retry(&dentry->d_seq, seq))
718 			goto drop_dentry;
719 	}
720 
721 	/*
722 	 * Sequence counts matched. Now make sure that the root is
723 	 * still valid and get it if required.
724 	 */
725 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
726 		if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) {
727 			rcu_read_unlock();
728 			dput(dentry);
729 			return -ECHILD;
730 		}
731 	}
732 
733 	rcu_read_unlock();
734 	return 0;
735 
736 drop_dentry:
737 	rcu_read_unlock();
738 	dput(dentry);
739 	goto drop_root_mnt;
740 out2:
741 	nd->path.mnt = NULL;
742 out1:
743 	nd->path.dentry = NULL;
744 out:
745 	rcu_read_unlock();
746 drop_root_mnt:
747 	if (!(nd->flags & LOOKUP_ROOT))
748 		nd->root.mnt = NULL;
749 	return -ECHILD;
750 }
751 
752 static int unlazy_link(struct nameidata *nd, struct path *link, unsigned seq)
753 {
754 	if (unlikely(!legitimize_path(nd, link, seq))) {
755 		drop_links(nd);
756 		nd->depth = 0;
757 		nd->flags &= ~LOOKUP_RCU;
758 		nd->path.mnt = NULL;
759 		nd->path.dentry = NULL;
760 		if (!(nd->flags & LOOKUP_ROOT))
761 			nd->root.mnt = NULL;
762 		rcu_read_unlock();
763 	} else if (likely(unlazy_walk(nd, NULL, 0)) == 0) {
764 		return 0;
765 	}
766 	path_put(link);
767 	return -ECHILD;
768 }
769 
770 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
771 {
772 	return dentry->d_op->d_revalidate(dentry, flags);
773 }
774 
775 /**
776  * complete_walk - successful completion of path walk
777  * @nd:  pointer nameidata
778  *
779  * If we had been in RCU mode, drop out of it and legitimize nd->path.
780  * Revalidate the final result, unless we'd already done that during
781  * the path walk or the filesystem doesn't ask for it.  Return 0 on
782  * success, -error on failure.  In case of failure caller does not
783  * need to drop nd->path.
784  */
785 static int complete_walk(struct nameidata *nd)
786 {
787 	struct dentry *dentry = nd->path.dentry;
788 	int status;
789 
790 	if (nd->flags & LOOKUP_RCU) {
791 		if (!(nd->flags & LOOKUP_ROOT))
792 			nd->root.mnt = NULL;
793 		if (unlikely(unlazy_walk(nd, NULL, 0)))
794 			return -ECHILD;
795 	}
796 
797 	if (likely(!(nd->flags & LOOKUP_JUMPED)))
798 		return 0;
799 
800 	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
801 		return 0;
802 
803 	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
804 	if (status > 0)
805 		return 0;
806 
807 	if (!status)
808 		status = -ESTALE;
809 
810 	return status;
811 }
812 
813 static void set_root(struct nameidata *nd)
814 {
815 	struct fs_struct *fs = current->fs;
816 
817 	if (nd->flags & LOOKUP_RCU) {
818 		unsigned seq;
819 
820 		do {
821 			seq = read_seqcount_begin(&fs->seq);
822 			nd->root = fs->root;
823 			nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
824 		} while (read_seqcount_retry(&fs->seq, seq));
825 	} else {
826 		get_fs_root(fs, &nd->root);
827 	}
828 }
829 
830 static void path_put_conditional(struct path *path, struct nameidata *nd)
831 {
832 	dput(path->dentry);
833 	if (path->mnt != nd->path.mnt)
834 		mntput(path->mnt);
835 }
836 
837 static inline void path_to_nameidata(const struct path *path,
838 					struct nameidata *nd)
839 {
840 	if (!(nd->flags & LOOKUP_RCU)) {
841 		dput(nd->path.dentry);
842 		if (nd->path.mnt != path->mnt)
843 			mntput(nd->path.mnt);
844 	}
845 	nd->path.mnt = path->mnt;
846 	nd->path.dentry = path->dentry;
847 }
848 
849 static int nd_jump_root(struct nameidata *nd)
850 {
851 	if (nd->flags & LOOKUP_RCU) {
852 		struct dentry *d;
853 		nd->path = nd->root;
854 		d = nd->path.dentry;
855 		nd->inode = d->d_inode;
856 		nd->seq = nd->root_seq;
857 		if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
858 			return -ECHILD;
859 	} else {
860 		path_put(&nd->path);
861 		nd->path = nd->root;
862 		path_get(&nd->path);
863 		nd->inode = nd->path.dentry->d_inode;
864 	}
865 	nd->flags |= LOOKUP_JUMPED;
866 	return 0;
867 }
868 
869 /*
870  * Helper to directly jump to a known parsed path from ->get_link,
871  * caller must have taken a reference to path beforehand.
872  */
873 void nd_jump_link(struct path *path)
874 {
875 	struct nameidata *nd = current->nameidata;
876 	path_put(&nd->path);
877 
878 	nd->path = *path;
879 	nd->inode = nd->path.dentry->d_inode;
880 	nd->flags |= LOOKUP_JUMPED;
881 }
882 
883 static inline void put_link(struct nameidata *nd)
884 {
885 	struct saved *last = nd->stack + --nd->depth;
886 	do_delayed_call(&last->done);
887 	if (!(nd->flags & LOOKUP_RCU))
888 		path_put(&last->link);
889 }
890 
891 int sysctl_protected_symlinks __read_mostly = 0;
892 int sysctl_protected_hardlinks __read_mostly = 0;
893 
894 /**
895  * may_follow_link - Check symlink following for unsafe situations
896  * @nd: nameidata pathwalk data
897  *
898  * In the case of the sysctl_protected_symlinks sysctl being enabled,
899  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
900  * in a sticky world-writable directory. This is to protect privileged
901  * processes from failing races against path names that may change out
902  * from under them by way of other users creating malicious symlinks.
903  * It will permit symlinks to be followed only when outside a sticky
904  * world-writable directory, or when the uid of the symlink and follower
905  * match, or when the directory owner matches the symlink's owner.
906  *
907  * Returns 0 if following the symlink is allowed, -ve on error.
908  */
909 static inline int may_follow_link(struct nameidata *nd)
910 {
911 	const struct inode *inode;
912 	const struct inode *parent;
913 	kuid_t puid;
914 
915 	if (!sysctl_protected_symlinks)
916 		return 0;
917 
918 	/* Allowed if owner and follower match. */
919 	inode = nd->link_inode;
920 	if (uid_eq(current_cred()->fsuid, inode->i_uid))
921 		return 0;
922 
923 	/* Allowed if parent directory not sticky and world-writable. */
924 	parent = nd->inode;
925 	if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
926 		return 0;
927 
928 	/* Allowed if parent directory and link owner match. */
929 	puid = parent->i_uid;
930 	if (uid_valid(puid) && uid_eq(puid, inode->i_uid))
931 		return 0;
932 
933 	if (nd->flags & LOOKUP_RCU)
934 		return -ECHILD;
935 
936 	audit_log_link_denied("follow_link", &nd->stack[0].link);
937 	return -EACCES;
938 }
939 
940 /**
941  * safe_hardlink_source - Check for safe hardlink conditions
942  * @inode: the source inode to hardlink from
943  *
944  * Return false if at least one of the following conditions:
945  *    - inode is not a regular file
946  *    - inode is setuid
947  *    - inode is setgid and group-exec
948  *    - access failure for read and write
949  *
950  * Otherwise returns true.
951  */
952 static bool safe_hardlink_source(struct inode *inode)
953 {
954 	umode_t mode = inode->i_mode;
955 
956 	/* Special files should not get pinned to the filesystem. */
957 	if (!S_ISREG(mode))
958 		return false;
959 
960 	/* Setuid files should not get pinned to the filesystem. */
961 	if (mode & S_ISUID)
962 		return false;
963 
964 	/* Executable setgid files should not get pinned to the filesystem. */
965 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
966 		return false;
967 
968 	/* Hardlinking to unreadable or unwritable sources is dangerous. */
969 	if (inode_permission(inode, MAY_READ | MAY_WRITE))
970 		return false;
971 
972 	return true;
973 }
974 
975 /**
976  * may_linkat - Check permissions for creating a hardlink
977  * @link: the source to hardlink from
978  *
979  * Block hardlink when all of:
980  *  - sysctl_protected_hardlinks enabled
981  *  - fsuid does not match inode
982  *  - hardlink source is unsafe (see safe_hardlink_source() above)
983  *  - not CAP_FOWNER in a namespace with the inode owner uid mapped
984  *
985  * Returns 0 if successful, -ve on error.
986  */
987 static int may_linkat(struct path *link)
988 {
989 	struct inode *inode;
990 
991 	if (!sysctl_protected_hardlinks)
992 		return 0;
993 
994 	inode = link->dentry->d_inode;
995 
996 	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
997 	 * otherwise, it must be a safe source.
998 	 */
999 	if (inode_owner_or_capable(inode) || safe_hardlink_source(inode))
1000 		return 0;
1001 
1002 	audit_log_link_denied("linkat", link);
1003 	return -EPERM;
1004 }
1005 
1006 static __always_inline
1007 const char *get_link(struct nameidata *nd)
1008 {
1009 	struct saved *last = nd->stack + nd->depth - 1;
1010 	struct dentry *dentry = last->link.dentry;
1011 	struct inode *inode = nd->link_inode;
1012 	int error;
1013 	const char *res;
1014 
1015 	if (!(nd->flags & LOOKUP_RCU)) {
1016 		touch_atime(&last->link);
1017 		cond_resched();
1018 	} else if (atime_needs_update(&last->link, inode)) {
1019 		if (unlikely(unlazy_walk(nd, NULL, 0)))
1020 			return ERR_PTR(-ECHILD);
1021 		touch_atime(&last->link);
1022 	}
1023 
1024 	error = security_inode_follow_link(dentry, inode,
1025 					   nd->flags & LOOKUP_RCU);
1026 	if (unlikely(error))
1027 		return ERR_PTR(error);
1028 
1029 	nd->last_type = LAST_BIND;
1030 	res = inode->i_link;
1031 	if (!res) {
1032 		const char * (*get)(struct dentry *, struct inode *,
1033 				struct delayed_call *);
1034 		get = inode->i_op->get_link;
1035 		if (nd->flags & LOOKUP_RCU) {
1036 			res = get(NULL, inode, &last->done);
1037 			if (res == ERR_PTR(-ECHILD)) {
1038 				if (unlikely(unlazy_walk(nd, NULL, 0)))
1039 					return ERR_PTR(-ECHILD);
1040 				res = get(dentry, inode, &last->done);
1041 			}
1042 		} else {
1043 			res = get(dentry, inode, &last->done);
1044 		}
1045 		if (IS_ERR_OR_NULL(res))
1046 			return res;
1047 	}
1048 	if (*res == '/') {
1049 		if (!nd->root.mnt)
1050 			set_root(nd);
1051 		if (unlikely(nd_jump_root(nd)))
1052 			return ERR_PTR(-ECHILD);
1053 		while (unlikely(*++res == '/'))
1054 			;
1055 	}
1056 	if (!*res)
1057 		res = NULL;
1058 	return res;
1059 }
1060 
1061 /*
1062  * follow_up - Find the mountpoint of path's vfsmount
1063  *
1064  * Given a path, find the mountpoint of its source file system.
1065  * Replace @path with the path of the mountpoint in the parent mount.
1066  * Up is towards /.
1067  *
1068  * Return 1 if we went up a level and 0 if we were already at the
1069  * root.
1070  */
1071 int follow_up(struct path *path)
1072 {
1073 	struct mount *mnt = real_mount(path->mnt);
1074 	struct mount *parent;
1075 	struct dentry *mountpoint;
1076 
1077 	read_seqlock_excl(&mount_lock);
1078 	parent = mnt->mnt_parent;
1079 	if (parent == mnt) {
1080 		read_sequnlock_excl(&mount_lock);
1081 		return 0;
1082 	}
1083 	mntget(&parent->mnt);
1084 	mountpoint = dget(mnt->mnt_mountpoint);
1085 	read_sequnlock_excl(&mount_lock);
1086 	dput(path->dentry);
1087 	path->dentry = mountpoint;
1088 	mntput(path->mnt);
1089 	path->mnt = &parent->mnt;
1090 	return 1;
1091 }
1092 EXPORT_SYMBOL(follow_up);
1093 
1094 /*
1095  * Perform an automount
1096  * - return -EISDIR to tell follow_managed() to stop and return the path we
1097  *   were called with.
1098  */
1099 static int follow_automount(struct path *path, struct nameidata *nd,
1100 			    bool *need_mntput)
1101 {
1102 	struct vfsmount *mnt;
1103 	const struct cred *old_cred;
1104 	int err;
1105 
1106 	if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1107 		return -EREMOTE;
1108 
1109 	/* We don't want to mount if someone's just doing a stat -
1110 	 * unless they're stat'ing a directory and appended a '/' to
1111 	 * the name.
1112 	 *
1113 	 * We do, however, want to mount if someone wants to open or
1114 	 * create a file of any type under the mountpoint, wants to
1115 	 * traverse through the mountpoint or wants to open the
1116 	 * mounted directory.  Also, autofs may mark negative dentries
1117 	 * as being automount points.  These will need the attentions
1118 	 * of the daemon to instantiate them before they can be used.
1119 	 */
1120 	if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1121 			   LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1122 	    path->dentry->d_inode)
1123 		return -EISDIR;
1124 
1125 	if (path->dentry->d_sb->s_user_ns != &init_user_ns)
1126 		return -EACCES;
1127 
1128 	nd->total_link_count++;
1129 	if (nd->total_link_count >= 40)
1130 		return -ELOOP;
1131 
1132 	old_cred = override_creds(&init_cred);
1133 	mnt = path->dentry->d_op->d_automount(path);
1134 	revert_creds(old_cred);
1135 	if (IS_ERR(mnt)) {
1136 		/*
1137 		 * The filesystem is allowed to return -EISDIR here to indicate
1138 		 * it doesn't want to automount.  For instance, autofs would do
1139 		 * this so that its userspace daemon can mount on this dentry.
1140 		 *
1141 		 * However, we can only permit this if it's a terminal point in
1142 		 * the path being looked up; if it wasn't then the remainder of
1143 		 * the path is inaccessible and we should say so.
1144 		 */
1145 		if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1146 			return -EREMOTE;
1147 		return PTR_ERR(mnt);
1148 	}
1149 
1150 	if (!mnt) /* mount collision */
1151 		return 0;
1152 
1153 	if (!*need_mntput) {
1154 		/* lock_mount() may release path->mnt on error */
1155 		mntget(path->mnt);
1156 		*need_mntput = true;
1157 	}
1158 	err = finish_automount(mnt, path);
1159 
1160 	switch (err) {
1161 	case -EBUSY:
1162 		/* Someone else made a mount here whilst we were busy */
1163 		return 0;
1164 	case 0:
1165 		path_put(path);
1166 		path->mnt = mnt;
1167 		path->dentry = dget(mnt->mnt_root);
1168 		return 0;
1169 	default:
1170 		return err;
1171 	}
1172 
1173 }
1174 
1175 /*
1176  * Handle a dentry that is managed in some way.
1177  * - Flagged for transit management (autofs)
1178  * - Flagged as mountpoint
1179  * - Flagged as automount point
1180  *
1181  * This may only be called in refwalk mode.
1182  *
1183  * Serialization is taken care of in namespace.c
1184  */
1185 static int follow_managed(struct path *path, struct nameidata *nd)
1186 {
1187 	struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1188 	unsigned managed;
1189 	bool need_mntput = false;
1190 	int ret = 0;
1191 
1192 	/* Given that we're not holding a lock here, we retain the value in a
1193 	 * local variable for each dentry as we look at it so that we don't see
1194 	 * the components of that value change under us */
1195 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1196 	       managed &= DCACHE_MANAGED_DENTRY,
1197 	       unlikely(managed != 0)) {
1198 		/* Allow the filesystem to manage the transit without i_mutex
1199 		 * being held. */
1200 		if (managed & DCACHE_MANAGE_TRANSIT) {
1201 			BUG_ON(!path->dentry->d_op);
1202 			BUG_ON(!path->dentry->d_op->d_manage);
1203 			ret = path->dentry->d_op->d_manage(path->dentry, false);
1204 			if (ret < 0)
1205 				break;
1206 		}
1207 
1208 		/* Transit to a mounted filesystem. */
1209 		if (managed & DCACHE_MOUNTED) {
1210 			struct vfsmount *mounted = lookup_mnt(path);
1211 			if (mounted) {
1212 				dput(path->dentry);
1213 				if (need_mntput)
1214 					mntput(path->mnt);
1215 				path->mnt = mounted;
1216 				path->dentry = dget(mounted->mnt_root);
1217 				need_mntput = true;
1218 				continue;
1219 			}
1220 
1221 			/* Something is mounted on this dentry in another
1222 			 * namespace and/or whatever was mounted there in this
1223 			 * namespace got unmounted before lookup_mnt() could
1224 			 * get it */
1225 		}
1226 
1227 		/* Handle an automount point */
1228 		if (managed & DCACHE_NEED_AUTOMOUNT) {
1229 			ret = follow_automount(path, nd, &need_mntput);
1230 			if (ret < 0)
1231 				break;
1232 			continue;
1233 		}
1234 
1235 		/* We didn't change the current path point */
1236 		break;
1237 	}
1238 
1239 	if (need_mntput && path->mnt == mnt)
1240 		mntput(path->mnt);
1241 	if (ret == -EISDIR || !ret)
1242 		ret = 1;
1243 	if (need_mntput)
1244 		nd->flags |= LOOKUP_JUMPED;
1245 	if (unlikely(ret < 0))
1246 		path_put_conditional(path, nd);
1247 	return ret;
1248 }
1249 
1250 int follow_down_one(struct path *path)
1251 {
1252 	struct vfsmount *mounted;
1253 
1254 	mounted = lookup_mnt(path);
1255 	if (mounted) {
1256 		dput(path->dentry);
1257 		mntput(path->mnt);
1258 		path->mnt = mounted;
1259 		path->dentry = dget(mounted->mnt_root);
1260 		return 1;
1261 	}
1262 	return 0;
1263 }
1264 EXPORT_SYMBOL(follow_down_one);
1265 
1266 static inline int managed_dentry_rcu(struct dentry *dentry)
1267 {
1268 	return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1269 		dentry->d_op->d_manage(dentry, true) : 0;
1270 }
1271 
1272 /*
1273  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1274  * we meet a managed dentry that would need blocking.
1275  */
1276 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1277 			       struct inode **inode, unsigned *seqp)
1278 {
1279 	for (;;) {
1280 		struct mount *mounted;
1281 		/*
1282 		 * Don't forget we might have a non-mountpoint managed dentry
1283 		 * that wants to block transit.
1284 		 */
1285 		switch (managed_dentry_rcu(path->dentry)) {
1286 		case -ECHILD:
1287 		default:
1288 			return false;
1289 		case -EISDIR:
1290 			return true;
1291 		case 0:
1292 			break;
1293 		}
1294 
1295 		if (!d_mountpoint(path->dentry))
1296 			return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1297 
1298 		mounted = __lookup_mnt(path->mnt, path->dentry);
1299 		if (!mounted)
1300 			break;
1301 		path->mnt = &mounted->mnt;
1302 		path->dentry = mounted->mnt.mnt_root;
1303 		nd->flags |= LOOKUP_JUMPED;
1304 		*seqp = read_seqcount_begin(&path->dentry->d_seq);
1305 		/*
1306 		 * Update the inode too. We don't need to re-check the
1307 		 * dentry sequence number here after this d_inode read,
1308 		 * because a mount-point is always pinned.
1309 		 */
1310 		*inode = path->dentry->d_inode;
1311 	}
1312 	return !read_seqretry(&mount_lock, nd->m_seq) &&
1313 		!(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1314 }
1315 
1316 static int follow_dotdot_rcu(struct nameidata *nd)
1317 {
1318 	struct inode *inode = nd->inode;
1319 
1320 	while (1) {
1321 		if (path_equal(&nd->path, &nd->root))
1322 			break;
1323 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1324 			struct dentry *old = nd->path.dentry;
1325 			struct dentry *parent = old->d_parent;
1326 			unsigned seq;
1327 
1328 			inode = parent->d_inode;
1329 			seq = read_seqcount_begin(&parent->d_seq);
1330 			if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1331 				return -ECHILD;
1332 			nd->path.dentry = parent;
1333 			nd->seq = seq;
1334 			if (unlikely(!path_connected(&nd->path)))
1335 				return -ENOENT;
1336 			break;
1337 		} else {
1338 			struct mount *mnt = real_mount(nd->path.mnt);
1339 			struct mount *mparent = mnt->mnt_parent;
1340 			struct dentry *mountpoint = mnt->mnt_mountpoint;
1341 			struct inode *inode2 = mountpoint->d_inode;
1342 			unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1343 			if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1344 				return -ECHILD;
1345 			if (&mparent->mnt == nd->path.mnt)
1346 				break;
1347 			/* we know that mountpoint was pinned */
1348 			nd->path.dentry = mountpoint;
1349 			nd->path.mnt = &mparent->mnt;
1350 			inode = inode2;
1351 			nd->seq = seq;
1352 		}
1353 	}
1354 	while (unlikely(d_mountpoint(nd->path.dentry))) {
1355 		struct mount *mounted;
1356 		mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1357 		if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1358 			return -ECHILD;
1359 		if (!mounted)
1360 			break;
1361 		nd->path.mnt = &mounted->mnt;
1362 		nd->path.dentry = mounted->mnt.mnt_root;
1363 		inode = nd->path.dentry->d_inode;
1364 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1365 	}
1366 	nd->inode = inode;
1367 	return 0;
1368 }
1369 
1370 /*
1371  * Follow down to the covering mount currently visible to userspace.  At each
1372  * point, the filesystem owning that dentry may be queried as to whether the
1373  * caller is permitted to proceed or not.
1374  */
1375 int follow_down(struct path *path)
1376 {
1377 	unsigned managed;
1378 	int ret;
1379 
1380 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1381 	       unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1382 		/* Allow the filesystem to manage the transit without i_mutex
1383 		 * being held.
1384 		 *
1385 		 * We indicate to the filesystem if someone is trying to mount
1386 		 * something here.  This gives autofs the chance to deny anyone
1387 		 * other than its daemon the right to mount on its
1388 		 * superstructure.
1389 		 *
1390 		 * The filesystem may sleep at this point.
1391 		 */
1392 		if (managed & DCACHE_MANAGE_TRANSIT) {
1393 			BUG_ON(!path->dentry->d_op);
1394 			BUG_ON(!path->dentry->d_op->d_manage);
1395 			ret = path->dentry->d_op->d_manage(
1396 				path->dentry, false);
1397 			if (ret < 0)
1398 				return ret == -EISDIR ? 0 : ret;
1399 		}
1400 
1401 		/* Transit to a mounted filesystem. */
1402 		if (managed & DCACHE_MOUNTED) {
1403 			struct vfsmount *mounted = lookup_mnt(path);
1404 			if (!mounted)
1405 				break;
1406 			dput(path->dentry);
1407 			mntput(path->mnt);
1408 			path->mnt = mounted;
1409 			path->dentry = dget(mounted->mnt_root);
1410 			continue;
1411 		}
1412 
1413 		/* Don't handle automount points here */
1414 		break;
1415 	}
1416 	return 0;
1417 }
1418 EXPORT_SYMBOL(follow_down);
1419 
1420 /*
1421  * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1422  */
1423 static void follow_mount(struct path *path)
1424 {
1425 	while (d_mountpoint(path->dentry)) {
1426 		struct vfsmount *mounted = lookup_mnt(path);
1427 		if (!mounted)
1428 			break;
1429 		dput(path->dentry);
1430 		mntput(path->mnt);
1431 		path->mnt = mounted;
1432 		path->dentry = dget(mounted->mnt_root);
1433 	}
1434 }
1435 
1436 static int path_parent_directory(struct path *path)
1437 {
1438 	struct dentry *old = path->dentry;
1439 	/* rare case of legitimate dget_parent()... */
1440 	path->dentry = dget_parent(path->dentry);
1441 	dput(old);
1442 	if (unlikely(!path_connected(path)))
1443 		return -ENOENT;
1444 	return 0;
1445 }
1446 
1447 static int follow_dotdot(struct nameidata *nd)
1448 {
1449 	while(1) {
1450 		if (nd->path.dentry == nd->root.dentry &&
1451 		    nd->path.mnt == nd->root.mnt) {
1452 			break;
1453 		}
1454 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1455 			int ret = path_parent_directory(&nd->path);
1456 			if (ret)
1457 				return ret;
1458 			break;
1459 		}
1460 		if (!follow_up(&nd->path))
1461 			break;
1462 	}
1463 	follow_mount(&nd->path);
1464 	nd->inode = nd->path.dentry->d_inode;
1465 	return 0;
1466 }
1467 
1468 /*
1469  * This looks up the name in dcache and possibly revalidates the found dentry.
1470  * NULL is returned if the dentry does not exist in the cache.
1471  */
1472 static struct dentry *lookup_dcache(const struct qstr *name,
1473 				    struct dentry *dir,
1474 				    unsigned int flags)
1475 {
1476 	struct dentry *dentry;
1477 	int error;
1478 
1479 	dentry = d_lookup(dir, name);
1480 	if (dentry) {
1481 		if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1482 			error = d_revalidate(dentry, flags);
1483 			if (unlikely(error <= 0)) {
1484 				if (!error)
1485 					d_invalidate(dentry);
1486 				dput(dentry);
1487 				return ERR_PTR(error);
1488 			}
1489 		}
1490 	}
1491 	return dentry;
1492 }
1493 
1494 /*
1495  * Call i_op->lookup on the dentry.  The dentry must be negative and
1496  * unhashed.
1497  *
1498  * dir->d_inode->i_mutex must be held
1499  */
1500 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1501 				  unsigned int flags)
1502 {
1503 	struct dentry *old;
1504 
1505 	/* Don't create child dentry for a dead directory. */
1506 	if (unlikely(IS_DEADDIR(dir))) {
1507 		dput(dentry);
1508 		return ERR_PTR(-ENOENT);
1509 	}
1510 
1511 	old = dir->i_op->lookup(dir, dentry, flags);
1512 	if (unlikely(old)) {
1513 		dput(dentry);
1514 		dentry = old;
1515 	}
1516 	return dentry;
1517 }
1518 
1519 static struct dentry *__lookup_hash(const struct qstr *name,
1520 		struct dentry *base, unsigned int flags)
1521 {
1522 	struct dentry *dentry = lookup_dcache(name, base, flags);
1523 
1524 	if (dentry)
1525 		return dentry;
1526 
1527 	dentry = d_alloc(base, name);
1528 	if (unlikely(!dentry))
1529 		return ERR_PTR(-ENOMEM);
1530 
1531 	return lookup_real(base->d_inode, dentry, flags);
1532 }
1533 
1534 static int lookup_fast(struct nameidata *nd,
1535 		       struct path *path, struct inode **inode,
1536 		       unsigned *seqp)
1537 {
1538 	struct vfsmount *mnt = nd->path.mnt;
1539 	struct dentry *dentry, *parent = nd->path.dentry;
1540 	int status = 1;
1541 	int err;
1542 
1543 	/*
1544 	 * Rename seqlock is not required here because in the off chance
1545 	 * of a false negative due to a concurrent rename, the caller is
1546 	 * going to fall back to non-racy lookup.
1547 	 */
1548 	if (nd->flags & LOOKUP_RCU) {
1549 		unsigned seq;
1550 		bool negative;
1551 		dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1552 		if (unlikely(!dentry)) {
1553 			if (unlazy_walk(nd, NULL, 0))
1554 				return -ECHILD;
1555 			return 0;
1556 		}
1557 
1558 		/*
1559 		 * This sequence count validates that the inode matches
1560 		 * the dentry name information from lookup.
1561 		 */
1562 		*inode = d_backing_inode(dentry);
1563 		negative = d_is_negative(dentry);
1564 		if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1565 			return -ECHILD;
1566 
1567 		/*
1568 		 * This sequence count validates that the parent had no
1569 		 * changes while we did the lookup of the dentry above.
1570 		 *
1571 		 * The memory barrier in read_seqcount_begin of child is
1572 		 *  enough, we can use __read_seqcount_retry here.
1573 		 */
1574 		if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1575 			return -ECHILD;
1576 
1577 		*seqp = seq;
1578 		if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
1579 			status = d_revalidate(dentry, nd->flags);
1580 		if (unlikely(status <= 0)) {
1581 			if (unlazy_walk(nd, dentry, seq))
1582 				return -ECHILD;
1583 			if (status == -ECHILD)
1584 				status = d_revalidate(dentry, nd->flags);
1585 		} else {
1586 			/*
1587 			 * Note: do negative dentry check after revalidation in
1588 			 * case that drops it.
1589 			 */
1590 			if (unlikely(negative))
1591 				return -ENOENT;
1592 			path->mnt = mnt;
1593 			path->dentry = dentry;
1594 			if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1595 				return 1;
1596 			if (unlazy_walk(nd, dentry, seq))
1597 				return -ECHILD;
1598 		}
1599 	} else {
1600 		dentry = __d_lookup(parent, &nd->last);
1601 		if (unlikely(!dentry))
1602 			return 0;
1603 		if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
1604 			status = d_revalidate(dentry, nd->flags);
1605 	}
1606 	if (unlikely(status <= 0)) {
1607 		if (!status)
1608 			d_invalidate(dentry);
1609 		dput(dentry);
1610 		return status;
1611 	}
1612 	if (unlikely(d_is_negative(dentry))) {
1613 		dput(dentry);
1614 		return -ENOENT;
1615 	}
1616 
1617 	path->mnt = mnt;
1618 	path->dentry = dentry;
1619 	err = follow_managed(path, nd);
1620 	if (likely(err > 0))
1621 		*inode = d_backing_inode(path->dentry);
1622 	return err;
1623 }
1624 
1625 /* Fast lookup failed, do it the slow way */
1626 static struct dentry *lookup_slow(const struct qstr *name,
1627 				  struct dentry *dir,
1628 				  unsigned int flags)
1629 {
1630 	struct dentry *dentry = ERR_PTR(-ENOENT), *old;
1631 	struct inode *inode = dir->d_inode;
1632 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1633 
1634 	inode_lock_shared(inode);
1635 	/* Don't go there if it's already dead */
1636 	if (unlikely(IS_DEADDIR(inode)))
1637 		goto out;
1638 again:
1639 	dentry = d_alloc_parallel(dir, name, &wq);
1640 	if (IS_ERR(dentry))
1641 		goto out;
1642 	if (unlikely(!d_in_lookup(dentry))) {
1643 		if ((dentry->d_flags & DCACHE_OP_REVALIDATE) &&
1644 		    !(flags & LOOKUP_NO_REVAL)) {
1645 			int error = d_revalidate(dentry, flags);
1646 			if (unlikely(error <= 0)) {
1647 				if (!error) {
1648 					d_invalidate(dentry);
1649 					dput(dentry);
1650 					goto again;
1651 				}
1652 				dput(dentry);
1653 				dentry = ERR_PTR(error);
1654 			}
1655 		}
1656 	} else {
1657 		old = inode->i_op->lookup(inode, dentry, flags);
1658 		d_lookup_done(dentry);
1659 		if (unlikely(old)) {
1660 			dput(dentry);
1661 			dentry = old;
1662 		}
1663 	}
1664 out:
1665 	inode_unlock_shared(inode);
1666 	return dentry;
1667 }
1668 
1669 static inline int may_lookup(struct nameidata *nd)
1670 {
1671 	if (nd->flags & LOOKUP_RCU) {
1672 		int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1673 		if (err != -ECHILD)
1674 			return err;
1675 		if (unlazy_walk(nd, NULL, 0))
1676 			return -ECHILD;
1677 	}
1678 	return inode_permission(nd->inode, MAY_EXEC);
1679 }
1680 
1681 static inline int handle_dots(struct nameidata *nd, int type)
1682 {
1683 	if (type == LAST_DOTDOT) {
1684 		if (!nd->root.mnt)
1685 			set_root(nd);
1686 		if (nd->flags & LOOKUP_RCU) {
1687 			return follow_dotdot_rcu(nd);
1688 		} else
1689 			return follow_dotdot(nd);
1690 	}
1691 	return 0;
1692 }
1693 
1694 static int pick_link(struct nameidata *nd, struct path *link,
1695 		     struct inode *inode, unsigned seq)
1696 {
1697 	int error;
1698 	struct saved *last;
1699 	if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1700 		path_to_nameidata(link, nd);
1701 		return -ELOOP;
1702 	}
1703 	if (!(nd->flags & LOOKUP_RCU)) {
1704 		if (link->mnt == nd->path.mnt)
1705 			mntget(link->mnt);
1706 	}
1707 	error = nd_alloc_stack(nd);
1708 	if (unlikely(error)) {
1709 		if (error == -ECHILD) {
1710 			if (unlikely(unlazy_link(nd, link, seq)))
1711 				return -ECHILD;
1712 			error = nd_alloc_stack(nd);
1713 		}
1714 		if (error) {
1715 			path_put(link);
1716 			return error;
1717 		}
1718 	}
1719 
1720 	last = nd->stack + nd->depth++;
1721 	last->link = *link;
1722 	clear_delayed_call(&last->done);
1723 	nd->link_inode = inode;
1724 	last->seq = seq;
1725 	return 1;
1726 }
1727 
1728 /*
1729  * Do we need to follow links? We _really_ want to be able
1730  * to do this check without having to look at inode->i_op,
1731  * so we keep a cache of "no, this doesn't need follow_link"
1732  * for the common case.
1733  */
1734 static inline int should_follow_link(struct nameidata *nd, struct path *link,
1735 				     int follow,
1736 				     struct inode *inode, unsigned seq)
1737 {
1738 	if (likely(!d_is_symlink(link->dentry)))
1739 		return 0;
1740 	if (!follow)
1741 		return 0;
1742 	/* make sure that d_is_symlink above matches inode */
1743 	if (nd->flags & LOOKUP_RCU) {
1744 		if (read_seqcount_retry(&link->dentry->d_seq, seq))
1745 			return -ECHILD;
1746 	}
1747 	return pick_link(nd, link, inode, seq);
1748 }
1749 
1750 enum {WALK_GET = 1, WALK_PUT = 2};
1751 
1752 static int walk_component(struct nameidata *nd, int flags)
1753 {
1754 	struct path path;
1755 	struct inode *inode;
1756 	unsigned seq;
1757 	int err;
1758 	/*
1759 	 * "." and ".." are special - ".." especially so because it has
1760 	 * to be able to know about the current root directory and
1761 	 * parent relationships.
1762 	 */
1763 	if (unlikely(nd->last_type != LAST_NORM)) {
1764 		err = handle_dots(nd, nd->last_type);
1765 		if (flags & WALK_PUT)
1766 			put_link(nd);
1767 		return err;
1768 	}
1769 	err = lookup_fast(nd, &path, &inode, &seq);
1770 	if (unlikely(err <= 0)) {
1771 		if (err < 0)
1772 			return err;
1773 		path.dentry = lookup_slow(&nd->last, nd->path.dentry,
1774 					  nd->flags);
1775 		if (IS_ERR(path.dentry))
1776 			return PTR_ERR(path.dentry);
1777 
1778 		path.mnt = nd->path.mnt;
1779 		err = follow_managed(&path, nd);
1780 		if (unlikely(err < 0))
1781 			return err;
1782 
1783 		if (unlikely(d_is_negative(path.dentry))) {
1784 			path_to_nameidata(&path, nd);
1785 			return -ENOENT;
1786 		}
1787 
1788 		seq = 0;	/* we are already out of RCU mode */
1789 		inode = d_backing_inode(path.dentry);
1790 	}
1791 
1792 	if (flags & WALK_PUT)
1793 		put_link(nd);
1794 	err = should_follow_link(nd, &path, flags & WALK_GET, inode, seq);
1795 	if (unlikely(err))
1796 		return err;
1797 	path_to_nameidata(&path, nd);
1798 	nd->inode = inode;
1799 	nd->seq = seq;
1800 	return 0;
1801 }
1802 
1803 /*
1804  * We can do the critical dentry name comparison and hashing
1805  * operations one word at a time, but we are limited to:
1806  *
1807  * - Architectures with fast unaligned word accesses. We could
1808  *   do a "get_unaligned()" if this helps and is sufficiently
1809  *   fast.
1810  *
1811  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1812  *   do not trap on the (extremely unlikely) case of a page
1813  *   crossing operation.
1814  *
1815  * - Furthermore, we need an efficient 64-bit compile for the
1816  *   64-bit case in order to generate the "number of bytes in
1817  *   the final mask". Again, that could be replaced with a
1818  *   efficient population count instruction or similar.
1819  */
1820 #ifdef CONFIG_DCACHE_WORD_ACCESS
1821 
1822 #include <asm/word-at-a-time.h>
1823 
1824 #ifdef HASH_MIX
1825 
1826 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1827 
1828 #elif defined(CONFIG_64BIT)
1829 /*
1830  * Register pressure in the mixing function is an issue, particularly
1831  * on 32-bit x86, but almost any function requires one state value and
1832  * one temporary.  Instead, use a function designed for two state values
1833  * and no temporaries.
1834  *
1835  * This function cannot create a collision in only two iterations, so
1836  * we have two iterations to achieve avalanche.  In those two iterations,
1837  * we have six layers of mixing, which is enough to spread one bit's
1838  * influence out to 2^6 = 64 state bits.
1839  *
1840  * Rotate constants are scored by considering either 64 one-bit input
1841  * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
1842  * probability of that delta causing a change to each of the 128 output
1843  * bits, using a sample of random initial states.
1844  *
1845  * The Shannon entropy of the computed probabilities is then summed
1846  * to produce a score.  Ideally, any input change has a 50% chance of
1847  * toggling any given output bit.
1848  *
1849  * Mixing scores (in bits) for (12,45):
1850  * Input delta: 1-bit      2-bit
1851  * 1 round:     713.3    42542.6
1852  * 2 rounds:   2753.7   140389.8
1853  * 3 rounds:   5954.1   233458.2
1854  * 4 rounds:   7862.6   256672.2
1855  * Perfect:    8192     258048
1856  *            (64*128) (64*63/2 * 128)
1857  */
1858 #define HASH_MIX(x, y, a)	\
1859 	(	x ^= (a),	\
1860 	y ^= x,	x = rol64(x,12),\
1861 	x += y,	y = rol64(y,45),\
1862 	y *= 9			)
1863 
1864 /*
1865  * Fold two longs into one 32-bit hash value.  This must be fast, but
1866  * latency isn't quite as critical, as there is a fair bit of additional
1867  * work done before the hash value is used.
1868  */
1869 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1870 {
1871 	y ^= x * GOLDEN_RATIO_64;
1872 	y *= GOLDEN_RATIO_64;
1873 	return y >> 32;
1874 }
1875 
1876 #else	/* 32-bit case */
1877 
1878 /*
1879  * Mixing scores (in bits) for (7,20):
1880  * Input delta: 1-bit      2-bit
1881  * 1 round:     330.3     9201.6
1882  * 2 rounds:   1246.4    25475.4
1883  * 3 rounds:   1907.1    31295.1
1884  * 4 rounds:   2042.3    31718.6
1885  * Perfect:    2048      31744
1886  *            (32*64)   (32*31/2 * 64)
1887  */
1888 #define HASH_MIX(x, y, a)	\
1889 	(	x ^= (a),	\
1890 	y ^= x,	x = rol32(x, 7),\
1891 	x += y,	y = rol32(y,20),\
1892 	y *= 9			)
1893 
1894 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1895 {
1896 	/* Use arch-optimized multiply if one exists */
1897 	return __hash_32(y ^ __hash_32(x));
1898 }
1899 
1900 #endif
1901 
1902 /*
1903  * Return the hash of a string of known length.  This is carfully
1904  * designed to match hash_name(), which is the more critical function.
1905  * In particular, we must end by hashing a final word containing 0..7
1906  * payload bytes, to match the way that hash_name() iterates until it
1907  * finds the delimiter after the name.
1908  */
1909 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1910 {
1911 	unsigned long a, x = 0, y = (unsigned long)salt;
1912 
1913 	for (;;) {
1914 		if (!len)
1915 			goto done;
1916 		a = load_unaligned_zeropad(name);
1917 		if (len < sizeof(unsigned long))
1918 			break;
1919 		HASH_MIX(x, y, a);
1920 		name += sizeof(unsigned long);
1921 		len -= sizeof(unsigned long);
1922 	}
1923 	x ^= a & bytemask_from_count(len);
1924 done:
1925 	return fold_hash(x, y);
1926 }
1927 EXPORT_SYMBOL(full_name_hash);
1928 
1929 /* Return the "hash_len" (hash and length) of a null-terminated string */
1930 u64 hashlen_string(const void *salt, const char *name)
1931 {
1932 	unsigned long a = 0, x = 0, y = (unsigned long)salt;
1933 	unsigned long adata, mask, len;
1934 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1935 
1936 	len = 0;
1937 	goto inside;
1938 
1939 	do {
1940 		HASH_MIX(x, y, a);
1941 		len += sizeof(unsigned long);
1942 inside:
1943 		a = load_unaligned_zeropad(name+len);
1944 	} while (!has_zero(a, &adata, &constants));
1945 
1946 	adata = prep_zero_mask(a, adata, &constants);
1947 	mask = create_zero_mask(adata);
1948 	x ^= a & zero_bytemask(mask);
1949 
1950 	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1951 }
1952 EXPORT_SYMBOL(hashlen_string);
1953 
1954 /*
1955  * Calculate the length and hash of the path component, and
1956  * return the "hash_len" as the result.
1957  */
1958 static inline u64 hash_name(const void *salt, const char *name)
1959 {
1960 	unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
1961 	unsigned long adata, bdata, mask, len;
1962 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1963 
1964 	len = 0;
1965 	goto inside;
1966 
1967 	do {
1968 		HASH_MIX(x, y, a);
1969 		len += sizeof(unsigned long);
1970 inside:
1971 		a = load_unaligned_zeropad(name+len);
1972 		b = a ^ REPEAT_BYTE('/');
1973 	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1974 
1975 	adata = prep_zero_mask(a, adata, &constants);
1976 	bdata = prep_zero_mask(b, bdata, &constants);
1977 	mask = create_zero_mask(adata | bdata);
1978 	x ^= a & zero_bytemask(mask);
1979 
1980 	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1981 }
1982 
1983 #else	/* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
1984 
1985 /* Return the hash of a string of known length */
1986 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1987 {
1988 	unsigned long hash = init_name_hash(salt);
1989 	while (len--)
1990 		hash = partial_name_hash((unsigned char)*name++, hash);
1991 	return end_name_hash(hash);
1992 }
1993 EXPORT_SYMBOL(full_name_hash);
1994 
1995 /* Return the "hash_len" (hash and length) of a null-terminated string */
1996 u64 hashlen_string(const void *salt, const char *name)
1997 {
1998 	unsigned long hash = init_name_hash(salt);
1999 	unsigned long len = 0, c;
2000 
2001 	c = (unsigned char)*name;
2002 	while (c) {
2003 		len++;
2004 		hash = partial_name_hash(c, hash);
2005 		c = (unsigned char)name[len];
2006 	}
2007 	return hashlen_create(end_name_hash(hash), len);
2008 }
2009 EXPORT_SYMBOL(hashlen_string);
2010 
2011 /*
2012  * We know there's a real path component here of at least
2013  * one character.
2014  */
2015 static inline u64 hash_name(const void *salt, const char *name)
2016 {
2017 	unsigned long hash = init_name_hash(salt);
2018 	unsigned long len = 0, c;
2019 
2020 	c = (unsigned char)*name;
2021 	do {
2022 		len++;
2023 		hash = partial_name_hash(c, hash);
2024 		c = (unsigned char)name[len];
2025 	} while (c && c != '/');
2026 	return hashlen_create(end_name_hash(hash), len);
2027 }
2028 
2029 #endif
2030 
2031 /*
2032  * Name resolution.
2033  * This is the basic name resolution function, turning a pathname into
2034  * the final dentry. We expect 'base' to be positive and a directory.
2035  *
2036  * Returns 0 and nd will have valid dentry and mnt on success.
2037  * Returns error and drops reference to input namei data on failure.
2038  */
2039 static int link_path_walk(const char *name, struct nameidata *nd)
2040 {
2041 	int err;
2042 
2043 	while (*name=='/')
2044 		name++;
2045 	if (!*name)
2046 		return 0;
2047 
2048 	/* At this point we know we have a real path component. */
2049 	for(;;) {
2050 		u64 hash_len;
2051 		int type;
2052 
2053 		err = may_lookup(nd);
2054 		if (err)
2055 			return err;
2056 
2057 		hash_len = hash_name(nd->path.dentry, name);
2058 
2059 		type = LAST_NORM;
2060 		if (name[0] == '.') switch (hashlen_len(hash_len)) {
2061 			case 2:
2062 				if (name[1] == '.') {
2063 					type = LAST_DOTDOT;
2064 					nd->flags |= LOOKUP_JUMPED;
2065 				}
2066 				break;
2067 			case 1:
2068 				type = LAST_DOT;
2069 		}
2070 		if (likely(type == LAST_NORM)) {
2071 			struct dentry *parent = nd->path.dentry;
2072 			nd->flags &= ~LOOKUP_JUMPED;
2073 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2074 				struct qstr this = { { .hash_len = hash_len }, .name = name };
2075 				err = parent->d_op->d_hash(parent, &this);
2076 				if (err < 0)
2077 					return err;
2078 				hash_len = this.hash_len;
2079 				name = this.name;
2080 			}
2081 		}
2082 
2083 		nd->last.hash_len = hash_len;
2084 		nd->last.name = name;
2085 		nd->last_type = type;
2086 
2087 		name += hashlen_len(hash_len);
2088 		if (!*name)
2089 			goto OK;
2090 		/*
2091 		 * If it wasn't NUL, we know it was '/'. Skip that
2092 		 * slash, and continue until no more slashes.
2093 		 */
2094 		do {
2095 			name++;
2096 		} while (unlikely(*name == '/'));
2097 		if (unlikely(!*name)) {
2098 OK:
2099 			/* pathname body, done */
2100 			if (!nd->depth)
2101 				return 0;
2102 			name = nd->stack[nd->depth - 1].name;
2103 			/* trailing symlink, done */
2104 			if (!name)
2105 				return 0;
2106 			/* last component of nested symlink */
2107 			err = walk_component(nd, WALK_GET | WALK_PUT);
2108 		} else {
2109 			err = walk_component(nd, WALK_GET);
2110 		}
2111 		if (err < 0)
2112 			return err;
2113 
2114 		if (err) {
2115 			const char *s = get_link(nd);
2116 
2117 			if (IS_ERR(s))
2118 				return PTR_ERR(s);
2119 			err = 0;
2120 			if (unlikely(!s)) {
2121 				/* jumped */
2122 				put_link(nd);
2123 			} else {
2124 				nd->stack[nd->depth - 1].name = name;
2125 				name = s;
2126 				continue;
2127 			}
2128 		}
2129 		if (unlikely(!d_can_lookup(nd->path.dentry))) {
2130 			if (nd->flags & LOOKUP_RCU) {
2131 				if (unlazy_walk(nd, NULL, 0))
2132 					return -ECHILD;
2133 			}
2134 			return -ENOTDIR;
2135 		}
2136 	}
2137 }
2138 
2139 static const char *path_init(struct nameidata *nd, unsigned flags)
2140 {
2141 	int retval = 0;
2142 	const char *s = nd->name->name;
2143 
2144 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
2145 	nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
2146 	nd->depth = 0;
2147 	if (flags & LOOKUP_ROOT) {
2148 		struct dentry *root = nd->root.dentry;
2149 		struct inode *inode = root->d_inode;
2150 		if (*s) {
2151 			if (!d_can_lookup(root))
2152 				return ERR_PTR(-ENOTDIR);
2153 			retval = inode_permission(inode, MAY_EXEC);
2154 			if (retval)
2155 				return ERR_PTR(retval);
2156 		}
2157 		nd->path = nd->root;
2158 		nd->inode = inode;
2159 		if (flags & LOOKUP_RCU) {
2160 			rcu_read_lock();
2161 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2162 			nd->root_seq = nd->seq;
2163 			nd->m_seq = read_seqbegin(&mount_lock);
2164 		} else {
2165 			path_get(&nd->path);
2166 		}
2167 		return s;
2168 	}
2169 
2170 	nd->root.mnt = NULL;
2171 	nd->path.mnt = NULL;
2172 	nd->path.dentry = NULL;
2173 
2174 	nd->m_seq = read_seqbegin(&mount_lock);
2175 	if (*s == '/') {
2176 		if (flags & LOOKUP_RCU)
2177 			rcu_read_lock();
2178 		set_root(nd);
2179 		if (likely(!nd_jump_root(nd)))
2180 			return s;
2181 		nd->root.mnt = NULL;
2182 		rcu_read_unlock();
2183 		return ERR_PTR(-ECHILD);
2184 	} else if (nd->dfd == AT_FDCWD) {
2185 		if (flags & LOOKUP_RCU) {
2186 			struct fs_struct *fs = current->fs;
2187 			unsigned seq;
2188 
2189 			rcu_read_lock();
2190 
2191 			do {
2192 				seq = read_seqcount_begin(&fs->seq);
2193 				nd->path = fs->pwd;
2194 				nd->inode = nd->path.dentry->d_inode;
2195 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2196 			} while (read_seqcount_retry(&fs->seq, seq));
2197 		} else {
2198 			get_fs_pwd(current->fs, &nd->path);
2199 			nd->inode = nd->path.dentry->d_inode;
2200 		}
2201 		return s;
2202 	} else {
2203 		/* Caller must check execute permissions on the starting path component */
2204 		struct fd f = fdget_raw(nd->dfd);
2205 		struct dentry *dentry;
2206 
2207 		if (!f.file)
2208 			return ERR_PTR(-EBADF);
2209 
2210 		dentry = f.file->f_path.dentry;
2211 
2212 		if (*s) {
2213 			if (!d_can_lookup(dentry)) {
2214 				fdput(f);
2215 				return ERR_PTR(-ENOTDIR);
2216 			}
2217 		}
2218 
2219 		nd->path = f.file->f_path;
2220 		if (flags & LOOKUP_RCU) {
2221 			rcu_read_lock();
2222 			nd->inode = nd->path.dentry->d_inode;
2223 			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2224 		} else {
2225 			path_get(&nd->path);
2226 			nd->inode = nd->path.dentry->d_inode;
2227 		}
2228 		fdput(f);
2229 		return s;
2230 	}
2231 }
2232 
2233 static const char *trailing_symlink(struct nameidata *nd)
2234 {
2235 	const char *s;
2236 	int error = may_follow_link(nd);
2237 	if (unlikely(error))
2238 		return ERR_PTR(error);
2239 	nd->flags |= LOOKUP_PARENT;
2240 	nd->stack[0].name = NULL;
2241 	s = get_link(nd);
2242 	return s ? s : "";
2243 }
2244 
2245 static inline int lookup_last(struct nameidata *nd)
2246 {
2247 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2248 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2249 
2250 	nd->flags &= ~LOOKUP_PARENT;
2251 	return walk_component(nd,
2252 			nd->flags & LOOKUP_FOLLOW
2253 				? nd->depth
2254 					? WALK_PUT | WALK_GET
2255 					: WALK_GET
2256 				: 0);
2257 }
2258 
2259 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2260 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2261 {
2262 	const char *s = path_init(nd, flags);
2263 	int err;
2264 
2265 	if (IS_ERR(s))
2266 		return PTR_ERR(s);
2267 	while (!(err = link_path_walk(s, nd))
2268 		&& ((err = lookup_last(nd)) > 0)) {
2269 		s = trailing_symlink(nd);
2270 		if (IS_ERR(s)) {
2271 			err = PTR_ERR(s);
2272 			break;
2273 		}
2274 	}
2275 	if (!err)
2276 		err = complete_walk(nd);
2277 
2278 	if (!err && nd->flags & LOOKUP_DIRECTORY)
2279 		if (!d_can_lookup(nd->path.dentry))
2280 			err = -ENOTDIR;
2281 	if (!err) {
2282 		*path = nd->path;
2283 		nd->path.mnt = NULL;
2284 		nd->path.dentry = NULL;
2285 	}
2286 	terminate_walk(nd);
2287 	return err;
2288 }
2289 
2290 static int filename_lookup(int dfd, struct filename *name, unsigned flags,
2291 			   struct path *path, struct path *root)
2292 {
2293 	int retval;
2294 	struct nameidata nd;
2295 	if (IS_ERR(name))
2296 		return PTR_ERR(name);
2297 	if (unlikely(root)) {
2298 		nd.root = *root;
2299 		flags |= LOOKUP_ROOT;
2300 	}
2301 	set_nameidata(&nd, dfd, name);
2302 	retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2303 	if (unlikely(retval == -ECHILD))
2304 		retval = path_lookupat(&nd, flags, path);
2305 	if (unlikely(retval == -ESTALE))
2306 		retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2307 
2308 	if (likely(!retval))
2309 		audit_inode(name, path->dentry, flags & LOOKUP_PARENT);
2310 	restore_nameidata();
2311 	putname(name);
2312 	return retval;
2313 }
2314 
2315 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2316 static int path_parentat(struct nameidata *nd, unsigned flags,
2317 				struct path *parent)
2318 {
2319 	const char *s = path_init(nd, flags);
2320 	int err;
2321 	if (IS_ERR(s))
2322 		return PTR_ERR(s);
2323 	err = link_path_walk(s, nd);
2324 	if (!err)
2325 		err = complete_walk(nd);
2326 	if (!err) {
2327 		*parent = nd->path;
2328 		nd->path.mnt = NULL;
2329 		nd->path.dentry = NULL;
2330 	}
2331 	terminate_walk(nd);
2332 	return err;
2333 }
2334 
2335 static struct filename *filename_parentat(int dfd, struct filename *name,
2336 				unsigned int flags, struct path *parent,
2337 				struct qstr *last, int *type)
2338 {
2339 	int retval;
2340 	struct nameidata nd;
2341 
2342 	if (IS_ERR(name))
2343 		return name;
2344 	set_nameidata(&nd, dfd, name);
2345 	retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2346 	if (unlikely(retval == -ECHILD))
2347 		retval = path_parentat(&nd, flags, parent);
2348 	if (unlikely(retval == -ESTALE))
2349 		retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2350 	if (likely(!retval)) {
2351 		*last = nd.last;
2352 		*type = nd.last_type;
2353 		audit_inode(name, parent->dentry, LOOKUP_PARENT);
2354 	} else {
2355 		putname(name);
2356 		name = ERR_PTR(retval);
2357 	}
2358 	restore_nameidata();
2359 	return name;
2360 }
2361 
2362 /* does lookup, returns the object with parent locked */
2363 struct dentry *kern_path_locked(const char *name, struct path *path)
2364 {
2365 	struct filename *filename;
2366 	struct dentry *d;
2367 	struct qstr last;
2368 	int type;
2369 
2370 	filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2371 				    &last, &type);
2372 	if (IS_ERR(filename))
2373 		return ERR_CAST(filename);
2374 	if (unlikely(type != LAST_NORM)) {
2375 		path_put(path);
2376 		putname(filename);
2377 		return ERR_PTR(-EINVAL);
2378 	}
2379 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2380 	d = __lookup_hash(&last, path->dentry, 0);
2381 	if (IS_ERR(d)) {
2382 		inode_unlock(path->dentry->d_inode);
2383 		path_put(path);
2384 	}
2385 	putname(filename);
2386 	return d;
2387 }
2388 
2389 int kern_path(const char *name, unsigned int flags, struct path *path)
2390 {
2391 	return filename_lookup(AT_FDCWD, getname_kernel(name),
2392 			       flags, path, NULL);
2393 }
2394 EXPORT_SYMBOL(kern_path);
2395 
2396 /**
2397  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2398  * @dentry:  pointer to dentry of the base directory
2399  * @mnt: pointer to vfs mount of the base directory
2400  * @name: pointer to file name
2401  * @flags: lookup flags
2402  * @path: pointer to struct path to fill
2403  */
2404 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2405 		    const char *name, unsigned int flags,
2406 		    struct path *path)
2407 {
2408 	struct path root = {.mnt = mnt, .dentry = dentry};
2409 	/* the first argument of filename_lookup() is ignored with root */
2410 	return filename_lookup(AT_FDCWD, getname_kernel(name),
2411 			       flags , path, &root);
2412 }
2413 EXPORT_SYMBOL(vfs_path_lookup);
2414 
2415 /**
2416  * lookup_one_len - filesystem helper to lookup single pathname component
2417  * @name:	pathname component to lookup
2418  * @base:	base directory to lookup from
2419  * @len:	maximum length @len should be interpreted to
2420  *
2421  * Note that this routine is purely a helper for filesystem usage and should
2422  * not be called by generic code.
2423  *
2424  * The caller must hold base->i_mutex.
2425  */
2426 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2427 {
2428 	struct qstr this;
2429 	unsigned int c;
2430 	int err;
2431 
2432 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2433 
2434 	this.name = name;
2435 	this.len = len;
2436 	this.hash = full_name_hash(base, name, len);
2437 	if (!len)
2438 		return ERR_PTR(-EACCES);
2439 
2440 	if (unlikely(name[0] == '.')) {
2441 		if (len < 2 || (len == 2 && name[1] == '.'))
2442 			return ERR_PTR(-EACCES);
2443 	}
2444 
2445 	while (len--) {
2446 		c = *(const unsigned char *)name++;
2447 		if (c == '/' || c == '\0')
2448 			return ERR_PTR(-EACCES);
2449 	}
2450 	/*
2451 	 * See if the low-level filesystem might want
2452 	 * to use its own hash..
2453 	 */
2454 	if (base->d_flags & DCACHE_OP_HASH) {
2455 		int err = base->d_op->d_hash(base, &this);
2456 		if (err < 0)
2457 			return ERR_PTR(err);
2458 	}
2459 
2460 	err = inode_permission(base->d_inode, MAY_EXEC);
2461 	if (err)
2462 		return ERR_PTR(err);
2463 
2464 	return __lookup_hash(&this, base, 0);
2465 }
2466 EXPORT_SYMBOL(lookup_one_len);
2467 
2468 /**
2469  * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2470  * @name:	pathname component to lookup
2471  * @base:	base directory to lookup from
2472  * @len:	maximum length @len should be interpreted to
2473  *
2474  * Note that this routine is purely a helper for filesystem usage and should
2475  * not be called by generic code.
2476  *
2477  * Unlike lookup_one_len, it should be called without the parent
2478  * i_mutex held, and will take the i_mutex itself if necessary.
2479  */
2480 struct dentry *lookup_one_len_unlocked(const char *name,
2481 				       struct dentry *base, int len)
2482 {
2483 	struct qstr this;
2484 	unsigned int c;
2485 	int err;
2486 	struct dentry *ret;
2487 
2488 	this.name = name;
2489 	this.len = len;
2490 	this.hash = full_name_hash(base, name, len);
2491 	if (!len)
2492 		return ERR_PTR(-EACCES);
2493 
2494 	if (unlikely(name[0] == '.')) {
2495 		if (len < 2 || (len == 2 && name[1] == '.'))
2496 			return ERR_PTR(-EACCES);
2497 	}
2498 
2499 	while (len--) {
2500 		c = *(const unsigned char *)name++;
2501 		if (c == '/' || c == '\0')
2502 			return ERR_PTR(-EACCES);
2503 	}
2504 	/*
2505 	 * See if the low-level filesystem might want
2506 	 * to use its own hash..
2507 	 */
2508 	if (base->d_flags & DCACHE_OP_HASH) {
2509 		int err = base->d_op->d_hash(base, &this);
2510 		if (err < 0)
2511 			return ERR_PTR(err);
2512 	}
2513 
2514 	err = inode_permission(base->d_inode, MAY_EXEC);
2515 	if (err)
2516 		return ERR_PTR(err);
2517 
2518 	ret = lookup_dcache(&this, base, 0);
2519 	if (!ret)
2520 		ret = lookup_slow(&this, base, 0);
2521 	return ret;
2522 }
2523 EXPORT_SYMBOL(lookup_one_len_unlocked);
2524 
2525 #ifdef CONFIG_UNIX98_PTYS
2526 int path_pts(struct path *path)
2527 {
2528 	/* Find something mounted on "pts" in the same directory as
2529 	 * the input path.
2530 	 */
2531 	struct dentry *child, *parent;
2532 	struct qstr this;
2533 	int ret;
2534 
2535 	ret = path_parent_directory(path);
2536 	if (ret)
2537 		return ret;
2538 
2539 	parent = path->dentry;
2540 	this.name = "pts";
2541 	this.len = 3;
2542 	child = d_hash_and_lookup(parent, &this);
2543 	if (!child)
2544 		return -ENOENT;
2545 
2546 	path->dentry = child;
2547 	dput(parent);
2548 	follow_mount(path);
2549 	return 0;
2550 }
2551 #endif
2552 
2553 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2554 		 struct path *path, int *empty)
2555 {
2556 	return filename_lookup(dfd, getname_flags(name, flags, empty),
2557 			       flags, path, NULL);
2558 }
2559 EXPORT_SYMBOL(user_path_at_empty);
2560 
2561 /*
2562  * NB: most callers don't do anything directly with the reference to the
2563  *     to struct filename, but the nd->last pointer points into the name string
2564  *     allocated by getname. So we must hold the reference to it until all
2565  *     path-walking is complete.
2566  */
2567 static inline struct filename *
2568 user_path_parent(int dfd, const char __user *path,
2569 		 struct path *parent,
2570 		 struct qstr *last,
2571 		 int *type,
2572 		 unsigned int flags)
2573 {
2574 	/* only LOOKUP_REVAL is allowed in extra flags */
2575 	return filename_parentat(dfd, getname(path), flags & LOOKUP_REVAL,
2576 				 parent, last, type);
2577 }
2578 
2579 /**
2580  * mountpoint_last - look up last component for umount
2581  * @nd:   pathwalk nameidata - currently pointing at parent directory of "last"
2582  * @path: pointer to container for result
2583  *
2584  * This is a special lookup_last function just for umount. In this case, we
2585  * need to resolve the path without doing any revalidation.
2586  *
2587  * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2588  * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2589  * in almost all cases, this lookup will be served out of the dcache. The only
2590  * cases where it won't are if nd->last refers to a symlink or the path is
2591  * bogus and it doesn't exist.
2592  *
2593  * Returns:
2594  * -error: if there was an error during lookup. This includes -ENOENT if the
2595  *         lookup found a negative dentry. The nd->path reference will also be
2596  *         put in this case.
2597  *
2598  * 0:      if we successfully resolved nd->path and found it to not to be a
2599  *         symlink that needs to be followed. "path" will also be populated.
2600  *         The nd->path reference will also be put.
2601  *
2602  * 1:      if we successfully resolved nd->last and found it to be a symlink
2603  *         that needs to be followed. "path" will be populated with the path
2604  *         to the link, and nd->path will *not* be put.
2605  */
2606 static int
2607 mountpoint_last(struct nameidata *nd, struct path *path)
2608 {
2609 	int error = 0;
2610 	struct dentry *dentry;
2611 	struct dentry *dir = nd->path.dentry;
2612 
2613 	/* If we're in rcuwalk, drop out of it to handle last component */
2614 	if (nd->flags & LOOKUP_RCU) {
2615 		if (unlazy_walk(nd, NULL, 0))
2616 			return -ECHILD;
2617 	}
2618 
2619 	nd->flags &= ~LOOKUP_PARENT;
2620 
2621 	if (unlikely(nd->last_type != LAST_NORM)) {
2622 		error = handle_dots(nd, nd->last_type);
2623 		if (error)
2624 			return error;
2625 		dentry = dget(nd->path.dentry);
2626 	} else {
2627 		dentry = d_lookup(dir, &nd->last);
2628 		if (!dentry) {
2629 			/*
2630 			 * No cached dentry. Mounted dentries are pinned in the
2631 			 * cache, so that means that this dentry is probably
2632 			 * a symlink or the path doesn't actually point
2633 			 * to a mounted dentry.
2634 			 */
2635 			dentry = lookup_slow(&nd->last, dir,
2636 					     nd->flags | LOOKUP_NO_REVAL);
2637 			if (IS_ERR(dentry))
2638 				return PTR_ERR(dentry);
2639 		}
2640 	}
2641 	if (d_is_negative(dentry)) {
2642 		dput(dentry);
2643 		return -ENOENT;
2644 	}
2645 	if (nd->depth)
2646 		put_link(nd);
2647 	path->dentry = dentry;
2648 	path->mnt = nd->path.mnt;
2649 	error = should_follow_link(nd, path, nd->flags & LOOKUP_FOLLOW,
2650 				   d_backing_inode(dentry), 0);
2651 	if (unlikely(error))
2652 		return error;
2653 	mntget(path->mnt);
2654 	follow_mount(path);
2655 	return 0;
2656 }
2657 
2658 /**
2659  * path_mountpoint - look up a path to be umounted
2660  * @nd:		lookup context
2661  * @flags:	lookup flags
2662  * @path:	pointer to container for result
2663  *
2664  * Look up the given name, but don't attempt to revalidate the last component.
2665  * Returns 0 and "path" will be valid on success; Returns error otherwise.
2666  */
2667 static int
2668 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2669 {
2670 	const char *s = path_init(nd, flags);
2671 	int err;
2672 	if (IS_ERR(s))
2673 		return PTR_ERR(s);
2674 	while (!(err = link_path_walk(s, nd)) &&
2675 		(err = mountpoint_last(nd, path)) > 0) {
2676 		s = trailing_symlink(nd);
2677 		if (IS_ERR(s)) {
2678 			err = PTR_ERR(s);
2679 			break;
2680 		}
2681 	}
2682 	terminate_walk(nd);
2683 	return err;
2684 }
2685 
2686 static int
2687 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2688 			unsigned int flags)
2689 {
2690 	struct nameidata nd;
2691 	int error;
2692 	if (IS_ERR(name))
2693 		return PTR_ERR(name);
2694 	set_nameidata(&nd, dfd, name);
2695 	error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2696 	if (unlikely(error == -ECHILD))
2697 		error = path_mountpoint(&nd, flags, path);
2698 	if (unlikely(error == -ESTALE))
2699 		error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2700 	if (likely(!error))
2701 		audit_inode(name, path->dentry, 0);
2702 	restore_nameidata();
2703 	putname(name);
2704 	return error;
2705 }
2706 
2707 /**
2708  * user_path_mountpoint_at - lookup a path from userland in order to umount it
2709  * @dfd:	directory file descriptor
2710  * @name:	pathname from userland
2711  * @flags:	lookup flags
2712  * @path:	pointer to container to hold result
2713  *
2714  * A umount is a special case for path walking. We're not actually interested
2715  * in the inode in this situation, and ESTALE errors can be a problem. We
2716  * simply want track down the dentry and vfsmount attached at the mountpoint
2717  * and avoid revalidating the last component.
2718  *
2719  * Returns 0 and populates "path" on success.
2720  */
2721 int
2722 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2723 			struct path *path)
2724 {
2725 	return filename_mountpoint(dfd, getname(name), path, flags);
2726 }
2727 
2728 int
2729 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2730 			unsigned int flags)
2731 {
2732 	return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2733 }
2734 EXPORT_SYMBOL(kern_path_mountpoint);
2735 
2736 int __check_sticky(struct inode *dir, struct inode *inode)
2737 {
2738 	kuid_t fsuid = current_fsuid();
2739 
2740 	if (uid_eq(inode->i_uid, fsuid))
2741 		return 0;
2742 	if (uid_eq(dir->i_uid, fsuid))
2743 		return 0;
2744 	return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2745 }
2746 EXPORT_SYMBOL(__check_sticky);
2747 
2748 /*
2749  *	Check whether we can remove a link victim from directory dir, check
2750  *  whether the type of victim is right.
2751  *  1. We can't do it if dir is read-only (done in permission())
2752  *  2. We should have write and exec permissions on dir
2753  *  3. We can't remove anything from append-only dir
2754  *  4. We can't do anything with immutable dir (done in permission())
2755  *  5. If the sticky bit on dir is set we should either
2756  *	a. be owner of dir, or
2757  *	b. be owner of victim, or
2758  *	c. have CAP_FOWNER capability
2759  *  6. If the victim is append-only or immutable we can't do antyhing with
2760  *     links pointing to it.
2761  *  7. If the victim has an unknown uid or gid we can't change the inode.
2762  *  8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2763  *  9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2764  * 10. We can't remove a root or mountpoint.
2765  * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2766  *     nfs_async_unlink().
2767  */
2768 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2769 {
2770 	struct inode *inode = d_backing_inode(victim);
2771 	int error;
2772 
2773 	if (d_is_negative(victim))
2774 		return -ENOENT;
2775 	BUG_ON(!inode);
2776 
2777 	BUG_ON(victim->d_parent->d_inode != dir);
2778 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2779 
2780 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2781 	if (error)
2782 		return error;
2783 	if (IS_APPEND(dir))
2784 		return -EPERM;
2785 
2786 	if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2787 	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode))
2788 		return -EPERM;
2789 	if (isdir) {
2790 		if (!d_is_dir(victim))
2791 			return -ENOTDIR;
2792 		if (IS_ROOT(victim))
2793 			return -EBUSY;
2794 	} else if (d_is_dir(victim))
2795 		return -EISDIR;
2796 	if (IS_DEADDIR(dir))
2797 		return -ENOENT;
2798 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2799 		return -EBUSY;
2800 	return 0;
2801 }
2802 
2803 /*	Check whether we can create an object with dentry child in directory
2804  *  dir.
2805  *  1. We can't do it if child already exists (open has special treatment for
2806  *     this case, but since we are inlined it's OK)
2807  *  2. We can't do it if dir is read-only (done in permission())
2808  *  3. We can't do it if the fs can't represent the fsuid or fsgid.
2809  *  4. We should have write and exec permissions on dir
2810  *  5. We can't do it if dir is immutable (done in permission())
2811  */
2812 static inline int may_create(struct inode *dir, struct dentry *child)
2813 {
2814 	struct user_namespace *s_user_ns;
2815 	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2816 	if (child->d_inode)
2817 		return -EEXIST;
2818 	if (IS_DEADDIR(dir))
2819 		return -ENOENT;
2820 	s_user_ns = dir->i_sb->s_user_ns;
2821 	if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2822 	    !kgid_has_mapping(s_user_ns, current_fsgid()))
2823 		return -EOVERFLOW;
2824 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2825 }
2826 
2827 /*
2828  * p1 and p2 should be directories on the same fs.
2829  */
2830 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2831 {
2832 	struct dentry *p;
2833 
2834 	if (p1 == p2) {
2835 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2836 		return NULL;
2837 	}
2838 
2839 	mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2840 
2841 	p = d_ancestor(p2, p1);
2842 	if (p) {
2843 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2844 		inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2845 		return p;
2846 	}
2847 
2848 	p = d_ancestor(p1, p2);
2849 	if (p) {
2850 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2851 		inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2852 		return p;
2853 	}
2854 
2855 	inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2856 	inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2857 	return NULL;
2858 }
2859 EXPORT_SYMBOL(lock_rename);
2860 
2861 void unlock_rename(struct dentry *p1, struct dentry *p2)
2862 {
2863 	inode_unlock(p1->d_inode);
2864 	if (p1 != p2) {
2865 		inode_unlock(p2->d_inode);
2866 		mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2867 	}
2868 }
2869 EXPORT_SYMBOL(unlock_rename);
2870 
2871 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2872 		bool want_excl)
2873 {
2874 	int error = may_create(dir, dentry);
2875 	if (error)
2876 		return error;
2877 
2878 	if (!dir->i_op->create)
2879 		return -EACCES;	/* shouldn't it be ENOSYS? */
2880 	mode &= S_IALLUGO;
2881 	mode |= S_IFREG;
2882 	error = security_inode_create(dir, dentry, mode);
2883 	if (error)
2884 		return error;
2885 	error = dir->i_op->create(dir, dentry, mode, want_excl);
2886 	if (!error)
2887 		fsnotify_create(dir, dentry);
2888 	return error;
2889 }
2890 EXPORT_SYMBOL(vfs_create);
2891 
2892 bool may_open_dev(const struct path *path)
2893 {
2894 	return !(path->mnt->mnt_flags & MNT_NODEV) &&
2895 		!(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
2896 }
2897 
2898 static int may_open(struct path *path, int acc_mode, int flag)
2899 {
2900 	struct dentry *dentry = path->dentry;
2901 	struct inode *inode = dentry->d_inode;
2902 	int error;
2903 
2904 	if (!inode)
2905 		return -ENOENT;
2906 
2907 	switch (inode->i_mode & S_IFMT) {
2908 	case S_IFLNK:
2909 		return -ELOOP;
2910 	case S_IFDIR:
2911 		if (acc_mode & MAY_WRITE)
2912 			return -EISDIR;
2913 		break;
2914 	case S_IFBLK:
2915 	case S_IFCHR:
2916 		if (!may_open_dev(path))
2917 			return -EACCES;
2918 		/*FALLTHRU*/
2919 	case S_IFIFO:
2920 	case S_IFSOCK:
2921 		flag &= ~O_TRUNC;
2922 		break;
2923 	}
2924 
2925 	error = inode_permission(inode, MAY_OPEN | acc_mode);
2926 	if (error)
2927 		return error;
2928 
2929 	/*
2930 	 * An append-only file must be opened in append mode for writing.
2931 	 */
2932 	if (IS_APPEND(inode)) {
2933 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2934 			return -EPERM;
2935 		if (flag & O_TRUNC)
2936 			return -EPERM;
2937 	}
2938 
2939 	/* O_NOATIME can only be set by the owner or superuser */
2940 	if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2941 		return -EPERM;
2942 
2943 	return 0;
2944 }
2945 
2946 static int handle_truncate(struct file *filp)
2947 {
2948 	struct path *path = &filp->f_path;
2949 	struct inode *inode = path->dentry->d_inode;
2950 	int error = get_write_access(inode);
2951 	if (error)
2952 		return error;
2953 	/*
2954 	 * Refuse to truncate files with mandatory locks held on them.
2955 	 */
2956 	error = locks_verify_locked(filp);
2957 	if (!error)
2958 		error = security_path_truncate(path);
2959 	if (!error) {
2960 		error = do_truncate(path->dentry, 0,
2961 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2962 				    filp);
2963 	}
2964 	put_write_access(inode);
2965 	return error;
2966 }
2967 
2968 static inline int open_to_namei_flags(int flag)
2969 {
2970 	if ((flag & O_ACCMODE) == 3)
2971 		flag--;
2972 	return flag;
2973 }
2974 
2975 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode)
2976 {
2977 	int error = security_path_mknod(dir, dentry, mode, 0);
2978 	if (error)
2979 		return error;
2980 
2981 	error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2982 	if (error)
2983 		return error;
2984 
2985 	return security_inode_create(dir->dentry->d_inode, dentry, mode);
2986 }
2987 
2988 /*
2989  * Attempt to atomically look up, create and open a file from a negative
2990  * dentry.
2991  *
2992  * Returns 0 if successful.  The file will have been created and attached to
2993  * @file by the filesystem calling finish_open().
2994  *
2995  * Returns 1 if the file was looked up only or didn't need creating.  The
2996  * caller will need to perform the open themselves.  @path will have been
2997  * updated to point to the new dentry.  This may be negative.
2998  *
2999  * Returns an error code otherwise.
3000  */
3001 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
3002 			struct path *path, struct file *file,
3003 			const struct open_flags *op,
3004 			int open_flag, umode_t mode,
3005 			int *opened)
3006 {
3007 	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3008 	struct inode *dir =  nd->path.dentry->d_inode;
3009 	int error;
3010 
3011 	if (!(~open_flag & (O_EXCL | O_CREAT)))	/* both O_EXCL and O_CREAT */
3012 		open_flag &= ~O_TRUNC;
3013 
3014 	if (nd->flags & LOOKUP_DIRECTORY)
3015 		open_flag |= O_DIRECTORY;
3016 
3017 	file->f_path.dentry = DENTRY_NOT_SET;
3018 	file->f_path.mnt = nd->path.mnt;
3019 	error = dir->i_op->atomic_open(dir, dentry, file,
3020 				       open_to_namei_flags(open_flag),
3021 				       mode, opened);
3022 	d_lookup_done(dentry);
3023 	if (!error) {
3024 		/*
3025 		 * We didn't have the inode before the open, so check open
3026 		 * permission here.
3027 		 */
3028 		int acc_mode = op->acc_mode;
3029 		if (*opened & FILE_CREATED) {
3030 			WARN_ON(!(open_flag & O_CREAT));
3031 			fsnotify_create(dir, dentry);
3032 			acc_mode = 0;
3033 		}
3034 		error = may_open(&file->f_path, acc_mode, open_flag);
3035 		if (WARN_ON(error > 0))
3036 			error = -EINVAL;
3037 	} else if (error > 0) {
3038 		if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3039 			error = -EIO;
3040 		} else {
3041 			if (file->f_path.dentry) {
3042 				dput(dentry);
3043 				dentry = file->f_path.dentry;
3044 			}
3045 			if (*opened & FILE_CREATED)
3046 				fsnotify_create(dir, dentry);
3047 			if (unlikely(d_is_negative(dentry))) {
3048 				error = -ENOENT;
3049 			} else {
3050 				path->dentry = dentry;
3051 				path->mnt = nd->path.mnt;
3052 				return 1;
3053 			}
3054 		}
3055 	}
3056 	dput(dentry);
3057 	return error;
3058 }
3059 
3060 /*
3061  * Look up and maybe create and open the last component.
3062  *
3063  * Must be called with i_mutex held on parent.
3064  *
3065  * Returns 0 if the file was successfully atomically created (if necessary) and
3066  * opened.  In this case the file will be returned attached to @file.
3067  *
3068  * Returns 1 if the file was not completely opened at this time, though lookups
3069  * and creations will have been performed and the dentry returned in @path will
3070  * be positive upon return if O_CREAT was specified.  If O_CREAT wasn't
3071  * specified then a negative dentry may be returned.
3072  *
3073  * An error code is returned otherwise.
3074  *
3075  * FILE_CREATE will be set in @*opened if the dentry was created and will be
3076  * cleared otherwise prior to returning.
3077  */
3078 static int lookup_open(struct nameidata *nd, struct path *path,
3079 			struct file *file,
3080 			const struct open_flags *op,
3081 			bool got_write, int *opened)
3082 {
3083 	struct dentry *dir = nd->path.dentry;
3084 	struct inode *dir_inode = dir->d_inode;
3085 	int open_flag = op->open_flag;
3086 	struct dentry *dentry;
3087 	int error, create_error = 0;
3088 	umode_t mode = op->mode;
3089 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3090 
3091 	if (unlikely(IS_DEADDIR(dir_inode)))
3092 		return -ENOENT;
3093 
3094 	*opened &= ~FILE_CREATED;
3095 	dentry = d_lookup(dir, &nd->last);
3096 	for (;;) {
3097 		if (!dentry) {
3098 			dentry = d_alloc_parallel(dir, &nd->last, &wq);
3099 			if (IS_ERR(dentry))
3100 				return PTR_ERR(dentry);
3101 		}
3102 		if (d_in_lookup(dentry))
3103 			break;
3104 
3105 		if (!(dentry->d_flags & DCACHE_OP_REVALIDATE))
3106 			break;
3107 
3108 		error = d_revalidate(dentry, nd->flags);
3109 		if (likely(error > 0))
3110 			break;
3111 		if (error)
3112 			goto out_dput;
3113 		d_invalidate(dentry);
3114 		dput(dentry);
3115 		dentry = NULL;
3116 	}
3117 	if (dentry->d_inode) {
3118 		/* Cached positive dentry: will open in f_op->open */
3119 		goto out_no_open;
3120 	}
3121 
3122 	/*
3123 	 * Checking write permission is tricky, bacuse we don't know if we are
3124 	 * going to actually need it: O_CREAT opens should work as long as the
3125 	 * file exists.  But checking existence breaks atomicity.  The trick is
3126 	 * to check access and if not granted clear O_CREAT from the flags.
3127 	 *
3128 	 * Another problem is returing the "right" error value (e.g. for an
3129 	 * O_EXCL open we want to return EEXIST not EROFS).
3130 	 */
3131 	if (open_flag & O_CREAT) {
3132 		if (!IS_POSIXACL(dir->d_inode))
3133 			mode &= ~current_umask();
3134 		if (unlikely(!got_write)) {
3135 			create_error = -EROFS;
3136 			open_flag &= ~O_CREAT;
3137 			if (open_flag & (O_EXCL | O_TRUNC))
3138 				goto no_open;
3139 			/* No side effects, safe to clear O_CREAT */
3140 		} else {
3141 			create_error = may_o_create(&nd->path, dentry, mode);
3142 			if (create_error) {
3143 				open_flag &= ~O_CREAT;
3144 				if (open_flag & O_EXCL)
3145 					goto no_open;
3146 			}
3147 		}
3148 	} else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) &&
3149 		   unlikely(!got_write)) {
3150 		/*
3151 		 * No O_CREATE -> atomicity not a requirement -> fall
3152 		 * back to lookup + open
3153 		 */
3154 		goto no_open;
3155 	}
3156 
3157 	if (dir_inode->i_op->atomic_open) {
3158 		error = atomic_open(nd, dentry, path, file, op, open_flag,
3159 				    mode, opened);
3160 		if (unlikely(error == -ENOENT) && create_error)
3161 			error = create_error;
3162 		return error;
3163 	}
3164 
3165 no_open:
3166 	if (d_in_lookup(dentry)) {
3167 		struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3168 							     nd->flags);
3169 		d_lookup_done(dentry);
3170 		if (unlikely(res)) {
3171 			if (IS_ERR(res)) {
3172 				error = PTR_ERR(res);
3173 				goto out_dput;
3174 			}
3175 			dput(dentry);
3176 			dentry = res;
3177 		}
3178 	}
3179 
3180 	/* Negative dentry, just create the file */
3181 	if (!dentry->d_inode && (open_flag & O_CREAT)) {
3182 		*opened |= FILE_CREATED;
3183 		audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3184 		if (!dir_inode->i_op->create) {
3185 			error = -EACCES;
3186 			goto out_dput;
3187 		}
3188 		error = dir_inode->i_op->create(dir_inode, dentry, mode,
3189 						open_flag & O_EXCL);
3190 		if (error)
3191 			goto out_dput;
3192 		fsnotify_create(dir_inode, dentry);
3193 	}
3194 	if (unlikely(create_error) && !dentry->d_inode) {
3195 		error = create_error;
3196 		goto out_dput;
3197 	}
3198 out_no_open:
3199 	path->dentry = dentry;
3200 	path->mnt = nd->path.mnt;
3201 	return 1;
3202 
3203 out_dput:
3204 	dput(dentry);
3205 	return error;
3206 }
3207 
3208 /*
3209  * Handle the last step of open()
3210  */
3211 static int do_last(struct nameidata *nd,
3212 		   struct file *file, const struct open_flags *op,
3213 		   int *opened)
3214 {
3215 	struct dentry *dir = nd->path.dentry;
3216 	int open_flag = op->open_flag;
3217 	bool will_truncate = (open_flag & O_TRUNC) != 0;
3218 	bool got_write = false;
3219 	int acc_mode = op->acc_mode;
3220 	unsigned seq;
3221 	struct inode *inode;
3222 	struct path path;
3223 	int error;
3224 
3225 	nd->flags &= ~LOOKUP_PARENT;
3226 	nd->flags |= op->intent;
3227 
3228 	if (nd->last_type != LAST_NORM) {
3229 		error = handle_dots(nd, nd->last_type);
3230 		if (unlikely(error))
3231 			return error;
3232 		goto finish_open;
3233 	}
3234 
3235 	if (!(open_flag & O_CREAT)) {
3236 		if (nd->last.name[nd->last.len])
3237 			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3238 		/* we _can_ be in RCU mode here */
3239 		error = lookup_fast(nd, &path, &inode, &seq);
3240 		if (likely(error > 0))
3241 			goto finish_lookup;
3242 
3243 		if (error < 0)
3244 			return error;
3245 
3246 		BUG_ON(nd->inode != dir->d_inode);
3247 		BUG_ON(nd->flags & LOOKUP_RCU);
3248 	} else {
3249 		/* create side of things */
3250 		/*
3251 		 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3252 		 * has been cleared when we got to the last component we are
3253 		 * about to look up
3254 		 */
3255 		error = complete_walk(nd);
3256 		if (error)
3257 			return error;
3258 
3259 		audit_inode(nd->name, dir, LOOKUP_PARENT);
3260 		/* trailing slashes? */
3261 		if (unlikely(nd->last.name[nd->last.len]))
3262 			return -EISDIR;
3263 	}
3264 
3265 	if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3266 		error = mnt_want_write(nd->path.mnt);
3267 		if (!error)
3268 			got_write = true;
3269 		/*
3270 		 * do _not_ fail yet - we might not need that or fail with
3271 		 * a different error; let lookup_open() decide; we'll be
3272 		 * dropping this one anyway.
3273 		 */
3274 	}
3275 	if (open_flag & O_CREAT)
3276 		inode_lock(dir->d_inode);
3277 	else
3278 		inode_lock_shared(dir->d_inode);
3279 	error = lookup_open(nd, &path, file, op, got_write, opened);
3280 	if (open_flag & O_CREAT)
3281 		inode_unlock(dir->d_inode);
3282 	else
3283 		inode_unlock_shared(dir->d_inode);
3284 
3285 	if (error <= 0) {
3286 		if (error)
3287 			goto out;
3288 
3289 		if ((*opened & FILE_CREATED) ||
3290 		    !S_ISREG(file_inode(file)->i_mode))
3291 			will_truncate = false;
3292 
3293 		audit_inode(nd->name, file->f_path.dentry, 0);
3294 		goto opened;
3295 	}
3296 
3297 	if (*opened & FILE_CREATED) {
3298 		/* Don't check for write permission, don't truncate */
3299 		open_flag &= ~O_TRUNC;
3300 		will_truncate = false;
3301 		acc_mode = 0;
3302 		path_to_nameidata(&path, nd);
3303 		goto finish_open_created;
3304 	}
3305 
3306 	/*
3307 	 * If atomic_open() acquired write access it is dropped now due to
3308 	 * possible mount and symlink following (this might be optimized away if
3309 	 * necessary...)
3310 	 */
3311 	if (got_write) {
3312 		mnt_drop_write(nd->path.mnt);
3313 		got_write = false;
3314 	}
3315 
3316 	error = follow_managed(&path, nd);
3317 	if (unlikely(error < 0))
3318 		return error;
3319 
3320 	if (unlikely(d_is_negative(path.dentry))) {
3321 		path_to_nameidata(&path, nd);
3322 		return -ENOENT;
3323 	}
3324 
3325 	/*
3326 	 * create/update audit record if it already exists.
3327 	 */
3328 	audit_inode(nd->name, path.dentry, 0);
3329 
3330 	if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3331 		path_to_nameidata(&path, nd);
3332 		return -EEXIST;
3333 	}
3334 
3335 	seq = 0;	/* out of RCU mode, so the value doesn't matter */
3336 	inode = d_backing_inode(path.dentry);
3337 finish_lookup:
3338 	if (nd->depth)
3339 		put_link(nd);
3340 	error = should_follow_link(nd, &path, nd->flags & LOOKUP_FOLLOW,
3341 				   inode, seq);
3342 	if (unlikely(error))
3343 		return error;
3344 
3345 	path_to_nameidata(&path, nd);
3346 	nd->inode = inode;
3347 	nd->seq = seq;
3348 	/* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
3349 finish_open:
3350 	error = complete_walk(nd);
3351 	if (error)
3352 		return error;
3353 	audit_inode(nd->name, nd->path.dentry, 0);
3354 	error = -EISDIR;
3355 	if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3356 		goto out;
3357 	error = -ENOTDIR;
3358 	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3359 		goto out;
3360 	if (!d_is_reg(nd->path.dentry))
3361 		will_truncate = false;
3362 
3363 	if (will_truncate) {
3364 		error = mnt_want_write(nd->path.mnt);
3365 		if (error)
3366 			goto out;
3367 		got_write = true;
3368 	}
3369 finish_open_created:
3370 	error = may_open(&nd->path, acc_mode, open_flag);
3371 	if (error)
3372 		goto out;
3373 	BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3374 	error = vfs_open(&nd->path, file, current_cred());
3375 	if (error)
3376 		goto out;
3377 	*opened |= FILE_OPENED;
3378 opened:
3379 	error = open_check_o_direct(file);
3380 	if (!error)
3381 		error = ima_file_check(file, op->acc_mode, *opened);
3382 	if (!error && will_truncate)
3383 		error = handle_truncate(file);
3384 out:
3385 	if (unlikely(error) && (*opened & FILE_OPENED))
3386 		fput(file);
3387 	if (unlikely(error > 0)) {
3388 		WARN_ON(1);
3389 		error = -EINVAL;
3390 	}
3391 	if (got_write)
3392 		mnt_drop_write(nd->path.mnt);
3393 	return error;
3394 }
3395 
3396 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3397 		const struct open_flags *op,
3398 		struct file *file, int *opened)
3399 {
3400 	static const struct qstr name = QSTR_INIT("/", 1);
3401 	struct dentry *child;
3402 	struct inode *dir;
3403 	struct path path;
3404 	int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3405 	if (unlikely(error))
3406 		return error;
3407 	error = mnt_want_write(path.mnt);
3408 	if (unlikely(error))
3409 		goto out;
3410 	dir = path.dentry->d_inode;
3411 	/* we want directory to be writable */
3412 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3413 	if (error)
3414 		goto out2;
3415 	if (!dir->i_op->tmpfile) {
3416 		error = -EOPNOTSUPP;
3417 		goto out2;
3418 	}
3419 	child = d_alloc(path.dentry, &name);
3420 	if (unlikely(!child)) {
3421 		error = -ENOMEM;
3422 		goto out2;
3423 	}
3424 	dput(path.dentry);
3425 	path.dentry = child;
3426 	error = dir->i_op->tmpfile(dir, child, op->mode);
3427 	if (error)
3428 		goto out2;
3429 	audit_inode(nd->name, child, 0);
3430 	/* Don't check for other permissions, the inode was just created */
3431 	error = may_open(&path, 0, op->open_flag);
3432 	if (error)
3433 		goto out2;
3434 	file->f_path.mnt = path.mnt;
3435 	error = finish_open(file, child, NULL, opened);
3436 	if (error)
3437 		goto out2;
3438 	error = open_check_o_direct(file);
3439 	if (error) {
3440 		fput(file);
3441 	} else if (!(op->open_flag & O_EXCL)) {
3442 		struct inode *inode = file_inode(file);
3443 		spin_lock(&inode->i_lock);
3444 		inode->i_state |= I_LINKABLE;
3445 		spin_unlock(&inode->i_lock);
3446 	}
3447 out2:
3448 	mnt_drop_write(path.mnt);
3449 out:
3450 	path_put(&path);
3451 	return error;
3452 }
3453 
3454 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3455 {
3456 	struct path path;
3457 	int error = path_lookupat(nd, flags, &path);
3458 	if (!error) {
3459 		audit_inode(nd->name, path.dentry, 0);
3460 		error = vfs_open(&path, file, current_cred());
3461 		path_put(&path);
3462 	}
3463 	return error;
3464 }
3465 
3466 static struct file *path_openat(struct nameidata *nd,
3467 			const struct open_flags *op, unsigned flags)
3468 {
3469 	const char *s;
3470 	struct file *file;
3471 	int opened = 0;
3472 	int error;
3473 
3474 	file = get_empty_filp();
3475 	if (IS_ERR(file))
3476 		return file;
3477 
3478 	file->f_flags = op->open_flag;
3479 
3480 	if (unlikely(file->f_flags & __O_TMPFILE)) {
3481 		error = do_tmpfile(nd, flags, op, file, &opened);
3482 		goto out2;
3483 	}
3484 
3485 	if (unlikely(file->f_flags & O_PATH)) {
3486 		error = do_o_path(nd, flags, file);
3487 		if (!error)
3488 			opened |= FILE_OPENED;
3489 		goto out2;
3490 	}
3491 
3492 	s = path_init(nd, flags);
3493 	if (IS_ERR(s)) {
3494 		put_filp(file);
3495 		return ERR_CAST(s);
3496 	}
3497 	while (!(error = link_path_walk(s, nd)) &&
3498 		(error = do_last(nd, file, op, &opened)) > 0) {
3499 		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3500 		s = trailing_symlink(nd);
3501 		if (IS_ERR(s)) {
3502 			error = PTR_ERR(s);
3503 			break;
3504 		}
3505 	}
3506 	terminate_walk(nd);
3507 out2:
3508 	if (!(opened & FILE_OPENED)) {
3509 		BUG_ON(!error);
3510 		put_filp(file);
3511 	}
3512 	if (unlikely(error)) {
3513 		if (error == -EOPENSTALE) {
3514 			if (flags & LOOKUP_RCU)
3515 				error = -ECHILD;
3516 			else
3517 				error = -ESTALE;
3518 		}
3519 		file = ERR_PTR(error);
3520 	}
3521 	return file;
3522 }
3523 
3524 struct file *do_filp_open(int dfd, struct filename *pathname,
3525 		const struct open_flags *op)
3526 {
3527 	struct nameidata nd;
3528 	int flags = op->lookup_flags;
3529 	struct file *filp;
3530 
3531 	set_nameidata(&nd, dfd, pathname);
3532 	filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3533 	if (unlikely(filp == ERR_PTR(-ECHILD)))
3534 		filp = path_openat(&nd, op, flags);
3535 	if (unlikely(filp == ERR_PTR(-ESTALE)))
3536 		filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3537 	restore_nameidata();
3538 	return filp;
3539 }
3540 
3541 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3542 		const char *name, const struct open_flags *op)
3543 {
3544 	struct nameidata nd;
3545 	struct file *file;
3546 	struct filename *filename;
3547 	int flags = op->lookup_flags | LOOKUP_ROOT;
3548 
3549 	nd.root.mnt = mnt;
3550 	nd.root.dentry = dentry;
3551 
3552 	if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3553 		return ERR_PTR(-ELOOP);
3554 
3555 	filename = getname_kernel(name);
3556 	if (IS_ERR(filename))
3557 		return ERR_CAST(filename);
3558 
3559 	set_nameidata(&nd, -1, filename);
3560 	file = path_openat(&nd, op, flags | LOOKUP_RCU);
3561 	if (unlikely(file == ERR_PTR(-ECHILD)))
3562 		file = path_openat(&nd, op, flags);
3563 	if (unlikely(file == ERR_PTR(-ESTALE)))
3564 		file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3565 	restore_nameidata();
3566 	putname(filename);
3567 	return file;
3568 }
3569 
3570 static struct dentry *filename_create(int dfd, struct filename *name,
3571 				struct path *path, unsigned int lookup_flags)
3572 {
3573 	struct dentry *dentry = ERR_PTR(-EEXIST);
3574 	struct qstr last;
3575 	int type;
3576 	int err2;
3577 	int error;
3578 	bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3579 
3580 	/*
3581 	 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3582 	 * other flags passed in are ignored!
3583 	 */
3584 	lookup_flags &= LOOKUP_REVAL;
3585 
3586 	name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3587 	if (IS_ERR(name))
3588 		return ERR_CAST(name);
3589 
3590 	/*
3591 	 * Yucky last component or no last component at all?
3592 	 * (foo/., foo/.., /////)
3593 	 */
3594 	if (unlikely(type != LAST_NORM))
3595 		goto out;
3596 
3597 	/* don't fail immediately if it's r/o, at least try to report other errors */
3598 	err2 = mnt_want_write(path->mnt);
3599 	/*
3600 	 * Do the final lookup.
3601 	 */
3602 	lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3603 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3604 	dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3605 	if (IS_ERR(dentry))
3606 		goto unlock;
3607 
3608 	error = -EEXIST;
3609 	if (d_is_positive(dentry))
3610 		goto fail;
3611 
3612 	/*
3613 	 * Special case - lookup gave negative, but... we had foo/bar/
3614 	 * From the vfs_mknod() POV we just have a negative dentry -
3615 	 * all is fine. Let's be bastards - you had / on the end, you've
3616 	 * been asking for (non-existent) directory. -ENOENT for you.
3617 	 */
3618 	if (unlikely(!is_dir && last.name[last.len])) {
3619 		error = -ENOENT;
3620 		goto fail;
3621 	}
3622 	if (unlikely(err2)) {
3623 		error = err2;
3624 		goto fail;
3625 	}
3626 	putname(name);
3627 	return dentry;
3628 fail:
3629 	dput(dentry);
3630 	dentry = ERR_PTR(error);
3631 unlock:
3632 	inode_unlock(path->dentry->d_inode);
3633 	if (!err2)
3634 		mnt_drop_write(path->mnt);
3635 out:
3636 	path_put(path);
3637 	putname(name);
3638 	return dentry;
3639 }
3640 
3641 struct dentry *kern_path_create(int dfd, const char *pathname,
3642 				struct path *path, unsigned int lookup_flags)
3643 {
3644 	return filename_create(dfd, getname_kernel(pathname),
3645 				path, lookup_flags);
3646 }
3647 EXPORT_SYMBOL(kern_path_create);
3648 
3649 void done_path_create(struct path *path, struct dentry *dentry)
3650 {
3651 	dput(dentry);
3652 	inode_unlock(path->dentry->d_inode);
3653 	mnt_drop_write(path->mnt);
3654 	path_put(path);
3655 }
3656 EXPORT_SYMBOL(done_path_create);
3657 
3658 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3659 				struct path *path, unsigned int lookup_flags)
3660 {
3661 	return filename_create(dfd, getname(pathname), path, lookup_flags);
3662 }
3663 EXPORT_SYMBOL(user_path_create);
3664 
3665 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3666 {
3667 	int error = may_create(dir, dentry);
3668 
3669 	if (error)
3670 		return error;
3671 
3672 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3673 		return -EPERM;
3674 
3675 	if (!dir->i_op->mknod)
3676 		return -EPERM;
3677 
3678 	error = devcgroup_inode_mknod(mode, dev);
3679 	if (error)
3680 		return error;
3681 
3682 	error = security_inode_mknod(dir, dentry, mode, dev);
3683 	if (error)
3684 		return error;
3685 
3686 	error = dir->i_op->mknod(dir, dentry, mode, dev);
3687 	if (!error)
3688 		fsnotify_create(dir, dentry);
3689 	return error;
3690 }
3691 EXPORT_SYMBOL(vfs_mknod);
3692 
3693 static int may_mknod(umode_t mode)
3694 {
3695 	switch (mode & S_IFMT) {
3696 	case S_IFREG:
3697 	case S_IFCHR:
3698 	case S_IFBLK:
3699 	case S_IFIFO:
3700 	case S_IFSOCK:
3701 	case 0: /* zero mode translates to S_IFREG */
3702 		return 0;
3703 	case S_IFDIR:
3704 		return -EPERM;
3705 	default:
3706 		return -EINVAL;
3707 	}
3708 }
3709 
3710 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3711 		unsigned, dev)
3712 {
3713 	struct dentry *dentry;
3714 	struct path path;
3715 	int error;
3716 	unsigned int lookup_flags = 0;
3717 
3718 	error = may_mknod(mode);
3719 	if (error)
3720 		return error;
3721 retry:
3722 	dentry = user_path_create(dfd, filename, &path, lookup_flags);
3723 	if (IS_ERR(dentry))
3724 		return PTR_ERR(dentry);
3725 
3726 	if (!IS_POSIXACL(path.dentry->d_inode))
3727 		mode &= ~current_umask();
3728 	error = security_path_mknod(&path, dentry, mode, dev);
3729 	if (error)
3730 		goto out;
3731 	switch (mode & S_IFMT) {
3732 		case 0: case S_IFREG:
3733 			error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3734 			if (!error)
3735 				ima_post_path_mknod(dentry);
3736 			break;
3737 		case S_IFCHR: case S_IFBLK:
3738 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3739 					new_decode_dev(dev));
3740 			break;
3741 		case S_IFIFO: case S_IFSOCK:
3742 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3743 			break;
3744 	}
3745 out:
3746 	done_path_create(&path, dentry);
3747 	if (retry_estale(error, lookup_flags)) {
3748 		lookup_flags |= LOOKUP_REVAL;
3749 		goto retry;
3750 	}
3751 	return error;
3752 }
3753 
3754 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3755 {
3756 	return sys_mknodat(AT_FDCWD, filename, mode, dev);
3757 }
3758 
3759 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3760 {
3761 	int error = may_create(dir, dentry);
3762 	unsigned max_links = dir->i_sb->s_max_links;
3763 
3764 	if (error)
3765 		return error;
3766 
3767 	if (!dir->i_op->mkdir)
3768 		return -EPERM;
3769 
3770 	mode &= (S_IRWXUGO|S_ISVTX);
3771 	error = security_inode_mkdir(dir, dentry, mode);
3772 	if (error)
3773 		return error;
3774 
3775 	if (max_links && dir->i_nlink >= max_links)
3776 		return -EMLINK;
3777 
3778 	error = dir->i_op->mkdir(dir, dentry, mode);
3779 	if (!error)
3780 		fsnotify_mkdir(dir, dentry);
3781 	return error;
3782 }
3783 EXPORT_SYMBOL(vfs_mkdir);
3784 
3785 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3786 {
3787 	struct dentry *dentry;
3788 	struct path path;
3789 	int error;
3790 	unsigned int lookup_flags = LOOKUP_DIRECTORY;
3791 
3792 retry:
3793 	dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3794 	if (IS_ERR(dentry))
3795 		return PTR_ERR(dentry);
3796 
3797 	if (!IS_POSIXACL(path.dentry->d_inode))
3798 		mode &= ~current_umask();
3799 	error = security_path_mkdir(&path, dentry, mode);
3800 	if (!error)
3801 		error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3802 	done_path_create(&path, dentry);
3803 	if (retry_estale(error, lookup_flags)) {
3804 		lookup_flags |= LOOKUP_REVAL;
3805 		goto retry;
3806 	}
3807 	return error;
3808 }
3809 
3810 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3811 {
3812 	return sys_mkdirat(AT_FDCWD, pathname, mode);
3813 }
3814 
3815 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3816 {
3817 	int error = may_delete(dir, dentry, 1);
3818 
3819 	if (error)
3820 		return error;
3821 
3822 	if (!dir->i_op->rmdir)
3823 		return -EPERM;
3824 
3825 	dget(dentry);
3826 	inode_lock(dentry->d_inode);
3827 
3828 	error = -EBUSY;
3829 	if (is_local_mountpoint(dentry))
3830 		goto out;
3831 
3832 	error = security_inode_rmdir(dir, dentry);
3833 	if (error)
3834 		goto out;
3835 
3836 	shrink_dcache_parent(dentry);
3837 	error = dir->i_op->rmdir(dir, dentry);
3838 	if (error)
3839 		goto out;
3840 
3841 	dentry->d_inode->i_flags |= S_DEAD;
3842 	dont_mount(dentry);
3843 	detach_mounts(dentry);
3844 
3845 out:
3846 	inode_unlock(dentry->d_inode);
3847 	dput(dentry);
3848 	if (!error)
3849 		d_delete(dentry);
3850 	return error;
3851 }
3852 EXPORT_SYMBOL(vfs_rmdir);
3853 
3854 static long do_rmdir(int dfd, const char __user *pathname)
3855 {
3856 	int error = 0;
3857 	struct filename *name;
3858 	struct dentry *dentry;
3859 	struct path path;
3860 	struct qstr last;
3861 	int type;
3862 	unsigned int lookup_flags = 0;
3863 retry:
3864 	name = user_path_parent(dfd, pathname,
3865 				&path, &last, &type, lookup_flags);
3866 	if (IS_ERR(name))
3867 		return PTR_ERR(name);
3868 
3869 	switch (type) {
3870 	case LAST_DOTDOT:
3871 		error = -ENOTEMPTY;
3872 		goto exit1;
3873 	case LAST_DOT:
3874 		error = -EINVAL;
3875 		goto exit1;
3876 	case LAST_ROOT:
3877 		error = -EBUSY;
3878 		goto exit1;
3879 	}
3880 
3881 	error = mnt_want_write(path.mnt);
3882 	if (error)
3883 		goto exit1;
3884 
3885 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3886 	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3887 	error = PTR_ERR(dentry);
3888 	if (IS_ERR(dentry))
3889 		goto exit2;
3890 	if (!dentry->d_inode) {
3891 		error = -ENOENT;
3892 		goto exit3;
3893 	}
3894 	error = security_path_rmdir(&path, dentry);
3895 	if (error)
3896 		goto exit3;
3897 	error = vfs_rmdir(path.dentry->d_inode, dentry);
3898 exit3:
3899 	dput(dentry);
3900 exit2:
3901 	inode_unlock(path.dentry->d_inode);
3902 	mnt_drop_write(path.mnt);
3903 exit1:
3904 	path_put(&path);
3905 	putname(name);
3906 	if (retry_estale(error, lookup_flags)) {
3907 		lookup_flags |= LOOKUP_REVAL;
3908 		goto retry;
3909 	}
3910 	return error;
3911 }
3912 
3913 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3914 {
3915 	return do_rmdir(AT_FDCWD, pathname);
3916 }
3917 
3918 /**
3919  * vfs_unlink - unlink a filesystem object
3920  * @dir:	parent directory
3921  * @dentry:	victim
3922  * @delegated_inode: returns victim inode, if the inode is delegated.
3923  *
3924  * The caller must hold dir->i_mutex.
3925  *
3926  * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3927  * return a reference to the inode in delegated_inode.  The caller
3928  * should then break the delegation on that inode and retry.  Because
3929  * breaking a delegation may take a long time, the caller should drop
3930  * dir->i_mutex before doing so.
3931  *
3932  * Alternatively, a caller may pass NULL for delegated_inode.  This may
3933  * be appropriate for callers that expect the underlying filesystem not
3934  * to be NFS exported.
3935  */
3936 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3937 {
3938 	struct inode *target = dentry->d_inode;
3939 	int error = may_delete(dir, dentry, 0);
3940 
3941 	if (error)
3942 		return error;
3943 
3944 	if (!dir->i_op->unlink)
3945 		return -EPERM;
3946 
3947 	inode_lock(target);
3948 	if (is_local_mountpoint(dentry))
3949 		error = -EBUSY;
3950 	else {
3951 		error = security_inode_unlink(dir, dentry);
3952 		if (!error) {
3953 			error = try_break_deleg(target, delegated_inode);
3954 			if (error)
3955 				goto out;
3956 			error = dir->i_op->unlink(dir, dentry);
3957 			if (!error) {
3958 				dont_mount(dentry);
3959 				detach_mounts(dentry);
3960 			}
3961 		}
3962 	}
3963 out:
3964 	inode_unlock(target);
3965 
3966 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
3967 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3968 		fsnotify_link_count(target);
3969 		d_delete(dentry);
3970 	}
3971 
3972 	return error;
3973 }
3974 EXPORT_SYMBOL(vfs_unlink);
3975 
3976 /*
3977  * Make sure that the actual truncation of the file will occur outside its
3978  * directory's i_mutex.  Truncate can take a long time if there is a lot of
3979  * writeout happening, and we don't want to prevent access to the directory
3980  * while waiting on the I/O.
3981  */
3982 static long do_unlinkat(int dfd, const char __user *pathname)
3983 {
3984 	int error;
3985 	struct filename *name;
3986 	struct dentry *dentry;
3987 	struct path path;
3988 	struct qstr last;
3989 	int type;
3990 	struct inode *inode = NULL;
3991 	struct inode *delegated_inode = NULL;
3992 	unsigned int lookup_flags = 0;
3993 retry:
3994 	name = user_path_parent(dfd, pathname,
3995 				&path, &last, &type, lookup_flags);
3996 	if (IS_ERR(name))
3997 		return PTR_ERR(name);
3998 
3999 	error = -EISDIR;
4000 	if (type != LAST_NORM)
4001 		goto exit1;
4002 
4003 	error = mnt_want_write(path.mnt);
4004 	if (error)
4005 		goto exit1;
4006 retry_deleg:
4007 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4008 	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4009 	error = PTR_ERR(dentry);
4010 	if (!IS_ERR(dentry)) {
4011 		/* Why not before? Because we want correct error value */
4012 		if (last.name[last.len])
4013 			goto slashes;
4014 		inode = dentry->d_inode;
4015 		if (d_is_negative(dentry))
4016 			goto slashes;
4017 		ihold(inode);
4018 		error = security_path_unlink(&path, dentry);
4019 		if (error)
4020 			goto exit2;
4021 		error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
4022 exit2:
4023 		dput(dentry);
4024 	}
4025 	inode_unlock(path.dentry->d_inode);
4026 	if (inode)
4027 		iput(inode);	/* truncate the inode here */
4028 	inode = NULL;
4029 	if (delegated_inode) {
4030 		error = break_deleg_wait(&delegated_inode);
4031 		if (!error)
4032 			goto retry_deleg;
4033 	}
4034 	mnt_drop_write(path.mnt);
4035 exit1:
4036 	path_put(&path);
4037 	putname(name);
4038 	if (retry_estale(error, lookup_flags)) {
4039 		lookup_flags |= LOOKUP_REVAL;
4040 		inode = NULL;
4041 		goto retry;
4042 	}
4043 	return error;
4044 
4045 slashes:
4046 	if (d_is_negative(dentry))
4047 		error = -ENOENT;
4048 	else if (d_is_dir(dentry))
4049 		error = -EISDIR;
4050 	else
4051 		error = -ENOTDIR;
4052 	goto exit2;
4053 }
4054 
4055 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4056 {
4057 	if ((flag & ~AT_REMOVEDIR) != 0)
4058 		return -EINVAL;
4059 
4060 	if (flag & AT_REMOVEDIR)
4061 		return do_rmdir(dfd, pathname);
4062 
4063 	return do_unlinkat(dfd, pathname);
4064 }
4065 
4066 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4067 {
4068 	return do_unlinkat(AT_FDCWD, pathname);
4069 }
4070 
4071 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
4072 {
4073 	int error = may_create(dir, dentry);
4074 
4075 	if (error)
4076 		return error;
4077 
4078 	if (!dir->i_op->symlink)
4079 		return -EPERM;
4080 
4081 	error = security_inode_symlink(dir, dentry, oldname);
4082 	if (error)
4083 		return error;
4084 
4085 	error = dir->i_op->symlink(dir, dentry, oldname);
4086 	if (!error)
4087 		fsnotify_create(dir, dentry);
4088 	return error;
4089 }
4090 EXPORT_SYMBOL(vfs_symlink);
4091 
4092 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4093 		int, newdfd, const char __user *, newname)
4094 {
4095 	int error;
4096 	struct filename *from;
4097 	struct dentry *dentry;
4098 	struct path path;
4099 	unsigned int lookup_flags = 0;
4100 
4101 	from = getname(oldname);
4102 	if (IS_ERR(from))
4103 		return PTR_ERR(from);
4104 retry:
4105 	dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4106 	error = PTR_ERR(dentry);
4107 	if (IS_ERR(dentry))
4108 		goto out_putname;
4109 
4110 	error = security_path_symlink(&path, dentry, from->name);
4111 	if (!error)
4112 		error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
4113 	done_path_create(&path, dentry);
4114 	if (retry_estale(error, lookup_flags)) {
4115 		lookup_flags |= LOOKUP_REVAL;
4116 		goto retry;
4117 	}
4118 out_putname:
4119 	putname(from);
4120 	return error;
4121 }
4122 
4123 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4124 {
4125 	return sys_symlinkat(oldname, AT_FDCWD, newname);
4126 }
4127 
4128 /**
4129  * vfs_link - create a new link
4130  * @old_dentry:	object to be linked
4131  * @dir:	new parent
4132  * @new_dentry:	where to create the new link
4133  * @delegated_inode: returns inode needing a delegation break
4134  *
4135  * The caller must hold dir->i_mutex
4136  *
4137  * If vfs_link discovers a delegation on the to-be-linked file in need
4138  * of breaking, it will return -EWOULDBLOCK and return a reference to the
4139  * inode in delegated_inode.  The caller should then break the delegation
4140  * and retry.  Because breaking a delegation may take a long time, the
4141  * caller should drop the i_mutex before doing so.
4142  *
4143  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4144  * be appropriate for callers that expect the underlying filesystem not
4145  * to be NFS exported.
4146  */
4147 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4148 {
4149 	struct inode *inode = old_dentry->d_inode;
4150 	unsigned max_links = dir->i_sb->s_max_links;
4151 	int error;
4152 
4153 	if (!inode)
4154 		return -ENOENT;
4155 
4156 	error = may_create(dir, new_dentry);
4157 	if (error)
4158 		return error;
4159 
4160 	if (dir->i_sb != inode->i_sb)
4161 		return -EXDEV;
4162 
4163 	/*
4164 	 * A link to an append-only or immutable file cannot be created.
4165 	 */
4166 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4167 		return -EPERM;
4168 	/*
4169 	 * Updating the link count will likely cause i_uid and i_gid to
4170 	 * be writen back improperly if their true value is unknown to
4171 	 * the vfs.
4172 	 */
4173 	if (HAS_UNMAPPED_ID(inode))
4174 		return -EPERM;
4175 	if (!dir->i_op->link)
4176 		return -EPERM;
4177 	if (S_ISDIR(inode->i_mode))
4178 		return -EPERM;
4179 
4180 	error = security_inode_link(old_dentry, dir, new_dentry);
4181 	if (error)
4182 		return error;
4183 
4184 	inode_lock(inode);
4185 	/* Make sure we don't allow creating hardlink to an unlinked file */
4186 	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4187 		error =  -ENOENT;
4188 	else if (max_links && inode->i_nlink >= max_links)
4189 		error = -EMLINK;
4190 	else {
4191 		error = try_break_deleg(inode, delegated_inode);
4192 		if (!error)
4193 			error = dir->i_op->link(old_dentry, dir, new_dentry);
4194 	}
4195 
4196 	if (!error && (inode->i_state & I_LINKABLE)) {
4197 		spin_lock(&inode->i_lock);
4198 		inode->i_state &= ~I_LINKABLE;
4199 		spin_unlock(&inode->i_lock);
4200 	}
4201 	inode_unlock(inode);
4202 	if (!error)
4203 		fsnotify_link(dir, inode, new_dentry);
4204 	return error;
4205 }
4206 EXPORT_SYMBOL(vfs_link);
4207 
4208 /*
4209  * Hardlinks are often used in delicate situations.  We avoid
4210  * security-related surprises by not following symlinks on the
4211  * newname.  --KAB
4212  *
4213  * We don't follow them on the oldname either to be compatible
4214  * with linux 2.0, and to avoid hard-linking to directories
4215  * and other special files.  --ADM
4216  */
4217 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4218 		int, newdfd, const char __user *, newname, int, flags)
4219 {
4220 	struct dentry *new_dentry;
4221 	struct path old_path, new_path;
4222 	struct inode *delegated_inode = NULL;
4223 	int how = 0;
4224 	int error;
4225 
4226 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4227 		return -EINVAL;
4228 	/*
4229 	 * To use null names we require CAP_DAC_READ_SEARCH
4230 	 * This ensures that not everyone will be able to create
4231 	 * handlink using the passed filedescriptor.
4232 	 */
4233 	if (flags & AT_EMPTY_PATH) {
4234 		if (!capable(CAP_DAC_READ_SEARCH))
4235 			return -ENOENT;
4236 		how = LOOKUP_EMPTY;
4237 	}
4238 
4239 	if (flags & AT_SYMLINK_FOLLOW)
4240 		how |= LOOKUP_FOLLOW;
4241 retry:
4242 	error = user_path_at(olddfd, oldname, how, &old_path);
4243 	if (error)
4244 		return error;
4245 
4246 	new_dentry = user_path_create(newdfd, newname, &new_path,
4247 					(how & LOOKUP_REVAL));
4248 	error = PTR_ERR(new_dentry);
4249 	if (IS_ERR(new_dentry))
4250 		goto out;
4251 
4252 	error = -EXDEV;
4253 	if (old_path.mnt != new_path.mnt)
4254 		goto out_dput;
4255 	error = may_linkat(&old_path);
4256 	if (unlikely(error))
4257 		goto out_dput;
4258 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
4259 	if (error)
4260 		goto out_dput;
4261 	error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4262 out_dput:
4263 	done_path_create(&new_path, new_dentry);
4264 	if (delegated_inode) {
4265 		error = break_deleg_wait(&delegated_inode);
4266 		if (!error) {
4267 			path_put(&old_path);
4268 			goto retry;
4269 		}
4270 	}
4271 	if (retry_estale(error, how)) {
4272 		path_put(&old_path);
4273 		how |= LOOKUP_REVAL;
4274 		goto retry;
4275 	}
4276 out:
4277 	path_put(&old_path);
4278 
4279 	return error;
4280 }
4281 
4282 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4283 {
4284 	return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4285 }
4286 
4287 /**
4288  * vfs_rename - rename a filesystem object
4289  * @old_dir:	parent of source
4290  * @old_dentry:	source
4291  * @new_dir:	parent of destination
4292  * @new_dentry:	destination
4293  * @delegated_inode: returns an inode needing a delegation break
4294  * @flags:	rename flags
4295  *
4296  * The caller must hold multiple mutexes--see lock_rename()).
4297  *
4298  * If vfs_rename discovers a delegation in need of breaking at either
4299  * the source or destination, it will return -EWOULDBLOCK and return a
4300  * reference to the inode in delegated_inode.  The caller should then
4301  * break the delegation and retry.  Because breaking a delegation may
4302  * take a long time, the caller should drop all locks before doing
4303  * so.
4304  *
4305  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4306  * be appropriate for callers that expect the underlying filesystem not
4307  * to be NFS exported.
4308  *
4309  * The worst of all namespace operations - renaming directory. "Perverted"
4310  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4311  * Problems:
4312  *	a) we can get into loop creation.
4313  *	b) race potential - two innocent renames can create a loop together.
4314  *	   That's where 4.4 screws up. Current fix: serialization on
4315  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4316  *	   story.
4317  *	c) we have to lock _four_ objects - parents and victim (if it exists),
4318  *	   and source (if it is not a directory).
4319  *	   And that - after we got ->i_mutex on parents (until then we don't know
4320  *	   whether the target exists).  Solution: try to be smart with locking
4321  *	   order for inodes.  We rely on the fact that tree topology may change
4322  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
4323  *	   move will be locked.  Thus we can rank directories by the tree
4324  *	   (ancestors first) and rank all non-directories after them.
4325  *	   That works since everybody except rename does "lock parent, lookup,
4326  *	   lock child" and rename is under ->s_vfs_rename_mutex.
4327  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
4328  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
4329  *	   we'd better make sure that there's no link(2) for them.
4330  *	d) conversion from fhandle to dentry may come in the wrong moment - when
4331  *	   we are removing the target. Solution: we will have to grab ->i_mutex
4332  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4333  *	   ->i_mutex on parents, which works but leads to some truly excessive
4334  *	   locking].
4335  */
4336 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4337 	       struct inode *new_dir, struct dentry *new_dentry,
4338 	       struct inode **delegated_inode, unsigned int flags)
4339 {
4340 	int error;
4341 	bool is_dir = d_is_dir(old_dentry);
4342 	const unsigned char *old_name;
4343 	struct inode *source = old_dentry->d_inode;
4344 	struct inode *target = new_dentry->d_inode;
4345 	bool new_is_dir = false;
4346 	unsigned max_links = new_dir->i_sb->s_max_links;
4347 
4348 	/*
4349 	 * Check source == target.
4350 	 * On overlayfs need to look at underlying inodes.
4351 	 */
4352 	if (d_real_inode(old_dentry) == d_real_inode(new_dentry))
4353 		return 0;
4354 
4355 	error = may_delete(old_dir, old_dentry, is_dir);
4356 	if (error)
4357 		return error;
4358 
4359 	if (!target) {
4360 		error = may_create(new_dir, new_dentry);
4361 	} else {
4362 		new_is_dir = d_is_dir(new_dentry);
4363 
4364 		if (!(flags & RENAME_EXCHANGE))
4365 			error = may_delete(new_dir, new_dentry, is_dir);
4366 		else
4367 			error = may_delete(new_dir, new_dentry, new_is_dir);
4368 	}
4369 	if (error)
4370 		return error;
4371 
4372 	if (!old_dir->i_op->rename && !old_dir->i_op->rename2)
4373 		return -EPERM;
4374 
4375 	if (flags && !old_dir->i_op->rename2)
4376 		return -EINVAL;
4377 
4378 	/*
4379 	 * If we are going to change the parent - check write permissions,
4380 	 * we'll need to flip '..'.
4381 	 */
4382 	if (new_dir != old_dir) {
4383 		if (is_dir) {
4384 			error = inode_permission(source, MAY_WRITE);
4385 			if (error)
4386 				return error;
4387 		}
4388 		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4389 			error = inode_permission(target, MAY_WRITE);
4390 			if (error)
4391 				return error;
4392 		}
4393 	}
4394 
4395 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4396 				      flags);
4397 	if (error)
4398 		return error;
4399 
4400 	old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4401 	dget(new_dentry);
4402 	if (!is_dir || (flags & RENAME_EXCHANGE))
4403 		lock_two_nondirectories(source, target);
4404 	else if (target)
4405 		inode_lock(target);
4406 
4407 	error = -EBUSY;
4408 	if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4409 		goto out;
4410 
4411 	if (max_links && new_dir != old_dir) {
4412 		error = -EMLINK;
4413 		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4414 			goto out;
4415 		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4416 		    old_dir->i_nlink >= max_links)
4417 			goto out;
4418 	}
4419 	if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4420 		shrink_dcache_parent(new_dentry);
4421 	if (!is_dir) {
4422 		error = try_break_deleg(source, delegated_inode);
4423 		if (error)
4424 			goto out;
4425 	}
4426 	if (target && !new_is_dir) {
4427 		error = try_break_deleg(target, delegated_inode);
4428 		if (error)
4429 			goto out;
4430 	}
4431 	if (!old_dir->i_op->rename2) {
4432 		error = old_dir->i_op->rename(old_dir, old_dentry,
4433 					      new_dir, new_dentry);
4434 	} else {
4435 		WARN_ON(old_dir->i_op->rename != NULL);
4436 		error = old_dir->i_op->rename2(old_dir, old_dentry,
4437 					       new_dir, new_dentry, flags);
4438 	}
4439 	if (error)
4440 		goto out;
4441 
4442 	if (!(flags & RENAME_EXCHANGE) && target) {
4443 		if (is_dir)
4444 			target->i_flags |= S_DEAD;
4445 		dont_mount(new_dentry);
4446 		detach_mounts(new_dentry);
4447 	}
4448 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4449 		if (!(flags & RENAME_EXCHANGE))
4450 			d_move(old_dentry, new_dentry);
4451 		else
4452 			d_exchange(old_dentry, new_dentry);
4453 	}
4454 out:
4455 	if (!is_dir || (flags & RENAME_EXCHANGE))
4456 		unlock_two_nondirectories(source, target);
4457 	else if (target)
4458 		inode_unlock(target);
4459 	dput(new_dentry);
4460 	if (!error) {
4461 		fsnotify_move(old_dir, new_dir, old_name, is_dir,
4462 			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4463 		if (flags & RENAME_EXCHANGE) {
4464 			fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4465 				      new_is_dir, NULL, new_dentry);
4466 		}
4467 	}
4468 	fsnotify_oldname_free(old_name);
4469 
4470 	return error;
4471 }
4472 EXPORT_SYMBOL(vfs_rename);
4473 
4474 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4475 		int, newdfd, const char __user *, newname, unsigned int, flags)
4476 {
4477 	struct dentry *old_dentry, *new_dentry;
4478 	struct dentry *trap;
4479 	struct path old_path, new_path;
4480 	struct qstr old_last, new_last;
4481 	int old_type, new_type;
4482 	struct inode *delegated_inode = NULL;
4483 	struct filename *from;
4484 	struct filename *to;
4485 	unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4486 	bool should_retry = false;
4487 	int error;
4488 
4489 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4490 		return -EINVAL;
4491 
4492 	if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4493 	    (flags & RENAME_EXCHANGE))
4494 		return -EINVAL;
4495 
4496 	if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4497 		return -EPERM;
4498 
4499 	if (flags & RENAME_EXCHANGE)
4500 		target_flags = 0;
4501 
4502 retry:
4503 	from = user_path_parent(olddfd, oldname,
4504 				&old_path, &old_last, &old_type, lookup_flags);
4505 	if (IS_ERR(from)) {
4506 		error = PTR_ERR(from);
4507 		goto exit;
4508 	}
4509 
4510 	to = user_path_parent(newdfd, newname,
4511 				&new_path, &new_last, &new_type, lookup_flags);
4512 	if (IS_ERR(to)) {
4513 		error = PTR_ERR(to);
4514 		goto exit1;
4515 	}
4516 
4517 	error = -EXDEV;
4518 	if (old_path.mnt != new_path.mnt)
4519 		goto exit2;
4520 
4521 	error = -EBUSY;
4522 	if (old_type != LAST_NORM)
4523 		goto exit2;
4524 
4525 	if (flags & RENAME_NOREPLACE)
4526 		error = -EEXIST;
4527 	if (new_type != LAST_NORM)
4528 		goto exit2;
4529 
4530 	error = mnt_want_write(old_path.mnt);
4531 	if (error)
4532 		goto exit2;
4533 
4534 retry_deleg:
4535 	trap = lock_rename(new_path.dentry, old_path.dentry);
4536 
4537 	old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4538 	error = PTR_ERR(old_dentry);
4539 	if (IS_ERR(old_dentry))
4540 		goto exit3;
4541 	/* source must exist */
4542 	error = -ENOENT;
4543 	if (d_is_negative(old_dentry))
4544 		goto exit4;
4545 	new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4546 	error = PTR_ERR(new_dentry);
4547 	if (IS_ERR(new_dentry))
4548 		goto exit4;
4549 	error = -EEXIST;
4550 	if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4551 		goto exit5;
4552 	if (flags & RENAME_EXCHANGE) {
4553 		error = -ENOENT;
4554 		if (d_is_negative(new_dentry))
4555 			goto exit5;
4556 
4557 		if (!d_is_dir(new_dentry)) {
4558 			error = -ENOTDIR;
4559 			if (new_last.name[new_last.len])
4560 				goto exit5;
4561 		}
4562 	}
4563 	/* unless the source is a directory trailing slashes give -ENOTDIR */
4564 	if (!d_is_dir(old_dentry)) {
4565 		error = -ENOTDIR;
4566 		if (old_last.name[old_last.len])
4567 			goto exit5;
4568 		if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4569 			goto exit5;
4570 	}
4571 	/* source should not be ancestor of target */
4572 	error = -EINVAL;
4573 	if (old_dentry == trap)
4574 		goto exit5;
4575 	/* target should not be an ancestor of source */
4576 	if (!(flags & RENAME_EXCHANGE))
4577 		error = -ENOTEMPTY;
4578 	if (new_dentry == trap)
4579 		goto exit5;
4580 
4581 	error = security_path_rename(&old_path, old_dentry,
4582 				     &new_path, new_dentry, flags);
4583 	if (error)
4584 		goto exit5;
4585 	error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4586 			   new_path.dentry->d_inode, new_dentry,
4587 			   &delegated_inode, flags);
4588 exit5:
4589 	dput(new_dentry);
4590 exit4:
4591 	dput(old_dentry);
4592 exit3:
4593 	unlock_rename(new_path.dentry, old_path.dentry);
4594 	if (delegated_inode) {
4595 		error = break_deleg_wait(&delegated_inode);
4596 		if (!error)
4597 			goto retry_deleg;
4598 	}
4599 	mnt_drop_write(old_path.mnt);
4600 exit2:
4601 	if (retry_estale(error, lookup_flags))
4602 		should_retry = true;
4603 	path_put(&new_path);
4604 	putname(to);
4605 exit1:
4606 	path_put(&old_path);
4607 	putname(from);
4608 	if (should_retry) {
4609 		should_retry = false;
4610 		lookup_flags |= LOOKUP_REVAL;
4611 		goto retry;
4612 	}
4613 exit:
4614 	return error;
4615 }
4616 
4617 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4618 		int, newdfd, const char __user *, newname)
4619 {
4620 	return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4621 }
4622 
4623 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4624 {
4625 	return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4626 }
4627 
4628 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4629 {
4630 	int error = may_create(dir, dentry);
4631 	if (error)
4632 		return error;
4633 
4634 	if (!dir->i_op->mknod)
4635 		return -EPERM;
4636 
4637 	return dir->i_op->mknod(dir, dentry,
4638 				S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4639 }
4640 EXPORT_SYMBOL(vfs_whiteout);
4641 
4642 int readlink_copy(char __user *buffer, int buflen, const char *link)
4643 {
4644 	int len = PTR_ERR(link);
4645 	if (IS_ERR(link))
4646 		goto out;
4647 
4648 	len = strlen(link);
4649 	if (len > (unsigned) buflen)
4650 		len = buflen;
4651 	if (copy_to_user(buffer, link, len))
4652 		len = -EFAULT;
4653 out:
4654 	return len;
4655 }
4656 
4657 /*
4658  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
4659  * have ->get_link() not calling nd_jump_link().  Using (or not using) it
4660  * for any given inode is up to filesystem.
4661  */
4662 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4663 {
4664 	DEFINE_DELAYED_CALL(done);
4665 	struct inode *inode = d_inode(dentry);
4666 	const char *link = inode->i_link;
4667 	int res;
4668 
4669 	if (!link) {
4670 		link = inode->i_op->get_link(dentry, inode, &done);
4671 		if (IS_ERR(link))
4672 			return PTR_ERR(link);
4673 	}
4674 	res = readlink_copy(buffer, buflen, link);
4675 	do_delayed_call(&done);
4676 	return res;
4677 }
4678 EXPORT_SYMBOL(generic_readlink);
4679 
4680 /* get the link contents into pagecache */
4681 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4682 			  struct delayed_call *callback)
4683 {
4684 	char *kaddr;
4685 	struct page *page;
4686 	struct address_space *mapping = inode->i_mapping;
4687 
4688 	if (!dentry) {
4689 		page = find_get_page(mapping, 0);
4690 		if (!page)
4691 			return ERR_PTR(-ECHILD);
4692 		if (!PageUptodate(page)) {
4693 			put_page(page);
4694 			return ERR_PTR(-ECHILD);
4695 		}
4696 	} else {
4697 		page = read_mapping_page(mapping, 0, NULL);
4698 		if (IS_ERR(page))
4699 			return (char*)page;
4700 	}
4701 	set_delayed_call(callback, page_put_link, page);
4702 	BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4703 	kaddr = page_address(page);
4704 	nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4705 	return kaddr;
4706 }
4707 
4708 EXPORT_SYMBOL(page_get_link);
4709 
4710 void page_put_link(void *arg)
4711 {
4712 	put_page(arg);
4713 }
4714 EXPORT_SYMBOL(page_put_link);
4715 
4716 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4717 {
4718 	DEFINE_DELAYED_CALL(done);
4719 	int res = readlink_copy(buffer, buflen,
4720 				page_get_link(dentry, d_inode(dentry),
4721 					      &done));
4722 	do_delayed_call(&done);
4723 	return res;
4724 }
4725 EXPORT_SYMBOL(page_readlink);
4726 
4727 /*
4728  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4729  */
4730 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4731 {
4732 	struct address_space *mapping = inode->i_mapping;
4733 	struct page *page;
4734 	void *fsdata;
4735 	int err;
4736 	unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4737 	if (nofs)
4738 		flags |= AOP_FLAG_NOFS;
4739 
4740 retry:
4741 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
4742 				flags, &page, &fsdata);
4743 	if (err)
4744 		goto fail;
4745 
4746 	memcpy(page_address(page), symname, len-1);
4747 
4748 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4749 							page, fsdata);
4750 	if (err < 0)
4751 		goto fail;
4752 	if (err < len-1)
4753 		goto retry;
4754 
4755 	mark_inode_dirty(inode);
4756 	return 0;
4757 fail:
4758 	return err;
4759 }
4760 EXPORT_SYMBOL(__page_symlink);
4761 
4762 int page_symlink(struct inode *inode, const char *symname, int len)
4763 {
4764 	return __page_symlink(inode, symname, len,
4765 			!mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4766 }
4767 EXPORT_SYMBOL(page_symlink);
4768 
4769 const struct inode_operations page_symlink_inode_operations = {
4770 	.readlink	= generic_readlink,
4771 	.get_link	= page_get_link,
4772 };
4773 EXPORT_SYMBOL(page_symlink_inode_operations);
4774