1 /* 2 * linux/fs/namei.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * Some corrections by tytso. 9 */ 10 11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 12 * lookup logic. 13 */ 14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 15 */ 16 17 #include <linux/init.h> 18 #include <linux/export.h> 19 #include <linux/kernel.h> 20 #include <linux/slab.h> 21 #include <linux/fs.h> 22 #include <linux/namei.h> 23 #include <linux/pagemap.h> 24 #include <linux/fsnotify.h> 25 #include <linux/personality.h> 26 #include <linux/security.h> 27 #include <linux/ima.h> 28 #include <linux/syscalls.h> 29 #include <linux/mount.h> 30 #include <linux/audit.h> 31 #include <linux/capability.h> 32 #include <linux/file.h> 33 #include <linux/fcntl.h> 34 #include <linux/device_cgroup.h> 35 #include <linux/fs_struct.h> 36 #include <linux/posix_acl.h> 37 #include <asm/uaccess.h> 38 39 #include "internal.h" 40 #include "mount.h" 41 42 /* [Feb-1997 T. Schoebel-Theuer] 43 * Fundamental changes in the pathname lookup mechanisms (namei) 44 * were necessary because of omirr. The reason is that omirr needs 45 * to know the _real_ pathname, not the user-supplied one, in case 46 * of symlinks (and also when transname replacements occur). 47 * 48 * The new code replaces the old recursive symlink resolution with 49 * an iterative one (in case of non-nested symlink chains). It does 50 * this with calls to <fs>_follow_link(). 51 * As a side effect, dir_namei(), _namei() and follow_link() are now 52 * replaced with a single function lookup_dentry() that can handle all 53 * the special cases of the former code. 54 * 55 * With the new dcache, the pathname is stored at each inode, at least as 56 * long as the refcount of the inode is positive. As a side effect, the 57 * size of the dcache depends on the inode cache and thus is dynamic. 58 * 59 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 60 * resolution to correspond with current state of the code. 61 * 62 * Note that the symlink resolution is not *completely* iterative. 63 * There is still a significant amount of tail- and mid- recursion in 64 * the algorithm. Also, note that <fs>_readlink() is not used in 65 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 66 * may return different results than <fs>_follow_link(). Many virtual 67 * filesystems (including /proc) exhibit this behavior. 68 */ 69 70 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 71 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 72 * and the name already exists in form of a symlink, try to create the new 73 * name indicated by the symlink. The old code always complained that the 74 * name already exists, due to not following the symlink even if its target 75 * is nonexistent. The new semantics affects also mknod() and link() when 76 * the name is a symlink pointing to a non-existent name. 77 * 78 * I don't know which semantics is the right one, since I have no access 79 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 80 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 81 * "old" one. Personally, I think the new semantics is much more logical. 82 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 83 * file does succeed in both HP-UX and SunOs, but not in Solaris 84 * and in the old Linux semantics. 85 */ 86 87 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 88 * semantics. See the comments in "open_namei" and "do_link" below. 89 * 90 * [10-Sep-98 Alan Modra] Another symlink change. 91 */ 92 93 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 94 * inside the path - always follow. 95 * in the last component in creation/removal/renaming - never follow. 96 * if LOOKUP_FOLLOW passed - follow. 97 * if the pathname has trailing slashes - follow. 98 * otherwise - don't follow. 99 * (applied in that order). 100 * 101 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 102 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 103 * During the 2.4 we need to fix the userland stuff depending on it - 104 * hopefully we will be able to get rid of that wart in 2.5. So far only 105 * XEmacs seems to be relying on it... 106 */ 107 /* 108 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 109 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 110 * any extra contention... 111 */ 112 113 /* In order to reduce some races, while at the same time doing additional 114 * checking and hopefully speeding things up, we copy filenames to the 115 * kernel data space before using them.. 116 * 117 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 118 * PATH_MAX includes the nul terminator --RR. 119 */ 120 void final_putname(struct filename *name) 121 { 122 if (name->separate) { 123 __putname(name->name); 124 kfree(name); 125 } else { 126 __putname(name); 127 } 128 } 129 130 #define EMBEDDED_NAME_MAX (PATH_MAX - sizeof(struct filename)) 131 132 static struct filename * 133 getname_flags(const char __user *filename, int flags, int *empty) 134 { 135 struct filename *result, *err; 136 int len; 137 long max; 138 char *kname; 139 140 result = audit_reusename(filename); 141 if (result) 142 return result; 143 144 result = __getname(); 145 if (unlikely(!result)) 146 return ERR_PTR(-ENOMEM); 147 148 /* 149 * First, try to embed the struct filename inside the names_cache 150 * allocation 151 */ 152 kname = (char *)result + sizeof(*result); 153 result->name = kname; 154 result->separate = false; 155 max = EMBEDDED_NAME_MAX; 156 157 recopy: 158 len = strncpy_from_user(kname, filename, max); 159 if (unlikely(len < 0)) { 160 err = ERR_PTR(len); 161 goto error; 162 } 163 164 /* 165 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a 166 * separate struct filename so we can dedicate the entire 167 * names_cache allocation for the pathname, and re-do the copy from 168 * userland. 169 */ 170 if (len == EMBEDDED_NAME_MAX && max == EMBEDDED_NAME_MAX) { 171 kname = (char *)result; 172 173 result = kzalloc(sizeof(*result), GFP_KERNEL); 174 if (!result) { 175 err = ERR_PTR(-ENOMEM); 176 result = (struct filename *)kname; 177 goto error; 178 } 179 result->name = kname; 180 result->separate = true; 181 max = PATH_MAX; 182 goto recopy; 183 } 184 185 /* The empty path is special. */ 186 if (unlikely(!len)) { 187 if (empty) 188 *empty = 1; 189 err = ERR_PTR(-ENOENT); 190 if (!(flags & LOOKUP_EMPTY)) 191 goto error; 192 } 193 194 err = ERR_PTR(-ENAMETOOLONG); 195 if (unlikely(len >= PATH_MAX)) 196 goto error; 197 198 result->uptr = filename; 199 audit_getname(result); 200 return result; 201 202 error: 203 final_putname(result); 204 return err; 205 } 206 207 struct filename * 208 getname(const char __user * filename) 209 { 210 return getname_flags(filename, 0, NULL); 211 } 212 EXPORT_SYMBOL(getname); 213 214 #ifdef CONFIG_AUDITSYSCALL 215 void putname(struct filename *name) 216 { 217 if (unlikely(!audit_dummy_context())) 218 return audit_putname(name); 219 final_putname(name); 220 } 221 #endif 222 223 static int check_acl(struct inode *inode, int mask) 224 { 225 #ifdef CONFIG_FS_POSIX_ACL 226 struct posix_acl *acl; 227 228 if (mask & MAY_NOT_BLOCK) { 229 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS); 230 if (!acl) 231 return -EAGAIN; 232 /* no ->get_acl() calls in RCU mode... */ 233 if (acl == ACL_NOT_CACHED) 234 return -ECHILD; 235 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK); 236 } 237 238 acl = get_cached_acl(inode, ACL_TYPE_ACCESS); 239 240 /* 241 * A filesystem can force a ACL callback by just never filling the 242 * ACL cache. But normally you'd fill the cache either at inode 243 * instantiation time, or on the first ->get_acl call. 244 * 245 * If the filesystem doesn't have a get_acl() function at all, we'll 246 * just create the negative cache entry. 247 */ 248 if (acl == ACL_NOT_CACHED) { 249 if (inode->i_op->get_acl) { 250 acl = inode->i_op->get_acl(inode, ACL_TYPE_ACCESS); 251 if (IS_ERR(acl)) 252 return PTR_ERR(acl); 253 } else { 254 set_cached_acl(inode, ACL_TYPE_ACCESS, NULL); 255 return -EAGAIN; 256 } 257 } 258 259 if (acl) { 260 int error = posix_acl_permission(inode, acl, mask); 261 posix_acl_release(acl); 262 return error; 263 } 264 #endif 265 266 return -EAGAIN; 267 } 268 269 /* 270 * This does the basic permission checking 271 */ 272 static int acl_permission_check(struct inode *inode, int mask) 273 { 274 unsigned int mode = inode->i_mode; 275 276 if (likely(uid_eq(current_fsuid(), inode->i_uid))) 277 mode >>= 6; 278 else { 279 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) { 280 int error = check_acl(inode, mask); 281 if (error != -EAGAIN) 282 return error; 283 } 284 285 if (in_group_p(inode->i_gid)) 286 mode >>= 3; 287 } 288 289 /* 290 * If the DACs are ok we don't need any capability check. 291 */ 292 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 293 return 0; 294 return -EACCES; 295 } 296 297 /** 298 * generic_permission - check for access rights on a Posix-like filesystem 299 * @inode: inode to check access rights for 300 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...) 301 * 302 * Used to check for read/write/execute permissions on a file. 303 * We use "fsuid" for this, letting us set arbitrary permissions 304 * for filesystem access without changing the "normal" uids which 305 * are used for other things. 306 * 307 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk 308 * request cannot be satisfied (eg. requires blocking or too much complexity). 309 * It would then be called again in ref-walk mode. 310 */ 311 int generic_permission(struct inode *inode, int mask) 312 { 313 int ret; 314 315 /* 316 * Do the basic permission checks. 317 */ 318 ret = acl_permission_check(inode, mask); 319 if (ret != -EACCES) 320 return ret; 321 322 if (S_ISDIR(inode->i_mode)) { 323 /* DACs are overridable for directories */ 324 if (inode_capable(inode, CAP_DAC_OVERRIDE)) 325 return 0; 326 if (!(mask & MAY_WRITE)) 327 if (inode_capable(inode, CAP_DAC_READ_SEARCH)) 328 return 0; 329 return -EACCES; 330 } 331 /* 332 * Read/write DACs are always overridable. 333 * Executable DACs are overridable when there is 334 * at least one exec bit set. 335 */ 336 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO)) 337 if (inode_capable(inode, CAP_DAC_OVERRIDE)) 338 return 0; 339 340 /* 341 * Searching includes executable on directories, else just read. 342 */ 343 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 344 if (mask == MAY_READ) 345 if (inode_capable(inode, CAP_DAC_READ_SEARCH)) 346 return 0; 347 348 return -EACCES; 349 } 350 351 /* 352 * We _really_ want to just do "generic_permission()" without 353 * even looking at the inode->i_op values. So we keep a cache 354 * flag in inode->i_opflags, that says "this has not special 355 * permission function, use the fast case". 356 */ 357 static inline int do_inode_permission(struct inode *inode, int mask) 358 { 359 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) { 360 if (likely(inode->i_op->permission)) 361 return inode->i_op->permission(inode, mask); 362 363 /* This gets set once for the inode lifetime */ 364 spin_lock(&inode->i_lock); 365 inode->i_opflags |= IOP_FASTPERM; 366 spin_unlock(&inode->i_lock); 367 } 368 return generic_permission(inode, mask); 369 } 370 371 /** 372 * __inode_permission - Check for access rights to a given inode 373 * @inode: Inode to check permission on 374 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 375 * 376 * Check for read/write/execute permissions on an inode. 377 * 378 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 379 * 380 * This does not check for a read-only file system. You probably want 381 * inode_permission(). 382 */ 383 int __inode_permission(struct inode *inode, int mask) 384 { 385 int retval; 386 387 if (unlikely(mask & MAY_WRITE)) { 388 /* 389 * Nobody gets write access to an immutable file. 390 */ 391 if (IS_IMMUTABLE(inode)) 392 return -EACCES; 393 } 394 395 retval = do_inode_permission(inode, mask); 396 if (retval) 397 return retval; 398 399 retval = devcgroup_inode_permission(inode, mask); 400 if (retval) 401 return retval; 402 403 return security_inode_permission(inode, mask); 404 } 405 406 /** 407 * sb_permission - Check superblock-level permissions 408 * @sb: Superblock of inode to check permission on 409 * @inode: Inode to check permission on 410 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 411 * 412 * Separate out file-system wide checks from inode-specific permission checks. 413 */ 414 static int sb_permission(struct super_block *sb, struct inode *inode, int mask) 415 { 416 if (unlikely(mask & MAY_WRITE)) { 417 umode_t mode = inode->i_mode; 418 419 /* Nobody gets write access to a read-only fs. */ 420 if ((sb->s_flags & MS_RDONLY) && 421 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 422 return -EROFS; 423 } 424 return 0; 425 } 426 427 /** 428 * inode_permission - Check for access rights to a given inode 429 * @inode: Inode to check permission on 430 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 431 * 432 * Check for read/write/execute permissions on an inode. We use fs[ug]id for 433 * this, letting us set arbitrary permissions for filesystem access without 434 * changing the "normal" UIDs which are used for other things. 435 * 436 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 437 */ 438 int inode_permission(struct inode *inode, int mask) 439 { 440 int retval; 441 442 retval = sb_permission(inode->i_sb, inode, mask); 443 if (retval) 444 return retval; 445 return __inode_permission(inode, mask); 446 } 447 448 /** 449 * path_get - get a reference to a path 450 * @path: path to get the reference to 451 * 452 * Given a path increment the reference count to the dentry and the vfsmount. 453 */ 454 void path_get(const struct path *path) 455 { 456 mntget(path->mnt); 457 dget(path->dentry); 458 } 459 EXPORT_SYMBOL(path_get); 460 461 /** 462 * path_put - put a reference to a path 463 * @path: path to put the reference to 464 * 465 * Given a path decrement the reference count to the dentry and the vfsmount. 466 */ 467 void path_put(const struct path *path) 468 { 469 dput(path->dentry); 470 mntput(path->mnt); 471 } 472 EXPORT_SYMBOL(path_put); 473 474 /* 475 * Path walking has 2 modes, rcu-walk and ref-walk (see 476 * Documentation/filesystems/path-lookup.txt). In situations when we can't 477 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab 478 * normal reference counts on dentries and vfsmounts to transition to rcu-walk 479 * mode. Refcounts are grabbed at the last known good point before rcu-walk 480 * got stuck, so ref-walk may continue from there. If this is not successful 481 * (eg. a seqcount has changed), then failure is returned and it's up to caller 482 * to restart the path walk from the beginning in ref-walk mode. 483 */ 484 485 /** 486 * unlazy_walk - try to switch to ref-walk mode. 487 * @nd: nameidata pathwalk data 488 * @dentry: child of nd->path.dentry or NULL 489 * Returns: 0 on success, -ECHILD on failure 490 * 491 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry 492 * for ref-walk mode. @dentry must be a path found by a do_lookup call on 493 * @nd or NULL. Must be called from rcu-walk context. 494 */ 495 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry) 496 { 497 struct fs_struct *fs = current->fs; 498 struct dentry *parent = nd->path.dentry; 499 500 BUG_ON(!(nd->flags & LOOKUP_RCU)); 501 502 /* 503 * After legitimizing the bastards, terminate_walk() 504 * will do the right thing for non-RCU mode, and all our 505 * subsequent exit cases should rcu_read_unlock() 506 * before returning. Do vfsmount first; if dentry 507 * can't be legitimized, just set nd->path.dentry to NULL 508 * and rely on dput(NULL) being a no-op. 509 */ 510 if (!legitimize_mnt(nd->path.mnt, nd->m_seq)) 511 return -ECHILD; 512 nd->flags &= ~LOOKUP_RCU; 513 514 if (!lockref_get_not_dead(&parent->d_lockref)) { 515 nd->path.dentry = NULL; 516 goto out; 517 } 518 519 /* 520 * For a negative lookup, the lookup sequence point is the parents 521 * sequence point, and it only needs to revalidate the parent dentry. 522 * 523 * For a positive lookup, we need to move both the parent and the 524 * dentry from the RCU domain to be properly refcounted. And the 525 * sequence number in the dentry validates *both* dentry counters, 526 * since we checked the sequence number of the parent after we got 527 * the child sequence number. So we know the parent must still 528 * be valid if the child sequence number is still valid. 529 */ 530 if (!dentry) { 531 if (read_seqcount_retry(&parent->d_seq, nd->seq)) 532 goto out; 533 BUG_ON(nd->inode != parent->d_inode); 534 } else { 535 if (!lockref_get_not_dead(&dentry->d_lockref)) 536 goto out; 537 if (read_seqcount_retry(&dentry->d_seq, nd->seq)) 538 goto drop_dentry; 539 } 540 541 /* 542 * Sequence counts matched. Now make sure that the root is 543 * still valid and get it if required. 544 */ 545 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 546 spin_lock(&fs->lock); 547 if (nd->root.mnt != fs->root.mnt || nd->root.dentry != fs->root.dentry) 548 goto unlock_and_drop_dentry; 549 path_get(&nd->root); 550 spin_unlock(&fs->lock); 551 } 552 553 rcu_read_unlock(); 554 return 0; 555 556 unlock_and_drop_dentry: 557 spin_unlock(&fs->lock); 558 drop_dentry: 559 rcu_read_unlock(); 560 dput(dentry); 561 goto drop_root_mnt; 562 out: 563 rcu_read_unlock(); 564 drop_root_mnt: 565 if (!(nd->flags & LOOKUP_ROOT)) 566 nd->root.mnt = NULL; 567 return -ECHILD; 568 } 569 570 static inline int d_revalidate(struct dentry *dentry, unsigned int flags) 571 { 572 return dentry->d_op->d_revalidate(dentry, flags); 573 } 574 575 /** 576 * complete_walk - successful completion of path walk 577 * @nd: pointer nameidata 578 * 579 * If we had been in RCU mode, drop out of it and legitimize nd->path. 580 * Revalidate the final result, unless we'd already done that during 581 * the path walk or the filesystem doesn't ask for it. Return 0 on 582 * success, -error on failure. In case of failure caller does not 583 * need to drop nd->path. 584 */ 585 static int complete_walk(struct nameidata *nd) 586 { 587 struct dentry *dentry = nd->path.dentry; 588 int status; 589 590 if (nd->flags & LOOKUP_RCU) { 591 nd->flags &= ~LOOKUP_RCU; 592 if (!(nd->flags & LOOKUP_ROOT)) 593 nd->root.mnt = NULL; 594 595 if (!legitimize_mnt(nd->path.mnt, nd->m_seq)) { 596 rcu_read_unlock(); 597 return -ECHILD; 598 } 599 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) { 600 rcu_read_unlock(); 601 mntput(nd->path.mnt); 602 return -ECHILD; 603 } 604 if (read_seqcount_retry(&dentry->d_seq, nd->seq)) { 605 rcu_read_unlock(); 606 dput(dentry); 607 mntput(nd->path.mnt); 608 return -ECHILD; 609 } 610 rcu_read_unlock(); 611 } 612 613 if (likely(!(nd->flags & LOOKUP_JUMPED))) 614 return 0; 615 616 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE))) 617 return 0; 618 619 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags); 620 if (status > 0) 621 return 0; 622 623 if (!status) 624 status = -ESTALE; 625 626 path_put(&nd->path); 627 return status; 628 } 629 630 static __always_inline void set_root(struct nameidata *nd) 631 { 632 if (!nd->root.mnt) 633 get_fs_root(current->fs, &nd->root); 634 } 635 636 static int link_path_walk(const char *, struct nameidata *); 637 638 static __always_inline void set_root_rcu(struct nameidata *nd) 639 { 640 if (!nd->root.mnt) { 641 struct fs_struct *fs = current->fs; 642 unsigned seq; 643 644 do { 645 seq = read_seqcount_begin(&fs->seq); 646 nd->root = fs->root; 647 nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq); 648 } while (read_seqcount_retry(&fs->seq, seq)); 649 } 650 } 651 652 static void path_put_conditional(struct path *path, struct nameidata *nd) 653 { 654 dput(path->dentry); 655 if (path->mnt != nd->path.mnt) 656 mntput(path->mnt); 657 } 658 659 static inline void path_to_nameidata(const struct path *path, 660 struct nameidata *nd) 661 { 662 if (!(nd->flags & LOOKUP_RCU)) { 663 dput(nd->path.dentry); 664 if (nd->path.mnt != path->mnt) 665 mntput(nd->path.mnt); 666 } 667 nd->path.mnt = path->mnt; 668 nd->path.dentry = path->dentry; 669 } 670 671 /* 672 * Helper to directly jump to a known parsed path from ->follow_link, 673 * caller must have taken a reference to path beforehand. 674 */ 675 void nd_jump_link(struct nameidata *nd, struct path *path) 676 { 677 path_put(&nd->path); 678 679 nd->path = *path; 680 nd->inode = nd->path.dentry->d_inode; 681 nd->flags |= LOOKUP_JUMPED; 682 } 683 684 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie) 685 { 686 struct inode *inode = link->dentry->d_inode; 687 if (inode->i_op->put_link) 688 inode->i_op->put_link(link->dentry, nd, cookie); 689 path_put(link); 690 } 691 692 int sysctl_protected_symlinks __read_mostly = 0; 693 int sysctl_protected_hardlinks __read_mostly = 0; 694 695 /** 696 * may_follow_link - Check symlink following for unsafe situations 697 * @link: The path of the symlink 698 * @nd: nameidata pathwalk data 699 * 700 * In the case of the sysctl_protected_symlinks sysctl being enabled, 701 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is 702 * in a sticky world-writable directory. This is to protect privileged 703 * processes from failing races against path names that may change out 704 * from under them by way of other users creating malicious symlinks. 705 * It will permit symlinks to be followed only when outside a sticky 706 * world-writable directory, or when the uid of the symlink and follower 707 * match, or when the directory owner matches the symlink's owner. 708 * 709 * Returns 0 if following the symlink is allowed, -ve on error. 710 */ 711 static inline int may_follow_link(struct path *link, struct nameidata *nd) 712 { 713 const struct inode *inode; 714 const struct inode *parent; 715 716 if (!sysctl_protected_symlinks) 717 return 0; 718 719 /* Allowed if owner and follower match. */ 720 inode = link->dentry->d_inode; 721 if (uid_eq(current_cred()->fsuid, inode->i_uid)) 722 return 0; 723 724 /* Allowed if parent directory not sticky and world-writable. */ 725 parent = nd->path.dentry->d_inode; 726 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH)) 727 return 0; 728 729 /* Allowed if parent directory and link owner match. */ 730 if (uid_eq(parent->i_uid, inode->i_uid)) 731 return 0; 732 733 audit_log_link_denied("follow_link", link); 734 path_put_conditional(link, nd); 735 path_put(&nd->path); 736 return -EACCES; 737 } 738 739 /** 740 * safe_hardlink_source - Check for safe hardlink conditions 741 * @inode: the source inode to hardlink from 742 * 743 * Return false if at least one of the following conditions: 744 * - inode is not a regular file 745 * - inode is setuid 746 * - inode is setgid and group-exec 747 * - access failure for read and write 748 * 749 * Otherwise returns true. 750 */ 751 static bool safe_hardlink_source(struct inode *inode) 752 { 753 umode_t mode = inode->i_mode; 754 755 /* Special files should not get pinned to the filesystem. */ 756 if (!S_ISREG(mode)) 757 return false; 758 759 /* Setuid files should not get pinned to the filesystem. */ 760 if (mode & S_ISUID) 761 return false; 762 763 /* Executable setgid files should not get pinned to the filesystem. */ 764 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) 765 return false; 766 767 /* Hardlinking to unreadable or unwritable sources is dangerous. */ 768 if (inode_permission(inode, MAY_READ | MAY_WRITE)) 769 return false; 770 771 return true; 772 } 773 774 /** 775 * may_linkat - Check permissions for creating a hardlink 776 * @link: the source to hardlink from 777 * 778 * Block hardlink when all of: 779 * - sysctl_protected_hardlinks enabled 780 * - fsuid does not match inode 781 * - hardlink source is unsafe (see safe_hardlink_source() above) 782 * - not CAP_FOWNER 783 * 784 * Returns 0 if successful, -ve on error. 785 */ 786 static int may_linkat(struct path *link) 787 { 788 const struct cred *cred; 789 struct inode *inode; 790 791 if (!sysctl_protected_hardlinks) 792 return 0; 793 794 cred = current_cred(); 795 inode = link->dentry->d_inode; 796 797 /* Source inode owner (or CAP_FOWNER) can hardlink all they like, 798 * otherwise, it must be a safe source. 799 */ 800 if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) || 801 capable(CAP_FOWNER)) 802 return 0; 803 804 audit_log_link_denied("linkat", link); 805 return -EPERM; 806 } 807 808 static __always_inline int 809 follow_link(struct path *link, struct nameidata *nd, void **p) 810 { 811 struct dentry *dentry = link->dentry; 812 int error; 813 char *s; 814 815 BUG_ON(nd->flags & LOOKUP_RCU); 816 817 if (link->mnt == nd->path.mnt) 818 mntget(link->mnt); 819 820 error = -ELOOP; 821 if (unlikely(current->total_link_count >= 40)) 822 goto out_put_nd_path; 823 824 cond_resched(); 825 current->total_link_count++; 826 827 touch_atime(link); 828 nd_set_link(nd, NULL); 829 830 error = security_inode_follow_link(link->dentry, nd); 831 if (error) 832 goto out_put_nd_path; 833 834 nd->last_type = LAST_BIND; 835 *p = dentry->d_inode->i_op->follow_link(dentry, nd); 836 error = PTR_ERR(*p); 837 if (IS_ERR(*p)) 838 goto out_put_nd_path; 839 840 error = 0; 841 s = nd_get_link(nd); 842 if (s) { 843 if (unlikely(IS_ERR(s))) { 844 path_put(&nd->path); 845 put_link(nd, link, *p); 846 return PTR_ERR(s); 847 } 848 if (*s == '/') { 849 set_root(nd); 850 path_put(&nd->path); 851 nd->path = nd->root; 852 path_get(&nd->root); 853 nd->flags |= LOOKUP_JUMPED; 854 } 855 nd->inode = nd->path.dentry->d_inode; 856 error = link_path_walk(s, nd); 857 if (unlikely(error)) 858 put_link(nd, link, *p); 859 } 860 861 return error; 862 863 out_put_nd_path: 864 *p = NULL; 865 path_put(&nd->path); 866 path_put(link); 867 return error; 868 } 869 870 static int follow_up_rcu(struct path *path) 871 { 872 struct mount *mnt = real_mount(path->mnt); 873 struct mount *parent; 874 struct dentry *mountpoint; 875 876 parent = mnt->mnt_parent; 877 if (&parent->mnt == path->mnt) 878 return 0; 879 mountpoint = mnt->mnt_mountpoint; 880 path->dentry = mountpoint; 881 path->mnt = &parent->mnt; 882 return 1; 883 } 884 885 /* 886 * follow_up - Find the mountpoint of path's vfsmount 887 * 888 * Given a path, find the mountpoint of its source file system. 889 * Replace @path with the path of the mountpoint in the parent mount. 890 * Up is towards /. 891 * 892 * Return 1 if we went up a level and 0 if we were already at the 893 * root. 894 */ 895 int follow_up(struct path *path) 896 { 897 struct mount *mnt = real_mount(path->mnt); 898 struct mount *parent; 899 struct dentry *mountpoint; 900 901 read_seqlock_excl(&mount_lock); 902 parent = mnt->mnt_parent; 903 if (parent == mnt) { 904 read_sequnlock_excl(&mount_lock); 905 return 0; 906 } 907 mntget(&parent->mnt); 908 mountpoint = dget(mnt->mnt_mountpoint); 909 read_sequnlock_excl(&mount_lock); 910 dput(path->dentry); 911 path->dentry = mountpoint; 912 mntput(path->mnt); 913 path->mnt = &parent->mnt; 914 return 1; 915 } 916 917 /* 918 * Perform an automount 919 * - return -EISDIR to tell follow_managed() to stop and return the path we 920 * were called with. 921 */ 922 static int follow_automount(struct path *path, unsigned flags, 923 bool *need_mntput) 924 { 925 struct vfsmount *mnt; 926 int err; 927 928 if (!path->dentry->d_op || !path->dentry->d_op->d_automount) 929 return -EREMOTE; 930 931 /* We don't want to mount if someone's just doing a stat - 932 * unless they're stat'ing a directory and appended a '/' to 933 * the name. 934 * 935 * We do, however, want to mount if someone wants to open or 936 * create a file of any type under the mountpoint, wants to 937 * traverse through the mountpoint or wants to open the 938 * mounted directory. Also, autofs may mark negative dentries 939 * as being automount points. These will need the attentions 940 * of the daemon to instantiate them before they can be used. 941 */ 942 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY | 943 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) && 944 path->dentry->d_inode) 945 return -EISDIR; 946 947 current->total_link_count++; 948 if (current->total_link_count >= 40) 949 return -ELOOP; 950 951 mnt = path->dentry->d_op->d_automount(path); 952 if (IS_ERR(mnt)) { 953 /* 954 * The filesystem is allowed to return -EISDIR here to indicate 955 * it doesn't want to automount. For instance, autofs would do 956 * this so that its userspace daemon can mount on this dentry. 957 * 958 * However, we can only permit this if it's a terminal point in 959 * the path being looked up; if it wasn't then the remainder of 960 * the path is inaccessible and we should say so. 961 */ 962 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT)) 963 return -EREMOTE; 964 return PTR_ERR(mnt); 965 } 966 967 if (!mnt) /* mount collision */ 968 return 0; 969 970 if (!*need_mntput) { 971 /* lock_mount() may release path->mnt on error */ 972 mntget(path->mnt); 973 *need_mntput = true; 974 } 975 err = finish_automount(mnt, path); 976 977 switch (err) { 978 case -EBUSY: 979 /* Someone else made a mount here whilst we were busy */ 980 return 0; 981 case 0: 982 path_put(path); 983 path->mnt = mnt; 984 path->dentry = dget(mnt->mnt_root); 985 return 0; 986 default: 987 return err; 988 } 989 990 } 991 992 /* 993 * Handle a dentry that is managed in some way. 994 * - Flagged for transit management (autofs) 995 * - Flagged as mountpoint 996 * - Flagged as automount point 997 * 998 * This may only be called in refwalk mode. 999 * 1000 * Serialization is taken care of in namespace.c 1001 */ 1002 static int follow_managed(struct path *path, unsigned flags) 1003 { 1004 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */ 1005 unsigned managed; 1006 bool need_mntput = false; 1007 int ret = 0; 1008 1009 /* Given that we're not holding a lock here, we retain the value in a 1010 * local variable for each dentry as we look at it so that we don't see 1011 * the components of that value change under us */ 1012 while (managed = ACCESS_ONCE(path->dentry->d_flags), 1013 managed &= DCACHE_MANAGED_DENTRY, 1014 unlikely(managed != 0)) { 1015 /* Allow the filesystem to manage the transit without i_mutex 1016 * being held. */ 1017 if (managed & DCACHE_MANAGE_TRANSIT) { 1018 BUG_ON(!path->dentry->d_op); 1019 BUG_ON(!path->dentry->d_op->d_manage); 1020 ret = path->dentry->d_op->d_manage(path->dentry, false); 1021 if (ret < 0) 1022 break; 1023 } 1024 1025 /* Transit to a mounted filesystem. */ 1026 if (managed & DCACHE_MOUNTED) { 1027 struct vfsmount *mounted = lookup_mnt(path); 1028 if (mounted) { 1029 dput(path->dentry); 1030 if (need_mntput) 1031 mntput(path->mnt); 1032 path->mnt = mounted; 1033 path->dentry = dget(mounted->mnt_root); 1034 need_mntput = true; 1035 continue; 1036 } 1037 1038 /* Something is mounted on this dentry in another 1039 * namespace and/or whatever was mounted there in this 1040 * namespace got unmounted before lookup_mnt() could 1041 * get it */ 1042 } 1043 1044 /* Handle an automount point */ 1045 if (managed & DCACHE_NEED_AUTOMOUNT) { 1046 ret = follow_automount(path, flags, &need_mntput); 1047 if (ret < 0) 1048 break; 1049 continue; 1050 } 1051 1052 /* We didn't change the current path point */ 1053 break; 1054 } 1055 1056 if (need_mntput && path->mnt == mnt) 1057 mntput(path->mnt); 1058 if (ret == -EISDIR) 1059 ret = 0; 1060 return ret < 0 ? ret : need_mntput; 1061 } 1062 1063 int follow_down_one(struct path *path) 1064 { 1065 struct vfsmount *mounted; 1066 1067 mounted = lookup_mnt(path); 1068 if (mounted) { 1069 dput(path->dentry); 1070 mntput(path->mnt); 1071 path->mnt = mounted; 1072 path->dentry = dget(mounted->mnt_root); 1073 return 1; 1074 } 1075 return 0; 1076 } 1077 1078 static inline bool managed_dentry_might_block(struct dentry *dentry) 1079 { 1080 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT && 1081 dentry->d_op->d_manage(dentry, true) < 0); 1082 } 1083 1084 /* 1085 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if 1086 * we meet a managed dentry that would need blocking. 1087 */ 1088 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path, 1089 struct inode **inode) 1090 { 1091 for (;;) { 1092 struct mount *mounted; 1093 /* 1094 * Don't forget we might have a non-mountpoint managed dentry 1095 * that wants to block transit. 1096 */ 1097 if (unlikely(managed_dentry_might_block(path->dentry))) 1098 return false; 1099 1100 if (!d_mountpoint(path->dentry)) 1101 break; 1102 1103 mounted = __lookup_mnt(path->mnt, path->dentry); 1104 if (!mounted) 1105 break; 1106 path->mnt = &mounted->mnt; 1107 path->dentry = mounted->mnt.mnt_root; 1108 nd->flags |= LOOKUP_JUMPED; 1109 nd->seq = read_seqcount_begin(&path->dentry->d_seq); 1110 /* 1111 * Update the inode too. We don't need to re-check the 1112 * dentry sequence number here after this d_inode read, 1113 * because a mount-point is always pinned. 1114 */ 1115 *inode = path->dentry->d_inode; 1116 } 1117 return true; 1118 } 1119 1120 static void follow_mount_rcu(struct nameidata *nd) 1121 { 1122 while (d_mountpoint(nd->path.dentry)) { 1123 struct mount *mounted; 1124 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry); 1125 if (!mounted) 1126 break; 1127 nd->path.mnt = &mounted->mnt; 1128 nd->path.dentry = mounted->mnt.mnt_root; 1129 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 1130 } 1131 } 1132 1133 static int follow_dotdot_rcu(struct nameidata *nd) 1134 { 1135 set_root_rcu(nd); 1136 1137 while (1) { 1138 if (nd->path.dentry == nd->root.dentry && 1139 nd->path.mnt == nd->root.mnt) { 1140 break; 1141 } 1142 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1143 struct dentry *old = nd->path.dentry; 1144 struct dentry *parent = old->d_parent; 1145 unsigned seq; 1146 1147 seq = read_seqcount_begin(&parent->d_seq); 1148 if (read_seqcount_retry(&old->d_seq, nd->seq)) 1149 goto failed; 1150 nd->path.dentry = parent; 1151 nd->seq = seq; 1152 break; 1153 } 1154 if (!follow_up_rcu(&nd->path)) 1155 break; 1156 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 1157 } 1158 follow_mount_rcu(nd); 1159 nd->inode = nd->path.dentry->d_inode; 1160 return 0; 1161 1162 failed: 1163 nd->flags &= ~LOOKUP_RCU; 1164 if (!(nd->flags & LOOKUP_ROOT)) 1165 nd->root.mnt = NULL; 1166 rcu_read_unlock(); 1167 return -ECHILD; 1168 } 1169 1170 /* 1171 * Follow down to the covering mount currently visible to userspace. At each 1172 * point, the filesystem owning that dentry may be queried as to whether the 1173 * caller is permitted to proceed or not. 1174 */ 1175 int follow_down(struct path *path) 1176 { 1177 unsigned managed; 1178 int ret; 1179 1180 while (managed = ACCESS_ONCE(path->dentry->d_flags), 1181 unlikely(managed & DCACHE_MANAGED_DENTRY)) { 1182 /* Allow the filesystem to manage the transit without i_mutex 1183 * being held. 1184 * 1185 * We indicate to the filesystem if someone is trying to mount 1186 * something here. This gives autofs the chance to deny anyone 1187 * other than its daemon the right to mount on its 1188 * superstructure. 1189 * 1190 * The filesystem may sleep at this point. 1191 */ 1192 if (managed & DCACHE_MANAGE_TRANSIT) { 1193 BUG_ON(!path->dentry->d_op); 1194 BUG_ON(!path->dentry->d_op->d_manage); 1195 ret = path->dentry->d_op->d_manage( 1196 path->dentry, false); 1197 if (ret < 0) 1198 return ret == -EISDIR ? 0 : ret; 1199 } 1200 1201 /* Transit to a mounted filesystem. */ 1202 if (managed & DCACHE_MOUNTED) { 1203 struct vfsmount *mounted = lookup_mnt(path); 1204 if (!mounted) 1205 break; 1206 dput(path->dentry); 1207 mntput(path->mnt); 1208 path->mnt = mounted; 1209 path->dentry = dget(mounted->mnt_root); 1210 continue; 1211 } 1212 1213 /* Don't handle automount points here */ 1214 break; 1215 } 1216 return 0; 1217 } 1218 1219 /* 1220 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot() 1221 */ 1222 static void follow_mount(struct path *path) 1223 { 1224 while (d_mountpoint(path->dentry)) { 1225 struct vfsmount *mounted = lookup_mnt(path); 1226 if (!mounted) 1227 break; 1228 dput(path->dentry); 1229 mntput(path->mnt); 1230 path->mnt = mounted; 1231 path->dentry = dget(mounted->mnt_root); 1232 } 1233 } 1234 1235 static void follow_dotdot(struct nameidata *nd) 1236 { 1237 set_root(nd); 1238 1239 while(1) { 1240 struct dentry *old = nd->path.dentry; 1241 1242 if (nd->path.dentry == nd->root.dentry && 1243 nd->path.mnt == nd->root.mnt) { 1244 break; 1245 } 1246 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1247 /* rare case of legitimate dget_parent()... */ 1248 nd->path.dentry = dget_parent(nd->path.dentry); 1249 dput(old); 1250 break; 1251 } 1252 if (!follow_up(&nd->path)) 1253 break; 1254 } 1255 follow_mount(&nd->path); 1256 nd->inode = nd->path.dentry->d_inode; 1257 } 1258 1259 /* 1260 * This looks up the name in dcache, possibly revalidates the old dentry and 1261 * allocates a new one if not found or not valid. In the need_lookup argument 1262 * returns whether i_op->lookup is necessary. 1263 * 1264 * dir->d_inode->i_mutex must be held 1265 */ 1266 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir, 1267 unsigned int flags, bool *need_lookup) 1268 { 1269 struct dentry *dentry; 1270 int error; 1271 1272 *need_lookup = false; 1273 dentry = d_lookup(dir, name); 1274 if (dentry) { 1275 if (dentry->d_flags & DCACHE_OP_REVALIDATE) { 1276 error = d_revalidate(dentry, flags); 1277 if (unlikely(error <= 0)) { 1278 if (error < 0) { 1279 dput(dentry); 1280 return ERR_PTR(error); 1281 } else if (!d_invalidate(dentry)) { 1282 dput(dentry); 1283 dentry = NULL; 1284 } 1285 } 1286 } 1287 } 1288 1289 if (!dentry) { 1290 dentry = d_alloc(dir, name); 1291 if (unlikely(!dentry)) 1292 return ERR_PTR(-ENOMEM); 1293 1294 *need_lookup = true; 1295 } 1296 return dentry; 1297 } 1298 1299 /* 1300 * Call i_op->lookup on the dentry. The dentry must be negative and 1301 * unhashed. 1302 * 1303 * dir->d_inode->i_mutex must be held 1304 */ 1305 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry, 1306 unsigned int flags) 1307 { 1308 struct dentry *old; 1309 1310 /* Don't create child dentry for a dead directory. */ 1311 if (unlikely(IS_DEADDIR(dir))) { 1312 dput(dentry); 1313 return ERR_PTR(-ENOENT); 1314 } 1315 1316 old = dir->i_op->lookup(dir, dentry, flags); 1317 if (unlikely(old)) { 1318 dput(dentry); 1319 dentry = old; 1320 } 1321 return dentry; 1322 } 1323 1324 static struct dentry *__lookup_hash(struct qstr *name, 1325 struct dentry *base, unsigned int flags) 1326 { 1327 bool need_lookup; 1328 struct dentry *dentry; 1329 1330 dentry = lookup_dcache(name, base, flags, &need_lookup); 1331 if (!need_lookup) 1332 return dentry; 1333 1334 return lookup_real(base->d_inode, dentry, flags); 1335 } 1336 1337 /* 1338 * It's more convoluted than I'd like it to be, but... it's still fairly 1339 * small and for now I'd prefer to have fast path as straight as possible. 1340 * It _is_ time-critical. 1341 */ 1342 static int lookup_fast(struct nameidata *nd, 1343 struct path *path, struct inode **inode) 1344 { 1345 struct vfsmount *mnt = nd->path.mnt; 1346 struct dentry *dentry, *parent = nd->path.dentry; 1347 int need_reval = 1; 1348 int status = 1; 1349 int err; 1350 1351 /* 1352 * Rename seqlock is not required here because in the off chance 1353 * of a false negative due to a concurrent rename, we're going to 1354 * do the non-racy lookup, below. 1355 */ 1356 if (nd->flags & LOOKUP_RCU) { 1357 unsigned seq; 1358 dentry = __d_lookup_rcu(parent, &nd->last, &seq); 1359 if (!dentry) 1360 goto unlazy; 1361 1362 /* 1363 * This sequence count validates that the inode matches 1364 * the dentry name information from lookup. 1365 */ 1366 *inode = dentry->d_inode; 1367 if (read_seqcount_retry(&dentry->d_seq, seq)) 1368 return -ECHILD; 1369 1370 /* 1371 * This sequence count validates that the parent had no 1372 * changes while we did the lookup of the dentry above. 1373 * 1374 * The memory barrier in read_seqcount_begin of child is 1375 * enough, we can use __read_seqcount_retry here. 1376 */ 1377 if (__read_seqcount_retry(&parent->d_seq, nd->seq)) 1378 return -ECHILD; 1379 nd->seq = seq; 1380 1381 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) { 1382 status = d_revalidate(dentry, nd->flags); 1383 if (unlikely(status <= 0)) { 1384 if (status != -ECHILD) 1385 need_reval = 0; 1386 goto unlazy; 1387 } 1388 } 1389 path->mnt = mnt; 1390 path->dentry = dentry; 1391 if (unlikely(!__follow_mount_rcu(nd, path, inode))) 1392 goto unlazy; 1393 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT)) 1394 goto unlazy; 1395 return 0; 1396 unlazy: 1397 if (unlazy_walk(nd, dentry)) 1398 return -ECHILD; 1399 } else { 1400 dentry = __d_lookup(parent, &nd->last); 1401 } 1402 1403 if (unlikely(!dentry)) 1404 goto need_lookup; 1405 1406 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval) 1407 status = d_revalidate(dentry, nd->flags); 1408 if (unlikely(status <= 0)) { 1409 if (status < 0) { 1410 dput(dentry); 1411 return status; 1412 } 1413 if (!d_invalidate(dentry)) { 1414 dput(dentry); 1415 goto need_lookup; 1416 } 1417 } 1418 1419 path->mnt = mnt; 1420 path->dentry = dentry; 1421 err = follow_managed(path, nd->flags); 1422 if (unlikely(err < 0)) { 1423 path_put_conditional(path, nd); 1424 return err; 1425 } 1426 if (err) 1427 nd->flags |= LOOKUP_JUMPED; 1428 *inode = path->dentry->d_inode; 1429 return 0; 1430 1431 need_lookup: 1432 return 1; 1433 } 1434 1435 /* Fast lookup failed, do it the slow way */ 1436 static int lookup_slow(struct nameidata *nd, struct path *path) 1437 { 1438 struct dentry *dentry, *parent; 1439 int err; 1440 1441 parent = nd->path.dentry; 1442 BUG_ON(nd->inode != parent->d_inode); 1443 1444 mutex_lock(&parent->d_inode->i_mutex); 1445 dentry = __lookup_hash(&nd->last, parent, nd->flags); 1446 mutex_unlock(&parent->d_inode->i_mutex); 1447 if (IS_ERR(dentry)) 1448 return PTR_ERR(dentry); 1449 path->mnt = nd->path.mnt; 1450 path->dentry = dentry; 1451 err = follow_managed(path, nd->flags); 1452 if (unlikely(err < 0)) { 1453 path_put_conditional(path, nd); 1454 return err; 1455 } 1456 if (err) 1457 nd->flags |= LOOKUP_JUMPED; 1458 return 0; 1459 } 1460 1461 static inline int may_lookup(struct nameidata *nd) 1462 { 1463 if (nd->flags & LOOKUP_RCU) { 1464 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK); 1465 if (err != -ECHILD) 1466 return err; 1467 if (unlazy_walk(nd, NULL)) 1468 return -ECHILD; 1469 } 1470 return inode_permission(nd->inode, MAY_EXEC); 1471 } 1472 1473 static inline int handle_dots(struct nameidata *nd, int type) 1474 { 1475 if (type == LAST_DOTDOT) { 1476 if (nd->flags & LOOKUP_RCU) { 1477 if (follow_dotdot_rcu(nd)) 1478 return -ECHILD; 1479 } else 1480 follow_dotdot(nd); 1481 } 1482 return 0; 1483 } 1484 1485 static void terminate_walk(struct nameidata *nd) 1486 { 1487 if (!(nd->flags & LOOKUP_RCU)) { 1488 path_put(&nd->path); 1489 } else { 1490 nd->flags &= ~LOOKUP_RCU; 1491 if (!(nd->flags & LOOKUP_ROOT)) 1492 nd->root.mnt = NULL; 1493 rcu_read_unlock(); 1494 } 1495 } 1496 1497 /* 1498 * Do we need to follow links? We _really_ want to be able 1499 * to do this check without having to look at inode->i_op, 1500 * so we keep a cache of "no, this doesn't need follow_link" 1501 * for the common case. 1502 */ 1503 static inline int should_follow_link(struct dentry *dentry, int follow) 1504 { 1505 return unlikely(d_is_symlink(dentry)) ? follow : 0; 1506 } 1507 1508 static inline int walk_component(struct nameidata *nd, struct path *path, 1509 int follow) 1510 { 1511 struct inode *inode; 1512 int err; 1513 /* 1514 * "." and ".." are special - ".." especially so because it has 1515 * to be able to know about the current root directory and 1516 * parent relationships. 1517 */ 1518 if (unlikely(nd->last_type != LAST_NORM)) 1519 return handle_dots(nd, nd->last_type); 1520 err = lookup_fast(nd, path, &inode); 1521 if (unlikely(err)) { 1522 if (err < 0) 1523 goto out_err; 1524 1525 err = lookup_slow(nd, path); 1526 if (err < 0) 1527 goto out_err; 1528 1529 inode = path->dentry->d_inode; 1530 } 1531 err = -ENOENT; 1532 if (!inode) 1533 goto out_path_put; 1534 1535 if (should_follow_link(path->dentry, follow)) { 1536 if (nd->flags & LOOKUP_RCU) { 1537 if (unlikely(unlazy_walk(nd, path->dentry))) { 1538 err = -ECHILD; 1539 goto out_err; 1540 } 1541 } 1542 BUG_ON(inode != path->dentry->d_inode); 1543 return 1; 1544 } 1545 path_to_nameidata(path, nd); 1546 nd->inode = inode; 1547 return 0; 1548 1549 out_path_put: 1550 path_to_nameidata(path, nd); 1551 out_err: 1552 terminate_walk(nd); 1553 return err; 1554 } 1555 1556 /* 1557 * This limits recursive symlink follows to 8, while 1558 * limiting consecutive symlinks to 40. 1559 * 1560 * Without that kind of total limit, nasty chains of consecutive 1561 * symlinks can cause almost arbitrarily long lookups. 1562 */ 1563 static inline int nested_symlink(struct path *path, struct nameidata *nd) 1564 { 1565 int res; 1566 1567 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) { 1568 path_put_conditional(path, nd); 1569 path_put(&nd->path); 1570 return -ELOOP; 1571 } 1572 BUG_ON(nd->depth >= MAX_NESTED_LINKS); 1573 1574 nd->depth++; 1575 current->link_count++; 1576 1577 do { 1578 struct path link = *path; 1579 void *cookie; 1580 1581 res = follow_link(&link, nd, &cookie); 1582 if (res) 1583 break; 1584 res = walk_component(nd, path, LOOKUP_FOLLOW); 1585 put_link(nd, &link, cookie); 1586 } while (res > 0); 1587 1588 current->link_count--; 1589 nd->depth--; 1590 return res; 1591 } 1592 1593 /* 1594 * We can do the critical dentry name comparison and hashing 1595 * operations one word at a time, but we are limited to: 1596 * 1597 * - Architectures with fast unaligned word accesses. We could 1598 * do a "get_unaligned()" if this helps and is sufficiently 1599 * fast. 1600 * 1601 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we 1602 * do not trap on the (extremely unlikely) case of a page 1603 * crossing operation. 1604 * 1605 * - Furthermore, we need an efficient 64-bit compile for the 1606 * 64-bit case in order to generate the "number of bytes in 1607 * the final mask". Again, that could be replaced with a 1608 * efficient population count instruction or similar. 1609 */ 1610 #ifdef CONFIG_DCACHE_WORD_ACCESS 1611 1612 #include <asm/word-at-a-time.h> 1613 1614 #ifdef CONFIG_64BIT 1615 1616 static inline unsigned int fold_hash(unsigned long hash) 1617 { 1618 hash += hash >> (8*sizeof(int)); 1619 return hash; 1620 } 1621 1622 #else /* 32-bit case */ 1623 1624 #define fold_hash(x) (x) 1625 1626 #endif 1627 1628 unsigned int full_name_hash(const unsigned char *name, unsigned int len) 1629 { 1630 unsigned long a, mask; 1631 unsigned long hash = 0; 1632 1633 for (;;) { 1634 a = load_unaligned_zeropad(name); 1635 if (len < sizeof(unsigned long)) 1636 break; 1637 hash += a; 1638 hash *= 9; 1639 name += sizeof(unsigned long); 1640 len -= sizeof(unsigned long); 1641 if (!len) 1642 goto done; 1643 } 1644 mask = bytemask_from_count(len); 1645 hash += mask & a; 1646 done: 1647 return fold_hash(hash); 1648 } 1649 EXPORT_SYMBOL(full_name_hash); 1650 1651 /* 1652 * Calculate the length and hash of the path component, and 1653 * return the length of the component; 1654 */ 1655 static inline unsigned long hash_name(const char *name, unsigned int *hashp) 1656 { 1657 unsigned long a, b, adata, bdata, mask, hash, len; 1658 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 1659 1660 hash = a = 0; 1661 len = -sizeof(unsigned long); 1662 do { 1663 hash = (hash + a) * 9; 1664 len += sizeof(unsigned long); 1665 a = load_unaligned_zeropad(name+len); 1666 b = a ^ REPEAT_BYTE('/'); 1667 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants))); 1668 1669 adata = prep_zero_mask(a, adata, &constants); 1670 bdata = prep_zero_mask(b, bdata, &constants); 1671 1672 mask = create_zero_mask(adata | bdata); 1673 1674 hash += a & zero_bytemask(mask); 1675 *hashp = fold_hash(hash); 1676 1677 return len + find_zero(mask); 1678 } 1679 1680 #else 1681 1682 unsigned int full_name_hash(const unsigned char *name, unsigned int len) 1683 { 1684 unsigned long hash = init_name_hash(); 1685 while (len--) 1686 hash = partial_name_hash(*name++, hash); 1687 return end_name_hash(hash); 1688 } 1689 EXPORT_SYMBOL(full_name_hash); 1690 1691 /* 1692 * We know there's a real path component here of at least 1693 * one character. 1694 */ 1695 static inline unsigned long hash_name(const char *name, unsigned int *hashp) 1696 { 1697 unsigned long hash = init_name_hash(); 1698 unsigned long len = 0, c; 1699 1700 c = (unsigned char)*name; 1701 do { 1702 len++; 1703 hash = partial_name_hash(c, hash); 1704 c = (unsigned char)name[len]; 1705 } while (c && c != '/'); 1706 *hashp = end_name_hash(hash); 1707 return len; 1708 } 1709 1710 #endif 1711 1712 /* 1713 * Name resolution. 1714 * This is the basic name resolution function, turning a pathname into 1715 * the final dentry. We expect 'base' to be positive and a directory. 1716 * 1717 * Returns 0 and nd will have valid dentry and mnt on success. 1718 * Returns error and drops reference to input namei data on failure. 1719 */ 1720 static int link_path_walk(const char *name, struct nameidata *nd) 1721 { 1722 struct path next; 1723 int err; 1724 1725 while (*name=='/') 1726 name++; 1727 if (!*name) 1728 return 0; 1729 1730 /* At this point we know we have a real path component. */ 1731 for(;;) { 1732 struct qstr this; 1733 long len; 1734 int type; 1735 1736 err = may_lookup(nd); 1737 if (err) 1738 break; 1739 1740 len = hash_name(name, &this.hash); 1741 this.name = name; 1742 this.len = len; 1743 1744 type = LAST_NORM; 1745 if (name[0] == '.') switch (len) { 1746 case 2: 1747 if (name[1] == '.') { 1748 type = LAST_DOTDOT; 1749 nd->flags |= LOOKUP_JUMPED; 1750 } 1751 break; 1752 case 1: 1753 type = LAST_DOT; 1754 } 1755 if (likely(type == LAST_NORM)) { 1756 struct dentry *parent = nd->path.dentry; 1757 nd->flags &= ~LOOKUP_JUMPED; 1758 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { 1759 err = parent->d_op->d_hash(parent, &this); 1760 if (err < 0) 1761 break; 1762 } 1763 } 1764 1765 nd->last = this; 1766 nd->last_type = type; 1767 1768 if (!name[len]) 1769 return 0; 1770 /* 1771 * If it wasn't NUL, we know it was '/'. Skip that 1772 * slash, and continue until no more slashes. 1773 */ 1774 do { 1775 len++; 1776 } while (unlikely(name[len] == '/')); 1777 if (!name[len]) 1778 return 0; 1779 1780 name += len; 1781 1782 err = walk_component(nd, &next, LOOKUP_FOLLOW); 1783 if (err < 0) 1784 return err; 1785 1786 if (err) { 1787 err = nested_symlink(&next, nd); 1788 if (err) 1789 return err; 1790 } 1791 if (!d_is_directory(nd->path.dentry)) { 1792 err = -ENOTDIR; 1793 break; 1794 } 1795 } 1796 terminate_walk(nd); 1797 return err; 1798 } 1799 1800 static int path_init(int dfd, const char *name, unsigned int flags, 1801 struct nameidata *nd, struct file **fp) 1802 { 1803 int retval = 0; 1804 1805 nd->last_type = LAST_ROOT; /* if there are only slashes... */ 1806 nd->flags = flags | LOOKUP_JUMPED; 1807 nd->depth = 0; 1808 if (flags & LOOKUP_ROOT) { 1809 struct dentry *root = nd->root.dentry; 1810 struct inode *inode = root->d_inode; 1811 if (*name) { 1812 if (!d_is_directory(root)) 1813 return -ENOTDIR; 1814 retval = inode_permission(inode, MAY_EXEC); 1815 if (retval) 1816 return retval; 1817 } 1818 nd->path = nd->root; 1819 nd->inode = inode; 1820 if (flags & LOOKUP_RCU) { 1821 rcu_read_lock(); 1822 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1823 nd->m_seq = read_seqbegin(&mount_lock); 1824 } else { 1825 path_get(&nd->path); 1826 } 1827 return 0; 1828 } 1829 1830 nd->root.mnt = NULL; 1831 1832 nd->m_seq = read_seqbegin(&mount_lock); 1833 if (*name=='/') { 1834 if (flags & LOOKUP_RCU) { 1835 rcu_read_lock(); 1836 set_root_rcu(nd); 1837 } else { 1838 set_root(nd); 1839 path_get(&nd->root); 1840 } 1841 nd->path = nd->root; 1842 } else if (dfd == AT_FDCWD) { 1843 if (flags & LOOKUP_RCU) { 1844 struct fs_struct *fs = current->fs; 1845 unsigned seq; 1846 1847 rcu_read_lock(); 1848 1849 do { 1850 seq = read_seqcount_begin(&fs->seq); 1851 nd->path = fs->pwd; 1852 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1853 } while (read_seqcount_retry(&fs->seq, seq)); 1854 } else { 1855 get_fs_pwd(current->fs, &nd->path); 1856 } 1857 } else { 1858 /* Caller must check execute permissions on the starting path component */ 1859 struct fd f = fdget_raw(dfd); 1860 struct dentry *dentry; 1861 1862 if (!f.file) 1863 return -EBADF; 1864 1865 dentry = f.file->f_path.dentry; 1866 1867 if (*name) { 1868 if (!d_is_directory(dentry)) { 1869 fdput(f); 1870 return -ENOTDIR; 1871 } 1872 } 1873 1874 nd->path = f.file->f_path; 1875 if (flags & LOOKUP_RCU) { 1876 if (f.need_put) 1877 *fp = f.file; 1878 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1879 rcu_read_lock(); 1880 } else { 1881 path_get(&nd->path); 1882 fdput(f); 1883 } 1884 } 1885 1886 nd->inode = nd->path.dentry->d_inode; 1887 return 0; 1888 } 1889 1890 static inline int lookup_last(struct nameidata *nd, struct path *path) 1891 { 1892 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len]) 1893 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 1894 1895 nd->flags &= ~LOOKUP_PARENT; 1896 return walk_component(nd, path, nd->flags & LOOKUP_FOLLOW); 1897 } 1898 1899 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 1900 static int path_lookupat(int dfd, const char *name, 1901 unsigned int flags, struct nameidata *nd) 1902 { 1903 struct file *base = NULL; 1904 struct path path; 1905 int err; 1906 1907 /* 1908 * Path walking is largely split up into 2 different synchronisation 1909 * schemes, rcu-walk and ref-walk (explained in 1910 * Documentation/filesystems/path-lookup.txt). These share much of the 1911 * path walk code, but some things particularly setup, cleanup, and 1912 * following mounts are sufficiently divergent that functions are 1913 * duplicated. Typically there is a function foo(), and its RCU 1914 * analogue, foo_rcu(). 1915 * 1916 * -ECHILD is the error number of choice (just to avoid clashes) that 1917 * is returned if some aspect of an rcu-walk fails. Such an error must 1918 * be handled by restarting a traditional ref-walk (which will always 1919 * be able to complete). 1920 */ 1921 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base); 1922 1923 if (unlikely(err)) 1924 return err; 1925 1926 current->total_link_count = 0; 1927 err = link_path_walk(name, nd); 1928 1929 if (!err && !(flags & LOOKUP_PARENT)) { 1930 err = lookup_last(nd, &path); 1931 while (err > 0) { 1932 void *cookie; 1933 struct path link = path; 1934 err = may_follow_link(&link, nd); 1935 if (unlikely(err)) 1936 break; 1937 nd->flags |= LOOKUP_PARENT; 1938 err = follow_link(&link, nd, &cookie); 1939 if (err) 1940 break; 1941 err = lookup_last(nd, &path); 1942 put_link(nd, &link, cookie); 1943 } 1944 } 1945 1946 if (!err) 1947 err = complete_walk(nd); 1948 1949 if (!err && nd->flags & LOOKUP_DIRECTORY) { 1950 if (!d_is_directory(nd->path.dentry)) { 1951 path_put(&nd->path); 1952 err = -ENOTDIR; 1953 } 1954 } 1955 1956 if (base) 1957 fput(base); 1958 1959 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 1960 path_put(&nd->root); 1961 nd->root.mnt = NULL; 1962 } 1963 return err; 1964 } 1965 1966 static int filename_lookup(int dfd, struct filename *name, 1967 unsigned int flags, struct nameidata *nd) 1968 { 1969 int retval = path_lookupat(dfd, name->name, flags | LOOKUP_RCU, nd); 1970 if (unlikely(retval == -ECHILD)) 1971 retval = path_lookupat(dfd, name->name, flags, nd); 1972 if (unlikely(retval == -ESTALE)) 1973 retval = path_lookupat(dfd, name->name, 1974 flags | LOOKUP_REVAL, nd); 1975 1976 if (likely(!retval)) 1977 audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT); 1978 return retval; 1979 } 1980 1981 static int do_path_lookup(int dfd, const char *name, 1982 unsigned int flags, struct nameidata *nd) 1983 { 1984 struct filename filename = { .name = name }; 1985 1986 return filename_lookup(dfd, &filename, flags, nd); 1987 } 1988 1989 /* does lookup, returns the object with parent locked */ 1990 struct dentry *kern_path_locked(const char *name, struct path *path) 1991 { 1992 struct nameidata nd; 1993 struct dentry *d; 1994 int err = do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, &nd); 1995 if (err) 1996 return ERR_PTR(err); 1997 if (nd.last_type != LAST_NORM) { 1998 path_put(&nd.path); 1999 return ERR_PTR(-EINVAL); 2000 } 2001 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 2002 d = __lookup_hash(&nd.last, nd.path.dentry, 0); 2003 if (IS_ERR(d)) { 2004 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2005 path_put(&nd.path); 2006 return d; 2007 } 2008 *path = nd.path; 2009 return d; 2010 } 2011 2012 int kern_path(const char *name, unsigned int flags, struct path *path) 2013 { 2014 struct nameidata nd; 2015 int res = do_path_lookup(AT_FDCWD, name, flags, &nd); 2016 if (!res) 2017 *path = nd.path; 2018 return res; 2019 } 2020 2021 /** 2022 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 2023 * @dentry: pointer to dentry of the base directory 2024 * @mnt: pointer to vfs mount of the base directory 2025 * @name: pointer to file name 2026 * @flags: lookup flags 2027 * @path: pointer to struct path to fill 2028 */ 2029 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 2030 const char *name, unsigned int flags, 2031 struct path *path) 2032 { 2033 struct nameidata nd; 2034 int err; 2035 nd.root.dentry = dentry; 2036 nd.root.mnt = mnt; 2037 BUG_ON(flags & LOOKUP_PARENT); 2038 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */ 2039 err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd); 2040 if (!err) 2041 *path = nd.path; 2042 return err; 2043 } 2044 2045 /* 2046 * Restricted form of lookup. Doesn't follow links, single-component only, 2047 * needs parent already locked. Doesn't follow mounts. 2048 * SMP-safe. 2049 */ 2050 static struct dentry *lookup_hash(struct nameidata *nd) 2051 { 2052 return __lookup_hash(&nd->last, nd->path.dentry, nd->flags); 2053 } 2054 2055 /** 2056 * lookup_one_len - filesystem helper to lookup single pathname component 2057 * @name: pathname component to lookup 2058 * @base: base directory to lookup from 2059 * @len: maximum length @len should be interpreted to 2060 * 2061 * Note that this routine is purely a helper for filesystem usage and should 2062 * not be called by generic code. Also note that by using this function the 2063 * nameidata argument is passed to the filesystem methods and a filesystem 2064 * using this helper needs to be prepared for that. 2065 */ 2066 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 2067 { 2068 struct qstr this; 2069 unsigned int c; 2070 int err; 2071 2072 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex)); 2073 2074 this.name = name; 2075 this.len = len; 2076 this.hash = full_name_hash(name, len); 2077 if (!len) 2078 return ERR_PTR(-EACCES); 2079 2080 if (unlikely(name[0] == '.')) { 2081 if (len < 2 || (len == 2 && name[1] == '.')) 2082 return ERR_PTR(-EACCES); 2083 } 2084 2085 while (len--) { 2086 c = *(const unsigned char *)name++; 2087 if (c == '/' || c == '\0') 2088 return ERR_PTR(-EACCES); 2089 } 2090 /* 2091 * See if the low-level filesystem might want 2092 * to use its own hash.. 2093 */ 2094 if (base->d_flags & DCACHE_OP_HASH) { 2095 int err = base->d_op->d_hash(base, &this); 2096 if (err < 0) 2097 return ERR_PTR(err); 2098 } 2099 2100 err = inode_permission(base->d_inode, MAY_EXEC); 2101 if (err) 2102 return ERR_PTR(err); 2103 2104 return __lookup_hash(&this, base, 0); 2105 } 2106 2107 int user_path_at_empty(int dfd, const char __user *name, unsigned flags, 2108 struct path *path, int *empty) 2109 { 2110 struct nameidata nd; 2111 struct filename *tmp = getname_flags(name, flags, empty); 2112 int err = PTR_ERR(tmp); 2113 if (!IS_ERR(tmp)) { 2114 2115 BUG_ON(flags & LOOKUP_PARENT); 2116 2117 err = filename_lookup(dfd, tmp, flags, &nd); 2118 putname(tmp); 2119 if (!err) 2120 *path = nd.path; 2121 } 2122 return err; 2123 } 2124 2125 int user_path_at(int dfd, const char __user *name, unsigned flags, 2126 struct path *path) 2127 { 2128 return user_path_at_empty(dfd, name, flags, path, NULL); 2129 } 2130 2131 /* 2132 * NB: most callers don't do anything directly with the reference to the 2133 * to struct filename, but the nd->last pointer points into the name string 2134 * allocated by getname. So we must hold the reference to it until all 2135 * path-walking is complete. 2136 */ 2137 static struct filename * 2138 user_path_parent(int dfd, const char __user *path, struct nameidata *nd, 2139 unsigned int flags) 2140 { 2141 struct filename *s = getname(path); 2142 int error; 2143 2144 /* only LOOKUP_REVAL is allowed in extra flags */ 2145 flags &= LOOKUP_REVAL; 2146 2147 if (IS_ERR(s)) 2148 return s; 2149 2150 error = filename_lookup(dfd, s, flags | LOOKUP_PARENT, nd); 2151 if (error) { 2152 putname(s); 2153 return ERR_PTR(error); 2154 } 2155 2156 return s; 2157 } 2158 2159 /** 2160 * mountpoint_last - look up last component for umount 2161 * @nd: pathwalk nameidata - currently pointing at parent directory of "last" 2162 * @path: pointer to container for result 2163 * 2164 * This is a special lookup_last function just for umount. In this case, we 2165 * need to resolve the path without doing any revalidation. 2166 * 2167 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since 2168 * mountpoints are always pinned in the dcache, their ancestors are too. Thus, 2169 * in almost all cases, this lookup will be served out of the dcache. The only 2170 * cases where it won't are if nd->last refers to a symlink or the path is 2171 * bogus and it doesn't exist. 2172 * 2173 * Returns: 2174 * -error: if there was an error during lookup. This includes -ENOENT if the 2175 * lookup found a negative dentry. The nd->path reference will also be 2176 * put in this case. 2177 * 2178 * 0: if we successfully resolved nd->path and found it to not to be a 2179 * symlink that needs to be followed. "path" will also be populated. 2180 * The nd->path reference will also be put. 2181 * 2182 * 1: if we successfully resolved nd->last and found it to be a symlink 2183 * that needs to be followed. "path" will be populated with the path 2184 * to the link, and nd->path will *not* be put. 2185 */ 2186 static int 2187 mountpoint_last(struct nameidata *nd, struct path *path) 2188 { 2189 int error = 0; 2190 struct dentry *dentry; 2191 struct dentry *dir = nd->path.dentry; 2192 2193 /* If we're in rcuwalk, drop out of it to handle last component */ 2194 if (nd->flags & LOOKUP_RCU) { 2195 if (unlazy_walk(nd, NULL)) { 2196 error = -ECHILD; 2197 goto out; 2198 } 2199 } 2200 2201 nd->flags &= ~LOOKUP_PARENT; 2202 2203 if (unlikely(nd->last_type != LAST_NORM)) { 2204 error = handle_dots(nd, nd->last_type); 2205 if (error) 2206 goto out; 2207 dentry = dget(nd->path.dentry); 2208 goto done; 2209 } 2210 2211 mutex_lock(&dir->d_inode->i_mutex); 2212 dentry = d_lookup(dir, &nd->last); 2213 if (!dentry) { 2214 /* 2215 * No cached dentry. Mounted dentries are pinned in the cache, 2216 * so that means that this dentry is probably a symlink or the 2217 * path doesn't actually point to a mounted dentry. 2218 */ 2219 dentry = d_alloc(dir, &nd->last); 2220 if (!dentry) { 2221 error = -ENOMEM; 2222 mutex_unlock(&dir->d_inode->i_mutex); 2223 goto out; 2224 } 2225 dentry = lookup_real(dir->d_inode, dentry, nd->flags); 2226 error = PTR_ERR(dentry); 2227 if (IS_ERR(dentry)) { 2228 mutex_unlock(&dir->d_inode->i_mutex); 2229 goto out; 2230 } 2231 } 2232 mutex_unlock(&dir->d_inode->i_mutex); 2233 2234 done: 2235 if (!dentry->d_inode) { 2236 error = -ENOENT; 2237 dput(dentry); 2238 goto out; 2239 } 2240 path->dentry = dentry; 2241 path->mnt = mntget(nd->path.mnt); 2242 if (should_follow_link(dentry, nd->flags & LOOKUP_FOLLOW)) 2243 return 1; 2244 follow_mount(path); 2245 error = 0; 2246 out: 2247 terminate_walk(nd); 2248 return error; 2249 } 2250 2251 /** 2252 * path_mountpoint - look up a path to be umounted 2253 * @dfd: directory file descriptor to start walk from 2254 * @name: full pathname to walk 2255 * @path: pointer to container for result 2256 * @flags: lookup flags 2257 * 2258 * Look up the given name, but don't attempt to revalidate the last component. 2259 * Returns 0 and "path" will be valid on success; Returns error otherwise. 2260 */ 2261 static int 2262 path_mountpoint(int dfd, const char *name, struct path *path, unsigned int flags) 2263 { 2264 struct file *base = NULL; 2265 struct nameidata nd; 2266 int err; 2267 2268 err = path_init(dfd, name, flags | LOOKUP_PARENT, &nd, &base); 2269 if (unlikely(err)) 2270 return err; 2271 2272 current->total_link_count = 0; 2273 err = link_path_walk(name, &nd); 2274 if (err) 2275 goto out; 2276 2277 err = mountpoint_last(&nd, path); 2278 while (err > 0) { 2279 void *cookie; 2280 struct path link = *path; 2281 err = may_follow_link(&link, &nd); 2282 if (unlikely(err)) 2283 break; 2284 nd.flags |= LOOKUP_PARENT; 2285 err = follow_link(&link, &nd, &cookie); 2286 if (err) 2287 break; 2288 err = mountpoint_last(&nd, path); 2289 put_link(&nd, &link, cookie); 2290 } 2291 out: 2292 if (base) 2293 fput(base); 2294 2295 if (nd.root.mnt && !(nd.flags & LOOKUP_ROOT)) 2296 path_put(&nd.root); 2297 2298 return err; 2299 } 2300 2301 static int 2302 filename_mountpoint(int dfd, struct filename *s, struct path *path, 2303 unsigned int flags) 2304 { 2305 int error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_RCU); 2306 if (unlikely(error == -ECHILD)) 2307 error = path_mountpoint(dfd, s->name, path, flags); 2308 if (unlikely(error == -ESTALE)) 2309 error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_REVAL); 2310 if (likely(!error)) 2311 audit_inode(s, path->dentry, 0); 2312 return error; 2313 } 2314 2315 /** 2316 * user_path_mountpoint_at - lookup a path from userland in order to umount it 2317 * @dfd: directory file descriptor 2318 * @name: pathname from userland 2319 * @flags: lookup flags 2320 * @path: pointer to container to hold result 2321 * 2322 * A umount is a special case for path walking. We're not actually interested 2323 * in the inode in this situation, and ESTALE errors can be a problem. We 2324 * simply want track down the dentry and vfsmount attached at the mountpoint 2325 * and avoid revalidating the last component. 2326 * 2327 * Returns 0 and populates "path" on success. 2328 */ 2329 int 2330 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags, 2331 struct path *path) 2332 { 2333 struct filename *s = getname(name); 2334 int error; 2335 if (IS_ERR(s)) 2336 return PTR_ERR(s); 2337 error = filename_mountpoint(dfd, s, path, flags); 2338 putname(s); 2339 return error; 2340 } 2341 2342 int 2343 kern_path_mountpoint(int dfd, const char *name, struct path *path, 2344 unsigned int flags) 2345 { 2346 struct filename s = {.name = name}; 2347 return filename_mountpoint(dfd, &s, path, flags); 2348 } 2349 EXPORT_SYMBOL(kern_path_mountpoint); 2350 2351 /* 2352 * It's inline, so penalty for filesystems that don't use sticky bit is 2353 * minimal. 2354 */ 2355 static inline int check_sticky(struct inode *dir, struct inode *inode) 2356 { 2357 kuid_t fsuid = current_fsuid(); 2358 2359 if (!(dir->i_mode & S_ISVTX)) 2360 return 0; 2361 if (uid_eq(inode->i_uid, fsuid)) 2362 return 0; 2363 if (uid_eq(dir->i_uid, fsuid)) 2364 return 0; 2365 return !inode_capable(inode, CAP_FOWNER); 2366 } 2367 2368 /* 2369 * Check whether we can remove a link victim from directory dir, check 2370 * whether the type of victim is right. 2371 * 1. We can't do it if dir is read-only (done in permission()) 2372 * 2. We should have write and exec permissions on dir 2373 * 3. We can't remove anything from append-only dir 2374 * 4. We can't do anything with immutable dir (done in permission()) 2375 * 5. If the sticky bit on dir is set we should either 2376 * a. be owner of dir, or 2377 * b. be owner of victim, or 2378 * c. have CAP_FOWNER capability 2379 * 6. If the victim is append-only or immutable we can't do antyhing with 2380 * links pointing to it. 2381 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 2382 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 2383 * 9. We can't remove a root or mountpoint. 2384 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 2385 * nfs_async_unlink(). 2386 */ 2387 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir) 2388 { 2389 struct inode *inode = victim->d_inode; 2390 int error; 2391 2392 if (d_is_negative(victim)) 2393 return -ENOENT; 2394 BUG_ON(!inode); 2395 2396 BUG_ON(victim->d_parent->d_inode != dir); 2397 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 2398 2399 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 2400 if (error) 2401 return error; 2402 if (IS_APPEND(dir)) 2403 return -EPERM; 2404 2405 if (check_sticky(dir, inode) || IS_APPEND(inode) || 2406 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode)) 2407 return -EPERM; 2408 if (isdir) { 2409 if (!d_is_directory(victim) && !d_is_autodir(victim)) 2410 return -ENOTDIR; 2411 if (IS_ROOT(victim)) 2412 return -EBUSY; 2413 } else if (d_is_directory(victim) || d_is_autodir(victim)) 2414 return -EISDIR; 2415 if (IS_DEADDIR(dir)) 2416 return -ENOENT; 2417 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 2418 return -EBUSY; 2419 return 0; 2420 } 2421 2422 /* Check whether we can create an object with dentry child in directory 2423 * dir. 2424 * 1. We can't do it if child already exists (open has special treatment for 2425 * this case, but since we are inlined it's OK) 2426 * 2. We can't do it if dir is read-only (done in permission()) 2427 * 3. We should have write and exec permissions on dir 2428 * 4. We can't do it if dir is immutable (done in permission()) 2429 */ 2430 static inline int may_create(struct inode *dir, struct dentry *child) 2431 { 2432 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE); 2433 if (child->d_inode) 2434 return -EEXIST; 2435 if (IS_DEADDIR(dir)) 2436 return -ENOENT; 2437 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 2438 } 2439 2440 /* 2441 * p1 and p2 should be directories on the same fs. 2442 */ 2443 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 2444 { 2445 struct dentry *p; 2446 2447 if (p1 == p2) { 2448 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 2449 return NULL; 2450 } 2451 2452 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 2453 2454 p = d_ancestor(p2, p1); 2455 if (p) { 2456 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT); 2457 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD); 2458 return p; 2459 } 2460 2461 p = d_ancestor(p1, p2); 2462 if (p) { 2463 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 2464 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 2465 return p; 2466 } 2467 2468 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 2469 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 2470 return NULL; 2471 } 2472 2473 void unlock_rename(struct dentry *p1, struct dentry *p2) 2474 { 2475 mutex_unlock(&p1->d_inode->i_mutex); 2476 if (p1 != p2) { 2477 mutex_unlock(&p2->d_inode->i_mutex); 2478 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 2479 } 2480 } 2481 2482 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2483 bool want_excl) 2484 { 2485 int error = may_create(dir, dentry); 2486 if (error) 2487 return error; 2488 2489 if (!dir->i_op->create) 2490 return -EACCES; /* shouldn't it be ENOSYS? */ 2491 mode &= S_IALLUGO; 2492 mode |= S_IFREG; 2493 error = security_inode_create(dir, dentry, mode); 2494 if (error) 2495 return error; 2496 error = dir->i_op->create(dir, dentry, mode, want_excl); 2497 if (!error) 2498 fsnotify_create(dir, dentry); 2499 return error; 2500 } 2501 2502 static int may_open(struct path *path, int acc_mode, int flag) 2503 { 2504 struct dentry *dentry = path->dentry; 2505 struct inode *inode = dentry->d_inode; 2506 int error; 2507 2508 /* O_PATH? */ 2509 if (!acc_mode) 2510 return 0; 2511 2512 if (!inode) 2513 return -ENOENT; 2514 2515 switch (inode->i_mode & S_IFMT) { 2516 case S_IFLNK: 2517 return -ELOOP; 2518 case S_IFDIR: 2519 if (acc_mode & MAY_WRITE) 2520 return -EISDIR; 2521 break; 2522 case S_IFBLK: 2523 case S_IFCHR: 2524 if (path->mnt->mnt_flags & MNT_NODEV) 2525 return -EACCES; 2526 /*FALLTHRU*/ 2527 case S_IFIFO: 2528 case S_IFSOCK: 2529 flag &= ~O_TRUNC; 2530 break; 2531 } 2532 2533 error = inode_permission(inode, acc_mode); 2534 if (error) 2535 return error; 2536 2537 /* 2538 * An append-only file must be opened in append mode for writing. 2539 */ 2540 if (IS_APPEND(inode)) { 2541 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 2542 return -EPERM; 2543 if (flag & O_TRUNC) 2544 return -EPERM; 2545 } 2546 2547 /* O_NOATIME can only be set by the owner or superuser */ 2548 if (flag & O_NOATIME && !inode_owner_or_capable(inode)) 2549 return -EPERM; 2550 2551 return 0; 2552 } 2553 2554 static int handle_truncate(struct file *filp) 2555 { 2556 struct path *path = &filp->f_path; 2557 struct inode *inode = path->dentry->d_inode; 2558 int error = get_write_access(inode); 2559 if (error) 2560 return error; 2561 /* 2562 * Refuse to truncate files with mandatory locks held on them. 2563 */ 2564 error = locks_verify_locked(inode); 2565 if (!error) 2566 error = security_path_truncate(path); 2567 if (!error) { 2568 error = do_truncate(path->dentry, 0, 2569 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 2570 filp); 2571 } 2572 put_write_access(inode); 2573 return error; 2574 } 2575 2576 static inline int open_to_namei_flags(int flag) 2577 { 2578 if ((flag & O_ACCMODE) == 3) 2579 flag--; 2580 return flag; 2581 } 2582 2583 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode) 2584 { 2585 int error = security_path_mknod(dir, dentry, mode, 0); 2586 if (error) 2587 return error; 2588 2589 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC); 2590 if (error) 2591 return error; 2592 2593 return security_inode_create(dir->dentry->d_inode, dentry, mode); 2594 } 2595 2596 /* 2597 * Attempt to atomically look up, create and open a file from a negative 2598 * dentry. 2599 * 2600 * Returns 0 if successful. The file will have been created and attached to 2601 * @file by the filesystem calling finish_open(). 2602 * 2603 * Returns 1 if the file was looked up only or didn't need creating. The 2604 * caller will need to perform the open themselves. @path will have been 2605 * updated to point to the new dentry. This may be negative. 2606 * 2607 * Returns an error code otherwise. 2608 */ 2609 static int atomic_open(struct nameidata *nd, struct dentry *dentry, 2610 struct path *path, struct file *file, 2611 const struct open_flags *op, 2612 bool got_write, bool need_lookup, 2613 int *opened) 2614 { 2615 struct inode *dir = nd->path.dentry->d_inode; 2616 unsigned open_flag = open_to_namei_flags(op->open_flag); 2617 umode_t mode; 2618 int error; 2619 int acc_mode; 2620 int create_error = 0; 2621 struct dentry *const DENTRY_NOT_SET = (void *) -1UL; 2622 bool excl; 2623 2624 BUG_ON(dentry->d_inode); 2625 2626 /* Don't create child dentry for a dead directory. */ 2627 if (unlikely(IS_DEADDIR(dir))) { 2628 error = -ENOENT; 2629 goto out; 2630 } 2631 2632 mode = op->mode; 2633 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir)) 2634 mode &= ~current_umask(); 2635 2636 excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT); 2637 if (excl) 2638 open_flag &= ~O_TRUNC; 2639 2640 /* 2641 * Checking write permission is tricky, bacuse we don't know if we are 2642 * going to actually need it: O_CREAT opens should work as long as the 2643 * file exists. But checking existence breaks atomicity. The trick is 2644 * to check access and if not granted clear O_CREAT from the flags. 2645 * 2646 * Another problem is returing the "right" error value (e.g. for an 2647 * O_EXCL open we want to return EEXIST not EROFS). 2648 */ 2649 if (((open_flag & (O_CREAT | O_TRUNC)) || 2650 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) { 2651 if (!(open_flag & O_CREAT)) { 2652 /* 2653 * No O_CREATE -> atomicity not a requirement -> fall 2654 * back to lookup + open 2655 */ 2656 goto no_open; 2657 } else if (open_flag & (O_EXCL | O_TRUNC)) { 2658 /* Fall back and fail with the right error */ 2659 create_error = -EROFS; 2660 goto no_open; 2661 } else { 2662 /* No side effects, safe to clear O_CREAT */ 2663 create_error = -EROFS; 2664 open_flag &= ~O_CREAT; 2665 } 2666 } 2667 2668 if (open_flag & O_CREAT) { 2669 error = may_o_create(&nd->path, dentry, mode); 2670 if (error) { 2671 create_error = error; 2672 if (open_flag & O_EXCL) 2673 goto no_open; 2674 open_flag &= ~O_CREAT; 2675 } 2676 } 2677 2678 if (nd->flags & LOOKUP_DIRECTORY) 2679 open_flag |= O_DIRECTORY; 2680 2681 file->f_path.dentry = DENTRY_NOT_SET; 2682 file->f_path.mnt = nd->path.mnt; 2683 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode, 2684 opened); 2685 if (error < 0) { 2686 if (create_error && error == -ENOENT) 2687 error = create_error; 2688 goto out; 2689 } 2690 2691 if (error) { /* returned 1, that is */ 2692 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) { 2693 error = -EIO; 2694 goto out; 2695 } 2696 if (file->f_path.dentry) { 2697 dput(dentry); 2698 dentry = file->f_path.dentry; 2699 } 2700 if (*opened & FILE_CREATED) 2701 fsnotify_create(dir, dentry); 2702 if (!dentry->d_inode) { 2703 WARN_ON(*opened & FILE_CREATED); 2704 if (create_error) { 2705 error = create_error; 2706 goto out; 2707 } 2708 } else { 2709 if (excl && !(*opened & FILE_CREATED)) { 2710 error = -EEXIST; 2711 goto out; 2712 } 2713 } 2714 goto looked_up; 2715 } 2716 2717 /* 2718 * We didn't have the inode before the open, so check open permission 2719 * here. 2720 */ 2721 acc_mode = op->acc_mode; 2722 if (*opened & FILE_CREATED) { 2723 WARN_ON(!(open_flag & O_CREAT)); 2724 fsnotify_create(dir, dentry); 2725 acc_mode = MAY_OPEN; 2726 } 2727 error = may_open(&file->f_path, acc_mode, open_flag); 2728 if (error) 2729 fput(file); 2730 2731 out: 2732 dput(dentry); 2733 return error; 2734 2735 no_open: 2736 if (need_lookup) { 2737 dentry = lookup_real(dir, dentry, nd->flags); 2738 if (IS_ERR(dentry)) 2739 return PTR_ERR(dentry); 2740 2741 if (create_error) { 2742 int open_flag = op->open_flag; 2743 2744 error = create_error; 2745 if ((open_flag & O_EXCL)) { 2746 if (!dentry->d_inode) 2747 goto out; 2748 } else if (!dentry->d_inode) { 2749 goto out; 2750 } else if ((open_flag & O_TRUNC) && 2751 S_ISREG(dentry->d_inode->i_mode)) { 2752 goto out; 2753 } 2754 /* will fail later, go on to get the right error */ 2755 } 2756 } 2757 looked_up: 2758 path->dentry = dentry; 2759 path->mnt = nd->path.mnt; 2760 return 1; 2761 } 2762 2763 /* 2764 * Look up and maybe create and open the last component. 2765 * 2766 * Must be called with i_mutex held on parent. 2767 * 2768 * Returns 0 if the file was successfully atomically created (if necessary) and 2769 * opened. In this case the file will be returned attached to @file. 2770 * 2771 * Returns 1 if the file was not completely opened at this time, though lookups 2772 * and creations will have been performed and the dentry returned in @path will 2773 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't 2774 * specified then a negative dentry may be returned. 2775 * 2776 * An error code is returned otherwise. 2777 * 2778 * FILE_CREATE will be set in @*opened if the dentry was created and will be 2779 * cleared otherwise prior to returning. 2780 */ 2781 static int lookup_open(struct nameidata *nd, struct path *path, 2782 struct file *file, 2783 const struct open_flags *op, 2784 bool got_write, int *opened) 2785 { 2786 struct dentry *dir = nd->path.dentry; 2787 struct inode *dir_inode = dir->d_inode; 2788 struct dentry *dentry; 2789 int error; 2790 bool need_lookup; 2791 2792 *opened &= ~FILE_CREATED; 2793 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup); 2794 if (IS_ERR(dentry)) 2795 return PTR_ERR(dentry); 2796 2797 /* Cached positive dentry: will open in f_op->open */ 2798 if (!need_lookup && dentry->d_inode) 2799 goto out_no_open; 2800 2801 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) { 2802 return atomic_open(nd, dentry, path, file, op, got_write, 2803 need_lookup, opened); 2804 } 2805 2806 if (need_lookup) { 2807 BUG_ON(dentry->d_inode); 2808 2809 dentry = lookup_real(dir_inode, dentry, nd->flags); 2810 if (IS_ERR(dentry)) 2811 return PTR_ERR(dentry); 2812 } 2813 2814 /* Negative dentry, just create the file */ 2815 if (!dentry->d_inode && (op->open_flag & O_CREAT)) { 2816 umode_t mode = op->mode; 2817 if (!IS_POSIXACL(dir->d_inode)) 2818 mode &= ~current_umask(); 2819 /* 2820 * This write is needed to ensure that a 2821 * rw->ro transition does not occur between 2822 * the time when the file is created and when 2823 * a permanent write count is taken through 2824 * the 'struct file' in finish_open(). 2825 */ 2826 if (!got_write) { 2827 error = -EROFS; 2828 goto out_dput; 2829 } 2830 *opened |= FILE_CREATED; 2831 error = security_path_mknod(&nd->path, dentry, mode, 0); 2832 if (error) 2833 goto out_dput; 2834 error = vfs_create(dir->d_inode, dentry, mode, 2835 nd->flags & LOOKUP_EXCL); 2836 if (error) 2837 goto out_dput; 2838 } 2839 out_no_open: 2840 path->dentry = dentry; 2841 path->mnt = nd->path.mnt; 2842 return 1; 2843 2844 out_dput: 2845 dput(dentry); 2846 return error; 2847 } 2848 2849 /* 2850 * Handle the last step of open() 2851 */ 2852 static int do_last(struct nameidata *nd, struct path *path, 2853 struct file *file, const struct open_flags *op, 2854 int *opened, struct filename *name) 2855 { 2856 struct dentry *dir = nd->path.dentry; 2857 int open_flag = op->open_flag; 2858 bool will_truncate = (open_flag & O_TRUNC) != 0; 2859 bool got_write = false; 2860 int acc_mode = op->acc_mode; 2861 struct inode *inode; 2862 bool symlink_ok = false; 2863 struct path save_parent = { .dentry = NULL, .mnt = NULL }; 2864 bool retried = false; 2865 int error; 2866 2867 nd->flags &= ~LOOKUP_PARENT; 2868 nd->flags |= op->intent; 2869 2870 if (nd->last_type != LAST_NORM) { 2871 error = handle_dots(nd, nd->last_type); 2872 if (error) 2873 return error; 2874 goto finish_open; 2875 } 2876 2877 if (!(open_flag & O_CREAT)) { 2878 if (nd->last.name[nd->last.len]) 2879 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 2880 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW)) 2881 symlink_ok = true; 2882 /* we _can_ be in RCU mode here */ 2883 error = lookup_fast(nd, path, &inode); 2884 if (likely(!error)) 2885 goto finish_lookup; 2886 2887 if (error < 0) 2888 goto out; 2889 2890 BUG_ON(nd->inode != dir->d_inode); 2891 } else { 2892 /* create side of things */ 2893 /* 2894 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED 2895 * has been cleared when we got to the last component we are 2896 * about to look up 2897 */ 2898 error = complete_walk(nd); 2899 if (error) 2900 return error; 2901 2902 audit_inode(name, dir, LOOKUP_PARENT); 2903 error = -EISDIR; 2904 /* trailing slashes? */ 2905 if (nd->last.name[nd->last.len]) 2906 goto out; 2907 } 2908 2909 retry_lookup: 2910 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) { 2911 error = mnt_want_write(nd->path.mnt); 2912 if (!error) 2913 got_write = true; 2914 /* 2915 * do _not_ fail yet - we might not need that or fail with 2916 * a different error; let lookup_open() decide; we'll be 2917 * dropping this one anyway. 2918 */ 2919 } 2920 mutex_lock(&dir->d_inode->i_mutex); 2921 error = lookup_open(nd, path, file, op, got_write, opened); 2922 mutex_unlock(&dir->d_inode->i_mutex); 2923 2924 if (error <= 0) { 2925 if (error) 2926 goto out; 2927 2928 if ((*opened & FILE_CREATED) || 2929 !S_ISREG(file_inode(file)->i_mode)) 2930 will_truncate = false; 2931 2932 audit_inode(name, file->f_path.dentry, 0); 2933 goto opened; 2934 } 2935 2936 if (*opened & FILE_CREATED) { 2937 /* Don't check for write permission, don't truncate */ 2938 open_flag &= ~O_TRUNC; 2939 will_truncate = false; 2940 acc_mode = MAY_OPEN; 2941 path_to_nameidata(path, nd); 2942 goto finish_open_created; 2943 } 2944 2945 /* 2946 * create/update audit record if it already exists. 2947 */ 2948 if (d_is_positive(path->dentry)) 2949 audit_inode(name, path->dentry, 0); 2950 2951 /* 2952 * If atomic_open() acquired write access it is dropped now due to 2953 * possible mount and symlink following (this might be optimized away if 2954 * necessary...) 2955 */ 2956 if (got_write) { 2957 mnt_drop_write(nd->path.mnt); 2958 got_write = false; 2959 } 2960 2961 error = -EEXIST; 2962 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT)) 2963 goto exit_dput; 2964 2965 error = follow_managed(path, nd->flags); 2966 if (error < 0) 2967 goto exit_dput; 2968 2969 if (error) 2970 nd->flags |= LOOKUP_JUMPED; 2971 2972 BUG_ON(nd->flags & LOOKUP_RCU); 2973 inode = path->dentry->d_inode; 2974 finish_lookup: 2975 /* we _can_ be in RCU mode here */ 2976 error = -ENOENT; 2977 if (d_is_negative(path->dentry)) { 2978 path_to_nameidata(path, nd); 2979 goto out; 2980 } 2981 2982 if (should_follow_link(path->dentry, !symlink_ok)) { 2983 if (nd->flags & LOOKUP_RCU) { 2984 if (unlikely(unlazy_walk(nd, path->dentry))) { 2985 error = -ECHILD; 2986 goto out; 2987 } 2988 } 2989 BUG_ON(inode != path->dentry->d_inode); 2990 return 1; 2991 } 2992 2993 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) { 2994 path_to_nameidata(path, nd); 2995 } else { 2996 save_parent.dentry = nd->path.dentry; 2997 save_parent.mnt = mntget(path->mnt); 2998 nd->path.dentry = path->dentry; 2999 3000 } 3001 nd->inode = inode; 3002 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */ 3003 finish_open: 3004 error = complete_walk(nd); 3005 if (error) { 3006 path_put(&save_parent); 3007 return error; 3008 } 3009 audit_inode(name, nd->path.dentry, 0); 3010 error = -EISDIR; 3011 if ((open_flag & O_CREAT) && 3012 (d_is_directory(nd->path.dentry) || d_is_autodir(nd->path.dentry))) 3013 goto out; 3014 error = -ENOTDIR; 3015 if ((nd->flags & LOOKUP_DIRECTORY) && !d_is_directory(nd->path.dentry)) 3016 goto out; 3017 if (!S_ISREG(nd->inode->i_mode)) 3018 will_truncate = false; 3019 3020 if (will_truncate) { 3021 error = mnt_want_write(nd->path.mnt); 3022 if (error) 3023 goto out; 3024 got_write = true; 3025 } 3026 finish_open_created: 3027 error = may_open(&nd->path, acc_mode, open_flag); 3028 if (error) 3029 goto out; 3030 file->f_path.mnt = nd->path.mnt; 3031 error = finish_open(file, nd->path.dentry, NULL, opened); 3032 if (error) { 3033 if (error == -EOPENSTALE) 3034 goto stale_open; 3035 goto out; 3036 } 3037 opened: 3038 error = open_check_o_direct(file); 3039 if (error) 3040 goto exit_fput; 3041 error = ima_file_check(file, op->acc_mode); 3042 if (error) 3043 goto exit_fput; 3044 3045 if (will_truncate) { 3046 error = handle_truncate(file); 3047 if (error) 3048 goto exit_fput; 3049 } 3050 out: 3051 if (got_write) 3052 mnt_drop_write(nd->path.mnt); 3053 path_put(&save_parent); 3054 terminate_walk(nd); 3055 return error; 3056 3057 exit_dput: 3058 path_put_conditional(path, nd); 3059 goto out; 3060 exit_fput: 3061 fput(file); 3062 goto out; 3063 3064 stale_open: 3065 /* If no saved parent or already retried then can't retry */ 3066 if (!save_parent.dentry || retried) 3067 goto out; 3068 3069 BUG_ON(save_parent.dentry != dir); 3070 path_put(&nd->path); 3071 nd->path = save_parent; 3072 nd->inode = dir->d_inode; 3073 save_parent.mnt = NULL; 3074 save_parent.dentry = NULL; 3075 if (got_write) { 3076 mnt_drop_write(nd->path.mnt); 3077 got_write = false; 3078 } 3079 retried = true; 3080 goto retry_lookup; 3081 } 3082 3083 static int do_tmpfile(int dfd, struct filename *pathname, 3084 struct nameidata *nd, int flags, 3085 const struct open_flags *op, 3086 struct file *file, int *opened) 3087 { 3088 static const struct qstr name = QSTR_INIT("/", 1); 3089 struct dentry *dentry, *child; 3090 struct inode *dir; 3091 int error = path_lookupat(dfd, pathname->name, 3092 flags | LOOKUP_DIRECTORY, nd); 3093 if (unlikely(error)) 3094 return error; 3095 error = mnt_want_write(nd->path.mnt); 3096 if (unlikely(error)) 3097 goto out; 3098 /* we want directory to be writable */ 3099 error = inode_permission(nd->inode, MAY_WRITE | MAY_EXEC); 3100 if (error) 3101 goto out2; 3102 dentry = nd->path.dentry; 3103 dir = dentry->d_inode; 3104 if (!dir->i_op->tmpfile) { 3105 error = -EOPNOTSUPP; 3106 goto out2; 3107 } 3108 child = d_alloc(dentry, &name); 3109 if (unlikely(!child)) { 3110 error = -ENOMEM; 3111 goto out2; 3112 } 3113 nd->flags &= ~LOOKUP_DIRECTORY; 3114 nd->flags |= op->intent; 3115 dput(nd->path.dentry); 3116 nd->path.dentry = child; 3117 error = dir->i_op->tmpfile(dir, nd->path.dentry, op->mode); 3118 if (error) 3119 goto out2; 3120 audit_inode(pathname, nd->path.dentry, 0); 3121 error = may_open(&nd->path, op->acc_mode, op->open_flag); 3122 if (error) 3123 goto out2; 3124 file->f_path.mnt = nd->path.mnt; 3125 error = finish_open(file, nd->path.dentry, NULL, opened); 3126 if (error) 3127 goto out2; 3128 error = open_check_o_direct(file); 3129 if (error) { 3130 fput(file); 3131 } else if (!(op->open_flag & O_EXCL)) { 3132 struct inode *inode = file_inode(file); 3133 spin_lock(&inode->i_lock); 3134 inode->i_state |= I_LINKABLE; 3135 spin_unlock(&inode->i_lock); 3136 } 3137 out2: 3138 mnt_drop_write(nd->path.mnt); 3139 out: 3140 path_put(&nd->path); 3141 return error; 3142 } 3143 3144 static struct file *path_openat(int dfd, struct filename *pathname, 3145 struct nameidata *nd, const struct open_flags *op, int flags) 3146 { 3147 struct file *base = NULL; 3148 struct file *file; 3149 struct path path; 3150 int opened = 0; 3151 int error; 3152 3153 file = get_empty_filp(); 3154 if (IS_ERR(file)) 3155 return file; 3156 3157 file->f_flags = op->open_flag; 3158 3159 if (unlikely(file->f_flags & __O_TMPFILE)) { 3160 error = do_tmpfile(dfd, pathname, nd, flags, op, file, &opened); 3161 goto out; 3162 } 3163 3164 error = path_init(dfd, pathname->name, flags | LOOKUP_PARENT, nd, &base); 3165 if (unlikely(error)) 3166 goto out; 3167 3168 current->total_link_count = 0; 3169 error = link_path_walk(pathname->name, nd); 3170 if (unlikely(error)) 3171 goto out; 3172 3173 error = do_last(nd, &path, file, op, &opened, pathname); 3174 while (unlikely(error > 0)) { /* trailing symlink */ 3175 struct path link = path; 3176 void *cookie; 3177 if (!(nd->flags & LOOKUP_FOLLOW)) { 3178 path_put_conditional(&path, nd); 3179 path_put(&nd->path); 3180 error = -ELOOP; 3181 break; 3182 } 3183 error = may_follow_link(&link, nd); 3184 if (unlikely(error)) 3185 break; 3186 nd->flags |= LOOKUP_PARENT; 3187 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL); 3188 error = follow_link(&link, nd, &cookie); 3189 if (unlikely(error)) 3190 break; 3191 error = do_last(nd, &path, file, op, &opened, pathname); 3192 put_link(nd, &link, cookie); 3193 } 3194 out: 3195 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) 3196 path_put(&nd->root); 3197 if (base) 3198 fput(base); 3199 if (!(opened & FILE_OPENED)) { 3200 BUG_ON(!error); 3201 put_filp(file); 3202 } 3203 if (unlikely(error)) { 3204 if (error == -EOPENSTALE) { 3205 if (flags & LOOKUP_RCU) 3206 error = -ECHILD; 3207 else 3208 error = -ESTALE; 3209 } 3210 file = ERR_PTR(error); 3211 } 3212 return file; 3213 } 3214 3215 struct file *do_filp_open(int dfd, struct filename *pathname, 3216 const struct open_flags *op) 3217 { 3218 struct nameidata nd; 3219 int flags = op->lookup_flags; 3220 struct file *filp; 3221 3222 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU); 3223 if (unlikely(filp == ERR_PTR(-ECHILD))) 3224 filp = path_openat(dfd, pathname, &nd, op, flags); 3225 if (unlikely(filp == ERR_PTR(-ESTALE))) 3226 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL); 3227 return filp; 3228 } 3229 3230 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt, 3231 const char *name, const struct open_flags *op) 3232 { 3233 struct nameidata nd; 3234 struct file *file; 3235 struct filename filename = { .name = name }; 3236 int flags = op->lookup_flags | LOOKUP_ROOT; 3237 3238 nd.root.mnt = mnt; 3239 nd.root.dentry = dentry; 3240 3241 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN) 3242 return ERR_PTR(-ELOOP); 3243 3244 file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_RCU); 3245 if (unlikely(file == ERR_PTR(-ECHILD))) 3246 file = path_openat(-1, &filename, &nd, op, flags); 3247 if (unlikely(file == ERR_PTR(-ESTALE))) 3248 file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_REVAL); 3249 return file; 3250 } 3251 3252 struct dentry *kern_path_create(int dfd, const char *pathname, 3253 struct path *path, unsigned int lookup_flags) 3254 { 3255 struct dentry *dentry = ERR_PTR(-EEXIST); 3256 struct nameidata nd; 3257 int err2; 3258 int error; 3259 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY); 3260 3261 /* 3262 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any 3263 * other flags passed in are ignored! 3264 */ 3265 lookup_flags &= LOOKUP_REVAL; 3266 3267 error = do_path_lookup(dfd, pathname, LOOKUP_PARENT|lookup_flags, &nd); 3268 if (error) 3269 return ERR_PTR(error); 3270 3271 /* 3272 * Yucky last component or no last component at all? 3273 * (foo/., foo/.., /////) 3274 */ 3275 if (nd.last_type != LAST_NORM) 3276 goto out; 3277 nd.flags &= ~LOOKUP_PARENT; 3278 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL; 3279 3280 /* don't fail immediately if it's r/o, at least try to report other errors */ 3281 err2 = mnt_want_write(nd.path.mnt); 3282 /* 3283 * Do the final lookup. 3284 */ 3285 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 3286 dentry = lookup_hash(&nd); 3287 if (IS_ERR(dentry)) 3288 goto unlock; 3289 3290 error = -EEXIST; 3291 if (d_is_positive(dentry)) 3292 goto fail; 3293 3294 /* 3295 * Special case - lookup gave negative, but... we had foo/bar/ 3296 * From the vfs_mknod() POV we just have a negative dentry - 3297 * all is fine. Let's be bastards - you had / on the end, you've 3298 * been asking for (non-existent) directory. -ENOENT for you. 3299 */ 3300 if (unlikely(!is_dir && nd.last.name[nd.last.len])) { 3301 error = -ENOENT; 3302 goto fail; 3303 } 3304 if (unlikely(err2)) { 3305 error = err2; 3306 goto fail; 3307 } 3308 *path = nd.path; 3309 return dentry; 3310 fail: 3311 dput(dentry); 3312 dentry = ERR_PTR(error); 3313 unlock: 3314 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 3315 if (!err2) 3316 mnt_drop_write(nd.path.mnt); 3317 out: 3318 path_put(&nd.path); 3319 return dentry; 3320 } 3321 EXPORT_SYMBOL(kern_path_create); 3322 3323 void done_path_create(struct path *path, struct dentry *dentry) 3324 { 3325 dput(dentry); 3326 mutex_unlock(&path->dentry->d_inode->i_mutex); 3327 mnt_drop_write(path->mnt); 3328 path_put(path); 3329 } 3330 EXPORT_SYMBOL(done_path_create); 3331 3332 struct dentry *user_path_create(int dfd, const char __user *pathname, 3333 struct path *path, unsigned int lookup_flags) 3334 { 3335 struct filename *tmp = getname(pathname); 3336 struct dentry *res; 3337 if (IS_ERR(tmp)) 3338 return ERR_CAST(tmp); 3339 res = kern_path_create(dfd, tmp->name, path, lookup_flags); 3340 putname(tmp); 3341 return res; 3342 } 3343 EXPORT_SYMBOL(user_path_create); 3344 3345 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 3346 { 3347 int error = may_create(dir, dentry); 3348 3349 if (error) 3350 return error; 3351 3352 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD)) 3353 return -EPERM; 3354 3355 if (!dir->i_op->mknod) 3356 return -EPERM; 3357 3358 error = devcgroup_inode_mknod(mode, dev); 3359 if (error) 3360 return error; 3361 3362 error = security_inode_mknod(dir, dentry, mode, dev); 3363 if (error) 3364 return error; 3365 3366 error = dir->i_op->mknod(dir, dentry, mode, dev); 3367 if (!error) 3368 fsnotify_create(dir, dentry); 3369 return error; 3370 } 3371 3372 static int may_mknod(umode_t mode) 3373 { 3374 switch (mode & S_IFMT) { 3375 case S_IFREG: 3376 case S_IFCHR: 3377 case S_IFBLK: 3378 case S_IFIFO: 3379 case S_IFSOCK: 3380 case 0: /* zero mode translates to S_IFREG */ 3381 return 0; 3382 case S_IFDIR: 3383 return -EPERM; 3384 default: 3385 return -EINVAL; 3386 } 3387 } 3388 3389 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode, 3390 unsigned, dev) 3391 { 3392 struct dentry *dentry; 3393 struct path path; 3394 int error; 3395 unsigned int lookup_flags = 0; 3396 3397 error = may_mknod(mode); 3398 if (error) 3399 return error; 3400 retry: 3401 dentry = user_path_create(dfd, filename, &path, lookup_flags); 3402 if (IS_ERR(dentry)) 3403 return PTR_ERR(dentry); 3404 3405 if (!IS_POSIXACL(path.dentry->d_inode)) 3406 mode &= ~current_umask(); 3407 error = security_path_mknod(&path, dentry, mode, dev); 3408 if (error) 3409 goto out; 3410 switch (mode & S_IFMT) { 3411 case 0: case S_IFREG: 3412 error = vfs_create(path.dentry->d_inode,dentry,mode,true); 3413 break; 3414 case S_IFCHR: case S_IFBLK: 3415 error = vfs_mknod(path.dentry->d_inode,dentry,mode, 3416 new_decode_dev(dev)); 3417 break; 3418 case S_IFIFO: case S_IFSOCK: 3419 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0); 3420 break; 3421 } 3422 out: 3423 done_path_create(&path, dentry); 3424 if (retry_estale(error, lookup_flags)) { 3425 lookup_flags |= LOOKUP_REVAL; 3426 goto retry; 3427 } 3428 return error; 3429 } 3430 3431 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev) 3432 { 3433 return sys_mknodat(AT_FDCWD, filename, mode, dev); 3434 } 3435 3436 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 3437 { 3438 int error = may_create(dir, dentry); 3439 unsigned max_links = dir->i_sb->s_max_links; 3440 3441 if (error) 3442 return error; 3443 3444 if (!dir->i_op->mkdir) 3445 return -EPERM; 3446 3447 mode &= (S_IRWXUGO|S_ISVTX); 3448 error = security_inode_mkdir(dir, dentry, mode); 3449 if (error) 3450 return error; 3451 3452 if (max_links && dir->i_nlink >= max_links) 3453 return -EMLINK; 3454 3455 error = dir->i_op->mkdir(dir, dentry, mode); 3456 if (!error) 3457 fsnotify_mkdir(dir, dentry); 3458 return error; 3459 } 3460 3461 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode) 3462 { 3463 struct dentry *dentry; 3464 struct path path; 3465 int error; 3466 unsigned int lookup_flags = LOOKUP_DIRECTORY; 3467 3468 retry: 3469 dentry = user_path_create(dfd, pathname, &path, lookup_flags); 3470 if (IS_ERR(dentry)) 3471 return PTR_ERR(dentry); 3472 3473 if (!IS_POSIXACL(path.dentry->d_inode)) 3474 mode &= ~current_umask(); 3475 error = security_path_mkdir(&path, dentry, mode); 3476 if (!error) 3477 error = vfs_mkdir(path.dentry->d_inode, dentry, mode); 3478 done_path_create(&path, dentry); 3479 if (retry_estale(error, lookup_flags)) { 3480 lookup_flags |= LOOKUP_REVAL; 3481 goto retry; 3482 } 3483 return error; 3484 } 3485 3486 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode) 3487 { 3488 return sys_mkdirat(AT_FDCWD, pathname, mode); 3489 } 3490 3491 /* 3492 * The dentry_unhash() helper will try to drop the dentry early: we 3493 * should have a usage count of 1 if we're the only user of this 3494 * dentry, and if that is true (possibly after pruning the dcache), 3495 * then we drop the dentry now. 3496 * 3497 * A low-level filesystem can, if it choses, legally 3498 * do a 3499 * 3500 * if (!d_unhashed(dentry)) 3501 * return -EBUSY; 3502 * 3503 * if it cannot handle the case of removing a directory 3504 * that is still in use by something else.. 3505 */ 3506 void dentry_unhash(struct dentry *dentry) 3507 { 3508 shrink_dcache_parent(dentry); 3509 spin_lock(&dentry->d_lock); 3510 if (dentry->d_lockref.count == 1) 3511 __d_drop(dentry); 3512 spin_unlock(&dentry->d_lock); 3513 } 3514 3515 int vfs_rmdir(struct inode *dir, struct dentry *dentry) 3516 { 3517 int error = may_delete(dir, dentry, 1); 3518 3519 if (error) 3520 return error; 3521 3522 if (!dir->i_op->rmdir) 3523 return -EPERM; 3524 3525 dget(dentry); 3526 mutex_lock(&dentry->d_inode->i_mutex); 3527 3528 error = -EBUSY; 3529 if (d_mountpoint(dentry)) 3530 goto out; 3531 3532 error = security_inode_rmdir(dir, dentry); 3533 if (error) 3534 goto out; 3535 3536 shrink_dcache_parent(dentry); 3537 error = dir->i_op->rmdir(dir, dentry); 3538 if (error) 3539 goto out; 3540 3541 dentry->d_inode->i_flags |= S_DEAD; 3542 dont_mount(dentry); 3543 3544 out: 3545 mutex_unlock(&dentry->d_inode->i_mutex); 3546 dput(dentry); 3547 if (!error) 3548 d_delete(dentry); 3549 return error; 3550 } 3551 3552 static long do_rmdir(int dfd, const char __user *pathname) 3553 { 3554 int error = 0; 3555 struct filename *name; 3556 struct dentry *dentry; 3557 struct nameidata nd; 3558 unsigned int lookup_flags = 0; 3559 retry: 3560 name = user_path_parent(dfd, pathname, &nd, lookup_flags); 3561 if (IS_ERR(name)) 3562 return PTR_ERR(name); 3563 3564 switch(nd.last_type) { 3565 case LAST_DOTDOT: 3566 error = -ENOTEMPTY; 3567 goto exit1; 3568 case LAST_DOT: 3569 error = -EINVAL; 3570 goto exit1; 3571 case LAST_ROOT: 3572 error = -EBUSY; 3573 goto exit1; 3574 } 3575 3576 nd.flags &= ~LOOKUP_PARENT; 3577 error = mnt_want_write(nd.path.mnt); 3578 if (error) 3579 goto exit1; 3580 3581 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 3582 dentry = lookup_hash(&nd); 3583 error = PTR_ERR(dentry); 3584 if (IS_ERR(dentry)) 3585 goto exit2; 3586 if (!dentry->d_inode) { 3587 error = -ENOENT; 3588 goto exit3; 3589 } 3590 error = security_path_rmdir(&nd.path, dentry); 3591 if (error) 3592 goto exit3; 3593 error = vfs_rmdir(nd.path.dentry->d_inode, dentry); 3594 exit3: 3595 dput(dentry); 3596 exit2: 3597 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 3598 mnt_drop_write(nd.path.mnt); 3599 exit1: 3600 path_put(&nd.path); 3601 putname(name); 3602 if (retry_estale(error, lookup_flags)) { 3603 lookup_flags |= LOOKUP_REVAL; 3604 goto retry; 3605 } 3606 return error; 3607 } 3608 3609 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 3610 { 3611 return do_rmdir(AT_FDCWD, pathname); 3612 } 3613 3614 /** 3615 * vfs_unlink - unlink a filesystem object 3616 * @dir: parent directory 3617 * @dentry: victim 3618 * @delegated_inode: returns victim inode, if the inode is delegated. 3619 * 3620 * The caller must hold dir->i_mutex. 3621 * 3622 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and 3623 * return a reference to the inode in delegated_inode. The caller 3624 * should then break the delegation on that inode and retry. Because 3625 * breaking a delegation may take a long time, the caller should drop 3626 * dir->i_mutex before doing so. 3627 * 3628 * Alternatively, a caller may pass NULL for delegated_inode. This may 3629 * be appropriate for callers that expect the underlying filesystem not 3630 * to be NFS exported. 3631 */ 3632 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode) 3633 { 3634 struct inode *target = dentry->d_inode; 3635 int error = may_delete(dir, dentry, 0); 3636 3637 if (error) 3638 return error; 3639 3640 if (!dir->i_op->unlink) 3641 return -EPERM; 3642 3643 mutex_lock(&target->i_mutex); 3644 if (d_mountpoint(dentry)) 3645 error = -EBUSY; 3646 else { 3647 error = security_inode_unlink(dir, dentry); 3648 if (!error) { 3649 error = try_break_deleg(target, delegated_inode); 3650 if (error) 3651 goto out; 3652 error = dir->i_op->unlink(dir, dentry); 3653 if (!error) 3654 dont_mount(dentry); 3655 } 3656 } 3657 out: 3658 mutex_unlock(&target->i_mutex); 3659 3660 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 3661 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) { 3662 fsnotify_link_count(target); 3663 d_delete(dentry); 3664 } 3665 3666 return error; 3667 } 3668 3669 /* 3670 * Make sure that the actual truncation of the file will occur outside its 3671 * directory's i_mutex. Truncate can take a long time if there is a lot of 3672 * writeout happening, and we don't want to prevent access to the directory 3673 * while waiting on the I/O. 3674 */ 3675 static long do_unlinkat(int dfd, const char __user *pathname) 3676 { 3677 int error; 3678 struct filename *name; 3679 struct dentry *dentry; 3680 struct nameidata nd; 3681 struct inode *inode = NULL; 3682 struct inode *delegated_inode = NULL; 3683 unsigned int lookup_flags = 0; 3684 retry: 3685 name = user_path_parent(dfd, pathname, &nd, lookup_flags); 3686 if (IS_ERR(name)) 3687 return PTR_ERR(name); 3688 3689 error = -EISDIR; 3690 if (nd.last_type != LAST_NORM) 3691 goto exit1; 3692 3693 nd.flags &= ~LOOKUP_PARENT; 3694 error = mnt_want_write(nd.path.mnt); 3695 if (error) 3696 goto exit1; 3697 retry_deleg: 3698 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 3699 dentry = lookup_hash(&nd); 3700 error = PTR_ERR(dentry); 3701 if (!IS_ERR(dentry)) { 3702 /* Why not before? Because we want correct error value */ 3703 if (nd.last.name[nd.last.len]) 3704 goto slashes; 3705 inode = dentry->d_inode; 3706 if (d_is_negative(dentry)) 3707 goto slashes; 3708 ihold(inode); 3709 error = security_path_unlink(&nd.path, dentry); 3710 if (error) 3711 goto exit2; 3712 error = vfs_unlink(nd.path.dentry->d_inode, dentry, &delegated_inode); 3713 exit2: 3714 dput(dentry); 3715 } 3716 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 3717 if (inode) 3718 iput(inode); /* truncate the inode here */ 3719 inode = NULL; 3720 if (delegated_inode) { 3721 error = break_deleg_wait(&delegated_inode); 3722 if (!error) 3723 goto retry_deleg; 3724 } 3725 mnt_drop_write(nd.path.mnt); 3726 exit1: 3727 path_put(&nd.path); 3728 putname(name); 3729 if (retry_estale(error, lookup_flags)) { 3730 lookup_flags |= LOOKUP_REVAL; 3731 inode = NULL; 3732 goto retry; 3733 } 3734 return error; 3735 3736 slashes: 3737 if (d_is_negative(dentry)) 3738 error = -ENOENT; 3739 else if (d_is_directory(dentry) || d_is_autodir(dentry)) 3740 error = -EISDIR; 3741 else 3742 error = -ENOTDIR; 3743 goto exit2; 3744 } 3745 3746 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 3747 { 3748 if ((flag & ~AT_REMOVEDIR) != 0) 3749 return -EINVAL; 3750 3751 if (flag & AT_REMOVEDIR) 3752 return do_rmdir(dfd, pathname); 3753 3754 return do_unlinkat(dfd, pathname); 3755 } 3756 3757 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 3758 { 3759 return do_unlinkat(AT_FDCWD, pathname); 3760 } 3761 3762 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname) 3763 { 3764 int error = may_create(dir, dentry); 3765 3766 if (error) 3767 return error; 3768 3769 if (!dir->i_op->symlink) 3770 return -EPERM; 3771 3772 error = security_inode_symlink(dir, dentry, oldname); 3773 if (error) 3774 return error; 3775 3776 error = dir->i_op->symlink(dir, dentry, oldname); 3777 if (!error) 3778 fsnotify_create(dir, dentry); 3779 return error; 3780 } 3781 3782 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 3783 int, newdfd, const char __user *, newname) 3784 { 3785 int error; 3786 struct filename *from; 3787 struct dentry *dentry; 3788 struct path path; 3789 unsigned int lookup_flags = 0; 3790 3791 from = getname(oldname); 3792 if (IS_ERR(from)) 3793 return PTR_ERR(from); 3794 retry: 3795 dentry = user_path_create(newdfd, newname, &path, lookup_flags); 3796 error = PTR_ERR(dentry); 3797 if (IS_ERR(dentry)) 3798 goto out_putname; 3799 3800 error = security_path_symlink(&path, dentry, from->name); 3801 if (!error) 3802 error = vfs_symlink(path.dentry->d_inode, dentry, from->name); 3803 done_path_create(&path, dentry); 3804 if (retry_estale(error, lookup_flags)) { 3805 lookup_flags |= LOOKUP_REVAL; 3806 goto retry; 3807 } 3808 out_putname: 3809 putname(from); 3810 return error; 3811 } 3812 3813 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 3814 { 3815 return sys_symlinkat(oldname, AT_FDCWD, newname); 3816 } 3817 3818 /** 3819 * vfs_link - create a new link 3820 * @old_dentry: object to be linked 3821 * @dir: new parent 3822 * @new_dentry: where to create the new link 3823 * @delegated_inode: returns inode needing a delegation break 3824 * 3825 * The caller must hold dir->i_mutex 3826 * 3827 * If vfs_link discovers a delegation on the to-be-linked file in need 3828 * of breaking, it will return -EWOULDBLOCK and return a reference to the 3829 * inode in delegated_inode. The caller should then break the delegation 3830 * and retry. Because breaking a delegation may take a long time, the 3831 * caller should drop the i_mutex before doing so. 3832 * 3833 * Alternatively, a caller may pass NULL for delegated_inode. This may 3834 * be appropriate for callers that expect the underlying filesystem not 3835 * to be NFS exported. 3836 */ 3837 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode) 3838 { 3839 struct inode *inode = old_dentry->d_inode; 3840 unsigned max_links = dir->i_sb->s_max_links; 3841 int error; 3842 3843 if (!inode) 3844 return -ENOENT; 3845 3846 error = may_create(dir, new_dentry); 3847 if (error) 3848 return error; 3849 3850 if (dir->i_sb != inode->i_sb) 3851 return -EXDEV; 3852 3853 /* 3854 * A link to an append-only or immutable file cannot be created. 3855 */ 3856 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 3857 return -EPERM; 3858 if (!dir->i_op->link) 3859 return -EPERM; 3860 if (S_ISDIR(inode->i_mode)) 3861 return -EPERM; 3862 3863 error = security_inode_link(old_dentry, dir, new_dentry); 3864 if (error) 3865 return error; 3866 3867 mutex_lock(&inode->i_mutex); 3868 /* Make sure we don't allow creating hardlink to an unlinked file */ 3869 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE)) 3870 error = -ENOENT; 3871 else if (max_links && inode->i_nlink >= max_links) 3872 error = -EMLINK; 3873 else { 3874 error = try_break_deleg(inode, delegated_inode); 3875 if (!error) 3876 error = dir->i_op->link(old_dentry, dir, new_dentry); 3877 } 3878 3879 if (!error && (inode->i_state & I_LINKABLE)) { 3880 spin_lock(&inode->i_lock); 3881 inode->i_state &= ~I_LINKABLE; 3882 spin_unlock(&inode->i_lock); 3883 } 3884 mutex_unlock(&inode->i_mutex); 3885 if (!error) 3886 fsnotify_link(dir, inode, new_dentry); 3887 return error; 3888 } 3889 3890 /* 3891 * Hardlinks are often used in delicate situations. We avoid 3892 * security-related surprises by not following symlinks on the 3893 * newname. --KAB 3894 * 3895 * We don't follow them on the oldname either to be compatible 3896 * with linux 2.0, and to avoid hard-linking to directories 3897 * and other special files. --ADM 3898 */ 3899 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 3900 int, newdfd, const char __user *, newname, int, flags) 3901 { 3902 struct dentry *new_dentry; 3903 struct path old_path, new_path; 3904 struct inode *delegated_inode = NULL; 3905 int how = 0; 3906 int error; 3907 3908 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) 3909 return -EINVAL; 3910 /* 3911 * To use null names we require CAP_DAC_READ_SEARCH 3912 * This ensures that not everyone will be able to create 3913 * handlink using the passed filedescriptor. 3914 */ 3915 if (flags & AT_EMPTY_PATH) { 3916 if (!capable(CAP_DAC_READ_SEARCH)) 3917 return -ENOENT; 3918 how = LOOKUP_EMPTY; 3919 } 3920 3921 if (flags & AT_SYMLINK_FOLLOW) 3922 how |= LOOKUP_FOLLOW; 3923 retry: 3924 error = user_path_at(olddfd, oldname, how, &old_path); 3925 if (error) 3926 return error; 3927 3928 new_dentry = user_path_create(newdfd, newname, &new_path, 3929 (how & LOOKUP_REVAL)); 3930 error = PTR_ERR(new_dentry); 3931 if (IS_ERR(new_dentry)) 3932 goto out; 3933 3934 error = -EXDEV; 3935 if (old_path.mnt != new_path.mnt) 3936 goto out_dput; 3937 error = may_linkat(&old_path); 3938 if (unlikely(error)) 3939 goto out_dput; 3940 error = security_path_link(old_path.dentry, &new_path, new_dentry); 3941 if (error) 3942 goto out_dput; 3943 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode); 3944 out_dput: 3945 done_path_create(&new_path, new_dentry); 3946 if (delegated_inode) { 3947 error = break_deleg_wait(&delegated_inode); 3948 if (!error) 3949 goto retry; 3950 } 3951 if (retry_estale(error, how)) { 3952 how |= LOOKUP_REVAL; 3953 goto retry; 3954 } 3955 out: 3956 path_put(&old_path); 3957 3958 return error; 3959 } 3960 3961 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 3962 { 3963 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 3964 } 3965 3966 /* 3967 * The worst of all namespace operations - renaming directory. "Perverted" 3968 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 3969 * Problems: 3970 * a) we can get into loop creation. Check is done in is_subdir(). 3971 * b) race potential - two innocent renames can create a loop together. 3972 * That's where 4.4 screws up. Current fix: serialization on 3973 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 3974 * story. 3975 * c) we have to lock _four_ objects - parents and victim (if it exists), 3976 * and source (if it is not a directory). 3977 * And that - after we got ->i_mutex on parents (until then we don't know 3978 * whether the target exists). Solution: try to be smart with locking 3979 * order for inodes. We rely on the fact that tree topology may change 3980 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 3981 * move will be locked. Thus we can rank directories by the tree 3982 * (ancestors first) and rank all non-directories after them. 3983 * That works since everybody except rename does "lock parent, lookup, 3984 * lock child" and rename is under ->s_vfs_rename_mutex. 3985 * HOWEVER, it relies on the assumption that any object with ->lookup() 3986 * has no more than 1 dentry. If "hybrid" objects will ever appear, 3987 * we'd better make sure that there's no link(2) for them. 3988 * d) conversion from fhandle to dentry may come in the wrong moment - when 3989 * we are removing the target. Solution: we will have to grab ->i_mutex 3990 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 3991 * ->i_mutex on parents, which works but leads to some truly excessive 3992 * locking]. 3993 */ 3994 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry, 3995 struct inode *new_dir, struct dentry *new_dentry) 3996 { 3997 int error = 0; 3998 struct inode *target = new_dentry->d_inode; 3999 unsigned max_links = new_dir->i_sb->s_max_links; 4000 4001 /* 4002 * If we are going to change the parent - check write permissions, 4003 * we'll need to flip '..'. 4004 */ 4005 if (new_dir != old_dir) { 4006 error = inode_permission(old_dentry->d_inode, MAY_WRITE); 4007 if (error) 4008 return error; 4009 } 4010 4011 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry); 4012 if (error) 4013 return error; 4014 4015 dget(new_dentry); 4016 if (target) 4017 mutex_lock(&target->i_mutex); 4018 4019 error = -EBUSY; 4020 if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry)) 4021 goto out; 4022 4023 error = -EMLINK; 4024 if (max_links && !target && new_dir != old_dir && 4025 new_dir->i_nlink >= max_links) 4026 goto out; 4027 4028 if (target) 4029 shrink_dcache_parent(new_dentry); 4030 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry); 4031 if (error) 4032 goto out; 4033 4034 if (target) { 4035 target->i_flags |= S_DEAD; 4036 dont_mount(new_dentry); 4037 } 4038 out: 4039 if (target) 4040 mutex_unlock(&target->i_mutex); 4041 dput(new_dentry); 4042 if (!error) 4043 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) 4044 d_move(old_dentry,new_dentry); 4045 return error; 4046 } 4047 4048 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry, 4049 struct inode *new_dir, struct dentry *new_dentry, 4050 struct inode **delegated_inode) 4051 { 4052 struct inode *target = new_dentry->d_inode; 4053 struct inode *source = old_dentry->d_inode; 4054 int error; 4055 4056 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry); 4057 if (error) 4058 return error; 4059 4060 dget(new_dentry); 4061 lock_two_nondirectories(source, target); 4062 4063 error = -EBUSY; 4064 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry)) 4065 goto out; 4066 4067 error = try_break_deleg(source, delegated_inode); 4068 if (error) 4069 goto out; 4070 if (target) { 4071 error = try_break_deleg(target, delegated_inode); 4072 if (error) 4073 goto out; 4074 } 4075 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry); 4076 if (error) 4077 goto out; 4078 4079 if (target) 4080 dont_mount(new_dentry); 4081 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) 4082 d_move(old_dentry, new_dentry); 4083 out: 4084 unlock_two_nondirectories(source, target); 4085 dput(new_dentry); 4086 return error; 4087 } 4088 4089 /** 4090 * vfs_rename - rename a filesystem object 4091 * @old_dir: parent of source 4092 * @old_dentry: source 4093 * @new_dir: parent of destination 4094 * @new_dentry: destination 4095 * @delegated_inode: returns an inode needing a delegation break 4096 * 4097 * The caller must hold multiple mutexes--see lock_rename()). 4098 * 4099 * If vfs_rename discovers a delegation in need of breaking at either 4100 * the source or destination, it will return -EWOULDBLOCK and return a 4101 * reference to the inode in delegated_inode. The caller should then 4102 * break the delegation and retry. Because breaking a delegation may 4103 * take a long time, the caller should drop all locks before doing 4104 * so. 4105 * 4106 * Alternatively, a caller may pass NULL for delegated_inode. This may 4107 * be appropriate for callers that expect the underlying filesystem not 4108 * to be NFS exported. 4109 */ 4110 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry, 4111 struct inode *new_dir, struct dentry *new_dentry, 4112 struct inode **delegated_inode) 4113 { 4114 int error; 4115 int is_dir = d_is_directory(old_dentry) || d_is_autodir(old_dentry); 4116 const unsigned char *old_name; 4117 4118 if (old_dentry->d_inode == new_dentry->d_inode) 4119 return 0; 4120 4121 error = may_delete(old_dir, old_dentry, is_dir); 4122 if (error) 4123 return error; 4124 4125 if (!new_dentry->d_inode) 4126 error = may_create(new_dir, new_dentry); 4127 else 4128 error = may_delete(new_dir, new_dentry, is_dir); 4129 if (error) 4130 return error; 4131 4132 if (!old_dir->i_op->rename) 4133 return -EPERM; 4134 4135 old_name = fsnotify_oldname_init(old_dentry->d_name.name); 4136 4137 if (is_dir) 4138 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry); 4139 else 4140 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry,delegated_inode); 4141 if (!error) 4142 fsnotify_move(old_dir, new_dir, old_name, is_dir, 4143 new_dentry->d_inode, old_dentry); 4144 fsnotify_oldname_free(old_name); 4145 4146 return error; 4147 } 4148 4149 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 4150 int, newdfd, const char __user *, newname) 4151 { 4152 struct dentry *old_dir, *new_dir; 4153 struct dentry *old_dentry, *new_dentry; 4154 struct dentry *trap; 4155 struct nameidata oldnd, newnd; 4156 struct inode *delegated_inode = NULL; 4157 struct filename *from; 4158 struct filename *to; 4159 unsigned int lookup_flags = 0; 4160 bool should_retry = false; 4161 int error; 4162 retry: 4163 from = user_path_parent(olddfd, oldname, &oldnd, lookup_flags); 4164 if (IS_ERR(from)) { 4165 error = PTR_ERR(from); 4166 goto exit; 4167 } 4168 4169 to = user_path_parent(newdfd, newname, &newnd, lookup_flags); 4170 if (IS_ERR(to)) { 4171 error = PTR_ERR(to); 4172 goto exit1; 4173 } 4174 4175 error = -EXDEV; 4176 if (oldnd.path.mnt != newnd.path.mnt) 4177 goto exit2; 4178 4179 old_dir = oldnd.path.dentry; 4180 error = -EBUSY; 4181 if (oldnd.last_type != LAST_NORM) 4182 goto exit2; 4183 4184 new_dir = newnd.path.dentry; 4185 if (newnd.last_type != LAST_NORM) 4186 goto exit2; 4187 4188 error = mnt_want_write(oldnd.path.mnt); 4189 if (error) 4190 goto exit2; 4191 4192 oldnd.flags &= ~LOOKUP_PARENT; 4193 newnd.flags &= ~LOOKUP_PARENT; 4194 newnd.flags |= LOOKUP_RENAME_TARGET; 4195 4196 retry_deleg: 4197 trap = lock_rename(new_dir, old_dir); 4198 4199 old_dentry = lookup_hash(&oldnd); 4200 error = PTR_ERR(old_dentry); 4201 if (IS_ERR(old_dentry)) 4202 goto exit3; 4203 /* source must exist */ 4204 error = -ENOENT; 4205 if (d_is_negative(old_dentry)) 4206 goto exit4; 4207 /* unless the source is a directory trailing slashes give -ENOTDIR */ 4208 if (!d_is_directory(old_dentry) && !d_is_autodir(old_dentry)) { 4209 error = -ENOTDIR; 4210 if (oldnd.last.name[oldnd.last.len]) 4211 goto exit4; 4212 if (newnd.last.name[newnd.last.len]) 4213 goto exit4; 4214 } 4215 /* source should not be ancestor of target */ 4216 error = -EINVAL; 4217 if (old_dentry == trap) 4218 goto exit4; 4219 new_dentry = lookup_hash(&newnd); 4220 error = PTR_ERR(new_dentry); 4221 if (IS_ERR(new_dentry)) 4222 goto exit4; 4223 /* target should not be an ancestor of source */ 4224 error = -ENOTEMPTY; 4225 if (new_dentry == trap) 4226 goto exit5; 4227 4228 error = security_path_rename(&oldnd.path, old_dentry, 4229 &newnd.path, new_dentry); 4230 if (error) 4231 goto exit5; 4232 error = vfs_rename(old_dir->d_inode, old_dentry, 4233 new_dir->d_inode, new_dentry, 4234 &delegated_inode); 4235 exit5: 4236 dput(new_dentry); 4237 exit4: 4238 dput(old_dentry); 4239 exit3: 4240 unlock_rename(new_dir, old_dir); 4241 if (delegated_inode) { 4242 error = break_deleg_wait(&delegated_inode); 4243 if (!error) 4244 goto retry_deleg; 4245 } 4246 mnt_drop_write(oldnd.path.mnt); 4247 exit2: 4248 if (retry_estale(error, lookup_flags)) 4249 should_retry = true; 4250 path_put(&newnd.path); 4251 putname(to); 4252 exit1: 4253 path_put(&oldnd.path); 4254 putname(from); 4255 if (should_retry) { 4256 should_retry = false; 4257 lookup_flags |= LOOKUP_REVAL; 4258 goto retry; 4259 } 4260 exit: 4261 return error; 4262 } 4263 4264 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 4265 { 4266 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname); 4267 } 4268 4269 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link) 4270 { 4271 int len; 4272 4273 len = PTR_ERR(link); 4274 if (IS_ERR(link)) 4275 goto out; 4276 4277 len = strlen(link); 4278 if (len > (unsigned) buflen) 4279 len = buflen; 4280 if (copy_to_user(buffer, link, len)) 4281 len = -EFAULT; 4282 out: 4283 return len; 4284 } 4285 4286 /* 4287 * A helper for ->readlink(). This should be used *ONLY* for symlinks that 4288 * have ->follow_link() touching nd only in nd_set_link(). Using (or not 4289 * using) it for any given inode is up to filesystem. 4290 */ 4291 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4292 { 4293 struct nameidata nd; 4294 void *cookie; 4295 int res; 4296 4297 nd.depth = 0; 4298 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd); 4299 if (IS_ERR(cookie)) 4300 return PTR_ERR(cookie); 4301 4302 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd)); 4303 if (dentry->d_inode->i_op->put_link) 4304 dentry->d_inode->i_op->put_link(dentry, &nd, cookie); 4305 return res; 4306 } 4307 4308 /* get the link contents into pagecache */ 4309 static char *page_getlink(struct dentry * dentry, struct page **ppage) 4310 { 4311 char *kaddr; 4312 struct page *page; 4313 struct address_space *mapping = dentry->d_inode->i_mapping; 4314 page = read_mapping_page(mapping, 0, NULL); 4315 if (IS_ERR(page)) 4316 return (char*)page; 4317 *ppage = page; 4318 kaddr = kmap(page); 4319 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1); 4320 return kaddr; 4321 } 4322 4323 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4324 { 4325 struct page *page = NULL; 4326 char *s = page_getlink(dentry, &page); 4327 int res = vfs_readlink(dentry,buffer,buflen,s); 4328 if (page) { 4329 kunmap(page); 4330 page_cache_release(page); 4331 } 4332 return res; 4333 } 4334 4335 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd) 4336 { 4337 struct page *page = NULL; 4338 nd_set_link(nd, page_getlink(dentry, &page)); 4339 return page; 4340 } 4341 4342 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie) 4343 { 4344 struct page *page = cookie; 4345 4346 if (page) { 4347 kunmap(page); 4348 page_cache_release(page); 4349 } 4350 } 4351 4352 /* 4353 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS 4354 */ 4355 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs) 4356 { 4357 struct address_space *mapping = inode->i_mapping; 4358 struct page *page; 4359 void *fsdata; 4360 int err; 4361 char *kaddr; 4362 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE; 4363 if (nofs) 4364 flags |= AOP_FLAG_NOFS; 4365 4366 retry: 4367 err = pagecache_write_begin(NULL, mapping, 0, len-1, 4368 flags, &page, &fsdata); 4369 if (err) 4370 goto fail; 4371 4372 kaddr = kmap_atomic(page); 4373 memcpy(kaddr, symname, len-1); 4374 kunmap_atomic(kaddr); 4375 4376 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1, 4377 page, fsdata); 4378 if (err < 0) 4379 goto fail; 4380 if (err < len-1) 4381 goto retry; 4382 4383 mark_inode_dirty(inode); 4384 return 0; 4385 fail: 4386 return err; 4387 } 4388 4389 int page_symlink(struct inode *inode, const char *symname, int len) 4390 { 4391 return __page_symlink(inode, symname, len, 4392 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS)); 4393 } 4394 4395 const struct inode_operations page_symlink_inode_operations = { 4396 .readlink = generic_readlink, 4397 .follow_link = page_follow_link_light, 4398 .put_link = page_put_link, 4399 }; 4400 4401 EXPORT_SYMBOL(user_path_at); 4402 EXPORT_SYMBOL(follow_down_one); 4403 EXPORT_SYMBOL(follow_down); 4404 EXPORT_SYMBOL(follow_up); 4405 EXPORT_SYMBOL(get_write_access); /* nfsd */ 4406 EXPORT_SYMBOL(lock_rename); 4407 EXPORT_SYMBOL(lookup_one_len); 4408 EXPORT_SYMBOL(page_follow_link_light); 4409 EXPORT_SYMBOL(page_put_link); 4410 EXPORT_SYMBOL(page_readlink); 4411 EXPORT_SYMBOL(__page_symlink); 4412 EXPORT_SYMBOL(page_symlink); 4413 EXPORT_SYMBOL(page_symlink_inode_operations); 4414 EXPORT_SYMBOL(kern_path); 4415 EXPORT_SYMBOL(vfs_path_lookup); 4416 EXPORT_SYMBOL(inode_permission); 4417 EXPORT_SYMBOL(unlock_rename); 4418 EXPORT_SYMBOL(vfs_create); 4419 EXPORT_SYMBOL(vfs_link); 4420 EXPORT_SYMBOL(vfs_mkdir); 4421 EXPORT_SYMBOL(vfs_mknod); 4422 EXPORT_SYMBOL(generic_permission); 4423 EXPORT_SYMBOL(vfs_readlink); 4424 EXPORT_SYMBOL(vfs_rename); 4425 EXPORT_SYMBOL(vfs_rmdir); 4426 EXPORT_SYMBOL(vfs_symlink); 4427 EXPORT_SYMBOL(vfs_unlink); 4428 EXPORT_SYMBOL(dentry_unhash); 4429 EXPORT_SYMBOL(generic_readlink); 4430