1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/namei.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * Some corrections by tytso. 10 */ 11 12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 13 * lookup logic. 14 */ 15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 16 */ 17 18 #include <linux/init.h> 19 #include <linux/export.h> 20 #include <linux/kernel.h> 21 #include <linux/slab.h> 22 #include <linux/fs.h> 23 #include <linux/filelock.h> 24 #include <linux/namei.h> 25 #include <linux/pagemap.h> 26 #include <linux/sched/mm.h> 27 #include <linux/fsnotify.h> 28 #include <linux/personality.h> 29 #include <linux/security.h> 30 #include <linux/ima.h> 31 #include <linux/syscalls.h> 32 #include <linux/mount.h> 33 #include <linux/audit.h> 34 #include <linux/capability.h> 35 #include <linux/file.h> 36 #include <linux/fcntl.h> 37 #include <linux/device_cgroup.h> 38 #include <linux/fs_struct.h> 39 #include <linux/posix_acl.h> 40 #include <linux/hash.h> 41 #include <linux/bitops.h> 42 #include <linux/init_task.h> 43 #include <linux/uaccess.h> 44 45 #include "internal.h" 46 #include "mount.h" 47 48 /* [Feb-1997 T. Schoebel-Theuer] 49 * Fundamental changes in the pathname lookup mechanisms (namei) 50 * were necessary because of omirr. The reason is that omirr needs 51 * to know the _real_ pathname, not the user-supplied one, in case 52 * of symlinks (and also when transname replacements occur). 53 * 54 * The new code replaces the old recursive symlink resolution with 55 * an iterative one (in case of non-nested symlink chains). It does 56 * this with calls to <fs>_follow_link(). 57 * As a side effect, dir_namei(), _namei() and follow_link() are now 58 * replaced with a single function lookup_dentry() that can handle all 59 * the special cases of the former code. 60 * 61 * With the new dcache, the pathname is stored at each inode, at least as 62 * long as the refcount of the inode is positive. As a side effect, the 63 * size of the dcache depends on the inode cache and thus is dynamic. 64 * 65 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 66 * resolution to correspond with current state of the code. 67 * 68 * Note that the symlink resolution is not *completely* iterative. 69 * There is still a significant amount of tail- and mid- recursion in 70 * the algorithm. Also, note that <fs>_readlink() is not used in 71 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 72 * may return different results than <fs>_follow_link(). Many virtual 73 * filesystems (including /proc) exhibit this behavior. 74 */ 75 76 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 77 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 78 * and the name already exists in form of a symlink, try to create the new 79 * name indicated by the symlink. The old code always complained that the 80 * name already exists, due to not following the symlink even if its target 81 * is nonexistent. The new semantics affects also mknod() and link() when 82 * the name is a symlink pointing to a non-existent name. 83 * 84 * I don't know which semantics is the right one, since I have no access 85 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 86 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 87 * "old" one. Personally, I think the new semantics is much more logical. 88 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 89 * file does succeed in both HP-UX and SunOs, but not in Solaris 90 * and in the old Linux semantics. 91 */ 92 93 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 94 * semantics. See the comments in "open_namei" and "do_link" below. 95 * 96 * [10-Sep-98 Alan Modra] Another symlink change. 97 */ 98 99 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 100 * inside the path - always follow. 101 * in the last component in creation/removal/renaming - never follow. 102 * if LOOKUP_FOLLOW passed - follow. 103 * if the pathname has trailing slashes - follow. 104 * otherwise - don't follow. 105 * (applied in that order). 106 * 107 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 108 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 109 * During the 2.4 we need to fix the userland stuff depending on it - 110 * hopefully we will be able to get rid of that wart in 2.5. So far only 111 * XEmacs seems to be relying on it... 112 */ 113 /* 114 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 115 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 116 * any extra contention... 117 */ 118 119 /* In order to reduce some races, while at the same time doing additional 120 * checking and hopefully speeding things up, we copy filenames to the 121 * kernel data space before using them.. 122 * 123 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 124 * PATH_MAX includes the nul terminator --RR. 125 */ 126 127 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname)) 128 129 struct filename * 130 getname_flags(const char __user *filename, int flags, int *empty) 131 { 132 struct filename *result; 133 char *kname; 134 int len; 135 136 result = audit_reusename(filename); 137 if (result) 138 return result; 139 140 result = __getname(); 141 if (unlikely(!result)) 142 return ERR_PTR(-ENOMEM); 143 144 /* 145 * First, try to embed the struct filename inside the names_cache 146 * allocation 147 */ 148 kname = (char *)result->iname; 149 result->name = kname; 150 151 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX); 152 if (unlikely(len < 0)) { 153 __putname(result); 154 return ERR_PTR(len); 155 } 156 157 /* 158 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a 159 * separate struct filename so we can dedicate the entire 160 * names_cache allocation for the pathname, and re-do the copy from 161 * userland. 162 */ 163 if (unlikely(len == EMBEDDED_NAME_MAX)) { 164 const size_t size = offsetof(struct filename, iname[1]); 165 kname = (char *)result; 166 167 /* 168 * size is chosen that way we to guarantee that 169 * result->iname[0] is within the same object and that 170 * kname can't be equal to result->iname, no matter what. 171 */ 172 result = kzalloc(size, GFP_KERNEL); 173 if (unlikely(!result)) { 174 __putname(kname); 175 return ERR_PTR(-ENOMEM); 176 } 177 result->name = kname; 178 len = strncpy_from_user(kname, filename, PATH_MAX); 179 if (unlikely(len < 0)) { 180 __putname(kname); 181 kfree(result); 182 return ERR_PTR(len); 183 } 184 if (unlikely(len == PATH_MAX)) { 185 __putname(kname); 186 kfree(result); 187 return ERR_PTR(-ENAMETOOLONG); 188 } 189 } 190 191 result->refcnt = 1; 192 /* The empty path is special. */ 193 if (unlikely(!len)) { 194 if (empty) 195 *empty = 1; 196 if (!(flags & LOOKUP_EMPTY)) { 197 putname(result); 198 return ERR_PTR(-ENOENT); 199 } 200 } 201 202 result->uptr = filename; 203 result->aname = NULL; 204 audit_getname(result); 205 return result; 206 } 207 208 struct filename * 209 getname_uflags(const char __user *filename, int uflags) 210 { 211 int flags = (uflags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0; 212 213 return getname_flags(filename, flags, NULL); 214 } 215 216 struct filename * 217 getname(const char __user * filename) 218 { 219 return getname_flags(filename, 0, NULL); 220 } 221 222 struct filename * 223 getname_kernel(const char * filename) 224 { 225 struct filename *result; 226 int len = strlen(filename) + 1; 227 228 result = __getname(); 229 if (unlikely(!result)) 230 return ERR_PTR(-ENOMEM); 231 232 if (len <= EMBEDDED_NAME_MAX) { 233 result->name = (char *)result->iname; 234 } else if (len <= PATH_MAX) { 235 const size_t size = offsetof(struct filename, iname[1]); 236 struct filename *tmp; 237 238 tmp = kmalloc(size, GFP_KERNEL); 239 if (unlikely(!tmp)) { 240 __putname(result); 241 return ERR_PTR(-ENOMEM); 242 } 243 tmp->name = (char *)result; 244 result = tmp; 245 } else { 246 __putname(result); 247 return ERR_PTR(-ENAMETOOLONG); 248 } 249 memcpy((char *)result->name, filename, len); 250 result->uptr = NULL; 251 result->aname = NULL; 252 result->refcnt = 1; 253 audit_getname(result); 254 255 return result; 256 } 257 EXPORT_SYMBOL(getname_kernel); 258 259 void putname(struct filename *name) 260 { 261 if (IS_ERR(name)) 262 return; 263 264 BUG_ON(name->refcnt <= 0); 265 266 if (--name->refcnt > 0) 267 return; 268 269 if (name->name != name->iname) { 270 __putname(name->name); 271 kfree(name); 272 } else 273 __putname(name); 274 } 275 EXPORT_SYMBOL(putname); 276 277 /** 278 * check_acl - perform ACL permission checking 279 * @idmap: idmap of the mount the inode was found from 280 * @inode: inode to check permissions on 281 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...) 282 * 283 * This function performs the ACL permission checking. Since this function 284 * retrieve POSIX acls it needs to know whether it is called from a blocking or 285 * non-blocking context and thus cares about the MAY_NOT_BLOCK bit. 286 * 287 * If the inode has been found through an idmapped mount the idmap of 288 * the vfsmount must be passed through @idmap. This function will then take 289 * care to map the inode according to @idmap before checking permissions. 290 * On non-idmapped mounts or if permission checking is to be performed on the 291 * raw inode simply passs @nop_mnt_idmap. 292 */ 293 static int check_acl(struct mnt_idmap *idmap, 294 struct inode *inode, int mask) 295 { 296 #ifdef CONFIG_FS_POSIX_ACL 297 struct posix_acl *acl; 298 299 if (mask & MAY_NOT_BLOCK) { 300 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS); 301 if (!acl) 302 return -EAGAIN; 303 /* no ->get_inode_acl() calls in RCU mode... */ 304 if (is_uncached_acl(acl)) 305 return -ECHILD; 306 return posix_acl_permission(idmap, inode, acl, mask); 307 } 308 309 acl = get_inode_acl(inode, ACL_TYPE_ACCESS); 310 if (IS_ERR(acl)) 311 return PTR_ERR(acl); 312 if (acl) { 313 int error = posix_acl_permission(idmap, inode, acl, mask); 314 posix_acl_release(acl); 315 return error; 316 } 317 #endif 318 319 return -EAGAIN; 320 } 321 322 /** 323 * acl_permission_check - perform basic UNIX permission checking 324 * @idmap: idmap of the mount the inode was found from 325 * @inode: inode to check permissions on 326 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...) 327 * 328 * This function performs the basic UNIX permission checking. Since this 329 * function may retrieve POSIX acls it needs to know whether it is called from a 330 * blocking or non-blocking context and thus cares about the MAY_NOT_BLOCK bit. 331 * 332 * If the inode has been found through an idmapped mount the idmap of 333 * the vfsmount must be passed through @idmap. This function will then take 334 * care to map the inode according to @idmap before checking permissions. 335 * On non-idmapped mounts or if permission checking is to be performed on the 336 * raw inode simply passs @nop_mnt_idmap. 337 */ 338 static int acl_permission_check(struct mnt_idmap *idmap, 339 struct inode *inode, int mask) 340 { 341 unsigned int mode = inode->i_mode; 342 vfsuid_t vfsuid; 343 344 /* Are we the owner? If so, ACL's don't matter */ 345 vfsuid = i_uid_into_vfsuid(idmap, inode); 346 if (likely(vfsuid_eq_kuid(vfsuid, current_fsuid()))) { 347 mask &= 7; 348 mode >>= 6; 349 return (mask & ~mode) ? -EACCES : 0; 350 } 351 352 /* Do we have ACL's? */ 353 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) { 354 int error = check_acl(idmap, inode, mask); 355 if (error != -EAGAIN) 356 return error; 357 } 358 359 /* Only RWX matters for group/other mode bits */ 360 mask &= 7; 361 362 /* 363 * Are the group permissions different from 364 * the other permissions in the bits we care 365 * about? Need to check group ownership if so. 366 */ 367 if (mask & (mode ^ (mode >> 3))) { 368 vfsgid_t vfsgid = i_gid_into_vfsgid(idmap, inode); 369 if (vfsgid_in_group_p(vfsgid)) 370 mode >>= 3; 371 } 372 373 /* Bits in 'mode' clear that we require? */ 374 return (mask & ~mode) ? -EACCES : 0; 375 } 376 377 /** 378 * generic_permission - check for access rights on a Posix-like filesystem 379 * @idmap: idmap of the mount the inode was found from 380 * @inode: inode to check access rights for 381 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, 382 * %MAY_NOT_BLOCK ...) 383 * 384 * Used to check for read/write/execute permissions on a file. 385 * We use "fsuid" for this, letting us set arbitrary permissions 386 * for filesystem access without changing the "normal" uids which 387 * are used for other things. 388 * 389 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk 390 * request cannot be satisfied (eg. requires blocking or too much complexity). 391 * It would then be called again in ref-walk mode. 392 * 393 * If the inode has been found through an idmapped mount the idmap of 394 * the vfsmount must be passed through @idmap. This function will then take 395 * care to map the inode according to @idmap before checking permissions. 396 * On non-idmapped mounts or if permission checking is to be performed on the 397 * raw inode simply passs @nop_mnt_idmap. 398 */ 399 int generic_permission(struct mnt_idmap *idmap, struct inode *inode, 400 int mask) 401 { 402 int ret; 403 404 /* 405 * Do the basic permission checks. 406 */ 407 ret = acl_permission_check(idmap, inode, mask); 408 if (ret != -EACCES) 409 return ret; 410 411 if (S_ISDIR(inode->i_mode)) { 412 /* DACs are overridable for directories */ 413 if (!(mask & MAY_WRITE)) 414 if (capable_wrt_inode_uidgid(idmap, inode, 415 CAP_DAC_READ_SEARCH)) 416 return 0; 417 if (capable_wrt_inode_uidgid(idmap, inode, 418 CAP_DAC_OVERRIDE)) 419 return 0; 420 return -EACCES; 421 } 422 423 /* 424 * Searching includes executable on directories, else just read. 425 */ 426 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 427 if (mask == MAY_READ) 428 if (capable_wrt_inode_uidgid(idmap, inode, 429 CAP_DAC_READ_SEARCH)) 430 return 0; 431 /* 432 * Read/write DACs are always overridable. 433 * Executable DACs are overridable when there is 434 * at least one exec bit set. 435 */ 436 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO)) 437 if (capable_wrt_inode_uidgid(idmap, inode, 438 CAP_DAC_OVERRIDE)) 439 return 0; 440 441 return -EACCES; 442 } 443 EXPORT_SYMBOL(generic_permission); 444 445 /** 446 * do_inode_permission - UNIX permission checking 447 * @idmap: idmap of the mount the inode was found from 448 * @inode: inode to check permissions on 449 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...) 450 * 451 * We _really_ want to just do "generic_permission()" without 452 * even looking at the inode->i_op values. So we keep a cache 453 * flag in inode->i_opflags, that says "this has not special 454 * permission function, use the fast case". 455 */ 456 static inline int do_inode_permission(struct mnt_idmap *idmap, 457 struct inode *inode, int mask) 458 { 459 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) { 460 if (likely(inode->i_op->permission)) 461 return inode->i_op->permission(idmap, inode, mask); 462 463 /* This gets set once for the inode lifetime */ 464 spin_lock(&inode->i_lock); 465 inode->i_opflags |= IOP_FASTPERM; 466 spin_unlock(&inode->i_lock); 467 } 468 return generic_permission(idmap, inode, mask); 469 } 470 471 /** 472 * sb_permission - Check superblock-level permissions 473 * @sb: Superblock of inode to check permission on 474 * @inode: Inode to check permission on 475 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 476 * 477 * Separate out file-system wide checks from inode-specific permission checks. 478 */ 479 static int sb_permission(struct super_block *sb, struct inode *inode, int mask) 480 { 481 if (unlikely(mask & MAY_WRITE)) { 482 umode_t mode = inode->i_mode; 483 484 /* Nobody gets write access to a read-only fs. */ 485 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 486 return -EROFS; 487 } 488 return 0; 489 } 490 491 /** 492 * inode_permission - Check for access rights to a given inode 493 * @idmap: idmap of the mount the inode was found from 494 * @inode: Inode to check permission on 495 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 496 * 497 * Check for read/write/execute permissions on an inode. We use fs[ug]id for 498 * this, letting us set arbitrary permissions for filesystem access without 499 * changing the "normal" UIDs which are used for other things. 500 * 501 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 502 */ 503 int inode_permission(struct mnt_idmap *idmap, 504 struct inode *inode, int mask) 505 { 506 int retval; 507 508 retval = sb_permission(inode->i_sb, inode, mask); 509 if (retval) 510 return retval; 511 512 if (unlikely(mask & MAY_WRITE)) { 513 /* 514 * Nobody gets write access to an immutable file. 515 */ 516 if (IS_IMMUTABLE(inode)) 517 return -EPERM; 518 519 /* 520 * Updating mtime will likely cause i_uid and i_gid to be 521 * written back improperly if their true value is unknown 522 * to the vfs. 523 */ 524 if (HAS_UNMAPPED_ID(idmap, inode)) 525 return -EACCES; 526 } 527 528 retval = do_inode_permission(idmap, inode, mask); 529 if (retval) 530 return retval; 531 532 retval = devcgroup_inode_permission(inode, mask); 533 if (retval) 534 return retval; 535 536 return security_inode_permission(inode, mask); 537 } 538 EXPORT_SYMBOL(inode_permission); 539 540 /** 541 * path_get - get a reference to a path 542 * @path: path to get the reference to 543 * 544 * Given a path increment the reference count to the dentry and the vfsmount. 545 */ 546 void path_get(const struct path *path) 547 { 548 mntget(path->mnt); 549 dget(path->dentry); 550 } 551 EXPORT_SYMBOL(path_get); 552 553 /** 554 * path_put - put a reference to a path 555 * @path: path to put the reference to 556 * 557 * Given a path decrement the reference count to the dentry and the vfsmount. 558 */ 559 void path_put(const struct path *path) 560 { 561 dput(path->dentry); 562 mntput(path->mnt); 563 } 564 EXPORT_SYMBOL(path_put); 565 566 #define EMBEDDED_LEVELS 2 567 struct nameidata { 568 struct path path; 569 struct qstr last; 570 struct path root; 571 struct inode *inode; /* path.dentry.d_inode */ 572 unsigned int flags, state; 573 unsigned seq, next_seq, m_seq, r_seq; 574 int last_type; 575 unsigned depth; 576 int total_link_count; 577 struct saved { 578 struct path link; 579 struct delayed_call done; 580 const char *name; 581 unsigned seq; 582 } *stack, internal[EMBEDDED_LEVELS]; 583 struct filename *name; 584 struct nameidata *saved; 585 unsigned root_seq; 586 int dfd; 587 vfsuid_t dir_vfsuid; 588 umode_t dir_mode; 589 } __randomize_layout; 590 591 #define ND_ROOT_PRESET 1 592 #define ND_ROOT_GRABBED 2 593 #define ND_JUMPED 4 594 595 static void __set_nameidata(struct nameidata *p, int dfd, struct filename *name) 596 { 597 struct nameidata *old = current->nameidata; 598 p->stack = p->internal; 599 p->depth = 0; 600 p->dfd = dfd; 601 p->name = name; 602 p->path.mnt = NULL; 603 p->path.dentry = NULL; 604 p->total_link_count = old ? old->total_link_count : 0; 605 p->saved = old; 606 current->nameidata = p; 607 } 608 609 static inline void set_nameidata(struct nameidata *p, int dfd, struct filename *name, 610 const struct path *root) 611 { 612 __set_nameidata(p, dfd, name); 613 p->state = 0; 614 if (unlikely(root)) { 615 p->state = ND_ROOT_PRESET; 616 p->root = *root; 617 } 618 } 619 620 static void restore_nameidata(void) 621 { 622 struct nameidata *now = current->nameidata, *old = now->saved; 623 624 current->nameidata = old; 625 if (old) 626 old->total_link_count = now->total_link_count; 627 if (now->stack != now->internal) 628 kfree(now->stack); 629 } 630 631 static bool nd_alloc_stack(struct nameidata *nd) 632 { 633 struct saved *p; 634 635 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved), 636 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL); 637 if (unlikely(!p)) 638 return false; 639 memcpy(p, nd->internal, sizeof(nd->internal)); 640 nd->stack = p; 641 return true; 642 } 643 644 /** 645 * path_connected - Verify that a dentry is below mnt.mnt_root 646 * 647 * Rename can sometimes move a file or directory outside of a bind 648 * mount, path_connected allows those cases to be detected. 649 */ 650 static bool path_connected(struct vfsmount *mnt, struct dentry *dentry) 651 { 652 struct super_block *sb = mnt->mnt_sb; 653 654 /* Bind mounts can have disconnected paths */ 655 if (mnt->mnt_root == sb->s_root) 656 return true; 657 658 return is_subdir(dentry, mnt->mnt_root); 659 } 660 661 static void drop_links(struct nameidata *nd) 662 { 663 int i = nd->depth; 664 while (i--) { 665 struct saved *last = nd->stack + i; 666 do_delayed_call(&last->done); 667 clear_delayed_call(&last->done); 668 } 669 } 670 671 static void leave_rcu(struct nameidata *nd) 672 { 673 nd->flags &= ~LOOKUP_RCU; 674 nd->seq = nd->next_seq = 0; 675 rcu_read_unlock(); 676 } 677 678 static void terminate_walk(struct nameidata *nd) 679 { 680 drop_links(nd); 681 if (!(nd->flags & LOOKUP_RCU)) { 682 int i; 683 path_put(&nd->path); 684 for (i = 0; i < nd->depth; i++) 685 path_put(&nd->stack[i].link); 686 if (nd->state & ND_ROOT_GRABBED) { 687 path_put(&nd->root); 688 nd->state &= ~ND_ROOT_GRABBED; 689 } 690 } else { 691 leave_rcu(nd); 692 } 693 nd->depth = 0; 694 nd->path.mnt = NULL; 695 nd->path.dentry = NULL; 696 } 697 698 /* path_put is needed afterwards regardless of success or failure */ 699 static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq) 700 { 701 int res = __legitimize_mnt(path->mnt, mseq); 702 if (unlikely(res)) { 703 if (res > 0) 704 path->mnt = NULL; 705 path->dentry = NULL; 706 return false; 707 } 708 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) { 709 path->dentry = NULL; 710 return false; 711 } 712 return !read_seqcount_retry(&path->dentry->d_seq, seq); 713 } 714 715 static inline bool legitimize_path(struct nameidata *nd, 716 struct path *path, unsigned seq) 717 { 718 return __legitimize_path(path, seq, nd->m_seq); 719 } 720 721 static bool legitimize_links(struct nameidata *nd) 722 { 723 int i; 724 if (unlikely(nd->flags & LOOKUP_CACHED)) { 725 drop_links(nd); 726 nd->depth = 0; 727 return false; 728 } 729 for (i = 0; i < nd->depth; i++) { 730 struct saved *last = nd->stack + i; 731 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) { 732 drop_links(nd); 733 nd->depth = i + 1; 734 return false; 735 } 736 } 737 return true; 738 } 739 740 static bool legitimize_root(struct nameidata *nd) 741 { 742 /* Nothing to do if nd->root is zero or is managed by the VFS user. */ 743 if (!nd->root.mnt || (nd->state & ND_ROOT_PRESET)) 744 return true; 745 nd->state |= ND_ROOT_GRABBED; 746 return legitimize_path(nd, &nd->root, nd->root_seq); 747 } 748 749 /* 750 * Path walking has 2 modes, rcu-walk and ref-walk (see 751 * Documentation/filesystems/path-lookup.txt). In situations when we can't 752 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab 753 * normal reference counts on dentries and vfsmounts to transition to ref-walk 754 * mode. Refcounts are grabbed at the last known good point before rcu-walk 755 * got stuck, so ref-walk may continue from there. If this is not successful 756 * (eg. a seqcount has changed), then failure is returned and it's up to caller 757 * to restart the path walk from the beginning in ref-walk mode. 758 */ 759 760 /** 761 * try_to_unlazy - try to switch to ref-walk mode. 762 * @nd: nameidata pathwalk data 763 * Returns: true on success, false on failure 764 * 765 * try_to_unlazy attempts to legitimize the current nd->path and nd->root 766 * for ref-walk mode. 767 * Must be called from rcu-walk context. 768 * Nothing should touch nameidata between try_to_unlazy() failure and 769 * terminate_walk(). 770 */ 771 static bool try_to_unlazy(struct nameidata *nd) 772 { 773 struct dentry *parent = nd->path.dentry; 774 775 BUG_ON(!(nd->flags & LOOKUP_RCU)); 776 777 if (unlikely(!legitimize_links(nd))) 778 goto out1; 779 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq))) 780 goto out; 781 if (unlikely(!legitimize_root(nd))) 782 goto out; 783 leave_rcu(nd); 784 BUG_ON(nd->inode != parent->d_inode); 785 return true; 786 787 out1: 788 nd->path.mnt = NULL; 789 nd->path.dentry = NULL; 790 out: 791 leave_rcu(nd); 792 return false; 793 } 794 795 /** 796 * try_to_unlazy_next - try to switch to ref-walk mode. 797 * @nd: nameidata pathwalk data 798 * @dentry: next dentry to step into 799 * Returns: true on success, false on failure 800 * 801 * Similar to try_to_unlazy(), but here we have the next dentry already 802 * picked by rcu-walk and want to legitimize that in addition to the current 803 * nd->path and nd->root for ref-walk mode. Must be called from rcu-walk context. 804 * Nothing should touch nameidata between try_to_unlazy_next() failure and 805 * terminate_walk(). 806 */ 807 static bool try_to_unlazy_next(struct nameidata *nd, struct dentry *dentry) 808 { 809 int res; 810 BUG_ON(!(nd->flags & LOOKUP_RCU)); 811 812 if (unlikely(!legitimize_links(nd))) 813 goto out2; 814 res = __legitimize_mnt(nd->path.mnt, nd->m_seq); 815 if (unlikely(res)) { 816 if (res > 0) 817 goto out2; 818 goto out1; 819 } 820 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref))) 821 goto out1; 822 823 /* 824 * We need to move both the parent and the dentry from the RCU domain 825 * to be properly refcounted. And the sequence number in the dentry 826 * validates *both* dentry counters, since we checked the sequence 827 * number of the parent after we got the child sequence number. So we 828 * know the parent must still be valid if the child sequence number is 829 */ 830 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) 831 goto out; 832 if (read_seqcount_retry(&dentry->d_seq, nd->next_seq)) 833 goto out_dput; 834 /* 835 * Sequence counts matched. Now make sure that the root is 836 * still valid and get it if required. 837 */ 838 if (unlikely(!legitimize_root(nd))) 839 goto out_dput; 840 leave_rcu(nd); 841 return true; 842 843 out2: 844 nd->path.mnt = NULL; 845 out1: 846 nd->path.dentry = NULL; 847 out: 848 leave_rcu(nd); 849 return false; 850 out_dput: 851 leave_rcu(nd); 852 dput(dentry); 853 return false; 854 } 855 856 static inline int d_revalidate(struct dentry *dentry, unsigned int flags) 857 { 858 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) 859 return dentry->d_op->d_revalidate(dentry, flags); 860 else 861 return 1; 862 } 863 864 /** 865 * complete_walk - successful completion of path walk 866 * @nd: pointer nameidata 867 * 868 * If we had been in RCU mode, drop out of it and legitimize nd->path. 869 * Revalidate the final result, unless we'd already done that during 870 * the path walk or the filesystem doesn't ask for it. Return 0 on 871 * success, -error on failure. In case of failure caller does not 872 * need to drop nd->path. 873 */ 874 static int complete_walk(struct nameidata *nd) 875 { 876 struct dentry *dentry = nd->path.dentry; 877 int status; 878 879 if (nd->flags & LOOKUP_RCU) { 880 /* 881 * We don't want to zero nd->root for scoped-lookups or 882 * externally-managed nd->root. 883 */ 884 if (!(nd->state & ND_ROOT_PRESET)) 885 if (!(nd->flags & LOOKUP_IS_SCOPED)) 886 nd->root.mnt = NULL; 887 nd->flags &= ~LOOKUP_CACHED; 888 if (!try_to_unlazy(nd)) 889 return -ECHILD; 890 } 891 892 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) { 893 /* 894 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't 895 * ever step outside the root during lookup" and should already 896 * be guaranteed by the rest of namei, we want to avoid a namei 897 * BUG resulting in userspace being given a path that was not 898 * scoped within the root at some point during the lookup. 899 * 900 * So, do a final sanity-check to make sure that in the 901 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED) 902 * we won't silently return an fd completely outside of the 903 * requested root to userspace. 904 * 905 * Userspace could move the path outside the root after this 906 * check, but as discussed elsewhere this is not a concern (the 907 * resolved file was inside the root at some point). 908 */ 909 if (!path_is_under(&nd->path, &nd->root)) 910 return -EXDEV; 911 } 912 913 if (likely(!(nd->state & ND_JUMPED))) 914 return 0; 915 916 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE))) 917 return 0; 918 919 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags); 920 if (status > 0) 921 return 0; 922 923 if (!status) 924 status = -ESTALE; 925 926 return status; 927 } 928 929 static int set_root(struct nameidata *nd) 930 { 931 struct fs_struct *fs = current->fs; 932 933 /* 934 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we 935 * still have to ensure it doesn't happen because it will cause a breakout 936 * from the dirfd. 937 */ 938 if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED)) 939 return -ENOTRECOVERABLE; 940 941 if (nd->flags & LOOKUP_RCU) { 942 unsigned seq; 943 944 do { 945 seq = read_seqcount_begin(&fs->seq); 946 nd->root = fs->root; 947 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq); 948 } while (read_seqcount_retry(&fs->seq, seq)); 949 } else { 950 get_fs_root(fs, &nd->root); 951 nd->state |= ND_ROOT_GRABBED; 952 } 953 return 0; 954 } 955 956 static int nd_jump_root(struct nameidata *nd) 957 { 958 if (unlikely(nd->flags & LOOKUP_BENEATH)) 959 return -EXDEV; 960 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) { 961 /* Absolute path arguments to path_init() are allowed. */ 962 if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt) 963 return -EXDEV; 964 } 965 if (!nd->root.mnt) { 966 int error = set_root(nd); 967 if (error) 968 return error; 969 } 970 if (nd->flags & LOOKUP_RCU) { 971 struct dentry *d; 972 nd->path = nd->root; 973 d = nd->path.dentry; 974 nd->inode = d->d_inode; 975 nd->seq = nd->root_seq; 976 if (read_seqcount_retry(&d->d_seq, nd->seq)) 977 return -ECHILD; 978 } else { 979 path_put(&nd->path); 980 nd->path = nd->root; 981 path_get(&nd->path); 982 nd->inode = nd->path.dentry->d_inode; 983 } 984 nd->state |= ND_JUMPED; 985 return 0; 986 } 987 988 /* 989 * Helper to directly jump to a known parsed path from ->get_link, 990 * caller must have taken a reference to path beforehand. 991 */ 992 int nd_jump_link(const struct path *path) 993 { 994 int error = -ELOOP; 995 struct nameidata *nd = current->nameidata; 996 997 if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS)) 998 goto err; 999 1000 error = -EXDEV; 1001 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) { 1002 if (nd->path.mnt != path->mnt) 1003 goto err; 1004 } 1005 /* Not currently safe for scoped-lookups. */ 1006 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) 1007 goto err; 1008 1009 path_put(&nd->path); 1010 nd->path = *path; 1011 nd->inode = nd->path.dentry->d_inode; 1012 nd->state |= ND_JUMPED; 1013 return 0; 1014 1015 err: 1016 path_put(path); 1017 return error; 1018 } 1019 1020 static inline void put_link(struct nameidata *nd) 1021 { 1022 struct saved *last = nd->stack + --nd->depth; 1023 do_delayed_call(&last->done); 1024 if (!(nd->flags & LOOKUP_RCU)) 1025 path_put(&last->link); 1026 } 1027 1028 static int sysctl_protected_symlinks __read_mostly; 1029 static int sysctl_protected_hardlinks __read_mostly; 1030 static int sysctl_protected_fifos __read_mostly; 1031 static int sysctl_protected_regular __read_mostly; 1032 1033 #ifdef CONFIG_SYSCTL 1034 static struct ctl_table namei_sysctls[] = { 1035 { 1036 .procname = "protected_symlinks", 1037 .data = &sysctl_protected_symlinks, 1038 .maxlen = sizeof(int), 1039 .mode = 0644, 1040 .proc_handler = proc_dointvec_minmax, 1041 .extra1 = SYSCTL_ZERO, 1042 .extra2 = SYSCTL_ONE, 1043 }, 1044 { 1045 .procname = "protected_hardlinks", 1046 .data = &sysctl_protected_hardlinks, 1047 .maxlen = sizeof(int), 1048 .mode = 0644, 1049 .proc_handler = proc_dointvec_minmax, 1050 .extra1 = SYSCTL_ZERO, 1051 .extra2 = SYSCTL_ONE, 1052 }, 1053 { 1054 .procname = "protected_fifos", 1055 .data = &sysctl_protected_fifos, 1056 .maxlen = sizeof(int), 1057 .mode = 0644, 1058 .proc_handler = proc_dointvec_minmax, 1059 .extra1 = SYSCTL_ZERO, 1060 .extra2 = SYSCTL_TWO, 1061 }, 1062 { 1063 .procname = "protected_regular", 1064 .data = &sysctl_protected_regular, 1065 .maxlen = sizeof(int), 1066 .mode = 0644, 1067 .proc_handler = proc_dointvec_minmax, 1068 .extra1 = SYSCTL_ZERO, 1069 .extra2 = SYSCTL_TWO, 1070 }, 1071 { } 1072 }; 1073 1074 static int __init init_fs_namei_sysctls(void) 1075 { 1076 register_sysctl_init("fs", namei_sysctls); 1077 return 0; 1078 } 1079 fs_initcall(init_fs_namei_sysctls); 1080 1081 #endif /* CONFIG_SYSCTL */ 1082 1083 /** 1084 * may_follow_link - Check symlink following for unsafe situations 1085 * @nd: nameidata pathwalk data 1086 * 1087 * In the case of the sysctl_protected_symlinks sysctl being enabled, 1088 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is 1089 * in a sticky world-writable directory. This is to protect privileged 1090 * processes from failing races against path names that may change out 1091 * from under them by way of other users creating malicious symlinks. 1092 * It will permit symlinks to be followed only when outside a sticky 1093 * world-writable directory, or when the uid of the symlink and follower 1094 * match, or when the directory owner matches the symlink's owner. 1095 * 1096 * Returns 0 if following the symlink is allowed, -ve on error. 1097 */ 1098 static inline int may_follow_link(struct nameidata *nd, const struct inode *inode) 1099 { 1100 struct mnt_idmap *idmap; 1101 vfsuid_t vfsuid; 1102 1103 if (!sysctl_protected_symlinks) 1104 return 0; 1105 1106 idmap = mnt_idmap(nd->path.mnt); 1107 vfsuid = i_uid_into_vfsuid(idmap, inode); 1108 /* Allowed if owner and follower match. */ 1109 if (vfsuid_eq_kuid(vfsuid, current_fsuid())) 1110 return 0; 1111 1112 /* Allowed if parent directory not sticky and world-writable. */ 1113 if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH)) 1114 return 0; 1115 1116 /* Allowed if parent directory and link owner match. */ 1117 if (vfsuid_valid(nd->dir_vfsuid) && vfsuid_eq(nd->dir_vfsuid, vfsuid)) 1118 return 0; 1119 1120 if (nd->flags & LOOKUP_RCU) 1121 return -ECHILD; 1122 1123 audit_inode(nd->name, nd->stack[0].link.dentry, 0); 1124 audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link"); 1125 return -EACCES; 1126 } 1127 1128 /** 1129 * safe_hardlink_source - Check for safe hardlink conditions 1130 * @idmap: idmap of the mount the inode was found from 1131 * @inode: the source inode to hardlink from 1132 * 1133 * Return false if at least one of the following conditions: 1134 * - inode is not a regular file 1135 * - inode is setuid 1136 * - inode is setgid and group-exec 1137 * - access failure for read and write 1138 * 1139 * Otherwise returns true. 1140 */ 1141 static bool safe_hardlink_source(struct mnt_idmap *idmap, 1142 struct inode *inode) 1143 { 1144 umode_t mode = inode->i_mode; 1145 1146 /* Special files should not get pinned to the filesystem. */ 1147 if (!S_ISREG(mode)) 1148 return false; 1149 1150 /* Setuid files should not get pinned to the filesystem. */ 1151 if (mode & S_ISUID) 1152 return false; 1153 1154 /* Executable setgid files should not get pinned to the filesystem. */ 1155 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) 1156 return false; 1157 1158 /* Hardlinking to unreadable or unwritable sources is dangerous. */ 1159 if (inode_permission(idmap, inode, MAY_READ | MAY_WRITE)) 1160 return false; 1161 1162 return true; 1163 } 1164 1165 /** 1166 * may_linkat - Check permissions for creating a hardlink 1167 * @idmap: idmap of the mount the inode was found from 1168 * @link: the source to hardlink from 1169 * 1170 * Block hardlink when all of: 1171 * - sysctl_protected_hardlinks enabled 1172 * - fsuid does not match inode 1173 * - hardlink source is unsafe (see safe_hardlink_source() above) 1174 * - not CAP_FOWNER in a namespace with the inode owner uid mapped 1175 * 1176 * If the inode has been found through an idmapped mount the idmap of 1177 * the vfsmount must be passed through @idmap. This function will then take 1178 * care to map the inode according to @idmap before checking permissions. 1179 * On non-idmapped mounts or if permission checking is to be performed on the 1180 * raw inode simply pass @nop_mnt_idmap. 1181 * 1182 * Returns 0 if successful, -ve on error. 1183 */ 1184 int may_linkat(struct mnt_idmap *idmap, const struct path *link) 1185 { 1186 struct inode *inode = link->dentry->d_inode; 1187 1188 /* Inode writeback is not safe when the uid or gid are invalid. */ 1189 if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) || 1190 !vfsgid_valid(i_gid_into_vfsgid(idmap, inode))) 1191 return -EOVERFLOW; 1192 1193 if (!sysctl_protected_hardlinks) 1194 return 0; 1195 1196 /* Source inode owner (or CAP_FOWNER) can hardlink all they like, 1197 * otherwise, it must be a safe source. 1198 */ 1199 if (safe_hardlink_source(idmap, inode) || 1200 inode_owner_or_capable(idmap, inode)) 1201 return 0; 1202 1203 audit_log_path_denied(AUDIT_ANOM_LINK, "linkat"); 1204 return -EPERM; 1205 } 1206 1207 /** 1208 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory 1209 * should be allowed, or not, on files that already 1210 * exist. 1211 * @idmap: idmap of the mount the inode was found from 1212 * @nd: nameidata pathwalk data 1213 * @inode: the inode of the file to open 1214 * 1215 * Block an O_CREAT open of a FIFO (or a regular file) when: 1216 * - sysctl_protected_fifos (or sysctl_protected_regular) is enabled 1217 * - the file already exists 1218 * - we are in a sticky directory 1219 * - we don't own the file 1220 * - the owner of the directory doesn't own the file 1221 * - the directory is world writable 1222 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2 1223 * the directory doesn't have to be world writable: being group writable will 1224 * be enough. 1225 * 1226 * If the inode has been found through an idmapped mount the idmap of 1227 * the vfsmount must be passed through @idmap. This function will then take 1228 * care to map the inode according to @idmap before checking permissions. 1229 * On non-idmapped mounts or if permission checking is to be performed on the 1230 * raw inode simply pass @nop_mnt_idmap. 1231 * 1232 * Returns 0 if the open is allowed, -ve on error. 1233 */ 1234 static int may_create_in_sticky(struct mnt_idmap *idmap, 1235 struct nameidata *nd, struct inode *const inode) 1236 { 1237 umode_t dir_mode = nd->dir_mode; 1238 vfsuid_t dir_vfsuid = nd->dir_vfsuid; 1239 1240 if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) || 1241 (!sysctl_protected_regular && S_ISREG(inode->i_mode)) || 1242 likely(!(dir_mode & S_ISVTX)) || 1243 vfsuid_eq(i_uid_into_vfsuid(idmap, inode), dir_vfsuid) || 1244 vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, inode), current_fsuid())) 1245 return 0; 1246 1247 if (likely(dir_mode & 0002) || 1248 (dir_mode & 0020 && 1249 ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) || 1250 (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) { 1251 const char *operation = S_ISFIFO(inode->i_mode) ? 1252 "sticky_create_fifo" : 1253 "sticky_create_regular"; 1254 audit_log_path_denied(AUDIT_ANOM_CREAT, operation); 1255 return -EACCES; 1256 } 1257 return 0; 1258 } 1259 1260 /* 1261 * follow_up - Find the mountpoint of path's vfsmount 1262 * 1263 * Given a path, find the mountpoint of its source file system. 1264 * Replace @path with the path of the mountpoint in the parent mount. 1265 * Up is towards /. 1266 * 1267 * Return 1 if we went up a level and 0 if we were already at the 1268 * root. 1269 */ 1270 int follow_up(struct path *path) 1271 { 1272 struct mount *mnt = real_mount(path->mnt); 1273 struct mount *parent; 1274 struct dentry *mountpoint; 1275 1276 read_seqlock_excl(&mount_lock); 1277 parent = mnt->mnt_parent; 1278 if (parent == mnt) { 1279 read_sequnlock_excl(&mount_lock); 1280 return 0; 1281 } 1282 mntget(&parent->mnt); 1283 mountpoint = dget(mnt->mnt_mountpoint); 1284 read_sequnlock_excl(&mount_lock); 1285 dput(path->dentry); 1286 path->dentry = mountpoint; 1287 mntput(path->mnt); 1288 path->mnt = &parent->mnt; 1289 return 1; 1290 } 1291 EXPORT_SYMBOL(follow_up); 1292 1293 static bool choose_mountpoint_rcu(struct mount *m, const struct path *root, 1294 struct path *path, unsigned *seqp) 1295 { 1296 while (mnt_has_parent(m)) { 1297 struct dentry *mountpoint = m->mnt_mountpoint; 1298 1299 m = m->mnt_parent; 1300 if (unlikely(root->dentry == mountpoint && 1301 root->mnt == &m->mnt)) 1302 break; 1303 if (mountpoint != m->mnt.mnt_root) { 1304 path->mnt = &m->mnt; 1305 path->dentry = mountpoint; 1306 *seqp = read_seqcount_begin(&mountpoint->d_seq); 1307 return true; 1308 } 1309 } 1310 return false; 1311 } 1312 1313 static bool choose_mountpoint(struct mount *m, const struct path *root, 1314 struct path *path) 1315 { 1316 bool found; 1317 1318 rcu_read_lock(); 1319 while (1) { 1320 unsigned seq, mseq = read_seqbegin(&mount_lock); 1321 1322 found = choose_mountpoint_rcu(m, root, path, &seq); 1323 if (unlikely(!found)) { 1324 if (!read_seqretry(&mount_lock, mseq)) 1325 break; 1326 } else { 1327 if (likely(__legitimize_path(path, seq, mseq))) 1328 break; 1329 rcu_read_unlock(); 1330 path_put(path); 1331 rcu_read_lock(); 1332 } 1333 } 1334 rcu_read_unlock(); 1335 return found; 1336 } 1337 1338 /* 1339 * Perform an automount 1340 * - return -EISDIR to tell follow_managed() to stop and return the path we 1341 * were called with. 1342 */ 1343 static int follow_automount(struct path *path, int *count, unsigned lookup_flags) 1344 { 1345 struct dentry *dentry = path->dentry; 1346 1347 /* We don't want to mount if someone's just doing a stat - 1348 * unless they're stat'ing a directory and appended a '/' to 1349 * the name. 1350 * 1351 * We do, however, want to mount if someone wants to open or 1352 * create a file of any type under the mountpoint, wants to 1353 * traverse through the mountpoint or wants to open the 1354 * mounted directory. Also, autofs may mark negative dentries 1355 * as being automount points. These will need the attentions 1356 * of the daemon to instantiate them before they can be used. 1357 */ 1358 if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY | 1359 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) && 1360 dentry->d_inode) 1361 return -EISDIR; 1362 1363 if (count && (*count)++ >= MAXSYMLINKS) 1364 return -ELOOP; 1365 1366 return finish_automount(dentry->d_op->d_automount(path), path); 1367 } 1368 1369 /* 1370 * mount traversal - out-of-line part. One note on ->d_flags accesses - 1371 * dentries are pinned but not locked here, so negative dentry can go 1372 * positive right under us. Use of smp_load_acquire() provides a barrier 1373 * sufficient for ->d_inode and ->d_flags consistency. 1374 */ 1375 static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped, 1376 int *count, unsigned lookup_flags) 1377 { 1378 struct vfsmount *mnt = path->mnt; 1379 bool need_mntput = false; 1380 int ret = 0; 1381 1382 while (flags & DCACHE_MANAGED_DENTRY) { 1383 /* Allow the filesystem to manage the transit without i_mutex 1384 * being held. */ 1385 if (flags & DCACHE_MANAGE_TRANSIT) { 1386 ret = path->dentry->d_op->d_manage(path, false); 1387 flags = smp_load_acquire(&path->dentry->d_flags); 1388 if (ret < 0) 1389 break; 1390 } 1391 1392 if (flags & DCACHE_MOUNTED) { // something's mounted on it.. 1393 struct vfsmount *mounted = lookup_mnt(path); 1394 if (mounted) { // ... in our namespace 1395 dput(path->dentry); 1396 if (need_mntput) 1397 mntput(path->mnt); 1398 path->mnt = mounted; 1399 path->dentry = dget(mounted->mnt_root); 1400 // here we know it's positive 1401 flags = path->dentry->d_flags; 1402 need_mntput = true; 1403 continue; 1404 } 1405 } 1406 1407 if (!(flags & DCACHE_NEED_AUTOMOUNT)) 1408 break; 1409 1410 // uncovered automount point 1411 ret = follow_automount(path, count, lookup_flags); 1412 flags = smp_load_acquire(&path->dentry->d_flags); 1413 if (ret < 0) 1414 break; 1415 } 1416 1417 if (ret == -EISDIR) 1418 ret = 0; 1419 // possible if you race with several mount --move 1420 if (need_mntput && path->mnt == mnt) 1421 mntput(path->mnt); 1422 if (!ret && unlikely(d_flags_negative(flags))) 1423 ret = -ENOENT; 1424 *jumped = need_mntput; 1425 return ret; 1426 } 1427 1428 static inline int traverse_mounts(struct path *path, bool *jumped, 1429 int *count, unsigned lookup_flags) 1430 { 1431 unsigned flags = smp_load_acquire(&path->dentry->d_flags); 1432 1433 /* fastpath */ 1434 if (likely(!(flags & DCACHE_MANAGED_DENTRY))) { 1435 *jumped = false; 1436 if (unlikely(d_flags_negative(flags))) 1437 return -ENOENT; 1438 return 0; 1439 } 1440 return __traverse_mounts(path, flags, jumped, count, lookup_flags); 1441 } 1442 1443 int follow_down_one(struct path *path) 1444 { 1445 struct vfsmount *mounted; 1446 1447 mounted = lookup_mnt(path); 1448 if (mounted) { 1449 dput(path->dentry); 1450 mntput(path->mnt); 1451 path->mnt = mounted; 1452 path->dentry = dget(mounted->mnt_root); 1453 return 1; 1454 } 1455 return 0; 1456 } 1457 EXPORT_SYMBOL(follow_down_one); 1458 1459 /* 1460 * Follow down to the covering mount currently visible to userspace. At each 1461 * point, the filesystem owning that dentry may be queried as to whether the 1462 * caller is permitted to proceed or not. 1463 */ 1464 int follow_down(struct path *path, unsigned int flags) 1465 { 1466 struct vfsmount *mnt = path->mnt; 1467 bool jumped; 1468 int ret = traverse_mounts(path, &jumped, NULL, flags); 1469 1470 if (path->mnt != mnt) 1471 mntput(mnt); 1472 return ret; 1473 } 1474 EXPORT_SYMBOL(follow_down); 1475 1476 /* 1477 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if 1478 * we meet a managed dentry that would need blocking. 1479 */ 1480 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path) 1481 { 1482 struct dentry *dentry = path->dentry; 1483 unsigned int flags = dentry->d_flags; 1484 1485 if (likely(!(flags & DCACHE_MANAGED_DENTRY))) 1486 return true; 1487 1488 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1489 return false; 1490 1491 for (;;) { 1492 /* 1493 * Don't forget we might have a non-mountpoint managed dentry 1494 * that wants to block transit. 1495 */ 1496 if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) { 1497 int res = dentry->d_op->d_manage(path, true); 1498 if (res) 1499 return res == -EISDIR; 1500 flags = dentry->d_flags; 1501 } 1502 1503 if (flags & DCACHE_MOUNTED) { 1504 struct mount *mounted = __lookup_mnt(path->mnt, dentry); 1505 if (mounted) { 1506 path->mnt = &mounted->mnt; 1507 dentry = path->dentry = mounted->mnt.mnt_root; 1508 nd->state |= ND_JUMPED; 1509 nd->next_seq = read_seqcount_begin(&dentry->d_seq); 1510 flags = dentry->d_flags; 1511 // makes sure that non-RCU pathwalk could reach 1512 // this state. 1513 if (read_seqretry(&mount_lock, nd->m_seq)) 1514 return false; 1515 continue; 1516 } 1517 if (read_seqretry(&mount_lock, nd->m_seq)) 1518 return false; 1519 } 1520 return !(flags & DCACHE_NEED_AUTOMOUNT); 1521 } 1522 } 1523 1524 static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry, 1525 struct path *path) 1526 { 1527 bool jumped; 1528 int ret; 1529 1530 path->mnt = nd->path.mnt; 1531 path->dentry = dentry; 1532 if (nd->flags & LOOKUP_RCU) { 1533 unsigned int seq = nd->next_seq; 1534 if (likely(__follow_mount_rcu(nd, path))) 1535 return 0; 1536 // *path and nd->next_seq might've been clobbered 1537 path->mnt = nd->path.mnt; 1538 path->dentry = dentry; 1539 nd->next_seq = seq; 1540 if (!try_to_unlazy_next(nd, dentry)) 1541 return -ECHILD; 1542 } 1543 ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags); 1544 if (jumped) { 1545 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1546 ret = -EXDEV; 1547 else 1548 nd->state |= ND_JUMPED; 1549 } 1550 if (unlikely(ret)) { 1551 dput(path->dentry); 1552 if (path->mnt != nd->path.mnt) 1553 mntput(path->mnt); 1554 } 1555 return ret; 1556 } 1557 1558 /* 1559 * This looks up the name in dcache and possibly revalidates the found dentry. 1560 * NULL is returned if the dentry does not exist in the cache. 1561 */ 1562 static struct dentry *lookup_dcache(const struct qstr *name, 1563 struct dentry *dir, 1564 unsigned int flags) 1565 { 1566 struct dentry *dentry = d_lookup(dir, name); 1567 if (dentry) { 1568 int error = d_revalidate(dentry, flags); 1569 if (unlikely(error <= 0)) { 1570 if (!error) 1571 d_invalidate(dentry); 1572 dput(dentry); 1573 return ERR_PTR(error); 1574 } 1575 } 1576 return dentry; 1577 } 1578 1579 /* 1580 * Parent directory has inode locked exclusive. This is one 1581 * and only case when ->lookup() gets called on non in-lookup 1582 * dentries - as the matter of fact, this only gets called 1583 * when directory is guaranteed to have no in-lookup children 1584 * at all. 1585 */ 1586 struct dentry *lookup_one_qstr_excl(const struct qstr *name, 1587 struct dentry *base, 1588 unsigned int flags) 1589 { 1590 struct dentry *dentry = lookup_dcache(name, base, flags); 1591 struct dentry *old; 1592 struct inode *dir = base->d_inode; 1593 1594 if (dentry) 1595 return dentry; 1596 1597 /* Don't create child dentry for a dead directory. */ 1598 if (unlikely(IS_DEADDIR(dir))) 1599 return ERR_PTR(-ENOENT); 1600 1601 dentry = d_alloc(base, name); 1602 if (unlikely(!dentry)) 1603 return ERR_PTR(-ENOMEM); 1604 1605 old = dir->i_op->lookup(dir, dentry, flags); 1606 if (unlikely(old)) { 1607 dput(dentry); 1608 dentry = old; 1609 } 1610 return dentry; 1611 } 1612 EXPORT_SYMBOL(lookup_one_qstr_excl); 1613 1614 static struct dentry *lookup_fast(struct nameidata *nd) 1615 { 1616 struct dentry *dentry, *parent = nd->path.dentry; 1617 int status = 1; 1618 1619 /* 1620 * Rename seqlock is not required here because in the off chance 1621 * of a false negative due to a concurrent rename, the caller is 1622 * going to fall back to non-racy lookup. 1623 */ 1624 if (nd->flags & LOOKUP_RCU) { 1625 dentry = __d_lookup_rcu(parent, &nd->last, &nd->next_seq); 1626 if (unlikely(!dentry)) { 1627 if (!try_to_unlazy(nd)) 1628 return ERR_PTR(-ECHILD); 1629 return NULL; 1630 } 1631 1632 /* 1633 * This sequence count validates that the parent had no 1634 * changes while we did the lookup of the dentry above. 1635 */ 1636 if (read_seqcount_retry(&parent->d_seq, nd->seq)) 1637 return ERR_PTR(-ECHILD); 1638 1639 status = d_revalidate(dentry, nd->flags); 1640 if (likely(status > 0)) 1641 return dentry; 1642 if (!try_to_unlazy_next(nd, dentry)) 1643 return ERR_PTR(-ECHILD); 1644 if (status == -ECHILD) 1645 /* we'd been told to redo it in non-rcu mode */ 1646 status = d_revalidate(dentry, nd->flags); 1647 } else { 1648 dentry = __d_lookup(parent, &nd->last); 1649 if (unlikely(!dentry)) 1650 return NULL; 1651 status = d_revalidate(dentry, nd->flags); 1652 } 1653 if (unlikely(status <= 0)) { 1654 if (!status) 1655 d_invalidate(dentry); 1656 dput(dentry); 1657 return ERR_PTR(status); 1658 } 1659 return dentry; 1660 } 1661 1662 /* Fast lookup failed, do it the slow way */ 1663 static struct dentry *__lookup_slow(const struct qstr *name, 1664 struct dentry *dir, 1665 unsigned int flags) 1666 { 1667 struct dentry *dentry, *old; 1668 struct inode *inode = dir->d_inode; 1669 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 1670 1671 /* Don't go there if it's already dead */ 1672 if (unlikely(IS_DEADDIR(inode))) 1673 return ERR_PTR(-ENOENT); 1674 again: 1675 dentry = d_alloc_parallel(dir, name, &wq); 1676 if (IS_ERR(dentry)) 1677 return dentry; 1678 if (unlikely(!d_in_lookup(dentry))) { 1679 int error = d_revalidate(dentry, flags); 1680 if (unlikely(error <= 0)) { 1681 if (!error) { 1682 d_invalidate(dentry); 1683 dput(dentry); 1684 goto again; 1685 } 1686 dput(dentry); 1687 dentry = ERR_PTR(error); 1688 } 1689 } else { 1690 old = inode->i_op->lookup(inode, dentry, flags); 1691 d_lookup_done(dentry); 1692 if (unlikely(old)) { 1693 dput(dentry); 1694 dentry = old; 1695 } 1696 } 1697 return dentry; 1698 } 1699 1700 static struct dentry *lookup_slow(const struct qstr *name, 1701 struct dentry *dir, 1702 unsigned int flags) 1703 { 1704 struct inode *inode = dir->d_inode; 1705 struct dentry *res; 1706 inode_lock_shared(inode); 1707 res = __lookup_slow(name, dir, flags); 1708 inode_unlock_shared(inode); 1709 return res; 1710 } 1711 1712 static inline int may_lookup(struct mnt_idmap *idmap, 1713 struct nameidata *nd) 1714 { 1715 if (nd->flags & LOOKUP_RCU) { 1716 int err = inode_permission(idmap, nd->inode, MAY_EXEC|MAY_NOT_BLOCK); 1717 if (err != -ECHILD || !try_to_unlazy(nd)) 1718 return err; 1719 } 1720 return inode_permission(idmap, nd->inode, MAY_EXEC); 1721 } 1722 1723 static int reserve_stack(struct nameidata *nd, struct path *link) 1724 { 1725 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) 1726 return -ELOOP; 1727 1728 if (likely(nd->depth != EMBEDDED_LEVELS)) 1729 return 0; 1730 if (likely(nd->stack != nd->internal)) 1731 return 0; 1732 if (likely(nd_alloc_stack(nd))) 1733 return 0; 1734 1735 if (nd->flags & LOOKUP_RCU) { 1736 // we need to grab link before we do unlazy. And we can't skip 1737 // unlazy even if we fail to grab the link - cleanup needs it 1738 bool grabbed_link = legitimize_path(nd, link, nd->next_seq); 1739 1740 if (!try_to_unlazy(nd) || !grabbed_link) 1741 return -ECHILD; 1742 1743 if (nd_alloc_stack(nd)) 1744 return 0; 1745 } 1746 return -ENOMEM; 1747 } 1748 1749 enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4}; 1750 1751 static const char *pick_link(struct nameidata *nd, struct path *link, 1752 struct inode *inode, int flags) 1753 { 1754 struct saved *last; 1755 const char *res; 1756 int error = reserve_stack(nd, link); 1757 1758 if (unlikely(error)) { 1759 if (!(nd->flags & LOOKUP_RCU)) 1760 path_put(link); 1761 return ERR_PTR(error); 1762 } 1763 last = nd->stack + nd->depth++; 1764 last->link = *link; 1765 clear_delayed_call(&last->done); 1766 last->seq = nd->next_seq; 1767 1768 if (flags & WALK_TRAILING) { 1769 error = may_follow_link(nd, inode); 1770 if (unlikely(error)) 1771 return ERR_PTR(error); 1772 } 1773 1774 if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) || 1775 unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW)) 1776 return ERR_PTR(-ELOOP); 1777 1778 if (!(nd->flags & LOOKUP_RCU)) { 1779 touch_atime(&last->link); 1780 cond_resched(); 1781 } else if (atime_needs_update(&last->link, inode)) { 1782 if (!try_to_unlazy(nd)) 1783 return ERR_PTR(-ECHILD); 1784 touch_atime(&last->link); 1785 } 1786 1787 error = security_inode_follow_link(link->dentry, inode, 1788 nd->flags & LOOKUP_RCU); 1789 if (unlikely(error)) 1790 return ERR_PTR(error); 1791 1792 res = READ_ONCE(inode->i_link); 1793 if (!res) { 1794 const char * (*get)(struct dentry *, struct inode *, 1795 struct delayed_call *); 1796 get = inode->i_op->get_link; 1797 if (nd->flags & LOOKUP_RCU) { 1798 res = get(NULL, inode, &last->done); 1799 if (res == ERR_PTR(-ECHILD) && try_to_unlazy(nd)) 1800 res = get(link->dentry, inode, &last->done); 1801 } else { 1802 res = get(link->dentry, inode, &last->done); 1803 } 1804 if (!res) 1805 goto all_done; 1806 if (IS_ERR(res)) 1807 return res; 1808 } 1809 if (*res == '/') { 1810 error = nd_jump_root(nd); 1811 if (unlikely(error)) 1812 return ERR_PTR(error); 1813 while (unlikely(*++res == '/')) 1814 ; 1815 } 1816 if (*res) 1817 return res; 1818 all_done: // pure jump 1819 put_link(nd); 1820 return NULL; 1821 } 1822 1823 /* 1824 * Do we need to follow links? We _really_ want to be able 1825 * to do this check without having to look at inode->i_op, 1826 * so we keep a cache of "no, this doesn't need follow_link" 1827 * for the common case. 1828 * 1829 * NOTE: dentry must be what nd->next_seq had been sampled from. 1830 */ 1831 static const char *step_into(struct nameidata *nd, int flags, 1832 struct dentry *dentry) 1833 { 1834 struct path path; 1835 struct inode *inode; 1836 int err = handle_mounts(nd, dentry, &path); 1837 1838 if (err < 0) 1839 return ERR_PTR(err); 1840 inode = path.dentry->d_inode; 1841 if (likely(!d_is_symlink(path.dentry)) || 1842 ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) || 1843 (flags & WALK_NOFOLLOW)) { 1844 /* not a symlink or should not follow */ 1845 if (nd->flags & LOOKUP_RCU) { 1846 if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq)) 1847 return ERR_PTR(-ECHILD); 1848 if (unlikely(!inode)) 1849 return ERR_PTR(-ENOENT); 1850 } else { 1851 dput(nd->path.dentry); 1852 if (nd->path.mnt != path.mnt) 1853 mntput(nd->path.mnt); 1854 } 1855 nd->path = path; 1856 nd->inode = inode; 1857 nd->seq = nd->next_seq; 1858 return NULL; 1859 } 1860 if (nd->flags & LOOKUP_RCU) { 1861 /* make sure that d_is_symlink above matches inode */ 1862 if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq)) 1863 return ERR_PTR(-ECHILD); 1864 } else { 1865 if (path.mnt == nd->path.mnt) 1866 mntget(path.mnt); 1867 } 1868 return pick_link(nd, &path, inode, flags); 1869 } 1870 1871 static struct dentry *follow_dotdot_rcu(struct nameidata *nd) 1872 { 1873 struct dentry *parent, *old; 1874 1875 if (path_equal(&nd->path, &nd->root)) 1876 goto in_root; 1877 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) { 1878 struct path path; 1879 unsigned seq; 1880 if (!choose_mountpoint_rcu(real_mount(nd->path.mnt), 1881 &nd->root, &path, &seq)) 1882 goto in_root; 1883 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1884 return ERR_PTR(-ECHILD); 1885 nd->path = path; 1886 nd->inode = path.dentry->d_inode; 1887 nd->seq = seq; 1888 // makes sure that non-RCU pathwalk could reach this state 1889 if (read_seqretry(&mount_lock, nd->m_seq)) 1890 return ERR_PTR(-ECHILD); 1891 /* we know that mountpoint was pinned */ 1892 } 1893 old = nd->path.dentry; 1894 parent = old->d_parent; 1895 nd->next_seq = read_seqcount_begin(&parent->d_seq); 1896 // makes sure that non-RCU pathwalk could reach this state 1897 if (read_seqcount_retry(&old->d_seq, nd->seq)) 1898 return ERR_PTR(-ECHILD); 1899 if (unlikely(!path_connected(nd->path.mnt, parent))) 1900 return ERR_PTR(-ECHILD); 1901 return parent; 1902 in_root: 1903 if (read_seqretry(&mount_lock, nd->m_seq)) 1904 return ERR_PTR(-ECHILD); 1905 if (unlikely(nd->flags & LOOKUP_BENEATH)) 1906 return ERR_PTR(-ECHILD); 1907 nd->next_seq = nd->seq; 1908 return nd->path.dentry; 1909 } 1910 1911 static struct dentry *follow_dotdot(struct nameidata *nd) 1912 { 1913 struct dentry *parent; 1914 1915 if (path_equal(&nd->path, &nd->root)) 1916 goto in_root; 1917 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) { 1918 struct path path; 1919 1920 if (!choose_mountpoint(real_mount(nd->path.mnt), 1921 &nd->root, &path)) 1922 goto in_root; 1923 path_put(&nd->path); 1924 nd->path = path; 1925 nd->inode = path.dentry->d_inode; 1926 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1927 return ERR_PTR(-EXDEV); 1928 } 1929 /* rare case of legitimate dget_parent()... */ 1930 parent = dget_parent(nd->path.dentry); 1931 if (unlikely(!path_connected(nd->path.mnt, parent))) { 1932 dput(parent); 1933 return ERR_PTR(-ENOENT); 1934 } 1935 return parent; 1936 1937 in_root: 1938 if (unlikely(nd->flags & LOOKUP_BENEATH)) 1939 return ERR_PTR(-EXDEV); 1940 return dget(nd->path.dentry); 1941 } 1942 1943 static const char *handle_dots(struct nameidata *nd, int type) 1944 { 1945 if (type == LAST_DOTDOT) { 1946 const char *error = NULL; 1947 struct dentry *parent; 1948 1949 if (!nd->root.mnt) { 1950 error = ERR_PTR(set_root(nd)); 1951 if (error) 1952 return error; 1953 } 1954 if (nd->flags & LOOKUP_RCU) 1955 parent = follow_dotdot_rcu(nd); 1956 else 1957 parent = follow_dotdot(nd); 1958 if (IS_ERR(parent)) 1959 return ERR_CAST(parent); 1960 error = step_into(nd, WALK_NOFOLLOW, parent); 1961 if (unlikely(error)) 1962 return error; 1963 1964 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) { 1965 /* 1966 * If there was a racing rename or mount along our 1967 * path, then we can't be sure that ".." hasn't jumped 1968 * above nd->root (and so userspace should retry or use 1969 * some fallback). 1970 */ 1971 smp_rmb(); 1972 if (__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq)) 1973 return ERR_PTR(-EAGAIN); 1974 if (__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq)) 1975 return ERR_PTR(-EAGAIN); 1976 } 1977 } 1978 return NULL; 1979 } 1980 1981 static const char *walk_component(struct nameidata *nd, int flags) 1982 { 1983 struct dentry *dentry; 1984 /* 1985 * "." and ".." are special - ".." especially so because it has 1986 * to be able to know about the current root directory and 1987 * parent relationships. 1988 */ 1989 if (unlikely(nd->last_type != LAST_NORM)) { 1990 if (!(flags & WALK_MORE) && nd->depth) 1991 put_link(nd); 1992 return handle_dots(nd, nd->last_type); 1993 } 1994 dentry = lookup_fast(nd); 1995 if (IS_ERR(dentry)) 1996 return ERR_CAST(dentry); 1997 if (unlikely(!dentry)) { 1998 dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags); 1999 if (IS_ERR(dentry)) 2000 return ERR_CAST(dentry); 2001 } 2002 if (!(flags & WALK_MORE) && nd->depth) 2003 put_link(nd); 2004 return step_into(nd, flags, dentry); 2005 } 2006 2007 /* 2008 * We can do the critical dentry name comparison and hashing 2009 * operations one word at a time, but we are limited to: 2010 * 2011 * - Architectures with fast unaligned word accesses. We could 2012 * do a "get_unaligned()" if this helps and is sufficiently 2013 * fast. 2014 * 2015 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we 2016 * do not trap on the (extremely unlikely) case of a page 2017 * crossing operation. 2018 * 2019 * - Furthermore, we need an efficient 64-bit compile for the 2020 * 64-bit case in order to generate the "number of bytes in 2021 * the final mask". Again, that could be replaced with a 2022 * efficient population count instruction or similar. 2023 */ 2024 #ifdef CONFIG_DCACHE_WORD_ACCESS 2025 2026 #include <asm/word-at-a-time.h> 2027 2028 #ifdef HASH_MIX 2029 2030 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */ 2031 2032 #elif defined(CONFIG_64BIT) 2033 /* 2034 * Register pressure in the mixing function is an issue, particularly 2035 * on 32-bit x86, but almost any function requires one state value and 2036 * one temporary. Instead, use a function designed for two state values 2037 * and no temporaries. 2038 * 2039 * This function cannot create a collision in only two iterations, so 2040 * we have two iterations to achieve avalanche. In those two iterations, 2041 * we have six layers of mixing, which is enough to spread one bit's 2042 * influence out to 2^6 = 64 state bits. 2043 * 2044 * Rotate constants are scored by considering either 64 one-bit input 2045 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the 2046 * probability of that delta causing a change to each of the 128 output 2047 * bits, using a sample of random initial states. 2048 * 2049 * The Shannon entropy of the computed probabilities is then summed 2050 * to produce a score. Ideally, any input change has a 50% chance of 2051 * toggling any given output bit. 2052 * 2053 * Mixing scores (in bits) for (12,45): 2054 * Input delta: 1-bit 2-bit 2055 * 1 round: 713.3 42542.6 2056 * 2 rounds: 2753.7 140389.8 2057 * 3 rounds: 5954.1 233458.2 2058 * 4 rounds: 7862.6 256672.2 2059 * Perfect: 8192 258048 2060 * (64*128) (64*63/2 * 128) 2061 */ 2062 #define HASH_MIX(x, y, a) \ 2063 ( x ^= (a), \ 2064 y ^= x, x = rol64(x,12),\ 2065 x += y, y = rol64(y,45),\ 2066 y *= 9 ) 2067 2068 /* 2069 * Fold two longs into one 32-bit hash value. This must be fast, but 2070 * latency isn't quite as critical, as there is a fair bit of additional 2071 * work done before the hash value is used. 2072 */ 2073 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 2074 { 2075 y ^= x * GOLDEN_RATIO_64; 2076 y *= GOLDEN_RATIO_64; 2077 return y >> 32; 2078 } 2079 2080 #else /* 32-bit case */ 2081 2082 /* 2083 * Mixing scores (in bits) for (7,20): 2084 * Input delta: 1-bit 2-bit 2085 * 1 round: 330.3 9201.6 2086 * 2 rounds: 1246.4 25475.4 2087 * 3 rounds: 1907.1 31295.1 2088 * 4 rounds: 2042.3 31718.6 2089 * Perfect: 2048 31744 2090 * (32*64) (32*31/2 * 64) 2091 */ 2092 #define HASH_MIX(x, y, a) \ 2093 ( x ^= (a), \ 2094 y ^= x, x = rol32(x, 7),\ 2095 x += y, y = rol32(y,20),\ 2096 y *= 9 ) 2097 2098 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 2099 { 2100 /* Use arch-optimized multiply if one exists */ 2101 return __hash_32(y ^ __hash_32(x)); 2102 } 2103 2104 #endif 2105 2106 /* 2107 * Return the hash of a string of known length. This is carfully 2108 * designed to match hash_name(), which is the more critical function. 2109 * In particular, we must end by hashing a final word containing 0..7 2110 * payload bytes, to match the way that hash_name() iterates until it 2111 * finds the delimiter after the name. 2112 */ 2113 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 2114 { 2115 unsigned long a, x = 0, y = (unsigned long)salt; 2116 2117 for (;;) { 2118 if (!len) 2119 goto done; 2120 a = load_unaligned_zeropad(name); 2121 if (len < sizeof(unsigned long)) 2122 break; 2123 HASH_MIX(x, y, a); 2124 name += sizeof(unsigned long); 2125 len -= sizeof(unsigned long); 2126 } 2127 x ^= a & bytemask_from_count(len); 2128 done: 2129 return fold_hash(x, y); 2130 } 2131 EXPORT_SYMBOL(full_name_hash); 2132 2133 /* Return the "hash_len" (hash and length) of a null-terminated string */ 2134 u64 hashlen_string(const void *salt, const char *name) 2135 { 2136 unsigned long a = 0, x = 0, y = (unsigned long)salt; 2137 unsigned long adata, mask, len; 2138 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 2139 2140 len = 0; 2141 goto inside; 2142 2143 do { 2144 HASH_MIX(x, y, a); 2145 len += sizeof(unsigned long); 2146 inside: 2147 a = load_unaligned_zeropad(name+len); 2148 } while (!has_zero(a, &adata, &constants)); 2149 2150 adata = prep_zero_mask(a, adata, &constants); 2151 mask = create_zero_mask(adata); 2152 x ^= a & zero_bytemask(mask); 2153 2154 return hashlen_create(fold_hash(x, y), len + find_zero(mask)); 2155 } 2156 EXPORT_SYMBOL(hashlen_string); 2157 2158 /* 2159 * Calculate the length and hash of the path component, and 2160 * return the "hash_len" as the result. 2161 */ 2162 static inline u64 hash_name(const void *salt, const char *name) 2163 { 2164 unsigned long a = 0, b, x = 0, y = (unsigned long)salt; 2165 unsigned long adata, bdata, mask, len; 2166 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 2167 2168 len = 0; 2169 goto inside; 2170 2171 do { 2172 HASH_MIX(x, y, a); 2173 len += sizeof(unsigned long); 2174 inside: 2175 a = load_unaligned_zeropad(name+len); 2176 b = a ^ REPEAT_BYTE('/'); 2177 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants))); 2178 2179 adata = prep_zero_mask(a, adata, &constants); 2180 bdata = prep_zero_mask(b, bdata, &constants); 2181 mask = create_zero_mask(adata | bdata); 2182 x ^= a & zero_bytemask(mask); 2183 2184 return hashlen_create(fold_hash(x, y), len + find_zero(mask)); 2185 } 2186 2187 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */ 2188 2189 /* Return the hash of a string of known length */ 2190 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 2191 { 2192 unsigned long hash = init_name_hash(salt); 2193 while (len--) 2194 hash = partial_name_hash((unsigned char)*name++, hash); 2195 return end_name_hash(hash); 2196 } 2197 EXPORT_SYMBOL(full_name_hash); 2198 2199 /* Return the "hash_len" (hash and length) of a null-terminated string */ 2200 u64 hashlen_string(const void *salt, const char *name) 2201 { 2202 unsigned long hash = init_name_hash(salt); 2203 unsigned long len = 0, c; 2204 2205 c = (unsigned char)*name; 2206 while (c) { 2207 len++; 2208 hash = partial_name_hash(c, hash); 2209 c = (unsigned char)name[len]; 2210 } 2211 return hashlen_create(end_name_hash(hash), len); 2212 } 2213 EXPORT_SYMBOL(hashlen_string); 2214 2215 /* 2216 * We know there's a real path component here of at least 2217 * one character. 2218 */ 2219 static inline u64 hash_name(const void *salt, const char *name) 2220 { 2221 unsigned long hash = init_name_hash(salt); 2222 unsigned long len = 0, c; 2223 2224 c = (unsigned char)*name; 2225 do { 2226 len++; 2227 hash = partial_name_hash(c, hash); 2228 c = (unsigned char)name[len]; 2229 } while (c && c != '/'); 2230 return hashlen_create(end_name_hash(hash), len); 2231 } 2232 2233 #endif 2234 2235 /* 2236 * Name resolution. 2237 * This is the basic name resolution function, turning a pathname into 2238 * the final dentry. We expect 'base' to be positive and a directory. 2239 * 2240 * Returns 0 and nd will have valid dentry and mnt on success. 2241 * Returns error and drops reference to input namei data on failure. 2242 */ 2243 static int link_path_walk(const char *name, struct nameidata *nd) 2244 { 2245 int depth = 0; // depth <= nd->depth 2246 int err; 2247 2248 nd->last_type = LAST_ROOT; 2249 nd->flags |= LOOKUP_PARENT; 2250 if (IS_ERR(name)) 2251 return PTR_ERR(name); 2252 while (*name=='/') 2253 name++; 2254 if (!*name) { 2255 nd->dir_mode = 0; // short-circuit the 'hardening' idiocy 2256 return 0; 2257 } 2258 2259 /* At this point we know we have a real path component. */ 2260 for(;;) { 2261 struct mnt_idmap *idmap; 2262 const char *link; 2263 u64 hash_len; 2264 int type; 2265 2266 idmap = mnt_idmap(nd->path.mnt); 2267 err = may_lookup(idmap, nd); 2268 if (err) 2269 return err; 2270 2271 hash_len = hash_name(nd->path.dentry, name); 2272 2273 type = LAST_NORM; 2274 if (name[0] == '.') switch (hashlen_len(hash_len)) { 2275 case 2: 2276 if (name[1] == '.') { 2277 type = LAST_DOTDOT; 2278 nd->state |= ND_JUMPED; 2279 } 2280 break; 2281 case 1: 2282 type = LAST_DOT; 2283 } 2284 if (likely(type == LAST_NORM)) { 2285 struct dentry *parent = nd->path.dentry; 2286 nd->state &= ~ND_JUMPED; 2287 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { 2288 struct qstr this = { { .hash_len = hash_len }, .name = name }; 2289 err = parent->d_op->d_hash(parent, &this); 2290 if (err < 0) 2291 return err; 2292 hash_len = this.hash_len; 2293 name = this.name; 2294 } 2295 } 2296 2297 nd->last.hash_len = hash_len; 2298 nd->last.name = name; 2299 nd->last_type = type; 2300 2301 name += hashlen_len(hash_len); 2302 if (!*name) 2303 goto OK; 2304 /* 2305 * If it wasn't NUL, we know it was '/'. Skip that 2306 * slash, and continue until no more slashes. 2307 */ 2308 do { 2309 name++; 2310 } while (unlikely(*name == '/')); 2311 if (unlikely(!*name)) { 2312 OK: 2313 /* pathname or trailing symlink, done */ 2314 if (!depth) { 2315 nd->dir_vfsuid = i_uid_into_vfsuid(idmap, nd->inode); 2316 nd->dir_mode = nd->inode->i_mode; 2317 nd->flags &= ~LOOKUP_PARENT; 2318 return 0; 2319 } 2320 /* last component of nested symlink */ 2321 name = nd->stack[--depth].name; 2322 link = walk_component(nd, 0); 2323 } else { 2324 /* not the last component */ 2325 link = walk_component(nd, WALK_MORE); 2326 } 2327 if (unlikely(link)) { 2328 if (IS_ERR(link)) 2329 return PTR_ERR(link); 2330 /* a symlink to follow */ 2331 nd->stack[depth++].name = name; 2332 name = link; 2333 continue; 2334 } 2335 if (unlikely(!d_can_lookup(nd->path.dentry))) { 2336 if (nd->flags & LOOKUP_RCU) { 2337 if (!try_to_unlazy(nd)) 2338 return -ECHILD; 2339 } 2340 return -ENOTDIR; 2341 } 2342 } 2343 } 2344 2345 /* must be paired with terminate_walk() */ 2346 static const char *path_init(struct nameidata *nd, unsigned flags) 2347 { 2348 int error; 2349 const char *s = nd->name->name; 2350 2351 /* LOOKUP_CACHED requires RCU, ask caller to retry */ 2352 if ((flags & (LOOKUP_RCU | LOOKUP_CACHED)) == LOOKUP_CACHED) 2353 return ERR_PTR(-EAGAIN); 2354 2355 if (!*s) 2356 flags &= ~LOOKUP_RCU; 2357 if (flags & LOOKUP_RCU) 2358 rcu_read_lock(); 2359 else 2360 nd->seq = nd->next_seq = 0; 2361 2362 nd->flags = flags; 2363 nd->state |= ND_JUMPED; 2364 2365 nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount); 2366 nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount); 2367 smp_rmb(); 2368 2369 if (nd->state & ND_ROOT_PRESET) { 2370 struct dentry *root = nd->root.dentry; 2371 struct inode *inode = root->d_inode; 2372 if (*s && unlikely(!d_can_lookup(root))) 2373 return ERR_PTR(-ENOTDIR); 2374 nd->path = nd->root; 2375 nd->inode = inode; 2376 if (flags & LOOKUP_RCU) { 2377 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 2378 nd->root_seq = nd->seq; 2379 } else { 2380 path_get(&nd->path); 2381 } 2382 return s; 2383 } 2384 2385 nd->root.mnt = NULL; 2386 2387 /* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */ 2388 if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) { 2389 error = nd_jump_root(nd); 2390 if (unlikely(error)) 2391 return ERR_PTR(error); 2392 return s; 2393 } 2394 2395 /* Relative pathname -- get the starting-point it is relative to. */ 2396 if (nd->dfd == AT_FDCWD) { 2397 if (flags & LOOKUP_RCU) { 2398 struct fs_struct *fs = current->fs; 2399 unsigned seq; 2400 2401 do { 2402 seq = read_seqcount_begin(&fs->seq); 2403 nd->path = fs->pwd; 2404 nd->inode = nd->path.dentry->d_inode; 2405 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 2406 } while (read_seqcount_retry(&fs->seq, seq)); 2407 } else { 2408 get_fs_pwd(current->fs, &nd->path); 2409 nd->inode = nd->path.dentry->d_inode; 2410 } 2411 } else { 2412 /* Caller must check execute permissions on the starting path component */ 2413 struct fd f = fdget_raw(nd->dfd); 2414 struct dentry *dentry; 2415 2416 if (!f.file) 2417 return ERR_PTR(-EBADF); 2418 2419 dentry = f.file->f_path.dentry; 2420 2421 if (*s && unlikely(!d_can_lookup(dentry))) { 2422 fdput(f); 2423 return ERR_PTR(-ENOTDIR); 2424 } 2425 2426 nd->path = f.file->f_path; 2427 if (flags & LOOKUP_RCU) { 2428 nd->inode = nd->path.dentry->d_inode; 2429 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 2430 } else { 2431 path_get(&nd->path); 2432 nd->inode = nd->path.dentry->d_inode; 2433 } 2434 fdput(f); 2435 } 2436 2437 /* For scoped-lookups we need to set the root to the dirfd as well. */ 2438 if (flags & LOOKUP_IS_SCOPED) { 2439 nd->root = nd->path; 2440 if (flags & LOOKUP_RCU) { 2441 nd->root_seq = nd->seq; 2442 } else { 2443 path_get(&nd->root); 2444 nd->state |= ND_ROOT_GRABBED; 2445 } 2446 } 2447 return s; 2448 } 2449 2450 static inline const char *lookup_last(struct nameidata *nd) 2451 { 2452 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len]) 2453 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 2454 2455 return walk_component(nd, WALK_TRAILING); 2456 } 2457 2458 static int handle_lookup_down(struct nameidata *nd) 2459 { 2460 if (!(nd->flags & LOOKUP_RCU)) 2461 dget(nd->path.dentry); 2462 nd->next_seq = nd->seq; 2463 return PTR_ERR(step_into(nd, WALK_NOFOLLOW, nd->path.dentry)); 2464 } 2465 2466 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2467 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path) 2468 { 2469 const char *s = path_init(nd, flags); 2470 int err; 2471 2472 if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) { 2473 err = handle_lookup_down(nd); 2474 if (unlikely(err < 0)) 2475 s = ERR_PTR(err); 2476 } 2477 2478 while (!(err = link_path_walk(s, nd)) && 2479 (s = lookup_last(nd)) != NULL) 2480 ; 2481 if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) { 2482 err = handle_lookup_down(nd); 2483 nd->state &= ~ND_JUMPED; // no d_weak_revalidate(), please... 2484 } 2485 if (!err) 2486 err = complete_walk(nd); 2487 2488 if (!err && nd->flags & LOOKUP_DIRECTORY) 2489 if (!d_can_lookup(nd->path.dentry)) 2490 err = -ENOTDIR; 2491 if (!err) { 2492 *path = nd->path; 2493 nd->path.mnt = NULL; 2494 nd->path.dentry = NULL; 2495 } 2496 terminate_walk(nd); 2497 return err; 2498 } 2499 2500 int filename_lookup(int dfd, struct filename *name, unsigned flags, 2501 struct path *path, struct path *root) 2502 { 2503 int retval; 2504 struct nameidata nd; 2505 if (IS_ERR(name)) 2506 return PTR_ERR(name); 2507 set_nameidata(&nd, dfd, name, root); 2508 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path); 2509 if (unlikely(retval == -ECHILD)) 2510 retval = path_lookupat(&nd, flags, path); 2511 if (unlikely(retval == -ESTALE)) 2512 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path); 2513 2514 if (likely(!retval)) 2515 audit_inode(name, path->dentry, 2516 flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0); 2517 restore_nameidata(); 2518 return retval; 2519 } 2520 2521 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2522 static int path_parentat(struct nameidata *nd, unsigned flags, 2523 struct path *parent) 2524 { 2525 const char *s = path_init(nd, flags); 2526 int err = link_path_walk(s, nd); 2527 if (!err) 2528 err = complete_walk(nd); 2529 if (!err) { 2530 *parent = nd->path; 2531 nd->path.mnt = NULL; 2532 nd->path.dentry = NULL; 2533 } 2534 terminate_walk(nd); 2535 return err; 2536 } 2537 2538 /* Note: this does not consume "name" */ 2539 static int __filename_parentat(int dfd, struct filename *name, 2540 unsigned int flags, struct path *parent, 2541 struct qstr *last, int *type, 2542 const struct path *root) 2543 { 2544 int retval; 2545 struct nameidata nd; 2546 2547 if (IS_ERR(name)) 2548 return PTR_ERR(name); 2549 set_nameidata(&nd, dfd, name, root); 2550 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent); 2551 if (unlikely(retval == -ECHILD)) 2552 retval = path_parentat(&nd, flags, parent); 2553 if (unlikely(retval == -ESTALE)) 2554 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent); 2555 if (likely(!retval)) { 2556 *last = nd.last; 2557 *type = nd.last_type; 2558 audit_inode(name, parent->dentry, AUDIT_INODE_PARENT); 2559 } 2560 restore_nameidata(); 2561 return retval; 2562 } 2563 2564 static int filename_parentat(int dfd, struct filename *name, 2565 unsigned int flags, struct path *parent, 2566 struct qstr *last, int *type) 2567 { 2568 return __filename_parentat(dfd, name, flags, parent, last, type, NULL); 2569 } 2570 2571 /* does lookup, returns the object with parent locked */ 2572 static struct dentry *__kern_path_locked(struct filename *name, struct path *path) 2573 { 2574 struct dentry *d; 2575 struct qstr last; 2576 int type, error; 2577 2578 error = filename_parentat(AT_FDCWD, name, 0, path, &last, &type); 2579 if (error) 2580 return ERR_PTR(error); 2581 if (unlikely(type != LAST_NORM)) { 2582 path_put(path); 2583 return ERR_PTR(-EINVAL); 2584 } 2585 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 2586 d = lookup_one_qstr_excl(&last, path->dentry, 0); 2587 if (IS_ERR(d)) { 2588 inode_unlock(path->dentry->d_inode); 2589 path_put(path); 2590 } 2591 return d; 2592 } 2593 2594 struct dentry *kern_path_locked(const char *name, struct path *path) 2595 { 2596 struct filename *filename = getname_kernel(name); 2597 struct dentry *res = __kern_path_locked(filename, path); 2598 2599 putname(filename); 2600 return res; 2601 } 2602 2603 int kern_path(const char *name, unsigned int flags, struct path *path) 2604 { 2605 struct filename *filename = getname_kernel(name); 2606 int ret = filename_lookup(AT_FDCWD, filename, flags, path, NULL); 2607 2608 putname(filename); 2609 return ret; 2610 2611 } 2612 EXPORT_SYMBOL(kern_path); 2613 2614 /** 2615 * vfs_path_parent_lookup - lookup a parent path relative to a dentry-vfsmount pair 2616 * @filename: filename structure 2617 * @flags: lookup flags 2618 * @parent: pointer to struct path to fill 2619 * @last: last component 2620 * @type: type of the last component 2621 * @root: pointer to struct path of the base directory 2622 */ 2623 int vfs_path_parent_lookup(struct filename *filename, unsigned int flags, 2624 struct path *parent, struct qstr *last, int *type, 2625 const struct path *root) 2626 { 2627 return __filename_parentat(AT_FDCWD, filename, flags, parent, last, 2628 type, root); 2629 } 2630 EXPORT_SYMBOL(vfs_path_parent_lookup); 2631 2632 /** 2633 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 2634 * @dentry: pointer to dentry of the base directory 2635 * @mnt: pointer to vfs mount of the base directory 2636 * @name: pointer to file name 2637 * @flags: lookup flags 2638 * @path: pointer to struct path to fill 2639 */ 2640 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 2641 const char *name, unsigned int flags, 2642 struct path *path) 2643 { 2644 struct filename *filename; 2645 struct path root = {.mnt = mnt, .dentry = dentry}; 2646 int ret; 2647 2648 filename = getname_kernel(name); 2649 /* the first argument of filename_lookup() is ignored with root */ 2650 ret = filename_lookup(AT_FDCWD, filename, flags, path, &root); 2651 putname(filename); 2652 return ret; 2653 } 2654 EXPORT_SYMBOL(vfs_path_lookup); 2655 2656 static int lookup_one_common(struct mnt_idmap *idmap, 2657 const char *name, struct dentry *base, int len, 2658 struct qstr *this) 2659 { 2660 this->name = name; 2661 this->len = len; 2662 this->hash = full_name_hash(base, name, len); 2663 if (!len) 2664 return -EACCES; 2665 2666 if (unlikely(name[0] == '.')) { 2667 if (len < 2 || (len == 2 && name[1] == '.')) 2668 return -EACCES; 2669 } 2670 2671 while (len--) { 2672 unsigned int c = *(const unsigned char *)name++; 2673 if (c == '/' || c == '\0') 2674 return -EACCES; 2675 } 2676 /* 2677 * See if the low-level filesystem might want 2678 * to use its own hash.. 2679 */ 2680 if (base->d_flags & DCACHE_OP_HASH) { 2681 int err = base->d_op->d_hash(base, this); 2682 if (err < 0) 2683 return err; 2684 } 2685 2686 return inode_permission(idmap, base->d_inode, MAY_EXEC); 2687 } 2688 2689 /** 2690 * try_lookup_one_len - filesystem helper to lookup single pathname component 2691 * @name: pathname component to lookup 2692 * @base: base directory to lookup from 2693 * @len: maximum length @len should be interpreted to 2694 * 2695 * Look up a dentry by name in the dcache, returning NULL if it does not 2696 * currently exist. The function does not try to create a dentry. 2697 * 2698 * Note that this routine is purely a helper for filesystem usage and should 2699 * not be called by generic code. 2700 * 2701 * The caller must hold base->i_mutex. 2702 */ 2703 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len) 2704 { 2705 struct qstr this; 2706 int err; 2707 2708 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2709 2710 err = lookup_one_common(&nop_mnt_idmap, name, base, len, &this); 2711 if (err) 2712 return ERR_PTR(err); 2713 2714 return lookup_dcache(&this, base, 0); 2715 } 2716 EXPORT_SYMBOL(try_lookup_one_len); 2717 2718 /** 2719 * lookup_one_len - filesystem helper to lookup single pathname component 2720 * @name: pathname component to lookup 2721 * @base: base directory to lookup from 2722 * @len: maximum length @len should be interpreted to 2723 * 2724 * Note that this routine is purely a helper for filesystem usage and should 2725 * not be called by generic code. 2726 * 2727 * The caller must hold base->i_mutex. 2728 */ 2729 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 2730 { 2731 struct dentry *dentry; 2732 struct qstr this; 2733 int err; 2734 2735 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2736 2737 err = lookup_one_common(&nop_mnt_idmap, name, base, len, &this); 2738 if (err) 2739 return ERR_PTR(err); 2740 2741 dentry = lookup_dcache(&this, base, 0); 2742 return dentry ? dentry : __lookup_slow(&this, base, 0); 2743 } 2744 EXPORT_SYMBOL(lookup_one_len); 2745 2746 /** 2747 * lookup_one - filesystem helper to lookup single pathname component 2748 * @idmap: idmap of the mount the lookup is performed from 2749 * @name: pathname component to lookup 2750 * @base: base directory to lookup from 2751 * @len: maximum length @len should be interpreted to 2752 * 2753 * Note that this routine is purely a helper for filesystem usage and should 2754 * not be called by generic code. 2755 * 2756 * The caller must hold base->i_mutex. 2757 */ 2758 struct dentry *lookup_one(struct mnt_idmap *idmap, const char *name, 2759 struct dentry *base, int len) 2760 { 2761 struct dentry *dentry; 2762 struct qstr this; 2763 int err; 2764 2765 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2766 2767 err = lookup_one_common(idmap, name, base, len, &this); 2768 if (err) 2769 return ERR_PTR(err); 2770 2771 dentry = lookup_dcache(&this, base, 0); 2772 return dentry ? dentry : __lookup_slow(&this, base, 0); 2773 } 2774 EXPORT_SYMBOL(lookup_one); 2775 2776 /** 2777 * lookup_one_unlocked - filesystem helper to lookup single pathname component 2778 * @idmap: idmap of the mount the lookup is performed from 2779 * @name: pathname component to lookup 2780 * @base: base directory to lookup from 2781 * @len: maximum length @len should be interpreted to 2782 * 2783 * Note that this routine is purely a helper for filesystem usage and should 2784 * not be called by generic code. 2785 * 2786 * Unlike lookup_one_len, it should be called without the parent 2787 * i_mutex held, and will take the i_mutex itself if necessary. 2788 */ 2789 struct dentry *lookup_one_unlocked(struct mnt_idmap *idmap, 2790 const char *name, struct dentry *base, 2791 int len) 2792 { 2793 struct qstr this; 2794 int err; 2795 struct dentry *ret; 2796 2797 err = lookup_one_common(idmap, name, base, len, &this); 2798 if (err) 2799 return ERR_PTR(err); 2800 2801 ret = lookup_dcache(&this, base, 0); 2802 if (!ret) 2803 ret = lookup_slow(&this, base, 0); 2804 return ret; 2805 } 2806 EXPORT_SYMBOL(lookup_one_unlocked); 2807 2808 /** 2809 * lookup_one_positive_unlocked - filesystem helper to lookup single 2810 * pathname component 2811 * @idmap: idmap of the mount the lookup is performed from 2812 * @name: pathname component to lookup 2813 * @base: base directory to lookup from 2814 * @len: maximum length @len should be interpreted to 2815 * 2816 * This helper will yield ERR_PTR(-ENOENT) on negatives. The helper returns 2817 * known positive or ERR_PTR(). This is what most of the users want. 2818 * 2819 * Note that pinned negative with unlocked parent _can_ become positive at any 2820 * time, so callers of lookup_one_unlocked() need to be very careful; pinned 2821 * positives have >d_inode stable, so this one avoids such problems. 2822 * 2823 * Note that this routine is purely a helper for filesystem usage and should 2824 * not be called by generic code. 2825 * 2826 * The helper should be called without i_mutex held. 2827 */ 2828 struct dentry *lookup_one_positive_unlocked(struct mnt_idmap *idmap, 2829 const char *name, 2830 struct dentry *base, int len) 2831 { 2832 struct dentry *ret = lookup_one_unlocked(idmap, name, base, len); 2833 2834 if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) { 2835 dput(ret); 2836 ret = ERR_PTR(-ENOENT); 2837 } 2838 return ret; 2839 } 2840 EXPORT_SYMBOL(lookup_one_positive_unlocked); 2841 2842 /** 2843 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component 2844 * @name: pathname component to lookup 2845 * @base: base directory to lookup from 2846 * @len: maximum length @len should be interpreted to 2847 * 2848 * Note that this routine is purely a helper for filesystem usage and should 2849 * not be called by generic code. 2850 * 2851 * Unlike lookup_one_len, it should be called without the parent 2852 * i_mutex held, and will take the i_mutex itself if necessary. 2853 */ 2854 struct dentry *lookup_one_len_unlocked(const char *name, 2855 struct dentry *base, int len) 2856 { 2857 return lookup_one_unlocked(&nop_mnt_idmap, name, base, len); 2858 } 2859 EXPORT_SYMBOL(lookup_one_len_unlocked); 2860 2861 /* 2862 * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT) 2863 * on negatives. Returns known positive or ERR_PTR(); that's what 2864 * most of the users want. Note that pinned negative with unlocked parent 2865 * _can_ become positive at any time, so callers of lookup_one_len_unlocked() 2866 * need to be very careful; pinned positives have ->d_inode stable, so 2867 * this one avoids such problems. 2868 */ 2869 struct dentry *lookup_positive_unlocked(const char *name, 2870 struct dentry *base, int len) 2871 { 2872 return lookup_one_positive_unlocked(&nop_mnt_idmap, name, base, len); 2873 } 2874 EXPORT_SYMBOL(lookup_positive_unlocked); 2875 2876 #ifdef CONFIG_UNIX98_PTYS 2877 int path_pts(struct path *path) 2878 { 2879 /* Find something mounted on "pts" in the same directory as 2880 * the input path. 2881 */ 2882 struct dentry *parent = dget_parent(path->dentry); 2883 struct dentry *child; 2884 struct qstr this = QSTR_INIT("pts", 3); 2885 2886 if (unlikely(!path_connected(path->mnt, parent))) { 2887 dput(parent); 2888 return -ENOENT; 2889 } 2890 dput(path->dentry); 2891 path->dentry = parent; 2892 child = d_hash_and_lookup(parent, &this); 2893 if (!child) 2894 return -ENOENT; 2895 2896 path->dentry = child; 2897 dput(parent); 2898 follow_down(path, 0); 2899 return 0; 2900 } 2901 #endif 2902 2903 int user_path_at_empty(int dfd, const char __user *name, unsigned flags, 2904 struct path *path, int *empty) 2905 { 2906 struct filename *filename = getname_flags(name, flags, empty); 2907 int ret = filename_lookup(dfd, filename, flags, path, NULL); 2908 2909 putname(filename); 2910 return ret; 2911 } 2912 EXPORT_SYMBOL(user_path_at_empty); 2913 2914 int __check_sticky(struct mnt_idmap *idmap, struct inode *dir, 2915 struct inode *inode) 2916 { 2917 kuid_t fsuid = current_fsuid(); 2918 2919 if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, inode), fsuid)) 2920 return 0; 2921 if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, dir), fsuid)) 2922 return 0; 2923 return !capable_wrt_inode_uidgid(idmap, inode, CAP_FOWNER); 2924 } 2925 EXPORT_SYMBOL(__check_sticky); 2926 2927 /* 2928 * Check whether we can remove a link victim from directory dir, check 2929 * whether the type of victim is right. 2930 * 1. We can't do it if dir is read-only (done in permission()) 2931 * 2. We should have write and exec permissions on dir 2932 * 3. We can't remove anything from append-only dir 2933 * 4. We can't do anything with immutable dir (done in permission()) 2934 * 5. If the sticky bit on dir is set we should either 2935 * a. be owner of dir, or 2936 * b. be owner of victim, or 2937 * c. have CAP_FOWNER capability 2938 * 6. If the victim is append-only or immutable we can't do antyhing with 2939 * links pointing to it. 2940 * 7. If the victim has an unknown uid or gid we can't change the inode. 2941 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR. 2942 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR. 2943 * 10. We can't remove a root or mountpoint. 2944 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by 2945 * nfs_async_unlink(). 2946 */ 2947 static int may_delete(struct mnt_idmap *idmap, struct inode *dir, 2948 struct dentry *victim, bool isdir) 2949 { 2950 struct inode *inode = d_backing_inode(victim); 2951 int error; 2952 2953 if (d_is_negative(victim)) 2954 return -ENOENT; 2955 BUG_ON(!inode); 2956 2957 BUG_ON(victim->d_parent->d_inode != dir); 2958 2959 /* Inode writeback is not safe when the uid or gid are invalid. */ 2960 if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) || 2961 !vfsgid_valid(i_gid_into_vfsgid(idmap, inode))) 2962 return -EOVERFLOW; 2963 2964 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 2965 2966 error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC); 2967 if (error) 2968 return error; 2969 if (IS_APPEND(dir)) 2970 return -EPERM; 2971 2972 if (check_sticky(idmap, dir, inode) || IS_APPEND(inode) || 2973 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || 2974 HAS_UNMAPPED_ID(idmap, inode)) 2975 return -EPERM; 2976 if (isdir) { 2977 if (!d_is_dir(victim)) 2978 return -ENOTDIR; 2979 if (IS_ROOT(victim)) 2980 return -EBUSY; 2981 } else if (d_is_dir(victim)) 2982 return -EISDIR; 2983 if (IS_DEADDIR(dir)) 2984 return -ENOENT; 2985 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 2986 return -EBUSY; 2987 return 0; 2988 } 2989 2990 /* Check whether we can create an object with dentry child in directory 2991 * dir. 2992 * 1. We can't do it if child already exists (open has special treatment for 2993 * this case, but since we are inlined it's OK) 2994 * 2. We can't do it if dir is read-only (done in permission()) 2995 * 3. We can't do it if the fs can't represent the fsuid or fsgid. 2996 * 4. We should have write and exec permissions on dir 2997 * 5. We can't do it if dir is immutable (done in permission()) 2998 */ 2999 static inline int may_create(struct mnt_idmap *idmap, 3000 struct inode *dir, struct dentry *child) 3001 { 3002 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE); 3003 if (child->d_inode) 3004 return -EEXIST; 3005 if (IS_DEADDIR(dir)) 3006 return -ENOENT; 3007 if (!fsuidgid_has_mapping(dir->i_sb, idmap)) 3008 return -EOVERFLOW; 3009 3010 return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC); 3011 } 3012 3013 static struct dentry *lock_two_directories(struct dentry *p1, struct dentry *p2) 3014 { 3015 struct dentry *p; 3016 3017 p = d_ancestor(p2, p1); 3018 if (p) { 3019 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT); 3020 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD); 3021 return p; 3022 } 3023 3024 p = d_ancestor(p1, p2); 3025 if (p) { 3026 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 3027 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD); 3028 return p; 3029 } 3030 3031 lock_two_inodes(p1->d_inode, p2->d_inode, 3032 I_MUTEX_PARENT, I_MUTEX_PARENT2); 3033 return NULL; 3034 } 3035 3036 /* 3037 * p1 and p2 should be directories on the same fs. 3038 */ 3039 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 3040 { 3041 if (p1 == p2) { 3042 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 3043 return NULL; 3044 } 3045 3046 mutex_lock(&p1->d_sb->s_vfs_rename_mutex); 3047 return lock_two_directories(p1, p2); 3048 } 3049 EXPORT_SYMBOL(lock_rename); 3050 3051 /* 3052 * c1 and p2 should be on the same fs. 3053 */ 3054 struct dentry *lock_rename_child(struct dentry *c1, struct dentry *p2) 3055 { 3056 if (READ_ONCE(c1->d_parent) == p2) { 3057 /* 3058 * hopefully won't need to touch ->s_vfs_rename_mutex at all. 3059 */ 3060 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT); 3061 /* 3062 * now that p2 is locked, nobody can move in or out of it, 3063 * so the test below is safe. 3064 */ 3065 if (likely(c1->d_parent == p2)) 3066 return NULL; 3067 3068 /* 3069 * c1 got moved out of p2 while we'd been taking locks; 3070 * unlock and fall back to slow case. 3071 */ 3072 inode_unlock(p2->d_inode); 3073 } 3074 3075 mutex_lock(&c1->d_sb->s_vfs_rename_mutex); 3076 /* 3077 * nobody can move out of any directories on this fs. 3078 */ 3079 if (likely(c1->d_parent != p2)) 3080 return lock_two_directories(c1->d_parent, p2); 3081 3082 /* 3083 * c1 got moved into p2 while we were taking locks; 3084 * we need p2 locked and ->s_vfs_rename_mutex unlocked, 3085 * for consistency with lock_rename(). 3086 */ 3087 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT); 3088 mutex_unlock(&c1->d_sb->s_vfs_rename_mutex); 3089 return NULL; 3090 } 3091 EXPORT_SYMBOL(lock_rename_child); 3092 3093 void unlock_rename(struct dentry *p1, struct dentry *p2) 3094 { 3095 inode_unlock(p1->d_inode); 3096 if (p1 != p2) { 3097 inode_unlock(p2->d_inode); 3098 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex); 3099 } 3100 } 3101 EXPORT_SYMBOL(unlock_rename); 3102 3103 /** 3104 * mode_strip_umask - handle vfs umask stripping 3105 * @dir: parent directory of the new inode 3106 * @mode: mode of the new inode to be created in @dir 3107 * 3108 * Umask stripping depends on whether or not the filesystem supports POSIX 3109 * ACLs. If the filesystem doesn't support it umask stripping is done directly 3110 * in here. If the filesystem does support POSIX ACLs umask stripping is 3111 * deferred until the filesystem calls posix_acl_create(). 3112 * 3113 * Returns: mode 3114 */ 3115 static inline umode_t mode_strip_umask(const struct inode *dir, umode_t mode) 3116 { 3117 if (!IS_POSIXACL(dir)) 3118 mode &= ~current_umask(); 3119 return mode; 3120 } 3121 3122 /** 3123 * vfs_prepare_mode - prepare the mode to be used for a new inode 3124 * @idmap: idmap of the mount the inode was found from 3125 * @dir: parent directory of the new inode 3126 * @mode: mode of the new inode 3127 * @mask_perms: allowed permission by the vfs 3128 * @type: type of file to be created 3129 * 3130 * This helper consolidates and enforces vfs restrictions on the @mode of a new 3131 * object to be created. 3132 * 3133 * Umask stripping depends on whether the filesystem supports POSIX ACLs (see 3134 * the kernel documentation for mode_strip_umask()). Moving umask stripping 3135 * after setgid stripping allows the same ordering for both non-POSIX ACL and 3136 * POSIX ACL supporting filesystems. 3137 * 3138 * Note that it's currently valid for @type to be 0 if a directory is created. 3139 * Filesystems raise that flag individually and we need to check whether each 3140 * filesystem can deal with receiving S_IFDIR from the vfs before we enforce a 3141 * non-zero type. 3142 * 3143 * Returns: mode to be passed to the filesystem 3144 */ 3145 static inline umode_t vfs_prepare_mode(struct mnt_idmap *idmap, 3146 const struct inode *dir, umode_t mode, 3147 umode_t mask_perms, umode_t type) 3148 { 3149 mode = mode_strip_sgid(idmap, dir, mode); 3150 mode = mode_strip_umask(dir, mode); 3151 3152 /* 3153 * Apply the vfs mandated allowed permission mask and set the type of 3154 * file to be created before we call into the filesystem. 3155 */ 3156 mode &= (mask_perms & ~S_IFMT); 3157 mode |= (type & S_IFMT); 3158 3159 return mode; 3160 } 3161 3162 /** 3163 * vfs_create - create new file 3164 * @idmap: idmap of the mount the inode was found from 3165 * @dir: inode of @dentry 3166 * @dentry: pointer to dentry of the base directory 3167 * @mode: mode of the new file 3168 * @want_excl: whether the file must not yet exist 3169 * 3170 * Create a new file. 3171 * 3172 * If the inode has been found through an idmapped mount the idmap of 3173 * the vfsmount must be passed through @idmap. This function will then take 3174 * care to map the inode according to @idmap before checking permissions. 3175 * On non-idmapped mounts or if permission checking is to be performed on the 3176 * raw inode simply passs @nop_mnt_idmap. 3177 */ 3178 int vfs_create(struct mnt_idmap *idmap, struct inode *dir, 3179 struct dentry *dentry, umode_t mode, bool want_excl) 3180 { 3181 int error; 3182 3183 error = may_create(idmap, dir, dentry); 3184 if (error) 3185 return error; 3186 3187 if (!dir->i_op->create) 3188 return -EACCES; /* shouldn't it be ENOSYS? */ 3189 3190 mode = vfs_prepare_mode(idmap, dir, mode, S_IALLUGO, S_IFREG); 3191 error = security_inode_create(dir, dentry, mode); 3192 if (error) 3193 return error; 3194 error = dir->i_op->create(idmap, dir, dentry, mode, want_excl); 3195 if (!error) 3196 fsnotify_create(dir, dentry); 3197 return error; 3198 } 3199 EXPORT_SYMBOL(vfs_create); 3200 3201 int vfs_mkobj(struct dentry *dentry, umode_t mode, 3202 int (*f)(struct dentry *, umode_t, void *), 3203 void *arg) 3204 { 3205 struct inode *dir = dentry->d_parent->d_inode; 3206 int error = may_create(&nop_mnt_idmap, dir, dentry); 3207 if (error) 3208 return error; 3209 3210 mode &= S_IALLUGO; 3211 mode |= S_IFREG; 3212 error = security_inode_create(dir, dentry, mode); 3213 if (error) 3214 return error; 3215 error = f(dentry, mode, arg); 3216 if (!error) 3217 fsnotify_create(dir, dentry); 3218 return error; 3219 } 3220 EXPORT_SYMBOL(vfs_mkobj); 3221 3222 bool may_open_dev(const struct path *path) 3223 { 3224 return !(path->mnt->mnt_flags & MNT_NODEV) && 3225 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV); 3226 } 3227 3228 static int may_open(struct mnt_idmap *idmap, const struct path *path, 3229 int acc_mode, int flag) 3230 { 3231 struct dentry *dentry = path->dentry; 3232 struct inode *inode = dentry->d_inode; 3233 int error; 3234 3235 if (!inode) 3236 return -ENOENT; 3237 3238 switch (inode->i_mode & S_IFMT) { 3239 case S_IFLNK: 3240 return -ELOOP; 3241 case S_IFDIR: 3242 if (acc_mode & MAY_WRITE) 3243 return -EISDIR; 3244 if (acc_mode & MAY_EXEC) 3245 return -EACCES; 3246 break; 3247 case S_IFBLK: 3248 case S_IFCHR: 3249 if (!may_open_dev(path)) 3250 return -EACCES; 3251 fallthrough; 3252 case S_IFIFO: 3253 case S_IFSOCK: 3254 if (acc_mode & MAY_EXEC) 3255 return -EACCES; 3256 flag &= ~O_TRUNC; 3257 break; 3258 case S_IFREG: 3259 if ((acc_mode & MAY_EXEC) && path_noexec(path)) 3260 return -EACCES; 3261 break; 3262 } 3263 3264 error = inode_permission(idmap, inode, MAY_OPEN | acc_mode); 3265 if (error) 3266 return error; 3267 3268 /* 3269 * An append-only file must be opened in append mode for writing. 3270 */ 3271 if (IS_APPEND(inode)) { 3272 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 3273 return -EPERM; 3274 if (flag & O_TRUNC) 3275 return -EPERM; 3276 } 3277 3278 /* O_NOATIME can only be set by the owner or superuser */ 3279 if (flag & O_NOATIME && !inode_owner_or_capable(idmap, inode)) 3280 return -EPERM; 3281 3282 return 0; 3283 } 3284 3285 static int handle_truncate(struct mnt_idmap *idmap, struct file *filp) 3286 { 3287 const struct path *path = &filp->f_path; 3288 struct inode *inode = path->dentry->d_inode; 3289 int error = get_write_access(inode); 3290 if (error) 3291 return error; 3292 3293 error = security_file_truncate(filp); 3294 if (!error) { 3295 error = do_truncate(idmap, path->dentry, 0, 3296 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 3297 filp); 3298 } 3299 put_write_access(inode); 3300 return error; 3301 } 3302 3303 static inline int open_to_namei_flags(int flag) 3304 { 3305 if ((flag & O_ACCMODE) == 3) 3306 flag--; 3307 return flag; 3308 } 3309 3310 static int may_o_create(struct mnt_idmap *idmap, 3311 const struct path *dir, struct dentry *dentry, 3312 umode_t mode) 3313 { 3314 int error = security_path_mknod(dir, dentry, mode, 0); 3315 if (error) 3316 return error; 3317 3318 if (!fsuidgid_has_mapping(dir->dentry->d_sb, idmap)) 3319 return -EOVERFLOW; 3320 3321 error = inode_permission(idmap, dir->dentry->d_inode, 3322 MAY_WRITE | MAY_EXEC); 3323 if (error) 3324 return error; 3325 3326 return security_inode_create(dir->dentry->d_inode, dentry, mode); 3327 } 3328 3329 /* 3330 * Attempt to atomically look up, create and open a file from a negative 3331 * dentry. 3332 * 3333 * Returns 0 if successful. The file will have been created and attached to 3334 * @file by the filesystem calling finish_open(). 3335 * 3336 * If the file was looked up only or didn't need creating, FMODE_OPENED won't 3337 * be set. The caller will need to perform the open themselves. @path will 3338 * have been updated to point to the new dentry. This may be negative. 3339 * 3340 * Returns an error code otherwise. 3341 */ 3342 static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry, 3343 struct file *file, 3344 int open_flag, umode_t mode) 3345 { 3346 struct dentry *const DENTRY_NOT_SET = (void *) -1UL; 3347 struct inode *dir = nd->path.dentry->d_inode; 3348 int error; 3349 3350 if (nd->flags & LOOKUP_DIRECTORY) 3351 open_flag |= O_DIRECTORY; 3352 3353 file->f_path.dentry = DENTRY_NOT_SET; 3354 file->f_path.mnt = nd->path.mnt; 3355 error = dir->i_op->atomic_open(dir, dentry, file, 3356 open_to_namei_flags(open_flag), mode); 3357 d_lookup_done(dentry); 3358 if (!error) { 3359 if (file->f_mode & FMODE_OPENED) { 3360 if (unlikely(dentry != file->f_path.dentry)) { 3361 dput(dentry); 3362 dentry = dget(file->f_path.dentry); 3363 } 3364 } else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) { 3365 error = -EIO; 3366 } else { 3367 if (file->f_path.dentry) { 3368 dput(dentry); 3369 dentry = file->f_path.dentry; 3370 } 3371 if (unlikely(d_is_negative(dentry))) 3372 error = -ENOENT; 3373 } 3374 } 3375 if (error) { 3376 dput(dentry); 3377 dentry = ERR_PTR(error); 3378 } 3379 return dentry; 3380 } 3381 3382 /* 3383 * Look up and maybe create and open the last component. 3384 * 3385 * Must be called with parent locked (exclusive in O_CREAT case). 3386 * 3387 * Returns 0 on success, that is, if 3388 * the file was successfully atomically created (if necessary) and opened, or 3389 * the file was not completely opened at this time, though lookups and 3390 * creations were performed. 3391 * These case are distinguished by presence of FMODE_OPENED on file->f_mode. 3392 * In the latter case dentry returned in @path might be negative if O_CREAT 3393 * hadn't been specified. 3394 * 3395 * An error code is returned on failure. 3396 */ 3397 static struct dentry *lookup_open(struct nameidata *nd, struct file *file, 3398 const struct open_flags *op, 3399 bool got_write) 3400 { 3401 struct mnt_idmap *idmap; 3402 struct dentry *dir = nd->path.dentry; 3403 struct inode *dir_inode = dir->d_inode; 3404 int open_flag = op->open_flag; 3405 struct dentry *dentry; 3406 int error, create_error = 0; 3407 umode_t mode = op->mode; 3408 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 3409 3410 if (unlikely(IS_DEADDIR(dir_inode))) 3411 return ERR_PTR(-ENOENT); 3412 3413 file->f_mode &= ~FMODE_CREATED; 3414 dentry = d_lookup(dir, &nd->last); 3415 for (;;) { 3416 if (!dentry) { 3417 dentry = d_alloc_parallel(dir, &nd->last, &wq); 3418 if (IS_ERR(dentry)) 3419 return dentry; 3420 } 3421 if (d_in_lookup(dentry)) 3422 break; 3423 3424 error = d_revalidate(dentry, nd->flags); 3425 if (likely(error > 0)) 3426 break; 3427 if (error) 3428 goto out_dput; 3429 d_invalidate(dentry); 3430 dput(dentry); 3431 dentry = NULL; 3432 } 3433 if (dentry->d_inode) { 3434 /* Cached positive dentry: will open in f_op->open */ 3435 return dentry; 3436 } 3437 3438 /* 3439 * Checking write permission is tricky, bacuse we don't know if we are 3440 * going to actually need it: O_CREAT opens should work as long as the 3441 * file exists. But checking existence breaks atomicity. The trick is 3442 * to check access and if not granted clear O_CREAT from the flags. 3443 * 3444 * Another problem is returing the "right" error value (e.g. for an 3445 * O_EXCL open we want to return EEXIST not EROFS). 3446 */ 3447 if (unlikely(!got_write)) 3448 open_flag &= ~O_TRUNC; 3449 idmap = mnt_idmap(nd->path.mnt); 3450 if (open_flag & O_CREAT) { 3451 if (open_flag & O_EXCL) 3452 open_flag &= ~O_TRUNC; 3453 mode = vfs_prepare_mode(idmap, dir->d_inode, mode, mode, mode); 3454 if (likely(got_write)) 3455 create_error = may_o_create(idmap, &nd->path, 3456 dentry, mode); 3457 else 3458 create_error = -EROFS; 3459 } 3460 if (create_error) 3461 open_flag &= ~O_CREAT; 3462 if (dir_inode->i_op->atomic_open) { 3463 dentry = atomic_open(nd, dentry, file, open_flag, mode); 3464 if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT)) 3465 dentry = ERR_PTR(create_error); 3466 return dentry; 3467 } 3468 3469 if (d_in_lookup(dentry)) { 3470 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry, 3471 nd->flags); 3472 d_lookup_done(dentry); 3473 if (unlikely(res)) { 3474 if (IS_ERR(res)) { 3475 error = PTR_ERR(res); 3476 goto out_dput; 3477 } 3478 dput(dentry); 3479 dentry = res; 3480 } 3481 } 3482 3483 /* Negative dentry, just create the file */ 3484 if (!dentry->d_inode && (open_flag & O_CREAT)) { 3485 file->f_mode |= FMODE_CREATED; 3486 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE); 3487 if (!dir_inode->i_op->create) { 3488 error = -EACCES; 3489 goto out_dput; 3490 } 3491 3492 error = dir_inode->i_op->create(idmap, dir_inode, dentry, 3493 mode, open_flag & O_EXCL); 3494 if (error) 3495 goto out_dput; 3496 } 3497 if (unlikely(create_error) && !dentry->d_inode) { 3498 error = create_error; 3499 goto out_dput; 3500 } 3501 return dentry; 3502 3503 out_dput: 3504 dput(dentry); 3505 return ERR_PTR(error); 3506 } 3507 3508 static const char *open_last_lookups(struct nameidata *nd, 3509 struct file *file, const struct open_flags *op) 3510 { 3511 struct dentry *dir = nd->path.dentry; 3512 int open_flag = op->open_flag; 3513 bool got_write = false; 3514 struct dentry *dentry; 3515 const char *res; 3516 3517 nd->flags |= op->intent; 3518 3519 if (nd->last_type != LAST_NORM) { 3520 if (nd->depth) 3521 put_link(nd); 3522 return handle_dots(nd, nd->last_type); 3523 } 3524 3525 if (!(open_flag & O_CREAT)) { 3526 if (nd->last.name[nd->last.len]) 3527 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 3528 /* we _can_ be in RCU mode here */ 3529 dentry = lookup_fast(nd); 3530 if (IS_ERR(dentry)) 3531 return ERR_CAST(dentry); 3532 if (likely(dentry)) 3533 goto finish_lookup; 3534 3535 BUG_ON(nd->flags & LOOKUP_RCU); 3536 } else { 3537 /* create side of things */ 3538 if (nd->flags & LOOKUP_RCU) { 3539 if (!try_to_unlazy(nd)) 3540 return ERR_PTR(-ECHILD); 3541 } 3542 audit_inode(nd->name, dir, AUDIT_INODE_PARENT); 3543 /* trailing slashes? */ 3544 if (unlikely(nd->last.name[nd->last.len])) 3545 return ERR_PTR(-EISDIR); 3546 } 3547 3548 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) { 3549 got_write = !mnt_want_write(nd->path.mnt); 3550 /* 3551 * do _not_ fail yet - we might not need that or fail with 3552 * a different error; let lookup_open() decide; we'll be 3553 * dropping this one anyway. 3554 */ 3555 } 3556 if (open_flag & O_CREAT) 3557 inode_lock(dir->d_inode); 3558 else 3559 inode_lock_shared(dir->d_inode); 3560 dentry = lookup_open(nd, file, op, got_write); 3561 if (!IS_ERR(dentry) && (file->f_mode & FMODE_CREATED)) 3562 fsnotify_create(dir->d_inode, dentry); 3563 if (open_flag & O_CREAT) 3564 inode_unlock(dir->d_inode); 3565 else 3566 inode_unlock_shared(dir->d_inode); 3567 3568 if (got_write) 3569 mnt_drop_write(nd->path.mnt); 3570 3571 if (IS_ERR(dentry)) 3572 return ERR_CAST(dentry); 3573 3574 if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) { 3575 dput(nd->path.dentry); 3576 nd->path.dentry = dentry; 3577 return NULL; 3578 } 3579 3580 finish_lookup: 3581 if (nd->depth) 3582 put_link(nd); 3583 res = step_into(nd, WALK_TRAILING, dentry); 3584 if (unlikely(res)) 3585 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL); 3586 return res; 3587 } 3588 3589 /* 3590 * Handle the last step of open() 3591 */ 3592 static int do_open(struct nameidata *nd, 3593 struct file *file, const struct open_flags *op) 3594 { 3595 struct mnt_idmap *idmap; 3596 int open_flag = op->open_flag; 3597 bool do_truncate; 3598 int acc_mode; 3599 int error; 3600 3601 if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) { 3602 error = complete_walk(nd); 3603 if (error) 3604 return error; 3605 } 3606 if (!(file->f_mode & FMODE_CREATED)) 3607 audit_inode(nd->name, nd->path.dentry, 0); 3608 idmap = mnt_idmap(nd->path.mnt); 3609 if (open_flag & O_CREAT) { 3610 if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED)) 3611 return -EEXIST; 3612 if (d_is_dir(nd->path.dentry)) 3613 return -EISDIR; 3614 error = may_create_in_sticky(idmap, nd, 3615 d_backing_inode(nd->path.dentry)); 3616 if (unlikely(error)) 3617 return error; 3618 } 3619 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry)) 3620 return -ENOTDIR; 3621 3622 do_truncate = false; 3623 acc_mode = op->acc_mode; 3624 if (file->f_mode & FMODE_CREATED) { 3625 /* Don't check for write permission, don't truncate */ 3626 open_flag &= ~O_TRUNC; 3627 acc_mode = 0; 3628 } else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) { 3629 error = mnt_want_write(nd->path.mnt); 3630 if (error) 3631 return error; 3632 do_truncate = true; 3633 } 3634 error = may_open(idmap, &nd->path, acc_mode, open_flag); 3635 if (!error && !(file->f_mode & FMODE_OPENED)) 3636 error = vfs_open(&nd->path, file); 3637 if (!error) 3638 error = ima_file_check(file, op->acc_mode); 3639 if (!error && do_truncate) 3640 error = handle_truncate(idmap, file); 3641 if (unlikely(error > 0)) { 3642 WARN_ON(1); 3643 error = -EINVAL; 3644 } 3645 if (do_truncate) 3646 mnt_drop_write(nd->path.mnt); 3647 return error; 3648 } 3649 3650 /** 3651 * vfs_tmpfile - create tmpfile 3652 * @idmap: idmap of the mount the inode was found from 3653 * @parentpath: pointer to the path of the base directory 3654 * @file: file descriptor of the new tmpfile 3655 * @mode: mode of the new tmpfile 3656 * 3657 * Create a temporary file. 3658 * 3659 * If the inode has been found through an idmapped mount the idmap of 3660 * the vfsmount must be passed through @idmap. This function will then take 3661 * care to map the inode according to @idmap before checking permissions. 3662 * On non-idmapped mounts or if permission checking is to be performed on the 3663 * raw inode simply passs @nop_mnt_idmap. 3664 */ 3665 static int vfs_tmpfile(struct mnt_idmap *idmap, 3666 const struct path *parentpath, 3667 struct file *file, umode_t mode) 3668 { 3669 struct dentry *child; 3670 struct inode *dir = d_inode(parentpath->dentry); 3671 struct inode *inode; 3672 int error; 3673 int open_flag = file->f_flags; 3674 3675 /* we want directory to be writable */ 3676 error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC); 3677 if (error) 3678 return error; 3679 if (!dir->i_op->tmpfile) 3680 return -EOPNOTSUPP; 3681 child = d_alloc(parentpath->dentry, &slash_name); 3682 if (unlikely(!child)) 3683 return -ENOMEM; 3684 file->f_path.mnt = parentpath->mnt; 3685 file->f_path.dentry = child; 3686 mode = vfs_prepare_mode(idmap, dir, mode, mode, mode); 3687 error = dir->i_op->tmpfile(idmap, dir, file, mode); 3688 dput(child); 3689 if (error) 3690 return error; 3691 /* Don't check for other permissions, the inode was just created */ 3692 error = may_open(idmap, &file->f_path, 0, file->f_flags); 3693 if (error) 3694 return error; 3695 inode = file_inode(file); 3696 if (!(open_flag & O_EXCL)) { 3697 spin_lock(&inode->i_lock); 3698 inode->i_state |= I_LINKABLE; 3699 spin_unlock(&inode->i_lock); 3700 } 3701 ima_post_create_tmpfile(idmap, inode); 3702 return 0; 3703 } 3704 3705 /** 3706 * kernel_tmpfile_open - open a tmpfile for kernel internal use 3707 * @idmap: idmap of the mount the inode was found from 3708 * @parentpath: path of the base directory 3709 * @mode: mode of the new tmpfile 3710 * @open_flag: flags 3711 * @cred: credentials for open 3712 * 3713 * Create and open a temporary file. The file is not accounted in nr_files, 3714 * hence this is only for kernel internal use, and must not be installed into 3715 * file tables or such. 3716 */ 3717 struct file *kernel_tmpfile_open(struct mnt_idmap *idmap, 3718 const struct path *parentpath, 3719 umode_t mode, int open_flag, 3720 const struct cred *cred) 3721 { 3722 struct file *file; 3723 int error; 3724 3725 file = alloc_empty_file_noaccount(open_flag, cred); 3726 if (IS_ERR(file)) 3727 return file; 3728 3729 error = vfs_tmpfile(idmap, parentpath, file, mode); 3730 if (error) { 3731 fput(file); 3732 file = ERR_PTR(error); 3733 } 3734 return file; 3735 } 3736 EXPORT_SYMBOL(kernel_tmpfile_open); 3737 3738 static int do_tmpfile(struct nameidata *nd, unsigned flags, 3739 const struct open_flags *op, 3740 struct file *file) 3741 { 3742 struct path path; 3743 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path); 3744 3745 if (unlikely(error)) 3746 return error; 3747 error = mnt_want_write(path.mnt); 3748 if (unlikely(error)) 3749 goto out; 3750 error = vfs_tmpfile(mnt_idmap(path.mnt), &path, file, op->mode); 3751 if (error) 3752 goto out2; 3753 audit_inode(nd->name, file->f_path.dentry, 0); 3754 out2: 3755 mnt_drop_write(path.mnt); 3756 out: 3757 path_put(&path); 3758 return error; 3759 } 3760 3761 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file) 3762 { 3763 struct path path; 3764 int error = path_lookupat(nd, flags, &path); 3765 if (!error) { 3766 audit_inode(nd->name, path.dentry, 0); 3767 error = vfs_open(&path, file); 3768 path_put(&path); 3769 } 3770 return error; 3771 } 3772 3773 static struct file *path_openat(struct nameidata *nd, 3774 const struct open_flags *op, unsigned flags) 3775 { 3776 struct file *file; 3777 int error; 3778 3779 file = alloc_empty_file(op->open_flag, current_cred()); 3780 if (IS_ERR(file)) 3781 return file; 3782 3783 if (unlikely(file->f_flags & __O_TMPFILE)) { 3784 error = do_tmpfile(nd, flags, op, file); 3785 } else if (unlikely(file->f_flags & O_PATH)) { 3786 error = do_o_path(nd, flags, file); 3787 } else { 3788 const char *s = path_init(nd, flags); 3789 while (!(error = link_path_walk(s, nd)) && 3790 (s = open_last_lookups(nd, file, op)) != NULL) 3791 ; 3792 if (!error) 3793 error = do_open(nd, file, op); 3794 terminate_walk(nd); 3795 } 3796 if (likely(!error)) { 3797 if (likely(file->f_mode & FMODE_OPENED)) 3798 return file; 3799 WARN_ON(1); 3800 error = -EINVAL; 3801 } 3802 fput(file); 3803 if (error == -EOPENSTALE) { 3804 if (flags & LOOKUP_RCU) 3805 error = -ECHILD; 3806 else 3807 error = -ESTALE; 3808 } 3809 return ERR_PTR(error); 3810 } 3811 3812 struct file *do_filp_open(int dfd, struct filename *pathname, 3813 const struct open_flags *op) 3814 { 3815 struct nameidata nd; 3816 int flags = op->lookup_flags; 3817 struct file *filp; 3818 3819 set_nameidata(&nd, dfd, pathname, NULL); 3820 filp = path_openat(&nd, op, flags | LOOKUP_RCU); 3821 if (unlikely(filp == ERR_PTR(-ECHILD))) 3822 filp = path_openat(&nd, op, flags); 3823 if (unlikely(filp == ERR_PTR(-ESTALE))) 3824 filp = path_openat(&nd, op, flags | LOOKUP_REVAL); 3825 restore_nameidata(); 3826 return filp; 3827 } 3828 3829 struct file *do_file_open_root(const struct path *root, 3830 const char *name, const struct open_flags *op) 3831 { 3832 struct nameidata nd; 3833 struct file *file; 3834 struct filename *filename; 3835 int flags = op->lookup_flags; 3836 3837 if (d_is_symlink(root->dentry) && op->intent & LOOKUP_OPEN) 3838 return ERR_PTR(-ELOOP); 3839 3840 filename = getname_kernel(name); 3841 if (IS_ERR(filename)) 3842 return ERR_CAST(filename); 3843 3844 set_nameidata(&nd, -1, filename, root); 3845 file = path_openat(&nd, op, flags | LOOKUP_RCU); 3846 if (unlikely(file == ERR_PTR(-ECHILD))) 3847 file = path_openat(&nd, op, flags); 3848 if (unlikely(file == ERR_PTR(-ESTALE))) 3849 file = path_openat(&nd, op, flags | LOOKUP_REVAL); 3850 restore_nameidata(); 3851 putname(filename); 3852 return file; 3853 } 3854 3855 static struct dentry *filename_create(int dfd, struct filename *name, 3856 struct path *path, unsigned int lookup_flags) 3857 { 3858 struct dentry *dentry = ERR_PTR(-EEXIST); 3859 struct qstr last; 3860 bool want_dir = lookup_flags & LOOKUP_DIRECTORY; 3861 unsigned int reval_flag = lookup_flags & LOOKUP_REVAL; 3862 unsigned int create_flags = LOOKUP_CREATE | LOOKUP_EXCL; 3863 int type; 3864 int err2; 3865 int error; 3866 3867 error = filename_parentat(dfd, name, reval_flag, path, &last, &type); 3868 if (error) 3869 return ERR_PTR(error); 3870 3871 /* 3872 * Yucky last component or no last component at all? 3873 * (foo/., foo/.., /////) 3874 */ 3875 if (unlikely(type != LAST_NORM)) 3876 goto out; 3877 3878 /* don't fail immediately if it's r/o, at least try to report other errors */ 3879 err2 = mnt_want_write(path->mnt); 3880 /* 3881 * Do the final lookup. Suppress 'create' if there is a trailing 3882 * '/', and a directory wasn't requested. 3883 */ 3884 if (last.name[last.len] && !want_dir) 3885 create_flags = 0; 3886 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 3887 dentry = lookup_one_qstr_excl(&last, path->dentry, 3888 reval_flag | create_flags); 3889 if (IS_ERR(dentry)) 3890 goto unlock; 3891 3892 error = -EEXIST; 3893 if (d_is_positive(dentry)) 3894 goto fail; 3895 3896 /* 3897 * Special case - lookup gave negative, but... we had foo/bar/ 3898 * From the vfs_mknod() POV we just have a negative dentry - 3899 * all is fine. Let's be bastards - you had / on the end, you've 3900 * been asking for (non-existent) directory. -ENOENT for you. 3901 */ 3902 if (unlikely(!create_flags)) { 3903 error = -ENOENT; 3904 goto fail; 3905 } 3906 if (unlikely(err2)) { 3907 error = err2; 3908 goto fail; 3909 } 3910 return dentry; 3911 fail: 3912 dput(dentry); 3913 dentry = ERR_PTR(error); 3914 unlock: 3915 inode_unlock(path->dentry->d_inode); 3916 if (!err2) 3917 mnt_drop_write(path->mnt); 3918 out: 3919 path_put(path); 3920 return dentry; 3921 } 3922 3923 struct dentry *kern_path_create(int dfd, const char *pathname, 3924 struct path *path, unsigned int lookup_flags) 3925 { 3926 struct filename *filename = getname_kernel(pathname); 3927 struct dentry *res = filename_create(dfd, filename, path, lookup_flags); 3928 3929 putname(filename); 3930 return res; 3931 } 3932 EXPORT_SYMBOL(kern_path_create); 3933 3934 void done_path_create(struct path *path, struct dentry *dentry) 3935 { 3936 dput(dentry); 3937 inode_unlock(path->dentry->d_inode); 3938 mnt_drop_write(path->mnt); 3939 path_put(path); 3940 } 3941 EXPORT_SYMBOL(done_path_create); 3942 3943 inline struct dentry *user_path_create(int dfd, const char __user *pathname, 3944 struct path *path, unsigned int lookup_flags) 3945 { 3946 struct filename *filename = getname(pathname); 3947 struct dentry *res = filename_create(dfd, filename, path, lookup_flags); 3948 3949 putname(filename); 3950 return res; 3951 } 3952 EXPORT_SYMBOL(user_path_create); 3953 3954 /** 3955 * vfs_mknod - create device node or file 3956 * @idmap: idmap of the mount the inode was found from 3957 * @dir: inode of @dentry 3958 * @dentry: pointer to dentry of the base directory 3959 * @mode: mode of the new device node or file 3960 * @dev: device number of device to create 3961 * 3962 * Create a device node or file. 3963 * 3964 * If the inode has been found through an idmapped mount the idmap of 3965 * the vfsmount must be passed through @idmap. This function will then take 3966 * care to map the inode according to @idmap before checking permissions. 3967 * On non-idmapped mounts or if permission checking is to be performed on the 3968 * raw inode simply passs @nop_mnt_idmap. 3969 */ 3970 int vfs_mknod(struct mnt_idmap *idmap, struct inode *dir, 3971 struct dentry *dentry, umode_t mode, dev_t dev) 3972 { 3973 bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV; 3974 int error = may_create(idmap, dir, dentry); 3975 3976 if (error) 3977 return error; 3978 3979 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout && 3980 !capable(CAP_MKNOD)) 3981 return -EPERM; 3982 3983 if (!dir->i_op->mknod) 3984 return -EPERM; 3985 3986 mode = vfs_prepare_mode(idmap, dir, mode, mode, mode); 3987 error = devcgroup_inode_mknod(mode, dev); 3988 if (error) 3989 return error; 3990 3991 error = security_inode_mknod(dir, dentry, mode, dev); 3992 if (error) 3993 return error; 3994 3995 error = dir->i_op->mknod(idmap, dir, dentry, mode, dev); 3996 if (!error) 3997 fsnotify_create(dir, dentry); 3998 return error; 3999 } 4000 EXPORT_SYMBOL(vfs_mknod); 4001 4002 static int may_mknod(umode_t mode) 4003 { 4004 switch (mode & S_IFMT) { 4005 case S_IFREG: 4006 case S_IFCHR: 4007 case S_IFBLK: 4008 case S_IFIFO: 4009 case S_IFSOCK: 4010 case 0: /* zero mode translates to S_IFREG */ 4011 return 0; 4012 case S_IFDIR: 4013 return -EPERM; 4014 default: 4015 return -EINVAL; 4016 } 4017 } 4018 4019 static int do_mknodat(int dfd, struct filename *name, umode_t mode, 4020 unsigned int dev) 4021 { 4022 struct mnt_idmap *idmap; 4023 struct dentry *dentry; 4024 struct path path; 4025 int error; 4026 unsigned int lookup_flags = 0; 4027 4028 error = may_mknod(mode); 4029 if (error) 4030 goto out1; 4031 retry: 4032 dentry = filename_create(dfd, name, &path, lookup_flags); 4033 error = PTR_ERR(dentry); 4034 if (IS_ERR(dentry)) 4035 goto out1; 4036 4037 error = security_path_mknod(&path, dentry, 4038 mode_strip_umask(path.dentry->d_inode, mode), dev); 4039 if (error) 4040 goto out2; 4041 4042 idmap = mnt_idmap(path.mnt); 4043 switch (mode & S_IFMT) { 4044 case 0: case S_IFREG: 4045 error = vfs_create(idmap, path.dentry->d_inode, 4046 dentry, mode, true); 4047 if (!error) 4048 ima_post_path_mknod(idmap, dentry); 4049 break; 4050 case S_IFCHR: case S_IFBLK: 4051 error = vfs_mknod(idmap, path.dentry->d_inode, 4052 dentry, mode, new_decode_dev(dev)); 4053 break; 4054 case S_IFIFO: case S_IFSOCK: 4055 error = vfs_mknod(idmap, path.dentry->d_inode, 4056 dentry, mode, 0); 4057 break; 4058 } 4059 out2: 4060 done_path_create(&path, dentry); 4061 if (retry_estale(error, lookup_flags)) { 4062 lookup_flags |= LOOKUP_REVAL; 4063 goto retry; 4064 } 4065 out1: 4066 putname(name); 4067 return error; 4068 } 4069 4070 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode, 4071 unsigned int, dev) 4072 { 4073 return do_mknodat(dfd, getname(filename), mode, dev); 4074 } 4075 4076 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev) 4077 { 4078 return do_mknodat(AT_FDCWD, getname(filename), mode, dev); 4079 } 4080 4081 /** 4082 * vfs_mkdir - create directory 4083 * @idmap: idmap of the mount the inode was found from 4084 * @dir: inode of @dentry 4085 * @dentry: pointer to dentry of the base directory 4086 * @mode: mode of the new directory 4087 * 4088 * Create a directory. 4089 * 4090 * If the inode has been found through an idmapped mount the idmap of 4091 * the vfsmount must be passed through @idmap. This function will then take 4092 * care to map the inode according to @idmap before checking permissions. 4093 * On non-idmapped mounts or if permission checking is to be performed on the 4094 * raw inode simply passs @nop_mnt_idmap. 4095 */ 4096 int vfs_mkdir(struct mnt_idmap *idmap, struct inode *dir, 4097 struct dentry *dentry, umode_t mode) 4098 { 4099 int error; 4100 unsigned max_links = dir->i_sb->s_max_links; 4101 4102 error = may_create(idmap, dir, dentry); 4103 if (error) 4104 return error; 4105 4106 if (!dir->i_op->mkdir) 4107 return -EPERM; 4108 4109 mode = vfs_prepare_mode(idmap, dir, mode, S_IRWXUGO | S_ISVTX, 0); 4110 error = security_inode_mkdir(dir, dentry, mode); 4111 if (error) 4112 return error; 4113 4114 if (max_links && dir->i_nlink >= max_links) 4115 return -EMLINK; 4116 4117 error = dir->i_op->mkdir(idmap, dir, dentry, mode); 4118 if (!error) 4119 fsnotify_mkdir(dir, dentry); 4120 return error; 4121 } 4122 EXPORT_SYMBOL(vfs_mkdir); 4123 4124 int do_mkdirat(int dfd, struct filename *name, umode_t mode) 4125 { 4126 struct dentry *dentry; 4127 struct path path; 4128 int error; 4129 unsigned int lookup_flags = LOOKUP_DIRECTORY; 4130 4131 retry: 4132 dentry = filename_create(dfd, name, &path, lookup_flags); 4133 error = PTR_ERR(dentry); 4134 if (IS_ERR(dentry)) 4135 goto out_putname; 4136 4137 error = security_path_mkdir(&path, dentry, 4138 mode_strip_umask(path.dentry->d_inode, mode)); 4139 if (!error) { 4140 error = vfs_mkdir(mnt_idmap(path.mnt), path.dentry->d_inode, 4141 dentry, mode); 4142 } 4143 done_path_create(&path, dentry); 4144 if (retry_estale(error, lookup_flags)) { 4145 lookup_flags |= LOOKUP_REVAL; 4146 goto retry; 4147 } 4148 out_putname: 4149 putname(name); 4150 return error; 4151 } 4152 4153 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode) 4154 { 4155 return do_mkdirat(dfd, getname(pathname), mode); 4156 } 4157 4158 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode) 4159 { 4160 return do_mkdirat(AT_FDCWD, getname(pathname), mode); 4161 } 4162 4163 /** 4164 * vfs_rmdir - remove directory 4165 * @idmap: idmap of the mount the inode was found from 4166 * @dir: inode of @dentry 4167 * @dentry: pointer to dentry of the base directory 4168 * 4169 * Remove a directory. 4170 * 4171 * If the inode has been found through an idmapped mount the idmap of 4172 * the vfsmount must be passed through @idmap. This function will then take 4173 * care to map the inode according to @idmap before checking permissions. 4174 * On non-idmapped mounts or if permission checking is to be performed on the 4175 * raw inode simply passs @nop_mnt_idmap. 4176 */ 4177 int vfs_rmdir(struct mnt_idmap *idmap, struct inode *dir, 4178 struct dentry *dentry) 4179 { 4180 int error = may_delete(idmap, dir, dentry, 1); 4181 4182 if (error) 4183 return error; 4184 4185 if (!dir->i_op->rmdir) 4186 return -EPERM; 4187 4188 dget(dentry); 4189 inode_lock(dentry->d_inode); 4190 4191 error = -EBUSY; 4192 if (is_local_mountpoint(dentry) || 4193 (dentry->d_inode->i_flags & S_KERNEL_FILE)) 4194 goto out; 4195 4196 error = security_inode_rmdir(dir, dentry); 4197 if (error) 4198 goto out; 4199 4200 error = dir->i_op->rmdir(dir, dentry); 4201 if (error) 4202 goto out; 4203 4204 shrink_dcache_parent(dentry); 4205 dentry->d_inode->i_flags |= S_DEAD; 4206 dont_mount(dentry); 4207 detach_mounts(dentry); 4208 4209 out: 4210 inode_unlock(dentry->d_inode); 4211 dput(dentry); 4212 if (!error) 4213 d_delete_notify(dir, dentry); 4214 return error; 4215 } 4216 EXPORT_SYMBOL(vfs_rmdir); 4217 4218 int do_rmdir(int dfd, struct filename *name) 4219 { 4220 int error; 4221 struct dentry *dentry; 4222 struct path path; 4223 struct qstr last; 4224 int type; 4225 unsigned int lookup_flags = 0; 4226 retry: 4227 error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type); 4228 if (error) 4229 goto exit1; 4230 4231 switch (type) { 4232 case LAST_DOTDOT: 4233 error = -ENOTEMPTY; 4234 goto exit2; 4235 case LAST_DOT: 4236 error = -EINVAL; 4237 goto exit2; 4238 case LAST_ROOT: 4239 error = -EBUSY; 4240 goto exit2; 4241 } 4242 4243 error = mnt_want_write(path.mnt); 4244 if (error) 4245 goto exit2; 4246 4247 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 4248 dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags); 4249 error = PTR_ERR(dentry); 4250 if (IS_ERR(dentry)) 4251 goto exit3; 4252 if (!dentry->d_inode) { 4253 error = -ENOENT; 4254 goto exit4; 4255 } 4256 error = security_path_rmdir(&path, dentry); 4257 if (error) 4258 goto exit4; 4259 error = vfs_rmdir(mnt_idmap(path.mnt), path.dentry->d_inode, dentry); 4260 exit4: 4261 dput(dentry); 4262 exit3: 4263 inode_unlock(path.dentry->d_inode); 4264 mnt_drop_write(path.mnt); 4265 exit2: 4266 path_put(&path); 4267 if (retry_estale(error, lookup_flags)) { 4268 lookup_flags |= LOOKUP_REVAL; 4269 goto retry; 4270 } 4271 exit1: 4272 putname(name); 4273 return error; 4274 } 4275 4276 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 4277 { 4278 return do_rmdir(AT_FDCWD, getname(pathname)); 4279 } 4280 4281 /** 4282 * vfs_unlink - unlink a filesystem object 4283 * @idmap: idmap of the mount the inode was found from 4284 * @dir: parent directory 4285 * @dentry: victim 4286 * @delegated_inode: returns victim inode, if the inode is delegated. 4287 * 4288 * The caller must hold dir->i_mutex. 4289 * 4290 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and 4291 * return a reference to the inode in delegated_inode. The caller 4292 * should then break the delegation on that inode and retry. Because 4293 * breaking a delegation may take a long time, the caller should drop 4294 * dir->i_mutex before doing so. 4295 * 4296 * Alternatively, a caller may pass NULL for delegated_inode. This may 4297 * be appropriate for callers that expect the underlying filesystem not 4298 * to be NFS exported. 4299 * 4300 * If the inode has been found through an idmapped mount the idmap of 4301 * the vfsmount must be passed through @idmap. This function will then take 4302 * care to map the inode according to @idmap before checking permissions. 4303 * On non-idmapped mounts or if permission checking is to be performed on the 4304 * raw inode simply passs @nop_mnt_idmap. 4305 */ 4306 int vfs_unlink(struct mnt_idmap *idmap, struct inode *dir, 4307 struct dentry *dentry, struct inode **delegated_inode) 4308 { 4309 struct inode *target = dentry->d_inode; 4310 int error = may_delete(idmap, dir, dentry, 0); 4311 4312 if (error) 4313 return error; 4314 4315 if (!dir->i_op->unlink) 4316 return -EPERM; 4317 4318 inode_lock(target); 4319 if (IS_SWAPFILE(target)) 4320 error = -EPERM; 4321 else if (is_local_mountpoint(dentry)) 4322 error = -EBUSY; 4323 else { 4324 error = security_inode_unlink(dir, dentry); 4325 if (!error) { 4326 error = try_break_deleg(target, delegated_inode); 4327 if (error) 4328 goto out; 4329 error = dir->i_op->unlink(dir, dentry); 4330 if (!error) { 4331 dont_mount(dentry); 4332 detach_mounts(dentry); 4333 } 4334 } 4335 } 4336 out: 4337 inode_unlock(target); 4338 4339 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 4340 if (!error && dentry->d_flags & DCACHE_NFSFS_RENAMED) { 4341 fsnotify_unlink(dir, dentry); 4342 } else if (!error) { 4343 fsnotify_link_count(target); 4344 d_delete_notify(dir, dentry); 4345 } 4346 4347 return error; 4348 } 4349 EXPORT_SYMBOL(vfs_unlink); 4350 4351 /* 4352 * Make sure that the actual truncation of the file will occur outside its 4353 * directory's i_mutex. Truncate can take a long time if there is a lot of 4354 * writeout happening, and we don't want to prevent access to the directory 4355 * while waiting on the I/O. 4356 */ 4357 int do_unlinkat(int dfd, struct filename *name) 4358 { 4359 int error; 4360 struct dentry *dentry; 4361 struct path path; 4362 struct qstr last; 4363 int type; 4364 struct inode *inode = NULL; 4365 struct inode *delegated_inode = NULL; 4366 unsigned int lookup_flags = 0; 4367 retry: 4368 error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type); 4369 if (error) 4370 goto exit1; 4371 4372 error = -EISDIR; 4373 if (type != LAST_NORM) 4374 goto exit2; 4375 4376 error = mnt_want_write(path.mnt); 4377 if (error) 4378 goto exit2; 4379 retry_deleg: 4380 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 4381 dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags); 4382 error = PTR_ERR(dentry); 4383 if (!IS_ERR(dentry)) { 4384 4385 /* Why not before? Because we want correct error value */ 4386 if (last.name[last.len]) 4387 goto slashes; 4388 inode = dentry->d_inode; 4389 if (d_is_negative(dentry)) 4390 goto slashes; 4391 ihold(inode); 4392 error = security_path_unlink(&path, dentry); 4393 if (error) 4394 goto exit3; 4395 error = vfs_unlink(mnt_idmap(path.mnt), path.dentry->d_inode, 4396 dentry, &delegated_inode); 4397 exit3: 4398 dput(dentry); 4399 } 4400 inode_unlock(path.dentry->d_inode); 4401 if (inode) 4402 iput(inode); /* truncate the inode here */ 4403 inode = NULL; 4404 if (delegated_inode) { 4405 error = break_deleg_wait(&delegated_inode); 4406 if (!error) 4407 goto retry_deleg; 4408 } 4409 mnt_drop_write(path.mnt); 4410 exit2: 4411 path_put(&path); 4412 if (retry_estale(error, lookup_flags)) { 4413 lookup_flags |= LOOKUP_REVAL; 4414 inode = NULL; 4415 goto retry; 4416 } 4417 exit1: 4418 putname(name); 4419 return error; 4420 4421 slashes: 4422 if (d_is_negative(dentry)) 4423 error = -ENOENT; 4424 else if (d_is_dir(dentry)) 4425 error = -EISDIR; 4426 else 4427 error = -ENOTDIR; 4428 goto exit3; 4429 } 4430 4431 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 4432 { 4433 if ((flag & ~AT_REMOVEDIR) != 0) 4434 return -EINVAL; 4435 4436 if (flag & AT_REMOVEDIR) 4437 return do_rmdir(dfd, getname(pathname)); 4438 return do_unlinkat(dfd, getname(pathname)); 4439 } 4440 4441 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 4442 { 4443 return do_unlinkat(AT_FDCWD, getname(pathname)); 4444 } 4445 4446 /** 4447 * vfs_symlink - create symlink 4448 * @idmap: idmap of the mount the inode was found from 4449 * @dir: inode of @dentry 4450 * @dentry: pointer to dentry of the base directory 4451 * @oldname: name of the file to link to 4452 * 4453 * Create a symlink. 4454 * 4455 * If the inode has been found through an idmapped mount the idmap of 4456 * the vfsmount must be passed through @idmap. This function will then take 4457 * care to map the inode according to @idmap before checking permissions. 4458 * On non-idmapped mounts or if permission checking is to be performed on the 4459 * raw inode simply passs @nop_mnt_idmap. 4460 */ 4461 int vfs_symlink(struct mnt_idmap *idmap, struct inode *dir, 4462 struct dentry *dentry, const char *oldname) 4463 { 4464 int error; 4465 4466 error = may_create(idmap, dir, dentry); 4467 if (error) 4468 return error; 4469 4470 if (!dir->i_op->symlink) 4471 return -EPERM; 4472 4473 error = security_inode_symlink(dir, dentry, oldname); 4474 if (error) 4475 return error; 4476 4477 error = dir->i_op->symlink(idmap, dir, dentry, oldname); 4478 if (!error) 4479 fsnotify_create(dir, dentry); 4480 return error; 4481 } 4482 EXPORT_SYMBOL(vfs_symlink); 4483 4484 int do_symlinkat(struct filename *from, int newdfd, struct filename *to) 4485 { 4486 int error; 4487 struct dentry *dentry; 4488 struct path path; 4489 unsigned int lookup_flags = 0; 4490 4491 if (IS_ERR(from)) { 4492 error = PTR_ERR(from); 4493 goto out_putnames; 4494 } 4495 retry: 4496 dentry = filename_create(newdfd, to, &path, lookup_flags); 4497 error = PTR_ERR(dentry); 4498 if (IS_ERR(dentry)) 4499 goto out_putnames; 4500 4501 error = security_path_symlink(&path, dentry, from->name); 4502 if (!error) 4503 error = vfs_symlink(mnt_idmap(path.mnt), path.dentry->d_inode, 4504 dentry, from->name); 4505 done_path_create(&path, dentry); 4506 if (retry_estale(error, lookup_flags)) { 4507 lookup_flags |= LOOKUP_REVAL; 4508 goto retry; 4509 } 4510 out_putnames: 4511 putname(to); 4512 putname(from); 4513 return error; 4514 } 4515 4516 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 4517 int, newdfd, const char __user *, newname) 4518 { 4519 return do_symlinkat(getname(oldname), newdfd, getname(newname)); 4520 } 4521 4522 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 4523 { 4524 return do_symlinkat(getname(oldname), AT_FDCWD, getname(newname)); 4525 } 4526 4527 /** 4528 * vfs_link - create a new link 4529 * @old_dentry: object to be linked 4530 * @idmap: idmap of the mount 4531 * @dir: new parent 4532 * @new_dentry: where to create the new link 4533 * @delegated_inode: returns inode needing a delegation break 4534 * 4535 * The caller must hold dir->i_mutex 4536 * 4537 * If vfs_link discovers a delegation on the to-be-linked file in need 4538 * of breaking, it will return -EWOULDBLOCK and return a reference to the 4539 * inode in delegated_inode. The caller should then break the delegation 4540 * and retry. Because breaking a delegation may take a long time, the 4541 * caller should drop the i_mutex before doing so. 4542 * 4543 * Alternatively, a caller may pass NULL for delegated_inode. This may 4544 * be appropriate for callers that expect the underlying filesystem not 4545 * to be NFS exported. 4546 * 4547 * If the inode has been found through an idmapped mount the idmap of 4548 * the vfsmount must be passed through @idmap. This function will then take 4549 * care to map the inode according to @idmap before checking permissions. 4550 * On non-idmapped mounts or if permission checking is to be performed on the 4551 * raw inode simply passs @nop_mnt_idmap. 4552 */ 4553 int vfs_link(struct dentry *old_dentry, struct mnt_idmap *idmap, 4554 struct inode *dir, struct dentry *new_dentry, 4555 struct inode **delegated_inode) 4556 { 4557 struct inode *inode = old_dentry->d_inode; 4558 unsigned max_links = dir->i_sb->s_max_links; 4559 int error; 4560 4561 if (!inode) 4562 return -ENOENT; 4563 4564 error = may_create(idmap, dir, new_dentry); 4565 if (error) 4566 return error; 4567 4568 if (dir->i_sb != inode->i_sb) 4569 return -EXDEV; 4570 4571 /* 4572 * A link to an append-only or immutable file cannot be created. 4573 */ 4574 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 4575 return -EPERM; 4576 /* 4577 * Updating the link count will likely cause i_uid and i_gid to 4578 * be writen back improperly if their true value is unknown to 4579 * the vfs. 4580 */ 4581 if (HAS_UNMAPPED_ID(idmap, inode)) 4582 return -EPERM; 4583 if (!dir->i_op->link) 4584 return -EPERM; 4585 if (S_ISDIR(inode->i_mode)) 4586 return -EPERM; 4587 4588 error = security_inode_link(old_dentry, dir, new_dentry); 4589 if (error) 4590 return error; 4591 4592 inode_lock(inode); 4593 /* Make sure we don't allow creating hardlink to an unlinked file */ 4594 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE)) 4595 error = -ENOENT; 4596 else if (max_links && inode->i_nlink >= max_links) 4597 error = -EMLINK; 4598 else { 4599 error = try_break_deleg(inode, delegated_inode); 4600 if (!error) 4601 error = dir->i_op->link(old_dentry, dir, new_dentry); 4602 } 4603 4604 if (!error && (inode->i_state & I_LINKABLE)) { 4605 spin_lock(&inode->i_lock); 4606 inode->i_state &= ~I_LINKABLE; 4607 spin_unlock(&inode->i_lock); 4608 } 4609 inode_unlock(inode); 4610 if (!error) 4611 fsnotify_link(dir, inode, new_dentry); 4612 return error; 4613 } 4614 EXPORT_SYMBOL(vfs_link); 4615 4616 /* 4617 * Hardlinks are often used in delicate situations. We avoid 4618 * security-related surprises by not following symlinks on the 4619 * newname. --KAB 4620 * 4621 * We don't follow them on the oldname either to be compatible 4622 * with linux 2.0, and to avoid hard-linking to directories 4623 * and other special files. --ADM 4624 */ 4625 int do_linkat(int olddfd, struct filename *old, int newdfd, 4626 struct filename *new, int flags) 4627 { 4628 struct mnt_idmap *idmap; 4629 struct dentry *new_dentry; 4630 struct path old_path, new_path; 4631 struct inode *delegated_inode = NULL; 4632 int how = 0; 4633 int error; 4634 4635 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) { 4636 error = -EINVAL; 4637 goto out_putnames; 4638 } 4639 /* 4640 * To use null names we require CAP_DAC_READ_SEARCH 4641 * This ensures that not everyone will be able to create 4642 * handlink using the passed filedescriptor. 4643 */ 4644 if (flags & AT_EMPTY_PATH && !capable(CAP_DAC_READ_SEARCH)) { 4645 error = -ENOENT; 4646 goto out_putnames; 4647 } 4648 4649 if (flags & AT_SYMLINK_FOLLOW) 4650 how |= LOOKUP_FOLLOW; 4651 retry: 4652 error = filename_lookup(olddfd, old, how, &old_path, NULL); 4653 if (error) 4654 goto out_putnames; 4655 4656 new_dentry = filename_create(newdfd, new, &new_path, 4657 (how & LOOKUP_REVAL)); 4658 error = PTR_ERR(new_dentry); 4659 if (IS_ERR(new_dentry)) 4660 goto out_putpath; 4661 4662 error = -EXDEV; 4663 if (old_path.mnt != new_path.mnt) 4664 goto out_dput; 4665 idmap = mnt_idmap(new_path.mnt); 4666 error = may_linkat(idmap, &old_path); 4667 if (unlikely(error)) 4668 goto out_dput; 4669 error = security_path_link(old_path.dentry, &new_path, new_dentry); 4670 if (error) 4671 goto out_dput; 4672 error = vfs_link(old_path.dentry, idmap, new_path.dentry->d_inode, 4673 new_dentry, &delegated_inode); 4674 out_dput: 4675 done_path_create(&new_path, new_dentry); 4676 if (delegated_inode) { 4677 error = break_deleg_wait(&delegated_inode); 4678 if (!error) { 4679 path_put(&old_path); 4680 goto retry; 4681 } 4682 } 4683 if (retry_estale(error, how)) { 4684 path_put(&old_path); 4685 how |= LOOKUP_REVAL; 4686 goto retry; 4687 } 4688 out_putpath: 4689 path_put(&old_path); 4690 out_putnames: 4691 putname(old); 4692 putname(new); 4693 4694 return error; 4695 } 4696 4697 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 4698 int, newdfd, const char __user *, newname, int, flags) 4699 { 4700 return do_linkat(olddfd, getname_uflags(oldname, flags), 4701 newdfd, getname(newname), flags); 4702 } 4703 4704 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 4705 { 4706 return do_linkat(AT_FDCWD, getname(oldname), AT_FDCWD, getname(newname), 0); 4707 } 4708 4709 /** 4710 * vfs_rename - rename a filesystem object 4711 * @rd: pointer to &struct renamedata info 4712 * 4713 * The caller must hold multiple mutexes--see lock_rename()). 4714 * 4715 * If vfs_rename discovers a delegation in need of breaking at either 4716 * the source or destination, it will return -EWOULDBLOCK and return a 4717 * reference to the inode in delegated_inode. The caller should then 4718 * break the delegation and retry. Because breaking a delegation may 4719 * take a long time, the caller should drop all locks before doing 4720 * so. 4721 * 4722 * Alternatively, a caller may pass NULL for delegated_inode. This may 4723 * be appropriate for callers that expect the underlying filesystem not 4724 * to be NFS exported. 4725 * 4726 * The worst of all namespace operations - renaming directory. "Perverted" 4727 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 4728 * Problems: 4729 * 4730 * a) we can get into loop creation. 4731 * b) race potential - two innocent renames can create a loop together. 4732 * That's where 4.4 screws up. Current fix: serialization on 4733 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 4734 * story. 4735 * c) we have to lock _four_ objects - parents and victim (if it exists), 4736 * and source. 4737 * And that - after we got ->i_mutex on parents (until then we don't know 4738 * whether the target exists). Solution: try to be smart with locking 4739 * order for inodes. We rely on the fact that tree topology may change 4740 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 4741 * move will be locked. Thus we can rank directories by the tree 4742 * (ancestors first) and rank all non-directories after them. 4743 * That works since everybody except rename does "lock parent, lookup, 4744 * lock child" and rename is under ->s_vfs_rename_mutex. 4745 * HOWEVER, it relies on the assumption that any object with ->lookup() 4746 * has no more than 1 dentry. If "hybrid" objects will ever appear, 4747 * we'd better make sure that there's no link(2) for them. 4748 * d) conversion from fhandle to dentry may come in the wrong moment - when 4749 * we are removing the target. Solution: we will have to grab ->i_mutex 4750 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 4751 * ->i_mutex on parents, which works but leads to some truly excessive 4752 * locking]. 4753 */ 4754 int vfs_rename(struct renamedata *rd) 4755 { 4756 int error; 4757 struct inode *old_dir = rd->old_dir, *new_dir = rd->new_dir; 4758 struct dentry *old_dentry = rd->old_dentry; 4759 struct dentry *new_dentry = rd->new_dentry; 4760 struct inode **delegated_inode = rd->delegated_inode; 4761 unsigned int flags = rd->flags; 4762 bool is_dir = d_is_dir(old_dentry); 4763 struct inode *source = old_dentry->d_inode; 4764 struct inode *target = new_dentry->d_inode; 4765 bool new_is_dir = false; 4766 unsigned max_links = new_dir->i_sb->s_max_links; 4767 struct name_snapshot old_name; 4768 4769 if (source == target) 4770 return 0; 4771 4772 error = may_delete(rd->old_mnt_idmap, old_dir, old_dentry, is_dir); 4773 if (error) 4774 return error; 4775 4776 if (!target) { 4777 error = may_create(rd->new_mnt_idmap, new_dir, new_dentry); 4778 } else { 4779 new_is_dir = d_is_dir(new_dentry); 4780 4781 if (!(flags & RENAME_EXCHANGE)) 4782 error = may_delete(rd->new_mnt_idmap, new_dir, 4783 new_dentry, is_dir); 4784 else 4785 error = may_delete(rd->new_mnt_idmap, new_dir, 4786 new_dentry, new_is_dir); 4787 } 4788 if (error) 4789 return error; 4790 4791 if (!old_dir->i_op->rename) 4792 return -EPERM; 4793 4794 /* 4795 * If we are going to change the parent - check write permissions, 4796 * we'll need to flip '..'. 4797 */ 4798 if (new_dir != old_dir) { 4799 if (is_dir) { 4800 error = inode_permission(rd->old_mnt_idmap, source, 4801 MAY_WRITE); 4802 if (error) 4803 return error; 4804 } 4805 if ((flags & RENAME_EXCHANGE) && new_is_dir) { 4806 error = inode_permission(rd->new_mnt_idmap, target, 4807 MAY_WRITE); 4808 if (error) 4809 return error; 4810 } 4811 } 4812 4813 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry, 4814 flags); 4815 if (error) 4816 return error; 4817 4818 take_dentry_name_snapshot(&old_name, old_dentry); 4819 dget(new_dentry); 4820 /* 4821 * Lock all moved children. Moved directories may need to change parent 4822 * pointer so they need the lock to prevent against concurrent 4823 * directory changes moving parent pointer. For regular files we've 4824 * historically always done this. The lockdep locking subclasses are 4825 * somewhat arbitrary but RENAME_EXCHANGE in particular can swap 4826 * regular files and directories so it's difficult to tell which 4827 * subclasses to use. 4828 */ 4829 lock_two_inodes(source, target, I_MUTEX_NORMAL, I_MUTEX_NONDIR2); 4830 4831 error = -EPERM; 4832 if (IS_SWAPFILE(source) || (target && IS_SWAPFILE(target))) 4833 goto out; 4834 4835 error = -EBUSY; 4836 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry)) 4837 goto out; 4838 4839 if (max_links && new_dir != old_dir) { 4840 error = -EMLINK; 4841 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links) 4842 goto out; 4843 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir && 4844 old_dir->i_nlink >= max_links) 4845 goto out; 4846 } 4847 if (!is_dir) { 4848 error = try_break_deleg(source, delegated_inode); 4849 if (error) 4850 goto out; 4851 } 4852 if (target && !new_is_dir) { 4853 error = try_break_deleg(target, delegated_inode); 4854 if (error) 4855 goto out; 4856 } 4857 error = old_dir->i_op->rename(rd->new_mnt_idmap, old_dir, old_dentry, 4858 new_dir, new_dentry, flags); 4859 if (error) 4860 goto out; 4861 4862 if (!(flags & RENAME_EXCHANGE) && target) { 4863 if (is_dir) { 4864 shrink_dcache_parent(new_dentry); 4865 target->i_flags |= S_DEAD; 4866 } 4867 dont_mount(new_dentry); 4868 detach_mounts(new_dentry); 4869 } 4870 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) { 4871 if (!(flags & RENAME_EXCHANGE)) 4872 d_move(old_dentry, new_dentry); 4873 else 4874 d_exchange(old_dentry, new_dentry); 4875 } 4876 out: 4877 if (source) 4878 inode_unlock(source); 4879 if (target) 4880 inode_unlock(target); 4881 dput(new_dentry); 4882 if (!error) { 4883 fsnotify_move(old_dir, new_dir, &old_name.name, is_dir, 4884 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry); 4885 if (flags & RENAME_EXCHANGE) { 4886 fsnotify_move(new_dir, old_dir, &old_dentry->d_name, 4887 new_is_dir, NULL, new_dentry); 4888 } 4889 } 4890 release_dentry_name_snapshot(&old_name); 4891 4892 return error; 4893 } 4894 EXPORT_SYMBOL(vfs_rename); 4895 4896 int do_renameat2(int olddfd, struct filename *from, int newdfd, 4897 struct filename *to, unsigned int flags) 4898 { 4899 struct renamedata rd; 4900 struct dentry *old_dentry, *new_dentry; 4901 struct dentry *trap; 4902 struct path old_path, new_path; 4903 struct qstr old_last, new_last; 4904 int old_type, new_type; 4905 struct inode *delegated_inode = NULL; 4906 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET; 4907 bool should_retry = false; 4908 int error = -EINVAL; 4909 4910 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 4911 goto put_names; 4912 4913 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) && 4914 (flags & RENAME_EXCHANGE)) 4915 goto put_names; 4916 4917 if (flags & RENAME_EXCHANGE) 4918 target_flags = 0; 4919 4920 retry: 4921 error = filename_parentat(olddfd, from, lookup_flags, &old_path, 4922 &old_last, &old_type); 4923 if (error) 4924 goto put_names; 4925 4926 error = filename_parentat(newdfd, to, lookup_flags, &new_path, &new_last, 4927 &new_type); 4928 if (error) 4929 goto exit1; 4930 4931 error = -EXDEV; 4932 if (old_path.mnt != new_path.mnt) 4933 goto exit2; 4934 4935 error = -EBUSY; 4936 if (old_type != LAST_NORM) 4937 goto exit2; 4938 4939 if (flags & RENAME_NOREPLACE) 4940 error = -EEXIST; 4941 if (new_type != LAST_NORM) 4942 goto exit2; 4943 4944 error = mnt_want_write(old_path.mnt); 4945 if (error) 4946 goto exit2; 4947 4948 retry_deleg: 4949 trap = lock_rename(new_path.dentry, old_path.dentry); 4950 4951 old_dentry = lookup_one_qstr_excl(&old_last, old_path.dentry, 4952 lookup_flags); 4953 error = PTR_ERR(old_dentry); 4954 if (IS_ERR(old_dentry)) 4955 goto exit3; 4956 /* source must exist */ 4957 error = -ENOENT; 4958 if (d_is_negative(old_dentry)) 4959 goto exit4; 4960 new_dentry = lookup_one_qstr_excl(&new_last, new_path.dentry, 4961 lookup_flags | target_flags); 4962 error = PTR_ERR(new_dentry); 4963 if (IS_ERR(new_dentry)) 4964 goto exit4; 4965 error = -EEXIST; 4966 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry)) 4967 goto exit5; 4968 if (flags & RENAME_EXCHANGE) { 4969 error = -ENOENT; 4970 if (d_is_negative(new_dentry)) 4971 goto exit5; 4972 4973 if (!d_is_dir(new_dentry)) { 4974 error = -ENOTDIR; 4975 if (new_last.name[new_last.len]) 4976 goto exit5; 4977 } 4978 } 4979 /* unless the source is a directory trailing slashes give -ENOTDIR */ 4980 if (!d_is_dir(old_dentry)) { 4981 error = -ENOTDIR; 4982 if (old_last.name[old_last.len]) 4983 goto exit5; 4984 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len]) 4985 goto exit5; 4986 } 4987 /* source should not be ancestor of target */ 4988 error = -EINVAL; 4989 if (old_dentry == trap) 4990 goto exit5; 4991 /* target should not be an ancestor of source */ 4992 if (!(flags & RENAME_EXCHANGE)) 4993 error = -ENOTEMPTY; 4994 if (new_dentry == trap) 4995 goto exit5; 4996 4997 error = security_path_rename(&old_path, old_dentry, 4998 &new_path, new_dentry, flags); 4999 if (error) 5000 goto exit5; 5001 5002 rd.old_dir = old_path.dentry->d_inode; 5003 rd.old_dentry = old_dentry; 5004 rd.old_mnt_idmap = mnt_idmap(old_path.mnt); 5005 rd.new_dir = new_path.dentry->d_inode; 5006 rd.new_dentry = new_dentry; 5007 rd.new_mnt_idmap = mnt_idmap(new_path.mnt); 5008 rd.delegated_inode = &delegated_inode; 5009 rd.flags = flags; 5010 error = vfs_rename(&rd); 5011 exit5: 5012 dput(new_dentry); 5013 exit4: 5014 dput(old_dentry); 5015 exit3: 5016 unlock_rename(new_path.dentry, old_path.dentry); 5017 if (delegated_inode) { 5018 error = break_deleg_wait(&delegated_inode); 5019 if (!error) 5020 goto retry_deleg; 5021 } 5022 mnt_drop_write(old_path.mnt); 5023 exit2: 5024 if (retry_estale(error, lookup_flags)) 5025 should_retry = true; 5026 path_put(&new_path); 5027 exit1: 5028 path_put(&old_path); 5029 if (should_retry) { 5030 should_retry = false; 5031 lookup_flags |= LOOKUP_REVAL; 5032 goto retry; 5033 } 5034 put_names: 5035 putname(from); 5036 putname(to); 5037 return error; 5038 } 5039 5040 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname, 5041 int, newdfd, const char __user *, newname, unsigned int, flags) 5042 { 5043 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname), 5044 flags); 5045 } 5046 5047 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 5048 int, newdfd, const char __user *, newname) 5049 { 5050 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname), 5051 0); 5052 } 5053 5054 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 5055 { 5056 return do_renameat2(AT_FDCWD, getname(oldname), AT_FDCWD, 5057 getname(newname), 0); 5058 } 5059 5060 int readlink_copy(char __user *buffer, int buflen, const char *link) 5061 { 5062 int len = PTR_ERR(link); 5063 if (IS_ERR(link)) 5064 goto out; 5065 5066 len = strlen(link); 5067 if (len > (unsigned) buflen) 5068 len = buflen; 5069 if (copy_to_user(buffer, link, len)) 5070 len = -EFAULT; 5071 out: 5072 return len; 5073 } 5074 5075 /** 5076 * vfs_readlink - copy symlink body into userspace buffer 5077 * @dentry: dentry on which to get symbolic link 5078 * @buffer: user memory pointer 5079 * @buflen: size of buffer 5080 * 5081 * Does not touch atime. That's up to the caller if necessary 5082 * 5083 * Does not call security hook. 5084 */ 5085 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen) 5086 { 5087 struct inode *inode = d_inode(dentry); 5088 DEFINE_DELAYED_CALL(done); 5089 const char *link; 5090 int res; 5091 5092 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) { 5093 if (unlikely(inode->i_op->readlink)) 5094 return inode->i_op->readlink(dentry, buffer, buflen); 5095 5096 if (!d_is_symlink(dentry)) 5097 return -EINVAL; 5098 5099 spin_lock(&inode->i_lock); 5100 inode->i_opflags |= IOP_DEFAULT_READLINK; 5101 spin_unlock(&inode->i_lock); 5102 } 5103 5104 link = READ_ONCE(inode->i_link); 5105 if (!link) { 5106 link = inode->i_op->get_link(dentry, inode, &done); 5107 if (IS_ERR(link)) 5108 return PTR_ERR(link); 5109 } 5110 res = readlink_copy(buffer, buflen, link); 5111 do_delayed_call(&done); 5112 return res; 5113 } 5114 EXPORT_SYMBOL(vfs_readlink); 5115 5116 /** 5117 * vfs_get_link - get symlink body 5118 * @dentry: dentry on which to get symbolic link 5119 * @done: caller needs to free returned data with this 5120 * 5121 * Calls security hook and i_op->get_link() on the supplied inode. 5122 * 5123 * It does not touch atime. That's up to the caller if necessary. 5124 * 5125 * Does not work on "special" symlinks like /proc/$$/fd/N 5126 */ 5127 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done) 5128 { 5129 const char *res = ERR_PTR(-EINVAL); 5130 struct inode *inode = d_inode(dentry); 5131 5132 if (d_is_symlink(dentry)) { 5133 res = ERR_PTR(security_inode_readlink(dentry)); 5134 if (!res) 5135 res = inode->i_op->get_link(dentry, inode, done); 5136 } 5137 return res; 5138 } 5139 EXPORT_SYMBOL(vfs_get_link); 5140 5141 /* get the link contents into pagecache */ 5142 const char *page_get_link(struct dentry *dentry, struct inode *inode, 5143 struct delayed_call *callback) 5144 { 5145 char *kaddr; 5146 struct page *page; 5147 struct address_space *mapping = inode->i_mapping; 5148 5149 if (!dentry) { 5150 page = find_get_page(mapping, 0); 5151 if (!page) 5152 return ERR_PTR(-ECHILD); 5153 if (!PageUptodate(page)) { 5154 put_page(page); 5155 return ERR_PTR(-ECHILD); 5156 } 5157 } else { 5158 page = read_mapping_page(mapping, 0, NULL); 5159 if (IS_ERR(page)) 5160 return (char*)page; 5161 } 5162 set_delayed_call(callback, page_put_link, page); 5163 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM); 5164 kaddr = page_address(page); 5165 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1); 5166 return kaddr; 5167 } 5168 5169 EXPORT_SYMBOL(page_get_link); 5170 5171 void page_put_link(void *arg) 5172 { 5173 put_page(arg); 5174 } 5175 EXPORT_SYMBOL(page_put_link); 5176 5177 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 5178 { 5179 DEFINE_DELAYED_CALL(done); 5180 int res = readlink_copy(buffer, buflen, 5181 page_get_link(dentry, d_inode(dentry), 5182 &done)); 5183 do_delayed_call(&done); 5184 return res; 5185 } 5186 EXPORT_SYMBOL(page_readlink); 5187 5188 int page_symlink(struct inode *inode, const char *symname, int len) 5189 { 5190 struct address_space *mapping = inode->i_mapping; 5191 const struct address_space_operations *aops = mapping->a_ops; 5192 bool nofs = !mapping_gfp_constraint(mapping, __GFP_FS); 5193 struct page *page; 5194 void *fsdata = NULL; 5195 int err; 5196 unsigned int flags; 5197 5198 retry: 5199 if (nofs) 5200 flags = memalloc_nofs_save(); 5201 err = aops->write_begin(NULL, mapping, 0, len-1, &page, &fsdata); 5202 if (nofs) 5203 memalloc_nofs_restore(flags); 5204 if (err) 5205 goto fail; 5206 5207 memcpy(page_address(page), symname, len-1); 5208 5209 err = aops->write_end(NULL, mapping, 0, len-1, len-1, 5210 page, fsdata); 5211 if (err < 0) 5212 goto fail; 5213 if (err < len-1) 5214 goto retry; 5215 5216 mark_inode_dirty(inode); 5217 return 0; 5218 fail: 5219 return err; 5220 } 5221 EXPORT_SYMBOL(page_symlink); 5222 5223 const struct inode_operations page_symlink_inode_operations = { 5224 .get_link = page_get_link, 5225 }; 5226 EXPORT_SYMBOL(page_symlink_inode_operations); 5227