1 /* 2 * linux/fs/namei.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * Some corrections by tytso. 9 */ 10 11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 12 * lookup logic. 13 */ 14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 15 */ 16 17 #include <linux/init.h> 18 #include <linux/module.h> 19 #include <linux/slab.h> 20 #include <linux/fs.h> 21 #include <linux/namei.h> 22 #include <linux/pagemap.h> 23 #include <linux/fsnotify.h> 24 #include <linux/personality.h> 25 #include <linux/security.h> 26 #include <linux/ima.h> 27 #include <linux/syscalls.h> 28 #include <linux/mount.h> 29 #include <linux/audit.h> 30 #include <linux/capability.h> 31 #include <linux/file.h> 32 #include <linux/fcntl.h> 33 #include <linux/device_cgroup.h> 34 #include <linux/fs_struct.h> 35 #include <asm/uaccess.h> 36 37 #include "internal.h" 38 39 /* [Feb-1997 T. Schoebel-Theuer] 40 * Fundamental changes in the pathname lookup mechanisms (namei) 41 * were necessary because of omirr. The reason is that omirr needs 42 * to know the _real_ pathname, not the user-supplied one, in case 43 * of symlinks (and also when transname replacements occur). 44 * 45 * The new code replaces the old recursive symlink resolution with 46 * an iterative one (in case of non-nested symlink chains). It does 47 * this with calls to <fs>_follow_link(). 48 * As a side effect, dir_namei(), _namei() and follow_link() are now 49 * replaced with a single function lookup_dentry() that can handle all 50 * the special cases of the former code. 51 * 52 * With the new dcache, the pathname is stored at each inode, at least as 53 * long as the refcount of the inode is positive. As a side effect, the 54 * size of the dcache depends on the inode cache and thus is dynamic. 55 * 56 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 57 * resolution to correspond with current state of the code. 58 * 59 * Note that the symlink resolution is not *completely* iterative. 60 * There is still a significant amount of tail- and mid- recursion in 61 * the algorithm. Also, note that <fs>_readlink() is not used in 62 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 63 * may return different results than <fs>_follow_link(). Many virtual 64 * filesystems (including /proc) exhibit this behavior. 65 */ 66 67 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 68 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 69 * and the name already exists in form of a symlink, try to create the new 70 * name indicated by the symlink. The old code always complained that the 71 * name already exists, due to not following the symlink even if its target 72 * is nonexistent. The new semantics affects also mknod() and link() when 73 * the name is a symlink pointing to a non-existant name. 74 * 75 * I don't know which semantics is the right one, since I have no access 76 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 77 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 78 * "old" one. Personally, I think the new semantics is much more logical. 79 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 80 * file does succeed in both HP-UX and SunOs, but not in Solaris 81 * and in the old Linux semantics. 82 */ 83 84 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 85 * semantics. See the comments in "open_namei" and "do_link" below. 86 * 87 * [10-Sep-98 Alan Modra] Another symlink change. 88 */ 89 90 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 91 * inside the path - always follow. 92 * in the last component in creation/removal/renaming - never follow. 93 * if LOOKUP_FOLLOW passed - follow. 94 * if the pathname has trailing slashes - follow. 95 * otherwise - don't follow. 96 * (applied in that order). 97 * 98 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 99 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 100 * During the 2.4 we need to fix the userland stuff depending on it - 101 * hopefully we will be able to get rid of that wart in 2.5. So far only 102 * XEmacs seems to be relying on it... 103 */ 104 /* 105 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 106 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 107 * any extra contention... 108 */ 109 110 /* In order to reduce some races, while at the same time doing additional 111 * checking and hopefully speeding things up, we copy filenames to the 112 * kernel data space before using them.. 113 * 114 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 115 * PATH_MAX includes the nul terminator --RR. 116 */ 117 static int do_getname(const char __user *filename, char *page) 118 { 119 int retval; 120 unsigned long len = PATH_MAX; 121 122 if (!segment_eq(get_fs(), KERNEL_DS)) { 123 if ((unsigned long) filename >= TASK_SIZE) 124 return -EFAULT; 125 if (TASK_SIZE - (unsigned long) filename < PATH_MAX) 126 len = TASK_SIZE - (unsigned long) filename; 127 } 128 129 retval = strncpy_from_user(page, filename, len); 130 if (retval > 0) { 131 if (retval < len) 132 return 0; 133 return -ENAMETOOLONG; 134 } else if (!retval) 135 retval = -ENOENT; 136 return retval; 137 } 138 139 char * getname(const char __user * filename) 140 { 141 char *tmp, *result; 142 143 result = ERR_PTR(-ENOMEM); 144 tmp = __getname(); 145 if (tmp) { 146 int retval = do_getname(filename, tmp); 147 148 result = tmp; 149 if (retval < 0) { 150 __putname(tmp); 151 result = ERR_PTR(retval); 152 } 153 } 154 audit_getname(result); 155 return result; 156 } 157 158 #ifdef CONFIG_AUDITSYSCALL 159 void putname(const char *name) 160 { 161 if (unlikely(!audit_dummy_context())) 162 audit_putname(name); 163 else 164 __putname(name); 165 } 166 EXPORT_SYMBOL(putname); 167 #endif 168 169 /* 170 * This does basic POSIX ACL permission checking 171 */ 172 static int acl_permission_check(struct inode *inode, int mask, 173 int (*check_acl)(struct inode *inode, int mask)) 174 { 175 umode_t mode = inode->i_mode; 176 177 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 178 179 if (current_fsuid() == inode->i_uid) 180 mode >>= 6; 181 else { 182 if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) { 183 int error = check_acl(inode, mask); 184 if (error != -EAGAIN) 185 return error; 186 } 187 188 if (in_group_p(inode->i_gid)) 189 mode >>= 3; 190 } 191 192 /* 193 * If the DACs are ok we don't need any capability check. 194 */ 195 if ((mask & ~mode) == 0) 196 return 0; 197 return -EACCES; 198 } 199 200 /** 201 * generic_permission - check for access rights on a Posix-like filesystem 202 * @inode: inode to check access rights for 203 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 204 * @check_acl: optional callback to check for Posix ACLs 205 * 206 * Used to check for read/write/execute permissions on a file. 207 * We use "fsuid" for this, letting us set arbitrary permissions 208 * for filesystem access without changing the "normal" uids which 209 * are used for other things.. 210 */ 211 int generic_permission(struct inode *inode, int mask, 212 int (*check_acl)(struct inode *inode, int mask)) 213 { 214 int ret; 215 216 /* 217 * Do the basic POSIX ACL permission checks. 218 */ 219 ret = acl_permission_check(inode, mask, check_acl); 220 if (ret != -EACCES) 221 return ret; 222 223 /* 224 * Read/write DACs are always overridable. 225 * Executable DACs are overridable if at least one exec bit is set. 226 */ 227 if (!(mask & MAY_EXEC) || execute_ok(inode)) 228 if (capable(CAP_DAC_OVERRIDE)) 229 return 0; 230 231 /* 232 * Searching includes executable on directories, else just read. 233 */ 234 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 235 if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE))) 236 if (capable(CAP_DAC_READ_SEARCH)) 237 return 0; 238 239 return -EACCES; 240 } 241 242 /** 243 * inode_permission - check for access rights to a given inode 244 * @inode: inode to check permission on 245 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 246 * 247 * Used to check for read/write/execute permissions on an inode. 248 * We use "fsuid" for this, letting us set arbitrary permissions 249 * for filesystem access without changing the "normal" uids which 250 * are used for other things. 251 */ 252 int inode_permission(struct inode *inode, int mask) 253 { 254 int retval; 255 256 if (mask & MAY_WRITE) { 257 umode_t mode = inode->i_mode; 258 259 /* 260 * Nobody gets write access to a read-only fs. 261 */ 262 if (IS_RDONLY(inode) && 263 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 264 return -EROFS; 265 266 /* 267 * Nobody gets write access to an immutable file. 268 */ 269 if (IS_IMMUTABLE(inode)) 270 return -EACCES; 271 } 272 273 if (inode->i_op->permission) 274 retval = inode->i_op->permission(inode, mask); 275 else 276 retval = generic_permission(inode, mask, inode->i_op->check_acl); 277 278 if (retval) 279 return retval; 280 281 retval = devcgroup_inode_permission(inode, mask); 282 if (retval) 283 return retval; 284 285 return security_inode_permission(inode, mask); 286 } 287 288 /** 289 * file_permission - check for additional access rights to a given file 290 * @file: file to check access rights for 291 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 292 * 293 * Used to check for read/write/execute permissions on an already opened 294 * file. 295 * 296 * Note: 297 * Do not use this function in new code. All access checks should 298 * be done using inode_permission(). 299 */ 300 int file_permission(struct file *file, int mask) 301 { 302 return inode_permission(file->f_path.dentry->d_inode, mask); 303 } 304 305 /* 306 * get_write_access() gets write permission for a file. 307 * put_write_access() releases this write permission. 308 * This is used for regular files. 309 * We cannot support write (and maybe mmap read-write shared) accesses and 310 * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode 311 * can have the following values: 312 * 0: no writers, no VM_DENYWRITE mappings 313 * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist 314 * > 0: (i_writecount) users are writing to the file. 315 * 316 * Normally we operate on that counter with atomic_{inc,dec} and it's safe 317 * except for the cases where we don't hold i_writecount yet. Then we need to 318 * use {get,deny}_write_access() - these functions check the sign and refuse 319 * to do the change if sign is wrong. Exclusion between them is provided by 320 * the inode->i_lock spinlock. 321 */ 322 323 int get_write_access(struct inode * inode) 324 { 325 spin_lock(&inode->i_lock); 326 if (atomic_read(&inode->i_writecount) < 0) { 327 spin_unlock(&inode->i_lock); 328 return -ETXTBSY; 329 } 330 atomic_inc(&inode->i_writecount); 331 spin_unlock(&inode->i_lock); 332 333 return 0; 334 } 335 336 int deny_write_access(struct file * file) 337 { 338 struct inode *inode = file->f_path.dentry->d_inode; 339 340 spin_lock(&inode->i_lock); 341 if (atomic_read(&inode->i_writecount) > 0) { 342 spin_unlock(&inode->i_lock); 343 return -ETXTBSY; 344 } 345 atomic_dec(&inode->i_writecount); 346 spin_unlock(&inode->i_lock); 347 348 return 0; 349 } 350 351 /** 352 * path_get - get a reference to a path 353 * @path: path to get the reference to 354 * 355 * Given a path increment the reference count to the dentry and the vfsmount. 356 */ 357 void path_get(struct path *path) 358 { 359 mntget(path->mnt); 360 dget(path->dentry); 361 } 362 EXPORT_SYMBOL(path_get); 363 364 /** 365 * path_put - put a reference to a path 366 * @path: path to put the reference to 367 * 368 * Given a path decrement the reference count to the dentry and the vfsmount. 369 */ 370 void path_put(struct path *path) 371 { 372 dput(path->dentry); 373 mntput(path->mnt); 374 } 375 EXPORT_SYMBOL(path_put); 376 377 /** 378 * release_open_intent - free up open intent resources 379 * @nd: pointer to nameidata 380 */ 381 void release_open_intent(struct nameidata *nd) 382 { 383 if (nd->intent.open.file->f_path.dentry == NULL) 384 put_filp(nd->intent.open.file); 385 else 386 fput(nd->intent.open.file); 387 } 388 389 static inline struct dentry * 390 do_revalidate(struct dentry *dentry, struct nameidata *nd) 391 { 392 int status = dentry->d_op->d_revalidate(dentry, nd); 393 if (unlikely(status <= 0)) { 394 /* 395 * The dentry failed validation. 396 * If d_revalidate returned 0 attempt to invalidate 397 * the dentry otherwise d_revalidate is asking us 398 * to return a fail status. 399 */ 400 if (!status) { 401 if (!d_invalidate(dentry)) { 402 dput(dentry); 403 dentry = NULL; 404 } 405 } else { 406 dput(dentry); 407 dentry = ERR_PTR(status); 408 } 409 } 410 return dentry; 411 } 412 413 /* 414 * force_reval_path - force revalidation of a dentry 415 * 416 * In some situations the path walking code will trust dentries without 417 * revalidating them. This causes problems for filesystems that depend on 418 * d_revalidate to handle file opens (e.g. NFSv4). When FS_REVAL_DOT is set 419 * (which indicates that it's possible for the dentry to go stale), force 420 * a d_revalidate call before proceeding. 421 * 422 * Returns 0 if the revalidation was successful. If the revalidation fails, 423 * either return the error returned by d_revalidate or -ESTALE if the 424 * revalidation it just returned 0. If d_revalidate returns 0, we attempt to 425 * invalidate the dentry. It's up to the caller to handle putting references 426 * to the path if necessary. 427 */ 428 static int 429 force_reval_path(struct path *path, struct nameidata *nd) 430 { 431 int status; 432 struct dentry *dentry = path->dentry; 433 434 /* 435 * only check on filesystems where it's possible for the dentry to 436 * become stale. It's assumed that if this flag is set then the 437 * d_revalidate op will also be defined. 438 */ 439 if (!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)) 440 return 0; 441 442 status = dentry->d_op->d_revalidate(dentry, nd); 443 if (status > 0) 444 return 0; 445 446 if (!status) { 447 d_invalidate(dentry); 448 status = -ESTALE; 449 } 450 return status; 451 } 452 453 /* 454 * Short-cut version of permission(), for calling on directories 455 * during pathname resolution. Combines parts of permission() 456 * and generic_permission(), and tests ONLY for MAY_EXEC permission. 457 * 458 * If appropriate, check DAC only. If not appropriate, or 459 * short-cut DAC fails, then call ->permission() to do more 460 * complete permission check. 461 */ 462 static int exec_permission(struct inode *inode) 463 { 464 int ret; 465 466 if (inode->i_op->permission) { 467 ret = inode->i_op->permission(inode, MAY_EXEC); 468 if (!ret) 469 goto ok; 470 return ret; 471 } 472 ret = acl_permission_check(inode, MAY_EXEC, inode->i_op->check_acl); 473 if (!ret) 474 goto ok; 475 476 if (capable(CAP_DAC_OVERRIDE) || capable(CAP_DAC_READ_SEARCH)) 477 goto ok; 478 479 return ret; 480 ok: 481 return security_inode_permission(inode, MAY_EXEC); 482 } 483 484 static __always_inline void set_root(struct nameidata *nd) 485 { 486 if (!nd->root.mnt) 487 get_fs_root(current->fs, &nd->root); 488 } 489 490 static int link_path_walk(const char *, struct nameidata *); 491 492 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link) 493 { 494 if (IS_ERR(link)) 495 goto fail; 496 497 if (*link == '/') { 498 set_root(nd); 499 path_put(&nd->path); 500 nd->path = nd->root; 501 path_get(&nd->root); 502 } 503 504 return link_path_walk(link, nd); 505 fail: 506 path_put(&nd->path); 507 return PTR_ERR(link); 508 } 509 510 static void path_put_conditional(struct path *path, struct nameidata *nd) 511 { 512 dput(path->dentry); 513 if (path->mnt != nd->path.mnt) 514 mntput(path->mnt); 515 } 516 517 static inline void path_to_nameidata(struct path *path, struct nameidata *nd) 518 { 519 dput(nd->path.dentry); 520 if (nd->path.mnt != path->mnt) { 521 mntput(nd->path.mnt); 522 nd->path.mnt = path->mnt; 523 } 524 nd->path.dentry = path->dentry; 525 } 526 527 static __always_inline int 528 __do_follow_link(struct path *path, struct nameidata *nd, void **p) 529 { 530 int error; 531 struct dentry *dentry = path->dentry; 532 533 touch_atime(path->mnt, dentry); 534 nd_set_link(nd, NULL); 535 536 if (path->mnt != nd->path.mnt) { 537 path_to_nameidata(path, nd); 538 dget(dentry); 539 } 540 mntget(path->mnt); 541 nd->last_type = LAST_BIND; 542 *p = dentry->d_inode->i_op->follow_link(dentry, nd); 543 error = PTR_ERR(*p); 544 if (!IS_ERR(*p)) { 545 char *s = nd_get_link(nd); 546 error = 0; 547 if (s) 548 error = __vfs_follow_link(nd, s); 549 else if (nd->last_type == LAST_BIND) { 550 error = force_reval_path(&nd->path, nd); 551 if (error) 552 path_put(&nd->path); 553 } 554 } 555 return error; 556 } 557 558 /* 559 * This limits recursive symlink follows to 8, while 560 * limiting consecutive symlinks to 40. 561 * 562 * Without that kind of total limit, nasty chains of consecutive 563 * symlinks can cause almost arbitrarily long lookups. 564 */ 565 static inline int do_follow_link(struct path *path, struct nameidata *nd) 566 { 567 void *cookie; 568 int err = -ELOOP; 569 if (current->link_count >= MAX_NESTED_LINKS) 570 goto loop; 571 if (current->total_link_count >= 40) 572 goto loop; 573 BUG_ON(nd->depth >= MAX_NESTED_LINKS); 574 cond_resched(); 575 err = security_inode_follow_link(path->dentry, nd); 576 if (err) 577 goto loop; 578 current->link_count++; 579 current->total_link_count++; 580 nd->depth++; 581 err = __do_follow_link(path, nd, &cookie); 582 if (!IS_ERR(cookie) && path->dentry->d_inode->i_op->put_link) 583 path->dentry->d_inode->i_op->put_link(path->dentry, nd, cookie); 584 path_put(path); 585 current->link_count--; 586 nd->depth--; 587 return err; 588 loop: 589 path_put_conditional(path, nd); 590 path_put(&nd->path); 591 return err; 592 } 593 594 int follow_up(struct path *path) 595 { 596 struct vfsmount *parent; 597 struct dentry *mountpoint; 598 599 br_read_lock(vfsmount_lock); 600 parent = path->mnt->mnt_parent; 601 if (parent == path->mnt) { 602 br_read_unlock(vfsmount_lock); 603 return 0; 604 } 605 mntget(parent); 606 mountpoint = dget(path->mnt->mnt_mountpoint); 607 br_read_unlock(vfsmount_lock); 608 dput(path->dentry); 609 path->dentry = mountpoint; 610 mntput(path->mnt); 611 path->mnt = parent; 612 return 1; 613 } 614 615 /* no need for dcache_lock, as serialization is taken care in 616 * namespace.c 617 */ 618 static int __follow_mount(struct path *path) 619 { 620 int res = 0; 621 while (d_mountpoint(path->dentry)) { 622 struct vfsmount *mounted = lookup_mnt(path); 623 if (!mounted) 624 break; 625 dput(path->dentry); 626 if (res) 627 mntput(path->mnt); 628 path->mnt = mounted; 629 path->dentry = dget(mounted->mnt_root); 630 res = 1; 631 } 632 return res; 633 } 634 635 static void follow_mount(struct path *path) 636 { 637 while (d_mountpoint(path->dentry)) { 638 struct vfsmount *mounted = lookup_mnt(path); 639 if (!mounted) 640 break; 641 dput(path->dentry); 642 mntput(path->mnt); 643 path->mnt = mounted; 644 path->dentry = dget(mounted->mnt_root); 645 } 646 } 647 648 /* no need for dcache_lock, as serialization is taken care in 649 * namespace.c 650 */ 651 int follow_down(struct path *path) 652 { 653 struct vfsmount *mounted; 654 655 mounted = lookup_mnt(path); 656 if (mounted) { 657 dput(path->dentry); 658 mntput(path->mnt); 659 path->mnt = mounted; 660 path->dentry = dget(mounted->mnt_root); 661 return 1; 662 } 663 return 0; 664 } 665 666 static __always_inline void follow_dotdot(struct nameidata *nd) 667 { 668 set_root(nd); 669 670 while(1) { 671 struct dentry *old = nd->path.dentry; 672 673 if (nd->path.dentry == nd->root.dentry && 674 nd->path.mnt == nd->root.mnt) { 675 break; 676 } 677 if (nd->path.dentry != nd->path.mnt->mnt_root) { 678 /* rare case of legitimate dget_parent()... */ 679 nd->path.dentry = dget_parent(nd->path.dentry); 680 dput(old); 681 break; 682 } 683 if (!follow_up(&nd->path)) 684 break; 685 } 686 follow_mount(&nd->path); 687 } 688 689 /* 690 * Allocate a dentry with name and parent, and perform a parent 691 * directory ->lookup on it. Returns the new dentry, or ERR_PTR 692 * on error. parent->d_inode->i_mutex must be held. d_lookup must 693 * have verified that no child exists while under i_mutex. 694 */ 695 static struct dentry *d_alloc_and_lookup(struct dentry *parent, 696 struct qstr *name, struct nameidata *nd) 697 { 698 struct inode *inode = parent->d_inode; 699 struct dentry *dentry; 700 struct dentry *old; 701 702 /* Don't create child dentry for a dead directory. */ 703 if (unlikely(IS_DEADDIR(inode))) 704 return ERR_PTR(-ENOENT); 705 706 dentry = d_alloc(parent, name); 707 if (unlikely(!dentry)) 708 return ERR_PTR(-ENOMEM); 709 710 old = inode->i_op->lookup(inode, dentry, nd); 711 if (unlikely(old)) { 712 dput(dentry); 713 dentry = old; 714 } 715 return dentry; 716 } 717 718 /* 719 * It's more convoluted than I'd like it to be, but... it's still fairly 720 * small and for now I'd prefer to have fast path as straight as possible. 721 * It _is_ time-critical. 722 */ 723 static int do_lookup(struct nameidata *nd, struct qstr *name, 724 struct path *path) 725 { 726 struct vfsmount *mnt = nd->path.mnt; 727 struct dentry *dentry, *parent; 728 struct inode *dir; 729 /* 730 * See if the low-level filesystem might want 731 * to use its own hash.. 732 */ 733 if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) { 734 int err = nd->path.dentry->d_op->d_hash(nd->path.dentry, name); 735 if (err < 0) 736 return err; 737 } 738 739 /* 740 * Rename seqlock is not required here because in the off chance 741 * of a false negative due to a concurrent rename, we're going to 742 * do the non-racy lookup, below. 743 */ 744 dentry = __d_lookup(nd->path.dentry, name); 745 if (!dentry) 746 goto need_lookup; 747 found: 748 if (dentry->d_op && dentry->d_op->d_revalidate) 749 goto need_revalidate; 750 done: 751 path->mnt = mnt; 752 path->dentry = dentry; 753 __follow_mount(path); 754 return 0; 755 756 need_lookup: 757 parent = nd->path.dentry; 758 dir = parent->d_inode; 759 760 mutex_lock(&dir->i_mutex); 761 /* 762 * First re-do the cached lookup just in case it was created 763 * while we waited for the directory semaphore, or the first 764 * lookup failed due to an unrelated rename. 765 * 766 * This could use version numbering or similar to avoid unnecessary 767 * cache lookups, but then we'd have to do the first lookup in the 768 * non-racy way. However in the common case here, everything should 769 * be hot in cache, so would it be a big win? 770 */ 771 dentry = d_lookup(parent, name); 772 if (likely(!dentry)) { 773 dentry = d_alloc_and_lookup(parent, name, nd); 774 mutex_unlock(&dir->i_mutex); 775 if (IS_ERR(dentry)) 776 goto fail; 777 goto done; 778 } 779 /* 780 * Uhhuh! Nasty case: the cache was re-populated while 781 * we waited on the semaphore. Need to revalidate. 782 */ 783 mutex_unlock(&dir->i_mutex); 784 goto found; 785 786 need_revalidate: 787 dentry = do_revalidate(dentry, nd); 788 if (!dentry) 789 goto need_lookup; 790 if (IS_ERR(dentry)) 791 goto fail; 792 goto done; 793 794 fail: 795 return PTR_ERR(dentry); 796 } 797 798 /* 799 * This is a temporary kludge to deal with "automount" symlinks; proper 800 * solution is to trigger them on follow_mount(), so that do_lookup() 801 * would DTRT. To be killed before 2.6.34-final. 802 */ 803 static inline int follow_on_final(struct inode *inode, unsigned lookup_flags) 804 { 805 return inode && unlikely(inode->i_op->follow_link) && 806 ((lookup_flags & LOOKUP_FOLLOW) || S_ISDIR(inode->i_mode)); 807 } 808 809 /* 810 * Name resolution. 811 * This is the basic name resolution function, turning a pathname into 812 * the final dentry. We expect 'base' to be positive and a directory. 813 * 814 * Returns 0 and nd will have valid dentry and mnt on success. 815 * Returns error and drops reference to input namei data on failure. 816 */ 817 static int link_path_walk(const char *name, struct nameidata *nd) 818 { 819 struct path next; 820 struct inode *inode; 821 int err; 822 unsigned int lookup_flags = nd->flags; 823 824 while (*name=='/') 825 name++; 826 if (!*name) 827 goto return_reval; 828 829 inode = nd->path.dentry->d_inode; 830 if (nd->depth) 831 lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE); 832 833 /* At this point we know we have a real path component. */ 834 for(;;) { 835 unsigned long hash; 836 struct qstr this; 837 unsigned int c; 838 839 nd->flags |= LOOKUP_CONTINUE; 840 err = exec_permission(inode); 841 if (err) 842 break; 843 844 this.name = name; 845 c = *(const unsigned char *)name; 846 847 hash = init_name_hash(); 848 do { 849 name++; 850 hash = partial_name_hash(c, hash); 851 c = *(const unsigned char *)name; 852 } while (c && (c != '/')); 853 this.len = name - (const char *) this.name; 854 this.hash = end_name_hash(hash); 855 856 /* remove trailing slashes? */ 857 if (!c) 858 goto last_component; 859 while (*++name == '/'); 860 if (!*name) 861 goto last_with_slashes; 862 863 /* 864 * "." and ".." are special - ".." especially so because it has 865 * to be able to know about the current root directory and 866 * parent relationships. 867 */ 868 if (this.name[0] == '.') switch (this.len) { 869 default: 870 break; 871 case 2: 872 if (this.name[1] != '.') 873 break; 874 follow_dotdot(nd); 875 inode = nd->path.dentry->d_inode; 876 /* fallthrough */ 877 case 1: 878 continue; 879 } 880 /* This does the actual lookups.. */ 881 err = do_lookup(nd, &this, &next); 882 if (err) 883 break; 884 885 err = -ENOENT; 886 inode = next.dentry->d_inode; 887 if (!inode) 888 goto out_dput; 889 890 if (inode->i_op->follow_link) { 891 err = do_follow_link(&next, nd); 892 if (err) 893 goto return_err; 894 err = -ENOENT; 895 inode = nd->path.dentry->d_inode; 896 if (!inode) 897 break; 898 } else 899 path_to_nameidata(&next, nd); 900 err = -ENOTDIR; 901 if (!inode->i_op->lookup) 902 break; 903 continue; 904 /* here ends the main loop */ 905 906 last_with_slashes: 907 lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 908 last_component: 909 /* Clear LOOKUP_CONTINUE iff it was previously unset */ 910 nd->flags &= lookup_flags | ~LOOKUP_CONTINUE; 911 if (lookup_flags & LOOKUP_PARENT) 912 goto lookup_parent; 913 if (this.name[0] == '.') switch (this.len) { 914 default: 915 break; 916 case 2: 917 if (this.name[1] != '.') 918 break; 919 follow_dotdot(nd); 920 inode = nd->path.dentry->d_inode; 921 /* fallthrough */ 922 case 1: 923 goto return_reval; 924 } 925 err = do_lookup(nd, &this, &next); 926 if (err) 927 break; 928 inode = next.dentry->d_inode; 929 if (follow_on_final(inode, lookup_flags)) { 930 err = do_follow_link(&next, nd); 931 if (err) 932 goto return_err; 933 inode = nd->path.dentry->d_inode; 934 } else 935 path_to_nameidata(&next, nd); 936 err = -ENOENT; 937 if (!inode) 938 break; 939 if (lookup_flags & LOOKUP_DIRECTORY) { 940 err = -ENOTDIR; 941 if (!inode->i_op->lookup) 942 break; 943 } 944 goto return_base; 945 lookup_parent: 946 nd->last = this; 947 nd->last_type = LAST_NORM; 948 if (this.name[0] != '.') 949 goto return_base; 950 if (this.len == 1) 951 nd->last_type = LAST_DOT; 952 else if (this.len == 2 && this.name[1] == '.') 953 nd->last_type = LAST_DOTDOT; 954 else 955 goto return_base; 956 return_reval: 957 /* 958 * We bypassed the ordinary revalidation routines. 959 * We may need to check the cached dentry for staleness. 960 */ 961 if (nd->path.dentry && nd->path.dentry->d_sb && 962 (nd->path.dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)) { 963 err = -ESTALE; 964 /* Note: we do not d_invalidate() */ 965 if (!nd->path.dentry->d_op->d_revalidate( 966 nd->path.dentry, nd)) 967 break; 968 } 969 return_base: 970 return 0; 971 out_dput: 972 path_put_conditional(&next, nd); 973 break; 974 } 975 path_put(&nd->path); 976 return_err: 977 return err; 978 } 979 980 static int path_walk(const char *name, struct nameidata *nd) 981 { 982 struct path save = nd->path; 983 int result; 984 985 current->total_link_count = 0; 986 987 /* make sure the stuff we saved doesn't go away */ 988 path_get(&save); 989 990 result = link_path_walk(name, nd); 991 if (result == -ESTALE) { 992 /* nd->path had been dropped */ 993 current->total_link_count = 0; 994 nd->path = save; 995 path_get(&nd->path); 996 nd->flags |= LOOKUP_REVAL; 997 result = link_path_walk(name, nd); 998 } 999 1000 path_put(&save); 1001 1002 return result; 1003 } 1004 1005 static int path_init(int dfd, const char *name, unsigned int flags, struct nameidata *nd) 1006 { 1007 int retval = 0; 1008 int fput_needed; 1009 struct file *file; 1010 1011 nd->last_type = LAST_ROOT; /* if there are only slashes... */ 1012 nd->flags = flags; 1013 nd->depth = 0; 1014 nd->root.mnt = NULL; 1015 1016 if (*name=='/') { 1017 set_root(nd); 1018 nd->path = nd->root; 1019 path_get(&nd->root); 1020 } else if (dfd == AT_FDCWD) { 1021 get_fs_pwd(current->fs, &nd->path); 1022 } else { 1023 struct dentry *dentry; 1024 1025 file = fget_light(dfd, &fput_needed); 1026 retval = -EBADF; 1027 if (!file) 1028 goto out_fail; 1029 1030 dentry = file->f_path.dentry; 1031 1032 retval = -ENOTDIR; 1033 if (!S_ISDIR(dentry->d_inode->i_mode)) 1034 goto fput_fail; 1035 1036 retval = file_permission(file, MAY_EXEC); 1037 if (retval) 1038 goto fput_fail; 1039 1040 nd->path = file->f_path; 1041 path_get(&file->f_path); 1042 1043 fput_light(file, fput_needed); 1044 } 1045 return 0; 1046 1047 fput_fail: 1048 fput_light(file, fput_needed); 1049 out_fail: 1050 return retval; 1051 } 1052 1053 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 1054 static int do_path_lookup(int dfd, const char *name, 1055 unsigned int flags, struct nameidata *nd) 1056 { 1057 int retval = path_init(dfd, name, flags, nd); 1058 if (!retval) 1059 retval = path_walk(name, nd); 1060 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry && 1061 nd->path.dentry->d_inode)) 1062 audit_inode(name, nd->path.dentry); 1063 if (nd->root.mnt) { 1064 path_put(&nd->root); 1065 nd->root.mnt = NULL; 1066 } 1067 return retval; 1068 } 1069 1070 int path_lookup(const char *name, unsigned int flags, 1071 struct nameidata *nd) 1072 { 1073 return do_path_lookup(AT_FDCWD, name, flags, nd); 1074 } 1075 1076 int kern_path(const char *name, unsigned int flags, struct path *path) 1077 { 1078 struct nameidata nd; 1079 int res = do_path_lookup(AT_FDCWD, name, flags, &nd); 1080 if (!res) 1081 *path = nd.path; 1082 return res; 1083 } 1084 1085 /** 1086 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 1087 * @dentry: pointer to dentry of the base directory 1088 * @mnt: pointer to vfs mount of the base directory 1089 * @name: pointer to file name 1090 * @flags: lookup flags 1091 * @nd: pointer to nameidata 1092 */ 1093 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 1094 const char *name, unsigned int flags, 1095 struct nameidata *nd) 1096 { 1097 int retval; 1098 1099 /* same as do_path_lookup */ 1100 nd->last_type = LAST_ROOT; 1101 nd->flags = flags; 1102 nd->depth = 0; 1103 1104 nd->path.dentry = dentry; 1105 nd->path.mnt = mnt; 1106 path_get(&nd->path); 1107 nd->root = nd->path; 1108 path_get(&nd->root); 1109 1110 retval = path_walk(name, nd); 1111 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry && 1112 nd->path.dentry->d_inode)) 1113 audit_inode(name, nd->path.dentry); 1114 1115 path_put(&nd->root); 1116 nd->root.mnt = NULL; 1117 1118 return retval; 1119 } 1120 1121 static struct dentry *__lookup_hash(struct qstr *name, 1122 struct dentry *base, struct nameidata *nd) 1123 { 1124 struct inode *inode = base->d_inode; 1125 struct dentry *dentry; 1126 int err; 1127 1128 err = exec_permission(inode); 1129 if (err) 1130 return ERR_PTR(err); 1131 1132 /* 1133 * See if the low-level filesystem might want 1134 * to use its own hash.. 1135 */ 1136 if (base->d_op && base->d_op->d_hash) { 1137 err = base->d_op->d_hash(base, name); 1138 dentry = ERR_PTR(err); 1139 if (err < 0) 1140 goto out; 1141 } 1142 1143 /* 1144 * Don't bother with __d_lookup: callers are for creat as 1145 * well as unlink, so a lot of the time it would cost 1146 * a double lookup. 1147 */ 1148 dentry = d_lookup(base, name); 1149 1150 if (dentry && dentry->d_op && dentry->d_op->d_revalidate) 1151 dentry = do_revalidate(dentry, nd); 1152 1153 if (!dentry) 1154 dentry = d_alloc_and_lookup(base, name, nd); 1155 out: 1156 return dentry; 1157 } 1158 1159 /* 1160 * Restricted form of lookup. Doesn't follow links, single-component only, 1161 * needs parent already locked. Doesn't follow mounts. 1162 * SMP-safe. 1163 */ 1164 static struct dentry *lookup_hash(struct nameidata *nd) 1165 { 1166 return __lookup_hash(&nd->last, nd->path.dentry, nd); 1167 } 1168 1169 static int __lookup_one_len(const char *name, struct qstr *this, 1170 struct dentry *base, int len) 1171 { 1172 unsigned long hash; 1173 unsigned int c; 1174 1175 this->name = name; 1176 this->len = len; 1177 if (!len) 1178 return -EACCES; 1179 1180 hash = init_name_hash(); 1181 while (len--) { 1182 c = *(const unsigned char *)name++; 1183 if (c == '/' || c == '\0') 1184 return -EACCES; 1185 hash = partial_name_hash(c, hash); 1186 } 1187 this->hash = end_name_hash(hash); 1188 return 0; 1189 } 1190 1191 /** 1192 * lookup_one_len - filesystem helper to lookup single pathname component 1193 * @name: pathname component to lookup 1194 * @base: base directory to lookup from 1195 * @len: maximum length @len should be interpreted to 1196 * 1197 * Note that this routine is purely a helper for filesystem usage and should 1198 * not be called by generic code. Also note that by using this function the 1199 * nameidata argument is passed to the filesystem methods and a filesystem 1200 * using this helper needs to be prepared for that. 1201 */ 1202 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 1203 { 1204 int err; 1205 struct qstr this; 1206 1207 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex)); 1208 1209 err = __lookup_one_len(name, &this, base, len); 1210 if (err) 1211 return ERR_PTR(err); 1212 1213 return __lookup_hash(&this, base, NULL); 1214 } 1215 1216 int user_path_at(int dfd, const char __user *name, unsigned flags, 1217 struct path *path) 1218 { 1219 struct nameidata nd; 1220 char *tmp = getname(name); 1221 int err = PTR_ERR(tmp); 1222 if (!IS_ERR(tmp)) { 1223 1224 BUG_ON(flags & LOOKUP_PARENT); 1225 1226 err = do_path_lookup(dfd, tmp, flags, &nd); 1227 putname(tmp); 1228 if (!err) 1229 *path = nd.path; 1230 } 1231 return err; 1232 } 1233 1234 static int user_path_parent(int dfd, const char __user *path, 1235 struct nameidata *nd, char **name) 1236 { 1237 char *s = getname(path); 1238 int error; 1239 1240 if (IS_ERR(s)) 1241 return PTR_ERR(s); 1242 1243 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd); 1244 if (error) 1245 putname(s); 1246 else 1247 *name = s; 1248 1249 return error; 1250 } 1251 1252 /* 1253 * It's inline, so penalty for filesystems that don't use sticky bit is 1254 * minimal. 1255 */ 1256 static inline int check_sticky(struct inode *dir, struct inode *inode) 1257 { 1258 uid_t fsuid = current_fsuid(); 1259 1260 if (!(dir->i_mode & S_ISVTX)) 1261 return 0; 1262 if (inode->i_uid == fsuid) 1263 return 0; 1264 if (dir->i_uid == fsuid) 1265 return 0; 1266 return !capable(CAP_FOWNER); 1267 } 1268 1269 /* 1270 * Check whether we can remove a link victim from directory dir, check 1271 * whether the type of victim is right. 1272 * 1. We can't do it if dir is read-only (done in permission()) 1273 * 2. We should have write and exec permissions on dir 1274 * 3. We can't remove anything from append-only dir 1275 * 4. We can't do anything with immutable dir (done in permission()) 1276 * 5. If the sticky bit on dir is set we should either 1277 * a. be owner of dir, or 1278 * b. be owner of victim, or 1279 * c. have CAP_FOWNER capability 1280 * 6. If the victim is append-only or immutable we can't do antyhing with 1281 * links pointing to it. 1282 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 1283 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 1284 * 9. We can't remove a root or mountpoint. 1285 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 1286 * nfs_async_unlink(). 1287 */ 1288 static int may_delete(struct inode *dir,struct dentry *victim,int isdir) 1289 { 1290 int error; 1291 1292 if (!victim->d_inode) 1293 return -ENOENT; 1294 1295 BUG_ON(victim->d_parent->d_inode != dir); 1296 audit_inode_child(victim, dir); 1297 1298 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 1299 if (error) 1300 return error; 1301 if (IS_APPEND(dir)) 1302 return -EPERM; 1303 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)|| 1304 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode)) 1305 return -EPERM; 1306 if (isdir) { 1307 if (!S_ISDIR(victim->d_inode->i_mode)) 1308 return -ENOTDIR; 1309 if (IS_ROOT(victim)) 1310 return -EBUSY; 1311 } else if (S_ISDIR(victim->d_inode->i_mode)) 1312 return -EISDIR; 1313 if (IS_DEADDIR(dir)) 1314 return -ENOENT; 1315 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 1316 return -EBUSY; 1317 return 0; 1318 } 1319 1320 /* Check whether we can create an object with dentry child in directory 1321 * dir. 1322 * 1. We can't do it if child already exists (open has special treatment for 1323 * this case, but since we are inlined it's OK) 1324 * 2. We can't do it if dir is read-only (done in permission()) 1325 * 3. We should have write and exec permissions on dir 1326 * 4. We can't do it if dir is immutable (done in permission()) 1327 */ 1328 static inline int may_create(struct inode *dir, struct dentry *child) 1329 { 1330 if (child->d_inode) 1331 return -EEXIST; 1332 if (IS_DEADDIR(dir)) 1333 return -ENOENT; 1334 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 1335 } 1336 1337 /* 1338 * p1 and p2 should be directories on the same fs. 1339 */ 1340 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 1341 { 1342 struct dentry *p; 1343 1344 if (p1 == p2) { 1345 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 1346 return NULL; 1347 } 1348 1349 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 1350 1351 p = d_ancestor(p2, p1); 1352 if (p) { 1353 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT); 1354 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD); 1355 return p; 1356 } 1357 1358 p = d_ancestor(p1, p2); 1359 if (p) { 1360 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 1361 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 1362 return p; 1363 } 1364 1365 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 1366 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 1367 return NULL; 1368 } 1369 1370 void unlock_rename(struct dentry *p1, struct dentry *p2) 1371 { 1372 mutex_unlock(&p1->d_inode->i_mutex); 1373 if (p1 != p2) { 1374 mutex_unlock(&p2->d_inode->i_mutex); 1375 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 1376 } 1377 } 1378 1379 int vfs_create(struct inode *dir, struct dentry *dentry, int mode, 1380 struct nameidata *nd) 1381 { 1382 int error = may_create(dir, dentry); 1383 1384 if (error) 1385 return error; 1386 1387 if (!dir->i_op->create) 1388 return -EACCES; /* shouldn't it be ENOSYS? */ 1389 mode &= S_IALLUGO; 1390 mode |= S_IFREG; 1391 error = security_inode_create(dir, dentry, mode); 1392 if (error) 1393 return error; 1394 error = dir->i_op->create(dir, dentry, mode, nd); 1395 if (!error) 1396 fsnotify_create(dir, dentry); 1397 return error; 1398 } 1399 1400 int may_open(struct path *path, int acc_mode, int flag) 1401 { 1402 struct dentry *dentry = path->dentry; 1403 struct inode *inode = dentry->d_inode; 1404 int error; 1405 1406 if (!inode) 1407 return -ENOENT; 1408 1409 switch (inode->i_mode & S_IFMT) { 1410 case S_IFLNK: 1411 return -ELOOP; 1412 case S_IFDIR: 1413 if (acc_mode & MAY_WRITE) 1414 return -EISDIR; 1415 break; 1416 case S_IFBLK: 1417 case S_IFCHR: 1418 if (path->mnt->mnt_flags & MNT_NODEV) 1419 return -EACCES; 1420 /*FALLTHRU*/ 1421 case S_IFIFO: 1422 case S_IFSOCK: 1423 flag &= ~O_TRUNC; 1424 break; 1425 } 1426 1427 error = inode_permission(inode, acc_mode); 1428 if (error) 1429 return error; 1430 1431 /* 1432 * An append-only file must be opened in append mode for writing. 1433 */ 1434 if (IS_APPEND(inode)) { 1435 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 1436 return -EPERM; 1437 if (flag & O_TRUNC) 1438 return -EPERM; 1439 } 1440 1441 /* O_NOATIME can only be set by the owner or superuser */ 1442 if (flag & O_NOATIME && !is_owner_or_cap(inode)) 1443 return -EPERM; 1444 1445 /* 1446 * Ensure there are no outstanding leases on the file. 1447 */ 1448 return break_lease(inode, flag); 1449 } 1450 1451 static int handle_truncate(struct path *path) 1452 { 1453 struct inode *inode = path->dentry->d_inode; 1454 int error = get_write_access(inode); 1455 if (error) 1456 return error; 1457 /* 1458 * Refuse to truncate files with mandatory locks held on them. 1459 */ 1460 error = locks_verify_locked(inode); 1461 if (!error) 1462 error = security_path_truncate(path); 1463 if (!error) { 1464 error = do_truncate(path->dentry, 0, 1465 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 1466 NULL); 1467 } 1468 put_write_access(inode); 1469 return error; 1470 } 1471 1472 /* 1473 * Be careful about ever adding any more callers of this 1474 * function. Its flags must be in the namei format, not 1475 * what get passed to sys_open(). 1476 */ 1477 static int __open_namei_create(struct nameidata *nd, struct path *path, 1478 int open_flag, int mode) 1479 { 1480 int error; 1481 struct dentry *dir = nd->path.dentry; 1482 1483 if (!IS_POSIXACL(dir->d_inode)) 1484 mode &= ~current_umask(); 1485 error = security_path_mknod(&nd->path, path->dentry, mode, 0); 1486 if (error) 1487 goto out_unlock; 1488 error = vfs_create(dir->d_inode, path->dentry, mode, nd); 1489 out_unlock: 1490 mutex_unlock(&dir->d_inode->i_mutex); 1491 dput(nd->path.dentry); 1492 nd->path.dentry = path->dentry; 1493 if (error) 1494 return error; 1495 /* Don't check for write permission, don't truncate */ 1496 return may_open(&nd->path, 0, open_flag & ~O_TRUNC); 1497 } 1498 1499 /* 1500 * Note that while the flag value (low two bits) for sys_open means: 1501 * 00 - read-only 1502 * 01 - write-only 1503 * 10 - read-write 1504 * 11 - special 1505 * it is changed into 1506 * 00 - no permissions needed 1507 * 01 - read-permission 1508 * 10 - write-permission 1509 * 11 - read-write 1510 * for the internal routines (ie open_namei()/follow_link() etc) 1511 * This is more logical, and also allows the 00 "no perm needed" 1512 * to be used for symlinks (where the permissions are checked 1513 * later). 1514 * 1515 */ 1516 static inline int open_to_namei_flags(int flag) 1517 { 1518 if ((flag+1) & O_ACCMODE) 1519 flag++; 1520 return flag; 1521 } 1522 1523 static int open_will_truncate(int flag, struct inode *inode) 1524 { 1525 /* 1526 * We'll never write to the fs underlying 1527 * a device file. 1528 */ 1529 if (special_file(inode->i_mode)) 1530 return 0; 1531 return (flag & O_TRUNC); 1532 } 1533 1534 static struct file *finish_open(struct nameidata *nd, 1535 int open_flag, int acc_mode) 1536 { 1537 struct file *filp; 1538 int will_truncate; 1539 int error; 1540 1541 will_truncate = open_will_truncate(open_flag, nd->path.dentry->d_inode); 1542 if (will_truncate) { 1543 error = mnt_want_write(nd->path.mnt); 1544 if (error) 1545 goto exit; 1546 } 1547 error = may_open(&nd->path, acc_mode, open_flag); 1548 if (error) { 1549 if (will_truncate) 1550 mnt_drop_write(nd->path.mnt); 1551 goto exit; 1552 } 1553 filp = nameidata_to_filp(nd); 1554 if (!IS_ERR(filp)) { 1555 error = ima_file_check(filp, acc_mode); 1556 if (error) { 1557 fput(filp); 1558 filp = ERR_PTR(error); 1559 } 1560 } 1561 if (!IS_ERR(filp)) { 1562 if (will_truncate) { 1563 error = handle_truncate(&nd->path); 1564 if (error) { 1565 fput(filp); 1566 filp = ERR_PTR(error); 1567 } 1568 } 1569 } 1570 /* 1571 * It is now safe to drop the mnt write 1572 * because the filp has had a write taken 1573 * on its behalf. 1574 */ 1575 if (will_truncate) 1576 mnt_drop_write(nd->path.mnt); 1577 path_put(&nd->path); 1578 return filp; 1579 1580 exit: 1581 if (!IS_ERR(nd->intent.open.file)) 1582 release_open_intent(nd); 1583 path_put(&nd->path); 1584 return ERR_PTR(error); 1585 } 1586 1587 static struct file *do_last(struct nameidata *nd, struct path *path, 1588 int open_flag, int acc_mode, 1589 int mode, const char *pathname) 1590 { 1591 struct dentry *dir = nd->path.dentry; 1592 struct file *filp; 1593 int error = -EISDIR; 1594 1595 switch (nd->last_type) { 1596 case LAST_DOTDOT: 1597 follow_dotdot(nd); 1598 dir = nd->path.dentry; 1599 case LAST_DOT: 1600 if (nd->path.mnt->mnt_sb->s_type->fs_flags & FS_REVAL_DOT) { 1601 if (!dir->d_op->d_revalidate(dir, nd)) { 1602 error = -ESTALE; 1603 goto exit; 1604 } 1605 } 1606 /* fallthrough */ 1607 case LAST_ROOT: 1608 if (open_flag & O_CREAT) 1609 goto exit; 1610 /* fallthrough */ 1611 case LAST_BIND: 1612 audit_inode(pathname, dir); 1613 goto ok; 1614 } 1615 1616 /* trailing slashes? */ 1617 if (nd->last.name[nd->last.len]) { 1618 if (open_flag & O_CREAT) 1619 goto exit; 1620 nd->flags |= LOOKUP_DIRECTORY | LOOKUP_FOLLOW; 1621 } 1622 1623 /* just plain open? */ 1624 if (!(open_flag & O_CREAT)) { 1625 error = do_lookup(nd, &nd->last, path); 1626 if (error) 1627 goto exit; 1628 error = -ENOENT; 1629 if (!path->dentry->d_inode) 1630 goto exit_dput; 1631 if (path->dentry->d_inode->i_op->follow_link) 1632 return NULL; 1633 error = -ENOTDIR; 1634 if (nd->flags & LOOKUP_DIRECTORY) { 1635 if (!path->dentry->d_inode->i_op->lookup) 1636 goto exit_dput; 1637 } 1638 path_to_nameidata(path, nd); 1639 audit_inode(pathname, nd->path.dentry); 1640 goto ok; 1641 } 1642 1643 /* OK, it's O_CREAT */ 1644 mutex_lock(&dir->d_inode->i_mutex); 1645 1646 path->dentry = lookup_hash(nd); 1647 path->mnt = nd->path.mnt; 1648 1649 error = PTR_ERR(path->dentry); 1650 if (IS_ERR(path->dentry)) { 1651 mutex_unlock(&dir->d_inode->i_mutex); 1652 goto exit; 1653 } 1654 1655 if (IS_ERR(nd->intent.open.file)) { 1656 error = PTR_ERR(nd->intent.open.file); 1657 goto exit_mutex_unlock; 1658 } 1659 1660 /* Negative dentry, just create the file */ 1661 if (!path->dentry->d_inode) { 1662 /* 1663 * This write is needed to ensure that a 1664 * ro->rw transition does not occur between 1665 * the time when the file is created and when 1666 * a permanent write count is taken through 1667 * the 'struct file' in nameidata_to_filp(). 1668 */ 1669 error = mnt_want_write(nd->path.mnt); 1670 if (error) 1671 goto exit_mutex_unlock; 1672 error = __open_namei_create(nd, path, open_flag, mode); 1673 if (error) { 1674 mnt_drop_write(nd->path.mnt); 1675 goto exit; 1676 } 1677 filp = nameidata_to_filp(nd); 1678 mnt_drop_write(nd->path.mnt); 1679 path_put(&nd->path); 1680 if (!IS_ERR(filp)) { 1681 error = ima_file_check(filp, acc_mode); 1682 if (error) { 1683 fput(filp); 1684 filp = ERR_PTR(error); 1685 } 1686 } 1687 return filp; 1688 } 1689 1690 /* 1691 * It already exists. 1692 */ 1693 mutex_unlock(&dir->d_inode->i_mutex); 1694 audit_inode(pathname, path->dentry); 1695 1696 error = -EEXIST; 1697 if (open_flag & O_EXCL) 1698 goto exit_dput; 1699 1700 if (__follow_mount(path)) { 1701 error = -ELOOP; 1702 if (open_flag & O_NOFOLLOW) 1703 goto exit_dput; 1704 } 1705 1706 error = -ENOENT; 1707 if (!path->dentry->d_inode) 1708 goto exit_dput; 1709 1710 if (path->dentry->d_inode->i_op->follow_link) 1711 return NULL; 1712 1713 path_to_nameidata(path, nd); 1714 error = -EISDIR; 1715 if (S_ISDIR(path->dentry->d_inode->i_mode)) 1716 goto exit; 1717 ok: 1718 filp = finish_open(nd, open_flag, acc_mode); 1719 return filp; 1720 1721 exit_mutex_unlock: 1722 mutex_unlock(&dir->d_inode->i_mutex); 1723 exit_dput: 1724 path_put_conditional(path, nd); 1725 exit: 1726 if (!IS_ERR(nd->intent.open.file)) 1727 release_open_intent(nd); 1728 path_put(&nd->path); 1729 return ERR_PTR(error); 1730 } 1731 1732 /* 1733 * Note that the low bits of the passed in "open_flag" 1734 * are not the same as in the local variable "flag". See 1735 * open_to_namei_flags() for more details. 1736 */ 1737 struct file *do_filp_open(int dfd, const char *pathname, 1738 int open_flag, int mode, int acc_mode) 1739 { 1740 struct file *filp; 1741 struct nameidata nd; 1742 int error; 1743 struct path path; 1744 int count = 0; 1745 int flag = open_to_namei_flags(open_flag); 1746 int force_reval = 0; 1747 1748 if (!(open_flag & O_CREAT)) 1749 mode = 0; 1750 1751 /* Must never be set by userspace */ 1752 open_flag &= ~FMODE_NONOTIFY; 1753 1754 /* 1755 * O_SYNC is implemented as __O_SYNC|O_DSYNC. As many places only 1756 * check for O_DSYNC if the need any syncing at all we enforce it's 1757 * always set instead of having to deal with possibly weird behaviour 1758 * for malicious applications setting only __O_SYNC. 1759 */ 1760 if (open_flag & __O_SYNC) 1761 open_flag |= O_DSYNC; 1762 1763 if (!acc_mode) 1764 acc_mode = MAY_OPEN | ACC_MODE(open_flag); 1765 1766 /* O_TRUNC implies we need access checks for write permissions */ 1767 if (open_flag & O_TRUNC) 1768 acc_mode |= MAY_WRITE; 1769 1770 /* Allow the LSM permission hook to distinguish append 1771 access from general write access. */ 1772 if (open_flag & O_APPEND) 1773 acc_mode |= MAY_APPEND; 1774 1775 /* find the parent */ 1776 reval: 1777 error = path_init(dfd, pathname, LOOKUP_PARENT, &nd); 1778 if (error) 1779 return ERR_PTR(error); 1780 if (force_reval) 1781 nd.flags |= LOOKUP_REVAL; 1782 1783 current->total_link_count = 0; 1784 error = link_path_walk(pathname, &nd); 1785 if (error) { 1786 filp = ERR_PTR(error); 1787 goto out; 1788 } 1789 if (unlikely(!audit_dummy_context()) && (open_flag & O_CREAT)) 1790 audit_inode(pathname, nd.path.dentry); 1791 1792 /* 1793 * We have the parent and last component. 1794 */ 1795 1796 error = -ENFILE; 1797 filp = get_empty_filp(); 1798 if (filp == NULL) 1799 goto exit_parent; 1800 nd.intent.open.file = filp; 1801 filp->f_flags = open_flag; 1802 nd.intent.open.flags = flag; 1803 nd.intent.open.create_mode = mode; 1804 nd.flags &= ~LOOKUP_PARENT; 1805 nd.flags |= LOOKUP_OPEN; 1806 if (open_flag & O_CREAT) { 1807 nd.flags |= LOOKUP_CREATE; 1808 if (open_flag & O_EXCL) 1809 nd.flags |= LOOKUP_EXCL; 1810 } 1811 if (open_flag & O_DIRECTORY) 1812 nd.flags |= LOOKUP_DIRECTORY; 1813 if (!(open_flag & O_NOFOLLOW)) 1814 nd.flags |= LOOKUP_FOLLOW; 1815 filp = do_last(&nd, &path, open_flag, acc_mode, mode, pathname); 1816 while (unlikely(!filp)) { /* trailing symlink */ 1817 struct path holder; 1818 struct inode *inode = path.dentry->d_inode; 1819 void *cookie; 1820 error = -ELOOP; 1821 /* S_ISDIR part is a temporary automount kludge */ 1822 if (!(nd.flags & LOOKUP_FOLLOW) && !S_ISDIR(inode->i_mode)) 1823 goto exit_dput; 1824 if (count++ == 32) 1825 goto exit_dput; 1826 /* 1827 * This is subtle. Instead of calling do_follow_link() we do 1828 * the thing by hands. The reason is that this way we have zero 1829 * link_count and path_walk() (called from ->follow_link) 1830 * honoring LOOKUP_PARENT. After that we have the parent and 1831 * last component, i.e. we are in the same situation as after 1832 * the first path_walk(). Well, almost - if the last component 1833 * is normal we get its copy stored in nd->last.name and we will 1834 * have to putname() it when we are done. Procfs-like symlinks 1835 * just set LAST_BIND. 1836 */ 1837 nd.flags |= LOOKUP_PARENT; 1838 error = security_inode_follow_link(path.dentry, &nd); 1839 if (error) 1840 goto exit_dput; 1841 error = __do_follow_link(&path, &nd, &cookie); 1842 if (unlikely(error)) { 1843 /* nd.path had been dropped */ 1844 if (!IS_ERR(cookie) && inode->i_op->put_link) 1845 inode->i_op->put_link(path.dentry, &nd, cookie); 1846 path_put(&path); 1847 release_open_intent(&nd); 1848 filp = ERR_PTR(error); 1849 goto out; 1850 } 1851 holder = path; 1852 nd.flags &= ~LOOKUP_PARENT; 1853 filp = do_last(&nd, &path, open_flag, acc_mode, mode, pathname); 1854 if (inode->i_op->put_link) 1855 inode->i_op->put_link(holder.dentry, &nd, cookie); 1856 path_put(&holder); 1857 } 1858 out: 1859 if (nd.root.mnt) 1860 path_put(&nd.root); 1861 if (filp == ERR_PTR(-ESTALE) && !force_reval) { 1862 force_reval = 1; 1863 goto reval; 1864 } 1865 return filp; 1866 1867 exit_dput: 1868 path_put_conditional(&path, &nd); 1869 if (!IS_ERR(nd.intent.open.file)) 1870 release_open_intent(&nd); 1871 exit_parent: 1872 path_put(&nd.path); 1873 filp = ERR_PTR(error); 1874 goto out; 1875 } 1876 1877 /** 1878 * filp_open - open file and return file pointer 1879 * 1880 * @filename: path to open 1881 * @flags: open flags as per the open(2) second argument 1882 * @mode: mode for the new file if O_CREAT is set, else ignored 1883 * 1884 * This is the helper to open a file from kernelspace if you really 1885 * have to. But in generally you should not do this, so please move 1886 * along, nothing to see here.. 1887 */ 1888 struct file *filp_open(const char *filename, int flags, int mode) 1889 { 1890 return do_filp_open(AT_FDCWD, filename, flags, mode, 0); 1891 } 1892 EXPORT_SYMBOL(filp_open); 1893 1894 /** 1895 * lookup_create - lookup a dentry, creating it if it doesn't exist 1896 * @nd: nameidata info 1897 * @is_dir: directory flag 1898 * 1899 * Simple function to lookup and return a dentry and create it 1900 * if it doesn't exist. Is SMP-safe. 1901 * 1902 * Returns with nd->path.dentry->d_inode->i_mutex locked. 1903 */ 1904 struct dentry *lookup_create(struct nameidata *nd, int is_dir) 1905 { 1906 struct dentry *dentry = ERR_PTR(-EEXIST); 1907 1908 mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 1909 /* 1910 * Yucky last component or no last component at all? 1911 * (foo/., foo/.., /////) 1912 */ 1913 if (nd->last_type != LAST_NORM) 1914 goto fail; 1915 nd->flags &= ~LOOKUP_PARENT; 1916 nd->flags |= LOOKUP_CREATE | LOOKUP_EXCL; 1917 nd->intent.open.flags = O_EXCL; 1918 1919 /* 1920 * Do the final lookup. 1921 */ 1922 dentry = lookup_hash(nd); 1923 if (IS_ERR(dentry)) 1924 goto fail; 1925 1926 if (dentry->d_inode) 1927 goto eexist; 1928 /* 1929 * Special case - lookup gave negative, but... we had foo/bar/ 1930 * From the vfs_mknod() POV we just have a negative dentry - 1931 * all is fine. Let's be bastards - you had / on the end, you've 1932 * been asking for (non-existent) directory. -ENOENT for you. 1933 */ 1934 if (unlikely(!is_dir && nd->last.name[nd->last.len])) { 1935 dput(dentry); 1936 dentry = ERR_PTR(-ENOENT); 1937 } 1938 return dentry; 1939 eexist: 1940 dput(dentry); 1941 dentry = ERR_PTR(-EEXIST); 1942 fail: 1943 return dentry; 1944 } 1945 EXPORT_SYMBOL_GPL(lookup_create); 1946 1947 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) 1948 { 1949 int error = may_create(dir, dentry); 1950 1951 if (error) 1952 return error; 1953 1954 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD)) 1955 return -EPERM; 1956 1957 if (!dir->i_op->mknod) 1958 return -EPERM; 1959 1960 error = devcgroup_inode_mknod(mode, dev); 1961 if (error) 1962 return error; 1963 1964 error = security_inode_mknod(dir, dentry, mode, dev); 1965 if (error) 1966 return error; 1967 1968 error = dir->i_op->mknod(dir, dentry, mode, dev); 1969 if (!error) 1970 fsnotify_create(dir, dentry); 1971 return error; 1972 } 1973 1974 static int may_mknod(mode_t mode) 1975 { 1976 switch (mode & S_IFMT) { 1977 case S_IFREG: 1978 case S_IFCHR: 1979 case S_IFBLK: 1980 case S_IFIFO: 1981 case S_IFSOCK: 1982 case 0: /* zero mode translates to S_IFREG */ 1983 return 0; 1984 case S_IFDIR: 1985 return -EPERM; 1986 default: 1987 return -EINVAL; 1988 } 1989 } 1990 1991 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode, 1992 unsigned, dev) 1993 { 1994 int error; 1995 char *tmp; 1996 struct dentry *dentry; 1997 struct nameidata nd; 1998 1999 if (S_ISDIR(mode)) 2000 return -EPERM; 2001 2002 error = user_path_parent(dfd, filename, &nd, &tmp); 2003 if (error) 2004 return error; 2005 2006 dentry = lookup_create(&nd, 0); 2007 if (IS_ERR(dentry)) { 2008 error = PTR_ERR(dentry); 2009 goto out_unlock; 2010 } 2011 if (!IS_POSIXACL(nd.path.dentry->d_inode)) 2012 mode &= ~current_umask(); 2013 error = may_mknod(mode); 2014 if (error) 2015 goto out_dput; 2016 error = mnt_want_write(nd.path.mnt); 2017 if (error) 2018 goto out_dput; 2019 error = security_path_mknod(&nd.path, dentry, mode, dev); 2020 if (error) 2021 goto out_drop_write; 2022 switch (mode & S_IFMT) { 2023 case 0: case S_IFREG: 2024 error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd); 2025 break; 2026 case S_IFCHR: case S_IFBLK: 2027 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode, 2028 new_decode_dev(dev)); 2029 break; 2030 case S_IFIFO: case S_IFSOCK: 2031 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0); 2032 break; 2033 } 2034 out_drop_write: 2035 mnt_drop_write(nd.path.mnt); 2036 out_dput: 2037 dput(dentry); 2038 out_unlock: 2039 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2040 path_put(&nd.path); 2041 putname(tmp); 2042 2043 return error; 2044 } 2045 2046 SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev) 2047 { 2048 return sys_mknodat(AT_FDCWD, filename, mode, dev); 2049 } 2050 2051 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode) 2052 { 2053 int error = may_create(dir, dentry); 2054 2055 if (error) 2056 return error; 2057 2058 if (!dir->i_op->mkdir) 2059 return -EPERM; 2060 2061 mode &= (S_IRWXUGO|S_ISVTX); 2062 error = security_inode_mkdir(dir, dentry, mode); 2063 if (error) 2064 return error; 2065 2066 error = dir->i_op->mkdir(dir, dentry, mode); 2067 if (!error) 2068 fsnotify_mkdir(dir, dentry); 2069 return error; 2070 } 2071 2072 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode) 2073 { 2074 int error = 0; 2075 char * tmp; 2076 struct dentry *dentry; 2077 struct nameidata nd; 2078 2079 error = user_path_parent(dfd, pathname, &nd, &tmp); 2080 if (error) 2081 goto out_err; 2082 2083 dentry = lookup_create(&nd, 1); 2084 error = PTR_ERR(dentry); 2085 if (IS_ERR(dentry)) 2086 goto out_unlock; 2087 2088 if (!IS_POSIXACL(nd.path.dentry->d_inode)) 2089 mode &= ~current_umask(); 2090 error = mnt_want_write(nd.path.mnt); 2091 if (error) 2092 goto out_dput; 2093 error = security_path_mkdir(&nd.path, dentry, mode); 2094 if (error) 2095 goto out_drop_write; 2096 error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode); 2097 out_drop_write: 2098 mnt_drop_write(nd.path.mnt); 2099 out_dput: 2100 dput(dentry); 2101 out_unlock: 2102 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2103 path_put(&nd.path); 2104 putname(tmp); 2105 out_err: 2106 return error; 2107 } 2108 2109 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode) 2110 { 2111 return sys_mkdirat(AT_FDCWD, pathname, mode); 2112 } 2113 2114 /* 2115 * We try to drop the dentry early: we should have 2116 * a usage count of 2 if we're the only user of this 2117 * dentry, and if that is true (possibly after pruning 2118 * the dcache), then we drop the dentry now. 2119 * 2120 * A low-level filesystem can, if it choses, legally 2121 * do a 2122 * 2123 * if (!d_unhashed(dentry)) 2124 * return -EBUSY; 2125 * 2126 * if it cannot handle the case of removing a directory 2127 * that is still in use by something else.. 2128 */ 2129 void dentry_unhash(struct dentry *dentry) 2130 { 2131 dget(dentry); 2132 shrink_dcache_parent(dentry); 2133 spin_lock(&dcache_lock); 2134 spin_lock(&dentry->d_lock); 2135 if (atomic_read(&dentry->d_count) == 2) 2136 __d_drop(dentry); 2137 spin_unlock(&dentry->d_lock); 2138 spin_unlock(&dcache_lock); 2139 } 2140 2141 int vfs_rmdir(struct inode *dir, struct dentry *dentry) 2142 { 2143 int error = may_delete(dir, dentry, 1); 2144 2145 if (error) 2146 return error; 2147 2148 if (!dir->i_op->rmdir) 2149 return -EPERM; 2150 2151 mutex_lock(&dentry->d_inode->i_mutex); 2152 dentry_unhash(dentry); 2153 if (d_mountpoint(dentry)) 2154 error = -EBUSY; 2155 else { 2156 error = security_inode_rmdir(dir, dentry); 2157 if (!error) { 2158 error = dir->i_op->rmdir(dir, dentry); 2159 if (!error) { 2160 dentry->d_inode->i_flags |= S_DEAD; 2161 dont_mount(dentry); 2162 } 2163 } 2164 } 2165 mutex_unlock(&dentry->d_inode->i_mutex); 2166 if (!error) { 2167 d_delete(dentry); 2168 } 2169 dput(dentry); 2170 2171 return error; 2172 } 2173 2174 static long do_rmdir(int dfd, const char __user *pathname) 2175 { 2176 int error = 0; 2177 char * name; 2178 struct dentry *dentry; 2179 struct nameidata nd; 2180 2181 error = user_path_parent(dfd, pathname, &nd, &name); 2182 if (error) 2183 return error; 2184 2185 switch(nd.last_type) { 2186 case LAST_DOTDOT: 2187 error = -ENOTEMPTY; 2188 goto exit1; 2189 case LAST_DOT: 2190 error = -EINVAL; 2191 goto exit1; 2192 case LAST_ROOT: 2193 error = -EBUSY; 2194 goto exit1; 2195 } 2196 2197 nd.flags &= ~LOOKUP_PARENT; 2198 2199 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 2200 dentry = lookup_hash(&nd); 2201 error = PTR_ERR(dentry); 2202 if (IS_ERR(dentry)) 2203 goto exit2; 2204 error = mnt_want_write(nd.path.mnt); 2205 if (error) 2206 goto exit3; 2207 error = security_path_rmdir(&nd.path, dentry); 2208 if (error) 2209 goto exit4; 2210 error = vfs_rmdir(nd.path.dentry->d_inode, dentry); 2211 exit4: 2212 mnt_drop_write(nd.path.mnt); 2213 exit3: 2214 dput(dentry); 2215 exit2: 2216 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2217 exit1: 2218 path_put(&nd.path); 2219 putname(name); 2220 return error; 2221 } 2222 2223 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 2224 { 2225 return do_rmdir(AT_FDCWD, pathname); 2226 } 2227 2228 int vfs_unlink(struct inode *dir, struct dentry *dentry) 2229 { 2230 int error = may_delete(dir, dentry, 0); 2231 2232 if (error) 2233 return error; 2234 2235 if (!dir->i_op->unlink) 2236 return -EPERM; 2237 2238 mutex_lock(&dentry->d_inode->i_mutex); 2239 if (d_mountpoint(dentry)) 2240 error = -EBUSY; 2241 else { 2242 error = security_inode_unlink(dir, dentry); 2243 if (!error) { 2244 error = dir->i_op->unlink(dir, dentry); 2245 if (!error) 2246 dont_mount(dentry); 2247 } 2248 } 2249 mutex_unlock(&dentry->d_inode->i_mutex); 2250 2251 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 2252 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) { 2253 fsnotify_link_count(dentry->d_inode); 2254 d_delete(dentry); 2255 } 2256 2257 return error; 2258 } 2259 2260 /* 2261 * Make sure that the actual truncation of the file will occur outside its 2262 * directory's i_mutex. Truncate can take a long time if there is a lot of 2263 * writeout happening, and we don't want to prevent access to the directory 2264 * while waiting on the I/O. 2265 */ 2266 static long do_unlinkat(int dfd, const char __user *pathname) 2267 { 2268 int error; 2269 char *name; 2270 struct dentry *dentry; 2271 struct nameidata nd; 2272 struct inode *inode = NULL; 2273 2274 error = user_path_parent(dfd, pathname, &nd, &name); 2275 if (error) 2276 return error; 2277 2278 error = -EISDIR; 2279 if (nd.last_type != LAST_NORM) 2280 goto exit1; 2281 2282 nd.flags &= ~LOOKUP_PARENT; 2283 2284 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 2285 dentry = lookup_hash(&nd); 2286 error = PTR_ERR(dentry); 2287 if (!IS_ERR(dentry)) { 2288 /* Why not before? Because we want correct error value */ 2289 if (nd.last.name[nd.last.len]) 2290 goto slashes; 2291 inode = dentry->d_inode; 2292 if (inode) 2293 ihold(inode); 2294 error = mnt_want_write(nd.path.mnt); 2295 if (error) 2296 goto exit2; 2297 error = security_path_unlink(&nd.path, dentry); 2298 if (error) 2299 goto exit3; 2300 error = vfs_unlink(nd.path.dentry->d_inode, dentry); 2301 exit3: 2302 mnt_drop_write(nd.path.mnt); 2303 exit2: 2304 dput(dentry); 2305 } 2306 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2307 if (inode) 2308 iput(inode); /* truncate the inode here */ 2309 exit1: 2310 path_put(&nd.path); 2311 putname(name); 2312 return error; 2313 2314 slashes: 2315 error = !dentry->d_inode ? -ENOENT : 2316 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR; 2317 goto exit2; 2318 } 2319 2320 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 2321 { 2322 if ((flag & ~AT_REMOVEDIR) != 0) 2323 return -EINVAL; 2324 2325 if (flag & AT_REMOVEDIR) 2326 return do_rmdir(dfd, pathname); 2327 2328 return do_unlinkat(dfd, pathname); 2329 } 2330 2331 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 2332 { 2333 return do_unlinkat(AT_FDCWD, pathname); 2334 } 2335 2336 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname) 2337 { 2338 int error = may_create(dir, dentry); 2339 2340 if (error) 2341 return error; 2342 2343 if (!dir->i_op->symlink) 2344 return -EPERM; 2345 2346 error = security_inode_symlink(dir, dentry, oldname); 2347 if (error) 2348 return error; 2349 2350 error = dir->i_op->symlink(dir, dentry, oldname); 2351 if (!error) 2352 fsnotify_create(dir, dentry); 2353 return error; 2354 } 2355 2356 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 2357 int, newdfd, const char __user *, newname) 2358 { 2359 int error; 2360 char *from; 2361 char *to; 2362 struct dentry *dentry; 2363 struct nameidata nd; 2364 2365 from = getname(oldname); 2366 if (IS_ERR(from)) 2367 return PTR_ERR(from); 2368 2369 error = user_path_parent(newdfd, newname, &nd, &to); 2370 if (error) 2371 goto out_putname; 2372 2373 dentry = lookup_create(&nd, 0); 2374 error = PTR_ERR(dentry); 2375 if (IS_ERR(dentry)) 2376 goto out_unlock; 2377 2378 error = mnt_want_write(nd.path.mnt); 2379 if (error) 2380 goto out_dput; 2381 error = security_path_symlink(&nd.path, dentry, from); 2382 if (error) 2383 goto out_drop_write; 2384 error = vfs_symlink(nd.path.dentry->d_inode, dentry, from); 2385 out_drop_write: 2386 mnt_drop_write(nd.path.mnt); 2387 out_dput: 2388 dput(dentry); 2389 out_unlock: 2390 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2391 path_put(&nd.path); 2392 putname(to); 2393 out_putname: 2394 putname(from); 2395 return error; 2396 } 2397 2398 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 2399 { 2400 return sys_symlinkat(oldname, AT_FDCWD, newname); 2401 } 2402 2403 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) 2404 { 2405 struct inode *inode = old_dentry->d_inode; 2406 int error; 2407 2408 if (!inode) 2409 return -ENOENT; 2410 2411 error = may_create(dir, new_dentry); 2412 if (error) 2413 return error; 2414 2415 if (dir->i_sb != inode->i_sb) 2416 return -EXDEV; 2417 2418 /* 2419 * A link to an append-only or immutable file cannot be created. 2420 */ 2421 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 2422 return -EPERM; 2423 if (!dir->i_op->link) 2424 return -EPERM; 2425 if (S_ISDIR(inode->i_mode)) 2426 return -EPERM; 2427 2428 error = security_inode_link(old_dentry, dir, new_dentry); 2429 if (error) 2430 return error; 2431 2432 mutex_lock(&inode->i_mutex); 2433 error = dir->i_op->link(old_dentry, dir, new_dentry); 2434 mutex_unlock(&inode->i_mutex); 2435 if (!error) 2436 fsnotify_link(dir, inode, new_dentry); 2437 return error; 2438 } 2439 2440 /* 2441 * Hardlinks are often used in delicate situations. We avoid 2442 * security-related surprises by not following symlinks on the 2443 * newname. --KAB 2444 * 2445 * We don't follow them on the oldname either to be compatible 2446 * with linux 2.0, and to avoid hard-linking to directories 2447 * and other special files. --ADM 2448 */ 2449 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 2450 int, newdfd, const char __user *, newname, int, flags) 2451 { 2452 struct dentry *new_dentry; 2453 struct nameidata nd; 2454 struct path old_path; 2455 int error; 2456 char *to; 2457 2458 if ((flags & ~AT_SYMLINK_FOLLOW) != 0) 2459 return -EINVAL; 2460 2461 error = user_path_at(olddfd, oldname, 2462 flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0, 2463 &old_path); 2464 if (error) 2465 return error; 2466 2467 error = user_path_parent(newdfd, newname, &nd, &to); 2468 if (error) 2469 goto out; 2470 error = -EXDEV; 2471 if (old_path.mnt != nd.path.mnt) 2472 goto out_release; 2473 new_dentry = lookup_create(&nd, 0); 2474 error = PTR_ERR(new_dentry); 2475 if (IS_ERR(new_dentry)) 2476 goto out_unlock; 2477 error = mnt_want_write(nd.path.mnt); 2478 if (error) 2479 goto out_dput; 2480 error = security_path_link(old_path.dentry, &nd.path, new_dentry); 2481 if (error) 2482 goto out_drop_write; 2483 error = vfs_link(old_path.dentry, nd.path.dentry->d_inode, new_dentry); 2484 out_drop_write: 2485 mnt_drop_write(nd.path.mnt); 2486 out_dput: 2487 dput(new_dentry); 2488 out_unlock: 2489 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2490 out_release: 2491 path_put(&nd.path); 2492 putname(to); 2493 out: 2494 path_put(&old_path); 2495 2496 return error; 2497 } 2498 2499 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 2500 { 2501 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 2502 } 2503 2504 /* 2505 * The worst of all namespace operations - renaming directory. "Perverted" 2506 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 2507 * Problems: 2508 * a) we can get into loop creation. Check is done in is_subdir(). 2509 * b) race potential - two innocent renames can create a loop together. 2510 * That's where 4.4 screws up. Current fix: serialization on 2511 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 2512 * story. 2513 * c) we have to lock _three_ objects - parents and victim (if it exists). 2514 * And that - after we got ->i_mutex on parents (until then we don't know 2515 * whether the target exists). Solution: try to be smart with locking 2516 * order for inodes. We rely on the fact that tree topology may change 2517 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 2518 * move will be locked. Thus we can rank directories by the tree 2519 * (ancestors first) and rank all non-directories after them. 2520 * That works since everybody except rename does "lock parent, lookup, 2521 * lock child" and rename is under ->s_vfs_rename_mutex. 2522 * HOWEVER, it relies on the assumption that any object with ->lookup() 2523 * has no more than 1 dentry. If "hybrid" objects will ever appear, 2524 * we'd better make sure that there's no link(2) for them. 2525 * d) some filesystems don't support opened-but-unlinked directories, 2526 * either because of layout or because they are not ready to deal with 2527 * all cases correctly. The latter will be fixed (taking this sort of 2528 * stuff into VFS), but the former is not going away. Solution: the same 2529 * trick as in rmdir(). 2530 * e) conversion from fhandle to dentry may come in the wrong moment - when 2531 * we are removing the target. Solution: we will have to grab ->i_mutex 2532 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 2533 * ->i_mutex on parents, which works but leads to some truly excessive 2534 * locking]. 2535 */ 2536 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry, 2537 struct inode *new_dir, struct dentry *new_dentry) 2538 { 2539 int error = 0; 2540 struct inode *target; 2541 2542 /* 2543 * If we are going to change the parent - check write permissions, 2544 * we'll need to flip '..'. 2545 */ 2546 if (new_dir != old_dir) { 2547 error = inode_permission(old_dentry->d_inode, MAY_WRITE); 2548 if (error) 2549 return error; 2550 } 2551 2552 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry); 2553 if (error) 2554 return error; 2555 2556 target = new_dentry->d_inode; 2557 if (target) 2558 mutex_lock(&target->i_mutex); 2559 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry)) 2560 error = -EBUSY; 2561 else { 2562 if (target) 2563 dentry_unhash(new_dentry); 2564 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry); 2565 } 2566 if (target) { 2567 if (!error) { 2568 target->i_flags |= S_DEAD; 2569 dont_mount(new_dentry); 2570 } 2571 mutex_unlock(&target->i_mutex); 2572 if (d_unhashed(new_dentry)) 2573 d_rehash(new_dentry); 2574 dput(new_dentry); 2575 } 2576 if (!error) 2577 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) 2578 d_move(old_dentry,new_dentry); 2579 return error; 2580 } 2581 2582 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry, 2583 struct inode *new_dir, struct dentry *new_dentry) 2584 { 2585 struct inode *target; 2586 int error; 2587 2588 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry); 2589 if (error) 2590 return error; 2591 2592 dget(new_dentry); 2593 target = new_dentry->d_inode; 2594 if (target) 2595 mutex_lock(&target->i_mutex); 2596 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry)) 2597 error = -EBUSY; 2598 else 2599 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry); 2600 if (!error) { 2601 if (target) 2602 dont_mount(new_dentry); 2603 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) 2604 d_move(old_dentry, new_dentry); 2605 } 2606 if (target) 2607 mutex_unlock(&target->i_mutex); 2608 dput(new_dentry); 2609 return error; 2610 } 2611 2612 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry, 2613 struct inode *new_dir, struct dentry *new_dentry) 2614 { 2615 int error; 2616 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode); 2617 const unsigned char *old_name; 2618 2619 if (old_dentry->d_inode == new_dentry->d_inode) 2620 return 0; 2621 2622 error = may_delete(old_dir, old_dentry, is_dir); 2623 if (error) 2624 return error; 2625 2626 if (!new_dentry->d_inode) 2627 error = may_create(new_dir, new_dentry); 2628 else 2629 error = may_delete(new_dir, new_dentry, is_dir); 2630 if (error) 2631 return error; 2632 2633 if (!old_dir->i_op->rename) 2634 return -EPERM; 2635 2636 old_name = fsnotify_oldname_init(old_dentry->d_name.name); 2637 2638 if (is_dir) 2639 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry); 2640 else 2641 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry); 2642 if (!error) 2643 fsnotify_move(old_dir, new_dir, old_name, is_dir, 2644 new_dentry->d_inode, old_dentry); 2645 fsnotify_oldname_free(old_name); 2646 2647 return error; 2648 } 2649 2650 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 2651 int, newdfd, const char __user *, newname) 2652 { 2653 struct dentry *old_dir, *new_dir; 2654 struct dentry *old_dentry, *new_dentry; 2655 struct dentry *trap; 2656 struct nameidata oldnd, newnd; 2657 char *from; 2658 char *to; 2659 int error; 2660 2661 error = user_path_parent(olddfd, oldname, &oldnd, &from); 2662 if (error) 2663 goto exit; 2664 2665 error = user_path_parent(newdfd, newname, &newnd, &to); 2666 if (error) 2667 goto exit1; 2668 2669 error = -EXDEV; 2670 if (oldnd.path.mnt != newnd.path.mnt) 2671 goto exit2; 2672 2673 old_dir = oldnd.path.dentry; 2674 error = -EBUSY; 2675 if (oldnd.last_type != LAST_NORM) 2676 goto exit2; 2677 2678 new_dir = newnd.path.dentry; 2679 if (newnd.last_type != LAST_NORM) 2680 goto exit2; 2681 2682 oldnd.flags &= ~LOOKUP_PARENT; 2683 newnd.flags &= ~LOOKUP_PARENT; 2684 newnd.flags |= LOOKUP_RENAME_TARGET; 2685 2686 trap = lock_rename(new_dir, old_dir); 2687 2688 old_dentry = lookup_hash(&oldnd); 2689 error = PTR_ERR(old_dentry); 2690 if (IS_ERR(old_dentry)) 2691 goto exit3; 2692 /* source must exist */ 2693 error = -ENOENT; 2694 if (!old_dentry->d_inode) 2695 goto exit4; 2696 /* unless the source is a directory trailing slashes give -ENOTDIR */ 2697 if (!S_ISDIR(old_dentry->d_inode->i_mode)) { 2698 error = -ENOTDIR; 2699 if (oldnd.last.name[oldnd.last.len]) 2700 goto exit4; 2701 if (newnd.last.name[newnd.last.len]) 2702 goto exit4; 2703 } 2704 /* source should not be ancestor of target */ 2705 error = -EINVAL; 2706 if (old_dentry == trap) 2707 goto exit4; 2708 new_dentry = lookup_hash(&newnd); 2709 error = PTR_ERR(new_dentry); 2710 if (IS_ERR(new_dentry)) 2711 goto exit4; 2712 /* target should not be an ancestor of source */ 2713 error = -ENOTEMPTY; 2714 if (new_dentry == trap) 2715 goto exit5; 2716 2717 error = mnt_want_write(oldnd.path.mnt); 2718 if (error) 2719 goto exit5; 2720 error = security_path_rename(&oldnd.path, old_dentry, 2721 &newnd.path, new_dentry); 2722 if (error) 2723 goto exit6; 2724 error = vfs_rename(old_dir->d_inode, old_dentry, 2725 new_dir->d_inode, new_dentry); 2726 exit6: 2727 mnt_drop_write(oldnd.path.mnt); 2728 exit5: 2729 dput(new_dentry); 2730 exit4: 2731 dput(old_dentry); 2732 exit3: 2733 unlock_rename(new_dir, old_dir); 2734 exit2: 2735 path_put(&newnd.path); 2736 putname(to); 2737 exit1: 2738 path_put(&oldnd.path); 2739 putname(from); 2740 exit: 2741 return error; 2742 } 2743 2744 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 2745 { 2746 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname); 2747 } 2748 2749 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link) 2750 { 2751 int len; 2752 2753 len = PTR_ERR(link); 2754 if (IS_ERR(link)) 2755 goto out; 2756 2757 len = strlen(link); 2758 if (len > (unsigned) buflen) 2759 len = buflen; 2760 if (copy_to_user(buffer, link, len)) 2761 len = -EFAULT; 2762 out: 2763 return len; 2764 } 2765 2766 /* 2767 * A helper for ->readlink(). This should be used *ONLY* for symlinks that 2768 * have ->follow_link() touching nd only in nd_set_link(). Using (or not 2769 * using) it for any given inode is up to filesystem. 2770 */ 2771 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen) 2772 { 2773 struct nameidata nd; 2774 void *cookie; 2775 int res; 2776 2777 nd.depth = 0; 2778 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd); 2779 if (IS_ERR(cookie)) 2780 return PTR_ERR(cookie); 2781 2782 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd)); 2783 if (dentry->d_inode->i_op->put_link) 2784 dentry->d_inode->i_op->put_link(dentry, &nd, cookie); 2785 return res; 2786 } 2787 2788 int vfs_follow_link(struct nameidata *nd, const char *link) 2789 { 2790 return __vfs_follow_link(nd, link); 2791 } 2792 2793 /* get the link contents into pagecache */ 2794 static char *page_getlink(struct dentry * dentry, struct page **ppage) 2795 { 2796 char *kaddr; 2797 struct page *page; 2798 struct address_space *mapping = dentry->d_inode->i_mapping; 2799 page = read_mapping_page(mapping, 0, NULL); 2800 if (IS_ERR(page)) 2801 return (char*)page; 2802 *ppage = page; 2803 kaddr = kmap(page); 2804 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1); 2805 return kaddr; 2806 } 2807 2808 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 2809 { 2810 struct page *page = NULL; 2811 char *s = page_getlink(dentry, &page); 2812 int res = vfs_readlink(dentry,buffer,buflen,s); 2813 if (page) { 2814 kunmap(page); 2815 page_cache_release(page); 2816 } 2817 return res; 2818 } 2819 2820 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd) 2821 { 2822 struct page *page = NULL; 2823 nd_set_link(nd, page_getlink(dentry, &page)); 2824 return page; 2825 } 2826 2827 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie) 2828 { 2829 struct page *page = cookie; 2830 2831 if (page) { 2832 kunmap(page); 2833 page_cache_release(page); 2834 } 2835 } 2836 2837 /* 2838 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS 2839 */ 2840 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs) 2841 { 2842 struct address_space *mapping = inode->i_mapping; 2843 struct page *page; 2844 void *fsdata; 2845 int err; 2846 char *kaddr; 2847 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE; 2848 if (nofs) 2849 flags |= AOP_FLAG_NOFS; 2850 2851 retry: 2852 err = pagecache_write_begin(NULL, mapping, 0, len-1, 2853 flags, &page, &fsdata); 2854 if (err) 2855 goto fail; 2856 2857 kaddr = kmap_atomic(page, KM_USER0); 2858 memcpy(kaddr, symname, len-1); 2859 kunmap_atomic(kaddr, KM_USER0); 2860 2861 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1, 2862 page, fsdata); 2863 if (err < 0) 2864 goto fail; 2865 if (err < len-1) 2866 goto retry; 2867 2868 mark_inode_dirty(inode); 2869 return 0; 2870 fail: 2871 return err; 2872 } 2873 2874 int page_symlink(struct inode *inode, const char *symname, int len) 2875 { 2876 return __page_symlink(inode, symname, len, 2877 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS)); 2878 } 2879 2880 const struct inode_operations page_symlink_inode_operations = { 2881 .readlink = generic_readlink, 2882 .follow_link = page_follow_link_light, 2883 .put_link = page_put_link, 2884 }; 2885 2886 EXPORT_SYMBOL(user_path_at); 2887 EXPORT_SYMBOL(follow_down); 2888 EXPORT_SYMBOL(follow_up); 2889 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */ 2890 EXPORT_SYMBOL(getname); 2891 EXPORT_SYMBOL(lock_rename); 2892 EXPORT_SYMBOL(lookup_one_len); 2893 EXPORT_SYMBOL(page_follow_link_light); 2894 EXPORT_SYMBOL(page_put_link); 2895 EXPORT_SYMBOL(page_readlink); 2896 EXPORT_SYMBOL(__page_symlink); 2897 EXPORT_SYMBOL(page_symlink); 2898 EXPORT_SYMBOL(page_symlink_inode_operations); 2899 EXPORT_SYMBOL(path_lookup); 2900 EXPORT_SYMBOL(kern_path); 2901 EXPORT_SYMBOL(vfs_path_lookup); 2902 EXPORT_SYMBOL(inode_permission); 2903 EXPORT_SYMBOL(file_permission); 2904 EXPORT_SYMBOL(unlock_rename); 2905 EXPORT_SYMBOL(vfs_create); 2906 EXPORT_SYMBOL(vfs_follow_link); 2907 EXPORT_SYMBOL(vfs_link); 2908 EXPORT_SYMBOL(vfs_mkdir); 2909 EXPORT_SYMBOL(vfs_mknod); 2910 EXPORT_SYMBOL(generic_permission); 2911 EXPORT_SYMBOL(vfs_readlink); 2912 EXPORT_SYMBOL(vfs_rename); 2913 EXPORT_SYMBOL(vfs_rmdir); 2914 EXPORT_SYMBOL(vfs_symlink); 2915 EXPORT_SYMBOL(vfs_unlink); 2916 EXPORT_SYMBOL(dentry_unhash); 2917 EXPORT_SYMBOL(generic_readlink); 2918