xref: /openbmc/linux/fs/namei.c (revision baa7eb025ab14f3cba2e35c0a8648f9c9f01d24f)
1 /*
2  *  linux/fs/namei.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * Some corrections by tytso.
9  */
10 
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12  * lookup logic.
13  */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15  */
16 
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/pagemap.h>
23 #include <linux/fsnotify.h>
24 #include <linux/personality.h>
25 #include <linux/security.h>
26 #include <linux/ima.h>
27 #include <linux/syscalls.h>
28 #include <linux/mount.h>
29 #include <linux/audit.h>
30 #include <linux/capability.h>
31 #include <linux/file.h>
32 #include <linux/fcntl.h>
33 #include <linux/device_cgroup.h>
34 #include <linux/fs_struct.h>
35 #include <asm/uaccess.h>
36 
37 #include "internal.h"
38 
39 /* [Feb-1997 T. Schoebel-Theuer]
40  * Fundamental changes in the pathname lookup mechanisms (namei)
41  * were necessary because of omirr.  The reason is that omirr needs
42  * to know the _real_ pathname, not the user-supplied one, in case
43  * of symlinks (and also when transname replacements occur).
44  *
45  * The new code replaces the old recursive symlink resolution with
46  * an iterative one (in case of non-nested symlink chains).  It does
47  * this with calls to <fs>_follow_link().
48  * As a side effect, dir_namei(), _namei() and follow_link() are now
49  * replaced with a single function lookup_dentry() that can handle all
50  * the special cases of the former code.
51  *
52  * With the new dcache, the pathname is stored at each inode, at least as
53  * long as the refcount of the inode is positive.  As a side effect, the
54  * size of the dcache depends on the inode cache and thus is dynamic.
55  *
56  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
57  * resolution to correspond with current state of the code.
58  *
59  * Note that the symlink resolution is not *completely* iterative.
60  * There is still a significant amount of tail- and mid- recursion in
61  * the algorithm.  Also, note that <fs>_readlink() is not used in
62  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
63  * may return different results than <fs>_follow_link().  Many virtual
64  * filesystems (including /proc) exhibit this behavior.
65  */
66 
67 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
68  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
69  * and the name already exists in form of a symlink, try to create the new
70  * name indicated by the symlink. The old code always complained that the
71  * name already exists, due to not following the symlink even if its target
72  * is nonexistent.  The new semantics affects also mknod() and link() when
73  * the name is a symlink pointing to a non-existant name.
74  *
75  * I don't know which semantics is the right one, since I have no access
76  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
77  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
78  * "old" one. Personally, I think the new semantics is much more logical.
79  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
80  * file does succeed in both HP-UX and SunOs, but not in Solaris
81  * and in the old Linux semantics.
82  */
83 
84 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
85  * semantics.  See the comments in "open_namei" and "do_link" below.
86  *
87  * [10-Sep-98 Alan Modra] Another symlink change.
88  */
89 
90 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
91  *	inside the path - always follow.
92  *	in the last component in creation/removal/renaming - never follow.
93  *	if LOOKUP_FOLLOW passed - follow.
94  *	if the pathname has trailing slashes - follow.
95  *	otherwise - don't follow.
96  * (applied in that order).
97  *
98  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
99  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
100  * During the 2.4 we need to fix the userland stuff depending on it -
101  * hopefully we will be able to get rid of that wart in 2.5. So far only
102  * XEmacs seems to be relying on it...
103  */
104 /*
105  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
106  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
107  * any extra contention...
108  */
109 
110 /* In order to reduce some races, while at the same time doing additional
111  * checking and hopefully speeding things up, we copy filenames to the
112  * kernel data space before using them..
113  *
114  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
115  * PATH_MAX includes the nul terminator --RR.
116  */
117 static int do_getname(const char __user *filename, char *page)
118 {
119 	int retval;
120 	unsigned long len = PATH_MAX;
121 
122 	if (!segment_eq(get_fs(), KERNEL_DS)) {
123 		if ((unsigned long) filename >= TASK_SIZE)
124 			return -EFAULT;
125 		if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
126 			len = TASK_SIZE - (unsigned long) filename;
127 	}
128 
129 	retval = strncpy_from_user(page, filename, len);
130 	if (retval > 0) {
131 		if (retval < len)
132 			return 0;
133 		return -ENAMETOOLONG;
134 	} else if (!retval)
135 		retval = -ENOENT;
136 	return retval;
137 }
138 
139 char * getname(const char __user * filename)
140 {
141 	char *tmp, *result;
142 
143 	result = ERR_PTR(-ENOMEM);
144 	tmp = __getname();
145 	if (tmp)  {
146 		int retval = do_getname(filename, tmp);
147 
148 		result = tmp;
149 		if (retval < 0) {
150 			__putname(tmp);
151 			result = ERR_PTR(retval);
152 		}
153 	}
154 	audit_getname(result);
155 	return result;
156 }
157 
158 #ifdef CONFIG_AUDITSYSCALL
159 void putname(const char *name)
160 {
161 	if (unlikely(!audit_dummy_context()))
162 		audit_putname(name);
163 	else
164 		__putname(name);
165 }
166 EXPORT_SYMBOL(putname);
167 #endif
168 
169 /*
170  * This does basic POSIX ACL permission checking
171  */
172 static int acl_permission_check(struct inode *inode, int mask,
173 		int (*check_acl)(struct inode *inode, int mask))
174 {
175 	umode_t			mode = inode->i_mode;
176 
177 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
178 
179 	if (current_fsuid() == inode->i_uid)
180 		mode >>= 6;
181 	else {
182 		if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
183 			int error = check_acl(inode, mask);
184 			if (error != -EAGAIN)
185 				return error;
186 		}
187 
188 		if (in_group_p(inode->i_gid))
189 			mode >>= 3;
190 	}
191 
192 	/*
193 	 * If the DACs are ok we don't need any capability check.
194 	 */
195 	if ((mask & ~mode) == 0)
196 		return 0;
197 	return -EACCES;
198 }
199 
200 /**
201  * generic_permission  -  check for access rights on a Posix-like filesystem
202  * @inode:	inode to check access rights for
203  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
204  * @check_acl:	optional callback to check for Posix ACLs
205  *
206  * Used to check for read/write/execute permissions on a file.
207  * We use "fsuid" for this, letting us set arbitrary permissions
208  * for filesystem access without changing the "normal" uids which
209  * are used for other things..
210  */
211 int generic_permission(struct inode *inode, int mask,
212 		int (*check_acl)(struct inode *inode, int mask))
213 {
214 	int ret;
215 
216 	/*
217 	 * Do the basic POSIX ACL permission checks.
218 	 */
219 	ret = acl_permission_check(inode, mask, check_acl);
220 	if (ret != -EACCES)
221 		return ret;
222 
223 	/*
224 	 * Read/write DACs are always overridable.
225 	 * Executable DACs are overridable if at least one exec bit is set.
226 	 */
227 	if (!(mask & MAY_EXEC) || execute_ok(inode))
228 		if (capable(CAP_DAC_OVERRIDE))
229 			return 0;
230 
231 	/*
232 	 * Searching includes executable on directories, else just read.
233 	 */
234 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
235 	if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE)))
236 		if (capable(CAP_DAC_READ_SEARCH))
237 			return 0;
238 
239 	return -EACCES;
240 }
241 
242 /**
243  * inode_permission  -  check for access rights to a given inode
244  * @inode:	inode to check permission on
245  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
246  *
247  * Used to check for read/write/execute permissions on an inode.
248  * We use "fsuid" for this, letting us set arbitrary permissions
249  * for filesystem access without changing the "normal" uids which
250  * are used for other things.
251  */
252 int inode_permission(struct inode *inode, int mask)
253 {
254 	int retval;
255 
256 	if (mask & MAY_WRITE) {
257 		umode_t mode = inode->i_mode;
258 
259 		/*
260 		 * Nobody gets write access to a read-only fs.
261 		 */
262 		if (IS_RDONLY(inode) &&
263 		    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
264 			return -EROFS;
265 
266 		/*
267 		 * Nobody gets write access to an immutable file.
268 		 */
269 		if (IS_IMMUTABLE(inode))
270 			return -EACCES;
271 	}
272 
273 	if (inode->i_op->permission)
274 		retval = inode->i_op->permission(inode, mask);
275 	else
276 		retval = generic_permission(inode, mask, inode->i_op->check_acl);
277 
278 	if (retval)
279 		return retval;
280 
281 	retval = devcgroup_inode_permission(inode, mask);
282 	if (retval)
283 		return retval;
284 
285 	return security_inode_permission(inode, mask);
286 }
287 
288 /**
289  * file_permission  -  check for additional access rights to a given file
290  * @file:	file to check access rights for
291  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
292  *
293  * Used to check for read/write/execute permissions on an already opened
294  * file.
295  *
296  * Note:
297  *	Do not use this function in new code.  All access checks should
298  *	be done using inode_permission().
299  */
300 int file_permission(struct file *file, int mask)
301 {
302 	return inode_permission(file->f_path.dentry->d_inode, mask);
303 }
304 
305 /*
306  * get_write_access() gets write permission for a file.
307  * put_write_access() releases this write permission.
308  * This is used for regular files.
309  * We cannot support write (and maybe mmap read-write shared) accesses and
310  * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode
311  * can have the following values:
312  * 0: no writers, no VM_DENYWRITE mappings
313  * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist
314  * > 0: (i_writecount) users are writing to the file.
315  *
316  * Normally we operate on that counter with atomic_{inc,dec} and it's safe
317  * except for the cases where we don't hold i_writecount yet. Then we need to
318  * use {get,deny}_write_access() - these functions check the sign and refuse
319  * to do the change if sign is wrong. Exclusion between them is provided by
320  * the inode->i_lock spinlock.
321  */
322 
323 int get_write_access(struct inode * inode)
324 {
325 	spin_lock(&inode->i_lock);
326 	if (atomic_read(&inode->i_writecount) < 0) {
327 		spin_unlock(&inode->i_lock);
328 		return -ETXTBSY;
329 	}
330 	atomic_inc(&inode->i_writecount);
331 	spin_unlock(&inode->i_lock);
332 
333 	return 0;
334 }
335 
336 int deny_write_access(struct file * file)
337 {
338 	struct inode *inode = file->f_path.dentry->d_inode;
339 
340 	spin_lock(&inode->i_lock);
341 	if (atomic_read(&inode->i_writecount) > 0) {
342 		spin_unlock(&inode->i_lock);
343 		return -ETXTBSY;
344 	}
345 	atomic_dec(&inode->i_writecount);
346 	spin_unlock(&inode->i_lock);
347 
348 	return 0;
349 }
350 
351 /**
352  * path_get - get a reference to a path
353  * @path: path to get the reference to
354  *
355  * Given a path increment the reference count to the dentry and the vfsmount.
356  */
357 void path_get(struct path *path)
358 {
359 	mntget(path->mnt);
360 	dget(path->dentry);
361 }
362 EXPORT_SYMBOL(path_get);
363 
364 /**
365  * path_put - put a reference to a path
366  * @path: path to put the reference to
367  *
368  * Given a path decrement the reference count to the dentry and the vfsmount.
369  */
370 void path_put(struct path *path)
371 {
372 	dput(path->dentry);
373 	mntput(path->mnt);
374 }
375 EXPORT_SYMBOL(path_put);
376 
377 /**
378  * release_open_intent - free up open intent resources
379  * @nd: pointer to nameidata
380  */
381 void release_open_intent(struct nameidata *nd)
382 {
383 	if (nd->intent.open.file->f_path.dentry == NULL)
384 		put_filp(nd->intent.open.file);
385 	else
386 		fput(nd->intent.open.file);
387 }
388 
389 static inline struct dentry *
390 do_revalidate(struct dentry *dentry, struct nameidata *nd)
391 {
392 	int status = dentry->d_op->d_revalidate(dentry, nd);
393 	if (unlikely(status <= 0)) {
394 		/*
395 		 * The dentry failed validation.
396 		 * If d_revalidate returned 0 attempt to invalidate
397 		 * the dentry otherwise d_revalidate is asking us
398 		 * to return a fail status.
399 		 */
400 		if (!status) {
401 			if (!d_invalidate(dentry)) {
402 				dput(dentry);
403 				dentry = NULL;
404 			}
405 		} else {
406 			dput(dentry);
407 			dentry = ERR_PTR(status);
408 		}
409 	}
410 	return dentry;
411 }
412 
413 /*
414  * force_reval_path - force revalidation of a dentry
415  *
416  * In some situations the path walking code will trust dentries without
417  * revalidating them. This causes problems for filesystems that depend on
418  * d_revalidate to handle file opens (e.g. NFSv4). When FS_REVAL_DOT is set
419  * (which indicates that it's possible for the dentry to go stale), force
420  * a d_revalidate call before proceeding.
421  *
422  * Returns 0 if the revalidation was successful. If the revalidation fails,
423  * either return the error returned by d_revalidate or -ESTALE if the
424  * revalidation it just returned 0. If d_revalidate returns 0, we attempt to
425  * invalidate the dentry. It's up to the caller to handle putting references
426  * to the path if necessary.
427  */
428 static int
429 force_reval_path(struct path *path, struct nameidata *nd)
430 {
431 	int status;
432 	struct dentry *dentry = path->dentry;
433 
434 	/*
435 	 * only check on filesystems where it's possible for the dentry to
436 	 * become stale. It's assumed that if this flag is set then the
437 	 * d_revalidate op will also be defined.
438 	 */
439 	if (!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT))
440 		return 0;
441 
442 	status = dentry->d_op->d_revalidate(dentry, nd);
443 	if (status > 0)
444 		return 0;
445 
446 	if (!status) {
447 		d_invalidate(dentry);
448 		status = -ESTALE;
449 	}
450 	return status;
451 }
452 
453 /*
454  * Short-cut version of permission(), for calling on directories
455  * during pathname resolution.  Combines parts of permission()
456  * and generic_permission(), and tests ONLY for MAY_EXEC permission.
457  *
458  * If appropriate, check DAC only.  If not appropriate, or
459  * short-cut DAC fails, then call ->permission() to do more
460  * complete permission check.
461  */
462 static int exec_permission(struct inode *inode)
463 {
464 	int ret;
465 
466 	if (inode->i_op->permission) {
467 		ret = inode->i_op->permission(inode, MAY_EXEC);
468 		if (!ret)
469 			goto ok;
470 		return ret;
471 	}
472 	ret = acl_permission_check(inode, MAY_EXEC, inode->i_op->check_acl);
473 	if (!ret)
474 		goto ok;
475 
476 	if (capable(CAP_DAC_OVERRIDE) || capable(CAP_DAC_READ_SEARCH))
477 		goto ok;
478 
479 	return ret;
480 ok:
481 	return security_inode_permission(inode, MAY_EXEC);
482 }
483 
484 static __always_inline void set_root(struct nameidata *nd)
485 {
486 	if (!nd->root.mnt)
487 		get_fs_root(current->fs, &nd->root);
488 }
489 
490 static int link_path_walk(const char *, struct nameidata *);
491 
492 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
493 {
494 	if (IS_ERR(link))
495 		goto fail;
496 
497 	if (*link == '/') {
498 		set_root(nd);
499 		path_put(&nd->path);
500 		nd->path = nd->root;
501 		path_get(&nd->root);
502 	}
503 
504 	return link_path_walk(link, nd);
505 fail:
506 	path_put(&nd->path);
507 	return PTR_ERR(link);
508 }
509 
510 static void path_put_conditional(struct path *path, struct nameidata *nd)
511 {
512 	dput(path->dentry);
513 	if (path->mnt != nd->path.mnt)
514 		mntput(path->mnt);
515 }
516 
517 static inline void path_to_nameidata(struct path *path, struct nameidata *nd)
518 {
519 	dput(nd->path.dentry);
520 	if (nd->path.mnt != path->mnt) {
521 		mntput(nd->path.mnt);
522 		nd->path.mnt = path->mnt;
523 	}
524 	nd->path.dentry = path->dentry;
525 }
526 
527 static __always_inline int
528 __do_follow_link(struct path *path, struct nameidata *nd, void **p)
529 {
530 	int error;
531 	struct dentry *dentry = path->dentry;
532 
533 	touch_atime(path->mnt, dentry);
534 	nd_set_link(nd, NULL);
535 
536 	if (path->mnt != nd->path.mnt) {
537 		path_to_nameidata(path, nd);
538 		dget(dentry);
539 	}
540 	mntget(path->mnt);
541 	nd->last_type = LAST_BIND;
542 	*p = dentry->d_inode->i_op->follow_link(dentry, nd);
543 	error = PTR_ERR(*p);
544 	if (!IS_ERR(*p)) {
545 		char *s = nd_get_link(nd);
546 		error = 0;
547 		if (s)
548 			error = __vfs_follow_link(nd, s);
549 		else if (nd->last_type == LAST_BIND) {
550 			error = force_reval_path(&nd->path, nd);
551 			if (error)
552 				path_put(&nd->path);
553 		}
554 	}
555 	return error;
556 }
557 
558 /*
559  * This limits recursive symlink follows to 8, while
560  * limiting consecutive symlinks to 40.
561  *
562  * Without that kind of total limit, nasty chains of consecutive
563  * symlinks can cause almost arbitrarily long lookups.
564  */
565 static inline int do_follow_link(struct path *path, struct nameidata *nd)
566 {
567 	void *cookie;
568 	int err = -ELOOP;
569 	if (current->link_count >= MAX_NESTED_LINKS)
570 		goto loop;
571 	if (current->total_link_count >= 40)
572 		goto loop;
573 	BUG_ON(nd->depth >= MAX_NESTED_LINKS);
574 	cond_resched();
575 	err = security_inode_follow_link(path->dentry, nd);
576 	if (err)
577 		goto loop;
578 	current->link_count++;
579 	current->total_link_count++;
580 	nd->depth++;
581 	err = __do_follow_link(path, nd, &cookie);
582 	if (!IS_ERR(cookie) && path->dentry->d_inode->i_op->put_link)
583 		path->dentry->d_inode->i_op->put_link(path->dentry, nd, cookie);
584 	path_put(path);
585 	current->link_count--;
586 	nd->depth--;
587 	return err;
588 loop:
589 	path_put_conditional(path, nd);
590 	path_put(&nd->path);
591 	return err;
592 }
593 
594 int follow_up(struct path *path)
595 {
596 	struct vfsmount *parent;
597 	struct dentry *mountpoint;
598 
599 	br_read_lock(vfsmount_lock);
600 	parent = path->mnt->mnt_parent;
601 	if (parent == path->mnt) {
602 		br_read_unlock(vfsmount_lock);
603 		return 0;
604 	}
605 	mntget(parent);
606 	mountpoint = dget(path->mnt->mnt_mountpoint);
607 	br_read_unlock(vfsmount_lock);
608 	dput(path->dentry);
609 	path->dentry = mountpoint;
610 	mntput(path->mnt);
611 	path->mnt = parent;
612 	return 1;
613 }
614 
615 /* no need for dcache_lock, as serialization is taken care in
616  * namespace.c
617  */
618 static int __follow_mount(struct path *path)
619 {
620 	int res = 0;
621 	while (d_mountpoint(path->dentry)) {
622 		struct vfsmount *mounted = lookup_mnt(path);
623 		if (!mounted)
624 			break;
625 		dput(path->dentry);
626 		if (res)
627 			mntput(path->mnt);
628 		path->mnt = mounted;
629 		path->dentry = dget(mounted->mnt_root);
630 		res = 1;
631 	}
632 	return res;
633 }
634 
635 static void follow_mount(struct path *path)
636 {
637 	while (d_mountpoint(path->dentry)) {
638 		struct vfsmount *mounted = lookup_mnt(path);
639 		if (!mounted)
640 			break;
641 		dput(path->dentry);
642 		mntput(path->mnt);
643 		path->mnt = mounted;
644 		path->dentry = dget(mounted->mnt_root);
645 	}
646 }
647 
648 /* no need for dcache_lock, as serialization is taken care in
649  * namespace.c
650  */
651 int follow_down(struct path *path)
652 {
653 	struct vfsmount *mounted;
654 
655 	mounted = lookup_mnt(path);
656 	if (mounted) {
657 		dput(path->dentry);
658 		mntput(path->mnt);
659 		path->mnt = mounted;
660 		path->dentry = dget(mounted->mnt_root);
661 		return 1;
662 	}
663 	return 0;
664 }
665 
666 static __always_inline void follow_dotdot(struct nameidata *nd)
667 {
668 	set_root(nd);
669 
670 	while(1) {
671 		struct dentry *old = nd->path.dentry;
672 
673 		if (nd->path.dentry == nd->root.dentry &&
674 		    nd->path.mnt == nd->root.mnt) {
675 			break;
676 		}
677 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
678 			/* rare case of legitimate dget_parent()... */
679 			nd->path.dentry = dget_parent(nd->path.dentry);
680 			dput(old);
681 			break;
682 		}
683 		if (!follow_up(&nd->path))
684 			break;
685 	}
686 	follow_mount(&nd->path);
687 }
688 
689 /*
690  * Allocate a dentry with name and parent, and perform a parent
691  * directory ->lookup on it. Returns the new dentry, or ERR_PTR
692  * on error. parent->d_inode->i_mutex must be held. d_lookup must
693  * have verified that no child exists while under i_mutex.
694  */
695 static struct dentry *d_alloc_and_lookup(struct dentry *parent,
696 				struct qstr *name, struct nameidata *nd)
697 {
698 	struct inode *inode = parent->d_inode;
699 	struct dentry *dentry;
700 	struct dentry *old;
701 
702 	/* Don't create child dentry for a dead directory. */
703 	if (unlikely(IS_DEADDIR(inode)))
704 		return ERR_PTR(-ENOENT);
705 
706 	dentry = d_alloc(parent, name);
707 	if (unlikely(!dentry))
708 		return ERR_PTR(-ENOMEM);
709 
710 	old = inode->i_op->lookup(inode, dentry, nd);
711 	if (unlikely(old)) {
712 		dput(dentry);
713 		dentry = old;
714 	}
715 	return dentry;
716 }
717 
718 /*
719  *  It's more convoluted than I'd like it to be, but... it's still fairly
720  *  small and for now I'd prefer to have fast path as straight as possible.
721  *  It _is_ time-critical.
722  */
723 static int do_lookup(struct nameidata *nd, struct qstr *name,
724 		     struct path *path)
725 {
726 	struct vfsmount *mnt = nd->path.mnt;
727 	struct dentry *dentry, *parent;
728 	struct inode *dir;
729 	/*
730 	 * See if the low-level filesystem might want
731 	 * to use its own hash..
732 	 */
733 	if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) {
734 		int err = nd->path.dentry->d_op->d_hash(nd->path.dentry, name);
735 		if (err < 0)
736 			return err;
737 	}
738 
739 	/*
740 	 * Rename seqlock is not required here because in the off chance
741 	 * of a false negative due to a concurrent rename, we're going to
742 	 * do the non-racy lookup, below.
743 	 */
744 	dentry = __d_lookup(nd->path.dentry, name);
745 	if (!dentry)
746 		goto need_lookup;
747 found:
748 	if (dentry->d_op && dentry->d_op->d_revalidate)
749 		goto need_revalidate;
750 done:
751 	path->mnt = mnt;
752 	path->dentry = dentry;
753 	__follow_mount(path);
754 	return 0;
755 
756 need_lookup:
757 	parent = nd->path.dentry;
758 	dir = parent->d_inode;
759 
760 	mutex_lock(&dir->i_mutex);
761 	/*
762 	 * First re-do the cached lookup just in case it was created
763 	 * while we waited for the directory semaphore, or the first
764 	 * lookup failed due to an unrelated rename.
765 	 *
766 	 * This could use version numbering or similar to avoid unnecessary
767 	 * cache lookups, but then we'd have to do the first lookup in the
768 	 * non-racy way. However in the common case here, everything should
769 	 * be hot in cache, so would it be a big win?
770 	 */
771 	dentry = d_lookup(parent, name);
772 	if (likely(!dentry)) {
773 		dentry = d_alloc_and_lookup(parent, name, nd);
774 		mutex_unlock(&dir->i_mutex);
775 		if (IS_ERR(dentry))
776 			goto fail;
777 		goto done;
778 	}
779 	/*
780 	 * Uhhuh! Nasty case: the cache was re-populated while
781 	 * we waited on the semaphore. Need to revalidate.
782 	 */
783 	mutex_unlock(&dir->i_mutex);
784 	goto found;
785 
786 need_revalidate:
787 	dentry = do_revalidate(dentry, nd);
788 	if (!dentry)
789 		goto need_lookup;
790 	if (IS_ERR(dentry))
791 		goto fail;
792 	goto done;
793 
794 fail:
795 	return PTR_ERR(dentry);
796 }
797 
798 /*
799  * This is a temporary kludge to deal with "automount" symlinks; proper
800  * solution is to trigger them on follow_mount(), so that do_lookup()
801  * would DTRT.  To be killed before 2.6.34-final.
802  */
803 static inline int follow_on_final(struct inode *inode, unsigned lookup_flags)
804 {
805 	return inode && unlikely(inode->i_op->follow_link) &&
806 		((lookup_flags & LOOKUP_FOLLOW) || S_ISDIR(inode->i_mode));
807 }
808 
809 /*
810  * Name resolution.
811  * This is the basic name resolution function, turning a pathname into
812  * the final dentry. We expect 'base' to be positive and a directory.
813  *
814  * Returns 0 and nd will have valid dentry and mnt on success.
815  * Returns error and drops reference to input namei data on failure.
816  */
817 static int link_path_walk(const char *name, struct nameidata *nd)
818 {
819 	struct path next;
820 	struct inode *inode;
821 	int err;
822 	unsigned int lookup_flags = nd->flags;
823 
824 	while (*name=='/')
825 		name++;
826 	if (!*name)
827 		goto return_reval;
828 
829 	inode = nd->path.dentry->d_inode;
830 	if (nd->depth)
831 		lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE);
832 
833 	/* At this point we know we have a real path component. */
834 	for(;;) {
835 		unsigned long hash;
836 		struct qstr this;
837 		unsigned int c;
838 
839 		nd->flags |= LOOKUP_CONTINUE;
840 		err = exec_permission(inode);
841  		if (err)
842 			break;
843 
844 		this.name = name;
845 		c = *(const unsigned char *)name;
846 
847 		hash = init_name_hash();
848 		do {
849 			name++;
850 			hash = partial_name_hash(c, hash);
851 			c = *(const unsigned char *)name;
852 		} while (c && (c != '/'));
853 		this.len = name - (const char *) this.name;
854 		this.hash = end_name_hash(hash);
855 
856 		/* remove trailing slashes? */
857 		if (!c)
858 			goto last_component;
859 		while (*++name == '/');
860 		if (!*name)
861 			goto last_with_slashes;
862 
863 		/*
864 		 * "." and ".." are special - ".." especially so because it has
865 		 * to be able to know about the current root directory and
866 		 * parent relationships.
867 		 */
868 		if (this.name[0] == '.') switch (this.len) {
869 			default:
870 				break;
871 			case 2:
872 				if (this.name[1] != '.')
873 					break;
874 				follow_dotdot(nd);
875 				inode = nd->path.dentry->d_inode;
876 				/* fallthrough */
877 			case 1:
878 				continue;
879 		}
880 		/* This does the actual lookups.. */
881 		err = do_lookup(nd, &this, &next);
882 		if (err)
883 			break;
884 
885 		err = -ENOENT;
886 		inode = next.dentry->d_inode;
887 		if (!inode)
888 			goto out_dput;
889 
890 		if (inode->i_op->follow_link) {
891 			err = do_follow_link(&next, nd);
892 			if (err)
893 				goto return_err;
894 			err = -ENOENT;
895 			inode = nd->path.dentry->d_inode;
896 			if (!inode)
897 				break;
898 		} else
899 			path_to_nameidata(&next, nd);
900 		err = -ENOTDIR;
901 		if (!inode->i_op->lookup)
902 			break;
903 		continue;
904 		/* here ends the main loop */
905 
906 last_with_slashes:
907 		lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
908 last_component:
909 		/* Clear LOOKUP_CONTINUE iff it was previously unset */
910 		nd->flags &= lookup_flags | ~LOOKUP_CONTINUE;
911 		if (lookup_flags & LOOKUP_PARENT)
912 			goto lookup_parent;
913 		if (this.name[0] == '.') switch (this.len) {
914 			default:
915 				break;
916 			case 2:
917 				if (this.name[1] != '.')
918 					break;
919 				follow_dotdot(nd);
920 				inode = nd->path.dentry->d_inode;
921 				/* fallthrough */
922 			case 1:
923 				goto return_reval;
924 		}
925 		err = do_lookup(nd, &this, &next);
926 		if (err)
927 			break;
928 		inode = next.dentry->d_inode;
929 		if (follow_on_final(inode, lookup_flags)) {
930 			err = do_follow_link(&next, nd);
931 			if (err)
932 				goto return_err;
933 			inode = nd->path.dentry->d_inode;
934 		} else
935 			path_to_nameidata(&next, nd);
936 		err = -ENOENT;
937 		if (!inode)
938 			break;
939 		if (lookup_flags & LOOKUP_DIRECTORY) {
940 			err = -ENOTDIR;
941 			if (!inode->i_op->lookup)
942 				break;
943 		}
944 		goto return_base;
945 lookup_parent:
946 		nd->last = this;
947 		nd->last_type = LAST_NORM;
948 		if (this.name[0] != '.')
949 			goto return_base;
950 		if (this.len == 1)
951 			nd->last_type = LAST_DOT;
952 		else if (this.len == 2 && this.name[1] == '.')
953 			nd->last_type = LAST_DOTDOT;
954 		else
955 			goto return_base;
956 return_reval:
957 		/*
958 		 * We bypassed the ordinary revalidation routines.
959 		 * We may need to check the cached dentry for staleness.
960 		 */
961 		if (nd->path.dentry && nd->path.dentry->d_sb &&
962 		    (nd->path.dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)) {
963 			err = -ESTALE;
964 			/* Note: we do not d_invalidate() */
965 			if (!nd->path.dentry->d_op->d_revalidate(
966 					nd->path.dentry, nd))
967 				break;
968 		}
969 return_base:
970 		return 0;
971 out_dput:
972 		path_put_conditional(&next, nd);
973 		break;
974 	}
975 	path_put(&nd->path);
976 return_err:
977 	return err;
978 }
979 
980 static int path_walk(const char *name, struct nameidata *nd)
981 {
982 	struct path save = nd->path;
983 	int result;
984 
985 	current->total_link_count = 0;
986 
987 	/* make sure the stuff we saved doesn't go away */
988 	path_get(&save);
989 
990 	result = link_path_walk(name, nd);
991 	if (result == -ESTALE) {
992 		/* nd->path had been dropped */
993 		current->total_link_count = 0;
994 		nd->path = save;
995 		path_get(&nd->path);
996 		nd->flags |= LOOKUP_REVAL;
997 		result = link_path_walk(name, nd);
998 	}
999 
1000 	path_put(&save);
1001 
1002 	return result;
1003 }
1004 
1005 static int path_init(int dfd, const char *name, unsigned int flags, struct nameidata *nd)
1006 {
1007 	int retval = 0;
1008 	int fput_needed;
1009 	struct file *file;
1010 
1011 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
1012 	nd->flags = flags;
1013 	nd->depth = 0;
1014 	nd->root.mnt = NULL;
1015 
1016 	if (*name=='/') {
1017 		set_root(nd);
1018 		nd->path = nd->root;
1019 		path_get(&nd->root);
1020 	} else if (dfd == AT_FDCWD) {
1021 		get_fs_pwd(current->fs, &nd->path);
1022 	} else {
1023 		struct dentry *dentry;
1024 
1025 		file = fget_light(dfd, &fput_needed);
1026 		retval = -EBADF;
1027 		if (!file)
1028 			goto out_fail;
1029 
1030 		dentry = file->f_path.dentry;
1031 
1032 		retval = -ENOTDIR;
1033 		if (!S_ISDIR(dentry->d_inode->i_mode))
1034 			goto fput_fail;
1035 
1036 		retval = file_permission(file, MAY_EXEC);
1037 		if (retval)
1038 			goto fput_fail;
1039 
1040 		nd->path = file->f_path;
1041 		path_get(&file->f_path);
1042 
1043 		fput_light(file, fput_needed);
1044 	}
1045 	return 0;
1046 
1047 fput_fail:
1048 	fput_light(file, fput_needed);
1049 out_fail:
1050 	return retval;
1051 }
1052 
1053 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1054 static int do_path_lookup(int dfd, const char *name,
1055 				unsigned int flags, struct nameidata *nd)
1056 {
1057 	int retval = path_init(dfd, name, flags, nd);
1058 	if (!retval)
1059 		retval = path_walk(name, nd);
1060 	if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1061 				nd->path.dentry->d_inode))
1062 		audit_inode(name, nd->path.dentry);
1063 	if (nd->root.mnt) {
1064 		path_put(&nd->root);
1065 		nd->root.mnt = NULL;
1066 	}
1067 	return retval;
1068 }
1069 
1070 int path_lookup(const char *name, unsigned int flags,
1071 			struct nameidata *nd)
1072 {
1073 	return do_path_lookup(AT_FDCWD, name, flags, nd);
1074 }
1075 
1076 int kern_path(const char *name, unsigned int flags, struct path *path)
1077 {
1078 	struct nameidata nd;
1079 	int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1080 	if (!res)
1081 		*path = nd.path;
1082 	return res;
1083 }
1084 
1085 /**
1086  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1087  * @dentry:  pointer to dentry of the base directory
1088  * @mnt: pointer to vfs mount of the base directory
1089  * @name: pointer to file name
1090  * @flags: lookup flags
1091  * @nd: pointer to nameidata
1092  */
1093 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1094 		    const char *name, unsigned int flags,
1095 		    struct nameidata *nd)
1096 {
1097 	int retval;
1098 
1099 	/* same as do_path_lookup */
1100 	nd->last_type = LAST_ROOT;
1101 	nd->flags = flags;
1102 	nd->depth = 0;
1103 
1104 	nd->path.dentry = dentry;
1105 	nd->path.mnt = mnt;
1106 	path_get(&nd->path);
1107 	nd->root = nd->path;
1108 	path_get(&nd->root);
1109 
1110 	retval = path_walk(name, nd);
1111 	if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1112 				nd->path.dentry->d_inode))
1113 		audit_inode(name, nd->path.dentry);
1114 
1115 	path_put(&nd->root);
1116 	nd->root.mnt = NULL;
1117 
1118 	return retval;
1119 }
1120 
1121 static struct dentry *__lookup_hash(struct qstr *name,
1122 		struct dentry *base, struct nameidata *nd)
1123 {
1124 	struct inode *inode = base->d_inode;
1125 	struct dentry *dentry;
1126 	int err;
1127 
1128 	err = exec_permission(inode);
1129 	if (err)
1130 		return ERR_PTR(err);
1131 
1132 	/*
1133 	 * See if the low-level filesystem might want
1134 	 * to use its own hash..
1135 	 */
1136 	if (base->d_op && base->d_op->d_hash) {
1137 		err = base->d_op->d_hash(base, name);
1138 		dentry = ERR_PTR(err);
1139 		if (err < 0)
1140 			goto out;
1141 	}
1142 
1143 	/*
1144 	 * Don't bother with __d_lookup: callers are for creat as
1145 	 * well as unlink, so a lot of the time it would cost
1146 	 * a double lookup.
1147 	 */
1148 	dentry = d_lookup(base, name);
1149 
1150 	if (dentry && dentry->d_op && dentry->d_op->d_revalidate)
1151 		dentry = do_revalidate(dentry, nd);
1152 
1153 	if (!dentry)
1154 		dentry = d_alloc_and_lookup(base, name, nd);
1155 out:
1156 	return dentry;
1157 }
1158 
1159 /*
1160  * Restricted form of lookup. Doesn't follow links, single-component only,
1161  * needs parent already locked. Doesn't follow mounts.
1162  * SMP-safe.
1163  */
1164 static struct dentry *lookup_hash(struct nameidata *nd)
1165 {
1166 	return __lookup_hash(&nd->last, nd->path.dentry, nd);
1167 }
1168 
1169 static int __lookup_one_len(const char *name, struct qstr *this,
1170 		struct dentry *base, int len)
1171 {
1172 	unsigned long hash;
1173 	unsigned int c;
1174 
1175 	this->name = name;
1176 	this->len = len;
1177 	if (!len)
1178 		return -EACCES;
1179 
1180 	hash = init_name_hash();
1181 	while (len--) {
1182 		c = *(const unsigned char *)name++;
1183 		if (c == '/' || c == '\0')
1184 			return -EACCES;
1185 		hash = partial_name_hash(c, hash);
1186 	}
1187 	this->hash = end_name_hash(hash);
1188 	return 0;
1189 }
1190 
1191 /**
1192  * lookup_one_len - filesystem helper to lookup single pathname component
1193  * @name:	pathname component to lookup
1194  * @base:	base directory to lookup from
1195  * @len:	maximum length @len should be interpreted to
1196  *
1197  * Note that this routine is purely a helper for filesystem usage and should
1198  * not be called by generic code.  Also note that by using this function the
1199  * nameidata argument is passed to the filesystem methods and a filesystem
1200  * using this helper needs to be prepared for that.
1201  */
1202 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1203 {
1204 	int err;
1205 	struct qstr this;
1206 
1207 	WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1208 
1209 	err = __lookup_one_len(name, &this, base, len);
1210 	if (err)
1211 		return ERR_PTR(err);
1212 
1213 	return __lookup_hash(&this, base, NULL);
1214 }
1215 
1216 int user_path_at(int dfd, const char __user *name, unsigned flags,
1217 		 struct path *path)
1218 {
1219 	struct nameidata nd;
1220 	char *tmp = getname(name);
1221 	int err = PTR_ERR(tmp);
1222 	if (!IS_ERR(tmp)) {
1223 
1224 		BUG_ON(flags & LOOKUP_PARENT);
1225 
1226 		err = do_path_lookup(dfd, tmp, flags, &nd);
1227 		putname(tmp);
1228 		if (!err)
1229 			*path = nd.path;
1230 	}
1231 	return err;
1232 }
1233 
1234 static int user_path_parent(int dfd, const char __user *path,
1235 			struct nameidata *nd, char **name)
1236 {
1237 	char *s = getname(path);
1238 	int error;
1239 
1240 	if (IS_ERR(s))
1241 		return PTR_ERR(s);
1242 
1243 	error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1244 	if (error)
1245 		putname(s);
1246 	else
1247 		*name = s;
1248 
1249 	return error;
1250 }
1251 
1252 /*
1253  * It's inline, so penalty for filesystems that don't use sticky bit is
1254  * minimal.
1255  */
1256 static inline int check_sticky(struct inode *dir, struct inode *inode)
1257 {
1258 	uid_t fsuid = current_fsuid();
1259 
1260 	if (!(dir->i_mode & S_ISVTX))
1261 		return 0;
1262 	if (inode->i_uid == fsuid)
1263 		return 0;
1264 	if (dir->i_uid == fsuid)
1265 		return 0;
1266 	return !capable(CAP_FOWNER);
1267 }
1268 
1269 /*
1270  *	Check whether we can remove a link victim from directory dir, check
1271  *  whether the type of victim is right.
1272  *  1. We can't do it if dir is read-only (done in permission())
1273  *  2. We should have write and exec permissions on dir
1274  *  3. We can't remove anything from append-only dir
1275  *  4. We can't do anything with immutable dir (done in permission())
1276  *  5. If the sticky bit on dir is set we should either
1277  *	a. be owner of dir, or
1278  *	b. be owner of victim, or
1279  *	c. have CAP_FOWNER capability
1280  *  6. If the victim is append-only or immutable we can't do antyhing with
1281  *     links pointing to it.
1282  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1283  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1284  *  9. We can't remove a root or mountpoint.
1285  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1286  *     nfs_async_unlink().
1287  */
1288 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1289 {
1290 	int error;
1291 
1292 	if (!victim->d_inode)
1293 		return -ENOENT;
1294 
1295 	BUG_ON(victim->d_parent->d_inode != dir);
1296 	audit_inode_child(victim, dir);
1297 
1298 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1299 	if (error)
1300 		return error;
1301 	if (IS_APPEND(dir))
1302 		return -EPERM;
1303 	if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1304 	    IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
1305 		return -EPERM;
1306 	if (isdir) {
1307 		if (!S_ISDIR(victim->d_inode->i_mode))
1308 			return -ENOTDIR;
1309 		if (IS_ROOT(victim))
1310 			return -EBUSY;
1311 	} else if (S_ISDIR(victim->d_inode->i_mode))
1312 		return -EISDIR;
1313 	if (IS_DEADDIR(dir))
1314 		return -ENOENT;
1315 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1316 		return -EBUSY;
1317 	return 0;
1318 }
1319 
1320 /*	Check whether we can create an object with dentry child in directory
1321  *  dir.
1322  *  1. We can't do it if child already exists (open has special treatment for
1323  *     this case, but since we are inlined it's OK)
1324  *  2. We can't do it if dir is read-only (done in permission())
1325  *  3. We should have write and exec permissions on dir
1326  *  4. We can't do it if dir is immutable (done in permission())
1327  */
1328 static inline int may_create(struct inode *dir, struct dentry *child)
1329 {
1330 	if (child->d_inode)
1331 		return -EEXIST;
1332 	if (IS_DEADDIR(dir))
1333 		return -ENOENT;
1334 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
1335 }
1336 
1337 /*
1338  * p1 and p2 should be directories on the same fs.
1339  */
1340 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1341 {
1342 	struct dentry *p;
1343 
1344 	if (p1 == p2) {
1345 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1346 		return NULL;
1347 	}
1348 
1349 	mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1350 
1351 	p = d_ancestor(p2, p1);
1352 	if (p) {
1353 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1354 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1355 		return p;
1356 	}
1357 
1358 	p = d_ancestor(p1, p2);
1359 	if (p) {
1360 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1361 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1362 		return p;
1363 	}
1364 
1365 	mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1366 	mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1367 	return NULL;
1368 }
1369 
1370 void unlock_rename(struct dentry *p1, struct dentry *p2)
1371 {
1372 	mutex_unlock(&p1->d_inode->i_mutex);
1373 	if (p1 != p2) {
1374 		mutex_unlock(&p2->d_inode->i_mutex);
1375 		mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1376 	}
1377 }
1378 
1379 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1380 		struct nameidata *nd)
1381 {
1382 	int error = may_create(dir, dentry);
1383 
1384 	if (error)
1385 		return error;
1386 
1387 	if (!dir->i_op->create)
1388 		return -EACCES;	/* shouldn't it be ENOSYS? */
1389 	mode &= S_IALLUGO;
1390 	mode |= S_IFREG;
1391 	error = security_inode_create(dir, dentry, mode);
1392 	if (error)
1393 		return error;
1394 	error = dir->i_op->create(dir, dentry, mode, nd);
1395 	if (!error)
1396 		fsnotify_create(dir, dentry);
1397 	return error;
1398 }
1399 
1400 int may_open(struct path *path, int acc_mode, int flag)
1401 {
1402 	struct dentry *dentry = path->dentry;
1403 	struct inode *inode = dentry->d_inode;
1404 	int error;
1405 
1406 	if (!inode)
1407 		return -ENOENT;
1408 
1409 	switch (inode->i_mode & S_IFMT) {
1410 	case S_IFLNK:
1411 		return -ELOOP;
1412 	case S_IFDIR:
1413 		if (acc_mode & MAY_WRITE)
1414 			return -EISDIR;
1415 		break;
1416 	case S_IFBLK:
1417 	case S_IFCHR:
1418 		if (path->mnt->mnt_flags & MNT_NODEV)
1419 			return -EACCES;
1420 		/*FALLTHRU*/
1421 	case S_IFIFO:
1422 	case S_IFSOCK:
1423 		flag &= ~O_TRUNC;
1424 		break;
1425 	}
1426 
1427 	error = inode_permission(inode, acc_mode);
1428 	if (error)
1429 		return error;
1430 
1431 	/*
1432 	 * An append-only file must be opened in append mode for writing.
1433 	 */
1434 	if (IS_APPEND(inode)) {
1435 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
1436 			return -EPERM;
1437 		if (flag & O_TRUNC)
1438 			return -EPERM;
1439 	}
1440 
1441 	/* O_NOATIME can only be set by the owner or superuser */
1442 	if (flag & O_NOATIME && !is_owner_or_cap(inode))
1443 		return -EPERM;
1444 
1445 	/*
1446 	 * Ensure there are no outstanding leases on the file.
1447 	 */
1448 	return break_lease(inode, flag);
1449 }
1450 
1451 static int handle_truncate(struct path *path)
1452 {
1453 	struct inode *inode = path->dentry->d_inode;
1454 	int error = get_write_access(inode);
1455 	if (error)
1456 		return error;
1457 	/*
1458 	 * Refuse to truncate files with mandatory locks held on them.
1459 	 */
1460 	error = locks_verify_locked(inode);
1461 	if (!error)
1462 		error = security_path_truncate(path);
1463 	if (!error) {
1464 		error = do_truncate(path->dentry, 0,
1465 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
1466 				    NULL);
1467 	}
1468 	put_write_access(inode);
1469 	return error;
1470 }
1471 
1472 /*
1473  * Be careful about ever adding any more callers of this
1474  * function.  Its flags must be in the namei format, not
1475  * what get passed to sys_open().
1476  */
1477 static int __open_namei_create(struct nameidata *nd, struct path *path,
1478 				int open_flag, int mode)
1479 {
1480 	int error;
1481 	struct dentry *dir = nd->path.dentry;
1482 
1483 	if (!IS_POSIXACL(dir->d_inode))
1484 		mode &= ~current_umask();
1485 	error = security_path_mknod(&nd->path, path->dentry, mode, 0);
1486 	if (error)
1487 		goto out_unlock;
1488 	error = vfs_create(dir->d_inode, path->dentry, mode, nd);
1489 out_unlock:
1490 	mutex_unlock(&dir->d_inode->i_mutex);
1491 	dput(nd->path.dentry);
1492 	nd->path.dentry = path->dentry;
1493 	if (error)
1494 		return error;
1495 	/* Don't check for write permission, don't truncate */
1496 	return may_open(&nd->path, 0, open_flag & ~O_TRUNC);
1497 }
1498 
1499 /*
1500  * Note that while the flag value (low two bits) for sys_open means:
1501  *	00 - read-only
1502  *	01 - write-only
1503  *	10 - read-write
1504  *	11 - special
1505  * it is changed into
1506  *	00 - no permissions needed
1507  *	01 - read-permission
1508  *	10 - write-permission
1509  *	11 - read-write
1510  * for the internal routines (ie open_namei()/follow_link() etc)
1511  * This is more logical, and also allows the 00 "no perm needed"
1512  * to be used for symlinks (where the permissions are checked
1513  * later).
1514  *
1515 */
1516 static inline int open_to_namei_flags(int flag)
1517 {
1518 	if ((flag+1) & O_ACCMODE)
1519 		flag++;
1520 	return flag;
1521 }
1522 
1523 static int open_will_truncate(int flag, struct inode *inode)
1524 {
1525 	/*
1526 	 * We'll never write to the fs underlying
1527 	 * a device file.
1528 	 */
1529 	if (special_file(inode->i_mode))
1530 		return 0;
1531 	return (flag & O_TRUNC);
1532 }
1533 
1534 static struct file *finish_open(struct nameidata *nd,
1535 				int open_flag, int acc_mode)
1536 {
1537 	struct file *filp;
1538 	int will_truncate;
1539 	int error;
1540 
1541 	will_truncate = open_will_truncate(open_flag, nd->path.dentry->d_inode);
1542 	if (will_truncate) {
1543 		error = mnt_want_write(nd->path.mnt);
1544 		if (error)
1545 			goto exit;
1546 	}
1547 	error = may_open(&nd->path, acc_mode, open_flag);
1548 	if (error) {
1549 		if (will_truncate)
1550 			mnt_drop_write(nd->path.mnt);
1551 		goto exit;
1552 	}
1553 	filp = nameidata_to_filp(nd);
1554 	if (!IS_ERR(filp)) {
1555 		error = ima_file_check(filp, acc_mode);
1556 		if (error) {
1557 			fput(filp);
1558 			filp = ERR_PTR(error);
1559 		}
1560 	}
1561 	if (!IS_ERR(filp)) {
1562 		if (will_truncate) {
1563 			error = handle_truncate(&nd->path);
1564 			if (error) {
1565 				fput(filp);
1566 				filp = ERR_PTR(error);
1567 			}
1568 		}
1569 	}
1570 	/*
1571 	 * It is now safe to drop the mnt write
1572 	 * because the filp has had a write taken
1573 	 * on its behalf.
1574 	 */
1575 	if (will_truncate)
1576 		mnt_drop_write(nd->path.mnt);
1577 	path_put(&nd->path);
1578 	return filp;
1579 
1580 exit:
1581 	if (!IS_ERR(nd->intent.open.file))
1582 		release_open_intent(nd);
1583 	path_put(&nd->path);
1584 	return ERR_PTR(error);
1585 }
1586 
1587 static struct file *do_last(struct nameidata *nd, struct path *path,
1588 			    int open_flag, int acc_mode,
1589 			    int mode, const char *pathname)
1590 {
1591 	struct dentry *dir = nd->path.dentry;
1592 	struct file *filp;
1593 	int error = -EISDIR;
1594 
1595 	switch (nd->last_type) {
1596 	case LAST_DOTDOT:
1597 		follow_dotdot(nd);
1598 		dir = nd->path.dentry;
1599 	case LAST_DOT:
1600 		if (nd->path.mnt->mnt_sb->s_type->fs_flags & FS_REVAL_DOT) {
1601 			if (!dir->d_op->d_revalidate(dir, nd)) {
1602 				error = -ESTALE;
1603 				goto exit;
1604 			}
1605 		}
1606 		/* fallthrough */
1607 	case LAST_ROOT:
1608 		if (open_flag & O_CREAT)
1609 			goto exit;
1610 		/* fallthrough */
1611 	case LAST_BIND:
1612 		audit_inode(pathname, dir);
1613 		goto ok;
1614 	}
1615 
1616 	/* trailing slashes? */
1617 	if (nd->last.name[nd->last.len]) {
1618 		if (open_flag & O_CREAT)
1619 			goto exit;
1620 		nd->flags |= LOOKUP_DIRECTORY | LOOKUP_FOLLOW;
1621 	}
1622 
1623 	/* just plain open? */
1624 	if (!(open_flag & O_CREAT)) {
1625 		error = do_lookup(nd, &nd->last, path);
1626 		if (error)
1627 			goto exit;
1628 		error = -ENOENT;
1629 		if (!path->dentry->d_inode)
1630 			goto exit_dput;
1631 		if (path->dentry->d_inode->i_op->follow_link)
1632 			return NULL;
1633 		error = -ENOTDIR;
1634 		if (nd->flags & LOOKUP_DIRECTORY) {
1635 			if (!path->dentry->d_inode->i_op->lookup)
1636 				goto exit_dput;
1637 		}
1638 		path_to_nameidata(path, nd);
1639 		audit_inode(pathname, nd->path.dentry);
1640 		goto ok;
1641 	}
1642 
1643 	/* OK, it's O_CREAT */
1644 	mutex_lock(&dir->d_inode->i_mutex);
1645 
1646 	path->dentry = lookup_hash(nd);
1647 	path->mnt = nd->path.mnt;
1648 
1649 	error = PTR_ERR(path->dentry);
1650 	if (IS_ERR(path->dentry)) {
1651 		mutex_unlock(&dir->d_inode->i_mutex);
1652 		goto exit;
1653 	}
1654 
1655 	if (IS_ERR(nd->intent.open.file)) {
1656 		error = PTR_ERR(nd->intent.open.file);
1657 		goto exit_mutex_unlock;
1658 	}
1659 
1660 	/* Negative dentry, just create the file */
1661 	if (!path->dentry->d_inode) {
1662 		/*
1663 		 * This write is needed to ensure that a
1664 		 * ro->rw transition does not occur between
1665 		 * the time when the file is created and when
1666 		 * a permanent write count is taken through
1667 		 * the 'struct file' in nameidata_to_filp().
1668 		 */
1669 		error = mnt_want_write(nd->path.mnt);
1670 		if (error)
1671 			goto exit_mutex_unlock;
1672 		error = __open_namei_create(nd, path, open_flag, mode);
1673 		if (error) {
1674 			mnt_drop_write(nd->path.mnt);
1675 			goto exit;
1676 		}
1677 		filp = nameidata_to_filp(nd);
1678 		mnt_drop_write(nd->path.mnt);
1679 		path_put(&nd->path);
1680 		if (!IS_ERR(filp)) {
1681 			error = ima_file_check(filp, acc_mode);
1682 			if (error) {
1683 				fput(filp);
1684 				filp = ERR_PTR(error);
1685 			}
1686 		}
1687 		return filp;
1688 	}
1689 
1690 	/*
1691 	 * It already exists.
1692 	 */
1693 	mutex_unlock(&dir->d_inode->i_mutex);
1694 	audit_inode(pathname, path->dentry);
1695 
1696 	error = -EEXIST;
1697 	if (open_flag & O_EXCL)
1698 		goto exit_dput;
1699 
1700 	if (__follow_mount(path)) {
1701 		error = -ELOOP;
1702 		if (open_flag & O_NOFOLLOW)
1703 			goto exit_dput;
1704 	}
1705 
1706 	error = -ENOENT;
1707 	if (!path->dentry->d_inode)
1708 		goto exit_dput;
1709 
1710 	if (path->dentry->d_inode->i_op->follow_link)
1711 		return NULL;
1712 
1713 	path_to_nameidata(path, nd);
1714 	error = -EISDIR;
1715 	if (S_ISDIR(path->dentry->d_inode->i_mode))
1716 		goto exit;
1717 ok:
1718 	filp = finish_open(nd, open_flag, acc_mode);
1719 	return filp;
1720 
1721 exit_mutex_unlock:
1722 	mutex_unlock(&dir->d_inode->i_mutex);
1723 exit_dput:
1724 	path_put_conditional(path, nd);
1725 exit:
1726 	if (!IS_ERR(nd->intent.open.file))
1727 		release_open_intent(nd);
1728 	path_put(&nd->path);
1729 	return ERR_PTR(error);
1730 }
1731 
1732 /*
1733  * Note that the low bits of the passed in "open_flag"
1734  * are not the same as in the local variable "flag". See
1735  * open_to_namei_flags() for more details.
1736  */
1737 struct file *do_filp_open(int dfd, const char *pathname,
1738 		int open_flag, int mode, int acc_mode)
1739 {
1740 	struct file *filp;
1741 	struct nameidata nd;
1742 	int error;
1743 	struct path path;
1744 	int count = 0;
1745 	int flag = open_to_namei_flags(open_flag);
1746 	int force_reval = 0;
1747 
1748 	if (!(open_flag & O_CREAT))
1749 		mode = 0;
1750 
1751 	/* Must never be set by userspace */
1752 	open_flag &= ~FMODE_NONOTIFY;
1753 
1754 	/*
1755 	 * O_SYNC is implemented as __O_SYNC|O_DSYNC.  As many places only
1756 	 * check for O_DSYNC if the need any syncing at all we enforce it's
1757 	 * always set instead of having to deal with possibly weird behaviour
1758 	 * for malicious applications setting only __O_SYNC.
1759 	 */
1760 	if (open_flag & __O_SYNC)
1761 		open_flag |= O_DSYNC;
1762 
1763 	if (!acc_mode)
1764 		acc_mode = MAY_OPEN | ACC_MODE(open_flag);
1765 
1766 	/* O_TRUNC implies we need access checks for write permissions */
1767 	if (open_flag & O_TRUNC)
1768 		acc_mode |= MAY_WRITE;
1769 
1770 	/* Allow the LSM permission hook to distinguish append
1771 	   access from general write access. */
1772 	if (open_flag & O_APPEND)
1773 		acc_mode |= MAY_APPEND;
1774 
1775 	/* find the parent */
1776 reval:
1777 	error = path_init(dfd, pathname, LOOKUP_PARENT, &nd);
1778 	if (error)
1779 		return ERR_PTR(error);
1780 	if (force_reval)
1781 		nd.flags |= LOOKUP_REVAL;
1782 
1783 	current->total_link_count = 0;
1784 	error = link_path_walk(pathname, &nd);
1785 	if (error) {
1786 		filp = ERR_PTR(error);
1787 		goto out;
1788 	}
1789 	if (unlikely(!audit_dummy_context()) && (open_flag & O_CREAT))
1790 		audit_inode(pathname, nd.path.dentry);
1791 
1792 	/*
1793 	 * We have the parent and last component.
1794 	 */
1795 
1796 	error = -ENFILE;
1797 	filp = get_empty_filp();
1798 	if (filp == NULL)
1799 		goto exit_parent;
1800 	nd.intent.open.file = filp;
1801 	filp->f_flags = open_flag;
1802 	nd.intent.open.flags = flag;
1803 	nd.intent.open.create_mode = mode;
1804 	nd.flags &= ~LOOKUP_PARENT;
1805 	nd.flags |= LOOKUP_OPEN;
1806 	if (open_flag & O_CREAT) {
1807 		nd.flags |= LOOKUP_CREATE;
1808 		if (open_flag & O_EXCL)
1809 			nd.flags |= LOOKUP_EXCL;
1810 	}
1811 	if (open_flag & O_DIRECTORY)
1812 		nd.flags |= LOOKUP_DIRECTORY;
1813 	if (!(open_flag & O_NOFOLLOW))
1814 		nd.flags |= LOOKUP_FOLLOW;
1815 	filp = do_last(&nd, &path, open_flag, acc_mode, mode, pathname);
1816 	while (unlikely(!filp)) { /* trailing symlink */
1817 		struct path holder;
1818 		struct inode *inode = path.dentry->d_inode;
1819 		void *cookie;
1820 		error = -ELOOP;
1821 		/* S_ISDIR part is a temporary automount kludge */
1822 		if (!(nd.flags & LOOKUP_FOLLOW) && !S_ISDIR(inode->i_mode))
1823 			goto exit_dput;
1824 		if (count++ == 32)
1825 			goto exit_dput;
1826 		/*
1827 		 * This is subtle. Instead of calling do_follow_link() we do
1828 		 * the thing by hands. The reason is that this way we have zero
1829 		 * link_count and path_walk() (called from ->follow_link)
1830 		 * honoring LOOKUP_PARENT.  After that we have the parent and
1831 		 * last component, i.e. we are in the same situation as after
1832 		 * the first path_walk().  Well, almost - if the last component
1833 		 * is normal we get its copy stored in nd->last.name and we will
1834 		 * have to putname() it when we are done. Procfs-like symlinks
1835 		 * just set LAST_BIND.
1836 		 */
1837 		nd.flags |= LOOKUP_PARENT;
1838 		error = security_inode_follow_link(path.dentry, &nd);
1839 		if (error)
1840 			goto exit_dput;
1841 		error = __do_follow_link(&path, &nd, &cookie);
1842 		if (unlikely(error)) {
1843 			/* nd.path had been dropped */
1844 			if (!IS_ERR(cookie) && inode->i_op->put_link)
1845 				inode->i_op->put_link(path.dentry, &nd, cookie);
1846 			path_put(&path);
1847 			release_open_intent(&nd);
1848 			filp = ERR_PTR(error);
1849 			goto out;
1850 		}
1851 		holder = path;
1852 		nd.flags &= ~LOOKUP_PARENT;
1853 		filp = do_last(&nd, &path, open_flag, acc_mode, mode, pathname);
1854 		if (inode->i_op->put_link)
1855 			inode->i_op->put_link(holder.dentry, &nd, cookie);
1856 		path_put(&holder);
1857 	}
1858 out:
1859 	if (nd.root.mnt)
1860 		path_put(&nd.root);
1861 	if (filp == ERR_PTR(-ESTALE) && !force_reval) {
1862 		force_reval = 1;
1863 		goto reval;
1864 	}
1865 	return filp;
1866 
1867 exit_dput:
1868 	path_put_conditional(&path, &nd);
1869 	if (!IS_ERR(nd.intent.open.file))
1870 		release_open_intent(&nd);
1871 exit_parent:
1872 	path_put(&nd.path);
1873 	filp = ERR_PTR(error);
1874 	goto out;
1875 }
1876 
1877 /**
1878  * filp_open - open file and return file pointer
1879  *
1880  * @filename:	path to open
1881  * @flags:	open flags as per the open(2) second argument
1882  * @mode:	mode for the new file if O_CREAT is set, else ignored
1883  *
1884  * This is the helper to open a file from kernelspace if you really
1885  * have to.  But in generally you should not do this, so please move
1886  * along, nothing to see here..
1887  */
1888 struct file *filp_open(const char *filename, int flags, int mode)
1889 {
1890 	return do_filp_open(AT_FDCWD, filename, flags, mode, 0);
1891 }
1892 EXPORT_SYMBOL(filp_open);
1893 
1894 /**
1895  * lookup_create - lookup a dentry, creating it if it doesn't exist
1896  * @nd: nameidata info
1897  * @is_dir: directory flag
1898  *
1899  * Simple function to lookup and return a dentry and create it
1900  * if it doesn't exist.  Is SMP-safe.
1901  *
1902  * Returns with nd->path.dentry->d_inode->i_mutex locked.
1903  */
1904 struct dentry *lookup_create(struct nameidata *nd, int is_dir)
1905 {
1906 	struct dentry *dentry = ERR_PTR(-EEXIST);
1907 
1908 	mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
1909 	/*
1910 	 * Yucky last component or no last component at all?
1911 	 * (foo/., foo/.., /////)
1912 	 */
1913 	if (nd->last_type != LAST_NORM)
1914 		goto fail;
1915 	nd->flags &= ~LOOKUP_PARENT;
1916 	nd->flags |= LOOKUP_CREATE | LOOKUP_EXCL;
1917 	nd->intent.open.flags = O_EXCL;
1918 
1919 	/*
1920 	 * Do the final lookup.
1921 	 */
1922 	dentry = lookup_hash(nd);
1923 	if (IS_ERR(dentry))
1924 		goto fail;
1925 
1926 	if (dentry->d_inode)
1927 		goto eexist;
1928 	/*
1929 	 * Special case - lookup gave negative, but... we had foo/bar/
1930 	 * From the vfs_mknod() POV we just have a negative dentry -
1931 	 * all is fine. Let's be bastards - you had / on the end, you've
1932 	 * been asking for (non-existent) directory. -ENOENT for you.
1933 	 */
1934 	if (unlikely(!is_dir && nd->last.name[nd->last.len])) {
1935 		dput(dentry);
1936 		dentry = ERR_PTR(-ENOENT);
1937 	}
1938 	return dentry;
1939 eexist:
1940 	dput(dentry);
1941 	dentry = ERR_PTR(-EEXIST);
1942 fail:
1943 	return dentry;
1944 }
1945 EXPORT_SYMBOL_GPL(lookup_create);
1946 
1947 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1948 {
1949 	int error = may_create(dir, dentry);
1950 
1951 	if (error)
1952 		return error;
1953 
1954 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
1955 		return -EPERM;
1956 
1957 	if (!dir->i_op->mknod)
1958 		return -EPERM;
1959 
1960 	error = devcgroup_inode_mknod(mode, dev);
1961 	if (error)
1962 		return error;
1963 
1964 	error = security_inode_mknod(dir, dentry, mode, dev);
1965 	if (error)
1966 		return error;
1967 
1968 	error = dir->i_op->mknod(dir, dentry, mode, dev);
1969 	if (!error)
1970 		fsnotify_create(dir, dentry);
1971 	return error;
1972 }
1973 
1974 static int may_mknod(mode_t mode)
1975 {
1976 	switch (mode & S_IFMT) {
1977 	case S_IFREG:
1978 	case S_IFCHR:
1979 	case S_IFBLK:
1980 	case S_IFIFO:
1981 	case S_IFSOCK:
1982 	case 0: /* zero mode translates to S_IFREG */
1983 		return 0;
1984 	case S_IFDIR:
1985 		return -EPERM;
1986 	default:
1987 		return -EINVAL;
1988 	}
1989 }
1990 
1991 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode,
1992 		unsigned, dev)
1993 {
1994 	int error;
1995 	char *tmp;
1996 	struct dentry *dentry;
1997 	struct nameidata nd;
1998 
1999 	if (S_ISDIR(mode))
2000 		return -EPERM;
2001 
2002 	error = user_path_parent(dfd, filename, &nd, &tmp);
2003 	if (error)
2004 		return error;
2005 
2006 	dentry = lookup_create(&nd, 0);
2007 	if (IS_ERR(dentry)) {
2008 		error = PTR_ERR(dentry);
2009 		goto out_unlock;
2010 	}
2011 	if (!IS_POSIXACL(nd.path.dentry->d_inode))
2012 		mode &= ~current_umask();
2013 	error = may_mknod(mode);
2014 	if (error)
2015 		goto out_dput;
2016 	error = mnt_want_write(nd.path.mnt);
2017 	if (error)
2018 		goto out_dput;
2019 	error = security_path_mknod(&nd.path, dentry, mode, dev);
2020 	if (error)
2021 		goto out_drop_write;
2022 	switch (mode & S_IFMT) {
2023 		case 0: case S_IFREG:
2024 			error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd);
2025 			break;
2026 		case S_IFCHR: case S_IFBLK:
2027 			error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,
2028 					new_decode_dev(dev));
2029 			break;
2030 		case S_IFIFO: case S_IFSOCK:
2031 			error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0);
2032 			break;
2033 	}
2034 out_drop_write:
2035 	mnt_drop_write(nd.path.mnt);
2036 out_dput:
2037 	dput(dentry);
2038 out_unlock:
2039 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2040 	path_put(&nd.path);
2041 	putname(tmp);
2042 
2043 	return error;
2044 }
2045 
2046 SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev)
2047 {
2048 	return sys_mknodat(AT_FDCWD, filename, mode, dev);
2049 }
2050 
2051 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2052 {
2053 	int error = may_create(dir, dentry);
2054 
2055 	if (error)
2056 		return error;
2057 
2058 	if (!dir->i_op->mkdir)
2059 		return -EPERM;
2060 
2061 	mode &= (S_IRWXUGO|S_ISVTX);
2062 	error = security_inode_mkdir(dir, dentry, mode);
2063 	if (error)
2064 		return error;
2065 
2066 	error = dir->i_op->mkdir(dir, dentry, mode);
2067 	if (!error)
2068 		fsnotify_mkdir(dir, dentry);
2069 	return error;
2070 }
2071 
2072 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode)
2073 {
2074 	int error = 0;
2075 	char * tmp;
2076 	struct dentry *dentry;
2077 	struct nameidata nd;
2078 
2079 	error = user_path_parent(dfd, pathname, &nd, &tmp);
2080 	if (error)
2081 		goto out_err;
2082 
2083 	dentry = lookup_create(&nd, 1);
2084 	error = PTR_ERR(dentry);
2085 	if (IS_ERR(dentry))
2086 		goto out_unlock;
2087 
2088 	if (!IS_POSIXACL(nd.path.dentry->d_inode))
2089 		mode &= ~current_umask();
2090 	error = mnt_want_write(nd.path.mnt);
2091 	if (error)
2092 		goto out_dput;
2093 	error = security_path_mkdir(&nd.path, dentry, mode);
2094 	if (error)
2095 		goto out_drop_write;
2096 	error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode);
2097 out_drop_write:
2098 	mnt_drop_write(nd.path.mnt);
2099 out_dput:
2100 	dput(dentry);
2101 out_unlock:
2102 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2103 	path_put(&nd.path);
2104 	putname(tmp);
2105 out_err:
2106 	return error;
2107 }
2108 
2109 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode)
2110 {
2111 	return sys_mkdirat(AT_FDCWD, pathname, mode);
2112 }
2113 
2114 /*
2115  * We try to drop the dentry early: we should have
2116  * a usage count of 2 if we're the only user of this
2117  * dentry, and if that is true (possibly after pruning
2118  * the dcache), then we drop the dentry now.
2119  *
2120  * A low-level filesystem can, if it choses, legally
2121  * do a
2122  *
2123  *	if (!d_unhashed(dentry))
2124  *		return -EBUSY;
2125  *
2126  * if it cannot handle the case of removing a directory
2127  * that is still in use by something else..
2128  */
2129 void dentry_unhash(struct dentry *dentry)
2130 {
2131 	dget(dentry);
2132 	shrink_dcache_parent(dentry);
2133 	spin_lock(&dcache_lock);
2134 	spin_lock(&dentry->d_lock);
2135 	if (atomic_read(&dentry->d_count) == 2)
2136 		__d_drop(dentry);
2137 	spin_unlock(&dentry->d_lock);
2138 	spin_unlock(&dcache_lock);
2139 }
2140 
2141 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2142 {
2143 	int error = may_delete(dir, dentry, 1);
2144 
2145 	if (error)
2146 		return error;
2147 
2148 	if (!dir->i_op->rmdir)
2149 		return -EPERM;
2150 
2151 	mutex_lock(&dentry->d_inode->i_mutex);
2152 	dentry_unhash(dentry);
2153 	if (d_mountpoint(dentry))
2154 		error = -EBUSY;
2155 	else {
2156 		error = security_inode_rmdir(dir, dentry);
2157 		if (!error) {
2158 			error = dir->i_op->rmdir(dir, dentry);
2159 			if (!error) {
2160 				dentry->d_inode->i_flags |= S_DEAD;
2161 				dont_mount(dentry);
2162 			}
2163 		}
2164 	}
2165 	mutex_unlock(&dentry->d_inode->i_mutex);
2166 	if (!error) {
2167 		d_delete(dentry);
2168 	}
2169 	dput(dentry);
2170 
2171 	return error;
2172 }
2173 
2174 static long do_rmdir(int dfd, const char __user *pathname)
2175 {
2176 	int error = 0;
2177 	char * name;
2178 	struct dentry *dentry;
2179 	struct nameidata nd;
2180 
2181 	error = user_path_parent(dfd, pathname, &nd, &name);
2182 	if (error)
2183 		return error;
2184 
2185 	switch(nd.last_type) {
2186 	case LAST_DOTDOT:
2187 		error = -ENOTEMPTY;
2188 		goto exit1;
2189 	case LAST_DOT:
2190 		error = -EINVAL;
2191 		goto exit1;
2192 	case LAST_ROOT:
2193 		error = -EBUSY;
2194 		goto exit1;
2195 	}
2196 
2197 	nd.flags &= ~LOOKUP_PARENT;
2198 
2199 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2200 	dentry = lookup_hash(&nd);
2201 	error = PTR_ERR(dentry);
2202 	if (IS_ERR(dentry))
2203 		goto exit2;
2204 	error = mnt_want_write(nd.path.mnt);
2205 	if (error)
2206 		goto exit3;
2207 	error = security_path_rmdir(&nd.path, dentry);
2208 	if (error)
2209 		goto exit4;
2210 	error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2211 exit4:
2212 	mnt_drop_write(nd.path.mnt);
2213 exit3:
2214 	dput(dentry);
2215 exit2:
2216 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2217 exit1:
2218 	path_put(&nd.path);
2219 	putname(name);
2220 	return error;
2221 }
2222 
2223 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2224 {
2225 	return do_rmdir(AT_FDCWD, pathname);
2226 }
2227 
2228 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2229 {
2230 	int error = may_delete(dir, dentry, 0);
2231 
2232 	if (error)
2233 		return error;
2234 
2235 	if (!dir->i_op->unlink)
2236 		return -EPERM;
2237 
2238 	mutex_lock(&dentry->d_inode->i_mutex);
2239 	if (d_mountpoint(dentry))
2240 		error = -EBUSY;
2241 	else {
2242 		error = security_inode_unlink(dir, dentry);
2243 		if (!error) {
2244 			error = dir->i_op->unlink(dir, dentry);
2245 			if (!error)
2246 				dont_mount(dentry);
2247 		}
2248 	}
2249 	mutex_unlock(&dentry->d_inode->i_mutex);
2250 
2251 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
2252 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2253 		fsnotify_link_count(dentry->d_inode);
2254 		d_delete(dentry);
2255 	}
2256 
2257 	return error;
2258 }
2259 
2260 /*
2261  * Make sure that the actual truncation of the file will occur outside its
2262  * directory's i_mutex.  Truncate can take a long time if there is a lot of
2263  * writeout happening, and we don't want to prevent access to the directory
2264  * while waiting on the I/O.
2265  */
2266 static long do_unlinkat(int dfd, const char __user *pathname)
2267 {
2268 	int error;
2269 	char *name;
2270 	struct dentry *dentry;
2271 	struct nameidata nd;
2272 	struct inode *inode = NULL;
2273 
2274 	error = user_path_parent(dfd, pathname, &nd, &name);
2275 	if (error)
2276 		return error;
2277 
2278 	error = -EISDIR;
2279 	if (nd.last_type != LAST_NORM)
2280 		goto exit1;
2281 
2282 	nd.flags &= ~LOOKUP_PARENT;
2283 
2284 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2285 	dentry = lookup_hash(&nd);
2286 	error = PTR_ERR(dentry);
2287 	if (!IS_ERR(dentry)) {
2288 		/* Why not before? Because we want correct error value */
2289 		if (nd.last.name[nd.last.len])
2290 			goto slashes;
2291 		inode = dentry->d_inode;
2292 		if (inode)
2293 			ihold(inode);
2294 		error = mnt_want_write(nd.path.mnt);
2295 		if (error)
2296 			goto exit2;
2297 		error = security_path_unlink(&nd.path, dentry);
2298 		if (error)
2299 			goto exit3;
2300 		error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2301 exit3:
2302 		mnt_drop_write(nd.path.mnt);
2303 	exit2:
2304 		dput(dentry);
2305 	}
2306 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2307 	if (inode)
2308 		iput(inode);	/* truncate the inode here */
2309 exit1:
2310 	path_put(&nd.path);
2311 	putname(name);
2312 	return error;
2313 
2314 slashes:
2315 	error = !dentry->d_inode ? -ENOENT :
2316 		S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2317 	goto exit2;
2318 }
2319 
2320 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
2321 {
2322 	if ((flag & ~AT_REMOVEDIR) != 0)
2323 		return -EINVAL;
2324 
2325 	if (flag & AT_REMOVEDIR)
2326 		return do_rmdir(dfd, pathname);
2327 
2328 	return do_unlinkat(dfd, pathname);
2329 }
2330 
2331 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
2332 {
2333 	return do_unlinkat(AT_FDCWD, pathname);
2334 }
2335 
2336 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2337 {
2338 	int error = may_create(dir, dentry);
2339 
2340 	if (error)
2341 		return error;
2342 
2343 	if (!dir->i_op->symlink)
2344 		return -EPERM;
2345 
2346 	error = security_inode_symlink(dir, dentry, oldname);
2347 	if (error)
2348 		return error;
2349 
2350 	error = dir->i_op->symlink(dir, dentry, oldname);
2351 	if (!error)
2352 		fsnotify_create(dir, dentry);
2353 	return error;
2354 }
2355 
2356 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
2357 		int, newdfd, const char __user *, newname)
2358 {
2359 	int error;
2360 	char *from;
2361 	char *to;
2362 	struct dentry *dentry;
2363 	struct nameidata nd;
2364 
2365 	from = getname(oldname);
2366 	if (IS_ERR(from))
2367 		return PTR_ERR(from);
2368 
2369 	error = user_path_parent(newdfd, newname, &nd, &to);
2370 	if (error)
2371 		goto out_putname;
2372 
2373 	dentry = lookup_create(&nd, 0);
2374 	error = PTR_ERR(dentry);
2375 	if (IS_ERR(dentry))
2376 		goto out_unlock;
2377 
2378 	error = mnt_want_write(nd.path.mnt);
2379 	if (error)
2380 		goto out_dput;
2381 	error = security_path_symlink(&nd.path, dentry, from);
2382 	if (error)
2383 		goto out_drop_write;
2384 	error = vfs_symlink(nd.path.dentry->d_inode, dentry, from);
2385 out_drop_write:
2386 	mnt_drop_write(nd.path.mnt);
2387 out_dput:
2388 	dput(dentry);
2389 out_unlock:
2390 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2391 	path_put(&nd.path);
2392 	putname(to);
2393 out_putname:
2394 	putname(from);
2395 	return error;
2396 }
2397 
2398 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
2399 {
2400 	return sys_symlinkat(oldname, AT_FDCWD, newname);
2401 }
2402 
2403 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2404 {
2405 	struct inode *inode = old_dentry->d_inode;
2406 	int error;
2407 
2408 	if (!inode)
2409 		return -ENOENT;
2410 
2411 	error = may_create(dir, new_dentry);
2412 	if (error)
2413 		return error;
2414 
2415 	if (dir->i_sb != inode->i_sb)
2416 		return -EXDEV;
2417 
2418 	/*
2419 	 * A link to an append-only or immutable file cannot be created.
2420 	 */
2421 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2422 		return -EPERM;
2423 	if (!dir->i_op->link)
2424 		return -EPERM;
2425 	if (S_ISDIR(inode->i_mode))
2426 		return -EPERM;
2427 
2428 	error = security_inode_link(old_dentry, dir, new_dentry);
2429 	if (error)
2430 		return error;
2431 
2432 	mutex_lock(&inode->i_mutex);
2433 	error = dir->i_op->link(old_dentry, dir, new_dentry);
2434 	mutex_unlock(&inode->i_mutex);
2435 	if (!error)
2436 		fsnotify_link(dir, inode, new_dentry);
2437 	return error;
2438 }
2439 
2440 /*
2441  * Hardlinks are often used in delicate situations.  We avoid
2442  * security-related surprises by not following symlinks on the
2443  * newname.  --KAB
2444  *
2445  * We don't follow them on the oldname either to be compatible
2446  * with linux 2.0, and to avoid hard-linking to directories
2447  * and other special files.  --ADM
2448  */
2449 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
2450 		int, newdfd, const char __user *, newname, int, flags)
2451 {
2452 	struct dentry *new_dentry;
2453 	struct nameidata nd;
2454 	struct path old_path;
2455 	int error;
2456 	char *to;
2457 
2458 	if ((flags & ~AT_SYMLINK_FOLLOW) != 0)
2459 		return -EINVAL;
2460 
2461 	error = user_path_at(olddfd, oldname,
2462 			     flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0,
2463 			     &old_path);
2464 	if (error)
2465 		return error;
2466 
2467 	error = user_path_parent(newdfd, newname, &nd, &to);
2468 	if (error)
2469 		goto out;
2470 	error = -EXDEV;
2471 	if (old_path.mnt != nd.path.mnt)
2472 		goto out_release;
2473 	new_dentry = lookup_create(&nd, 0);
2474 	error = PTR_ERR(new_dentry);
2475 	if (IS_ERR(new_dentry))
2476 		goto out_unlock;
2477 	error = mnt_want_write(nd.path.mnt);
2478 	if (error)
2479 		goto out_dput;
2480 	error = security_path_link(old_path.dentry, &nd.path, new_dentry);
2481 	if (error)
2482 		goto out_drop_write;
2483 	error = vfs_link(old_path.dentry, nd.path.dentry->d_inode, new_dentry);
2484 out_drop_write:
2485 	mnt_drop_write(nd.path.mnt);
2486 out_dput:
2487 	dput(new_dentry);
2488 out_unlock:
2489 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2490 out_release:
2491 	path_put(&nd.path);
2492 	putname(to);
2493 out:
2494 	path_put(&old_path);
2495 
2496 	return error;
2497 }
2498 
2499 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
2500 {
2501 	return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
2502 }
2503 
2504 /*
2505  * The worst of all namespace operations - renaming directory. "Perverted"
2506  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
2507  * Problems:
2508  *	a) we can get into loop creation. Check is done in is_subdir().
2509  *	b) race potential - two innocent renames can create a loop together.
2510  *	   That's where 4.4 screws up. Current fix: serialization on
2511  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
2512  *	   story.
2513  *	c) we have to lock _three_ objects - parents and victim (if it exists).
2514  *	   And that - after we got ->i_mutex on parents (until then we don't know
2515  *	   whether the target exists).  Solution: try to be smart with locking
2516  *	   order for inodes.  We rely on the fact that tree topology may change
2517  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
2518  *	   move will be locked.  Thus we can rank directories by the tree
2519  *	   (ancestors first) and rank all non-directories after them.
2520  *	   That works since everybody except rename does "lock parent, lookup,
2521  *	   lock child" and rename is under ->s_vfs_rename_mutex.
2522  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
2523  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
2524  *	   we'd better make sure that there's no link(2) for them.
2525  *	d) some filesystems don't support opened-but-unlinked directories,
2526  *	   either because of layout or because they are not ready to deal with
2527  *	   all cases correctly. The latter will be fixed (taking this sort of
2528  *	   stuff into VFS), but the former is not going away. Solution: the same
2529  *	   trick as in rmdir().
2530  *	e) conversion from fhandle to dentry may come in the wrong moment - when
2531  *	   we are removing the target. Solution: we will have to grab ->i_mutex
2532  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
2533  *	   ->i_mutex on parents, which works but leads to some truly excessive
2534  *	   locking].
2535  */
2536 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
2537 			  struct inode *new_dir, struct dentry *new_dentry)
2538 {
2539 	int error = 0;
2540 	struct inode *target;
2541 
2542 	/*
2543 	 * If we are going to change the parent - check write permissions,
2544 	 * we'll need to flip '..'.
2545 	 */
2546 	if (new_dir != old_dir) {
2547 		error = inode_permission(old_dentry->d_inode, MAY_WRITE);
2548 		if (error)
2549 			return error;
2550 	}
2551 
2552 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2553 	if (error)
2554 		return error;
2555 
2556 	target = new_dentry->d_inode;
2557 	if (target)
2558 		mutex_lock(&target->i_mutex);
2559 	if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2560 		error = -EBUSY;
2561 	else {
2562 		if (target)
2563 			dentry_unhash(new_dentry);
2564 		error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2565 	}
2566 	if (target) {
2567 		if (!error) {
2568 			target->i_flags |= S_DEAD;
2569 			dont_mount(new_dentry);
2570 		}
2571 		mutex_unlock(&target->i_mutex);
2572 		if (d_unhashed(new_dentry))
2573 			d_rehash(new_dentry);
2574 		dput(new_dentry);
2575 	}
2576 	if (!error)
2577 		if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2578 			d_move(old_dentry,new_dentry);
2579 	return error;
2580 }
2581 
2582 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
2583 			    struct inode *new_dir, struct dentry *new_dentry)
2584 {
2585 	struct inode *target;
2586 	int error;
2587 
2588 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2589 	if (error)
2590 		return error;
2591 
2592 	dget(new_dentry);
2593 	target = new_dentry->d_inode;
2594 	if (target)
2595 		mutex_lock(&target->i_mutex);
2596 	if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2597 		error = -EBUSY;
2598 	else
2599 		error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2600 	if (!error) {
2601 		if (target)
2602 			dont_mount(new_dentry);
2603 		if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2604 			d_move(old_dentry, new_dentry);
2605 	}
2606 	if (target)
2607 		mutex_unlock(&target->i_mutex);
2608 	dput(new_dentry);
2609 	return error;
2610 }
2611 
2612 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2613 	       struct inode *new_dir, struct dentry *new_dentry)
2614 {
2615 	int error;
2616 	int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
2617 	const unsigned char *old_name;
2618 
2619 	if (old_dentry->d_inode == new_dentry->d_inode)
2620  		return 0;
2621 
2622 	error = may_delete(old_dir, old_dentry, is_dir);
2623 	if (error)
2624 		return error;
2625 
2626 	if (!new_dentry->d_inode)
2627 		error = may_create(new_dir, new_dentry);
2628 	else
2629 		error = may_delete(new_dir, new_dentry, is_dir);
2630 	if (error)
2631 		return error;
2632 
2633 	if (!old_dir->i_op->rename)
2634 		return -EPERM;
2635 
2636 	old_name = fsnotify_oldname_init(old_dentry->d_name.name);
2637 
2638 	if (is_dir)
2639 		error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
2640 	else
2641 		error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
2642 	if (!error)
2643 		fsnotify_move(old_dir, new_dir, old_name, is_dir,
2644 			      new_dentry->d_inode, old_dentry);
2645 	fsnotify_oldname_free(old_name);
2646 
2647 	return error;
2648 }
2649 
2650 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
2651 		int, newdfd, const char __user *, newname)
2652 {
2653 	struct dentry *old_dir, *new_dir;
2654 	struct dentry *old_dentry, *new_dentry;
2655 	struct dentry *trap;
2656 	struct nameidata oldnd, newnd;
2657 	char *from;
2658 	char *to;
2659 	int error;
2660 
2661 	error = user_path_parent(olddfd, oldname, &oldnd, &from);
2662 	if (error)
2663 		goto exit;
2664 
2665 	error = user_path_parent(newdfd, newname, &newnd, &to);
2666 	if (error)
2667 		goto exit1;
2668 
2669 	error = -EXDEV;
2670 	if (oldnd.path.mnt != newnd.path.mnt)
2671 		goto exit2;
2672 
2673 	old_dir = oldnd.path.dentry;
2674 	error = -EBUSY;
2675 	if (oldnd.last_type != LAST_NORM)
2676 		goto exit2;
2677 
2678 	new_dir = newnd.path.dentry;
2679 	if (newnd.last_type != LAST_NORM)
2680 		goto exit2;
2681 
2682 	oldnd.flags &= ~LOOKUP_PARENT;
2683 	newnd.flags &= ~LOOKUP_PARENT;
2684 	newnd.flags |= LOOKUP_RENAME_TARGET;
2685 
2686 	trap = lock_rename(new_dir, old_dir);
2687 
2688 	old_dentry = lookup_hash(&oldnd);
2689 	error = PTR_ERR(old_dentry);
2690 	if (IS_ERR(old_dentry))
2691 		goto exit3;
2692 	/* source must exist */
2693 	error = -ENOENT;
2694 	if (!old_dentry->d_inode)
2695 		goto exit4;
2696 	/* unless the source is a directory trailing slashes give -ENOTDIR */
2697 	if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
2698 		error = -ENOTDIR;
2699 		if (oldnd.last.name[oldnd.last.len])
2700 			goto exit4;
2701 		if (newnd.last.name[newnd.last.len])
2702 			goto exit4;
2703 	}
2704 	/* source should not be ancestor of target */
2705 	error = -EINVAL;
2706 	if (old_dentry == trap)
2707 		goto exit4;
2708 	new_dentry = lookup_hash(&newnd);
2709 	error = PTR_ERR(new_dentry);
2710 	if (IS_ERR(new_dentry))
2711 		goto exit4;
2712 	/* target should not be an ancestor of source */
2713 	error = -ENOTEMPTY;
2714 	if (new_dentry == trap)
2715 		goto exit5;
2716 
2717 	error = mnt_want_write(oldnd.path.mnt);
2718 	if (error)
2719 		goto exit5;
2720 	error = security_path_rename(&oldnd.path, old_dentry,
2721 				     &newnd.path, new_dentry);
2722 	if (error)
2723 		goto exit6;
2724 	error = vfs_rename(old_dir->d_inode, old_dentry,
2725 				   new_dir->d_inode, new_dentry);
2726 exit6:
2727 	mnt_drop_write(oldnd.path.mnt);
2728 exit5:
2729 	dput(new_dentry);
2730 exit4:
2731 	dput(old_dentry);
2732 exit3:
2733 	unlock_rename(new_dir, old_dir);
2734 exit2:
2735 	path_put(&newnd.path);
2736 	putname(to);
2737 exit1:
2738 	path_put(&oldnd.path);
2739 	putname(from);
2740 exit:
2741 	return error;
2742 }
2743 
2744 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
2745 {
2746 	return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
2747 }
2748 
2749 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
2750 {
2751 	int len;
2752 
2753 	len = PTR_ERR(link);
2754 	if (IS_ERR(link))
2755 		goto out;
2756 
2757 	len = strlen(link);
2758 	if (len > (unsigned) buflen)
2759 		len = buflen;
2760 	if (copy_to_user(buffer, link, len))
2761 		len = -EFAULT;
2762 out:
2763 	return len;
2764 }
2765 
2766 /*
2767  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
2768  * have ->follow_link() touching nd only in nd_set_link().  Using (or not
2769  * using) it for any given inode is up to filesystem.
2770  */
2771 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2772 {
2773 	struct nameidata nd;
2774 	void *cookie;
2775 	int res;
2776 
2777 	nd.depth = 0;
2778 	cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
2779 	if (IS_ERR(cookie))
2780 		return PTR_ERR(cookie);
2781 
2782 	res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
2783 	if (dentry->d_inode->i_op->put_link)
2784 		dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
2785 	return res;
2786 }
2787 
2788 int vfs_follow_link(struct nameidata *nd, const char *link)
2789 {
2790 	return __vfs_follow_link(nd, link);
2791 }
2792 
2793 /* get the link contents into pagecache */
2794 static char *page_getlink(struct dentry * dentry, struct page **ppage)
2795 {
2796 	char *kaddr;
2797 	struct page *page;
2798 	struct address_space *mapping = dentry->d_inode->i_mapping;
2799 	page = read_mapping_page(mapping, 0, NULL);
2800 	if (IS_ERR(page))
2801 		return (char*)page;
2802 	*ppage = page;
2803 	kaddr = kmap(page);
2804 	nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
2805 	return kaddr;
2806 }
2807 
2808 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2809 {
2810 	struct page *page = NULL;
2811 	char *s = page_getlink(dentry, &page);
2812 	int res = vfs_readlink(dentry,buffer,buflen,s);
2813 	if (page) {
2814 		kunmap(page);
2815 		page_cache_release(page);
2816 	}
2817 	return res;
2818 }
2819 
2820 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
2821 {
2822 	struct page *page = NULL;
2823 	nd_set_link(nd, page_getlink(dentry, &page));
2824 	return page;
2825 }
2826 
2827 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2828 {
2829 	struct page *page = cookie;
2830 
2831 	if (page) {
2832 		kunmap(page);
2833 		page_cache_release(page);
2834 	}
2835 }
2836 
2837 /*
2838  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
2839  */
2840 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
2841 {
2842 	struct address_space *mapping = inode->i_mapping;
2843 	struct page *page;
2844 	void *fsdata;
2845 	int err;
2846 	char *kaddr;
2847 	unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
2848 	if (nofs)
2849 		flags |= AOP_FLAG_NOFS;
2850 
2851 retry:
2852 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
2853 				flags, &page, &fsdata);
2854 	if (err)
2855 		goto fail;
2856 
2857 	kaddr = kmap_atomic(page, KM_USER0);
2858 	memcpy(kaddr, symname, len-1);
2859 	kunmap_atomic(kaddr, KM_USER0);
2860 
2861 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
2862 							page, fsdata);
2863 	if (err < 0)
2864 		goto fail;
2865 	if (err < len-1)
2866 		goto retry;
2867 
2868 	mark_inode_dirty(inode);
2869 	return 0;
2870 fail:
2871 	return err;
2872 }
2873 
2874 int page_symlink(struct inode *inode, const char *symname, int len)
2875 {
2876 	return __page_symlink(inode, symname, len,
2877 			!(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
2878 }
2879 
2880 const struct inode_operations page_symlink_inode_operations = {
2881 	.readlink	= generic_readlink,
2882 	.follow_link	= page_follow_link_light,
2883 	.put_link	= page_put_link,
2884 };
2885 
2886 EXPORT_SYMBOL(user_path_at);
2887 EXPORT_SYMBOL(follow_down);
2888 EXPORT_SYMBOL(follow_up);
2889 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
2890 EXPORT_SYMBOL(getname);
2891 EXPORT_SYMBOL(lock_rename);
2892 EXPORT_SYMBOL(lookup_one_len);
2893 EXPORT_SYMBOL(page_follow_link_light);
2894 EXPORT_SYMBOL(page_put_link);
2895 EXPORT_SYMBOL(page_readlink);
2896 EXPORT_SYMBOL(__page_symlink);
2897 EXPORT_SYMBOL(page_symlink);
2898 EXPORT_SYMBOL(page_symlink_inode_operations);
2899 EXPORT_SYMBOL(path_lookup);
2900 EXPORT_SYMBOL(kern_path);
2901 EXPORT_SYMBOL(vfs_path_lookup);
2902 EXPORT_SYMBOL(inode_permission);
2903 EXPORT_SYMBOL(file_permission);
2904 EXPORT_SYMBOL(unlock_rename);
2905 EXPORT_SYMBOL(vfs_create);
2906 EXPORT_SYMBOL(vfs_follow_link);
2907 EXPORT_SYMBOL(vfs_link);
2908 EXPORT_SYMBOL(vfs_mkdir);
2909 EXPORT_SYMBOL(vfs_mknod);
2910 EXPORT_SYMBOL(generic_permission);
2911 EXPORT_SYMBOL(vfs_readlink);
2912 EXPORT_SYMBOL(vfs_rename);
2913 EXPORT_SYMBOL(vfs_rmdir);
2914 EXPORT_SYMBOL(vfs_symlink);
2915 EXPORT_SYMBOL(vfs_unlink);
2916 EXPORT_SYMBOL(dentry_unhash);
2917 EXPORT_SYMBOL(generic_readlink);
2918