1 /* 2 * linux/fs/namei.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * Some corrections by tytso. 9 */ 10 11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 12 * lookup logic. 13 */ 14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 15 */ 16 17 #include <linux/init.h> 18 #include <linux/module.h> 19 #include <linux/slab.h> 20 #include <linux/fs.h> 21 #include <linux/namei.h> 22 #include <linux/quotaops.h> 23 #include <linux/pagemap.h> 24 #include <linux/fsnotify.h> 25 #include <linux/personality.h> 26 #include <linux/security.h> 27 #include <linux/ima.h> 28 #include <linux/syscalls.h> 29 #include <linux/mount.h> 30 #include <linux/audit.h> 31 #include <linux/capability.h> 32 #include <linux/file.h> 33 #include <linux/fcntl.h> 34 #include <linux/device_cgroup.h> 35 #include <linux/fs_struct.h> 36 #include <asm/uaccess.h> 37 38 #include "internal.h" 39 40 /* [Feb-1997 T. Schoebel-Theuer] 41 * Fundamental changes in the pathname lookup mechanisms (namei) 42 * were necessary because of omirr. The reason is that omirr needs 43 * to know the _real_ pathname, not the user-supplied one, in case 44 * of symlinks (and also when transname replacements occur). 45 * 46 * The new code replaces the old recursive symlink resolution with 47 * an iterative one (in case of non-nested symlink chains). It does 48 * this with calls to <fs>_follow_link(). 49 * As a side effect, dir_namei(), _namei() and follow_link() are now 50 * replaced with a single function lookup_dentry() that can handle all 51 * the special cases of the former code. 52 * 53 * With the new dcache, the pathname is stored at each inode, at least as 54 * long as the refcount of the inode is positive. As a side effect, the 55 * size of the dcache depends on the inode cache and thus is dynamic. 56 * 57 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 58 * resolution to correspond with current state of the code. 59 * 60 * Note that the symlink resolution is not *completely* iterative. 61 * There is still a significant amount of tail- and mid- recursion in 62 * the algorithm. Also, note that <fs>_readlink() is not used in 63 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 64 * may return different results than <fs>_follow_link(). Many virtual 65 * filesystems (including /proc) exhibit this behavior. 66 */ 67 68 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 69 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 70 * and the name already exists in form of a symlink, try to create the new 71 * name indicated by the symlink. The old code always complained that the 72 * name already exists, due to not following the symlink even if its target 73 * is nonexistent. The new semantics affects also mknod() and link() when 74 * the name is a symlink pointing to a non-existant name. 75 * 76 * I don't know which semantics is the right one, since I have no access 77 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 78 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 79 * "old" one. Personally, I think the new semantics is much more logical. 80 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 81 * file does succeed in both HP-UX and SunOs, but not in Solaris 82 * and in the old Linux semantics. 83 */ 84 85 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 86 * semantics. See the comments in "open_namei" and "do_link" below. 87 * 88 * [10-Sep-98 Alan Modra] Another symlink change. 89 */ 90 91 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 92 * inside the path - always follow. 93 * in the last component in creation/removal/renaming - never follow. 94 * if LOOKUP_FOLLOW passed - follow. 95 * if the pathname has trailing slashes - follow. 96 * otherwise - don't follow. 97 * (applied in that order). 98 * 99 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 100 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 101 * During the 2.4 we need to fix the userland stuff depending on it - 102 * hopefully we will be able to get rid of that wart in 2.5. So far only 103 * XEmacs seems to be relying on it... 104 */ 105 /* 106 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 107 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 108 * any extra contention... 109 */ 110 111 /* In order to reduce some races, while at the same time doing additional 112 * checking and hopefully speeding things up, we copy filenames to the 113 * kernel data space before using them.. 114 * 115 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 116 * PATH_MAX includes the nul terminator --RR. 117 */ 118 static int do_getname(const char __user *filename, char *page) 119 { 120 int retval; 121 unsigned long len = PATH_MAX; 122 123 if (!segment_eq(get_fs(), KERNEL_DS)) { 124 if ((unsigned long) filename >= TASK_SIZE) 125 return -EFAULT; 126 if (TASK_SIZE - (unsigned long) filename < PATH_MAX) 127 len = TASK_SIZE - (unsigned long) filename; 128 } 129 130 retval = strncpy_from_user(page, filename, len); 131 if (retval > 0) { 132 if (retval < len) 133 return 0; 134 return -ENAMETOOLONG; 135 } else if (!retval) 136 retval = -ENOENT; 137 return retval; 138 } 139 140 char * getname(const char __user * filename) 141 { 142 char *tmp, *result; 143 144 result = ERR_PTR(-ENOMEM); 145 tmp = __getname(); 146 if (tmp) { 147 int retval = do_getname(filename, tmp); 148 149 result = tmp; 150 if (retval < 0) { 151 __putname(tmp); 152 result = ERR_PTR(retval); 153 } 154 } 155 audit_getname(result); 156 return result; 157 } 158 159 #ifdef CONFIG_AUDITSYSCALL 160 void putname(const char *name) 161 { 162 if (unlikely(!audit_dummy_context())) 163 audit_putname(name); 164 else 165 __putname(name); 166 } 167 EXPORT_SYMBOL(putname); 168 #endif 169 170 /* 171 * This does basic POSIX ACL permission checking 172 */ 173 static int acl_permission_check(struct inode *inode, int mask, 174 int (*check_acl)(struct inode *inode, int mask)) 175 { 176 umode_t mode = inode->i_mode; 177 178 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 179 180 if (current_fsuid() == inode->i_uid) 181 mode >>= 6; 182 else { 183 if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) { 184 int error = check_acl(inode, mask); 185 if (error != -EAGAIN) 186 return error; 187 } 188 189 if (in_group_p(inode->i_gid)) 190 mode >>= 3; 191 } 192 193 /* 194 * If the DACs are ok we don't need any capability check. 195 */ 196 if ((mask & ~mode) == 0) 197 return 0; 198 return -EACCES; 199 } 200 201 /** 202 * generic_permission - check for access rights on a Posix-like filesystem 203 * @inode: inode to check access rights for 204 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 205 * @check_acl: optional callback to check for Posix ACLs 206 * 207 * Used to check for read/write/execute permissions on a file. 208 * We use "fsuid" for this, letting us set arbitrary permissions 209 * for filesystem access without changing the "normal" uids which 210 * are used for other things.. 211 */ 212 int generic_permission(struct inode *inode, int mask, 213 int (*check_acl)(struct inode *inode, int mask)) 214 { 215 int ret; 216 217 /* 218 * Do the basic POSIX ACL permission checks. 219 */ 220 ret = acl_permission_check(inode, mask, check_acl); 221 if (ret != -EACCES) 222 return ret; 223 224 /* 225 * Read/write DACs are always overridable. 226 * Executable DACs are overridable if at least one exec bit is set. 227 */ 228 if (!(mask & MAY_EXEC) || execute_ok(inode)) 229 if (capable(CAP_DAC_OVERRIDE)) 230 return 0; 231 232 /* 233 * Searching includes executable on directories, else just read. 234 */ 235 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 236 if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE))) 237 if (capable(CAP_DAC_READ_SEARCH)) 238 return 0; 239 240 return -EACCES; 241 } 242 243 /** 244 * inode_permission - check for access rights to a given inode 245 * @inode: inode to check permission on 246 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 247 * 248 * Used to check for read/write/execute permissions on an inode. 249 * We use "fsuid" for this, letting us set arbitrary permissions 250 * for filesystem access without changing the "normal" uids which 251 * are used for other things. 252 */ 253 int inode_permission(struct inode *inode, int mask) 254 { 255 int retval; 256 257 if (mask & MAY_WRITE) { 258 umode_t mode = inode->i_mode; 259 260 /* 261 * Nobody gets write access to a read-only fs. 262 */ 263 if (IS_RDONLY(inode) && 264 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 265 return -EROFS; 266 267 /* 268 * Nobody gets write access to an immutable file. 269 */ 270 if (IS_IMMUTABLE(inode)) 271 return -EACCES; 272 } 273 274 if (inode->i_op->permission) 275 retval = inode->i_op->permission(inode, mask); 276 else 277 retval = generic_permission(inode, mask, inode->i_op->check_acl); 278 279 if (retval) 280 return retval; 281 282 retval = devcgroup_inode_permission(inode, mask); 283 if (retval) 284 return retval; 285 286 return security_inode_permission(inode, 287 mask & (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND)); 288 } 289 290 /** 291 * file_permission - check for additional access rights to a given file 292 * @file: file to check access rights for 293 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 294 * 295 * Used to check for read/write/execute permissions on an already opened 296 * file. 297 * 298 * Note: 299 * Do not use this function in new code. All access checks should 300 * be done using inode_permission(). 301 */ 302 int file_permission(struct file *file, int mask) 303 { 304 return inode_permission(file->f_path.dentry->d_inode, mask); 305 } 306 307 /* 308 * get_write_access() gets write permission for a file. 309 * put_write_access() releases this write permission. 310 * This is used for regular files. 311 * We cannot support write (and maybe mmap read-write shared) accesses and 312 * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode 313 * can have the following values: 314 * 0: no writers, no VM_DENYWRITE mappings 315 * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist 316 * > 0: (i_writecount) users are writing to the file. 317 * 318 * Normally we operate on that counter with atomic_{inc,dec} and it's safe 319 * except for the cases where we don't hold i_writecount yet. Then we need to 320 * use {get,deny}_write_access() - these functions check the sign and refuse 321 * to do the change if sign is wrong. Exclusion between them is provided by 322 * the inode->i_lock spinlock. 323 */ 324 325 int get_write_access(struct inode * inode) 326 { 327 spin_lock(&inode->i_lock); 328 if (atomic_read(&inode->i_writecount) < 0) { 329 spin_unlock(&inode->i_lock); 330 return -ETXTBSY; 331 } 332 atomic_inc(&inode->i_writecount); 333 spin_unlock(&inode->i_lock); 334 335 return 0; 336 } 337 338 int deny_write_access(struct file * file) 339 { 340 struct inode *inode = file->f_path.dentry->d_inode; 341 342 spin_lock(&inode->i_lock); 343 if (atomic_read(&inode->i_writecount) > 0) { 344 spin_unlock(&inode->i_lock); 345 return -ETXTBSY; 346 } 347 atomic_dec(&inode->i_writecount); 348 spin_unlock(&inode->i_lock); 349 350 return 0; 351 } 352 353 /** 354 * path_get - get a reference to a path 355 * @path: path to get the reference to 356 * 357 * Given a path increment the reference count to the dentry and the vfsmount. 358 */ 359 void path_get(struct path *path) 360 { 361 mntget(path->mnt); 362 dget(path->dentry); 363 } 364 EXPORT_SYMBOL(path_get); 365 366 /** 367 * path_put - put a reference to a path 368 * @path: path to put the reference to 369 * 370 * Given a path decrement the reference count to the dentry and the vfsmount. 371 */ 372 void path_put(struct path *path) 373 { 374 dput(path->dentry); 375 mntput(path->mnt); 376 } 377 EXPORT_SYMBOL(path_put); 378 379 /** 380 * release_open_intent - free up open intent resources 381 * @nd: pointer to nameidata 382 */ 383 void release_open_intent(struct nameidata *nd) 384 { 385 if (nd->intent.open.file->f_path.dentry == NULL) 386 put_filp(nd->intent.open.file); 387 else 388 fput(nd->intent.open.file); 389 } 390 391 static inline struct dentry * 392 do_revalidate(struct dentry *dentry, struct nameidata *nd) 393 { 394 int status = dentry->d_op->d_revalidate(dentry, nd); 395 if (unlikely(status <= 0)) { 396 /* 397 * The dentry failed validation. 398 * If d_revalidate returned 0 attempt to invalidate 399 * the dentry otherwise d_revalidate is asking us 400 * to return a fail status. 401 */ 402 if (!status) { 403 if (!d_invalidate(dentry)) { 404 dput(dentry); 405 dentry = NULL; 406 } 407 } else { 408 dput(dentry); 409 dentry = ERR_PTR(status); 410 } 411 } 412 return dentry; 413 } 414 415 /* 416 * force_reval_path - force revalidation of a dentry 417 * 418 * In some situations the path walking code will trust dentries without 419 * revalidating them. This causes problems for filesystems that depend on 420 * d_revalidate to handle file opens (e.g. NFSv4). When FS_REVAL_DOT is set 421 * (which indicates that it's possible for the dentry to go stale), force 422 * a d_revalidate call before proceeding. 423 * 424 * Returns 0 if the revalidation was successful. If the revalidation fails, 425 * either return the error returned by d_revalidate or -ESTALE if the 426 * revalidation it just returned 0. If d_revalidate returns 0, we attempt to 427 * invalidate the dentry. It's up to the caller to handle putting references 428 * to the path if necessary. 429 */ 430 static int 431 force_reval_path(struct path *path, struct nameidata *nd) 432 { 433 int status; 434 struct dentry *dentry = path->dentry; 435 436 /* 437 * only check on filesystems where it's possible for the dentry to 438 * become stale. It's assumed that if this flag is set then the 439 * d_revalidate op will also be defined. 440 */ 441 if (!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)) 442 return 0; 443 444 status = dentry->d_op->d_revalidate(dentry, nd); 445 if (status > 0) 446 return 0; 447 448 if (!status) { 449 d_invalidate(dentry); 450 status = -ESTALE; 451 } 452 return status; 453 } 454 455 /* 456 * Short-cut version of permission(), for calling on directories 457 * during pathname resolution. Combines parts of permission() 458 * and generic_permission(), and tests ONLY for MAY_EXEC permission. 459 * 460 * If appropriate, check DAC only. If not appropriate, or 461 * short-cut DAC fails, then call ->permission() to do more 462 * complete permission check. 463 */ 464 static int exec_permission(struct inode *inode) 465 { 466 int ret; 467 468 if (inode->i_op->permission) { 469 ret = inode->i_op->permission(inode, MAY_EXEC); 470 if (!ret) 471 goto ok; 472 return ret; 473 } 474 ret = acl_permission_check(inode, MAY_EXEC, inode->i_op->check_acl); 475 if (!ret) 476 goto ok; 477 478 if (capable(CAP_DAC_OVERRIDE) || capable(CAP_DAC_READ_SEARCH)) 479 goto ok; 480 481 return ret; 482 ok: 483 return security_inode_permission(inode, MAY_EXEC); 484 } 485 486 static __always_inline void set_root(struct nameidata *nd) 487 { 488 if (!nd->root.mnt) { 489 struct fs_struct *fs = current->fs; 490 read_lock(&fs->lock); 491 nd->root = fs->root; 492 path_get(&nd->root); 493 read_unlock(&fs->lock); 494 } 495 } 496 497 static int link_path_walk(const char *, struct nameidata *); 498 499 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link) 500 { 501 int res = 0; 502 char *name; 503 if (IS_ERR(link)) 504 goto fail; 505 506 if (*link == '/') { 507 set_root(nd); 508 path_put(&nd->path); 509 nd->path = nd->root; 510 path_get(&nd->root); 511 } 512 513 res = link_path_walk(link, nd); 514 if (nd->depth || res || nd->last_type!=LAST_NORM) 515 return res; 516 /* 517 * If it is an iterative symlinks resolution in open_namei() we 518 * have to copy the last component. And all that crap because of 519 * bloody create() on broken symlinks. Furrfu... 520 */ 521 name = __getname(); 522 if (unlikely(!name)) { 523 path_put(&nd->path); 524 return -ENOMEM; 525 } 526 strcpy(name, nd->last.name); 527 nd->last.name = name; 528 return 0; 529 fail: 530 path_put(&nd->path); 531 return PTR_ERR(link); 532 } 533 534 static void path_put_conditional(struct path *path, struct nameidata *nd) 535 { 536 dput(path->dentry); 537 if (path->mnt != nd->path.mnt) 538 mntput(path->mnt); 539 } 540 541 static inline void path_to_nameidata(struct path *path, struct nameidata *nd) 542 { 543 dput(nd->path.dentry); 544 if (nd->path.mnt != path->mnt) 545 mntput(nd->path.mnt); 546 nd->path.mnt = path->mnt; 547 nd->path.dentry = path->dentry; 548 } 549 550 static __always_inline int __do_follow_link(struct path *path, struct nameidata *nd) 551 { 552 int error; 553 void *cookie; 554 struct dentry *dentry = path->dentry; 555 556 touch_atime(path->mnt, dentry); 557 nd_set_link(nd, NULL); 558 559 if (path->mnt != nd->path.mnt) { 560 path_to_nameidata(path, nd); 561 dget(dentry); 562 } 563 mntget(path->mnt); 564 nd->last_type = LAST_BIND; 565 cookie = dentry->d_inode->i_op->follow_link(dentry, nd); 566 error = PTR_ERR(cookie); 567 if (!IS_ERR(cookie)) { 568 char *s = nd_get_link(nd); 569 error = 0; 570 if (s) 571 error = __vfs_follow_link(nd, s); 572 else if (nd->last_type == LAST_BIND) { 573 error = force_reval_path(&nd->path, nd); 574 if (error) 575 path_put(&nd->path); 576 } 577 if (dentry->d_inode->i_op->put_link) 578 dentry->d_inode->i_op->put_link(dentry, nd, cookie); 579 } 580 return error; 581 } 582 583 /* 584 * This limits recursive symlink follows to 8, while 585 * limiting consecutive symlinks to 40. 586 * 587 * Without that kind of total limit, nasty chains of consecutive 588 * symlinks can cause almost arbitrarily long lookups. 589 */ 590 static inline int do_follow_link(struct path *path, struct nameidata *nd) 591 { 592 int err = -ELOOP; 593 if (current->link_count >= MAX_NESTED_LINKS) 594 goto loop; 595 if (current->total_link_count >= 40) 596 goto loop; 597 BUG_ON(nd->depth >= MAX_NESTED_LINKS); 598 cond_resched(); 599 err = security_inode_follow_link(path->dentry, nd); 600 if (err) 601 goto loop; 602 current->link_count++; 603 current->total_link_count++; 604 nd->depth++; 605 err = __do_follow_link(path, nd); 606 path_put(path); 607 current->link_count--; 608 nd->depth--; 609 return err; 610 loop: 611 path_put_conditional(path, nd); 612 path_put(&nd->path); 613 return err; 614 } 615 616 int follow_up(struct path *path) 617 { 618 struct vfsmount *parent; 619 struct dentry *mountpoint; 620 spin_lock(&vfsmount_lock); 621 parent = path->mnt->mnt_parent; 622 if (parent == path->mnt) { 623 spin_unlock(&vfsmount_lock); 624 return 0; 625 } 626 mntget(parent); 627 mountpoint = dget(path->mnt->mnt_mountpoint); 628 spin_unlock(&vfsmount_lock); 629 dput(path->dentry); 630 path->dentry = mountpoint; 631 mntput(path->mnt); 632 path->mnt = parent; 633 return 1; 634 } 635 636 /* no need for dcache_lock, as serialization is taken care in 637 * namespace.c 638 */ 639 static int __follow_mount(struct path *path) 640 { 641 int res = 0; 642 while (d_mountpoint(path->dentry)) { 643 struct vfsmount *mounted = lookup_mnt(path); 644 if (!mounted) 645 break; 646 dput(path->dentry); 647 if (res) 648 mntput(path->mnt); 649 path->mnt = mounted; 650 path->dentry = dget(mounted->mnt_root); 651 res = 1; 652 } 653 return res; 654 } 655 656 static void follow_mount(struct path *path) 657 { 658 while (d_mountpoint(path->dentry)) { 659 struct vfsmount *mounted = lookup_mnt(path); 660 if (!mounted) 661 break; 662 dput(path->dentry); 663 mntput(path->mnt); 664 path->mnt = mounted; 665 path->dentry = dget(mounted->mnt_root); 666 } 667 } 668 669 /* no need for dcache_lock, as serialization is taken care in 670 * namespace.c 671 */ 672 int follow_down(struct path *path) 673 { 674 struct vfsmount *mounted; 675 676 mounted = lookup_mnt(path); 677 if (mounted) { 678 dput(path->dentry); 679 mntput(path->mnt); 680 path->mnt = mounted; 681 path->dentry = dget(mounted->mnt_root); 682 return 1; 683 } 684 return 0; 685 } 686 687 static __always_inline void follow_dotdot(struct nameidata *nd) 688 { 689 set_root(nd); 690 691 while(1) { 692 struct vfsmount *parent; 693 struct dentry *old = nd->path.dentry; 694 695 if (nd->path.dentry == nd->root.dentry && 696 nd->path.mnt == nd->root.mnt) { 697 break; 698 } 699 spin_lock(&dcache_lock); 700 if (nd->path.dentry != nd->path.mnt->mnt_root) { 701 nd->path.dentry = dget(nd->path.dentry->d_parent); 702 spin_unlock(&dcache_lock); 703 dput(old); 704 break; 705 } 706 spin_unlock(&dcache_lock); 707 spin_lock(&vfsmount_lock); 708 parent = nd->path.mnt->mnt_parent; 709 if (parent == nd->path.mnt) { 710 spin_unlock(&vfsmount_lock); 711 break; 712 } 713 mntget(parent); 714 nd->path.dentry = dget(nd->path.mnt->mnt_mountpoint); 715 spin_unlock(&vfsmount_lock); 716 dput(old); 717 mntput(nd->path.mnt); 718 nd->path.mnt = parent; 719 } 720 follow_mount(&nd->path); 721 } 722 723 /* 724 * It's more convoluted than I'd like it to be, but... it's still fairly 725 * small and for now I'd prefer to have fast path as straight as possible. 726 * It _is_ time-critical. 727 */ 728 static int do_lookup(struct nameidata *nd, struct qstr *name, 729 struct path *path) 730 { 731 struct vfsmount *mnt = nd->path.mnt; 732 struct dentry *dentry, *parent; 733 struct inode *dir; 734 /* 735 * See if the low-level filesystem might want 736 * to use its own hash.. 737 */ 738 if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) { 739 int err = nd->path.dentry->d_op->d_hash(nd->path.dentry, name); 740 if (err < 0) 741 return err; 742 } 743 744 dentry = __d_lookup(nd->path.dentry, name); 745 if (!dentry) 746 goto need_lookup; 747 if (dentry->d_op && dentry->d_op->d_revalidate) 748 goto need_revalidate; 749 done: 750 path->mnt = mnt; 751 path->dentry = dentry; 752 __follow_mount(path); 753 return 0; 754 755 need_lookup: 756 parent = nd->path.dentry; 757 dir = parent->d_inode; 758 759 mutex_lock(&dir->i_mutex); 760 /* 761 * First re-do the cached lookup just in case it was created 762 * while we waited for the directory semaphore.. 763 * 764 * FIXME! This could use version numbering or similar to 765 * avoid unnecessary cache lookups. 766 * 767 * The "dcache_lock" is purely to protect the RCU list walker 768 * from concurrent renames at this point (we mustn't get false 769 * negatives from the RCU list walk here, unlike the optimistic 770 * fast walk). 771 * 772 * so doing d_lookup() (with seqlock), instead of lockfree __d_lookup 773 */ 774 dentry = d_lookup(parent, name); 775 if (!dentry) { 776 struct dentry *new; 777 778 /* Don't create child dentry for a dead directory. */ 779 dentry = ERR_PTR(-ENOENT); 780 if (IS_DEADDIR(dir)) 781 goto out_unlock; 782 783 new = d_alloc(parent, name); 784 dentry = ERR_PTR(-ENOMEM); 785 if (new) { 786 dentry = dir->i_op->lookup(dir, new, nd); 787 if (dentry) 788 dput(new); 789 else 790 dentry = new; 791 } 792 out_unlock: 793 mutex_unlock(&dir->i_mutex); 794 if (IS_ERR(dentry)) 795 goto fail; 796 goto done; 797 } 798 799 /* 800 * Uhhuh! Nasty case: the cache was re-populated while 801 * we waited on the semaphore. Need to revalidate. 802 */ 803 mutex_unlock(&dir->i_mutex); 804 if (dentry->d_op && dentry->d_op->d_revalidate) { 805 dentry = do_revalidate(dentry, nd); 806 if (!dentry) 807 dentry = ERR_PTR(-ENOENT); 808 } 809 if (IS_ERR(dentry)) 810 goto fail; 811 goto done; 812 813 need_revalidate: 814 dentry = do_revalidate(dentry, nd); 815 if (!dentry) 816 goto need_lookup; 817 if (IS_ERR(dentry)) 818 goto fail; 819 goto done; 820 821 fail: 822 return PTR_ERR(dentry); 823 } 824 825 /* 826 * This is a temporary kludge to deal with "automount" symlinks; proper 827 * solution is to trigger them on follow_mount(), so that do_lookup() 828 * would DTRT. To be killed before 2.6.34-final. 829 */ 830 static inline int follow_on_final(struct inode *inode, unsigned lookup_flags) 831 { 832 return inode && unlikely(inode->i_op->follow_link) && 833 ((lookup_flags & LOOKUP_FOLLOW) || S_ISDIR(inode->i_mode)); 834 } 835 836 /* 837 * Name resolution. 838 * This is the basic name resolution function, turning a pathname into 839 * the final dentry. We expect 'base' to be positive and a directory. 840 * 841 * Returns 0 and nd will have valid dentry and mnt on success. 842 * Returns error and drops reference to input namei data on failure. 843 */ 844 static int link_path_walk(const char *name, struct nameidata *nd) 845 { 846 struct path next; 847 struct inode *inode; 848 int err; 849 unsigned int lookup_flags = nd->flags; 850 851 while (*name=='/') 852 name++; 853 if (!*name) 854 goto return_reval; 855 856 inode = nd->path.dentry->d_inode; 857 if (nd->depth) 858 lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE); 859 860 /* At this point we know we have a real path component. */ 861 for(;;) { 862 unsigned long hash; 863 struct qstr this; 864 unsigned int c; 865 866 nd->flags |= LOOKUP_CONTINUE; 867 err = exec_permission(inode); 868 if (err) 869 break; 870 871 this.name = name; 872 c = *(const unsigned char *)name; 873 874 hash = init_name_hash(); 875 do { 876 name++; 877 hash = partial_name_hash(c, hash); 878 c = *(const unsigned char *)name; 879 } while (c && (c != '/')); 880 this.len = name - (const char *) this.name; 881 this.hash = end_name_hash(hash); 882 883 /* remove trailing slashes? */ 884 if (!c) 885 goto last_component; 886 while (*++name == '/'); 887 if (!*name) 888 goto last_with_slashes; 889 890 /* 891 * "." and ".." are special - ".." especially so because it has 892 * to be able to know about the current root directory and 893 * parent relationships. 894 */ 895 if (this.name[0] == '.') switch (this.len) { 896 default: 897 break; 898 case 2: 899 if (this.name[1] != '.') 900 break; 901 follow_dotdot(nd); 902 inode = nd->path.dentry->d_inode; 903 /* fallthrough */ 904 case 1: 905 continue; 906 } 907 /* This does the actual lookups.. */ 908 err = do_lookup(nd, &this, &next); 909 if (err) 910 break; 911 912 err = -ENOENT; 913 inode = next.dentry->d_inode; 914 if (!inode) 915 goto out_dput; 916 917 if (inode->i_op->follow_link) { 918 err = do_follow_link(&next, nd); 919 if (err) 920 goto return_err; 921 err = -ENOENT; 922 inode = nd->path.dentry->d_inode; 923 if (!inode) 924 break; 925 } else 926 path_to_nameidata(&next, nd); 927 err = -ENOTDIR; 928 if (!inode->i_op->lookup) 929 break; 930 continue; 931 /* here ends the main loop */ 932 933 last_with_slashes: 934 lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 935 last_component: 936 /* Clear LOOKUP_CONTINUE iff it was previously unset */ 937 nd->flags &= lookup_flags | ~LOOKUP_CONTINUE; 938 if (lookup_flags & LOOKUP_PARENT) 939 goto lookup_parent; 940 if (this.name[0] == '.') switch (this.len) { 941 default: 942 break; 943 case 2: 944 if (this.name[1] != '.') 945 break; 946 follow_dotdot(nd); 947 inode = nd->path.dentry->d_inode; 948 /* fallthrough */ 949 case 1: 950 goto return_reval; 951 } 952 err = do_lookup(nd, &this, &next); 953 if (err) 954 break; 955 inode = next.dentry->d_inode; 956 if (follow_on_final(inode, lookup_flags)) { 957 err = do_follow_link(&next, nd); 958 if (err) 959 goto return_err; 960 inode = nd->path.dentry->d_inode; 961 } else 962 path_to_nameidata(&next, nd); 963 err = -ENOENT; 964 if (!inode) 965 break; 966 if (lookup_flags & LOOKUP_DIRECTORY) { 967 err = -ENOTDIR; 968 if (!inode->i_op->lookup) 969 break; 970 } 971 goto return_base; 972 lookup_parent: 973 nd->last = this; 974 nd->last_type = LAST_NORM; 975 if (this.name[0] != '.') 976 goto return_base; 977 if (this.len == 1) 978 nd->last_type = LAST_DOT; 979 else if (this.len == 2 && this.name[1] == '.') 980 nd->last_type = LAST_DOTDOT; 981 else 982 goto return_base; 983 return_reval: 984 /* 985 * We bypassed the ordinary revalidation routines. 986 * We may need to check the cached dentry for staleness. 987 */ 988 if (nd->path.dentry && nd->path.dentry->d_sb && 989 (nd->path.dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)) { 990 err = -ESTALE; 991 /* Note: we do not d_invalidate() */ 992 if (!nd->path.dentry->d_op->d_revalidate( 993 nd->path.dentry, nd)) 994 break; 995 } 996 return_base: 997 return 0; 998 out_dput: 999 path_put_conditional(&next, nd); 1000 break; 1001 } 1002 path_put(&nd->path); 1003 return_err: 1004 return err; 1005 } 1006 1007 static int path_walk(const char *name, struct nameidata *nd) 1008 { 1009 struct path save = nd->path; 1010 int result; 1011 1012 current->total_link_count = 0; 1013 1014 /* make sure the stuff we saved doesn't go away */ 1015 path_get(&save); 1016 1017 result = link_path_walk(name, nd); 1018 if (result == -ESTALE) { 1019 /* nd->path had been dropped */ 1020 current->total_link_count = 0; 1021 nd->path = save; 1022 path_get(&nd->path); 1023 nd->flags |= LOOKUP_REVAL; 1024 result = link_path_walk(name, nd); 1025 } 1026 1027 path_put(&save); 1028 1029 return result; 1030 } 1031 1032 static int path_init(int dfd, const char *name, unsigned int flags, struct nameidata *nd) 1033 { 1034 int retval = 0; 1035 int fput_needed; 1036 struct file *file; 1037 1038 nd->last_type = LAST_ROOT; /* if there are only slashes... */ 1039 nd->flags = flags; 1040 nd->depth = 0; 1041 nd->root.mnt = NULL; 1042 1043 if (*name=='/') { 1044 set_root(nd); 1045 nd->path = nd->root; 1046 path_get(&nd->root); 1047 } else if (dfd == AT_FDCWD) { 1048 struct fs_struct *fs = current->fs; 1049 read_lock(&fs->lock); 1050 nd->path = fs->pwd; 1051 path_get(&fs->pwd); 1052 read_unlock(&fs->lock); 1053 } else { 1054 struct dentry *dentry; 1055 1056 file = fget_light(dfd, &fput_needed); 1057 retval = -EBADF; 1058 if (!file) 1059 goto out_fail; 1060 1061 dentry = file->f_path.dentry; 1062 1063 retval = -ENOTDIR; 1064 if (!S_ISDIR(dentry->d_inode->i_mode)) 1065 goto fput_fail; 1066 1067 retval = file_permission(file, MAY_EXEC); 1068 if (retval) 1069 goto fput_fail; 1070 1071 nd->path = file->f_path; 1072 path_get(&file->f_path); 1073 1074 fput_light(file, fput_needed); 1075 } 1076 return 0; 1077 1078 fput_fail: 1079 fput_light(file, fput_needed); 1080 out_fail: 1081 return retval; 1082 } 1083 1084 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 1085 static int do_path_lookup(int dfd, const char *name, 1086 unsigned int flags, struct nameidata *nd) 1087 { 1088 int retval = path_init(dfd, name, flags, nd); 1089 if (!retval) 1090 retval = path_walk(name, nd); 1091 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry && 1092 nd->path.dentry->d_inode)) 1093 audit_inode(name, nd->path.dentry); 1094 if (nd->root.mnt) { 1095 path_put(&nd->root); 1096 nd->root.mnt = NULL; 1097 } 1098 return retval; 1099 } 1100 1101 int path_lookup(const char *name, unsigned int flags, 1102 struct nameidata *nd) 1103 { 1104 return do_path_lookup(AT_FDCWD, name, flags, nd); 1105 } 1106 1107 int kern_path(const char *name, unsigned int flags, struct path *path) 1108 { 1109 struct nameidata nd; 1110 int res = do_path_lookup(AT_FDCWD, name, flags, &nd); 1111 if (!res) 1112 *path = nd.path; 1113 return res; 1114 } 1115 1116 /** 1117 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 1118 * @dentry: pointer to dentry of the base directory 1119 * @mnt: pointer to vfs mount of the base directory 1120 * @name: pointer to file name 1121 * @flags: lookup flags 1122 * @nd: pointer to nameidata 1123 */ 1124 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 1125 const char *name, unsigned int flags, 1126 struct nameidata *nd) 1127 { 1128 int retval; 1129 1130 /* same as do_path_lookup */ 1131 nd->last_type = LAST_ROOT; 1132 nd->flags = flags; 1133 nd->depth = 0; 1134 1135 nd->path.dentry = dentry; 1136 nd->path.mnt = mnt; 1137 path_get(&nd->path); 1138 nd->root = nd->path; 1139 path_get(&nd->root); 1140 1141 retval = path_walk(name, nd); 1142 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry && 1143 nd->path.dentry->d_inode)) 1144 audit_inode(name, nd->path.dentry); 1145 1146 path_put(&nd->root); 1147 nd->root.mnt = NULL; 1148 1149 return retval; 1150 } 1151 1152 static struct dentry *__lookup_hash(struct qstr *name, 1153 struct dentry *base, struct nameidata *nd) 1154 { 1155 struct dentry *dentry; 1156 struct inode *inode; 1157 int err; 1158 1159 inode = base->d_inode; 1160 1161 /* 1162 * See if the low-level filesystem might want 1163 * to use its own hash.. 1164 */ 1165 if (base->d_op && base->d_op->d_hash) { 1166 err = base->d_op->d_hash(base, name); 1167 dentry = ERR_PTR(err); 1168 if (err < 0) 1169 goto out; 1170 } 1171 1172 dentry = __d_lookup(base, name); 1173 1174 /* lockess __d_lookup may fail due to concurrent d_move() 1175 * in some unrelated directory, so try with d_lookup 1176 */ 1177 if (!dentry) 1178 dentry = d_lookup(base, name); 1179 1180 if (dentry && dentry->d_op && dentry->d_op->d_revalidate) 1181 dentry = do_revalidate(dentry, nd); 1182 1183 if (!dentry) { 1184 struct dentry *new; 1185 1186 /* Don't create child dentry for a dead directory. */ 1187 dentry = ERR_PTR(-ENOENT); 1188 if (IS_DEADDIR(inode)) 1189 goto out; 1190 1191 new = d_alloc(base, name); 1192 dentry = ERR_PTR(-ENOMEM); 1193 if (!new) 1194 goto out; 1195 dentry = inode->i_op->lookup(inode, new, nd); 1196 if (!dentry) 1197 dentry = new; 1198 else 1199 dput(new); 1200 } 1201 out: 1202 return dentry; 1203 } 1204 1205 /* 1206 * Restricted form of lookup. Doesn't follow links, single-component only, 1207 * needs parent already locked. Doesn't follow mounts. 1208 * SMP-safe. 1209 */ 1210 static struct dentry *lookup_hash(struct nameidata *nd) 1211 { 1212 int err; 1213 1214 err = exec_permission(nd->path.dentry->d_inode); 1215 if (err) 1216 return ERR_PTR(err); 1217 return __lookup_hash(&nd->last, nd->path.dentry, nd); 1218 } 1219 1220 static int __lookup_one_len(const char *name, struct qstr *this, 1221 struct dentry *base, int len) 1222 { 1223 unsigned long hash; 1224 unsigned int c; 1225 1226 this->name = name; 1227 this->len = len; 1228 if (!len) 1229 return -EACCES; 1230 1231 hash = init_name_hash(); 1232 while (len--) { 1233 c = *(const unsigned char *)name++; 1234 if (c == '/' || c == '\0') 1235 return -EACCES; 1236 hash = partial_name_hash(c, hash); 1237 } 1238 this->hash = end_name_hash(hash); 1239 return 0; 1240 } 1241 1242 /** 1243 * lookup_one_len - filesystem helper to lookup single pathname component 1244 * @name: pathname component to lookup 1245 * @base: base directory to lookup from 1246 * @len: maximum length @len should be interpreted to 1247 * 1248 * Note that this routine is purely a helper for filesystem usage and should 1249 * not be called by generic code. Also note that by using this function the 1250 * nameidata argument is passed to the filesystem methods and a filesystem 1251 * using this helper needs to be prepared for that. 1252 */ 1253 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 1254 { 1255 int err; 1256 struct qstr this; 1257 1258 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex)); 1259 1260 err = __lookup_one_len(name, &this, base, len); 1261 if (err) 1262 return ERR_PTR(err); 1263 1264 err = exec_permission(base->d_inode); 1265 if (err) 1266 return ERR_PTR(err); 1267 return __lookup_hash(&this, base, NULL); 1268 } 1269 1270 int user_path_at(int dfd, const char __user *name, unsigned flags, 1271 struct path *path) 1272 { 1273 struct nameidata nd; 1274 char *tmp = getname(name); 1275 int err = PTR_ERR(tmp); 1276 if (!IS_ERR(tmp)) { 1277 1278 BUG_ON(flags & LOOKUP_PARENT); 1279 1280 err = do_path_lookup(dfd, tmp, flags, &nd); 1281 putname(tmp); 1282 if (!err) 1283 *path = nd.path; 1284 } 1285 return err; 1286 } 1287 1288 static int user_path_parent(int dfd, const char __user *path, 1289 struct nameidata *nd, char **name) 1290 { 1291 char *s = getname(path); 1292 int error; 1293 1294 if (IS_ERR(s)) 1295 return PTR_ERR(s); 1296 1297 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd); 1298 if (error) 1299 putname(s); 1300 else 1301 *name = s; 1302 1303 return error; 1304 } 1305 1306 /* 1307 * It's inline, so penalty for filesystems that don't use sticky bit is 1308 * minimal. 1309 */ 1310 static inline int check_sticky(struct inode *dir, struct inode *inode) 1311 { 1312 uid_t fsuid = current_fsuid(); 1313 1314 if (!(dir->i_mode & S_ISVTX)) 1315 return 0; 1316 if (inode->i_uid == fsuid) 1317 return 0; 1318 if (dir->i_uid == fsuid) 1319 return 0; 1320 return !capable(CAP_FOWNER); 1321 } 1322 1323 /* 1324 * Check whether we can remove a link victim from directory dir, check 1325 * whether the type of victim is right. 1326 * 1. We can't do it if dir is read-only (done in permission()) 1327 * 2. We should have write and exec permissions on dir 1328 * 3. We can't remove anything from append-only dir 1329 * 4. We can't do anything with immutable dir (done in permission()) 1330 * 5. If the sticky bit on dir is set we should either 1331 * a. be owner of dir, or 1332 * b. be owner of victim, or 1333 * c. have CAP_FOWNER capability 1334 * 6. If the victim is append-only or immutable we can't do antyhing with 1335 * links pointing to it. 1336 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 1337 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 1338 * 9. We can't remove a root or mountpoint. 1339 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 1340 * nfs_async_unlink(). 1341 */ 1342 static int may_delete(struct inode *dir,struct dentry *victim,int isdir) 1343 { 1344 int error; 1345 1346 if (!victim->d_inode) 1347 return -ENOENT; 1348 1349 BUG_ON(victim->d_parent->d_inode != dir); 1350 audit_inode_child(victim->d_name.name, victim, dir); 1351 1352 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 1353 if (error) 1354 return error; 1355 if (IS_APPEND(dir)) 1356 return -EPERM; 1357 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)|| 1358 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode)) 1359 return -EPERM; 1360 if (isdir) { 1361 if (!S_ISDIR(victim->d_inode->i_mode)) 1362 return -ENOTDIR; 1363 if (IS_ROOT(victim)) 1364 return -EBUSY; 1365 } else if (S_ISDIR(victim->d_inode->i_mode)) 1366 return -EISDIR; 1367 if (IS_DEADDIR(dir)) 1368 return -ENOENT; 1369 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 1370 return -EBUSY; 1371 return 0; 1372 } 1373 1374 /* Check whether we can create an object with dentry child in directory 1375 * dir. 1376 * 1. We can't do it if child already exists (open has special treatment for 1377 * this case, but since we are inlined it's OK) 1378 * 2. We can't do it if dir is read-only (done in permission()) 1379 * 3. We should have write and exec permissions on dir 1380 * 4. We can't do it if dir is immutable (done in permission()) 1381 */ 1382 static inline int may_create(struct inode *dir, struct dentry *child) 1383 { 1384 if (child->d_inode) 1385 return -EEXIST; 1386 if (IS_DEADDIR(dir)) 1387 return -ENOENT; 1388 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 1389 } 1390 1391 /* 1392 * O_DIRECTORY translates into forcing a directory lookup. 1393 */ 1394 static inline int lookup_flags(unsigned int f) 1395 { 1396 unsigned long retval = LOOKUP_FOLLOW; 1397 1398 if (f & O_NOFOLLOW) 1399 retval &= ~LOOKUP_FOLLOW; 1400 1401 if (f & O_DIRECTORY) 1402 retval |= LOOKUP_DIRECTORY; 1403 1404 return retval; 1405 } 1406 1407 /* 1408 * p1 and p2 should be directories on the same fs. 1409 */ 1410 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 1411 { 1412 struct dentry *p; 1413 1414 if (p1 == p2) { 1415 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 1416 return NULL; 1417 } 1418 1419 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 1420 1421 p = d_ancestor(p2, p1); 1422 if (p) { 1423 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT); 1424 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD); 1425 return p; 1426 } 1427 1428 p = d_ancestor(p1, p2); 1429 if (p) { 1430 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 1431 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 1432 return p; 1433 } 1434 1435 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 1436 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 1437 return NULL; 1438 } 1439 1440 void unlock_rename(struct dentry *p1, struct dentry *p2) 1441 { 1442 mutex_unlock(&p1->d_inode->i_mutex); 1443 if (p1 != p2) { 1444 mutex_unlock(&p2->d_inode->i_mutex); 1445 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 1446 } 1447 } 1448 1449 int vfs_create(struct inode *dir, struct dentry *dentry, int mode, 1450 struct nameidata *nd) 1451 { 1452 int error = may_create(dir, dentry); 1453 1454 if (error) 1455 return error; 1456 1457 if (!dir->i_op->create) 1458 return -EACCES; /* shouldn't it be ENOSYS? */ 1459 mode &= S_IALLUGO; 1460 mode |= S_IFREG; 1461 error = security_inode_create(dir, dentry, mode); 1462 if (error) 1463 return error; 1464 vfs_dq_init(dir); 1465 error = dir->i_op->create(dir, dentry, mode, nd); 1466 if (!error) 1467 fsnotify_create(dir, dentry); 1468 return error; 1469 } 1470 1471 int may_open(struct path *path, int acc_mode, int flag) 1472 { 1473 struct dentry *dentry = path->dentry; 1474 struct inode *inode = dentry->d_inode; 1475 int error; 1476 1477 if (!inode) 1478 return -ENOENT; 1479 1480 switch (inode->i_mode & S_IFMT) { 1481 case S_IFLNK: 1482 return -ELOOP; 1483 case S_IFDIR: 1484 if (acc_mode & MAY_WRITE) 1485 return -EISDIR; 1486 break; 1487 case S_IFBLK: 1488 case S_IFCHR: 1489 if (path->mnt->mnt_flags & MNT_NODEV) 1490 return -EACCES; 1491 /*FALLTHRU*/ 1492 case S_IFIFO: 1493 case S_IFSOCK: 1494 flag &= ~O_TRUNC; 1495 break; 1496 } 1497 1498 error = inode_permission(inode, acc_mode); 1499 if (error) 1500 return error; 1501 1502 /* 1503 * An append-only file must be opened in append mode for writing. 1504 */ 1505 if (IS_APPEND(inode)) { 1506 if ((flag & FMODE_WRITE) && !(flag & O_APPEND)) 1507 return -EPERM; 1508 if (flag & O_TRUNC) 1509 return -EPERM; 1510 } 1511 1512 /* O_NOATIME can only be set by the owner or superuser */ 1513 if (flag & O_NOATIME && !is_owner_or_cap(inode)) 1514 return -EPERM; 1515 1516 /* 1517 * Ensure there are no outstanding leases on the file. 1518 */ 1519 return break_lease(inode, flag); 1520 } 1521 1522 static int handle_truncate(struct path *path) 1523 { 1524 struct inode *inode = path->dentry->d_inode; 1525 int error = get_write_access(inode); 1526 if (error) 1527 return error; 1528 /* 1529 * Refuse to truncate files with mandatory locks held on them. 1530 */ 1531 error = locks_verify_locked(inode); 1532 if (!error) 1533 error = security_path_truncate(path, 0, 1534 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN); 1535 if (!error) { 1536 error = do_truncate(path->dentry, 0, 1537 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 1538 NULL); 1539 } 1540 put_write_access(inode); 1541 return error; 1542 } 1543 1544 /* 1545 * Be careful about ever adding any more callers of this 1546 * function. Its flags must be in the namei format, not 1547 * what get passed to sys_open(). 1548 */ 1549 static int __open_namei_create(struct nameidata *nd, struct path *path, 1550 int flag, int mode) 1551 { 1552 int error; 1553 struct dentry *dir = nd->path.dentry; 1554 1555 if (!IS_POSIXACL(dir->d_inode)) 1556 mode &= ~current_umask(); 1557 error = security_path_mknod(&nd->path, path->dentry, mode, 0); 1558 if (error) 1559 goto out_unlock; 1560 error = vfs_create(dir->d_inode, path->dentry, mode, nd); 1561 out_unlock: 1562 mutex_unlock(&dir->d_inode->i_mutex); 1563 dput(nd->path.dentry); 1564 nd->path.dentry = path->dentry; 1565 if (error) 1566 return error; 1567 /* Don't check for write permission, don't truncate */ 1568 return may_open(&nd->path, 0, flag & ~O_TRUNC); 1569 } 1570 1571 /* 1572 * Note that while the flag value (low two bits) for sys_open means: 1573 * 00 - read-only 1574 * 01 - write-only 1575 * 10 - read-write 1576 * 11 - special 1577 * it is changed into 1578 * 00 - no permissions needed 1579 * 01 - read-permission 1580 * 10 - write-permission 1581 * 11 - read-write 1582 * for the internal routines (ie open_namei()/follow_link() etc) 1583 * This is more logical, and also allows the 00 "no perm needed" 1584 * to be used for symlinks (where the permissions are checked 1585 * later). 1586 * 1587 */ 1588 static inline int open_to_namei_flags(int flag) 1589 { 1590 if ((flag+1) & O_ACCMODE) 1591 flag++; 1592 return flag; 1593 } 1594 1595 static int open_will_truncate(int flag, struct inode *inode) 1596 { 1597 /* 1598 * We'll never write to the fs underlying 1599 * a device file. 1600 */ 1601 if (special_file(inode->i_mode)) 1602 return 0; 1603 return (flag & O_TRUNC); 1604 } 1605 1606 /* 1607 * Note that the low bits of the passed in "open_flag" 1608 * are not the same as in the local variable "flag". See 1609 * open_to_namei_flags() for more details. 1610 */ 1611 struct file *do_filp_open(int dfd, const char *pathname, 1612 int open_flag, int mode, int acc_mode) 1613 { 1614 struct file *filp; 1615 struct nameidata nd; 1616 int error; 1617 struct path path; 1618 struct dentry *dir; 1619 int count = 0; 1620 int will_truncate; 1621 int flag = open_to_namei_flags(open_flag); 1622 int force_reval = 0; 1623 1624 /* 1625 * O_SYNC is implemented as __O_SYNC|O_DSYNC. As many places only 1626 * check for O_DSYNC if the need any syncing at all we enforce it's 1627 * always set instead of having to deal with possibly weird behaviour 1628 * for malicious applications setting only __O_SYNC. 1629 */ 1630 if (open_flag & __O_SYNC) 1631 open_flag |= O_DSYNC; 1632 1633 if (!acc_mode) 1634 acc_mode = MAY_OPEN | ACC_MODE(open_flag); 1635 1636 /* O_TRUNC implies we need access checks for write permissions */ 1637 if (flag & O_TRUNC) 1638 acc_mode |= MAY_WRITE; 1639 1640 /* Allow the LSM permission hook to distinguish append 1641 access from general write access. */ 1642 if (flag & O_APPEND) 1643 acc_mode |= MAY_APPEND; 1644 1645 /* 1646 * The simplest case - just a plain lookup. 1647 */ 1648 if (!(flag & O_CREAT)) { 1649 filp = get_empty_filp(); 1650 1651 if (filp == NULL) 1652 return ERR_PTR(-ENFILE); 1653 nd.intent.open.file = filp; 1654 filp->f_flags = open_flag; 1655 nd.intent.open.flags = flag; 1656 nd.intent.open.create_mode = 0; 1657 error = do_path_lookup(dfd, pathname, 1658 lookup_flags(flag)|LOOKUP_OPEN, &nd); 1659 if (IS_ERR(nd.intent.open.file)) { 1660 if (error == 0) { 1661 error = PTR_ERR(nd.intent.open.file); 1662 path_put(&nd.path); 1663 } 1664 } else if (error) 1665 release_open_intent(&nd); 1666 if (error) 1667 return ERR_PTR(error); 1668 goto ok; 1669 } 1670 1671 /* 1672 * Create - we need to know the parent. 1673 */ 1674 reval: 1675 error = path_init(dfd, pathname, LOOKUP_PARENT, &nd); 1676 if (error) 1677 return ERR_PTR(error); 1678 if (force_reval) 1679 nd.flags |= LOOKUP_REVAL; 1680 error = path_walk(pathname, &nd); 1681 if (error) { 1682 if (nd.root.mnt) 1683 path_put(&nd.root); 1684 return ERR_PTR(error); 1685 } 1686 if (unlikely(!audit_dummy_context())) 1687 audit_inode(pathname, nd.path.dentry); 1688 1689 /* 1690 * We have the parent and last component. First of all, check 1691 * that we are not asked to creat(2) an obvious directory - that 1692 * will not do. 1693 */ 1694 error = -EISDIR; 1695 if (nd.last_type != LAST_NORM || nd.last.name[nd.last.len]) 1696 goto exit_parent; 1697 1698 error = -ENFILE; 1699 filp = get_empty_filp(); 1700 if (filp == NULL) 1701 goto exit_parent; 1702 nd.intent.open.file = filp; 1703 filp->f_flags = open_flag; 1704 nd.intent.open.flags = flag; 1705 nd.intent.open.create_mode = mode; 1706 dir = nd.path.dentry; 1707 nd.flags &= ~LOOKUP_PARENT; 1708 nd.flags |= LOOKUP_CREATE | LOOKUP_OPEN; 1709 if (flag & O_EXCL) 1710 nd.flags |= LOOKUP_EXCL; 1711 mutex_lock(&dir->d_inode->i_mutex); 1712 path.dentry = lookup_hash(&nd); 1713 path.mnt = nd.path.mnt; 1714 1715 do_last: 1716 error = PTR_ERR(path.dentry); 1717 if (IS_ERR(path.dentry)) { 1718 mutex_unlock(&dir->d_inode->i_mutex); 1719 goto exit; 1720 } 1721 1722 if (IS_ERR(nd.intent.open.file)) { 1723 error = PTR_ERR(nd.intent.open.file); 1724 goto exit_mutex_unlock; 1725 } 1726 1727 /* Negative dentry, just create the file */ 1728 if (!path.dentry->d_inode) { 1729 /* 1730 * This write is needed to ensure that a 1731 * ro->rw transition does not occur between 1732 * the time when the file is created and when 1733 * a permanent write count is taken through 1734 * the 'struct file' in nameidata_to_filp(). 1735 */ 1736 error = mnt_want_write(nd.path.mnt); 1737 if (error) 1738 goto exit_mutex_unlock; 1739 error = __open_namei_create(&nd, &path, flag, mode); 1740 if (error) { 1741 mnt_drop_write(nd.path.mnt); 1742 goto exit; 1743 } 1744 filp = nameidata_to_filp(&nd); 1745 mnt_drop_write(nd.path.mnt); 1746 if (nd.root.mnt) 1747 path_put(&nd.root); 1748 if (!IS_ERR(filp)) { 1749 error = ima_file_check(filp, acc_mode); 1750 if (error) { 1751 fput(filp); 1752 filp = ERR_PTR(error); 1753 } 1754 } 1755 return filp; 1756 } 1757 1758 /* 1759 * It already exists. 1760 */ 1761 mutex_unlock(&dir->d_inode->i_mutex); 1762 audit_inode(pathname, path.dentry); 1763 1764 error = -EEXIST; 1765 if (flag & O_EXCL) 1766 goto exit_dput; 1767 1768 if (__follow_mount(&path)) { 1769 error = -ELOOP; 1770 if (flag & O_NOFOLLOW) 1771 goto exit_dput; 1772 } 1773 1774 error = -ENOENT; 1775 if (!path.dentry->d_inode) 1776 goto exit_dput; 1777 if (path.dentry->d_inode->i_op->follow_link) 1778 goto do_link; 1779 1780 path_to_nameidata(&path, &nd); 1781 error = -EISDIR; 1782 if (S_ISDIR(path.dentry->d_inode->i_mode)) 1783 goto exit; 1784 ok: 1785 /* 1786 * Consider: 1787 * 1. may_open() truncates a file 1788 * 2. a rw->ro mount transition occurs 1789 * 3. nameidata_to_filp() fails due to 1790 * the ro mount. 1791 * That would be inconsistent, and should 1792 * be avoided. Taking this mnt write here 1793 * ensures that (2) can not occur. 1794 */ 1795 will_truncate = open_will_truncate(flag, nd.path.dentry->d_inode); 1796 if (will_truncate) { 1797 error = mnt_want_write(nd.path.mnt); 1798 if (error) 1799 goto exit; 1800 } 1801 error = may_open(&nd.path, acc_mode, flag); 1802 if (error) { 1803 if (will_truncate) 1804 mnt_drop_write(nd.path.mnt); 1805 goto exit; 1806 } 1807 filp = nameidata_to_filp(&nd); 1808 if (!IS_ERR(filp)) { 1809 error = ima_file_check(filp, acc_mode); 1810 if (error) { 1811 fput(filp); 1812 filp = ERR_PTR(error); 1813 } 1814 } 1815 if (!IS_ERR(filp)) { 1816 if (acc_mode & MAY_WRITE) 1817 vfs_dq_init(nd.path.dentry->d_inode); 1818 1819 if (will_truncate) { 1820 error = handle_truncate(&nd.path); 1821 if (error) { 1822 fput(filp); 1823 filp = ERR_PTR(error); 1824 } 1825 } 1826 } 1827 /* 1828 * It is now safe to drop the mnt write 1829 * because the filp has had a write taken 1830 * on its behalf. 1831 */ 1832 if (will_truncate) 1833 mnt_drop_write(nd.path.mnt); 1834 if (nd.root.mnt) 1835 path_put(&nd.root); 1836 return filp; 1837 1838 exit_mutex_unlock: 1839 mutex_unlock(&dir->d_inode->i_mutex); 1840 exit_dput: 1841 path_put_conditional(&path, &nd); 1842 exit: 1843 if (!IS_ERR(nd.intent.open.file)) 1844 release_open_intent(&nd); 1845 exit_parent: 1846 if (nd.root.mnt) 1847 path_put(&nd.root); 1848 path_put(&nd.path); 1849 return ERR_PTR(error); 1850 1851 do_link: 1852 error = -ELOOP; 1853 if (flag & O_NOFOLLOW) 1854 goto exit_dput; 1855 /* 1856 * This is subtle. Instead of calling do_follow_link() we do the 1857 * thing by hands. The reason is that this way we have zero link_count 1858 * and path_walk() (called from ->follow_link) honoring LOOKUP_PARENT. 1859 * After that we have the parent and last component, i.e. 1860 * we are in the same situation as after the first path_walk(). 1861 * Well, almost - if the last component is normal we get its copy 1862 * stored in nd->last.name and we will have to putname() it when we 1863 * are done. Procfs-like symlinks just set LAST_BIND. 1864 */ 1865 nd.flags |= LOOKUP_PARENT; 1866 error = security_inode_follow_link(path.dentry, &nd); 1867 if (error) 1868 goto exit_dput; 1869 error = __do_follow_link(&path, &nd); 1870 path_put(&path); 1871 if (error) { 1872 /* Does someone understand code flow here? Or it is only 1873 * me so stupid? Anathema to whoever designed this non-sense 1874 * with "intent.open". 1875 */ 1876 release_open_intent(&nd); 1877 if (nd.root.mnt) 1878 path_put(&nd.root); 1879 if (error == -ESTALE && !force_reval) { 1880 force_reval = 1; 1881 goto reval; 1882 } 1883 return ERR_PTR(error); 1884 } 1885 nd.flags &= ~LOOKUP_PARENT; 1886 if (nd.last_type == LAST_BIND) 1887 goto ok; 1888 error = -EISDIR; 1889 if (nd.last_type != LAST_NORM) 1890 goto exit; 1891 if (nd.last.name[nd.last.len]) { 1892 __putname(nd.last.name); 1893 goto exit; 1894 } 1895 error = -ELOOP; 1896 if (count++==32) { 1897 __putname(nd.last.name); 1898 goto exit; 1899 } 1900 dir = nd.path.dentry; 1901 mutex_lock(&dir->d_inode->i_mutex); 1902 path.dentry = lookup_hash(&nd); 1903 path.mnt = nd.path.mnt; 1904 __putname(nd.last.name); 1905 goto do_last; 1906 } 1907 1908 /** 1909 * filp_open - open file and return file pointer 1910 * 1911 * @filename: path to open 1912 * @flags: open flags as per the open(2) second argument 1913 * @mode: mode for the new file if O_CREAT is set, else ignored 1914 * 1915 * This is the helper to open a file from kernelspace if you really 1916 * have to. But in generally you should not do this, so please move 1917 * along, nothing to see here.. 1918 */ 1919 struct file *filp_open(const char *filename, int flags, int mode) 1920 { 1921 return do_filp_open(AT_FDCWD, filename, flags, mode, 0); 1922 } 1923 EXPORT_SYMBOL(filp_open); 1924 1925 /** 1926 * lookup_create - lookup a dentry, creating it if it doesn't exist 1927 * @nd: nameidata info 1928 * @is_dir: directory flag 1929 * 1930 * Simple function to lookup and return a dentry and create it 1931 * if it doesn't exist. Is SMP-safe. 1932 * 1933 * Returns with nd->path.dentry->d_inode->i_mutex locked. 1934 */ 1935 struct dentry *lookup_create(struct nameidata *nd, int is_dir) 1936 { 1937 struct dentry *dentry = ERR_PTR(-EEXIST); 1938 1939 mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 1940 /* 1941 * Yucky last component or no last component at all? 1942 * (foo/., foo/.., /////) 1943 */ 1944 if (nd->last_type != LAST_NORM) 1945 goto fail; 1946 nd->flags &= ~LOOKUP_PARENT; 1947 nd->flags |= LOOKUP_CREATE | LOOKUP_EXCL; 1948 nd->intent.open.flags = O_EXCL; 1949 1950 /* 1951 * Do the final lookup. 1952 */ 1953 dentry = lookup_hash(nd); 1954 if (IS_ERR(dentry)) 1955 goto fail; 1956 1957 if (dentry->d_inode) 1958 goto eexist; 1959 /* 1960 * Special case - lookup gave negative, but... we had foo/bar/ 1961 * From the vfs_mknod() POV we just have a negative dentry - 1962 * all is fine. Let's be bastards - you had / on the end, you've 1963 * been asking for (non-existent) directory. -ENOENT for you. 1964 */ 1965 if (unlikely(!is_dir && nd->last.name[nd->last.len])) { 1966 dput(dentry); 1967 dentry = ERR_PTR(-ENOENT); 1968 } 1969 return dentry; 1970 eexist: 1971 dput(dentry); 1972 dentry = ERR_PTR(-EEXIST); 1973 fail: 1974 return dentry; 1975 } 1976 EXPORT_SYMBOL_GPL(lookup_create); 1977 1978 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) 1979 { 1980 int error = may_create(dir, dentry); 1981 1982 if (error) 1983 return error; 1984 1985 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD)) 1986 return -EPERM; 1987 1988 if (!dir->i_op->mknod) 1989 return -EPERM; 1990 1991 error = devcgroup_inode_mknod(mode, dev); 1992 if (error) 1993 return error; 1994 1995 error = security_inode_mknod(dir, dentry, mode, dev); 1996 if (error) 1997 return error; 1998 1999 vfs_dq_init(dir); 2000 error = dir->i_op->mknod(dir, dentry, mode, dev); 2001 if (!error) 2002 fsnotify_create(dir, dentry); 2003 return error; 2004 } 2005 2006 static int may_mknod(mode_t mode) 2007 { 2008 switch (mode & S_IFMT) { 2009 case S_IFREG: 2010 case S_IFCHR: 2011 case S_IFBLK: 2012 case S_IFIFO: 2013 case S_IFSOCK: 2014 case 0: /* zero mode translates to S_IFREG */ 2015 return 0; 2016 case S_IFDIR: 2017 return -EPERM; 2018 default: 2019 return -EINVAL; 2020 } 2021 } 2022 2023 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode, 2024 unsigned, dev) 2025 { 2026 int error; 2027 char *tmp; 2028 struct dentry *dentry; 2029 struct nameidata nd; 2030 2031 if (S_ISDIR(mode)) 2032 return -EPERM; 2033 2034 error = user_path_parent(dfd, filename, &nd, &tmp); 2035 if (error) 2036 return error; 2037 2038 dentry = lookup_create(&nd, 0); 2039 if (IS_ERR(dentry)) { 2040 error = PTR_ERR(dentry); 2041 goto out_unlock; 2042 } 2043 if (!IS_POSIXACL(nd.path.dentry->d_inode)) 2044 mode &= ~current_umask(); 2045 error = may_mknod(mode); 2046 if (error) 2047 goto out_dput; 2048 error = mnt_want_write(nd.path.mnt); 2049 if (error) 2050 goto out_dput; 2051 error = security_path_mknod(&nd.path, dentry, mode, dev); 2052 if (error) 2053 goto out_drop_write; 2054 switch (mode & S_IFMT) { 2055 case 0: case S_IFREG: 2056 error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd); 2057 break; 2058 case S_IFCHR: case S_IFBLK: 2059 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode, 2060 new_decode_dev(dev)); 2061 break; 2062 case S_IFIFO: case S_IFSOCK: 2063 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0); 2064 break; 2065 } 2066 out_drop_write: 2067 mnt_drop_write(nd.path.mnt); 2068 out_dput: 2069 dput(dentry); 2070 out_unlock: 2071 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2072 path_put(&nd.path); 2073 putname(tmp); 2074 2075 return error; 2076 } 2077 2078 SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev) 2079 { 2080 return sys_mknodat(AT_FDCWD, filename, mode, dev); 2081 } 2082 2083 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode) 2084 { 2085 int error = may_create(dir, dentry); 2086 2087 if (error) 2088 return error; 2089 2090 if (!dir->i_op->mkdir) 2091 return -EPERM; 2092 2093 mode &= (S_IRWXUGO|S_ISVTX); 2094 error = security_inode_mkdir(dir, dentry, mode); 2095 if (error) 2096 return error; 2097 2098 vfs_dq_init(dir); 2099 error = dir->i_op->mkdir(dir, dentry, mode); 2100 if (!error) 2101 fsnotify_mkdir(dir, dentry); 2102 return error; 2103 } 2104 2105 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode) 2106 { 2107 int error = 0; 2108 char * tmp; 2109 struct dentry *dentry; 2110 struct nameidata nd; 2111 2112 error = user_path_parent(dfd, pathname, &nd, &tmp); 2113 if (error) 2114 goto out_err; 2115 2116 dentry = lookup_create(&nd, 1); 2117 error = PTR_ERR(dentry); 2118 if (IS_ERR(dentry)) 2119 goto out_unlock; 2120 2121 if (!IS_POSIXACL(nd.path.dentry->d_inode)) 2122 mode &= ~current_umask(); 2123 error = mnt_want_write(nd.path.mnt); 2124 if (error) 2125 goto out_dput; 2126 error = security_path_mkdir(&nd.path, dentry, mode); 2127 if (error) 2128 goto out_drop_write; 2129 error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode); 2130 out_drop_write: 2131 mnt_drop_write(nd.path.mnt); 2132 out_dput: 2133 dput(dentry); 2134 out_unlock: 2135 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2136 path_put(&nd.path); 2137 putname(tmp); 2138 out_err: 2139 return error; 2140 } 2141 2142 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode) 2143 { 2144 return sys_mkdirat(AT_FDCWD, pathname, mode); 2145 } 2146 2147 /* 2148 * We try to drop the dentry early: we should have 2149 * a usage count of 2 if we're the only user of this 2150 * dentry, and if that is true (possibly after pruning 2151 * the dcache), then we drop the dentry now. 2152 * 2153 * A low-level filesystem can, if it choses, legally 2154 * do a 2155 * 2156 * if (!d_unhashed(dentry)) 2157 * return -EBUSY; 2158 * 2159 * if it cannot handle the case of removing a directory 2160 * that is still in use by something else.. 2161 */ 2162 void dentry_unhash(struct dentry *dentry) 2163 { 2164 dget(dentry); 2165 shrink_dcache_parent(dentry); 2166 spin_lock(&dcache_lock); 2167 spin_lock(&dentry->d_lock); 2168 if (atomic_read(&dentry->d_count) == 2) 2169 __d_drop(dentry); 2170 spin_unlock(&dentry->d_lock); 2171 spin_unlock(&dcache_lock); 2172 } 2173 2174 int vfs_rmdir(struct inode *dir, struct dentry *dentry) 2175 { 2176 int error = may_delete(dir, dentry, 1); 2177 2178 if (error) 2179 return error; 2180 2181 if (!dir->i_op->rmdir) 2182 return -EPERM; 2183 2184 vfs_dq_init(dir); 2185 2186 mutex_lock(&dentry->d_inode->i_mutex); 2187 dentry_unhash(dentry); 2188 if (d_mountpoint(dentry)) 2189 error = -EBUSY; 2190 else { 2191 error = security_inode_rmdir(dir, dentry); 2192 if (!error) { 2193 error = dir->i_op->rmdir(dir, dentry); 2194 if (!error) 2195 dentry->d_inode->i_flags |= S_DEAD; 2196 } 2197 } 2198 mutex_unlock(&dentry->d_inode->i_mutex); 2199 if (!error) { 2200 d_delete(dentry); 2201 } 2202 dput(dentry); 2203 2204 return error; 2205 } 2206 2207 static long do_rmdir(int dfd, const char __user *pathname) 2208 { 2209 int error = 0; 2210 char * name; 2211 struct dentry *dentry; 2212 struct nameidata nd; 2213 2214 error = user_path_parent(dfd, pathname, &nd, &name); 2215 if (error) 2216 return error; 2217 2218 switch(nd.last_type) { 2219 case LAST_DOTDOT: 2220 error = -ENOTEMPTY; 2221 goto exit1; 2222 case LAST_DOT: 2223 error = -EINVAL; 2224 goto exit1; 2225 case LAST_ROOT: 2226 error = -EBUSY; 2227 goto exit1; 2228 } 2229 2230 nd.flags &= ~LOOKUP_PARENT; 2231 2232 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 2233 dentry = lookup_hash(&nd); 2234 error = PTR_ERR(dentry); 2235 if (IS_ERR(dentry)) 2236 goto exit2; 2237 error = mnt_want_write(nd.path.mnt); 2238 if (error) 2239 goto exit3; 2240 error = security_path_rmdir(&nd.path, dentry); 2241 if (error) 2242 goto exit4; 2243 error = vfs_rmdir(nd.path.dentry->d_inode, dentry); 2244 exit4: 2245 mnt_drop_write(nd.path.mnt); 2246 exit3: 2247 dput(dentry); 2248 exit2: 2249 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2250 exit1: 2251 path_put(&nd.path); 2252 putname(name); 2253 return error; 2254 } 2255 2256 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 2257 { 2258 return do_rmdir(AT_FDCWD, pathname); 2259 } 2260 2261 int vfs_unlink(struct inode *dir, struct dentry *dentry) 2262 { 2263 int error = may_delete(dir, dentry, 0); 2264 2265 if (error) 2266 return error; 2267 2268 if (!dir->i_op->unlink) 2269 return -EPERM; 2270 2271 vfs_dq_init(dir); 2272 2273 mutex_lock(&dentry->d_inode->i_mutex); 2274 if (d_mountpoint(dentry)) 2275 error = -EBUSY; 2276 else { 2277 error = security_inode_unlink(dir, dentry); 2278 if (!error) 2279 error = dir->i_op->unlink(dir, dentry); 2280 } 2281 mutex_unlock(&dentry->d_inode->i_mutex); 2282 2283 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 2284 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) { 2285 fsnotify_link_count(dentry->d_inode); 2286 d_delete(dentry); 2287 } 2288 2289 return error; 2290 } 2291 2292 /* 2293 * Make sure that the actual truncation of the file will occur outside its 2294 * directory's i_mutex. Truncate can take a long time if there is a lot of 2295 * writeout happening, and we don't want to prevent access to the directory 2296 * while waiting on the I/O. 2297 */ 2298 static long do_unlinkat(int dfd, const char __user *pathname) 2299 { 2300 int error; 2301 char *name; 2302 struct dentry *dentry; 2303 struct nameidata nd; 2304 struct inode *inode = NULL; 2305 2306 error = user_path_parent(dfd, pathname, &nd, &name); 2307 if (error) 2308 return error; 2309 2310 error = -EISDIR; 2311 if (nd.last_type != LAST_NORM) 2312 goto exit1; 2313 2314 nd.flags &= ~LOOKUP_PARENT; 2315 2316 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 2317 dentry = lookup_hash(&nd); 2318 error = PTR_ERR(dentry); 2319 if (!IS_ERR(dentry)) { 2320 /* Why not before? Because we want correct error value */ 2321 if (nd.last.name[nd.last.len]) 2322 goto slashes; 2323 inode = dentry->d_inode; 2324 if (inode) 2325 atomic_inc(&inode->i_count); 2326 error = mnt_want_write(nd.path.mnt); 2327 if (error) 2328 goto exit2; 2329 error = security_path_unlink(&nd.path, dentry); 2330 if (error) 2331 goto exit3; 2332 error = vfs_unlink(nd.path.dentry->d_inode, dentry); 2333 exit3: 2334 mnt_drop_write(nd.path.mnt); 2335 exit2: 2336 dput(dentry); 2337 } 2338 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2339 if (inode) 2340 iput(inode); /* truncate the inode here */ 2341 exit1: 2342 path_put(&nd.path); 2343 putname(name); 2344 return error; 2345 2346 slashes: 2347 error = !dentry->d_inode ? -ENOENT : 2348 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR; 2349 goto exit2; 2350 } 2351 2352 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 2353 { 2354 if ((flag & ~AT_REMOVEDIR) != 0) 2355 return -EINVAL; 2356 2357 if (flag & AT_REMOVEDIR) 2358 return do_rmdir(dfd, pathname); 2359 2360 return do_unlinkat(dfd, pathname); 2361 } 2362 2363 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 2364 { 2365 return do_unlinkat(AT_FDCWD, pathname); 2366 } 2367 2368 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname) 2369 { 2370 int error = may_create(dir, dentry); 2371 2372 if (error) 2373 return error; 2374 2375 if (!dir->i_op->symlink) 2376 return -EPERM; 2377 2378 error = security_inode_symlink(dir, dentry, oldname); 2379 if (error) 2380 return error; 2381 2382 vfs_dq_init(dir); 2383 error = dir->i_op->symlink(dir, dentry, oldname); 2384 if (!error) 2385 fsnotify_create(dir, dentry); 2386 return error; 2387 } 2388 2389 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 2390 int, newdfd, const char __user *, newname) 2391 { 2392 int error; 2393 char *from; 2394 char *to; 2395 struct dentry *dentry; 2396 struct nameidata nd; 2397 2398 from = getname(oldname); 2399 if (IS_ERR(from)) 2400 return PTR_ERR(from); 2401 2402 error = user_path_parent(newdfd, newname, &nd, &to); 2403 if (error) 2404 goto out_putname; 2405 2406 dentry = lookup_create(&nd, 0); 2407 error = PTR_ERR(dentry); 2408 if (IS_ERR(dentry)) 2409 goto out_unlock; 2410 2411 error = mnt_want_write(nd.path.mnt); 2412 if (error) 2413 goto out_dput; 2414 error = security_path_symlink(&nd.path, dentry, from); 2415 if (error) 2416 goto out_drop_write; 2417 error = vfs_symlink(nd.path.dentry->d_inode, dentry, from); 2418 out_drop_write: 2419 mnt_drop_write(nd.path.mnt); 2420 out_dput: 2421 dput(dentry); 2422 out_unlock: 2423 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2424 path_put(&nd.path); 2425 putname(to); 2426 out_putname: 2427 putname(from); 2428 return error; 2429 } 2430 2431 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 2432 { 2433 return sys_symlinkat(oldname, AT_FDCWD, newname); 2434 } 2435 2436 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) 2437 { 2438 struct inode *inode = old_dentry->d_inode; 2439 int error; 2440 2441 if (!inode) 2442 return -ENOENT; 2443 2444 error = may_create(dir, new_dentry); 2445 if (error) 2446 return error; 2447 2448 if (dir->i_sb != inode->i_sb) 2449 return -EXDEV; 2450 2451 /* 2452 * A link to an append-only or immutable file cannot be created. 2453 */ 2454 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 2455 return -EPERM; 2456 if (!dir->i_op->link) 2457 return -EPERM; 2458 if (S_ISDIR(inode->i_mode)) 2459 return -EPERM; 2460 2461 error = security_inode_link(old_dentry, dir, new_dentry); 2462 if (error) 2463 return error; 2464 2465 mutex_lock(&inode->i_mutex); 2466 vfs_dq_init(dir); 2467 error = dir->i_op->link(old_dentry, dir, new_dentry); 2468 mutex_unlock(&inode->i_mutex); 2469 if (!error) 2470 fsnotify_link(dir, inode, new_dentry); 2471 return error; 2472 } 2473 2474 /* 2475 * Hardlinks are often used in delicate situations. We avoid 2476 * security-related surprises by not following symlinks on the 2477 * newname. --KAB 2478 * 2479 * We don't follow them on the oldname either to be compatible 2480 * with linux 2.0, and to avoid hard-linking to directories 2481 * and other special files. --ADM 2482 */ 2483 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 2484 int, newdfd, const char __user *, newname, int, flags) 2485 { 2486 struct dentry *new_dentry; 2487 struct nameidata nd; 2488 struct path old_path; 2489 int error; 2490 char *to; 2491 2492 if ((flags & ~AT_SYMLINK_FOLLOW) != 0) 2493 return -EINVAL; 2494 2495 error = user_path_at(olddfd, oldname, 2496 flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0, 2497 &old_path); 2498 if (error) 2499 return error; 2500 2501 error = user_path_parent(newdfd, newname, &nd, &to); 2502 if (error) 2503 goto out; 2504 error = -EXDEV; 2505 if (old_path.mnt != nd.path.mnt) 2506 goto out_release; 2507 new_dentry = lookup_create(&nd, 0); 2508 error = PTR_ERR(new_dentry); 2509 if (IS_ERR(new_dentry)) 2510 goto out_unlock; 2511 error = mnt_want_write(nd.path.mnt); 2512 if (error) 2513 goto out_dput; 2514 error = security_path_link(old_path.dentry, &nd.path, new_dentry); 2515 if (error) 2516 goto out_drop_write; 2517 error = vfs_link(old_path.dentry, nd.path.dentry->d_inode, new_dentry); 2518 out_drop_write: 2519 mnt_drop_write(nd.path.mnt); 2520 out_dput: 2521 dput(new_dentry); 2522 out_unlock: 2523 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2524 out_release: 2525 path_put(&nd.path); 2526 putname(to); 2527 out: 2528 path_put(&old_path); 2529 2530 return error; 2531 } 2532 2533 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 2534 { 2535 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 2536 } 2537 2538 /* 2539 * The worst of all namespace operations - renaming directory. "Perverted" 2540 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 2541 * Problems: 2542 * a) we can get into loop creation. Check is done in is_subdir(). 2543 * b) race potential - two innocent renames can create a loop together. 2544 * That's where 4.4 screws up. Current fix: serialization on 2545 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 2546 * story. 2547 * c) we have to lock _three_ objects - parents and victim (if it exists). 2548 * And that - after we got ->i_mutex on parents (until then we don't know 2549 * whether the target exists). Solution: try to be smart with locking 2550 * order for inodes. We rely on the fact that tree topology may change 2551 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 2552 * move will be locked. Thus we can rank directories by the tree 2553 * (ancestors first) and rank all non-directories after them. 2554 * That works since everybody except rename does "lock parent, lookup, 2555 * lock child" and rename is under ->s_vfs_rename_mutex. 2556 * HOWEVER, it relies on the assumption that any object with ->lookup() 2557 * has no more than 1 dentry. If "hybrid" objects will ever appear, 2558 * we'd better make sure that there's no link(2) for them. 2559 * d) some filesystems don't support opened-but-unlinked directories, 2560 * either because of layout or because they are not ready to deal with 2561 * all cases correctly. The latter will be fixed (taking this sort of 2562 * stuff into VFS), but the former is not going away. Solution: the same 2563 * trick as in rmdir(). 2564 * e) conversion from fhandle to dentry may come in the wrong moment - when 2565 * we are removing the target. Solution: we will have to grab ->i_mutex 2566 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 2567 * ->i_mutex on parents, which works but leads to some truely excessive 2568 * locking]. 2569 */ 2570 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry, 2571 struct inode *new_dir, struct dentry *new_dentry) 2572 { 2573 int error = 0; 2574 struct inode *target; 2575 2576 /* 2577 * If we are going to change the parent - check write permissions, 2578 * we'll need to flip '..'. 2579 */ 2580 if (new_dir != old_dir) { 2581 error = inode_permission(old_dentry->d_inode, MAY_WRITE); 2582 if (error) 2583 return error; 2584 } 2585 2586 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry); 2587 if (error) 2588 return error; 2589 2590 target = new_dentry->d_inode; 2591 if (target) { 2592 mutex_lock(&target->i_mutex); 2593 dentry_unhash(new_dentry); 2594 } 2595 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry)) 2596 error = -EBUSY; 2597 else 2598 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry); 2599 if (target) { 2600 if (!error) 2601 target->i_flags |= S_DEAD; 2602 mutex_unlock(&target->i_mutex); 2603 if (d_unhashed(new_dentry)) 2604 d_rehash(new_dentry); 2605 dput(new_dentry); 2606 } 2607 if (!error) 2608 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) 2609 d_move(old_dentry,new_dentry); 2610 return error; 2611 } 2612 2613 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry, 2614 struct inode *new_dir, struct dentry *new_dentry) 2615 { 2616 struct inode *target; 2617 int error; 2618 2619 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry); 2620 if (error) 2621 return error; 2622 2623 dget(new_dentry); 2624 target = new_dentry->d_inode; 2625 if (target) 2626 mutex_lock(&target->i_mutex); 2627 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry)) 2628 error = -EBUSY; 2629 else 2630 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry); 2631 if (!error) { 2632 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) 2633 d_move(old_dentry, new_dentry); 2634 } 2635 if (target) 2636 mutex_unlock(&target->i_mutex); 2637 dput(new_dentry); 2638 return error; 2639 } 2640 2641 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry, 2642 struct inode *new_dir, struct dentry *new_dentry) 2643 { 2644 int error; 2645 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode); 2646 const char *old_name; 2647 2648 if (old_dentry->d_inode == new_dentry->d_inode) 2649 return 0; 2650 2651 error = may_delete(old_dir, old_dentry, is_dir); 2652 if (error) 2653 return error; 2654 2655 if (!new_dentry->d_inode) 2656 error = may_create(new_dir, new_dentry); 2657 else 2658 error = may_delete(new_dir, new_dentry, is_dir); 2659 if (error) 2660 return error; 2661 2662 if (!old_dir->i_op->rename) 2663 return -EPERM; 2664 2665 vfs_dq_init(old_dir); 2666 vfs_dq_init(new_dir); 2667 2668 old_name = fsnotify_oldname_init(old_dentry->d_name.name); 2669 2670 if (is_dir) 2671 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry); 2672 else 2673 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry); 2674 if (!error) { 2675 const char *new_name = old_dentry->d_name.name; 2676 fsnotify_move(old_dir, new_dir, old_name, new_name, is_dir, 2677 new_dentry->d_inode, old_dentry); 2678 } 2679 fsnotify_oldname_free(old_name); 2680 2681 return error; 2682 } 2683 2684 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 2685 int, newdfd, const char __user *, newname) 2686 { 2687 struct dentry *old_dir, *new_dir; 2688 struct dentry *old_dentry, *new_dentry; 2689 struct dentry *trap; 2690 struct nameidata oldnd, newnd; 2691 char *from; 2692 char *to; 2693 int error; 2694 2695 error = user_path_parent(olddfd, oldname, &oldnd, &from); 2696 if (error) 2697 goto exit; 2698 2699 error = user_path_parent(newdfd, newname, &newnd, &to); 2700 if (error) 2701 goto exit1; 2702 2703 error = -EXDEV; 2704 if (oldnd.path.mnt != newnd.path.mnt) 2705 goto exit2; 2706 2707 old_dir = oldnd.path.dentry; 2708 error = -EBUSY; 2709 if (oldnd.last_type != LAST_NORM) 2710 goto exit2; 2711 2712 new_dir = newnd.path.dentry; 2713 if (newnd.last_type != LAST_NORM) 2714 goto exit2; 2715 2716 oldnd.flags &= ~LOOKUP_PARENT; 2717 newnd.flags &= ~LOOKUP_PARENT; 2718 newnd.flags |= LOOKUP_RENAME_TARGET; 2719 2720 trap = lock_rename(new_dir, old_dir); 2721 2722 old_dentry = lookup_hash(&oldnd); 2723 error = PTR_ERR(old_dentry); 2724 if (IS_ERR(old_dentry)) 2725 goto exit3; 2726 /* source must exist */ 2727 error = -ENOENT; 2728 if (!old_dentry->d_inode) 2729 goto exit4; 2730 /* unless the source is a directory trailing slashes give -ENOTDIR */ 2731 if (!S_ISDIR(old_dentry->d_inode->i_mode)) { 2732 error = -ENOTDIR; 2733 if (oldnd.last.name[oldnd.last.len]) 2734 goto exit4; 2735 if (newnd.last.name[newnd.last.len]) 2736 goto exit4; 2737 } 2738 /* source should not be ancestor of target */ 2739 error = -EINVAL; 2740 if (old_dentry == trap) 2741 goto exit4; 2742 new_dentry = lookup_hash(&newnd); 2743 error = PTR_ERR(new_dentry); 2744 if (IS_ERR(new_dentry)) 2745 goto exit4; 2746 /* target should not be an ancestor of source */ 2747 error = -ENOTEMPTY; 2748 if (new_dentry == trap) 2749 goto exit5; 2750 2751 error = mnt_want_write(oldnd.path.mnt); 2752 if (error) 2753 goto exit5; 2754 error = security_path_rename(&oldnd.path, old_dentry, 2755 &newnd.path, new_dentry); 2756 if (error) 2757 goto exit6; 2758 error = vfs_rename(old_dir->d_inode, old_dentry, 2759 new_dir->d_inode, new_dentry); 2760 exit6: 2761 mnt_drop_write(oldnd.path.mnt); 2762 exit5: 2763 dput(new_dentry); 2764 exit4: 2765 dput(old_dentry); 2766 exit3: 2767 unlock_rename(new_dir, old_dir); 2768 exit2: 2769 path_put(&newnd.path); 2770 putname(to); 2771 exit1: 2772 path_put(&oldnd.path); 2773 putname(from); 2774 exit: 2775 return error; 2776 } 2777 2778 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 2779 { 2780 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname); 2781 } 2782 2783 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link) 2784 { 2785 int len; 2786 2787 len = PTR_ERR(link); 2788 if (IS_ERR(link)) 2789 goto out; 2790 2791 len = strlen(link); 2792 if (len > (unsigned) buflen) 2793 len = buflen; 2794 if (copy_to_user(buffer, link, len)) 2795 len = -EFAULT; 2796 out: 2797 return len; 2798 } 2799 2800 /* 2801 * A helper for ->readlink(). This should be used *ONLY* for symlinks that 2802 * have ->follow_link() touching nd only in nd_set_link(). Using (or not 2803 * using) it for any given inode is up to filesystem. 2804 */ 2805 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen) 2806 { 2807 struct nameidata nd; 2808 void *cookie; 2809 int res; 2810 2811 nd.depth = 0; 2812 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd); 2813 if (IS_ERR(cookie)) 2814 return PTR_ERR(cookie); 2815 2816 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd)); 2817 if (dentry->d_inode->i_op->put_link) 2818 dentry->d_inode->i_op->put_link(dentry, &nd, cookie); 2819 return res; 2820 } 2821 2822 int vfs_follow_link(struct nameidata *nd, const char *link) 2823 { 2824 return __vfs_follow_link(nd, link); 2825 } 2826 2827 /* get the link contents into pagecache */ 2828 static char *page_getlink(struct dentry * dentry, struct page **ppage) 2829 { 2830 char *kaddr; 2831 struct page *page; 2832 struct address_space *mapping = dentry->d_inode->i_mapping; 2833 page = read_mapping_page(mapping, 0, NULL); 2834 if (IS_ERR(page)) 2835 return (char*)page; 2836 *ppage = page; 2837 kaddr = kmap(page); 2838 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1); 2839 return kaddr; 2840 } 2841 2842 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 2843 { 2844 struct page *page = NULL; 2845 char *s = page_getlink(dentry, &page); 2846 int res = vfs_readlink(dentry,buffer,buflen,s); 2847 if (page) { 2848 kunmap(page); 2849 page_cache_release(page); 2850 } 2851 return res; 2852 } 2853 2854 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd) 2855 { 2856 struct page *page = NULL; 2857 nd_set_link(nd, page_getlink(dentry, &page)); 2858 return page; 2859 } 2860 2861 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie) 2862 { 2863 struct page *page = cookie; 2864 2865 if (page) { 2866 kunmap(page); 2867 page_cache_release(page); 2868 } 2869 } 2870 2871 /* 2872 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS 2873 */ 2874 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs) 2875 { 2876 struct address_space *mapping = inode->i_mapping; 2877 struct page *page; 2878 void *fsdata; 2879 int err; 2880 char *kaddr; 2881 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE; 2882 if (nofs) 2883 flags |= AOP_FLAG_NOFS; 2884 2885 retry: 2886 err = pagecache_write_begin(NULL, mapping, 0, len-1, 2887 flags, &page, &fsdata); 2888 if (err) 2889 goto fail; 2890 2891 kaddr = kmap_atomic(page, KM_USER0); 2892 memcpy(kaddr, symname, len-1); 2893 kunmap_atomic(kaddr, KM_USER0); 2894 2895 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1, 2896 page, fsdata); 2897 if (err < 0) 2898 goto fail; 2899 if (err < len-1) 2900 goto retry; 2901 2902 mark_inode_dirty(inode); 2903 return 0; 2904 fail: 2905 return err; 2906 } 2907 2908 int page_symlink(struct inode *inode, const char *symname, int len) 2909 { 2910 return __page_symlink(inode, symname, len, 2911 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS)); 2912 } 2913 2914 const struct inode_operations page_symlink_inode_operations = { 2915 .readlink = generic_readlink, 2916 .follow_link = page_follow_link_light, 2917 .put_link = page_put_link, 2918 }; 2919 2920 EXPORT_SYMBOL(user_path_at); 2921 EXPORT_SYMBOL(follow_down); 2922 EXPORT_SYMBOL(follow_up); 2923 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */ 2924 EXPORT_SYMBOL(getname); 2925 EXPORT_SYMBOL(lock_rename); 2926 EXPORT_SYMBOL(lookup_one_len); 2927 EXPORT_SYMBOL(page_follow_link_light); 2928 EXPORT_SYMBOL(page_put_link); 2929 EXPORT_SYMBOL(page_readlink); 2930 EXPORT_SYMBOL(__page_symlink); 2931 EXPORT_SYMBOL(page_symlink); 2932 EXPORT_SYMBOL(page_symlink_inode_operations); 2933 EXPORT_SYMBOL(path_lookup); 2934 EXPORT_SYMBOL(kern_path); 2935 EXPORT_SYMBOL(vfs_path_lookup); 2936 EXPORT_SYMBOL(inode_permission); 2937 EXPORT_SYMBOL(file_permission); 2938 EXPORT_SYMBOL(unlock_rename); 2939 EXPORT_SYMBOL(vfs_create); 2940 EXPORT_SYMBOL(vfs_follow_link); 2941 EXPORT_SYMBOL(vfs_link); 2942 EXPORT_SYMBOL(vfs_mkdir); 2943 EXPORT_SYMBOL(vfs_mknod); 2944 EXPORT_SYMBOL(generic_permission); 2945 EXPORT_SYMBOL(vfs_readlink); 2946 EXPORT_SYMBOL(vfs_rename); 2947 EXPORT_SYMBOL(vfs_rmdir); 2948 EXPORT_SYMBOL(vfs_symlink); 2949 EXPORT_SYMBOL(vfs_unlink); 2950 EXPORT_SYMBOL(dentry_unhash); 2951 EXPORT_SYMBOL(generic_readlink); 2952