xref: /openbmc/linux/fs/namei.c (revision af958a38)
1 /*
2  *  linux/fs/namei.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * Some corrections by tytso.
9  */
10 
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12  * lookup logic.
13  */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15  */
16 
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <asm/uaccess.h>
39 
40 #include "internal.h"
41 #include "mount.h"
42 
43 /* [Feb-1997 T. Schoebel-Theuer]
44  * Fundamental changes in the pathname lookup mechanisms (namei)
45  * were necessary because of omirr.  The reason is that omirr needs
46  * to know the _real_ pathname, not the user-supplied one, in case
47  * of symlinks (and also when transname replacements occur).
48  *
49  * The new code replaces the old recursive symlink resolution with
50  * an iterative one (in case of non-nested symlink chains).  It does
51  * this with calls to <fs>_follow_link().
52  * As a side effect, dir_namei(), _namei() and follow_link() are now
53  * replaced with a single function lookup_dentry() that can handle all
54  * the special cases of the former code.
55  *
56  * With the new dcache, the pathname is stored at each inode, at least as
57  * long as the refcount of the inode is positive.  As a side effect, the
58  * size of the dcache depends on the inode cache and thus is dynamic.
59  *
60  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
61  * resolution to correspond with current state of the code.
62  *
63  * Note that the symlink resolution is not *completely* iterative.
64  * There is still a significant amount of tail- and mid- recursion in
65  * the algorithm.  Also, note that <fs>_readlink() is not used in
66  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
67  * may return different results than <fs>_follow_link().  Many virtual
68  * filesystems (including /proc) exhibit this behavior.
69  */
70 
71 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
72  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
73  * and the name already exists in form of a symlink, try to create the new
74  * name indicated by the symlink. The old code always complained that the
75  * name already exists, due to not following the symlink even if its target
76  * is nonexistent.  The new semantics affects also mknod() and link() when
77  * the name is a symlink pointing to a non-existent name.
78  *
79  * I don't know which semantics is the right one, since I have no access
80  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
81  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
82  * "old" one. Personally, I think the new semantics is much more logical.
83  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
84  * file does succeed in both HP-UX and SunOs, but not in Solaris
85  * and in the old Linux semantics.
86  */
87 
88 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
89  * semantics.  See the comments in "open_namei" and "do_link" below.
90  *
91  * [10-Sep-98 Alan Modra] Another symlink change.
92  */
93 
94 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
95  *	inside the path - always follow.
96  *	in the last component in creation/removal/renaming - never follow.
97  *	if LOOKUP_FOLLOW passed - follow.
98  *	if the pathname has trailing slashes - follow.
99  *	otherwise - don't follow.
100  * (applied in that order).
101  *
102  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
103  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
104  * During the 2.4 we need to fix the userland stuff depending on it -
105  * hopefully we will be able to get rid of that wart in 2.5. So far only
106  * XEmacs seems to be relying on it...
107  */
108 /*
109  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
110  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
111  * any extra contention...
112  */
113 
114 /* In order to reduce some races, while at the same time doing additional
115  * checking and hopefully speeding things up, we copy filenames to the
116  * kernel data space before using them..
117  *
118  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
119  * PATH_MAX includes the nul terminator --RR.
120  */
121 void final_putname(struct filename *name)
122 {
123 	if (name->separate) {
124 		__putname(name->name);
125 		kfree(name);
126 	} else {
127 		__putname(name);
128 	}
129 }
130 
131 #define EMBEDDED_NAME_MAX	(PATH_MAX - sizeof(struct filename))
132 
133 static struct filename *
134 getname_flags(const char __user *filename, int flags, int *empty)
135 {
136 	struct filename *result, *err;
137 	int len;
138 	long max;
139 	char *kname;
140 
141 	result = audit_reusename(filename);
142 	if (result)
143 		return result;
144 
145 	result = __getname();
146 	if (unlikely(!result))
147 		return ERR_PTR(-ENOMEM);
148 
149 	/*
150 	 * First, try to embed the struct filename inside the names_cache
151 	 * allocation
152 	 */
153 	kname = (char *)result + sizeof(*result);
154 	result->name = kname;
155 	result->separate = false;
156 	max = EMBEDDED_NAME_MAX;
157 
158 recopy:
159 	len = strncpy_from_user(kname, filename, max);
160 	if (unlikely(len < 0)) {
161 		err = ERR_PTR(len);
162 		goto error;
163 	}
164 
165 	/*
166 	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
167 	 * separate struct filename so we can dedicate the entire
168 	 * names_cache allocation for the pathname, and re-do the copy from
169 	 * userland.
170 	 */
171 	if (len == EMBEDDED_NAME_MAX && max == EMBEDDED_NAME_MAX) {
172 		kname = (char *)result;
173 
174 		result = kzalloc(sizeof(*result), GFP_KERNEL);
175 		if (!result) {
176 			err = ERR_PTR(-ENOMEM);
177 			result = (struct filename *)kname;
178 			goto error;
179 		}
180 		result->name = kname;
181 		result->separate = true;
182 		max = PATH_MAX;
183 		goto recopy;
184 	}
185 
186 	/* The empty path is special. */
187 	if (unlikely(!len)) {
188 		if (empty)
189 			*empty = 1;
190 		err = ERR_PTR(-ENOENT);
191 		if (!(flags & LOOKUP_EMPTY))
192 			goto error;
193 	}
194 
195 	err = ERR_PTR(-ENAMETOOLONG);
196 	if (unlikely(len >= PATH_MAX))
197 		goto error;
198 
199 	result->uptr = filename;
200 	result->aname = NULL;
201 	audit_getname(result);
202 	return result;
203 
204 error:
205 	final_putname(result);
206 	return err;
207 }
208 
209 struct filename *
210 getname(const char __user * filename)
211 {
212 	return getname_flags(filename, 0, NULL);
213 }
214 
215 /*
216  * The "getname_kernel()" interface doesn't do pathnames longer
217  * than EMBEDDED_NAME_MAX. Deal with it - you're a kernel user.
218  */
219 struct filename *
220 getname_kernel(const char * filename)
221 {
222 	struct filename *result;
223 	char *kname;
224 	int len;
225 
226 	len = strlen(filename);
227 	if (len >= EMBEDDED_NAME_MAX)
228 		return ERR_PTR(-ENAMETOOLONG);
229 
230 	result = __getname();
231 	if (unlikely(!result))
232 		return ERR_PTR(-ENOMEM);
233 
234 	kname = (char *)result + sizeof(*result);
235 	result->name = kname;
236 	result->uptr = NULL;
237 	result->aname = NULL;
238 	result->separate = false;
239 
240 	strlcpy(kname, filename, EMBEDDED_NAME_MAX);
241 	return result;
242 }
243 
244 #ifdef CONFIG_AUDITSYSCALL
245 void putname(struct filename *name)
246 {
247 	if (unlikely(!audit_dummy_context()))
248 		return audit_putname(name);
249 	final_putname(name);
250 }
251 #endif
252 
253 static int check_acl(struct inode *inode, int mask)
254 {
255 #ifdef CONFIG_FS_POSIX_ACL
256 	struct posix_acl *acl;
257 
258 	if (mask & MAY_NOT_BLOCK) {
259 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
260 	        if (!acl)
261 	                return -EAGAIN;
262 		/* no ->get_acl() calls in RCU mode... */
263 		if (acl == ACL_NOT_CACHED)
264 			return -ECHILD;
265 	        return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
266 	}
267 
268 	acl = get_acl(inode, ACL_TYPE_ACCESS);
269 	if (IS_ERR(acl))
270 		return PTR_ERR(acl);
271 	if (acl) {
272 	        int error = posix_acl_permission(inode, acl, mask);
273 	        posix_acl_release(acl);
274 	        return error;
275 	}
276 #endif
277 
278 	return -EAGAIN;
279 }
280 
281 /*
282  * This does the basic permission checking
283  */
284 static int acl_permission_check(struct inode *inode, int mask)
285 {
286 	unsigned int mode = inode->i_mode;
287 
288 	if (likely(uid_eq(current_fsuid(), inode->i_uid)))
289 		mode >>= 6;
290 	else {
291 		if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
292 			int error = check_acl(inode, mask);
293 			if (error != -EAGAIN)
294 				return error;
295 		}
296 
297 		if (in_group_p(inode->i_gid))
298 			mode >>= 3;
299 	}
300 
301 	/*
302 	 * If the DACs are ok we don't need any capability check.
303 	 */
304 	if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
305 		return 0;
306 	return -EACCES;
307 }
308 
309 /**
310  * generic_permission -  check for access rights on a Posix-like filesystem
311  * @inode:	inode to check access rights for
312  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
313  *
314  * Used to check for read/write/execute permissions on a file.
315  * We use "fsuid" for this, letting us set arbitrary permissions
316  * for filesystem access without changing the "normal" uids which
317  * are used for other things.
318  *
319  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
320  * request cannot be satisfied (eg. requires blocking or too much complexity).
321  * It would then be called again in ref-walk mode.
322  */
323 int generic_permission(struct inode *inode, int mask)
324 {
325 	int ret;
326 
327 	/*
328 	 * Do the basic permission checks.
329 	 */
330 	ret = acl_permission_check(inode, mask);
331 	if (ret != -EACCES)
332 		return ret;
333 
334 	if (S_ISDIR(inode->i_mode)) {
335 		/* DACs are overridable for directories */
336 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
337 			return 0;
338 		if (!(mask & MAY_WRITE))
339 			if (capable_wrt_inode_uidgid(inode,
340 						     CAP_DAC_READ_SEARCH))
341 				return 0;
342 		return -EACCES;
343 	}
344 	/*
345 	 * Read/write DACs are always overridable.
346 	 * Executable DACs are overridable when there is
347 	 * at least one exec bit set.
348 	 */
349 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
350 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
351 			return 0;
352 
353 	/*
354 	 * Searching includes executable on directories, else just read.
355 	 */
356 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
357 	if (mask == MAY_READ)
358 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
359 			return 0;
360 
361 	return -EACCES;
362 }
363 EXPORT_SYMBOL(generic_permission);
364 
365 /*
366  * We _really_ want to just do "generic_permission()" without
367  * even looking at the inode->i_op values. So we keep a cache
368  * flag in inode->i_opflags, that says "this has not special
369  * permission function, use the fast case".
370  */
371 static inline int do_inode_permission(struct inode *inode, int mask)
372 {
373 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
374 		if (likely(inode->i_op->permission))
375 			return inode->i_op->permission(inode, mask);
376 
377 		/* This gets set once for the inode lifetime */
378 		spin_lock(&inode->i_lock);
379 		inode->i_opflags |= IOP_FASTPERM;
380 		spin_unlock(&inode->i_lock);
381 	}
382 	return generic_permission(inode, mask);
383 }
384 
385 /**
386  * __inode_permission - Check for access rights to a given inode
387  * @inode: Inode to check permission on
388  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
389  *
390  * Check for read/write/execute permissions on an inode.
391  *
392  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
393  *
394  * This does not check for a read-only file system.  You probably want
395  * inode_permission().
396  */
397 int __inode_permission(struct inode *inode, int mask)
398 {
399 	int retval;
400 
401 	if (unlikely(mask & MAY_WRITE)) {
402 		/*
403 		 * Nobody gets write access to an immutable file.
404 		 */
405 		if (IS_IMMUTABLE(inode))
406 			return -EACCES;
407 	}
408 
409 	retval = do_inode_permission(inode, mask);
410 	if (retval)
411 		return retval;
412 
413 	retval = devcgroup_inode_permission(inode, mask);
414 	if (retval)
415 		return retval;
416 
417 	return security_inode_permission(inode, mask);
418 }
419 
420 /**
421  * sb_permission - Check superblock-level permissions
422  * @sb: Superblock of inode to check permission on
423  * @inode: Inode to check permission on
424  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
425  *
426  * Separate out file-system wide checks from inode-specific permission checks.
427  */
428 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
429 {
430 	if (unlikely(mask & MAY_WRITE)) {
431 		umode_t mode = inode->i_mode;
432 
433 		/* Nobody gets write access to a read-only fs. */
434 		if ((sb->s_flags & MS_RDONLY) &&
435 		    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
436 			return -EROFS;
437 	}
438 	return 0;
439 }
440 
441 /**
442  * inode_permission - Check for access rights to a given inode
443  * @inode: Inode to check permission on
444  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
445  *
446  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
447  * this, letting us set arbitrary permissions for filesystem access without
448  * changing the "normal" UIDs which are used for other things.
449  *
450  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
451  */
452 int inode_permission(struct inode *inode, int mask)
453 {
454 	int retval;
455 
456 	retval = sb_permission(inode->i_sb, inode, mask);
457 	if (retval)
458 		return retval;
459 	return __inode_permission(inode, mask);
460 }
461 EXPORT_SYMBOL(inode_permission);
462 
463 /**
464  * path_get - get a reference to a path
465  * @path: path to get the reference to
466  *
467  * Given a path increment the reference count to the dentry and the vfsmount.
468  */
469 void path_get(const struct path *path)
470 {
471 	mntget(path->mnt);
472 	dget(path->dentry);
473 }
474 EXPORT_SYMBOL(path_get);
475 
476 /**
477  * path_put - put a reference to a path
478  * @path: path to put the reference to
479  *
480  * Given a path decrement the reference count to the dentry and the vfsmount.
481  */
482 void path_put(const struct path *path)
483 {
484 	dput(path->dentry);
485 	mntput(path->mnt);
486 }
487 EXPORT_SYMBOL(path_put);
488 
489 /*
490  * Path walking has 2 modes, rcu-walk and ref-walk (see
491  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
492  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
493  * normal reference counts on dentries and vfsmounts to transition to rcu-walk
494  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
495  * got stuck, so ref-walk may continue from there. If this is not successful
496  * (eg. a seqcount has changed), then failure is returned and it's up to caller
497  * to restart the path walk from the beginning in ref-walk mode.
498  */
499 
500 /**
501  * unlazy_walk - try to switch to ref-walk mode.
502  * @nd: nameidata pathwalk data
503  * @dentry: child of nd->path.dentry or NULL
504  * Returns: 0 on success, -ECHILD on failure
505  *
506  * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
507  * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
508  * @nd or NULL.  Must be called from rcu-walk context.
509  */
510 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
511 {
512 	struct fs_struct *fs = current->fs;
513 	struct dentry *parent = nd->path.dentry;
514 
515 	BUG_ON(!(nd->flags & LOOKUP_RCU));
516 
517 	/*
518 	 * After legitimizing the bastards, terminate_walk()
519 	 * will do the right thing for non-RCU mode, and all our
520 	 * subsequent exit cases should rcu_read_unlock()
521 	 * before returning.  Do vfsmount first; if dentry
522 	 * can't be legitimized, just set nd->path.dentry to NULL
523 	 * and rely on dput(NULL) being a no-op.
524 	 */
525 	if (!legitimize_mnt(nd->path.mnt, nd->m_seq))
526 		return -ECHILD;
527 	nd->flags &= ~LOOKUP_RCU;
528 
529 	if (!lockref_get_not_dead(&parent->d_lockref)) {
530 		nd->path.dentry = NULL;
531 		goto out;
532 	}
533 
534 	/*
535 	 * For a negative lookup, the lookup sequence point is the parents
536 	 * sequence point, and it only needs to revalidate the parent dentry.
537 	 *
538 	 * For a positive lookup, we need to move both the parent and the
539 	 * dentry from the RCU domain to be properly refcounted. And the
540 	 * sequence number in the dentry validates *both* dentry counters,
541 	 * since we checked the sequence number of the parent after we got
542 	 * the child sequence number. So we know the parent must still
543 	 * be valid if the child sequence number is still valid.
544 	 */
545 	if (!dentry) {
546 		if (read_seqcount_retry(&parent->d_seq, nd->seq))
547 			goto out;
548 		BUG_ON(nd->inode != parent->d_inode);
549 	} else {
550 		if (!lockref_get_not_dead(&dentry->d_lockref))
551 			goto out;
552 		if (read_seqcount_retry(&dentry->d_seq, nd->seq))
553 			goto drop_dentry;
554 	}
555 
556 	/*
557 	 * Sequence counts matched. Now make sure that the root is
558 	 * still valid and get it if required.
559 	 */
560 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
561 		spin_lock(&fs->lock);
562 		if (nd->root.mnt != fs->root.mnt || nd->root.dentry != fs->root.dentry)
563 			goto unlock_and_drop_dentry;
564 		path_get(&nd->root);
565 		spin_unlock(&fs->lock);
566 	}
567 
568 	rcu_read_unlock();
569 	return 0;
570 
571 unlock_and_drop_dentry:
572 	spin_unlock(&fs->lock);
573 drop_dentry:
574 	rcu_read_unlock();
575 	dput(dentry);
576 	goto drop_root_mnt;
577 out:
578 	rcu_read_unlock();
579 drop_root_mnt:
580 	if (!(nd->flags & LOOKUP_ROOT))
581 		nd->root.mnt = NULL;
582 	return -ECHILD;
583 }
584 
585 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
586 {
587 	return dentry->d_op->d_revalidate(dentry, flags);
588 }
589 
590 /**
591  * complete_walk - successful completion of path walk
592  * @nd:  pointer nameidata
593  *
594  * If we had been in RCU mode, drop out of it and legitimize nd->path.
595  * Revalidate the final result, unless we'd already done that during
596  * the path walk or the filesystem doesn't ask for it.  Return 0 on
597  * success, -error on failure.  In case of failure caller does not
598  * need to drop nd->path.
599  */
600 static int complete_walk(struct nameidata *nd)
601 {
602 	struct dentry *dentry = nd->path.dentry;
603 	int status;
604 
605 	if (nd->flags & LOOKUP_RCU) {
606 		nd->flags &= ~LOOKUP_RCU;
607 		if (!(nd->flags & LOOKUP_ROOT))
608 			nd->root.mnt = NULL;
609 
610 		if (!legitimize_mnt(nd->path.mnt, nd->m_seq)) {
611 			rcu_read_unlock();
612 			return -ECHILD;
613 		}
614 		if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) {
615 			rcu_read_unlock();
616 			mntput(nd->path.mnt);
617 			return -ECHILD;
618 		}
619 		if (read_seqcount_retry(&dentry->d_seq, nd->seq)) {
620 			rcu_read_unlock();
621 			dput(dentry);
622 			mntput(nd->path.mnt);
623 			return -ECHILD;
624 		}
625 		rcu_read_unlock();
626 	}
627 
628 	if (likely(!(nd->flags & LOOKUP_JUMPED)))
629 		return 0;
630 
631 	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
632 		return 0;
633 
634 	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
635 	if (status > 0)
636 		return 0;
637 
638 	if (!status)
639 		status = -ESTALE;
640 
641 	path_put(&nd->path);
642 	return status;
643 }
644 
645 static __always_inline void set_root(struct nameidata *nd)
646 {
647 	get_fs_root(current->fs, &nd->root);
648 }
649 
650 static int link_path_walk(const char *, struct nameidata *);
651 
652 static __always_inline unsigned set_root_rcu(struct nameidata *nd)
653 {
654 	struct fs_struct *fs = current->fs;
655 	unsigned seq, res;
656 
657 	do {
658 		seq = read_seqcount_begin(&fs->seq);
659 		nd->root = fs->root;
660 		res = __read_seqcount_begin(&nd->root.dentry->d_seq);
661 	} while (read_seqcount_retry(&fs->seq, seq));
662 	return res;
663 }
664 
665 static void path_put_conditional(struct path *path, struct nameidata *nd)
666 {
667 	dput(path->dentry);
668 	if (path->mnt != nd->path.mnt)
669 		mntput(path->mnt);
670 }
671 
672 static inline void path_to_nameidata(const struct path *path,
673 					struct nameidata *nd)
674 {
675 	if (!(nd->flags & LOOKUP_RCU)) {
676 		dput(nd->path.dentry);
677 		if (nd->path.mnt != path->mnt)
678 			mntput(nd->path.mnt);
679 	}
680 	nd->path.mnt = path->mnt;
681 	nd->path.dentry = path->dentry;
682 }
683 
684 /*
685  * Helper to directly jump to a known parsed path from ->follow_link,
686  * caller must have taken a reference to path beforehand.
687  */
688 void nd_jump_link(struct nameidata *nd, struct path *path)
689 {
690 	path_put(&nd->path);
691 
692 	nd->path = *path;
693 	nd->inode = nd->path.dentry->d_inode;
694 	nd->flags |= LOOKUP_JUMPED;
695 }
696 
697 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
698 {
699 	struct inode *inode = link->dentry->d_inode;
700 	if (inode->i_op->put_link)
701 		inode->i_op->put_link(link->dentry, nd, cookie);
702 	path_put(link);
703 }
704 
705 int sysctl_protected_symlinks __read_mostly = 0;
706 int sysctl_protected_hardlinks __read_mostly = 0;
707 
708 /**
709  * may_follow_link - Check symlink following for unsafe situations
710  * @link: The path of the symlink
711  * @nd: nameidata pathwalk data
712  *
713  * In the case of the sysctl_protected_symlinks sysctl being enabled,
714  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
715  * in a sticky world-writable directory. This is to protect privileged
716  * processes from failing races against path names that may change out
717  * from under them by way of other users creating malicious symlinks.
718  * It will permit symlinks to be followed only when outside a sticky
719  * world-writable directory, or when the uid of the symlink and follower
720  * match, or when the directory owner matches the symlink's owner.
721  *
722  * Returns 0 if following the symlink is allowed, -ve on error.
723  */
724 static inline int may_follow_link(struct path *link, struct nameidata *nd)
725 {
726 	const struct inode *inode;
727 	const struct inode *parent;
728 
729 	if (!sysctl_protected_symlinks)
730 		return 0;
731 
732 	/* Allowed if owner and follower match. */
733 	inode = link->dentry->d_inode;
734 	if (uid_eq(current_cred()->fsuid, inode->i_uid))
735 		return 0;
736 
737 	/* Allowed if parent directory not sticky and world-writable. */
738 	parent = nd->path.dentry->d_inode;
739 	if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
740 		return 0;
741 
742 	/* Allowed if parent directory and link owner match. */
743 	if (uid_eq(parent->i_uid, inode->i_uid))
744 		return 0;
745 
746 	audit_log_link_denied("follow_link", link);
747 	path_put_conditional(link, nd);
748 	path_put(&nd->path);
749 	return -EACCES;
750 }
751 
752 /**
753  * safe_hardlink_source - Check for safe hardlink conditions
754  * @inode: the source inode to hardlink from
755  *
756  * Return false if at least one of the following conditions:
757  *    - inode is not a regular file
758  *    - inode is setuid
759  *    - inode is setgid and group-exec
760  *    - access failure for read and write
761  *
762  * Otherwise returns true.
763  */
764 static bool safe_hardlink_source(struct inode *inode)
765 {
766 	umode_t mode = inode->i_mode;
767 
768 	/* Special files should not get pinned to the filesystem. */
769 	if (!S_ISREG(mode))
770 		return false;
771 
772 	/* Setuid files should not get pinned to the filesystem. */
773 	if (mode & S_ISUID)
774 		return false;
775 
776 	/* Executable setgid files should not get pinned to the filesystem. */
777 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
778 		return false;
779 
780 	/* Hardlinking to unreadable or unwritable sources is dangerous. */
781 	if (inode_permission(inode, MAY_READ | MAY_WRITE))
782 		return false;
783 
784 	return true;
785 }
786 
787 /**
788  * may_linkat - Check permissions for creating a hardlink
789  * @link: the source to hardlink from
790  *
791  * Block hardlink when all of:
792  *  - sysctl_protected_hardlinks enabled
793  *  - fsuid does not match inode
794  *  - hardlink source is unsafe (see safe_hardlink_source() above)
795  *  - not CAP_FOWNER
796  *
797  * Returns 0 if successful, -ve on error.
798  */
799 static int may_linkat(struct path *link)
800 {
801 	const struct cred *cred;
802 	struct inode *inode;
803 
804 	if (!sysctl_protected_hardlinks)
805 		return 0;
806 
807 	cred = current_cred();
808 	inode = link->dentry->d_inode;
809 
810 	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
811 	 * otherwise, it must be a safe source.
812 	 */
813 	if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) ||
814 	    capable(CAP_FOWNER))
815 		return 0;
816 
817 	audit_log_link_denied("linkat", link);
818 	return -EPERM;
819 }
820 
821 static __always_inline int
822 follow_link(struct path *link, struct nameidata *nd, void **p)
823 {
824 	struct dentry *dentry = link->dentry;
825 	int error;
826 	char *s;
827 
828 	BUG_ON(nd->flags & LOOKUP_RCU);
829 
830 	if (link->mnt == nd->path.mnt)
831 		mntget(link->mnt);
832 
833 	error = -ELOOP;
834 	if (unlikely(current->total_link_count >= 40))
835 		goto out_put_nd_path;
836 
837 	cond_resched();
838 	current->total_link_count++;
839 
840 	touch_atime(link);
841 	nd_set_link(nd, NULL);
842 
843 	error = security_inode_follow_link(link->dentry, nd);
844 	if (error)
845 		goto out_put_nd_path;
846 
847 	nd->last_type = LAST_BIND;
848 	*p = dentry->d_inode->i_op->follow_link(dentry, nd);
849 	error = PTR_ERR(*p);
850 	if (IS_ERR(*p))
851 		goto out_put_nd_path;
852 
853 	error = 0;
854 	s = nd_get_link(nd);
855 	if (s) {
856 		if (unlikely(IS_ERR(s))) {
857 			path_put(&nd->path);
858 			put_link(nd, link, *p);
859 			return PTR_ERR(s);
860 		}
861 		if (*s == '/') {
862 			if (!nd->root.mnt)
863 				set_root(nd);
864 			path_put(&nd->path);
865 			nd->path = nd->root;
866 			path_get(&nd->root);
867 			nd->flags |= LOOKUP_JUMPED;
868 		}
869 		nd->inode = nd->path.dentry->d_inode;
870 		error = link_path_walk(s, nd);
871 		if (unlikely(error))
872 			put_link(nd, link, *p);
873 	}
874 
875 	return error;
876 
877 out_put_nd_path:
878 	*p = NULL;
879 	path_put(&nd->path);
880 	path_put(link);
881 	return error;
882 }
883 
884 static int follow_up_rcu(struct path *path)
885 {
886 	struct mount *mnt = real_mount(path->mnt);
887 	struct mount *parent;
888 	struct dentry *mountpoint;
889 
890 	parent = mnt->mnt_parent;
891 	if (&parent->mnt == path->mnt)
892 		return 0;
893 	mountpoint = mnt->mnt_mountpoint;
894 	path->dentry = mountpoint;
895 	path->mnt = &parent->mnt;
896 	return 1;
897 }
898 
899 /*
900  * follow_up - Find the mountpoint of path's vfsmount
901  *
902  * Given a path, find the mountpoint of its source file system.
903  * Replace @path with the path of the mountpoint in the parent mount.
904  * Up is towards /.
905  *
906  * Return 1 if we went up a level and 0 if we were already at the
907  * root.
908  */
909 int follow_up(struct path *path)
910 {
911 	struct mount *mnt = real_mount(path->mnt);
912 	struct mount *parent;
913 	struct dentry *mountpoint;
914 
915 	read_seqlock_excl(&mount_lock);
916 	parent = mnt->mnt_parent;
917 	if (parent == mnt) {
918 		read_sequnlock_excl(&mount_lock);
919 		return 0;
920 	}
921 	mntget(&parent->mnt);
922 	mountpoint = dget(mnt->mnt_mountpoint);
923 	read_sequnlock_excl(&mount_lock);
924 	dput(path->dentry);
925 	path->dentry = mountpoint;
926 	mntput(path->mnt);
927 	path->mnt = &parent->mnt;
928 	return 1;
929 }
930 EXPORT_SYMBOL(follow_up);
931 
932 /*
933  * Perform an automount
934  * - return -EISDIR to tell follow_managed() to stop and return the path we
935  *   were called with.
936  */
937 static int follow_automount(struct path *path, unsigned flags,
938 			    bool *need_mntput)
939 {
940 	struct vfsmount *mnt;
941 	int err;
942 
943 	if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
944 		return -EREMOTE;
945 
946 	/* We don't want to mount if someone's just doing a stat -
947 	 * unless they're stat'ing a directory and appended a '/' to
948 	 * the name.
949 	 *
950 	 * We do, however, want to mount if someone wants to open or
951 	 * create a file of any type under the mountpoint, wants to
952 	 * traverse through the mountpoint or wants to open the
953 	 * mounted directory.  Also, autofs may mark negative dentries
954 	 * as being automount points.  These will need the attentions
955 	 * of the daemon to instantiate them before they can be used.
956 	 */
957 	if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
958 		     LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
959 	    path->dentry->d_inode)
960 		return -EISDIR;
961 
962 	current->total_link_count++;
963 	if (current->total_link_count >= 40)
964 		return -ELOOP;
965 
966 	mnt = path->dentry->d_op->d_automount(path);
967 	if (IS_ERR(mnt)) {
968 		/*
969 		 * The filesystem is allowed to return -EISDIR here to indicate
970 		 * it doesn't want to automount.  For instance, autofs would do
971 		 * this so that its userspace daemon can mount on this dentry.
972 		 *
973 		 * However, we can only permit this if it's a terminal point in
974 		 * the path being looked up; if it wasn't then the remainder of
975 		 * the path is inaccessible and we should say so.
976 		 */
977 		if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
978 			return -EREMOTE;
979 		return PTR_ERR(mnt);
980 	}
981 
982 	if (!mnt) /* mount collision */
983 		return 0;
984 
985 	if (!*need_mntput) {
986 		/* lock_mount() may release path->mnt on error */
987 		mntget(path->mnt);
988 		*need_mntput = true;
989 	}
990 	err = finish_automount(mnt, path);
991 
992 	switch (err) {
993 	case -EBUSY:
994 		/* Someone else made a mount here whilst we were busy */
995 		return 0;
996 	case 0:
997 		path_put(path);
998 		path->mnt = mnt;
999 		path->dentry = dget(mnt->mnt_root);
1000 		return 0;
1001 	default:
1002 		return err;
1003 	}
1004 
1005 }
1006 
1007 /*
1008  * Handle a dentry that is managed in some way.
1009  * - Flagged for transit management (autofs)
1010  * - Flagged as mountpoint
1011  * - Flagged as automount point
1012  *
1013  * This may only be called in refwalk mode.
1014  *
1015  * Serialization is taken care of in namespace.c
1016  */
1017 static int follow_managed(struct path *path, unsigned flags)
1018 {
1019 	struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1020 	unsigned managed;
1021 	bool need_mntput = false;
1022 	int ret = 0;
1023 
1024 	/* Given that we're not holding a lock here, we retain the value in a
1025 	 * local variable for each dentry as we look at it so that we don't see
1026 	 * the components of that value change under us */
1027 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1028 	       managed &= DCACHE_MANAGED_DENTRY,
1029 	       unlikely(managed != 0)) {
1030 		/* Allow the filesystem to manage the transit without i_mutex
1031 		 * being held. */
1032 		if (managed & DCACHE_MANAGE_TRANSIT) {
1033 			BUG_ON(!path->dentry->d_op);
1034 			BUG_ON(!path->dentry->d_op->d_manage);
1035 			ret = path->dentry->d_op->d_manage(path->dentry, false);
1036 			if (ret < 0)
1037 				break;
1038 		}
1039 
1040 		/* Transit to a mounted filesystem. */
1041 		if (managed & DCACHE_MOUNTED) {
1042 			struct vfsmount *mounted = lookup_mnt(path);
1043 			if (mounted) {
1044 				dput(path->dentry);
1045 				if (need_mntput)
1046 					mntput(path->mnt);
1047 				path->mnt = mounted;
1048 				path->dentry = dget(mounted->mnt_root);
1049 				need_mntput = true;
1050 				continue;
1051 			}
1052 
1053 			/* Something is mounted on this dentry in another
1054 			 * namespace and/or whatever was mounted there in this
1055 			 * namespace got unmounted before lookup_mnt() could
1056 			 * get it */
1057 		}
1058 
1059 		/* Handle an automount point */
1060 		if (managed & DCACHE_NEED_AUTOMOUNT) {
1061 			ret = follow_automount(path, flags, &need_mntput);
1062 			if (ret < 0)
1063 				break;
1064 			continue;
1065 		}
1066 
1067 		/* We didn't change the current path point */
1068 		break;
1069 	}
1070 
1071 	if (need_mntput && path->mnt == mnt)
1072 		mntput(path->mnt);
1073 	if (ret == -EISDIR)
1074 		ret = 0;
1075 	return ret < 0 ? ret : need_mntput;
1076 }
1077 
1078 int follow_down_one(struct path *path)
1079 {
1080 	struct vfsmount *mounted;
1081 
1082 	mounted = lookup_mnt(path);
1083 	if (mounted) {
1084 		dput(path->dentry);
1085 		mntput(path->mnt);
1086 		path->mnt = mounted;
1087 		path->dentry = dget(mounted->mnt_root);
1088 		return 1;
1089 	}
1090 	return 0;
1091 }
1092 EXPORT_SYMBOL(follow_down_one);
1093 
1094 static inline int managed_dentry_rcu(struct dentry *dentry)
1095 {
1096 	return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1097 		dentry->d_op->d_manage(dentry, true) : 0;
1098 }
1099 
1100 /*
1101  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1102  * we meet a managed dentry that would need blocking.
1103  */
1104 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1105 			       struct inode **inode)
1106 {
1107 	for (;;) {
1108 		struct mount *mounted;
1109 		/*
1110 		 * Don't forget we might have a non-mountpoint managed dentry
1111 		 * that wants to block transit.
1112 		 */
1113 		switch (managed_dentry_rcu(path->dentry)) {
1114 		case -ECHILD:
1115 		default:
1116 			return false;
1117 		case -EISDIR:
1118 			return true;
1119 		case 0:
1120 			break;
1121 		}
1122 
1123 		if (!d_mountpoint(path->dentry))
1124 			return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1125 
1126 		mounted = __lookup_mnt(path->mnt, path->dentry);
1127 		if (!mounted)
1128 			break;
1129 		path->mnt = &mounted->mnt;
1130 		path->dentry = mounted->mnt.mnt_root;
1131 		nd->flags |= LOOKUP_JUMPED;
1132 		nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1133 		/*
1134 		 * Update the inode too. We don't need to re-check the
1135 		 * dentry sequence number here after this d_inode read,
1136 		 * because a mount-point is always pinned.
1137 		 */
1138 		*inode = path->dentry->d_inode;
1139 	}
1140 	return !read_seqretry(&mount_lock, nd->m_seq) &&
1141 		!(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1142 }
1143 
1144 static int follow_dotdot_rcu(struct nameidata *nd)
1145 {
1146 	struct inode *inode = nd->inode;
1147 	if (!nd->root.mnt)
1148 		set_root_rcu(nd);
1149 
1150 	while (1) {
1151 		if (nd->path.dentry == nd->root.dentry &&
1152 		    nd->path.mnt == nd->root.mnt) {
1153 			break;
1154 		}
1155 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1156 			struct dentry *old = nd->path.dentry;
1157 			struct dentry *parent = old->d_parent;
1158 			unsigned seq;
1159 
1160 			inode = parent->d_inode;
1161 			seq = read_seqcount_begin(&parent->d_seq);
1162 			if (read_seqcount_retry(&old->d_seq, nd->seq))
1163 				goto failed;
1164 			nd->path.dentry = parent;
1165 			nd->seq = seq;
1166 			break;
1167 		}
1168 		if (!follow_up_rcu(&nd->path))
1169 			break;
1170 		inode = nd->path.dentry->d_inode;
1171 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1172 	}
1173 	while (d_mountpoint(nd->path.dentry)) {
1174 		struct mount *mounted;
1175 		mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1176 		if (!mounted)
1177 			break;
1178 		nd->path.mnt = &mounted->mnt;
1179 		nd->path.dentry = mounted->mnt.mnt_root;
1180 		inode = nd->path.dentry->d_inode;
1181 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1182 		if (read_seqretry(&mount_lock, nd->m_seq))
1183 			goto failed;
1184 	}
1185 	nd->inode = inode;
1186 	return 0;
1187 
1188 failed:
1189 	nd->flags &= ~LOOKUP_RCU;
1190 	if (!(nd->flags & LOOKUP_ROOT))
1191 		nd->root.mnt = NULL;
1192 	rcu_read_unlock();
1193 	return -ECHILD;
1194 }
1195 
1196 /*
1197  * Follow down to the covering mount currently visible to userspace.  At each
1198  * point, the filesystem owning that dentry may be queried as to whether the
1199  * caller is permitted to proceed or not.
1200  */
1201 int follow_down(struct path *path)
1202 {
1203 	unsigned managed;
1204 	int ret;
1205 
1206 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1207 	       unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1208 		/* Allow the filesystem to manage the transit without i_mutex
1209 		 * being held.
1210 		 *
1211 		 * We indicate to the filesystem if someone is trying to mount
1212 		 * something here.  This gives autofs the chance to deny anyone
1213 		 * other than its daemon the right to mount on its
1214 		 * superstructure.
1215 		 *
1216 		 * The filesystem may sleep at this point.
1217 		 */
1218 		if (managed & DCACHE_MANAGE_TRANSIT) {
1219 			BUG_ON(!path->dentry->d_op);
1220 			BUG_ON(!path->dentry->d_op->d_manage);
1221 			ret = path->dentry->d_op->d_manage(
1222 				path->dentry, false);
1223 			if (ret < 0)
1224 				return ret == -EISDIR ? 0 : ret;
1225 		}
1226 
1227 		/* Transit to a mounted filesystem. */
1228 		if (managed & DCACHE_MOUNTED) {
1229 			struct vfsmount *mounted = lookup_mnt(path);
1230 			if (!mounted)
1231 				break;
1232 			dput(path->dentry);
1233 			mntput(path->mnt);
1234 			path->mnt = mounted;
1235 			path->dentry = dget(mounted->mnt_root);
1236 			continue;
1237 		}
1238 
1239 		/* Don't handle automount points here */
1240 		break;
1241 	}
1242 	return 0;
1243 }
1244 EXPORT_SYMBOL(follow_down);
1245 
1246 /*
1247  * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1248  */
1249 static void follow_mount(struct path *path)
1250 {
1251 	while (d_mountpoint(path->dentry)) {
1252 		struct vfsmount *mounted = lookup_mnt(path);
1253 		if (!mounted)
1254 			break;
1255 		dput(path->dentry);
1256 		mntput(path->mnt);
1257 		path->mnt = mounted;
1258 		path->dentry = dget(mounted->mnt_root);
1259 	}
1260 }
1261 
1262 static void follow_dotdot(struct nameidata *nd)
1263 {
1264 	if (!nd->root.mnt)
1265 		set_root(nd);
1266 
1267 	while(1) {
1268 		struct dentry *old = nd->path.dentry;
1269 
1270 		if (nd->path.dentry == nd->root.dentry &&
1271 		    nd->path.mnt == nd->root.mnt) {
1272 			break;
1273 		}
1274 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1275 			/* rare case of legitimate dget_parent()... */
1276 			nd->path.dentry = dget_parent(nd->path.dentry);
1277 			dput(old);
1278 			break;
1279 		}
1280 		if (!follow_up(&nd->path))
1281 			break;
1282 	}
1283 	follow_mount(&nd->path);
1284 	nd->inode = nd->path.dentry->d_inode;
1285 }
1286 
1287 /*
1288  * This looks up the name in dcache, possibly revalidates the old dentry and
1289  * allocates a new one if not found or not valid.  In the need_lookup argument
1290  * returns whether i_op->lookup is necessary.
1291  *
1292  * dir->d_inode->i_mutex must be held
1293  */
1294 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1295 				    unsigned int flags, bool *need_lookup)
1296 {
1297 	struct dentry *dentry;
1298 	int error;
1299 
1300 	*need_lookup = false;
1301 	dentry = d_lookup(dir, name);
1302 	if (dentry) {
1303 		if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1304 			error = d_revalidate(dentry, flags);
1305 			if (unlikely(error <= 0)) {
1306 				if (error < 0) {
1307 					dput(dentry);
1308 					return ERR_PTR(error);
1309 				} else if (!d_invalidate(dentry)) {
1310 					dput(dentry);
1311 					dentry = NULL;
1312 				}
1313 			}
1314 		}
1315 	}
1316 
1317 	if (!dentry) {
1318 		dentry = d_alloc(dir, name);
1319 		if (unlikely(!dentry))
1320 			return ERR_PTR(-ENOMEM);
1321 
1322 		*need_lookup = true;
1323 	}
1324 	return dentry;
1325 }
1326 
1327 /*
1328  * Call i_op->lookup on the dentry.  The dentry must be negative and
1329  * unhashed.
1330  *
1331  * dir->d_inode->i_mutex must be held
1332  */
1333 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1334 				  unsigned int flags)
1335 {
1336 	struct dentry *old;
1337 
1338 	/* Don't create child dentry for a dead directory. */
1339 	if (unlikely(IS_DEADDIR(dir))) {
1340 		dput(dentry);
1341 		return ERR_PTR(-ENOENT);
1342 	}
1343 
1344 	old = dir->i_op->lookup(dir, dentry, flags);
1345 	if (unlikely(old)) {
1346 		dput(dentry);
1347 		dentry = old;
1348 	}
1349 	return dentry;
1350 }
1351 
1352 static struct dentry *__lookup_hash(struct qstr *name,
1353 		struct dentry *base, unsigned int flags)
1354 {
1355 	bool need_lookup;
1356 	struct dentry *dentry;
1357 
1358 	dentry = lookup_dcache(name, base, flags, &need_lookup);
1359 	if (!need_lookup)
1360 		return dentry;
1361 
1362 	return lookup_real(base->d_inode, dentry, flags);
1363 }
1364 
1365 /*
1366  *  It's more convoluted than I'd like it to be, but... it's still fairly
1367  *  small and for now I'd prefer to have fast path as straight as possible.
1368  *  It _is_ time-critical.
1369  */
1370 static int lookup_fast(struct nameidata *nd,
1371 		       struct path *path, struct inode **inode)
1372 {
1373 	struct vfsmount *mnt = nd->path.mnt;
1374 	struct dentry *dentry, *parent = nd->path.dentry;
1375 	int need_reval = 1;
1376 	int status = 1;
1377 	int err;
1378 
1379 	/*
1380 	 * Rename seqlock is not required here because in the off chance
1381 	 * of a false negative due to a concurrent rename, we're going to
1382 	 * do the non-racy lookup, below.
1383 	 */
1384 	if (nd->flags & LOOKUP_RCU) {
1385 		unsigned seq;
1386 		dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1387 		if (!dentry)
1388 			goto unlazy;
1389 
1390 		/*
1391 		 * This sequence count validates that the inode matches
1392 		 * the dentry name information from lookup.
1393 		 */
1394 		*inode = dentry->d_inode;
1395 		if (read_seqcount_retry(&dentry->d_seq, seq))
1396 			return -ECHILD;
1397 
1398 		/*
1399 		 * This sequence count validates that the parent had no
1400 		 * changes while we did the lookup of the dentry above.
1401 		 *
1402 		 * The memory barrier in read_seqcount_begin of child is
1403 		 *  enough, we can use __read_seqcount_retry here.
1404 		 */
1405 		if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1406 			return -ECHILD;
1407 		nd->seq = seq;
1408 
1409 		if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1410 			status = d_revalidate(dentry, nd->flags);
1411 			if (unlikely(status <= 0)) {
1412 				if (status != -ECHILD)
1413 					need_reval = 0;
1414 				goto unlazy;
1415 			}
1416 		}
1417 		path->mnt = mnt;
1418 		path->dentry = dentry;
1419 		if (likely(__follow_mount_rcu(nd, path, inode)))
1420 			return 0;
1421 unlazy:
1422 		if (unlazy_walk(nd, dentry))
1423 			return -ECHILD;
1424 	} else {
1425 		dentry = __d_lookup(parent, &nd->last);
1426 	}
1427 
1428 	if (unlikely(!dentry))
1429 		goto need_lookup;
1430 
1431 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1432 		status = d_revalidate(dentry, nd->flags);
1433 	if (unlikely(status <= 0)) {
1434 		if (status < 0) {
1435 			dput(dentry);
1436 			return status;
1437 		}
1438 		if (!d_invalidate(dentry)) {
1439 			dput(dentry);
1440 			goto need_lookup;
1441 		}
1442 	}
1443 
1444 	path->mnt = mnt;
1445 	path->dentry = dentry;
1446 	err = follow_managed(path, nd->flags);
1447 	if (unlikely(err < 0)) {
1448 		path_put_conditional(path, nd);
1449 		return err;
1450 	}
1451 	if (err)
1452 		nd->flags |= LOOKUP_JUMPED;
1453 	*inode = path->dentry->d_inode;
1454 	return 0;
1455 
1456 need_lookup:
1457 	return 1;
1458 }
1459 
1460 /* Fast lookup failed, do it the slow way */
1461 static int lookup_slow(struct nameidata *nd, struct path *path)
1462 {
1463 	struct dentry *dentry, *parent;
1464 	int err;
1465 
1466 	parent = nd->path.dentry;
1467 	BUG_ON(nd->inode != parent->d_inode);
1468 
1469 	mutex_lock(&parent->d_inode->i_mutex);
1470 	dentry = __lookup_hash(&nd->last, parent, nd->flags);
1471 	mutex_unlock(&parent->d_inode->i_mutex);
1472 	if (IS_ERR(dentry))
1473 		return PTR_ERR(dentry);
1474 	path->mnt = nd->path.mnt;
1475 	path->dentry = dentry;
1476 	err = follow_managed(path, nd->flags);
1477 	if (unlikely(err < 0)) {
1478 		path_put_conditional(path, nd);
1479 		return err;
1480 	}
1481 	if (err)
1482 		nd->flags |= LOOKUP_JUMPED;
1483 	return 0;
1484 }
1485 
1486 static inline int may_lookup(struct nameidata *nd)
1487 {
1488 	if (nd->flags & LOOKUP_RCU) {
1489 		int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1490 		if (err != -ECHILD)
1491 			return err;
1492 		if (unlazy_walk(nd, NULL))
1493 			return -ECHILD;
1494 	}
1495 	return inode_permission(nd->inode, MAY_EXEC);
1496 }
1497 
1498 static inline int handle_dots(struct nameidata *nd, int type)
1499 {
1500 	if (type == LAST_DOTDOT) {
1501 		if (nd->flags & LOOKUP_RCU) {
1502 			if (follow_dotdot_rcu(nd))
1503 				return -ECHILD;
1504 		} else
1505 			follow_dotdot(nd);
1506 	}
1507 	return 0;
1508 }
1509 
1510 static void terminate_walk(struct nameidata *nd)
1511 {
1512 	if (!(nd->flags & LOOKUP_RCU)) {
1513 		path_put(&nd->path);
1514 	} else {
1515 		nd->flags &= ~LOOKUP_RCU;
1516 		if (!(nd->flags & LOOKUP_ROOT))
1517 			nd->root.mnt = NULL;
1518 		rcu_read_unlock();
1519 	}
1520 }
1521 
1522 /*
1523  * Do we need to follow links? We _really_ want to be able
1524  * to do this check without having to look at inode->i_op,
1525  * so we keep a cache of "no, this doesn't need follow_link"
1526  * for the common case.
1527  */
1528 static inline int should_follow_link(struct dentry *dentry, int follow)
1529 {
1530 	return unlikely(d_is_symlink(dentry)) ? follow : 0;
1531 }
1532 
1533 static inline int walk_component(struct nameidata *nd, struct path *path,
1534 		int follow)
1535 {
1536 	struct inode *inode;
1537 	int err;
1538 	/*
1539 	 * "." and ".." are special - ".." especially so because it has
1540 	 * to be able to know about the current root directory and
1541 	 * parent relationships.
1542 	 */
1543 	if (unlikely(nd->last_type != LAST_NORM))
1544 		return handle_dots(nd, nd->last_type);
1545 	err = lookup_fast(nd, path, &inode);
1546 	if (unlikely(err)) {
1547 		if (err < 0)
1548 			goto out_err;
1549 
1550 		err = lookup_slow(nd, path);
1551 		if (err < 0)
1552 			goto out_err;
1553 
1554 		inode = path->dentry->d_inode;
1555 	}
1556 	err = -ENOENT;
1557 	if (!inode || d_is_negative(path->dentry))
1558 		goto out_path_put;
1559 
1560 	if (should_follow_link(path->dentry, follow)) {
1561 		if (nd->flags & LOOKUP_RCU) {
1562 			if (unlikely(unlazy_walk(nd, path->dentry))) {
1563 				err = -ECHILD;
1564 				goto out_err;
1565 			}
1566 		}
1567 		BUG_ON(inode != path->dentry->d_inode);
1568 		return 1;
1569 	}
1570 	path_to_nameidata(path, nd);
1571 	nd->inode = inode;
1572 	return 0;
1573 
1574 out_path_put:
1575 	path_to_nameidata(path, nd);
1576 out_err:
1577 	terminate_walk(nd);
1578 	return err;
1579 }
1580 
1581 /*
1582  * This limits recursive symlink follows to 8, while
1583  * limiting consecutive symlinks to 40.
1584  *
1585  * Without that kind of total limit, nasty chains of consecutive
1586  * symlinks can cause almost arbitrarily long lookups.
1587  */
1588 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1589 {
1590 	int res;
1591 
1592 	if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1593 		path_put_conditional(path, nd);
1594 		path_put(&nd->path);
1595 		return -ELOOP;
1596 	}
1597 	BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1598 
1599 	nd->depth++;
1600 	current->link_count++;
1601 
1602 	do {
1603 		struct path link = *path;
1604 		void *cookie;
1605 
1606 		res = follow_link(&link, nd, &cookie);
1607 		if (res)
1608 			break;
1609 		res = walk_component(nd, path, LOOKUP_FOLLOW);
1610 		put_link(nd, &link, cookie);
1611 	} while (res > 0);
1612 
1613 	current->link_count--;
1614 	nd->depth--;
1615 	return res;
1616 }
1617 
1618 /*
1619  * We can do the critical dentry name comparison and hashing
1620  * operations one word at a time, but we are limited to:
1621  *
1622  * - Architectures with fast unaligned word accesses. We could
1623  *   do a "get_unaligned()" if this helps and is sufficiently
1624  *   fast.
1625  *
1626  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1627  *   do not trap on the (extremely unlikely) case of a page
1628  *   crossing operation.
1629  *
1630  * - Furthermore, we need an efficient 64-bit compile for the
1631  *   64-bit case in order to generate the "number of bytes in
1632  *   the final mask". Again, that could be replaced with a
1633  *   efficient population count instruction or similar.
1634  */
1635 #ifdef CONFIG_DCACHE_WORD_ACCESS
1636 
1637 #include <asm/word-at-a-time.h>
1638 
1639 #ifdef CONFIG_64BIT
1640 
1641 static inline unsigned int fold_hash(unsigned long hash)
1642 {
1643 	return hash_64(hash, 32);
1644 }
1645 
1646 #else	/* 32-bit case */
1647 
1648 #define fold_hash(x) (x)
1649 
1650 #endif
1651 
1652 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1653 {
1654 	unsigned long a, mask;
1655 	unsigned long hash = 0;
1656 
1657 	for (;;) {
1658 		a = load_unaligned_zeropad(name);
1659 		if (len < sizeof(unsigned long))
1660 			break;
1661 		hash += a;
1662 		hash *= 9;
1663 		name += sizeof(unsigned long);
1664 		len -= sizeof(unsigned long);
1665 		if (!len)
1666 			goto done;
1667 	}
1668 	mask = bytemask_from_count(len);
1669 	hash += mask & a;
1670 done:
1671 	return fold_hash(hash);
1672 }
1673 EXPORT_SYMBOL(full_name_hash);
1674 
1675 /*
1676  * Calculate the length and hash of the path component, and
1677  * fill in the qstr. return the "len" as the result.
1678  */
1679 static inline unsigned long hash_name(const char *name, struct qstr *res)
1680 {
1681 	unsigned long a, b, adata, bdata, mask, hash, len;
1682 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1683 
1684 	res->name = name;
1685 	hash = a = 0;
1686 	len = -sizeof(unsigned long);
1687 	do {
1688 		hash = (hash + a) * 9;
1689 		len += sizeof(unsigned long);
1690 		a = load_unaligned_zeropad(name+len);
1691 		b = a ^ REPEAT_BYTE('/');
1692 	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1693 
1694 	adata = prep_zero_mask(a, adata, &constants);
1695 	bdata = prep_zero_mask(b, bdata, &constants);
1696 
1697 	mask = create_zero_mask(adata | bdata);
1698 
1699 	hash += a & zero_bytemask(mask);
1700 	len += find_zero(mask);
1701 	res->hash_len = hashlen_create(fold_hash(hash), len);
1702 
1703 	return len;
1704 }
1705 
1706 #else
1707 
1708 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1709 {
1710 	unsigned long hash = init_name_hash();
1711 	while (len--)
1712 		hash = partial_name_hash(*name++, hash);
1713 	return end_name_hash(hash);
1714 }
1715 EXPORT_SYMBOL(full_name_hash);
1716 
1717 /*
1718  * We know there's a real path component here of at least
1719  * one character.
1720  */
1721 static inline long hash_name(const char *name, struct qstr *res)
1722 {
1723 	unsigned long hash = init_name_hash();
1724 	unsigned long len = 0, c;
1725 
1726 	res->name = name;
1727 	c = (unsigned char)*name;
1728 	do {
1729 		len++;
1730 		hash = partial_name_hash(c, hash);
1731 		c = (unsigned char)name[len];
1732 	} while (c && c != '/');
1733 	res->hash_len = hashlen_create(end_name_hash(hash), len);
1734 	return len;
1735 }
1736 
1737 #endif
1738 
1739 /*
1740  * Name resolution.
1741  * This is the basic name resolution function, turning a pathname into
1742  * the final dentry. We expect 'base' to be positive and a directory.
1743  *
1744  * Returns 0 and nd will have valid dentry and mnt on success.
1745  * Returns error and drops reference to input namei data on failure.
1746  */
1747 static int link_path_walk(const char *name, struct nameidata *nd)
1748 {
1749 	struct path next;
1750 	int err;
1751 
1752 	while (*name=='/')
1753 		name++;
1754 	if (!*name)
1755 		return 0;
1756 
1757 	/* At this point we know we have a real path component. */
1758 	for(;;) {
1759 		struct qstr this;
1760 		long len;
1761 		int type;
1762 
1763 		err = may_lookup(nd);
1764  		if (err)
1765 			break;
1766 
1767 		len = hash_name(name, &this);
1768 
1769 		type = LAST_NORM;
1770 		if (name[0] == '.') switch (len) {
1771 			case 2:
1772 				if (name[1] == '.') {
1773 					type = LAST_DOTDOT;
1774 					nd->flags |= LOOKUP_JUMPED;
1775 				}
1776 				break;
1777 			case 1:
1778 				type = LAST_DOT;
1779 		}
1780 		if (likely(type == LAST_NORM)) {
1781 			struct dentry *parent = nd->path.dentry;
1782 			nd->flags &= ~LOOKUP_JUMPED;
1783 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1784 				err = parent->d_op->d_hash(parent, &this);
1785 				if (err < 0)
1786 					break;
1787 			}
1788 		}
1789 
1790 		nd->last = this;
1791 		nd->last_type = type;
1792 
1793 		if (!name[len])
1794 			return 0;
1795 		/*
1796 		 * If it wasn't NUL, we know it was '/'. Skip that
1797 		 * slash, and continue until no more slashes.
1798 		 */
1799 		do {
1800 			len++;
1801 		} while (unlikely(name[len] == '/'));
1802 		if (!name[len])
1803 			return 0;
1804 
1805 		name += len;
1806 
1807 		err = walk_component(nd, &next, LOOKUP_FOLLOW);
1808 		if (err < 0)
1809 			return err;
1810 
1811 		if (err) {
1812 			err = nested_symlink(&next, nd);
1813 			if (err)
1814 				return err;
1815 		}
1816 		if (!d_can_lookup(nd->path.dentry)) {
1817 			err = -ENOTDIR;
1818 			break;
1819 		}
1820 	}
1821 	terminate_walk(nd);
1822 	return err;
1823 }
1824 
1825 static int path_init(int dfd, const char *name, unsigned int flags,
1826 		     struct nameidata *nd, struct file **fp)
1827 {
1828 	int retval = 0;
1829 
1830 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
1831 	nd->flags = flags | LOOKUP_JUMPED;
1832 	nd->depth = 0;
1833 	if (flags & LOOKUP_ROOT) {
1834 		struct dentry *root = nd->root.dentry;
1835 		struct inode *inode = root->d_inode;
1836 		if (*name) {
1837 			if (!d_can_lookup(root))
1838 				return -ENOTDIR;
1839 			retval = inode_permission(inode, MAY_EXEC);
1840 			if (retval)
1841 				return retval;
1842 		}
1843 		nd->path = nd->root;
1844 		nd->inode = inode;
1845 		if (flags & LOOKUP_RCU) {
1846 			rcu_read_lock();
1847 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1848 			nd->m_seq = read_seqbegin(&mount_lock);
1849 		} else {
1850 			path_get(&nd->path);
1851 		}
1852 		return 0;
1853 	}
1854 
1855 	nd->root.mnt = NULL;
1856 
1857 	nd->m_seq = read_seqbegin(&mount_lock);
1858 	if (*name=='/') {
1859 		if (flags & LOOKUP_RCU) {
1860 			rcu_read_lock();
1861 			nd->seq = set_root_rcu(nd);
1862 		} else {
1863 			set_root(nd);
1864 			path_get(&nd->root);
1865 		}
1866 		nd->path = nd->root;
1867 	} else if (dfd == AT_FDCWD) {
1868 		if (flags & LOOKUP_RCU) {
1869 			struct fs_struct *fs = current->fs;
1870 			unsigned seq;
1871 
1872 			rcu_read_lock();
1873 
1874 			do {
1875 				seq = read_seqcount_begin(&fs->seq);
1876 				nd->path = fs->pwd;
1877 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1878 			} while (read_seqcount_retry(&fs->seq, seq));
1879 		} else {
1880 			get_fs_pwd(current->fs, &nd->path);
1881 		}
1882 	} else {
1883 		/* Caller must check execute permissions on the starting path component */
1884 		struct fd f = fdget_raw(dfd);
1885 		struct dentry *dentry;
1886 
1887 		if (!f.file)
1888 			return -EBADF;
1889 
1890 		dentry = f.file->f_path.dentry;
1891 
1892 		if (*name) {
1893 			if (!d_can_lookup(dentry)) {
1894 				fdput(f);
1895 				return -ENOTDIR;
1896 			}
1897 		}
1898 
1899 		nd->path = f.file->f_path;
1900 		if (flags & LOOKUP_RCU) {
1901 			if (f.flags & FDPUT_FPUT)
1902 				*fp = f.file;
1903 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1904 			rcu_read_lock();
1905 		} else {
1906 			path_get(&nd->path);
1907 			fdput(f);
1908 		}
1909 	}
1910 
1911 	nd->inode = nd->path.dentry->d_inode;
1912 	if (!(flags & LOOKUP_RCU))
1913 		return 0;
1914 	if (likely(!read_seqcount_retry(&nd->path.dentry->d_seq, nd->seq)))
1915 		return 0;
1916 	if (!(nd->flags & LOOKUP_ROOT))
1917 		nd->root.mnt = NULL;
1918 	rcu_read_unlock();
1919 	return -ECHILD;
1920 }
1921 
1922 static inline int lookup_last(struct nameidata *nd, struct path *path)
1923 {
1924 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1925 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1926 
1927 	nd->flags &= ~LOOKUP_PARENT;
1928 	return walk_component(nd, path, nd->flags & LOOKUP_FOLLOW);
1929 }
1930 
1931 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1932 static int path_lookupat(int dfd, const char *name,
1933 				unsigned int flags, struct nameidata *nd)
1934 {
1935 	struct file *base = NULL;
1936 	struct path path;
1937 	int err;
1938 
1939 	/*
1940 	 * Path walking is largely split up into 2 different synchronisation
1941 	 * schemes, rcu-walk and ref-walk (explained in
1942 	 * Documentation/filesystems/path-lookup.txt). These share much of the
1943 	 * path walk code, but some things particularly setup, cleanup, and
1944 	 * following mounts are sufficiently divergent that functions are
1945 	 * duplicated. Typically there is a function foo(), and its RCU
1946 	 * analogue, foo_rcu().
1947 	 *
1948 	 * -ECHILD is the error number of choice (just to avoid clashes) that
1949 	 * is returned if some aspect of an rcu-walk fails. Such an error must
1950 	 * be handled by restarting a traditional ref-walk (which will always
1951 	 * be able to complete).
1952 	 */
1953 	err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1954 
1955 	if (unlikely(err))
1956 		return err;
1957 
1958 	current->total_link_count = 0;
1959 	err = link_path_walk(name, nd);
1960 
1961 	if (!err && !(flags & LOOKUP_PARENT)) {
1962 		err = lookup_last(nd, &path);
1963 		while (err > 0) {
1964 			void *cookie;
1965 			struct path link = path;
1966 			err = may_follow_link(&link, nd);
1967 			if (unlikely(err))
1968 				break;
1969 			nd->flags |= LOOKUP_PARENT;
1970 			err = follow_link(&link, nd, &cookie);
1971 			if (err)
1972 				break;
1973 			err = lookup_last(nd, &path);
1974 			put_link(nd, &link, cookie);
1975 		}
1976 	}
1977 
1978 	if (!err)
1979 		err = complete_walk(nd);
1980 
1981 	if (!err && nd->flags & LOOKUP_DIRECTORY) {
1982 		if (!d_can_lookup(nd->path.dentry)) {
1983 			path_put(&nd->path);
1984 			err = -ENOTDIR;
1985 		}
1986 	}
1987 
1988 	if (base)
1989 		fput(base);
1990 
1991 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1992 		path_put(&nd->root);
1993 		nd->root.mnt = NULL;
1994 	}
1995 	return err;
1996 }
1997 
1998 static int filename_lookup(int dfd, struct filename *name,
1999 				unsigned int flags, struct nameidata *nd)
2000 {
2001 	int retval = path_lookupat(dfd, name->name, flags | LOOKUP_RCU, nd);
2002 	if (unlikely(retval == -ECHILD))
2003 		retval = path_lookupat(dfd, name->name, flags, nd);
2004 	if (unlikely(retval == -ESTALE))
2005 		retval = path_lookupat(dfd, name->name,
2006 						flags | LOOKUP_REVAL, nd);
2007 
2008 	if (likely(!retval))
2009 		audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT);
2010 	return retval;
2011 }
2012 
2013 static int do_path_lookup(int dfd, const char *name,
2014 				unsigned int flags, struct nameidata *nd)
2015 {
2016 	struct filename filename = { .name = name };
2017 
2018 	return filename_lookup(dfd, &filename, flags, nd);
2019 }
2020 
2021 /* does lookup, returns the object with parent locked */
2022 struct dentry *kern_path_locked(const char *name, struct path *path)
2023 {
2024 	struct nameidata nd;
2025 	struct dentry *d;
2026 	int err = do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, &nd);
2027 	if (err)
2028 		return ERR_PTR(err);
2029 	if (nd.last_type != LAST_NORM) {
2030 		path_put(&nd.path);
2031 		return ERR_PTR(-EINVAL);
2032 	}
2033 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2034 	d = __lookup_hash(&nd.last, nd.path.dentry, 0);
2035 	if (IS_ERR(d)) {
2036 		mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2037 		path_put(&nd.path);
2038 		return d;
2039 	}
2040 	*path = nd.path;
2041 	return d;
2042 }
2043 
2044 int kern_path(const char *name, unsigned int flags, struct path *path)
2045 {
2046 	struct nameidata nd;
2047 	int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
2048 	if (!res)
2049 		*path = nd.path;
2050 	return res;
2051 }
2052 EXPORT_SYMBOL(kern_path);
2053 
2054 /**
2055  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2056  * @dentry:  pointer to dentry of the base directory
2057  * @mnt: pointer to vfs mount of the base directory
2058  * @name: pointer to file name
2059  * @flags: lookup flags
2060  * @path: pointer to struct path to fill
2061  */
2062 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2063 		    const char *name, unsigned int flags,
2064 		    struct path *path)
2065 {
2066 	struct nameidata nd;
2067 	int err;
2068 	nd.root.dentry = dentry;
2069 	nd.root.mnt = mnt;
2070 	BUG_ON(flags & LOOKUP_PARENT);
2071 	/* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
2072 	err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
2073 	if (!err)
2074 		*path = nd.path;
2075 	return err;
2076 }
2077 EXPORT_SYMBOL(vfs_path_lookup);
2078 
2079 /*
2080  * Restricted form of lookup. Doesn't follow links, single-component only,
2081  * needs parent already locked. Doesn't follow mounts.
2082  * SMP-safe.
2083  */
2084 static struct dentry *lookup_hash(struct nameidata *nd)
2085 {
2086 	return __lookup_hash(&nd->last, nd->path.dentry, nd->flags);
2087 }
2088 
2089 /**
2090  * lookup_one_len - filesystem helper to lookup single pathname component
2091  * @name:	pathname component to lookup
2092  * @base:	base directory to lookup from
2093  * @len:	maximum length @len should be interpreted to
2094  *
2095  * Note that this routine is purely a helper for filesystem usage and should
2096  * not be called by generic code.  Also note that by using this function the
2097  * nameidata argument is passed to the filesystem methods and a filesystem
2098  * using this helper needs to be prepared for that.
2099  */
2100 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2101 {
2102 	struct qstr this;
2103 	unsigned int c;
2104 	int err;
2105 
2106 	WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2107 
2108 	this.name = name;
2109 	this.len = len;
2110 	this.hash = full_name_hash(name, len);
2111 	if (!len)
2112 		return ERR_PTR(-EACCES);
2113 
2114 	if (unlikely(name[0] == '.')) {
2115 		if (len < 2 || (len == 2 && name[1] == '.'))
2116 			return ERR_PTR(-EACCES);
2117 	}
2118 
2119 	while (len--) {
2120 		c = *(const unsigned char *)name++;
2121 		if (c == '/' || c == '\0')
2122 			return ERR_PTR(-EACCES);
2123 	}
2124 	/*
2125 	 * See if the low-level filesystem might want
2126 	 * to use its own hash..
2127 	 */
2128 	if (base->d_flags & DCACHE_OP_HASH) {
2129 		int err = base->d_op->d_hash(base, &this);
2130 		if (err < 0)
2131 			return ERR_PTR(err);
2132 	}
2133 
2134 	err = inode_permission(base->d_inode, MAY_EXEC);
2135 	if (err)
2136 		return ERR_PTR(err);
2137 
2138 	return __lookup_hash(&this, base, 0);
2139 }
2140 EXPORT_SYMBOL(lookup_one_len);
2141 
2142 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2143 		 struct path *path, int *empty)
2144 {
2145 	struct nameidata nd;
2146 	struct filename *tmp = getname_flags(name, flags, empty);
2147 	int err = PTR_ERR(tmp);
2148 	if (!IS_ERR(tmp)) {
2149 
2150 		BUG_ON(flags & LOOKUP_PARENT);
2151 
2152 		err = filename_lookup(dfd, tmp, flags, &nd);
2153 		putname(tmp);
2154 		if (!err)
2155 			*path = nd.path;
2156 	}
2157 	return err;
2158 }
2159 
2160 int user_path_at(int dfd, const char __user *name, unsigned flags,
2161 		 struct path *path)
2162 {
2163 	return user_path_at_empty(dfd, name, flags, path, NULL);
2164 }
2165 EXPORT_SYMBOL(user_path_at);
2166 
2167 /*
2168  * NB: most callers don't do anything directly with the reference to the
2169  *     to struct filename, but the nd->last pointer points into the name string
2170  *     allocated by getname. So we must hold the reference to it until all
2171  *     path-walking is complete.
2172  */
2173 static struct filename *
2174 user_path_parent(int dfd, const char __user *path, struct nameidata *nd,
2175 		 unsigned int flags)
2176 {
2177 	struct filename *s = getname(path);
2178 	int error;
2179 
2180 	/* only LOOKUP_REVAL is allowed in extra flags */
2181 	flags &= LOOKUP_REVAL;
2182 
2183 	if (IS_ERR(s))
2184 		return s;
2185 
2186 	error = filename_lookup(dfd, s, flags | LOOKUP_PARENT, nd);
2187 	if (error) {
2188 		putname(s);
2189 		return ERR_PTR(error);
2190 	}
2191 
2192 	return s;
2193 }
2194 
2195 /**
2196  * mountpoint_last - look up last component for umount
2197  * @nd:   pathwalk nameidata - currently pointing at parent directory of "last"
2198  * @path: pointer to container for result
2199  *
2200  * This is a special lookup_last function just for umount. In this case, we
2201  * need to resolve the path without doing any revalidation.
2202  *
2203  * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2204  * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2205  * in almost all cases, this lookup will be served out of the dcache. The only
2206  * cases where it won't are if nd->last refers to a symlink or the path is
2207  * bogus and it doesn't exist.
2208  *
2209  * Returns:
2210  * -error: if there was an error during lookup. This includes -ENOENT if the
2211  *         lookup found a negative dentry. The nd->path reference will also be
2212  *         put in this case.
2213  *
2214  * 0:      if we successfully resolved nd->path and found it to not to be a
2215  *         symlink that needs to be followed. "path" will also be populated.
2216  *         The nd->path reference will also be put.
2217  *
2218  * 1:      if we successfully resolved nd->last and found it to be a symlink
2219  *         that needs to be followed. "path" will be populated with the path
2220  *         to the link, and nd->path will *not* be put.
2221  */
2222 static int
2223 mountpoint_last(struct nameidata *nd, struct path *path)
2224 {
2225 	int error = 0;
2226 	struct dentry *dentry;
2227 	struct dentry *dir = nd->path.dentry;
2228 
2229 	/* If we're in rcuwalk, drop out of it to handle last component */
2230 	if (nd->flags & LOOKUP_RCU) {
2231 		if (unlazy_walk(nd, NULL)) {
2232 			error = -ECHILD;
2233 			goto out;
2234 		}
2235 	}
2236 
2237 	nd->flags &= ~LOOKUP_PARENT;
2238 
2239 	if (unlikely(nd->last_type != LAST_NORM)) {
2240 		error = handle_dots(nd, nd->last_type);
2241 		if (error)
2242 			goto out;
2243 		dentry = dget(nd->path.dentry);
2244 		goto done;
2245 	}
2246 
2247 	mutex_lock(&dir->d_inode->i_mutex);
2248 	dentry = d_lookup(dir, &nd->last);
2249 	if (!dentry) {
2250 		/*
2251 		 * No cached dentry. Mounted dentries are pinned in the cache,
2252 		 * so that means that this dentry is probably a symlink or the
2253 		 * path doesn't actually point to a mounted dentry.
2254 		 */
2255 		dentry = d_alloc(dir, &nd->last);
2256 		if (!dentry) {
2257 			error = -ENOMEM;
2258 			mutex_unlock(&dir->d_inode->i_mutex);
2259 			goto out;
2260 		}
2261 		dentry = lookup_real(dir->d_inode, dentry, nd->flags);
2262 		error = PTR_ERR(dentry);
2263 		if (IS_ERR(dentry)) {
2264 			mutex_unlock(&dir->d_inode->i_mutex);
2265 			goto out;
2266 		}
2267 	}
2268 	mutex_unlock(&dir->d_inode->i_mutex);
2269 
2270 done:
2271 	if (!dentry->d_inode || d_is_negative(dentry)) {
2272 		error = -ENOENT;
2273 		dput(dentry);
2274 		goto out;
2275 	}
2276 	path->dentry = dentry;
2277 	path->mnt = nd->path.mnt;
2278 	if (should_follow_link(dentry, nd->flags & LOOKUP_FOLLOW))
2279 		return 1;
2280 	mntget(path->mnt);
2281 	follow_mount(path);
2282 	error = 0;
2283 out:
2284 	terminate_walk(nd);
2285 	return error;
2286 }
2287 
2288 /**
2289  * path_mountpoint - look up a path to be umounted
2290  * @dfd:	directory file descriptor to start walk from
2291  * @name:	full pathname to walk
2292  * @path:	pointer to container for result
2293  * @flags:	lookup flags
2294  *
2295  * Look up the given name, but don't attempt to revalidate the last component.
2296  * Returns 0 and "path" will be valid on success; Returns error otherwise.
2297  */
2298 static int
2299 path_mountpoint(int dfd, const char *name, struct path *path, unsigned int flags)
2300 {
2301 	struct file *base = NULL;
2302 	struct nameidata nd;
2303 	int err;
2304 
2305 	err = path_init(dfd, name, flags | LOOKUP_PARENT, &nd, &base);
2306 	if (unlikely(err))
2307 		return err;
2308 
2309 	current->total_link_count = 0;
2310 	err = link_path_walk(name, &nd);
2311 	if (err)
2312 		goto out;
2313 
2314 	err = mountpoint_last(&nd, path);
2315 	while (err > 0) {
2316 		void *cookie;
2317 		struct path link = *path;
2318 		err = may_follow_link(&link, &nd);
2319 		if (unlikely(err))
2320 			break;
2321 		nd.flags |= LOOKUP_PARENT;
2322 		err = follow_link(&link, &nd, &cookie);
2323 		if (err)
2324 			break;
2325 		err = mountpoint_last(&nd, path);
2326 		put_link(&nd, &link, cookie);
2327 	}
2328 out:
2329 	if (base)
2330 		fput(base);
2331 
2332 	if (nd.root.mnt && !(nd.flags & LOOKUP_ROOT))
2333 		path_put(&nd.root);
2334 
2335 	return err;
2336 }
2337 
2338 static int
2339 filename_mountpoint(int dfd, struct filename *s, struct path *path,
2340 			unsigned int flags)
2341 {
2342 	int error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_RCU);
2343 	if (unlikely(error == -ECHILD))
2344 		error = path_mountpoint(dfd, s->name, path, flags);
2345 	if (unlikely(error == -ESTALE))
2346 		error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_REVAL);
2347 	if (likely(!error))
2348 		audit_inode(s, path->dentry, 0);
2349 	return error;
2350 }
2351 
2352 /**
2353  * user_path_mountpoint_at - lookup a path from userland in order to umount it
2354  * @dfd:	directory file descriptor
2355  * @name:	pathname from userland
2356  * @flags:	lookup flags
2357  * @path:	pointer to container to hold result
2358  *
2359  * A umount is a special case for path walking. We're not actually interested
2360  * in the inode in this situation, and ESTALE errors can be a problem. We
2361  * simply want track down the dentry and vfsmount attached at the mountpoint
2362  * and avoid revalidating the last component.
2363  *
2364  * Returns 0 and populates "path" on success.
2365  */
2366 int
2367 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2368 			struct path *path)
2369 {
2370 	struct filename *s = getname(name);
2371 	int error;
2372 	if (IS_ERR(s))
2373 		return PTR_ERR(s);
2374 	error = filename_mountpoint(dfd, s, path, flags);
2375 	putname(s);
2376 	return error;
2377 }
2378 
2379 int
2380 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2381 			unsigned int flags)
2382 {
2383 	struct filename s = {.name = name};
2384 	return filename_mountpoint(dfd, &s, path, flags);
2385 }
2386 EXPORT_SYMBOL(kern_path_mountpoint);
2387 
2388 /*
2389  * It's inline, so penalty for filesystems that don't use sticky bit is
2390  * minimal.
2391  */
2392 static inline int check_sticky(struct inode *dir, struct inode *inode)
2393 {
2394 	kuid_t fsuid = current_fsuid();
2395 
2396 	if (!(dir->i_mode & S_ISVTX))
2397 		return 0;
2398 	if (uid_eq(inode->i_uid, fsuid))
2399 		return 0;
2400 	if (uid_eq(dir->i_uid, fsuid))
2401 		return 0;
2402 	return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2403 }
2404 
2405 /*
2406  *	Check whether we can remove a link victim from directory dir, check
2407  *  whether the type of victim is right.
2408  *  1. We can't do it if dir is read-only (done in permission())
2409  *  2. We should have write and exec permissions on dir
2410  *  3. We can't remove anything from append-only dir
2411  *  4. We can't do anything with immutable dir (done in permission())
2412  *  5. If the sticky bit on dir is set we should either
2413  *	a. be owner of dir, or
2414  *	b. be owner of victim, or
2415  *	c. have CAP_FOWNER capability
2416  *  6. If the victim is append-only or immutable we can't do antyhing with
2417  *     links pointing to it.
2418  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2419  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2420  *  9. We can't remove a root or mountpoint.
2421  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2422  *     nfs_async_unlink().
2423  */
2424 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2425 {
2426 	struct inode *inode = victim->d_inode;
2427 	int error;
2428 
2429 	if (d_is_negative(victim))
2430 		return -ENOENT;
2431 	BUG_ON(!inode);
2432 
2433 	BUG_ON(victim->d_parent->d_inode != dir);
2434 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2435 
2436 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2437 	if (error)
2438 		return error;
2439 	if (IS_APPEND(dir))
2440 		return -EPERM;
2441 
2442 	if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2443 	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2444 		return -EPERM;
2445 	if (isdir) {
2446 		if (!d_is_dir(victim))
2447 			return -ENOTDIR;
2448 		if (IS_ROOT(victim))
2449 			return -EBUSY;
2450 	} else if (d_is_dir(victim))
2451 		return -EISDIR;
2452 	if (IS_DEADDIR(dir))
2453 		return -ENOENT;
2454 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2455 		return -EBUSY;
2456 	return 0;
2457 }
2458 
2459 /*	Check whether we can create an object with dentry child in directory
2460  *  dir.
2461  *  1. We can't do it if child already exists (open has special treatment for
2462  *     this case, but since we are inlined it's OK)
2463  *  2. We can't do it if dir is read-only (done in permission())
2464  *  3. We should have write and exec permissions on dir
2465  *  4. We can't do it if dir is immutable (done in permission())
2466  */
2467 static inline int may_create(struct inode *dir, struct dentry *child)
2468 {
2469 	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2470 	if (child->d_inode)
2471 		return -EEXIST;
2472 	if (IS_DEADDIR(dir))
2473 		return -ENOENT;
2474 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2475 }
2476 
2477 /*
2478  * p1 and p2 should be directories on the same fs.
2479  */
2480 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2481 {
2482 	struct dentry *p;
2483 
2484 	if (p1 == p2) {
2485 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2486 		return NULL;
2487 	}
2488 
2489 	mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2490 
2491 	p = d_ancestor(p2, p1);
2492 	if (p) {
2493 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2494 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2495 		return p;
2496 	}
2497 
2498 	p = d_ancestor(p1, p2);
2499 	if (p) {
2500 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2501 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2502 		return p;
2503 	}
2504 
2505 	mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2506 	mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2507 	return NULL;
2508 }
2509 EXPORT_SYMBOL(lock_rename);
2510 
2511 void unlock_rename(struct dentry *p1, struct dentry *p2)
2512 {
2513 	mutex_unlock(&p1->d_inode->i_mutex);
2514 	if (p1 != p2) {
2515 		mutex_unlock(&p2->d_inode->i_mutex);
2516 		mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2517 	}
2518 }
2519 EXPORT_SYMBOL(unlock_rename);
2520 
2521 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2522 		bool want_excl)
2523 {
2524 	int error = may_create(dir, dentry);
2525 	if (error)
2526 		return error;
2527 
2528 	if (!dir->i_op->create)
2529 		return -EACCES;	/* shouldn't it be ENOSYS? */
2530 	mode &= S_IALLUGO;
2531 	mode |= S_IFREG;
2532 	error = security_inode_create(dir, dentry, mode);
2533 	if (error)
2534 		return error;
2535 	error = dir->i_op->create(dir, dentry, mode, want_excl);
2536 	if (!error)
2537 		fsnotify_create(dir, dentry);
2538 	return error;
2539 }
2540 EXPORT_SYMBOL(vfs_create);
2541 
2542 static int may_open(struct path *path, int acc_mode, int flag)
2543 {
2544 	struct dentry *dentry = path->dentry;
2545 	struct inode *inode = dentry->d_inode;
2546 	int error;
2547 
2548 	/* O_PATH? */
2549 	if (!acc_mode)
2550 		return 0;
2551 
2552 	if (!inode)
2553 		return -ENOENT;
2554 
2555 	switch (inode->i_mode & S_IFMT) {
2556 	case S_IFLNK:
2557 		return -ELOOP;
2558 	case S_IFDIR:
2559 		if (acc_mode & MAY_WRITE)
2560 			return -EISDIR;
2561 		break;
2562 	case S_IFBLK:
2563 	case S_IFCHR:
2564 		if (path->mnt->mnt_flags & MNT_NODEV)
2565 			return -EACCES;
2566 		/*FALLTHRU*/
2567 	case S_IFIFO:
2568 	case S_IFSOCK:
2569 		flag &= ~O_TRUNC;
2570 		break;
2571 	}
2572 
2573 	error = inode_permission(inode, acc_mode);
2574 	if (error)
2575 		return error;
2576 
2577 	/*
2578 	 * An append-only file must be opened in append mode for writing.
2579 	 */
2580 	if (IS_APPEND(inode)) {
2581 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2582 			return -EPERM;
2583 		if (flag & O_TRUNC)
2584 			return -EPERM;
2585 	}
2586 
2587 	/* O_NOATIME can only be set by the owner or superuser */
2588 	if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2589 		return -EPERM;
2590 
2591 	return 0;
2592 }
2593 
2594 static int handle_truncate(struct file *filp)
2595 {
2596 	struct path *path = &filp->f_path;
2597 	struct inode *inode = path->dentry->d_inode;
2598 	int error = get_write_access(inode);
2599 	if (error)
2600 		return error;
2601 	/*
2602 	 * Refuse to truncate files with mandatory locks held on them.
2603 	 */
2604 	error = locks_verify_locked(filp);
2605 	if (!error)
2606 		error = security_path_truncate(path);
2607 	if (!error) {
2608 		error = do_truncate(path->dentry, 0,
2609 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2610 				    filp);
2611 	}
2612 	put_write_access(inode);
2613 	return error;
2614 }
2615 
2616 static inline int open_to_namei_flags(int flag)
2617 {
2618 	if ((flag & O_ACCMODE) == 3)
2619 		flag--;
2620 	return flag;
2621 }
2622 
2623 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2624 {
2625 	int error = security_path_mknod(dir, dentry, mode, 0);
2626 	if (error)
2627 		return error;
2628 
2629 	error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2630 	if (error)
2631 		return error;
2632 
2633 	return security_inode_create(dir->dentry->d_inode, dentry, mode);
2634 }
2635 
2636 /*
2637  * Attempt to atomically look up, create and open a file from a negative
2638  * dentry.
2639  *
2640  * Returns 0 if successful.  The file will have been created and attached to
2641  * @file by the filesystem calling finish_open().
2642  *
2643  * Returns 1 if the file was looked up only or didn't need creating.  The
2644  * caller will need to perform the open themselves.  @path will have been
2645  * updated to point to the new dentry.  This may be negative.
2646  *
2647  * Returns an error code otherwise.
2648  */
2649 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2650 			struct path *path, struct file *file,
2651 			const struct open_flags *op,
2652 			bool got_write, bool need_lookup,
2653 			int *opened)
2654 {
2655 	struct inode *dir =  nd->path.dentry->d_inode;
2656 	unsigned open_flag = open_to_namei_flags(op->open_flag);
2657 	umode_t mode;
2658 	int error;
2659 	int acc_mode;
2660 	int create_error = 0;
2661 	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2662 	bool excl;
2663 
2664 	BUG_ON(dentry->d_inode);
2665 
2666 	/* Don't create child dentry for a dead directory. */
2667 	if (unlikely(IS_DEADDIR(dir))) {
2668 		error = -ENOENT;
2669 		goto out;
2670 	}
2671 
2672 	mode = op->mode;
2673 	if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2674 		mode &= ~current_umask();
2675 
2676 	excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT);
2677 	if (excl)
2678 		open_flag &= ~O_TRUNC;
2679 
2680 	/*
2681 	 * Checking write permission is tricky, bacuse we don't know if we are
2682 	 * going to actually need it: O_CREAT opens should work as long as the
2683 	 * file exists.  But checking existence breaks atomicity.  The trick is
2684 	 * to check access and if not granted clear O_CREAT from the flags.
2685 	 *
2686 	 * Another problem is returing the "right" error value (e.g. for an
2687 	 * O_EXCL open we want to return EEXIST not EROFS).
2688 	 */
2689 	if (((open_flag & (O_CREAT | O_TRUNC)) ||
2690 	    (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2691 		if (!(open_flag & O_CREAT)) {
2692 			/*
2693 			 * No O_CREATE -> atomicity not a requirement -> fall
2694 			 * back to lookup + open
2695 			 */
2696 			goto no_open;
2697 		} else if (open_flag & (O_EXCL | O_TRUNC)) {
2698 			/* Fall back and fail with the right error */
2699 			create_error = -EROFS;
2700 			goto no_open;
2701 		} else {
2702 			/* No side effects, safe to clear O_CREAT */
2703 			create_error = -EROFS;
2704 			open_flag &= ~O_CREAT;
2705 		}
2706 	}
2707 
2708 	if (open_flag & O_CREAT) {
2709 		error = may_o_create(&nd->path, dentry, mode);
2710 		if (error) {
2711 			create_error = error;
2712 			if (open_flag & O_EXCL)
2713 				goto no_open;
2714 			open_flag &= ~O_CREAT;
2715 		}
2716 	}
2717 
2718 	if (nd->flags & LOOKUP_DIRECTORY)
2719 		open_flag |= O_DIRECTORY;
2720 
2721 	file->f_path.dentry = DENTRY_NOT_SET;
2722 	file->f_path.mnt = nd->path.mnt;
2723 	error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2724 				      opened);
2725 	if (error < 0) {
2726 		if (create_error && error == -ENOENT)
2727 			error = create_error;
2728 		goto out;
2729 	}
2730 
2731 	if (error) {	/* returned 1, that is */
2732 		if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2733 			error = -EIO;
2734 			goto out;
2735 		}
2736 		if (file->f_path.dentry) {
2737 			dput(dentry);
2738 			dentry = file->f_path.dentry;
2739 		}
2740 		if (*opened & FILE_CREATED)
2741 			fsnotify_create(dir, dentry);
2742 		if (!dentry->d_inode) {
2743 			WARN_ON(*opened & FILE_CREATED);
2744 			if (create_error) {
2745 				error = create_error;
2746 				goto out;
2747 			}
2748 		} else {
2749 			if (excl && !(*opened & FILE_CREATED)) {
2750 				error = -EEXIST;
2751 				goto out;
2752 			}
2753 		}
2754 		goto looked_up;
2755 	}
2756 
2757 	/*
2758 	 * We didn't have the inode before the open, so check open permission
2759 	 * here.
2760 	 */
2761 	acc_mode = op->acc_mode;
2762 	if (*opened & FILE_CREATED) {
2763 		WARN_ON(!(open_flag & O_CREAT));
2764 		fsnotify_create(dir, dentry);
2765 		acc_mode = MAY_OPEN;
2766 	}
2767 	error = may_open(&file->f_path, acc_mode, open_flag);
2768 	if (error)
2769 		fput(file);
2770 
2771 out:
2772 	dput(dentry);
2773 	return error;
2774 
2775 no_open:
2776 	if (need_lookup) {
2777 		dentry = lookup_real(dir, dentry, nd->flags);
2778 		if (IS_ERR(dentry))
2779 			return PTR_ERR(dentry);
2780 
2781 		if (create_error) {
2782 			int open_flag = op->open_flag;
2783 
2784 			error = create_error;
2785 			if ((open_flag & O_EXCL)) {
2786 				if (!dentry->d_inode)
2787 					goto out;
2788 			} else if (!dentry->d_inode) {
2789 				goto out;
2790 			} else if ((open_flag & O_TRUNC) &&
2791 				   S_ISREG(dentry->d_inode->i_mode)) {
2792 				goto out;
2793 			}
2794 			/* will fail later, go on to get the right error */
2795 		}
2796 	}
2797 looked_up:
2798 	path->dentry = dentry;
2799 	path->mnt = nd->path.mnt;
2800 	return 1;
2801 }
2802 
2803 /*
2804  * Look up and maybe create and open the last component.
2805  *
2806  * Must be called with i_mutex held on parent.
2807  *
2808  * Returns 0 if the file was successfully atomically created (if necessary) and
2809  * opened.  In this case the file will be returned attached to @file.
2810  *
2811  * Returns 1 if the file was not completely opened at this time, though lookups
2812  * and creations will have been performed and the dentry returned in @path will
2813  * be positive upon return if O_CREAT was specified.  If O_CREAT wasn't
2814  * specified then a negative dentry may be returned.
2815  *
2816  * An error code is returned otherwise.
2817  *
2818  * FILE_CREATE will be set in @*opened if the dentry was created and will be
2819  * cleared otherwise prior to returning.
2820  */
2821 static int lookup_open(struct nameidata *nd, struct path *path,
2822 			struct file *file,
2823 			const struct open_flags *op,
2824 			bool got_write, int *opened)
2825 {
2826 	struct dentry *dir = nd->path.dentry;
2827 	struct inode *dir_inode = dir->d_inode;
2828 	struct dentry *dentry;
2829 	int error;
2830 	bool need_lookup;
2831 
2832 	*opened &= ~FILE_CREATED;
2833 	dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2834 	if (IS_ERR(dentry))
2835 		return PTR_ERR(dentry);
2836 
2837 	/* Cached positive dentry: will open in f_op->open */
2838 	if (!need_lookup && dentry->d_inode)
2839 		goto out_no_open;
2840 
2841 	if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2842 		return atomic_open(nd, dentry, path, file, op, got_write,
2843 				   need_lookup, opened);
2844 	}
2845 
2846 	if (need_lookup) {
2847 		BUG_ON(dentry->d_inode);
2848 
2849 		dentry = lookup_real(dir_inode, dentry, nd->flags);
2850 		if (IS_ERR(dentry))
2851 			return PTR_ERR(dentry);
2852 	}
2853 
2854 	/* Negative dentry, just create the file */
2855 	if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2856 		umode_t mode = op->mode;
2857 		if (!IS_POSIXACL(dir->d_inode))
2858 			mode &= ~current_umask();
2859 		/*
2860 		 * This write is needed to ensure that a
2861 		 * rw->ro transition does not occur between
2862 		 * the time when the file is created and when
2863 		 * a permanent write count is taken through
2864 		 * the 'struct file' in finish_open().
2865 		 */
2866 		if (!got_write) {
2867 			error = -EROFS;
2868 			goto out_dput;
2869 		}
2870 		*opened |= FILE_CREATED;
2871 		error = security_path_mknod(&nd->path, dentry, mode, 0);
2872 		if (error)
2873 			goto out_dput;
2874 		error = vfs_create(dir->d_inode, dentry, mode,
2875 				   nd->flags & LOOKUP_EXCL);
2876 		if (error)
2877 			goto out_dput;
2878 	}
2879 out_no_open:
2880 	path->dentry = dentry;
2881 	path->mnt = nd->path.mnt;
2882 	return 1;
2883 
2884 out_dput:
2885 	dput(dentry);
2886 	return error;
2887 }
2888 
2889 /*
2890  * Handle the last step of open()
2891  */
2892 static int do_last(struct nameidata *nd, struct path *path,
2893 		   struct file *file, const struct open_flags *op,
2894 		   int *opened, struct filename *name)
2895 {
2896 	struct dentry *dir = nd->path.dentry;
2897 	int open_flag = op->open_flag;
2898 	bool will_truncate = (open_flag & O_TRUNC) != 0;
2899 	bool got_write = false;
2900 	int acc_mode = op->acc_mode;
2901 	struct inode *inode;
2902 	bool symlink_ok = false;
2903 	struct path save_parent = { .dentry = NULL, .mnt = NULL };
2904 	bool retried = false;
2905 	int error;
2906 
2907 	nd->flags &= ~LOOKUP_PARENT;
2908 	nd->flags |= op->intent;
2909 
2910 	if (nd->last_type != LAST_NORM) {
2911 		error = handle_dots(nd, nd->last_type);
2912 		if (error)
2913 			return error;
2914 		goto finish_open;
2915 	}
2916 
2917 	if (!(open_flag & O_CREAT)) {
2918 		if (nd->last.name[nd->last.len])
2919 			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2920 		if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2921 			symlink_ok = true;
2922 		/* we _can_ be in RCU mode here */
2923 		error = lookup_fast(nd, path, &inode);
2924 		if (likely(!error))
2925 			goto finish_lookup;
2926 
2927 		if (error < 0)
2928 			goto out;
2929 
2930 		BUG_ON(nd->inode != dir->d_inode);
2931 	} else {
2932 		/* create side of things */
2933 		/*
2934 		 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
2935 		 * has been cleared when we got to the last component we are
2936 		 * about to look up
2937 		 */
2938 		error = complete_walk(nd);
2939 		if (error)
2940 			return error;
2941 
2942 		audit_inode(name, dir, LOOKUP_PARENT);
2943 		error = -EISDIR;
2944 		/* trailing slashes? */
2945 		if (nd->last.name[nd->last.len])
2946 			goto out;
2947 	}
2948 
2949 retry_lookup:
2950 	if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
2951 		error = mnt_want_write(nd->path.mnt);
2952 		if (!error)
2953 			got_write = true;
2954 		/*
2955 		 * do _not_ fail yet - we might not need that or fail with
2956 		 * a different error; let lookup_open() decide; we'll be
2957 		 * dropping this one anyway.
2958 		 */
2959 	}
2960 	mutex_lock(&dir->d_inode->i_mutex);
2961 	error = lookup_open(nd, path, file, op, got_write, opened);
2962 	mutex_unlock(&dir->d_inode->i_mutex);
2963 
2964 	if (error <= 0) {
2965 		if (error)
2966 			goto out;
2967 
2968 		if ((*opened & FILE_CREATED) ||
2969 		    !S_ISREG(file_inode(file)->i_mode))
2970 			will_truncate = false;
2971 
2972 		audit_inode(name, file->f_path.dentry, 0);
2973 		goto opened;
2974 	}
2975 
2976 	if (*opened & FILE_CREATED) {
2977 		/* Don't check for write permission, don't truncate */
2978 		open_flag &= ~O_TRUNC;
2979 		will_truncate = false;
2980 		acc_mode = MAY_OPEN;
2981 		path_to_nameidata(path, nd);
2982 		goto finish_open_created;
2983 	}
2984 
2985 	/*
2986 	 * create/update audit record if it already exists.
2987 	 */
2988 	if (d_is_positive(path->dentry))
2989 		audit_inode(name, path->dentry, 0);
2990 
2991 	/*
2992 	 * If atomic_open() acquired write access it is dropped now due to
2993 	 * possible mount and symlink following (this might be optimized away if
2994 	 * necessary...)
2995 	 */
2996 	if (got_write) {
2997 		mnt_drop_write(nd->path.mnt);
2998 		got_write = false;
2999 	}
3000 
3001 	error = -EEXIST;
3002 	if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))
3003 		goto exit_dput;
3004 
3005 	error = follow_managed(path, nd->flags);
3006 	if (error < 0)
3007 		goto exit_dput;
3008 
3009 	if (error)
3010 		nd->flags |= LOOKUP_JUMPED;
3011 
3012 	BUG_ON(nd->flags & LOOKUP_RCU);
3013 	inode = path->dentry->d_inode;
3014 finish_lookup:
3015 	/* we _can_ be in RCU mode here */
3016 	error = -ENOENT;
3017 	if (!inode || d_is_negative(path->dentry)) {
3018 		path_to_nameidata(path, nd);
3019 		goto out;
3020 	}
3021 
3022 	if (should_follow_link(path->dentry, !symlink_ok)) {
3023 		if (nd->flags & LOOKUP_RCU) {
3024 			if (unlikely(unlazy_walk(nd, path->dentry))) {
3025 				error = -ECHILD;
3026 				goto out;
3027 			}
3028 		}
3029 		BUG_ON(inode != path->dentry->d_inode);
3030 		return 1;
3031 	}
3032 
3033 	if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) {
3034 		path_to_nameidata(path, nd);
3035 	} else {
3036 		save_parent.dentry = nd->path.dentry;
3037 		save_parent.mnt = mntget(path->mnt);
3038 		nd->path.dentry = path->dentry;
3039 
3040 	}
3041 	nd->inode = inode;
3042 	/* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
3043 finish_open:
3044 	error = complete_walk(nd);
3045 	if (error) {
3046 		path_put(&save_parent);
3047 		return error;
3048 	}
3049 	audit_inode(name, nd->path.dentry, 0);
3050 	error = -EISDIR;
3051 	if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3052 		goto out;
3053 	error = -ENOTDIR;
3054 	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3055 		goto out;
3056 	if (!S_ISREG(nd->inode->i_mode))
3057 		will_truncate = false;
3058 
3059 	if (will_truncate) {
3060 		error = mnt_want_write(nd->path.mnt);
3061 		if (error)
3062 			goto out;
3063 		got_write = true;
3064 	}
3065 finish_open_created:
3066 	error = may_open(&nd->path, acc_mode, open_flag);
3067 	if (error)
3068 		goto out;
3069 	file->f_path.mnt = nd->path.mnt;
3070 	error = finish_open(file, nd->path.dentry, NULL, opened);
3071 	if (error) {
3072 		if (error == -EOPENSTALE)
3073 			goto stale_open;
3074 		goto out;
3075 	}
3076 opened:
3077 	error = open_check_o_direct(file);
3078 	if (error)
3079 		goto exit_fput;
3080 	error = ima_file_check(file, op->acc_mode);
3081 	if (error)
3082 		goto exit_fput;
3083 
3084 	if (will_truncate) {
3085 		error = handle_truncate(file);
3086 		if (error)
3087 			goto exit_fput;
3088 	}
3089 out:
3090 	if (got_write)
3091 		mnt_drop_write(nd->path.mnt);
3092 	path_put(&save_parent);
3093 	terminate_walk(nd);
3094 	return error;
3095 
3096 exit_dput:
3097 	path_put_conditional(path, nd);
3098 	goto out;
3099 exit_fput:
3100 	fput(file);
3101 	goto out;
3102 
3103 stale_open:
3104 	/* If no saved parent or already retried then can't retry */
3105 	if (!save_parent.dentry || retried)
3106 		goto out;
3107 
3108 	BUG_ON(save_parent.dentry != dir);
3109 	path_put(&nd->path);
3110 	nd->path = save_parent;
3111 	nd->inode = dir->d_inode;
3112 	save_parent.mnt = NULL;
3113 	save_parent.dentry = NULL;
3114 	if (got_write) {
3115 		mnt_drop_write(nd->path.mnt);
3116 		got_write = false;
3117 	}
3118 	retried = true;
3119 	goto retry_lookup;
3120 }
3121 
3122 static int do_tmpfile(int dfd, struct filename *pathname,
3123 		struct nameidata *nd, int flags,
3124 		const struct open_flags *op,
3125 		struct file *file, int *opened)
3126 {
3127 	static const struct qstr name = QSTR_INIT("/", 1);
3128 	struct dentry *dentry, *child;
3129 	struct inode *dir;
3130 	int error = path_lookupat(dfd, pathname->name,
3131 				  flags | LOOKUP_DIRECTORY, nd);
3132 	if (unlikely(error))
3133 		return error;
3134 	error = mnt_want_write(nd->path.mnt);
3135 	if (unlikely(error))
3136 		goto out;
3137 	/* we want directory to be writable */
3138 	error = inode_permission(nd->inode, MAY_WRITE | MAY_EXEC);
3139 	if (error)
3140 		goto out2;
3141 	dentry = nd->path.dentry;
3142 	dir = dentry->d_inode;
3143 	if (!dir->i_op->tmpfile) {
3144 		error = -EOPNOTSUPP;
3145 		goto out2;
3146 	}
3147 	child = d_alloc(dentry, &name);
3148 	if (unlikely(!child)) {
3149 		error = -ENOMEM;
3150 		goto out2;
3151 	}
3152 	nd->flags &= ~LOOKUP_DIRECTORY;
3153 	nd->flags |= op->intent;
3154 	dput(nd->path.dentry);
3155 	nd->path.dentry = child;
3156 	error = dir->i_op->tmpfile(dir, nd->path.dentry, op->mode);
3157 	if (error)
3158 		goto out2;
3159 	audit_inode(pathname, nd->path.dentry, 0);
3160 	error = may_open(&nd->path, op->acc_mode, op->open_flag);
3161 	if (error)
3162 		goto out2;
3163 	file->f_path.mnt = nd->path.mnt;
3164 	error = finish_open(file, nd->path.dentry, NULL, opened);
3165 	if (error)
3166 		goto out2;
3167 	error = open_check_o_direct(file);
3168 	if (error) {
3169 		fput(file);
3170 	} else if (!(op->open_flag & O_EXCL)) {
3171 		struct inode *inode = file_inode(file);
3172 		spin_lock(&inode->i_lock);
3173 		inode->i_state |= I_LINKABLE;
3174 		spin_unlock(&inode->i_lock);
3175 	}
3176 out2:
3177 	mnt_drop_write(nd->path.mnt);
3178 out:
3179 	path_put(&nd->path);
3180 	return error;
3181 }
3182 
3183 static struct file *path_openat(int dfd, struct filename *pathname,
3184 		struct nameidata *nd, const struct open_flags *op, int flags)
3185 {
3186 	struct file *base = NULL;
3187 	struct file *file;
3188 	struct path path;
3189 	int opened = 0;
3190 	int error;
3191 
3192 	file = get_empty_filp();
3193 	if (IS_ERR(file))
3194 		return file;
3195 
3196 	file->f_flags = op->open_flag;
3197 
3198 	if (unlikely(file->f_flags & __O_TMPFILE)) {
3199 		error = do_tmpfile(dfd, pathname, nd, flags, op, file, &opened);
3200 		goto out;
3201 	}
3202 
3203 	error = path_init(dfd, pathname->name, flags | LOOKUP_PARENT, nd, &base);
3204 	if (unlikely(error))
3205 		goto out;
3206 
3207 	current->total_link_count = 0;
3208 	error = link_path_walk(pathname->name, nd);
3209 	if (unlikely(error))
3210 		goto out;
3211 
3212 	error = do_last(nd, &path, file, op, &opened, pathname);
3213 	while (unlikely(error > 0)) { /* trailing symlink */
3214 		struct path link = path;
3215 		void *cookie;
3216 		if (!(nd->flags & LOOKUP_FOLLOW)) {
3217 			path_put_conditional(&path, nd);
3218 			path_put(&nd->path);
3219 			error = -ELOOP;
3220 			break;
3221 		}
3222 		error = may_follow_link(&link, nd);
3223 		if (unlikely(error))
3224 			break;
3225 		nd->flags |= LOOKUP_PARENT;
3226 		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3227 		error = follow_link(&link, nd, &cookie);
3228 		if (unlikely(error))
3229 			break;
3230 		error = do_last(nd, &path, file, op, &opened, pathname);
3231 		put_link(nd, &link, cookie);
3232 	}
3233 out:
3234 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
3235 		path_put(&nd->root);
3236 	if (base)
3237 		fput(base);
3238 	if (!(opened & FILE_OPENED)) {
3239 		BUG_ON(!error);
3240 		put_filp(file);
3241 	}
3242 	if (unlikely(error)) {
3243 		if (error == -EOPENSTALE) {
3244 			if (flags & LOOKUP_RCU)
3245 				error = -ECHILD;
3246 			else
3247 				error = -ESTALE;
3248 		}
3249 		file = ERR_PTR(error);
3250 	}
3251 	return file;
3252 }
3253 
3254 struct file *do_filp_open(int dfd, struct filename *pathname,
3255 		const struct open_flags *op)
3256 {
3257 	struct nameidata nd;
3258 	int flags = op->lookup_flags;
3259 	struct file *filp;
3260 
3261 	filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
3262 	if (unlikely(filp == ERR_PTR(-ECHILD)))
3263 		filp = path_openat(dfd, pathname, &nd, op, flags);
3264 	if (unlikely(filp == ERR_PTR(-ESTALE)))
3265 		filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
3266 	return filp;
3267 }
3268 
3269 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3270 		const char *name, const struct open_flags *op)
3271 {
3272 	struct nameidata nd;
3273 	struct file *file;
3274 	struct filename filename = { .name = name };
3275 	int flags = op->lookup_flags | LOOKUP_ROOT;
3276 
3277 	nd.root.mnt = mnt;
3278 	nd.root.dentry = dentry;
3279 
3280 	if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3281 		return ERR_PTR(-ELOOP);
3282 
3283 	file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_RCU);
3284 	if (unlikely(file == ERR_PTR(-ECHILD)))
3285 		file = path_openat(-1, &filename, &nd, op, flags);
3286 	if (unlikely(file == ERR_PTR(-ESTALE)))
3287 		file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_REVAL);
3288 	return file;
3289 }
3290 
3291 struct dentry *kern_path_create(int dfd, const char *pathname,
3292 				struct path *path, unsigned int lookup_flags)
3293 {
3294 	struct dentry *dentry = ERR_PTR(-EEXIST);
3295 	struct nameidata nd;
3296 	int err2;
3297 	int error;
3298 	bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3299 
3300 	/*
3301 	 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3302 	 * other flags passed in are ignored!
3303 	 */
3304 	lookup_flags &= LOOKUP_REVAL;
3305 
3306 	error = do_path_lookup(dfd, pathname, LOOKUP_PARENT|lookup_flags, &nd);
3307 	if (error)
3308 		return ERR_PTR(error);
3309 
3310 	/*
3311 	 * Yucky last component or no last component at all?
3312 	 * (foo/., foo/.., /////)
3313 	 */
3314 	if (nd.last_type != LAST_NORM)
3315 		goto out;
3316 	nd.flags &= ~LOOKUP_PARENT;
3317 	nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3318 
3319 	/* don't fail immediately if it's r/o, at least try to report other errors */
3320 	err2 = mnt_want_write(nd.path.mnt);
3321 	/*
3322 	 * Do the final lookup.
3323 	 */
3324 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3325 	dentry = lookup_hash(&nd);
3326 	if (IS_ERR(dentry))
3327 		goto unlock;
3328 
3329 	error = -EEXIST;
3330 	if (d_is_positive(dentry))
3331 		goto fail;
3332 
3333 	/*
3334 	 * Special case - lookup gave negative, but... we had foo/bar/
3335 	 * From the vfs_mknod() POV we just have a negative dentry -
3336 	 * all is fine. Let's be bastards - you had / on the end, you've
3337 	 * been asking for (non-existent) directory. -ENOENT for you.
3338 	 */
3339 	if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
3340 		error = -ENOENT;
3341 		goto fail;
3342 	}
3343 	if (unlikely(err2)) {
3344 		error = err2;
3345 		goto fail;
3346 	}
3347 	*path = nd.path;
3348 	return dentry;
3349 fail:
3350 	dput(dentry);
3351 	dentry = ERR_PTR(error);
3352 unlock:
3353 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3354 	if (!err2)
3355 		mnt_drop_write(nd.path.mnt);
3356 out:
3357 	path_put(&nd.path);
3358 	return dentry;
3359 }
3360 EXPORT_SYMBOL(kern_path_create);
3361 
3362 void done_path_create(struct path *path, struct dentry *dentry)
3363 {
3364 	dput(dentry);
3365 	mutex_unlock(&path->dentry->d_inode->i_mutex);
3366 	mnt_drop_write(path->mnt);
3367 	path_put(path);
3368 }
3369 EXPORT_SYMBOL(done_path_create);
3370 
3371 struct dentry *user_path_create(int dfd, const char __user *pathname,
3372 				struct path *path, unsigned int lookup_flags)
3373 {
3374 	struct filename *tmp = getname(pathname);
3375 	struct dentry *res;
3376 	if (IS_ERR(tmp))
3377 		return ERR_CAST(tmp);
3378 	res = kern_path_create(dfd, tmp->name, path, lookup_flags);
3379 	putname(tmp);
3380 	return res;
3381 }
3382 EXPORT_SYMBOL(user_path_create);
3383 
3384 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3385 {
3386 	int error = may_create(dir, dentry);
3387 
3388 	if (error)
3389 		return error;
3390 
3391 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3392 		return -EPERM;
3393 
3394 	if (!dir->i_op->mknod)
3395 		return -EPERM;
3396 
3397 	error = devcgroup_inode_mknod(mode, dev);
3398 	if (error)
3399 		return error;
3400 
3401 	error = security_inode_mknod(dir, dentry, mode, dev);
3402 	if (error)
3403 		return error;
3404 
3405 	error = dir->i_op->mknod(dir, dentry, mode, dev);
3406 	if (!error)
3407 		fsnotify_create(dir, dentry);
3408 	return error;
3409 }
3410 EXPORT_SYMBOL(vfs_mknod);
3411 
3412 static int may_mknod(umode_t mode)
3413 {
3414 	switch (mode & S_IFMT) {
3415 	case S_IFREG:
3416 	case S_IFCHR:
3417 	case S_IFBLK:
3418 	case S_IFIFO:
3419 	case S_IFSOCK:
3420 	case 0: /* zero mode translates to S_IFREG */
3421 		return 0;
3422 	case S_IFDIR:
3423 		return -EPERM;
3424 	default:
3425 		return -EINVAL;
3426 	}
3427 }
3428 
3429 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3430 		unsigned, dev)
3431 {
3432 	struct dentry *dentry;
3433 	struct path path;
3434 	int error;
3435 	unsigned int lookup_flags = 0;
3436 
3437 	error = may_mknod(mode);
3438 	if (error)
3439 		return error;
3440 retry:
3441 	dentry = user_path_create(dfd, filename, &path, lookup_flags);
3442 	if (IS_ERR(dentry))
3443 		return PTR_ERR(dentry);
3444 
3445 	if (!IS_POSIXACL(path.dentry->d_inode))
3446 		mode &= ~current_umask();
3447 	error = security_path_mknod(&path, dentry, mode, dev);
3448 	if (error)
3449 		goto out;
3450 	switch (mode & S_IFMT) {
3451 		case 0: case S_IFREG:
3452 			error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3453 			break;
3454 		case S_IFCHR: case S_IFBLK:
3455 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3456 					new_decode_dev(dev));
3457 			break;
3458 		case S_IFIFO: case S_IFSOCK:
3459 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3460 			break;
3461 	}
3462 out:
3463 	done_path_create(&path, dentry);
3464 	if (retry_estale(error, lookup_flags)) {
3465 		lookup_flags |= LOOKUP_REVAL;
3466 		goto retry;
3467 	}
3468 	return error;
3469 }
3470 
3471 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3472 {
3473 	return sys_mknodat(AT_FDCWD, filename, mode, dev);
3474 }
3475 
3476 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3477 {
3478 	int error = may_create(dir, dentry);
3479 	unsigned max_links = dir->i_sb->s_max_links;
3480 
3481 	if (error)
3482 		return error;
3483 
3484 	if (!dir->i_op->mkdir)
3485 		return -EPERM;
3486 
3487 	mode &= (S_IRWXUGO|S_ISVTX);
3488 	error = security_inode_mkdir(dir, dentry, mode);
3489 	if (error)
3490 		return error;
3491 
3492 	if (max_links && dir->i_nlink >= max_links)
3493 		return -EMLINK;
3494 
3495 	error = dir->i_op->mkdir(dir, dentry, mode);
3496 	if (!error)
3497 		fsnotify_mkdir(dir, dentry);
3498 	return error;
3499 }
3500 EXPORT_SYMBOL(vfs_mkdir);
3501 
3502 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3503 {
3504 	struct dentry *dentry;
3505 	struct path path;
3506 	int error;
3507 	unsigned int lookup_flags = LOOKUP_DIRECTORY;
3508 
3509 retry:
3510 	dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3511 	if (IS_ERR(dentry))
3512 		return PTR_ERR(dentry);
3513 
3514 	if (!IS_POSIXACL(path.dentry->d_inode))
3515 		mode &= ~current_umask();
3516 	error = security_path_mkdir(&path, dentry, mode);
3517 	if (!error)
3518 		error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3519 	done_path_create(&path, dentry);
3520 	if (retry_estale(error, lookup_flags)) {
3521 		lookup_flags |= LOOKUP_REVAL;
3522 		goto retry;
3523 	}
3524 	return error;
3525 }
3526 
3527 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3528 {
3529 	return sys_mkdirat(AT_FDCWD, pathname, mode);
3530 }
3531 
3532 /*
3533  * The dentry_unhash() helper will try to drop the dentry early: we
3534  * should have a usage count of 1 if we're the only user of this
3535  * dentry, and if that is true (possibly after pruning the dcache),
3536  * then we drop the dentry now.
3537  *
3538  * A low-level filesystem can, if it choses, legally
3539  * do a
3540  *
3541  *	if (!d_unhashed(dentry))
3542  *		return -EBUSY;
3543  *
3544  * if it cannot handle the case of removing a directory
3545  * that is still in use by something else..
3546  */
3547 void dentry_unhash(struct dentry *dentry)
3548 {
3549 	shrink_dcache_parent(dentry);
3550 	spin_lock(&dentry->d_lock);
3551 	if (dentry->d_lockref.count == 1)
3552 		__d_drop(dentry);
3553 	spin_unlock(&dentry->d_lock);
3554 }
3555 EXPORT_SYMBOL(dentry_unhash);
3556 
3557 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3558 {
3559 	int error = may_delete(dir, dentry, 1);
3560 
3561 	if (error)
3562 		return error;
3563 
3564 	if (!dir->i_op->rmdir)
3565 		return -EPERM;
3566 
3567 	dget(dentry);
3568 	mutex_lock(&dentry->d_inode->i_mutex);
3569 
3570 	error = -EBUSY;
3571 	if (d_mountpoint(dentry))
3572 		goto out;
3573 
3574 	error = security_inode_rmdir(dir, dentry);
3575 	if (error)
3576 		goto out;
3577 
3578 	shrink_dcache_parent(dentry);
3579 	error = dir->i_op->rmdir(dir, dentry);
3580 	if (error)
3581 		goto out;
3582 
3583 	dentry->d_inode->i_flags |= S_DEAD;
3584 	dont_mount(dentry);
3585 
3586 out:
3587 	mutex_unlock(&dentry->d_inode->i_mutex);
3588 	dput(dentry);
3589 	if (!error)
3590 		d_delete(dentry);
3591 	return error;
3592 }
3593 EXPORT_SYMBOL(vfs_rmdir);
3594 
3595 static long do_rmdir(int dfd, const char __user *pathname)
3596 {
3597 	int error = 0;
3598 	struct filename *name;
3599 	struct dentry *dentry;
3600 	struct nameidata nd;
3601 	unsigned int lookup_flags = 0;
3602 retry:
3603 	name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3604 	if (IS_ERR(name))
3605 		return PTR_ERR(name);
3606 
3607 	switch(nd.last_type) {
3608 	case LAST_DOTDOT:
3609 		error = -ENOTEMPTY;
3610 		goto exit1;
3611 	case LAST_DOT:
3612 		error = -EINVAL;
3613 		goto exit1;
3614 	case LAST_ROOT:
3615 		error = -EBUSY;
3616 		goto exit1;
3617 	}
3618 
3619 	nd.flags &= ~LOOKUP_PARENT;
3620 	error = mnt_want_write(nd.path.mnt);
3621 	if (error)
3622 		goto exit1;
3623 
3624 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3625 	dentry = lookup_hash(&nd);
3626 	error = PTR_ERR(dentry);
3627 	if (IS_ERR(dentry))
3628 		goto exit2;
3629 	if (!dentry->d_inode) {
3630 		error = -ENOENT;
3631 		goto exit3;
3632 	}
3633 	error = security_path_rmdir(&nd.path, dentry);
3634 	if (error)
3635 		goto exit3;
3636 	error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
3637 exit3:
3638 	dput(dentry);
3639 exit2:
3640 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3641 	mnt_drop_write(nd.path.mnt);
3642 exit1:
3643 	path_put(&nd.path);
3644 	putname(name);
3645 	if (retry_estale(error, lookup_flags)) {
3646 		lookup_flags |= LOOKUP_REVAL;
3647 		goto retry;
3648 	}
3649 	return error;
3650 }
3651 
3652 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3653 {
3654 	return do_rmdir(AT_FDCWD, pathname);
3655 }
3656 
3657 /**
3658  * vfs_unlink - unlink a filesystem object
3659  * @dir:	parent directory
3660  * @dentry:	victim
3661  * @delegated_inode: returns victim inode, if the inode is delegated.
3662  *
3663  * The caller must hold dir->i_mutex.
3664  *
3665  * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3666  * return a reference to the inode in delegated_inode.  The caller
3667  * should then break the delegation on that inode and retry.  Because
3668  * breaking a delegation may take a long time, the caller should drop
3669  * dir->i_mutex before doing so.
3670  *
3671  * Alternatively, a caller may pass NULL for delegated_inode.  This may
3672  * be appropriate for callers that expect the underlying filesystem not
3673  * to be NFS exported.
3674  */
3675 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3676 {
3677 	struct inode *target = dentry->d_inode;
3678 	int error = may_delete(dir, dentry, 0);
3679 
3680 	if (error)
3681 		return error;
3682 
3683 	if (!dir->i_op->unlink)
3684 		return -EPERM;
3685 
3686 	mutex_lock(&target->i_mutex);
3687 	if (d_mountpoint(dentry))
3688 		error = -EBUSY;
3689 	else {
3690 		error = security_inode_unlink(dir, dentry);
3691 		if (!error) {
3692 			error = try_break_deleg(target, delegated_inode);
3693 			if (error)
3694 				goto out;
3695 			error = dir->i_op->unlink(dir, dentry);
3696 			if (!error)
3697 				dont_mount(dentry);
3698 		}
3699 	}
3700 out:
3701 	mutex_unlock(&target->i_mutex);
3702 
3703 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
3704 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3705 		fsnotify_link_count(target);
3706 		d_delete(dentry);
3707 	}
3708 
3709 	return error;
3710 }
3711 EXPORT_SYMBOL(vfs_unlink);
3712 
3713 /*
3714  * Make sure that the actual truncation of the file will occur outside its
3715  * directory's i_mutex.  Truncate can take a long time if there is a lot of
3716  * writeout happening, and we don't want to prevent access to the directory
3717  * while waiting on the I/O.
3718  */
3719 static long do_unlinkat(int dfd, const char __user *pathname)
3720 {
3721 	int error;
3722 	struct filename *name;
3723 	struct dentry *dentry;
3724 	struct nameidata nd;
3725 	struct inode *inode = NULL;
3726 	struct inode *delegated_inode = NULL;
3727 	unsigned int lookup_flags = 0;
3728 retry:
3729 	name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3730 	if (IS_ERR(name))
3731 		return PTR_ERR(name);
3732 
3733 	error = -EISDIR;
3734 	if (nd.last_type != LAST_NORM)
3735 		goto exit1;
3736 
3737 	nd.flags &= ~LOOKUP_PARENT;
3738 	error = mnt_want_write(nd.path.mnt);
3739 	if (error)
3740 		goto exit1;
3741 retry_deleg:
3742 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3743 	dentry = lookup_hash(&nd);
3744 	error = PTR_ERR(dentry);
3745 	if (!IS_ERR(dentry)) {
3746 		/* Why not before? Because we want correct error value */
3747 		if (nd.last.name[nd.last.len])
3748 			goto slashes;
3749 		inode = dentry->d_inode;
3750 		if (d_is_negative(dentry))
3751 			goto slashes;
3752 		ihold(inode);
3753 		error = security_path_unlink(&nd.path, dentry);
3754 		if (error)
3755 			goto exit2;
3756 		error = vfs_unlink(nd.path.dentry->d_inode, dentry, &delegated_inode);
3757 exit2:
3758 		dput(dentry);
3759 	}
3760 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3761 	if (inode)
3762 		iput(inode);	/* truncate the inode here */
3763 	inode = NULL;
3764 	if (delegated_inode) {
3765 		error = break_deleg_wait(&delegated_inode);
3766 		if (!error)
3767 			goto retry_deleg;
3768 	}
3769 	mnt_drop_write(nd.path.mnt);
3770 exit1:
3771 	path_put(&nd.path);
3772 	putname(name);
3773 	if (retry_estale(error, lookup_flags)) {
3774 		lookup_flags |= LOOKUP_REVAL;
3775 		inode = NULL;
3776 		goto retry;
3777 	}
3778 	return error;
3779 
3780 slashes:
3781 	if (d_is_negative(dentry))
3782 		error = -ENOENT;
3783 	else if (d_is_dir(dentry))
3784 		error = -EISDIR;
3785 	else
3786 		error = -ENOTDIR;
3787 	goto exit2;
3788 }
3789 
3790 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3791 {
3792 	if ((flag & ~AT_REMOVEDIR) != 0)
3793 		return -EINVAL;
3794 
3795 	if (flag & AT_REMOVEDIR)
3796 		return do_rmdir(dfd, pathname);
3797 
3798 	return do_unlinkat(dfd, pathname);
3799 }
3800 
3801 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3802 {
3803 	return do_unlinkat(AT_FDCWD, pathname);
3804 }
3805 
3806 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3807 {
3808 	int error = may_create(dir, dentry);
3809 
3810 	if (error)
3811 		return error;
3812 
3813 	if (!dir->i_op->symlink)
3814 		return -EPERM;
3815 
3816 	error = security_inode_symlink(dir, dentry, oldname);
3817 	if (error)
3818 		return error;
3819 
3820 	error = dir->i_op->symlink(dir, dentry, oldname);
3821 	if (!error)
3822 		fsnotify_create(dir, dentry);
3823 	return error;
3824 }
3825 EXPORT_SYMBOL(vfs_symlink);
3826 
3827 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3828 		int, newdfd, const char __user *, newname)
3829 {
3830 	int error;
3831 	struct filename *from;
3832 	struct dentry *dentry;
3833 	struct path path;
3834 	unsigned int lookup_flags = 0;
3835 
3836 	from = getname(oldname);
3837 	if (IS_ERR(from))
3838 		return PTR_ERR(from);
3839 retry:
3840 	dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3841 	error = PTR_ERR(dentry);
3842 	if (IS_ERR(dentry))
3843 		goto out_putname;
3844 
3845 	error = security_path_symlink(&path, dentry, from->name);
3846 	if (!error)
3847 		error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3848 	done_path_create(&path, dentry);
3849 	if (retry_estale(error, lookup_flags)) {
3850 		lookup_flags |= LOOKUP_REVAL;
3851 		goto retry;
3852 	}
3853 out_putname:
3854 	putname(from);
3855 	return error;
3856 }
3857 
3858 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3859 {
3860 	return sys_symlinkat(oldname, AT_FDCWD, newname);
3861 }
3862 
3863 /**
3864  * vfs_link - create a new link
3865  * @old_dentry:	object to be linked
3866  * @dir:	new parent
3867  * @new_dentry:	where to create the new link
3868  * @delegated_inode: returns inode needing a delegation break
3869  *
3870  * The caller must hold dir->i_mutex
3871  *
3872  * If vfs_link discovers a delegation on the to-be-linked file in need
3873  * of breaking, it will return -EWOULDBLOCK and return a reference to the
3874  * inode in delegated_inode.  The caller should then break the delegation
3875  * and retry.  Because breaking a delegation may take a long time, the
3876  * caller should drop the i_mutex before doing so.
3877  *
3878  * Alternatively, a caller may pass NULL for delegated_inode.  This may
3879  * be appropriate for callers that expect the underlying filesystem not
3880  * to be NFS exported.
3881  */
3882 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
3883 {
3884 	struct inode *inode = old_dentry->d_inode;
3885 	unsigned max_links = dir->i_sb->s_max_links;
3886 	int error;
3887 
3888 	if (!inode)
3889 		return -ENOENT;
3890 
3891 	error = may_create(dir, new_dentry);
3892 	if (error)
3893 		return error;
3894 
3895 	if (dir->i_sb != inode->i_sb)
3896 		return -EXDEV;
3897 
3898 	/*
3899 	 * A link to an append-only or immutable file cannot be created.
3900 	 */
3901 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3902 		return -EPERM;
3903 	if (!dir->i_op->link)
3904 		return -EPERM;
3905 	if (S_ISDIR(inode->i_mode))
3906 		return -EPERM;
3907 
3908 	error = security_inode_link(old_dentry, dir, new_dentry);
3909 	if (error)
3910 		return error;
3911 
3912 	mutex_lock(&inode->i_mutex);
3913 	/* Make sure we don't allow creating hardlink to an unlinked file */
3914 	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
3915 		error =  -ENOENT;
3916 	else if (max_links && inode->i_nlink >= max_links)
3917 		error = -EMLINK;
3918 	else {
3919 		error = try_break_deleg(inode, delegated_inode);
3920 		if (!error)
3921 			error = dir->i_op->link(old_dentry, dir, new_dentry);
3922 	}
3923 
3924 	if (!error && (inode->i_state & I_LINKABLE)) {
3925 		spin_lock(&inode->i_lock);
3926 		inode->i_state &= ~I_LINKABLE;
3927 		spin_unlock(&inode->i_lock);
3928 	}
3929 	mutex_unlock(&inode->i_mutex);
3930 	if (!error)
3931 		fsnotify_link(dir, inode, new_dentry);
3932 	return error;
3933 }
3934 EXPORT_SYMBOL(vfs_link);
3935 
3936 /*
3937  * Hardlinks are often used in delicate situations.  We avoid
3938  * security-related surprises by not following symlinks on the
3939  * newname.  --KAB
3940  *
3941  * We don't follow them on the oldname either to be compatible
3942  * with linux 2.0, and to avoid hard-linking to directories
3943  * and other special files.  --ADM
3944  */
3945 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3946 		int, newdfd, const char __user *, newname, int, flags)
3947 {
3948 	struct dentry *new_dentry;
3949 	struct path old_path, new_path;
3950 	struct inode *delegated_inode = NULL;
3951 	int how = 0;
3952 	int error;
3953 
3954 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
3955 		return -EINVAL;
3956 	/*
3957 	 * To use null names we require CAP_DAC_READ_SEARCH
3958 	 * This ensures that not everyone will be able to create
3959 	 * handlink using the passed filedescriptor.
3960 	 */
3961 	if (flags & AT_EMPTY_PATH) {
3962 		if (!capable(CAP_DAC_READ_SEARCH))
3963 			return -ENOENT;
3964 		how = LOOKUP_EMPTY;
3965 	}
3966 
3967 	if (flags & AT_SYMLINK_FOLLOW)
3968 		how |= LOOKUP_FOLLOW;
3969 retry:
3970 	error = user_path_at(olddfd, oldname, how, &old_path);
3971 	if (error)
3972 		return error;
3973 
3974 	new_dentry = user_path_create(newdfd, newname, &new_path,
3975 					(how & LOOKUP_REVAL));
3976 	error = PTR_ERR(new_dentry);
3977 	if (IS_ERR(new_dentry))
3978 		goto out;
3979 
3980 	error = -EXDEV;
3981 	if (old_path.mnt != new_path.mnt)
3982 		goto out_dput;
3983 	error = may_linkat(&old_path);
3984 	if (unlikely(error))
3985 		goto out_dput;
3986 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
3987 	if (error)
3988 		goto out_dput;
3989 	error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
3990 out_dput:
3991 	done_path_create(&new_path, new_dentry);
3992 	if (delegated_inode) {
3993 		error = break_deleg_wait(&delegated_inode);
3994 		if (!error) {
3995 			path_put(&old_path);
3996 			goto retry;
3997 		}
3998 	}
3999 	if (retry_estale(error, how)) {
4000 		path_put(&old_path);
4001 		how |= LOOKUP_REVAL;
4002 		goto retry;
4003 	}
4004 out:
4005 	path_put(&old_path);
4006 
4007 	return error;
4008 }
4009 
4010 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4011 {
4012 	return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4013 }
4014 
4015 /**
4016  * vfs_rename - rename a filesystem object
4017  * @old_dir:	parent of source
4018  * @old_dentry:	source
4019  * @new_dir:	parent of destination
4020  * @new_dentry:	destination
4021  * @delegated_inode: returns an inode needing a delegation break
4022  * @flags:	rename flags
4023  *
4024  * The caller must hold multiple mutexes--see lock_rename()).
4025  *
4026  * If vfs_rename discovers a delegation in need of breaking at either
4027  * the source or destination, it will return -EWOULDBLOCK and return a
4028  * reference to the inode in delegated_inode.  The caller should then
4029  * break the delegation and retry.  Because breaking a delegation may
4030  * take a long time, the caller should drop all locks before doing
4031  * so.
4032  *
4033  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4034  * be appropriate for callers that expect the underlying filesystem not
4035  * to be NFS exported.
4036  *
4037  * The worst of all namespace operations - renaming directory. "Perverted"
4038  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4039  * Problems:
4040  *	a) we can get into loop creation.
4041  *	b) race potential - two innocent renames can create a loop together.
4042  *	   That's where 4.4 screws up. Current fix: serialization on
4043  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4044  *	   story.
4045  *	c) we have to lock _four_ objects - parents and victim (if it exists),
4046  *	   and source (if it is not a directory).
4047  *	   And that - after we got ->i_mutex on parents (until then we don't know
4048  *	   whether the target exists).  Solution: try to be smart with locking
4049  *	   order for inodes.  We rely on the fact that tree topology may change
4050  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
4051  *	   move will be locked.  Thus we can rank directories by the tree
4052  *	   (ancestors first) and rank all non-directories after them.
4053  *	   That works since everybody except rename does "lock parent, lookup,
4054  *	   lock child" and rename is under ->s_vfs_rename_mutex.
4055  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
4056  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
4057  *	   we'd better make sure that there's no link(2) for them.
4058  *	d) conversion from fhandle to dentry may come in the wrong moment - when
4059  *	   we are removing the target. Solution: we will have to grab ->i_mutex
4060  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4061  *	   ->i_mutex on parents, which works but leads to some truly excessive
4062  *	   locking].
4063  */
4064 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4065 	       struct inode *new_dir, struct dentry *new_dentry,
4066 	       struct inode **delegated_inode, unsigned int flags)
4067 {
4068 	int error;
4069 	bool is_dir = d_is_dir(old_dentry);
4070 	const unsigned char *old_name;
4071 	struct inode *source = old_dentry->d_inode;
4072 	struct inode *target = new_dentry->d_inode;
4073 	bool new_is_dir = false;
4074 	unsigned max_links = new_dir->i_sb->s_max_links;
4075 
4076 	if (source == target)
4077 		return 0;
4078 
4079 	error = may_delete(old_dir, old_dentry, is_dir);
4080 	if (error)
4081 		return error;
4082 
4083 	if (!target) {
4084 		error = may_create(new_dir, new_dentry);
4085 	} else {
4086 		new_is_dir = d_is_dir(new_dentry);
4087 
4088 		if (!(flags & RENAME_EXCHANGE))
4089 			error = may_delete(new_dir, new_dentry, is_dir);
4090 		else
4091 			error = may_delete(new_dir, new_dentry, new_is_dir);
4092 	}
4093 	if (error)
4094 		return error;
4095 
4096 	if (!old_dir->i_op->rename && !old_dir->i_op->rename2)
4097 		return -EPERM;
4098 
4099 	if (flags && !old_dir->i_op->rename2)
4100 		return -EINVAL;
4101 
4102 	/*
4103 	 * If we are going to change the parent - check write permissions,
4104 	 * we'll need to flip '..'.
4105 	 */
4106 	if (new_dir != old_dir) {
4107 		if (is_dir) {
4108 			error = inode_permission(source, MAY_WRITE);
4109 			if (error)
4110 				return error;
4111 		}
4112 		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4113 			error = inode_permission(target, MAY_WRITE);
4114 			if (error)
4115 				return error;
4116 		}
4117 	}
4118 
4119 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4120 				      flags);
4121 	if (error)
4122 		return error;
4123 
4124 	old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4125 	dget(new_dentry);
4126 	if (!is_dir || (flags & RENAME_EXCHANGE))
4127 		lock_two_nondirectories(source, target);
4128 	else if (target)
4129 		mutex_lock(&target->i_mutex);
4130 
4131 	error = -EBUSY;
4132 	if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
4133 		goto out;
4134 
4135 	if (max_links && new_dir != old_dir) {
4136 		error = -EMLINK;
4137 		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4138 			goto out;
4139 		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4140 		    old_dir->i_nlink >= max_links)
4141 			goto out;
4142 	}
4143 	if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4144 		shrink_dcache_parent(new_dentry);
4145 	if (!is_dir) {
4146 		error = try_break_deleg(source, delegated_inode);
4147 		if (error)
4148 			goto out;
4149 	}
4150 	if (target && !new_is_dir) {
4151 		error = try_break_deleg(target, delegated_inode);
4152 		if (error)
4153 			goto out;
4154 	}
4155 	if (!old_dir->i_op->rename2) {
4156 		error = old_dir->i_op->rename(old_dir, old_dentry,
4157 					      new_dir, new_dentry);
4158 	} else {
4159 		WARN_ON(old_dir->i_op->rename != NULL);
4160 		error = old_dir->i_op->rename2(old_dir, old_dentry,
4161 					       new_dir, new_dentry, flags);
4162 	}
4163 	if (error)
4164 		goto out;
4165 
4166 	if (!(flags & RENAME_EXCHANGE) && target) {
4167 		if (is_dir)
4168 			target->i_flags |= S_DEAD;
4169 		dont_mount(new_dentry);
4170 	}
4171 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4172 		if (!(flags & RENAME_EXCHANGE))
4173 			d_move(old_dentry, new_dentry);
4174 		else
4175 			d_exchange(old_dentry, new_dentry);
4176 	}
4177 out:
4178 	if (!is_dir || (flags & RENAME_EXCHANGE))
4179 		unlock_two_nondirectories(source, target);
4180 	else if (target)
4181 		mutex_unlock(&target->i_mutex);
4182 	dput(new_dentry);
4183 	if (!error) {
4184 		fsnotify_move(old_dir, new_dir, old_name, is_dir,
4185 			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4186 		if (flags & RENAME_EXCHANGE) {
4187 			fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4188 				      new_is_dir, NULL, new_dentry);
4189 		}
4190 	}
4191 	fsnotify_oldname_free(old_name);
4192 
4193 	return error;
4194 }
4195 EXPORT_SYMBOL(vfs_rename);
4196 
4197 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4198 		int, newdfd, const char __user *, newname, unsigned int, flags)
4199 {
4200 	struct dentry *old_dir, *new_dir;
4201 	struct dentry *old_dentry, *new_dentry;
4202 	struct dentry *trap;
4203 	struct nameidata oldnd, newnd;
4204 	struct inode *delegated_inode = NULL;
4205 	struct filename *from;
4206 	struct filename *to;
4207 	unsigned int lookup_flags = 0;
4208 	bool should_retry = false;
4209 	int error;
4210 
4211 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE))
4212 		return -EINVAL;
4213 
4214 	if ((flags & RENAME_NOREPLACE) && (flags & RENAME_EXCHANGE))
4215 		return -EINVAL;
4216 
4217 retry:
4218 	from = user_path_parent(olddfd, oldname, &oldnd, lookup_flags);
4219 	if (IS_ERR(from)) {
4220 		error = PTR_ERR(from);
4221 		goto exit;
4222 	}
4223 
4224 	to = user_path_parent(newdfd, newname, &newnd, lookup_flags);
4225 	if (IS_ERR(to)) {
4226 		error = PTR_ERR(to);
4227 		goto exit1;
4228 	}
4229 
4230 	error = -EXDEV;
4231 	if (oldnd.path.mnt != newnd.path.mnt)
4232 		goto exit2;
4233 
4234 	old_dir = oldnd.path.dentry;
4235 	error = -EBUSY;
4236 	if (oldnd.last_type != LAST_NORM)
4237 		goto exit2;
4238 
4239 	new_dir = newnd.path.dentry;
4240 	if (flags & RENAME_NOREPLACE)
4241 		error = -EEXIST;
4242 	if (newnd.last_type != LAST_NORM)
4243 		goto exit2;
4244 
4245 	error = mnt_want_write(oldnd.path.mnt);
4246 	if (error)
4247 		goto exit2;
4248 
4249 	oldnd.flags &= ~LOOKUP_PARENT;
4250 	newnd.flags &= ~LOOKUP_PARENT;
4251 	if (!(flags & RENAME_EXCHANGE))
4252 		newnd.flags |= LOOKUP_RENAME_TARGET;
4253 
4254 retry_deleg:
4255 	trap = lock_rename(new_dir, old_dir);
4256 
4257 	old_dentry = lookup_hash(&oldnd);
4258 	error = PTR_ERR(old_dentry);
4259 	if (IS_ERR(old_dentry))
4260 		goto exit3;
4261 	/* source must exist */
4262 	error = -ENOENT;
4263 	if (d_is_negative(old_dentry))
4264 		goto exit4;
4265 	new_dentry = lookup_hash(&newnd);
4266 	error = PTR_ERR(new_dentry);
4267 	if (IS_ERR(new_dentry))
4268 		goto exit4;
4269 	error = -EEXIST;
4270 	if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4271 		goto exit5;
4272 	if (flags & RENAME_EXCHANGE) {
4273 		error = -ENOENT;
4274 		if (d_is_negative(new_dentry))
4275 			goto exit5;
4276 
4277 		if (!d_is_dir(new_dentry)) {
4278 			error = -ENOTDIR;
4279 			if (newnd.last.name[newnd.last.len])
4280 				goto exit5;
4281 		}
4282 	}
4283 	/* unless the source is a directory trailing slashes give -ENOTDIR */
4284 	if (!d_is_dir(old_dentry)) {
4285 		error = -ENOTDIR;
4286 		if (oldnd.last.name[oldnd.last.len])
4287 			goto exit5;
4288 		if (!(flags & RENAME_EXCHANGE) && newnd.last.name[newnd.last.len])
4289 			goto exit5;
4290 	}
4291 	/* source should not be ancestor of target */
4292 	error = -EINVAL;
4293 	if (old_dentry == trap)
4294 		goto exit5;
4295 	/* target should not be an ancestor of source */
4296 	if (!(flags & RENAME_EXCHANGE))
4297 		error = -ENOTEMPTY;
4298 	if (new_dentry == trap)
4299 		goto exit5;
4300 
4301 	error = security_path_rename(&oldnd.path, old_dentry,
4302 				     &newnd.path, new_dentry, flags);
4303 	if (error)
4304 		goto exit5;
4305 	error = vfs_rename(old_dir->d_inode, old_dentry,
4306 			   new_dir->d_inode, new_dentry,
4307 			   &delegated_inode, flags);
4308 exit5:
4309 	dput(new_dentry);
4310 exit4:
4311 	dput(old_dentry);
4312 exit3:
4313 	unlock_rename(new_dir, old_dir);
4314 	if (delegated_inode) {
4315 		error = break_deleg_wait(&delegated_inode);
4316 		if (!error)
4317 			goto retry_deleg;
4318 	}
4319 	mnt_drop_write(oldnd.path.mnt);
4320 exit2:
4321 	if (retry_estale(error, lookup_flags))
4322 		should_retry = true;
4323 	path_put(&newnd.path);
4324 	putname(to);
4325 exit1:
4326 	path_put(&oldnd.path);
4327 	putname(from);
4328 	if (should_retry) {
4329 		should_retry = false;
4330 		lookup_flags |= LOOKUP_REVAL;
4331 		goto retry;
4332 	}
4333 exit:
4334 	return error;
4335 }
4336 
4337 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4338 		int, newdfd, const char __user *, newname)
4339 {
4340 	return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4341 }
4342 
4343 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4344 {
4345 	return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4346 }
4347 
4348 int readlink_copy(char __user *buffer, int buflen, const char *link)
4349 {
4350 	int len = PTR_ERR(link);
4351 	if (IS_ERR(link))
4352 		goto out;
4353 
4354 	len = strlen(link);
4355 	if (len > (unsigned) buflen)
4356 		len = buflen;
4357 	if (copy_to_user(buffer, link, len))
4358 		len = -EFAULT;
4359 out:
4360 	return len;
4361 }
4362 EXPORT_SYMBOL(readlink_copy);
4363 
4364 /*
4365  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
4366  * have ->follow_link() touching nd only in nd_set_link().  Using (or not
4367  * using) it for any given inode is up to filesystem.
4368  */
4369 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4370 {
4371 	struct nameidata nd;
4372 	void *cookie;
4373 	int res;
4374 
4375 	nd.depth = 0;
4376 	cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
4377 	if (IS_ERR(cookie))
4378 		return PTR_ERR(cookie);
4379 
4380 	res = readlink_copy(buffer, buflen, nd_get_link(&nd));
4381 	if (dentry->d_inode->i_op->put_link)
4382 		dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
4383 	return res;
4384 }
4385 EXPORT_SYMBOL(generic_readlink);
4386 
4387 /* get the link contents into pagecache */
4388 static char *page_getlink(struct dentry * dentry, struct page **ppage)
4389 {
4390 	char *kaddr;
4391 	struct page *page;
4392 	struct address_space *mapping = dentry->d_inode->i_mapping;
4393 	page = read_mapping_page(mapping, 0, NULL);
4394 	if (IS_ERR(page))
4395 		return (char*)page;
4396 	*ppage = page;
4397 	kaddr = kmap(page);
4398 	nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
4399 	return kaddr;
4400 }
4401 
4402 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4403 {
4404 	struct page *page = NULL;
4405 	int res = readlink_copy(buffer, buflen, page_getlink(dentry, &page));
4406 	if (page) {
4407 		kunmap(page);
4408 		page_cache_release(page);
4409 	}
4410 	return res;
4411 }
4412 EXPORT_SYMBOL(page_readlink);
4413 
4414 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
4415 {
4416 	struct page *page = NULL;
4417 	nd_set_link(nd, page_getlink(dentry, &page));
4418 	return page;
4419 }
4420 EXPORT_SYMBOL(page_follow_link_light);
4421 
4422 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
4423 {
4424 	struct page *page = cookie;
4425 
4426 	if (page) {
4427 		kunmap(page);
4428 		page_cache_release(page);
4429 	}
4430 }
4431 EXPORT_SYMBOL(page_put_link);
4432 
4433 /*
4434  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4435  */
4436 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4437 {
4438 	struct address_space *mapping = inode->i_mapping;
4439 	struct page *page;
4440 	void *fsdata;
4441 	int err;
4442 	char *kaddr;
4443 	unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4444 	if (nofs)
4445 		flags |= AOP_FLAG_NOFS;
4446 
4447 retry:
4448 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
4449 				flags, &page, &fsdata);
4450 	if (err)
4451 		goto fail;
4452 
4453 	kaddr = kmap_atomic(page);
4454 	memcpy(kaddr, symname, len-1);
4455 	kunmap_atomic(kaddr);
4456 
4457 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4458 							page, fsdata);
4459 	if (err < 0)
4460 		goto fail;
4461 	if (err < len-1)
4462 		goto retry;
4463 
4464 	mark_inode_dirty(inode);
4465 	return 0;
4466 fail:
4467 	return err;
4468 }
4469 EXPORT_SYMBOL(__page_symlink);
4470 
4471 int page_symlink(struct inode *inode, const char *symname, int len)
4472 {
4473 	return __page_symlink(inode, symname, len,
4474 			!(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
4475 }
4476 EXPORT_SYMBOL(page_symlink);
4477 
4478 const struct inode_operations page_symlink_inode_operations = {
4479 	.readlink	= generic_readlink,
4480 	.follow_link	= page_follow_link_light,
4481 	.put_link	= page_put_link,
4482 };
4483 EXPORT_SYMBOL(page_symlink_inode_operations);
4484