1 /* 2 * linux/fs/namei.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * Some corrections by tytso. 9 */ 10 11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 12 * lookup logic. 13 */ 14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 15 */ 16 17 #include <linux/init.h> 18 #include <linux/export.h> 19 #include <linux/kernel.h> 20 #include <linux/slab.h> 21 #include <linux/fs.h> 22 #include <linux/namei.h> 23 #include <linux/pagemap.h> 24 #include <linux/fsnotify.h> 25 #include <linux/personality.h> 26 #include <linux/security.h> 27 #include <linux/ima.h> 28 #include <linux/syscalls.h> 29 #include <linux/mount.h> 30 #include <linux/audit.h> 31 #include <linux/capability.h> 32 #include <linux/file.h> 33 #include <linux/fcntl.h> 34 #include <linux/device_cgroup.h> 35 #include <linux/fs_struct.h> 36 #include <linux/posix_acl.h> 37 #include <linux/hash.h> 38 #include <asm/uaccess.h> 39 40 #include "internal.h" 41 #include "mount.h" 42 43 /* [Feb-1997 T. Schoebel-Theuer] 44 * Fundamental changes in the pathname lookup mechanisms (namei) 45 * were necessary because of omirr. The reason is that omirr needs 46 * to know the _real_ pathname, not the user-supplied one, in case 47 * of symlinks (and also when transname replacements occur). 48 * 49 * The new code replaces the old recursive symlink resolution with 50 * an iterative one (in case of non-nested symlink chains). It does 51 * this with calls to <fs>_follow_link(). 52 * As a side effect, dir_namei(), _namei() and follow_link() are now 53 * replaced with a single function lookup_dentry() that can handle all 54 * the special cases of the former code. 55 * 56 * With the new dcache, the pathname is stored at each inode, at least as 57 * long as the refcount of the inode is positive. As a side effect, the 58 * size of the dcache depends on the inode cache and thus is dynamic. 59 * 60 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 61 * resolution to correspond with current state of the code. 62 * 63 * Note that the symlink resolution is not *completely* iterative. 64 * There is still a significant amount of tail- and mid- recursion in 65 * the algorithm. Also, note that <fs>_readlink() is not used in 66 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 67 * may return different results than <fs>_follow_link(). Many virtual 68 * filesystems (including /proc) exhibit this behavior. 69 */ 70 71 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 72 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 73 * and the name already exists in form of a symlink, try to create the new 74 * name indicated by the symlink. The old code always complained that the 75 * name already exists, due to not following the symlink even if its target 76 * is nonexistent. The new semantics affects also mknod() and link() when 77 * the name is a symlink pointing to a non-existent name. 78 * 79 * I don't know which semantics is the right one, since I have no access 80 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 81 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 82 * "old" one. Personally, I think the new semantics is much more logical. 83 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 84 * file does succeed in both HP-UX and SunOs, but not in Solaris 85 * and in the old Linux semantics. 86 */ 87 88 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 89 * semantics. See the comments in "open_namei" and "do_link" below. 90 * 91 * [10-Sep-98 Alan Modra] Another symlink change. 92 */ 93 94 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 95 * inside the path - always follow. 96 * in the last component in creation/removal/renaming - never follow. 97 * if LOOKUP_FOLLOW passed - follow. 98 * if the pathname has trailing slashes - follow. 99 * otherwise - don't follow. 100 * (applied in that order). 101 * 102 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 103 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 104 * During the 2.4 we need to fix the userland stuff depending on it - 105 * hopefully we will be able to get rid of that wart in 2.5. So far only 106 * XEmacs seems to be relying on it... 107 */ 108 /* 109 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 110 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 111 * any extra contention... 112 */ 113 114 /* In order to reduce some races, while at the same time doing additional 115 * checking and hopefully speeding things up, we copy filenames to the 116 * kernel data space before using them.. 117 * 118 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 119 * PATH_MAX includes the nul terminator --RR. 120 */ 121 void final_putname(struct filename *name) 122 { 123 if (name->separate) { 124 __putname(name->name); 125 kfree(name); 126 } else { 127 __putname(name); 128 } 129 } 130 131 #define EMBEDDED_NAME_MAX (PATH_MAX - sizeof(struct filename)) 132 133 static struct filename * 134 getname_flags(const char __user *filename, int flags, int *empty) 135 { 136 struct filename *result, *err; 137 int len; 138 long max; 139 char *kname; 140 141 result = audit_reusename(filename); 142 if (result) 143 return result; 144 145 result = __getname(); 146 if (unlikely(!result)) 147 return ERR_PTR(-ENOMEM); 148 149 /* 150 * First, try to embed the struct filename inside the names_cache 151 * allocation 152 */ 153 kname = (char *)result + sizeof(*result); 154 result->name = kname; 155 result->separate = false; 156 max = EMBEDDED_NAME_MAX; 157 158 recopy: 159 len = strncpy_from_user(kname, filename, max); 160 if (unlikely(len < 0)) { 161 err = ERR_PTR(len); 162 goto error; 163 } 164 165 /* 166 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a 167 * separate struct filename so we can dedicate the entire 168 * names_cache allocation for the pathname, and re-do the copy from 169 * userland. 170 */ 171 if (len == EMBEDDED_NAME_MAX && max == EMBEDDED_NAME_MAX) { 172 kname = (char *)result; 173 174 result = kzalloc(sizeof(*result), GFP_KERNEL); 175 if (!result) { 176 err = ERR_PTR(-ENOMEM); 177 result = (struct filename *)kname; 178 goto error; 179 } 180 result->name = kname; 181 result->separate = true; 182 max = PATH_MAX; 183 goto recopy; 184 } 185 186 /* The empty path is special. */ 187 if (unlikely(!len)) { 188 if (empty) 189 *empty = 1; 190 err = ERR_PTR(-ENOENT); 191 if (!(flags & LOOKUP_EMPTY)) 192 goto error; 193 } 194 195 err = ERR_PTR(-ENAMETOOLONG); 196 if (unlikely(len >= PATH_MAX)) 197 goto error; 198 199 result->uptr = filename; 200 result->aname = NULL; 201 audit_getname(result); 202 return result; 203 204 error: 205 final_putname(result); 206 return err; 207 } 208 209 struct filename * 210 getname(const char __user * filename) 211 { 212 return getname_flags(filename, 0, NULL); 213 } 214 215 /* 216 * The "getname_kernel()" interface doesn't do pathnames longer 217 * than EMBEDDED_NAME_MAX. Deal with it - you're a kernel user. 218 */ 219 struct filename * 220 getname_kernel(const char * filename) 221 { 222 struct filename *result; 223 char *kname; 224 int len; 225 226 len = strlen(filename); 227 if (len >= EMBEDDED_NAME_MAX) 228 return ERR_PTR(-ENAMETOOLONG); 229 230 result = __getname(); 231 if (unlikely(!result)) 232 return ERR_PTR(-ENOMEM); 233 234 kname = (char *)result + sizeof(*result); 235 result->name = kname; 236 result->uptr = NULL; 237 result->aname = NULL; 238 result->separate = false; 239 240 strlcpy(kname, filename, EMBEDDED_NAME_MAX); 241 return result; 242 } 243 244 #ifdef CONFIG_AUDITSYSCALL 245 void putname(struct filename *name) 246 { 247 if (unlikely(!audit_dummy_context())) 248 return audit_putname(name); 249 final_putname(name); 250 } 251 #endif 252 253 static int check_acl(struct inode *inode, int mask) 254 { 255 #ifdef CONFIG_FS_POSIX_ACL 256 struct posix_acl *acl; 257 258 if (mask & MAY_NOT_BLOCK) { 259 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS); 260 if (!acl) 261 return -EAGAIN; 262 /* no ->get_acl() calls in RCU mode... */ 263 if (acl == ACL_NOT_CACHED) 264 return -ECHILD; 265 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK); 266 } 267 268 acl = get_acl(inode, ACL_TYPE_ACCESS); 269 if (IS_ERR(acl)) 270 return PTR_ERR(acl); 271 if (acl) { 272 int error = posix_acl_permission(inode, acl, mask); 273 posix_acl_release(acl); 274 return error; 275 } 276 #endif 277 278 return -EAGAIN; 279 } 280 281 /* 282 * This does the basic permission checking 283 */ 284 static int acl_permission_check(struct inode *inode, int mask) 285 { 286 unsigned int mode = inode->i_mode; 287 288 if (likely(uid_eq(current_fsuid(), inode->i_uid))) 289 mode >>= 6; 290 else { 291 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) { 292 int error = check_acl(inode, mask); 293 if (error != -EAGAIN) 294 return error; 295 } 296 297 if (in_group_p(inode->i_gid)) 298 mode >>= 3; 299 } 300 301 /* 302 * If the DACs are ok we don't need any capability check. 303 */ 304 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 305 return 0; 306 return -EACCES; 307 } 308 309 /** 310 * generic_permission - check for access rights on a Posix-like filesystem 311 * @inode: inode to check access rights for 312 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...) 313 * 314 * Used to check for read/write/execute permissions on a file. 315 * We use "fsuid" for this, letting us set arbitrary permissions 316 * for filesystem access without changing the "normal" uids which 317 * are used for other things. 318 * 319 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk 320 * request cannot be satisfied (eg. requires blocking or too much complexity). 321 * It would then be called again in ref-walk mode. 322 */ 323 int generic_permission(struct inode *inode, int mask) 324 { 325 int ret; 326 327 /* 328 * Do the basic permission checks. 329 */ 330 ret = acl_permission_check(inode, mask); 331 if (ret != -EACCES) 332 return ret; 333 334 if (S_ISDIR(inode->i_mode)) { 335 /* DACs are overridable for directories */ 336 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE)) 337 return 0; 338 if (!(mask & MAY_WRITE)) 339 if (capable_wrt_inode_uidgid(inode, 340 CAP_DAC_READ_SEARCH)) 341 return 0; 342 return -EACCES; 343 } 344 /* 345 * Read/write DACs are always overridable. 346 * Executable DACs are overridable when there is 347 * at least one exec bit set. 348 */ 349 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO)) 350 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE)) 351 return 0; 352 353 /* 354 * Searching includes executable on directories, else just read. 355 */ 356 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 357 if (mask == MAY_READ) 358 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH)) 359 return 0; 360 361 return -EACCES; 362 } 363 EXPORT_SYMBOL(generic_permission); 364 365 /* 366 * We _really_ want to just do "generic_permission()" without 367 * even looking at the inode->i_op values. So we keep a cache 368 * flag in inode->i_opflags, that says "this has not special 369 * permission function, use the fast case". 370 */ 371 static inline int do_inode_permission(struct inode *inode, int mask) 372 { 373 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) { 374 if (likely(inode->i_op->permission)) 375 return inode->i_op->permission(inode, mask); 376 377 /* This gets set once for the inode lifetime */ 378 spin_lock(&inode->i_lock); 379 inode->i_opflags |= IOP_FASTPERM; 380 spin_unlock(&inode->i_lock); 381 } 382 return generic_permission(inode, mask); 383 } 384 385 /** 386 * __inode_permission - Check for access rights to a given inode 387 * @inode: Inode to check permission on 388 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 389 * 390 * Check for read/write/execute permissions on an inode. 391 * 392 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 393 * 394 * This does not check for a read-only file system. You probably want 395 * inode_permission(). 396 */ 397 int __inode_permission(struct inode *inode, int mask) 398 { 399 int retval; 400 401 if (unlikely(mask & MAY_WRITE)) { 402 /* 403 * Nobody gets write access to an immutable file. 404 */ 405 if (IS_IMMUTABLE(inode)) 406 return -EACCES; 407 } 408 409 retval = do_inode_permission(inode, mask); 410 if (retval) 411 return retval; 412 413 retval = devcgroup_inode_permission(inode, mask); 414 if (retval) 415 return retval; 416 417 return security_inode_permission(inode, mask); 418 } 419 420 /** 421 * sb_permission - Check superblock-level permissions 422 * @sb: Superblock of inode to check permission on 423 * @inode: Inode to check permission on 424 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 425 * 426 * Separate out file-system wide checks from inode-specific permission checks. 427 */ 428 static int sb_permission(struct super_block *sb, struct inode *inode, int mask) 429 { 430 if (unlikely(mask & MAY_WRITE)) { 431 umode_t mode = inode->i_mode; 432 433 /* Nobody gets write access to a read-only fs. */ 434 if ((sb->s_flags & MS_RDONLY) && 435 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 436 return -EROFS; 437 } 438 return 0; 439 } 440 441 /** 442 * inode_permission - Check for access rights to a given inode 443 * @inode: Inode to check permission on 444 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 445 * 446 * Check for read/write/execute permissions on an inode. We use fs[ug]id for 447 * this, letting us set arbitrary permissions for filesystem access without 448 * changing the "normal" UIDs which are used for other things. 449 * 450 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 451 */ 452 int inode_permission(struct inode *inode, int mask) 453 { 454 int retval; 455 456 retval = sb_permission(inode->i_sb, inode, mask); 457 if (retval) 458 return retval; 459 return __inode_permission(inode, mask); 460 } 461 EXPORT_SYMBOL(inode_permission); 462 463 /** 464 * path_get - get a reference to a path 465 * @path: path to get the reference to 466 * 467 * Given a path increment the reference count to the dentry and the vfsmount. 468 */ 469 void path_get(const struct path *path) 470 { 471 mntget(path->mnt); 472 dget(path->dentry); 473 } 474 EXPORT_SYMBOL(path_get); 475 476 /** 477 * path_put - put a reference to a path 478 * @path: path to put the reference to 479 * 480 * Given a path decrement the reference count to the dentry and the vfsmount. 481 */ 482 void path_put(const struct path *path) 483 { 484 dput(path->dentry); 485 mntput(path->mnt); 486 } 487 EXPORT_SYMBOL(path_put); 488 489 /* 490 * Path walking has 2 modes, rcu-walk and ref-walk (see 491 * Documentation/filesystems/path-lookup.txt). In situations when we can't 492 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab 493 * normal reference counts on dentries and vfsmounts to transition to rcu-walk 494 * mode. Refcounts are grabbed at the last known good point before rcu-walk 495 * got stuck, so ref-walk may continue from there. If this is not successful 496 * (eg. a seqcount has changed), then failure is returned and it's up to caller 497 * to restart the path walk from the beginning in ref-walk mode. 498 */ 499 500 /** 501 * unlazy_walk - try to switch to ref-walk mode. 502 * @nd: nameidata pathwalk data 503 * @dentry: child of nd->path.dentry or NULL 504 * Returns: 0 on success, -ECHILD on failure 505 * 506 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry 507 * for ref-walk mode. @dentry must be a path found by a do_lookup call on 508 * @nd or NULL. Must be called from rcu-walk context. 509 */ 510 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry) 511 { 512 struct fs_struct *fs = current->fs; 513 struct dentry *parent = nd->path.dentry; 514 515 BUG_ON(!(nd->flags & LOOKUP_RCU)); 516 517 /* 518 * After legitimizing the bastards, terminate_walk() 519 * will do the right thing for non-RCU mode, and all our 520 * subsequent exit cases should rcu_read_unlock() 521 * before returning. Do vfsmount first; if dentry 522 * can't be legitimized, just set nd->path.dentry to NULL 523 * and rely on dput(NULL) being a no-op. 524 */ 525 if (!legitimize_mnt(nd->path.mnt, nd->m_seq)) 526 return -ECHILD; 527 nd->flags &= ~LOOKUP_RCU; 528 529 if (!lockref_get_not_dead(&parent->d_lockref)) { 530 nd->path.dentry = NULL; 531 goto out; 532 } 533 534 /* 535 * For a negative lookup, the lookup sequence point is the parents 536 * sequence point, and it only needs to revalidate the parent dentry. 537 * 538 * For a positive lookup, we need to move both the parent and the 539 * dentry from the RCU domain to be properly refcounted. And the 540 * sequence number in the dentry validates *both* dentry counters, 541 * since we checked the sequence number of the parent after we got 542 * the child sequence number. So we know the parent must still 543 * be valid if the child sequence number is still valid. 544 */ 545 if (!dentry) { 546 if (read_seqcount_retry(&parent->d_seq, nd->seq)) 547 goto out; 548 BUG_ON(nd->inode != parent->d_inode); 549 } else { 550 if (!lockref_get_not_dead(&dentry->d_lockref)) 551 goto out; 552 if (read_seqcount_retry(&dentry->d_seq, nd->seq)) 553 goto drop_dentry; 554 } 555 556 /* 557 * Sequence counts matched. Now make sure that the root is 558 * still valid and get it if required. 559 */ 560 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 561 spin_lock(&fs->lock); 562 if (nd->root.mnt != fs->root.mnt || nd->root.dentry != fs->root.dentry) 563 goto unlock_and_drop_dentry; 564 path_get(&nd->root); 565 spin_unlock(&fs->lock); 566 } 567 568 rcu_read_unlock(); 569 return 0; 570 571 unlock_and_drop_dentry: 572 spin_unlock(&fs->lock); 573 drop_dentry: 574 rcu_read_unlock(); 575 dput(dentry); 576 goto drop_root_mnt; 577 out: 578 rcu_read_unlock(); 579 drop_root_mnt: 580 if (!(nd->flags & LOOKUP_ROOT)) 581 nd->root.mnt = NULL; 582 return -ECHILD; 583 } 584 585 static inline int d_revalidate(struct dentry *dentry, unsigned int flags) 586 { 587 return dentry->d_op->d_revalidate(dentry, flags); 588 } 589 590 /** 591 * complete_walk - successful completion of path walk 592 * @nd: pointer nameidata 593 * 594 * If we had been in RCU mode, drop out of it and legitimize nd->path. 595 * Revalidate the final result, unless we'd already done that during 596 * the path walk or the filesystem doesn't ask for it. Return 0 on 597 * success, -error on failure. In case of failure caller does not 598 * need to drop nd->path. 599 */ 600 static int complete_walk(struct nameidata *nd) 601 { 602 struct dentry *dentry = nd->path.dentry; 603 int status; 604 605 if (nd->flags & LOOKUP_RCU) { 606 nd->flags &= ~LOOKUP_RCU; 607 if (!(nd->flags & LOOKUP_ROOT)) 608 nd->root.mnt = NULL; 609 610 if (!legitimize_mnt(nd->path.mnt, nd->m_seq)) { 611 rcu_read_unlock(); 612 return -ECHILD; 613 } 614 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) { 615 rcu_read_unlock(); 616 mntput(nd->path.mnt); 617 return -ECHILD; 618 } 619 if (read_seqcount_retry(&dentry->d_seq, nd->seq)) { 620 rcu_read_unlock(); 621 dput(dentry); 622 mntput(nd->path.mnt); 623 return -ECHILD; 624 } 625 rcu_read_unlock(); 626 } 627 628 if (likely(!(nd->flags & LOOKUP_JUMPED))) 629 return 0; 630 631 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE))) 632 return 0; 633 634 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags); 635 if (status > 0) 636 return 0; 637 638 if (!status) 639 status = -ESTALE; 640 641 path_put(&nd->path); 642 return status; 643 } 644 645 static __always_inline void set_root(struct nameidata *nd) 646 { 647 get_fs_root(current->fs, &nd->root); 648 } 649 650 static int link_path_walk(const char *, struct nameidata *); 651 652 static __always_inline unsigned set_root_rcu(struct nameidata *nd) 653 { 654 struct fs_struct *fs = current->fs; 655 unsigned seq, res; 656 657 do { 658 seq = read_seqcount_begin(&fs->seq); 659 nd->root = fs->root; 660 res = __read_seqcount_begin(&nd->root.dentry->d_seq); 661 } while (read_seqcount_retry(&fs->seq, seq)); 662 return res; 663 } 664 665 static void path_put_conditional(struct path *path, struct nameidata *nd) 666 { 667 dput(path->dentry); 668 if (path->mnt != nd->path.mnt) 669 mntput(path->mnt); 670 } 671 672 static inline void path_to_nameidata(const struct path *path, 673 struct nameidata *nd) 674 { 675 if (!(nd->flags & LOOKUP_RCU)) { 676 dput(nd->path.dentry); 677 if (nd->path.mnt != path->mnt) 678 mntput(nd->path.mnt); 679 } 680 nd->path.mnt = path->mnt; 681 nd->path.dentry = path->dentry; 682 } 683 684 /* 685 * Helper to directly jump to a known parsed path from ->follow_link, 686 * caller must have taken a reference to path beforehand. 687 */ 688 void nd_jump_link(struct nameidata *nd, struct path *path) 689 { 690 path_put(&nd->path); 691 692 nd->path = *path; 693 nd->inode = nd->path.dentry->d_inode; 694 nd->flags |= LOOKUP_JUMPED; 695 } 696 697 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie) 698 { 699 struct inode *inode = link->dentry->d_inode; 700 if (inode->i_op->put_link) 701 inode->i_op->put_link(link->dentry, nd, cookie); 702 path_put(link); 703 } 704 705 int sysctl_protected_symlinks __read_mostly = 0; 706 int sysctl_protected_hardlinks __read_mostly = 0; 707 708 /** 709 * may_follow_link - Check symlink following for unsafe situations 710 * @link: The path of the symlink 711 * @nd: nameidata pathwalk data 712 * 713 * In the case of the sysctl_protected_symlinks sysctl being enabled, 714 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is 715 * in a sticky world-writable directory. This is to protect privileged 716 * processes from failing races against path names that may change out 717 * from under them by way of other users creating malicious symlinks. 718 * It will permit symlinks to be followed only when outside a sticky 719 * world-writable directory, or when the uid of the symlink and follower 720 * match, or when the directory owner matches the symlink's owner. 721 * 722 * Returns 0 if following the symlink is allowed, -ve on error. 723 */ 724 static inline int may_follow_link(struct path *link, struct nameidata *nd) 725 { 726 const struct inode *inode; 727 const struct inode *parent; 728 729 if (!sysctl_protected_symlinks) 730 return 0; 731 732 /* Allowed if owner and follower match. */ 733 inode = link->dentry->d_inode; 734 if (uid_eq(current_cred()->fsuid, inode->i_uid)) 735 return 0; 736 737 /* Allowed if parent directory not sticky and world-writable. */ 738 parent = nd->path.dentry->d_inode; 739 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH)) 740 return 0; 741 742 /* Allowed if parent directory and link owner match. */ 743 if (uid_eq(parent->i_uid, inode->i_uid)) 744 return 0; 745 746 audit_log_link_denied("follow_link", link); 747 path_put_conditional(link, nd); 748 path_put(&nd->path); 749 return -EACCES; 750 } 751 752 /** 753 * safe_hardlink_source - Check for safe hardlink conditions 754 * @inode: the source inode to hardlink from 755 * 756 * Return false if at least one of the following conditions: 757 * - inode is not a regular file 758 * - inode is setuid 759 * - inode is setgid and group-exec 760 * - access failure for read and write 761 * 762 * Otherwise returns true. 763 */ 764 static bool safe_hardlink_source(struct inode *inode) 765 { 766 umode_t mode = inode->i_mode; 767 768 /* Special files should not get pinned to the filesystem. */ 769 if (!S_ISREG(mode)) 770 return false; 771 772 /* Setuid files should not get pinned to the filesystem. */ 773 if (mode & S_ISUID) 774 return false; 775 776 /* Executable setgid files should not get pinned to the filesystem. */ 777 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) 778 return false; 779 780 /* Hardlinking to unreadable or unwritable sources is dangerous. */ 781 if (inode_permission(inode, MAY_READ | MAY_WRITE)) 782 return false; 783 784 return true; 785 } 786 787 /** 788 * may_linkat - Check permissions for creating a hardlink 789 * @link: the source to hardlink from 790 * 791 * Block hardlink when all of: 792 * - sysctl_protected_hardlinks enabled 793 * - fsuid does not match inode 794 * - hardlink source is unsafe (see safe_hardlink_source() above) 795 * - not CAP_FOWNER 796 * 797 * Returns 0 if successful, -ve on error. 798 */ 799 static int may_linkat(struct path *link) 800 { 801 const struct cred *cred; 802 struct inode *inode; 803 804 if (!sysctl_protected_hardlinks) 805 return 0; 806 807 cred = current_cred(); 808 inode = link->dentry->d_inode; 809 810 /* Source inode owner (or CAP_FOWNER) can hardlink all they like, 811 * otherwise, it must be a safe source. 812 */ 813 if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) || 814 capable(CAP_FOWNER)) 815 return 0; 816 817 audit_log_link_denied("linkat", link); 818 return -EPERM; 819 } 820 821 static __always_inline int 822 follow_link(struct path *link, struct nameidata *nd, void **p) 823 { 824 struct dentry *dentry = link->dentry; 825 int error; 826 char *s; 827 828 BUG_ON(nd->flags & LOOKUP_RCU); 829 830 if (link->mnt == nd->path.mnt) 831 mntget(link->mnt); 832 833 error = -ELOOP; 834 if (unlikely(current->total_link_count >= 40)) 835 goto out_put_nd_path; 836 837 cond_resched(); 838 current->total_link_count++; 839 840 touch_atime(link); 841 nd_set_link(nd, NULL); 842 843 error = security_inode_follow_link(link->dentry, nd); 844 if (error) 845 goto out_put_nd_path; 846 847 nd->last_type = LAST_BIND; 848 *p = dentry->d_inode->i_op->follow_link(dentry, nd); 849 error = PTR_ERR(*p); 850 if (IS_ERR(*p)) 851 goto out_put_nd_path; 852 853 error = 0; 854 s = nd_get_link(nd); 855 if (s) { 856 if (unlikely(IS_ERR(s))) { 857 path_put(&nd->path); 858 put_link(nd, link, *p); 859 return PTR_ERR(s); 860 } 861 if (*s == '/') { 862 if (!nd->root.mnt) 863 set_root(nd); 864 path_put(&nd->path); 865 nd->path = nd->root; 866 path_get(&nd->root); 867 nd->flags |= LOOKUP_JUMPED; 868 } 869 nd->inode = nd->path.dentry->d_inode; 870 error = link_path_walk(s, nd); 871 if (unlikely(error)) 872 put_link(nd, link, *p); 873 } 874 875 return error; 876 877 out_put_nd_path: 878 *p = NULL; 879 path_put(&nd->path); 880 path_put(link); 881 return error; 882 } 883 884 static int follow_up_rcu(struct path *path) 885 { 886 struct mount *mnt = real_mount(path->mnt); 887 struct mount *parent; 888 struct dentry *mountpoint; 889 890 parent = mnt->mnt_parent; 891 if (&parent->mnt == path->mnt) 892 return 0; 893 mountpoint = mnt->mnt_mountpoint; 894 path->dentry = mountpoint; 895 path->mnt = &parent->mnt; 896 return 1; 897 } 898 899 /* 900 * follow_up - Find the mountpoint of path's vfsmount 901 * 902 * Given a path, find the mountpoint of its source file system. 903 * Replace @path with the path of the mountpoint in the parent mount. 904 * Up is towards /. 905 * 906 * Return 1 if we went up a level and 0 if we were already at the 907 * root. 908 */ 909 int follow_up(struct path *path) 910 { 911 struct mount *mnt = real_mount(path->mnt); 912 struct mount *parent; 913 struct dentry *mountpoint; 914 915 read_seqlock_excl(&mount_lock); 916 parent = mnt->mnt_parent; 917 if (parent == mnt) { 918 read_sequnlock_excl(&mount_lock); 919 return 0; 920 } 921 mntget(&parent->mnt); 922 mountpoint = dget(mnt->mnt_mountpoint); 923 read_sequnlock_excl(&mount_lock); 924 dput(path->dentry); 925 path->dentry = mountpoint; 926 mntput(path->mnt); 927 path->mnt = &parent->mnt; 928 return 1; 929 } 930 EXPORT_SYMBOL(follow_up); 931 932 /* 933 * Perform an automount 934 * - return -EISDIR to tell follow_managed() to stop and return the path we 935 * were called with. 936 */ 937 static int follow_automount(struct path *path, unsigned flags, 938 bool *need_mntput) 939 { 940 struct vfsmount *mnt; 941 int err; 942 943 if (!path->dentry->d_op || !path->dentry->d_op->d_automount) 944 return -EREMOTE; 945 946 /* We don't want to mount if someone's just doing a stat - 947 * unless they're stat'ing a directory and appended a '/' to 948 * the name. 949 * 950 * We do, however, want to mount if someone wants to open or 951 * create a file of any type under the mountpoint, wants to 952 * traverse through the mountpoint or wants to open the 953 * mounted directory. Also, autofs may mark negative dentries 954 * as being automount points. These will need the attentions 955 * of the daemon to instantiate them before they can be used. 956 */ 957 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY | 958 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) && 959 path->dentry->d_inode) 960 return -EISDIR; 961 962 current->total_link_count++; 963 if (current->total_link_count >= 40) 964 return -ELOOP; 965 966 mnt = path->dentry->d_op->d_automount(path); 967 if (IS_ERR(mnt)) { 968 /* 969 * The filesystem is allowed to return -EISDIR here to indicate 970 * it doesn't want to automount. For instance, autofs would do 971 * this so that its userspace daemon can mount on this dentry. 972 * 973 * However, we can only permit this if it's a terminal point in 974 * the path being looked up; if it wasn't then the remainder of 975 * the path is inaccessible and we should say so. 976 */ 977 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT)) 978 return -EREMOTE; 979 return PTR_ERR(mnt); 980 } 981 982 if (!mnt) /* mount collision */ 983 return 0; 984 985 if (!*need_mntput) { 986 /* lock_mount() may release path->mnt on error */ 987 mntget(path->mnt); 988 *need_mntput = true; 989 } 990 err = finish_automount(mnt, path); 991 992 switch (err) { 993 case -EBUSY: 994 /* Someone else made a mount here whilst we were busy */ 995 return 0; 996 case 0: 997 path_put(path); 998 path->mnt = mnt; 999 path->dentry = dget(mnt->mnt_root); 1000 return 0; 1001 default: 1002 return err; 1003 } 1004 1005 } 1006 1007 /* 1008 * Handle a dentry that is managed in some way. 1009 * - Flagged for transit management (autofs) 1010 * - Flagged as mountpoint 1011 * - Flagged as automount point 1012 * 1013 * This may only be called in refwalk mode. 1014 * 1015 * Serialization is taken care of in namespace.c 1016 */ 1017 static int follow_managed(struct path *path, unsigned flags) 1018 { 1019 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */ 1020 unsigned managed; 1021 bool need_mntput = false; 1022 int ret = 0; 1023 1024 /* Given that we're not holding a lock here, we retain the value in a 1025 * local variable for each dentry as we look at it so that we don't see 1026 * the components of that value change under us */ 1027 while (managed = ACCESS_ONCE(path->dentry->d_flags), 1028 managed &= DCACHE_MANAGED_DENTRY, 1029 unlikely(managed != 0)) { 1030 /* Allow the filesystem to manage the transit without i_mutex 1031 * being held. */ 1032 if (managed & DCACHE_MANAGE_TRANSIT) { 1033 BUG_ON(!path->dentry->d_op); 1034 BUG_ON(!path->dentry->d_op->d_manage); 1035 ret = path->dentry->d_op->d_manage(path->dentry, false); 1036 if (ret < 0) 1037 break; 1038 } 1039 1040 /* Transit to a mounted filesystem. */ 1041 if (managed & DCACHE_MOUNTED) { 1042 struct vfsmount *mounted = lookup_mnt(path); 1043 if (mounted) { 1044 dput(path->dentry); 1045 if (need_mntput) 1046 mntput(path->mnt); 1047 path->mnt = mounted; 1048 path->dentry = dget(mounted->mnt_root); 1049 need_mntput = true; 1050 continue; 1051 } 1052 1053 /* Something is mounted on this dentry in another 1054 * namespace and/or whatever was mounted there in this 1055 * namespace got unmounted before lookup_mnt() could 1056 * get it */ 1057 } 1058 1059 /* Handle an automount point */ 1060 if (managed & DCACHE_NEED_AUTOMOUNT) { 1061 ret = follow_automount(path, flags, &need_mntput); 1062 if (ret < 0) 1063 break; 1064 continue; 1065 } 1066 1067 /* We didn't change the current path point */ 1068 break; 1069 } 1070 1071 if (need_mntput && path->mnt == mnt) 1072 mntput(path->mnt); 1073 if (ret == -EISDIR) 1074 ret = 0; 1075 return ret < 0 ? ret : need_mntput; 1076 } 1077 1078 int follow_down_one(struct path *path) 1079 { 1080 struct vfsmount *mounted; 1081 1082 mounted = lookup_mnt(path); 1083 if (mounted) { 1084 dput(path->dentry); 1085 mntput(path->mnt); 1086 path->mnt = mounted; 1087 path->dentry = dget(mounted->mnt_root); 1088 return 1; 1089 } 1090 return 0; 1091 } 1092 EXPORT_SYMBOL(follow_down_one); 1093 1094 static inline int managed_dentry_rcu(struct dentry *dentry) 1095 { 1096 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ? 1097 dentry->d_op->d_manage(dentry, true) : 0; 1098 } 1099 1100 /* 1101 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if 1102 * we meet a managed dentry that would need blocking. 1103 */ 1104 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path, 1105 struct inode **inode) 1106 { 1107 for (;;) { 1108 struct mount *mounted; 1109 /* 1110 * Don't forget we might have a non-mountpoint managed dentry 1111 * that wants to block transit. 1112 */ 1113 switch (managed_dentry_rcu(path->dentry)) { 1114 case -ECHILD: 1115 default: 1116 return false; 1117 case -EISDIR: 1118 return true; 1119 case 0: 1120 break; 1121 } 1122 1123 if (!d_mountpoint(path->dentry)) 1124 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT); 1125 1126 mounted = __lookup_mnt(path->mnt, path->dentry); 1127 if (!mounted) 1128 break; 1129 path->mnt = &mounted->mnt; 1130 path->dentry = mounted->mnt.mnt_root; 1131 nd->flags |= LOOKUP_JUMPED; 1132 nd->seq = read_seqcount_begin(&path->dentry->d_seq); 1133 /* 1134 * Update the inode too. We don't need to re-check the 1135 * dentry sequence number here after this d_inode read, 1136 * because a mount-point is always pinned. 1137 */ 1138 *inode = path->dentry->d_inode; 1139 } 1140 return !read_seqretry(&mount_lock, nd->m_seq) && 1141 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT); 1142 } 1143 1144 static int follow_dotdot_rcu(struct nameidata *nd) 1145 { 1146 struct inode *inode = nd->inode; 1147 if (!nd->root.mnt) 1148 set_root_rcu(nd); 1149 1150 while (1) { 1151 if (nd->path.dentry == nd->root.dentry && 1152 nd->path.mnt == nd->root.mnt) { 1153 break; 1154 } 1155 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1156 struct dentry *old = nd->path.dentry; 1157 struct dentry *parent = old->d_parent; 1158 unsigned seq; 1159 1160 inode = parent->d_inode; 1161 seq = read_seqcount_begin(&parent->d_seq); 1162 if (read_seqcount_retry(&old->d_seq, nd->seq)) 1163 goto failed; 1164 nd->path.dentry = parent; 1165 nd->seq = seq; 1166 break; 1167 } 1168 if (!follow_up_rcu(&nd->path)) 1169 break; 1170 inode = nd->path.dentry->d_inode; 1171 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 1172 } 1173 while (d_mountpoint(nd->path.dentry)) { 1174 struct mount *mounted; 1175 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry); 1176 if (!mounted) 1177 break; 1178 nd->path.mnt = &mounted->mnt; 1179 nd->path.dentry = mounted->mnt.mnt_root; 1180 inode = nd->path.dentry->d_inode; 1181 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 1182 if (read_seqretry(&mount_lock, nd->m_seq)) 1183 goto failed; 1184 } 1185 nd->inode = inode; 1186 return 0; 1187 1188 failed: 1189 nd->flags &= ~LOOKUP_RCU; 1190 if (!(nd->flags & LOOKUP_ROOT)) 1191 nd->root.mnt = NULL; 1192 rcu_read_unlock(); 1193 return -ECHILD; 1194 } 1195 1196 /* 1197 * Follow down to the covering mount currently visible to userspace. At each 1198 * point, the filesystem owning that dentry may be queried as to whether the 1199 * caller is permitted to proceed or not. 1200 */ 1201 int follow_down(struct path *path) 1202 { 1203 unsigned managed; 1204 int ret; 1205 1206 while (managed = ACCESS_ONCE(path->dentry->d_flags), 1207 unlikely(managed & DCACHE_MANAGED_DENTRY)) { 1208 /* Allow the filesystem to manage the transit without i_mutex 1209 * being held. 1210 * 1211 * We indicate to the filesystem if someone is trying to mount 1212 * something here. This gives autofs the chance to deny anyone 1213 * other than its daemon the right to mount on its 1214 * superstructure. 1215 * 1216 * The filesystem may sleep at this point. 1217 */ 1218 if (managed & DCACHE_MANAGE_TRANSIT) { 1219 BUG_ON(!path->dentry->d_op); 1220 BUG_ON(!path->dentry->d_op->d_manage); 1221 ret = path->dentry->d_op->d_manage( 1222 path->dentry, false); 1223 if (ret < 0) 1224 return ret == -EISDIR ? 0 : ret; 1225 } 1226 1227 /* Transit to a mounted filesystem. */ 1228 if (managed & DCACHE_MOUNTED) { 1229 struct vfsmount *mounted = lookup_mnt(path); 1230 if (!mounted) 1231 break; 1232 dput(path->dentry); 1233 mntput(path->mnt); 1234 path->mnt = mounted; 1235 path->dentry = dget(mounted->mnt_root); 1236 continue; 1237 } 1238 1239 /* Don't handle automount points here */ 1240 break; 1241 } 1242 return 0; 1243 } 1244 EXPORT_SYMBOL(follow_down); 1245 1246 /* 1247 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot() 1248 */ 1249 static void follow_mount(struct path *path) 1250 { 1251 while (d_mountpoint(path->dentry)) { 1252 struct vfsmount *mounted = lookup_mnt(path); 1253 if (!mounted) 1254 break; 1255 dput(path->dentry); 1256 mntput(path->mnt); 1257 path->mnt = mounted; 1258 path->dentry = dget(mounted->mnt_root); 1259 } 1260 } 1261 1262 static void follow_dotdot(struct nameidata *nd) 1263 { 1264 if (!nd->root.mnt) 1265 set_root(nd); 1266 1267 while(1) { 1268 struct dentry *old = nd->path.dentry; 1269 1270 if (nd->path.dentry == nd->root.dentry && 1271 nd->path.mnt == nd->root.mnt) { 1272 break; 1273 } 1274 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1275 /* rare case of legitimate dget_parent()... */ 1276 nd->path.dentry = dget_parent(nd->path.dentry); 1277 dput(old); 1278 break; 1279 } 1280 if (!follow_up(&nd->path)) 1281 break; 1282 } 1283 follow_mount(&nd->path); 1284 nd->inode = nd->path.dentry->d_inode; 1285 } 1286 1287 /* 1288 * This looks up the name in dcache, possibly revalidates the old dentry and 1289 * allocates a new one if not found or not valid. In the need_lookup argument 1290 * returns whether i_op->lookup is necessary. 1291 * 1292 * dir->d_inode->i_mutex must be held 1293 */ 1294 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir, 1295 unsigned int flags, bool *need_lookup) 1296 { 1297 struct dentry *dentry; 1298 int error; 1299 1300 *need_lookup = false; 1301 dentry = d_lookup(dir, name); 1302 if (dentry) { 1303 if (dentry->d_flags & DCACHE_OP_REVALIDATE) { 1304 error = d_revalidate(dentry, flags); 1305 if (unlikely(error <= 0)) { 1306 if (error < 0) { 1307 dput(dentry); 1308 return ERR_PTR(error); 1309 } else if (!d_invalidate(dentry)) { 1310 dput(dentry); 1311 dentry = NULL; 1312 } 1313 } 1314 } 1315 } 1316 1317 if (!dentry) { 1318 dentry = d_alloc(dir, name); 1319 if (unlikely(!dentry)) 1320 return ERR_PTR(-ENOMEM); 1321 1322 *need_lookup = true; 1323 } 1324 return dentry; 1325 } 1326 1327 /* 1328 * Call i_op->lookup on the dentry. The dentry must be negative and 1329 * unhashed. 1330 * 1331 * dir->d_inode->i_mutex must be held 1332 */ 1333 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry, 1334 unsigned int flags) 1335 { 1336 struct dentry *old; 1337 1338 /* Don't create child dentry for a dead directory. */ 1339 if (unlikely(IS_DEADDIR(dir))) { 1340 dput(dentry); 1341 return ERR_PTR(-ENOENT); 1342 } 1343 1344 old = dir->i_op->lookup(dir, dentry, flags); 1345 if (unlikely(old)) { 1346 dput(dentry); 1347 dentry = old; 1348 } 1349 return dentry; 1350 } 1351 1352 static struct dentry *__lookup_hash(struct qstr *name, 1353 struct dentry *base, unsigned int flags) 1354 { 1355 bool need_lookup; 1356 struct dentry *dentry; 1357 1358 dentry = lookup_dcache(name, base, flags, &need_lookup); 1359 if (!need_lookup) 1360 return dentry; 1361 1362 return lookup_real(base->d_inode, dentry, flags); 1363 } 1364 1365 /* 1366 * It's more convoluted than I'd like it to be, but... it's still fairly 1367 * small and for now I'd prefer to have fast path as straight as possible. 1368 * It _is_ time-critical. 1369 */ 1370 static int lookup_fast(struct nameidata *nd, 1371 struct path *path, struct inode **inode) 1372 { 1373 struct vfsmount *mnt = nd->path.mnt; 1374 struct dentry *dentry, *parent = nd->path.dentry; 1375 int need_reval = 1; 1376 int status = 1; 1377 int err; 1378 1379 /* 1380 * Rename seqlock is not required here because in the off chance 1381 * of a false negative due to a concurrent rename, we're going to 1382 * do the non-racy lookup, below. 1383 */ 1384 if (nd->flags & LOOKUP_RCU) { 1385 unsigned seq; 1386 dentry = __d_lookup_rcu(parent, &nd->last, &seq); 1387 if (!dentry) 1388 goto unlazy; 1389 1390 /* 1391 * This sequence count validates that the inode matches 1392 * the dentry name information from lookup. 1393 */ 1394 *inode = dentry->d_inode; 1395 if (read_seqcount_retry(&dentry->d_seq, seq)) 1396 return -ECHILD; 1397 1398 /* 1399 * This sequence count validates that the parent had no 1400 * changes while we did the lookup of the dentry above. 1401 * 1402 * The memory barrier in read_seqcount_begin of child is 1403 * enough, we can use __read_seqcount_retry here. 1404 */ 1405 if (__read_seqcount_retry(&parent->d_seq, nd->seq)) 1406 return -ECHILD; 1407 nd->seq = seq; 1408 1409 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) { 1410 status = d_revalidate(dentry, nd->flags); 1411 if (unlikely(status <= 0)) { 1412 if (status != -ECHILD) 1413 need_reval = 0; 1414 goto unlazy; 1415 } 1416 } 1417 path->mnt = mnt; 1418 path->dentry = dentry; 1419 if (likely(__follow_mount_rcu(nd, path, inode))) 1420 return 0; 1421 unlazy: 1422 if (unlazy_walk(nd, dentry)) 1423 return -ECHILD; 1424 } else { 1425 dentry = __d_lookup(parent, &nd->last); 1426 } 1427 1428 if (unlikely(!dentry)) 1429 goto need_lookup; 1430 1431 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval) 1432 status = d_revalidate(dentry, nd->flags); 1433 if (unlikely(status <= 0)) { 1434 if (status < 0) { 1435 dput(dentry); 1436 return status; 1437 } 1438 if (!d_invalidate(dentry)) { 1439 dput(dentry); 1440 goto need_lookup; 1441 } 1442 } 1443 1444 path->mnt = mnt; 1445 path->dentry = dentry; 1446 err = follow_managed(path, nd->flags); 1447 if (unlikely(err < 0)) { 1448 path_put_conditional(path, nd); 1449 return err; 1450 } 1451 if (err) 1452 nd->flags |= LOOKUP_JUMPED; 1453 *inode = path->dentry->d_inode; 1454 return 0; 1455 1456 need_lookup: 1457 return 1; 1458 } 1459 1460 /* Fast lookup failed, do it the slow way */ 1461 static int lookup_slow(struct nameidata *nd, struct path *path) 1462 { 1463 struct dentry *dentry, *parent; 1464 int err; 1465 1466 parent = nd->path.dentry; 1467 BUG_ON(nd->inode != parent->d_inode); 1468 1469 mutex_lock(&parent->d_inode->i_mutex); 1470 dentry = __lookup_hash(&nd->last, parent, nd->flags); 1471 mutex_unlock(&parent->d_inode->i_mutex); 1472 if (IS_ERR(dentry)) 1473 return PTR_ERR(dentry); 1474 path->mnt = nd->path.mnt; 1475 path->dentry = dentry; 1476 err = follow_managed(path, nd->flags); 1477 if (unlikely(err < 0)) { 1478 path_put_conditional(path, nd); 1479 return err; 1480 } 1481 if (err) 1482 nd->flags |= LOOKUP_JUMPED; 1483 return 0; 1484 } 1485 1486 static inline int may_lookup(struct nameidata *nd) 1487 { 1488 if (nd->flags & LOOKUP_RCU) { 1489 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK); 1490 if (err != -ECHILD) 1491 return err; 1492 if (unlazy_walk(nd, NULL)) 1493 return -ECHILD; 1494 } 1495 return inode_permission(nd->inode, MAY_EXEC); 1496 } 1497 1498 static inline int handle_dots(struct nameidata *nd, int type) 1499 { 1500 if (type == LAST_DOTDOT) { 1501 if (nd->flags & LOOKUP_RCU) { 1502 if (follow_dotdot_rcu(nd)) 1503 return -ECHILD; 1504 } else 1505 follow_dotdot(nd); 1506 } 1507 return 0; 1508 } 1509 1510 static void terminate_walk(struct nameidata *nd) 1511 { 1512 if (!(nd->flags & LOOKUP_RCU)) { 1513 path_put(&nd->path); 1514 } else { 1515 nd->flags &= ~LOOKUP_RCU; 1516 if (!(nd->flags & LOOKUP_ROOT)) 1517 nd->root.mnt = NULL; 1518 rcu_read_unlock(); 1519 } 1520 } 1521 1522 /* 1523 * Do we need to follow links? We _really_ want to be able 1524 * to do this check without having to look at inode->i_op, 1525 * so we keep a cache of "no, this doesn't need follow_link" 1526 * for the common case. 1527 */ 1528 static inline int should_follow_link(struct dentry *dentry, int follow) 1529 { 1530 return unlikely(d_is_symlink(dentry)) ? follow : 0; 1531 } 1532 1533 static inline int walk_component(struct nameidata *nd, struct path *path, 1534 int follow) 1535 { 1536 struct inode *inode; 1537 int err; 1538 /* 1539 * "." and ".." are special - ".." especially so because it has 1540 * to be able to know about the current root directory and 1541 * parent relationships. 1542 */ 1543 if (unlikely(nd->last_type != LAST_NORM)) 1544 return handle_dots(nd, nd->last_type); 1545 err = lookup_fast(nd, path, &inode); 1546 if (unlikely(err)) { 1547 if (err < 0) 1548 goto out_err; 1549 1550 err = lookup_slow(nd, path); 1551 if (err < 0) 1552 goto out_err; 1553 1554 inode = path->dentry->d_inode; 1555 } 1556 err = -ENOENT; 1557 if (!inode || d_is_negative(path->dentry)) 1558 goto out_path_put; 1559 1560 if (should_follow_link(path->dentry, follow)) { 1561 if (nd->flags & LOOKUP_RCU) { 1562 if (unlikely(unlazy_walk(nd, path->dentry))) { 1563 err = -ECHILD; 1564 goto out_err; 1565 } 1566 } 1567 BUG_ON(inode != path->dentry->d_inode); 1568 return 1; 1569 } 1570 path_to_nameidata(path, nd); 1571 nd->inode = inode; 1572 return 0; 1573 1574 out_path_put: 1575 path_to_nameidata(path, nd); 1576 out_err: 1577 terminate_walk(nd); 1578 return err; 1579 } 1580 1581 /* 1582 * This limits recursive symlink follows to 8, while 1583 * limiting consecutive symlinks to 40. 1584 * 1585 * Without that kind of total limit, nasty chains of consecutive 1586 * symlinks can cause almost arbitrarily long lookups. 1587 */ 1588 static inline int nested_symlink(struct path *path, struct nameidata *nd) 1589 { 1590 int res; 1591 1592 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) { 1593 path_put_conditional(path, nd); 1594 path_put(&nd->path); 1595 return -ELOOP; 1596 } 1597 BUG_ON(nd->depth >= MAX_NESTED_LINKS); 1598 1599 nd->depth++; 1600 current->link_count++; 1601 1602 do { 1603 struct path link = *path; 1604 void *cookie; 1605 1606 res = follow_link(&link, nd, &cookie); 1607 if (res) 1608 break; 1609 res = walk_component(nd, path, LOOKUP_FOLLOW); 1610 put_link(nd, &link, cookie); 1611 } while (res > 0); 1612 1613 current->link_count--; 1614 nd->depth--; 1615 return res; 1616 } 1617 1618 /* 1619 * We can do the critical dentry name comparison and hashing 1620 * operations one word at a time, but we are limited to: 1621 * 1622 * - Architectures with fast unaligned word accesses. We could 1623 * do a "get_unaligned()" if this helps and is sufficiently 1624 * fast. 1625 * 1626 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we 1627 * do not trap on the (extremely unlikely) case of a page 1628 * crossing operation. 1629 * 1630 * - Furthermore, we need an efficient 64-bit compile for the 1631 * 64-bit case in order to generate the "number of bytes in 1632 * the final mask". Again, that could be replaced with a 1633 * efficient population count instruction or similar. 1634 */ 1635 #ifdef CONFIG_DCACHE_WORD_ACCESS 1636 1637 #include <asm/word-at-a-time.h> 1638 1639 #ifdef CONFIG_64BIT 1640 1641 static inline unsigned int fold_hash(unsigned long hash) 1642 { 1643 return hash_64(hash, 32); 1644 } 1645 1646 #else /* 32-bit case */ 1647 1648 #define fold_hash(x) (x) 1649 1650 #endif 1651 1652 unsigned int full_name_hash(const unsigned char *name, unsigned int len) 1653 { 1654 unsigned long a, mask; 1655 unsigned long hash = 0; 1656 1657 for (;;) { 1658 a = load_unaligned_zeropad(name); 1659 if (len < sizeof(unsigned long)) 1660 break; 1661 hash += a; 1662 hash *= 9; 1663 name += sizeof(unsigned long); 1664 len -= sizeof(unsigned long); 1665 if (!len) 1666 goto done; 1667 } 1668 mask = bytemask_from_count(len); 1669 hash += mask & a; 1670 done: 1671 return fold_hash(hash); 1672 } 1673 EXPORT_SYMBOL(full_name_hash); 1674 1675 /* 1676 * Calculate the length and hash of the path component, and 1677 * fill in the qstr. return the "len" as the result. 1678 */ 1679 static inline unsigned long hash_name(const char *name, struct qstr *res) 1680 { 1681 unsigned long a, b, adata, bdata, mask, hash, len; 1682 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 1683 1684 res->name = name; 1685 hash = a = 0; 1686 len = -sizeof(unsigned long); 1687 do { 1688 hash = (hash + a) * 9; 1689 len += sizeof(unsigned long); 1690 a = load_unaligned_zeropad(name+len); 1691 b = a ^ REPEAT_BYTE('/'); 1692 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants))); 1693 1694 adata = prep_zero_mask(a, adata, &constants); 1695 bdata = prep_zero_mask(b, bdata, &constants); 1696 1697 mask = create_zero_mask(adata | bdata); 1698 1699 hash += a & zero_bytemask(mask); 1700 len += find_zero(mask); 1701 res->hash_len = hashlen_create(fold_hash(hash), len); 1702 1703 return len; 1704 } 1705 1706 #else 1707 1708 unsigned int full_name_hash(const unsigned char *name, unsigned int len) 1709 { 1710 unsigned long hash = init_name_hash(); 1711 while (len--) 1712 hash = partial_name_hash(*name++, hash); 1713 return end_name_hash(hash); 1714 } 1715 EXPORT_SYMBOL(full_name_hash); 1716 1717 /* 1718 * We know there's a real path component here of at least 1719 * one character. 1720 */ 1721 static inline long hash_name(const char *name, struct qstr *res) 1722 { 1723 unsigned long hash = init_name_hash(); 1724 unsigned long len = 0, c; 1725 1726 res->name = name; 1727 c = (unsigned char)*name; 1728 do { 1729 len++; 1730 hash = partial_name_hash(c, hash); 1731 c = (unsigned char)name[len]; 1732 } while (c && c != '/'); 1733 res->hash_len = hashlen_create(end_name_hash(hash), len); 1734 return len; 1735 } 1736 1737 #endif 1738 1739 /* 1740 * Name resolution. 1741 * This is the basic name resolution function, turning a pathname into 1742 * the final dentry. We expect 'base' to be positive and a directory. 1743 * 1744 * Returns 0 and nd will have valid dentry and mnt on success. 1745 * Returns error and drops reference to input namei data on failure. 1746 */ 1747 static int link_path_walk(const char *name, struct nameidata *nd) 1748 { 1749 struct path next; 1750 int err; 1751 1752 while (*name=='/') 1753 name++; 1754 if (!*name) 1755 return 0; 1756 1757 /* At this point we know we have a real path component. */ 1758 for(;;) { 1759 struct qstr this; 1760 long len; 1761 int type; 1762 1763 err = may_lookup(nd); 1764 if (err) 1765 break; 1766 1767 len = hash_name(name, &this); 1768 1769 type = LAST_NORM; 1770 if (name[0] == '.') switch (len) { 1771 case 2: 1772 if (name[1] == '.') { 1773 type = LAST_DOTDOT; 1774 nd->flags |= LOOKUP_JUMPED; 1775 } 1776 break; 1777 case 1: 1778 type = LAST_DOT; 1779 } 1780 if (likely(type == LAST_NORM)) { 1781 struct dentry *parent = nd->path.dentry; 1782 nd->flags &= ~LOOKUP_JUMPED; 1783 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { 1784 err = parent->d_op->d_hash(parent, &this); 1785 if (err < 0) 1786 break; 1787 } 1788 } 1789 1790 nd->last = this; 1791 nd->last_type = type; 1792 1793 if (!name[len]) 1794 return 0; 1795 /* 1796 * If it wasn't NUL, we know it was '/'. Skip that 1797 * slash, and continue until no more slashes. 1798 */ 1799 do { 1800 len++; 1801 } while (unlikely(name[len] == '/')); 1802 if (!name[len]) 1803 return 0; 1804 1805 name += len; 1806 1807 err = walk_component(nd, &next, LOOKUP_FOLLOW); 1808 if (err < 0) 1809 return err; 1810 1811 if (err) { 1812 err = nested_symlink(&next, nd); 1813 if (err) 1814 return err; 1815 } 1816 if (!d_can_lookup(nd->path.dentry)) { 1817 err = -ENOTDIR; 1818 break; 1819 } 1820 } 1821 terminate_walk(nd); 1822 return err; 1823 } 1824 1825 static int path_init(int dfd, const char *name, unsigned int flags, 1826 struct nameidata *nd, struct file **fp) 1827 { 1828 int retval = 0; 1829 1830 nd->last_type = LAST_ROOT; /* if there are only slashes... */ 1831 nd->flags = flags | LOOKUP_JUMPED; 1832 nd->depth = 0; 1833 if (flags & LOOKUP_ROOT) { 1834 struct dentry *root = nd->root.dentry; 1835 struct inode *inode = root->d_inode; 1836 if (*name) { 1837 if (!d_can_lookup(root)) 1838 return -ENOTDIR; 1839 retval = inode_permission(inode, MAY_EXEC); 1840 if (retval) 1841 return retval; 1842 } 1843 nd->path = nd->root; 1844 nd->inode = inode; 1845 if (flags & LOOKUP_RCU) { 1846 rcu_read_lock(); 1847 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1848 nd->m_seq = read_seqbegin(&mount_lock); 1849 } else { 1850 path_get(&nd->path); 1851 } 1852 return 0; 1853 } 1854 1855 nd->root.mnt = NULL; 1856 1857 nd->m_seq = read_seqbegin(&mount_lock); 1858 if (*name=='/') { 1859 if (flags & LOOKUP_RCU) { 1860 rcu_read_lock(); 1861 nd->seq = set_root_rcu(nd); 1862 } else { 1863 set_root(nd); 1864 path_get(&nd->root); 1865 } 1866 nd->path = nd->root; 1867 } else if (dfd == AT_FDCWD) { 1868 if (flags & LOOKUP_RCU) { 1869 struct fs_struct *fs = current->fs; 1870 unsigned seq; 1871 1872 rcu_read_lock(); 1873 1874 do { 1875 seq = read_seqcount_begin(&fs->seq); 1876 nd->path = fs->pwd; 1877 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1878 } while (read_seqcount_retry(&fs->seq, seq)); 1879 } else { 1880 get_fs_pwd(current->fs, &nd->path); 1881 } 1882 } else { 1883 /* Caller must check execute permissions on the starting path component */ 1884 struct fd f = fdget_raw(dfd); 1885 struct dentry *dentry; 1886 1887 if (!f.file) 1888 return -EBADF; 1889 1890 dentry = f.file->f_path.dentry; 1891 1892 if (*name) { 1893 if (!d_can_lookup(dentry)) { 1894 fdput(f); 1895 return -ENOTDIR; 1896 } 1897 } 1898 1899 nd->path = f.file->f_path; 1900 if (flags & LOOKUP_RCU) { 1901 if (f.flags & FDPUT_FPUT) 1902 *fp = f.file; 1903 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1904 rcu_read_lock(); 1905 } else { 1906 path_get(&nd->path); 1907 fdput(f); 1908 } 1909 } 1910 1911 nd->inode = nd->path.dentry->d_inode; 1912 if (!(flags & LOOKUP_RCU)) 1913 return 0; 1914 if (likely(!read_seqcount_retry(&nd->path.dentry->d_seq, nd->seq))) 1915 return 0; 1916 if (!(nd->flags & LOOKUP_ROOT)) 1917 nd->root.mnt = NULL; 1918 rcu_read_unlock(); 1919 return -ECHILD; 1920 } 1921 1922 static inline int lookup_last(struct nameidata *nd, struct path *path) 1923 { 1924 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len]) 1925 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 1926 1927 nd->flags &= ~LOOKUP_PARENT; 1928 return walk_component(nd, path, nd->flags & LOOKUP_FOLLOW); 1929 } 1930 1931 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 1932 static int path_lookupat(int dfd, const char *name, 1933 unsigned int flags, struct nameidata *nd) 1934 { 1935 struct file *base = NULL; 1936 struct path path; 1937 int err; 1938 1939 /* 1940 * Path walking is largely split up into 2 different synchronisation 1941 * schemes, rcu-walk and ref-walk (explained in 1942 * Documentation/filesystems/path-lookup.txt). These share much of the 1943 * path walk code, but some things particularly setup, cleanup, and 1944 * following mounts are sufficiently divergent that functions are 1945 * duplicated. Typically there is a function foo(), and its RCU 1946 * analogue, foo_rcu(). 1947 * 1948 * -ECHILD is the error number of choice (just to avoid clashes) that 1949 * is returned if some aspect of an rcu-walk fails. Such an error must 1950 * be handled by restarting a traditional ref-walk (which will always 1951 * be able to complete). 1952 */ 1953 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base); 1954 1955 if (unlikely(err)) 1956 return err; 1957 1958 current->total_link_count = 0; 1959 err = link_path_walk(name, nd); 1960 1961 if (!err && !(flags & LOOKUP_PARENT)) { 1962 err = lookup_last(nd, &path); 1963 while (err > 0) { 1964 void *cookie; 1965 struct path link = path; 1966 err = may_follow_link(&link, nd); 1967 if (unlikely(err)) 1968 break; 1969 nd->flags |= LOOKUP_PARENT; 1970 err = follow_link(&link, nd, &cookie); 1971 if (err) 1972 break; 1973 err = lookup_last(nd, &path); 1974 put_link(nd, &link, cookie); 1975 } 1976 } 1977 1978 if (!err) 1979 err = complete_walk(nd); 1980 1981 if (!err && nd->flags & LOOKUP_DIRECTORY) { 1982 if (!d_can_lookup(nd->path.dentry)) { 1983 path_put(&nd->path); 1984 err = -ENOTDIR; 1985 } 1986 } 1987 1988 if (base) 1989 fput(base); 1990 1991 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 1992 path_put(&nd->root); 1993 nd->root.mnt = NULL; 1994 } 1995 return err; 1996 } 1997 1998 static int filename_lookup(int dfd, struct filename *name, 1999 unsigned int flags, struct nameidata *nd) 2000 { 2001 int retval = path_lookupat(dfd, name->name, flags | LOOKUP_RCU, nd); 2002 if (unlikely(retval == -ECHILD)) 2003 retval = path_lookupat(dfd, name->name, flags, nd); 2004 if (unlikely(retval == -ESTALE)) 2005 retval = path_lookupat(dfd, name->name, 2006 flags | LOOKUP_REVAL, nd); 2007 2008 if (likely(!retval)) 2009 audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT); 2010 return retval; 2011 } 2012 2013 static int do_path_lookup(int dfd, const char *name, 2014 unsigned int flags, struct nameidata *nd) 2015 { 2016 struct filename filename = { .name = name }; 2017 2018 return filename_lookup(dfd, &filename, flags, nd); 2019 } 2020 2021 /* does lookup, returns the object with parent locked */ 2022 struct dentry *kern_path_locked(const char *name, struct path *path) 2023 { 2024 struct nameidata nd; 2025 struct dentry *d; 2026 int err = do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, &nd); 2027 if (err) 2028 return ERR_PTR(err); 2029 if (nd.last_type != LAST_NORM) { 2030 path_put(&nd.path); 2031 return ERR_PTR(-EINVAL); 2032 } 2033 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 2034 d = __lookup_hash(&nd.last, nd.path.dentry, 0); 2035 if (IS_ERR(d)) { 2036 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2037 path_put(&nd.path); 2038 return d; 2039 } 2040 *path = nd.path; 2041 return d; 2042 } 2043 2044 int kern_path(const char *name, unsigned int flags, struct path *path) 2045 { 2046 struct nameidata nd; 2047 int res = do_path_lookup(AT_FDCWD, name, flags, &nd); 2048 if (!res) 2049 *path = nd.path; 2050 return res; 2051 } 2052 EXPORT_SYMBOL(kern_path); 2053 2054 /** 2055 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 2056 * @dentry: pointer to dentry of the base directory 2057 * @mnt: pointer to vfs mount of the base directory 2058 * @name: pointer to file name 2059 * @flags: lookup flags 2060 * @path: pointer to struct path to fill 2061 */ 2062 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 2063 const char *name, unsigned int flags, 2064 struct path *path) 2065 { 2066 struct nameidata nd; 2067 int err; 2068 nd.root.dentry = dentry; 2069 nd.root.mnt = mnt; 2070 BUG_ON(flags & LOOKUP_PARENT); 2071 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */ 2072 err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd); 2073 if (!err) 2074 *path = nd.path; 2075 return err; 2076 } 2077 EXPORT_SYMBOL(vfs_path_lookup); 2078 2079 /* 2080 * Restricted form of lookup. Doesn't follow links, single-component only, 2081 * needs parent already locked. Doesn't follow mounts. 2082 * SMP-safe. 2083 */ 2084 static struct dentry *lookup_hash(struct nameidata *nd) 2085 { 2086 return __lookup_hash(&nd->last, nd->path.dentry, nd->flags); 2087 } 2088 2089 /** 2090 * lookup_one_len - filesystem helper to lookup single pathname component 2091 * @name: pathname component to lookup 2092 * @base: base directory to lookup from 2093 * @len: maximum length @len should be interpreted to 2094 * 2095 * Note that this routine is purely a helper for filesystem usage and should 2096 * not be called by generic code. Also note that by using this function the 2097 * nameidata argument is passed to the filesystem methods and a filesystem 2098 * using this helper needs to be prepared for that. 2099 */ 2100 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 2101 { 2102 struct qstr this; 2103 unsigned int c; 2104 int err; 2105 2106 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex)); 2107 2108 this.name = name; 2109 this.len = len; 2110 this.hash = full_name_hash(name, len); 2111 if (!len) 2112 return ERR_PTR(-EACCES); 2113 2114 if (unlikely(name[0] == '.')) { 2115 if (len < 2 || (len == 2 && name[1] == '.')) 2116 return ERR_PTR(-EACCES); 2117 } 2118 2119 while (len--) { 2120 c = *(const unsigned char *)name++; 2121 if (c == '/' || c == '\0') 2122 return ERR_PTR(-EACCES); 2123 } 2124 /* 2125 * See if the low-level filesystem might want 2126 * to use its own hash.. 2127 */ 2128 if (base->d_flags & DCACHE_OP_HASH) { 2129 int err = base->d_op->d_hash(base, &this); 2130 if (err < 0) 2131 return ERR_PTR(err); 2132 } 2133 2134 err = inode_permission(base->d_inode, MAY_EXEC); 2135 if (err) 2136 return ERR_PTR(err); 2137 2138 return __lookup_hash(&this, base, 0); 2139 } 2140 EXPORT_SYMBOL(lookup_one_len); 2141 2142 int user_path_at_empty(int dfd, const char __user *name, unsigned flags, 2143 struct path *path, int *empty) 2144 { 2145 struct nameidata nd; 2146 struct filename *tmp = getname_flags(name, flags, empty); 2147 int err = PTR_ERR(tmp); 2148 if (!IS_ERR(tmp)) { 2149 2150 BUG_ON(flags & LOOKUP_PARENT); 2151 2152 err = filename_lookup(dfd, tmp, flags, &nd); 2153 putname(tmp); 2154 if (!err) 2155 *path = nd.path; 2156 } 2157 return err; 2158 } 2159 2160 int user_path_at(int dfd, const char __user *name, unsigned flags, 2161 struct path *path) 2162 { 2163 return user_path_at_empty(dfd, name, flags, path, NULL); 2164 } 2165 EXPORT_SYMBOL(user_path_at); 2166 2167 /* 2168 * NB: most callers don't do anything directly with the reference to the 2169 * to struct filename, but the nd->last pointer points into the name string 2170 * allocated by getname. So we must hold the reference to it until all 2171 * path-walking is complete. 2172 */ 2173 static struct filename * 2174 user_path_parent(int dfd, const char __user *path, struct nameidata *nd, 2175 unsigned int flags) 2176 { 2177 struct filename *s = getname(path); 2178 int error; 2179 2180 /* only LOOKUP_REVAL is allowed in extra flags */ 2181 flags &= LOOKUP_REVAL; 2182 2183 if (IS_ERR(s)) 2184 return s; 2185 2186 error = filename_lookup(dfd, s, flags | LOOKUP_PARENT, nd); 2187 if (error) { 2188 putname(s); 2189 return ERR_PTR(error); 2190 } 2191 2192 return s; 2193 } 2194 2195 /** 2196 * mountpoint_last - look up last component for umount 2197 * @nd: pathwalk nameidata - currently pointing at parent directory of "last" 2198 * @path: pointer to container for result 2199 * 2200 * This is a special lookup_last function just for umount. In this case, we 2201 * need to resolve the path without doing any revalidation. 2202 * 2203 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since 2204 * mountpoints are always pinned in the dcache, their ancestors are too. Thus, 2205 * in almost all cases, this lookup will be served out of the dcache. The only 2206 * cases where it won't are if nd->last refers to a symlink or the path is 2207 * bogus and it doesn't exist. 2208 * 2209 * Returns: 2210 * -error: if there was an error during lookup. This includes -ENOENT if the 2211 * lookup found a negative dentry. The nd->path reference will also be 2212 * put in this case. 2213 * 2214 * 0: if we successfully resolved nd->path and found it to not to be a 2215 * symlink that needs to be followed. "path" will also be populated. 2216 * The nd->path reference will also be put. 2217 * 2218 * 1: if we successfully resolved nd->last and found it to be a symlink 2219 * that needs to be followed. "path" will be populated with the path 2220 * to the link, and nd->path will *not* be put. 2221 */ 2222 static int 2223 mountpoint_last(struct nameidata *nd, struct path *path) 2224 { 2225 int error = 0; 2226 struct dentry *dentry; 2227 struct dentry *dir = nd->path.dentry; 2228 2229 /* If we're in rcuwalk, drop out of it to handle last component */ 2230 if (nd->flags & LOOKUP_RCU) { 2231 if (unlazy_walk(nd, NULL)) { 2232 error = -ECHILD; 2233 goto out; 2234 } 2235 } 2236 2237 nd->flags &= ~LOOKUP_PARENT; 2238 2239 if (unlikely(nd->last_type != LAST_NORM)) { 2240 error = handle_dots(nd, nd->last_type); 2241 if (error) 2242 goto out; 2243 dentry = dget(nd->path.dentry); 2244 goto done; 2245 } 2246 2247 mutex_lock(&dir->d_inode->i_mutex); 2248 dentry = d_lookup(dir, &nd->last); 2249 if (!dentry) { 2250 /* 2251 * No cached dentry. Mounted dentries are pinned in the cache, 2252 * so that means that this dentry is probably a symlink or the 2253 * path doesn't actually point to a mounted dentry. 2254 */ 2255 dentry = d_alloc(dir, &nd->last); 2256 if (!dentry) { 2257 error = -ENOMEM; 2258 mutex_unlock(&dir->d_inode->i_mutex); 2259 goto out; 2260 } 2261 dentry = lookup_real(dir->d_inode, dentry, nd->flags); 2262 error = PTR_ERR(dentry); 2263 if (IS_ERR(dentry)) { 2264 mutex_unlock(&dir->d_inode->i_mutex); 2265 goto out; 2266 } 2267 } 2268 mutex_unlock(&dir->d_inode->i_mutex); 2269 2270 done: 2271 if (!dentry->d_inode || d_is_negative(dentry)) { 2272 error = -ENOENT; 2273 dput(dentry); 2274 goto out; 2275 } 2276 path->dentry = dentry; 2277 path->mnt = nd->path.mnt; 2278 if (should_follow_link(dentry, nd->flags & LOOKUP_FOLLOW)) 2279 return 1; 2280 mntget(path->mnt); 2281 follow_mount(path); 2282 error = 0; 2283 out: 2284 terminate_walk(nd); 2285 return error; 2286 } 2287 2288 /** 2289 * path_mountpoint - look up a path to be umounted 2290 * @dfd: directory file descriptor to start walk from 2291 * @name: full pathname to walk 2292 * @path: pointer to container for result 2293 * @flags: lookup flags 2294 * 2295 * Look up the given name, but don't attempt to revalidate the last component. 2296 * Returns 0 and "path" will be valid on success; Returns error otherwise. 2297 */ 2298 static int 2299 path_mountpoint(int dfd, const char *name, struct path *path, unsigned int flags) 2300 { 2301 struct file *base = NULL; 2302 struct nameidata nd; 2303 int err; 2304 2305 err = path_init(dfd, name, flags | LOOKUP_PARENT, &nd, &base); 2306 if (unlikely(err)) 2307 return err; 2308 2309 current->total_link_count = 0; 2310 err = link_path_walk(name, &nd); 2311 if (err) 2312 goto out; 2313 2314 err = mountpoint_last(&nd, path); 2315 while (err > 0) { 2316 void *cookie; 2317 struct path link = *path; 2318 err = may_follow_link(&link, &nd); 2319 if (unlikely(err)) 2320 break; 2321 nd.flags |= LOOKUP_PARENT; 2322 err = follow_link(&link, &nd, &cookie); 2323 if (err) 2324 break; 2325 err = mountpoint_last(&nd, path); 2326 put_link(&nd, &link, cookie); 2327 } 2328 out: 2329 if (base) 2330 fput(base); 2331 2332 if (nd.root.mnt && !(nd.flags & LOOKUP_ROOT)) 2333 path_put(&nd.root); 2334 2335 return err; 2336 } 2337 2338 static int 2339 filename_mountpoint(int dfd, struct filename *s, struct path *path, 2340 unsigned int flags) 2341 { 2342 int error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_RCU); 2343 if (unlikely(error == -ECHILD)) 2344 error = path_mountpoint(dfd, s->name, path, flags); 2345 if (unlikely(error == -ESTALE)) 2346 error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_REVAL); 2347 if (likely(!error)) 2348 audit_inode(s, path->dentry, 0); 2349 return error; 2350 } 2351 2352 /** 2353 * user_path_mountpoint_at - lookup a path from userland in order to umount it 2354 * @dfd: directory file descriptor 2355 * @name: pathname from userland 2356 * @flags: lookup flags 2357 * @path: pointer to container to hold result 2358 * 2359 * A umount is a special case for path walking. We're not actually interested 2360 * in the inode in this situation, and ESTALE errors can be a problem. We 2361 * simply want track down the dentry and vfsmount attached at the mountpoint 2362 * and avoid revalidating the last component. 2363 * 2364 * Returns 0 and populates "path" on success. 2365 */ 2366 int 2367 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags, 2368 struct path *path) 2369 { 2370 struct filename *s = getname(name); 2371 int error; 2372 if (IS_ERR(s)) 2373 return PTR_ERR(s); 2374 error = filename_mountpoint(dfd, s, path, flags); 2375 putname(s); 2376 return error; 2377 } 2378 2379 int 2380 kern_path_mountpoint(int dfd, const char *name, struct path *path, 2381 unsigned int flags) 2382 { 2383 struct filename s = {.name = name}; 2384 return filename_mountpoint(dfd, &s, path, flags); 2385 } 2386 EXPORT_SYMBOL(kern_path_mountpoint); 2387 2388 /* 2389 * It's inline, so penalty for filesystems that don't use sticky bit is 2390 * minimal. 2391 */ 2392 static inline int check_sticky(struct inode *dir, struct inode *inode) 2393 { 2394 kuid_t fsuid = current_fsuid(); 2395 2396 if (!(dir->i_mode & S_ISVTX)) 2397 return 0; 2398 if (uid_eq(inode->i_uid, fsuid)) 2399 return 0; 2400 if (uid_eq(dir->i_uid, fsuid)) 2401 return 0; 2402 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER); 2403 } 2404 2405 /* 2406 * Check whether we can remove a link victim from directory dir, check 2407 * whether the type of victim is right. 2408 * 1. We can't do it if dir is read-only (done in permission()) 2409 * 2. We should have write and exec permissions on dir 2410 * 3. We can't remove anything from append-only dir 2411 * 4. We can't do anything with immutable dir (done in permission()) 2412 * 5. If the sticky bit on dir is set we should either 2413 * a. be owner of dir, or 2414 * b. be owner of victim, or 2415 * c. have CAP_FOWNER capability 2416 * 6. If the victim is append-only or immutable we can't do antyhing with 2417 * links pointing to it. 2418 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 2419 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 2420 * 9. We can't remove a root or mountpoint. 2421 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 2422 * nfs_async_unlink(). 2423 */ 2424 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir) 2425 { 2426 struct inode *inode = victim->d_inode; 2427 int error; 2428 2429 if (d_is_negative(victim)) 2430 return -ENOENT; 2431 BUG_ON(!inode); 2432 2433 BUG_ON(victim->d_parent->d_inode != dir); 2434 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 2435 2436 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 2437 if (error) 2438 return error; 2439 if (IS_APPEND(dir)) 2440 return -EPERM; 2441 2442 if (check_sticky(dir, inode) || IS_APPEND(inode) || 2443 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode)) 2444 return -EPERM; 2445 if (isdir) { 2446 if (!d_is_dir(victim)) 2447 return -ENOTDIR; 2448 if (IS_ROOT(victim)) 2449 return -EBUSY; 2450 } else if (d_is_dir(victim)) 2451 return -EISDIR; 2452 if (IS_DEADDIR(dir)) 2453 return -ENOENT; 2454 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 2455 return -EBUSY; 2456 return 0; 2457 } 2458 2459 /* Check whether we can create an object with dentry child in directory 2460 * dir. 2461 * 1. We can't do it if child already exists (open has special treatment for 2462 * this case, but since we are inlined it's OK) 2463 * 2. We can't do it if dir is read-only (done in permission()) 2464 * 3. We should have write and exec permissions on dir 2465 * 4. We can't do it if dir is immutable (done in permission()) 2466 */ 2467 static inline int may_create(struct inode *dir, struct dentry *child) 2468 { 2469 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE); 2470 if (child->d_inode) 2471 return -EEXIST; 2472 if (IS_DEADDIR(dir)) 2473 return -ENOENT; 2474 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 2475 } 2476 2477 /* 2478 * p1 and p2 should be directories on the same fs. 2479 */ 2480 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 2481 { 2482 struct dentry *p; 2483 2484 if (p1 == p2) { 2485 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 2486 return NULL; 2487 } 2488 2489 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 2490 2491 p = d_ancestor(p2, p1); 2492 if (p) { 2493 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT); 2494 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD); 2495 return p; 2496 } 2497 2498 p = d_ancestor(p1, p2); 2499 if (p) { 2500 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 2501 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 2502 return p; 2503 } 2504 2505 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 2506 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 2507 return NULL; 2508 } 2509 EXPORT_SYMBOL(lock_rename); 2510 2511 void unlock_rename(struct dentry *p1, struct dentry *p2) 2512 { 2513 mutex_unlock(&p1->d_inode->i_mutex); 2514 if (p1 != p2) { 2515 mutex_unlock(&p2->d_inode->i_mutex); 2516 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 2517 } 2518 } 2519 EXPORT_SYMBOL(unlock_rename); 2520 2521 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2522 bool want_excl) 2523 { 2524 int error = may_create(dir, dentry); 2525 if (error) 2526 return error; 2527 2528 if (!dir->i_op->create) 2529 return -EACCES; /* shouldn't it be ENOSYS? */ 2530 mode &= S_IALLUGO; 2531 mode |= S_IFREG; 2532 error = security_inode_create(dir, dentry, mode); 2533 if (error) 2534 return error; 2535 error = dir->i_op->create(dir, dentry, mode, want_excl); 2536 if (!error) 2537 fsnotify_create(dir, dentry); 2538 return error; 2539 } 2540 EXPORT_SYMBOL(vfs_create); 2541 2542 static int may_open(struct path *path, int acc_mode, int flag) 2543 { 2544 struct dentry *dentry = path->dentry; 2545 struct inode *inode = dentry->d_inode; 2546 int error; 2547 2548 /* O_PATH? */ 2549 if (!acc_mode) 2550 return 0; 2551 2552 if (!inode) 2553 return -ENOENT; 2554 2555 switch (inode->i_mode & S_IFMT) { 2556 case S_IFLNK: 2557 return -ELOOP; 2558 case S_IFDIR: 2559 if (acc_mode & MAY_WRITE) 2560 return -EISDIR; 2561 break; 2562 case S_IFBLK: 2563 case S_IFCHR: 2564 if (path->mnt->mnt_flags & MNT_NODEV) 2565 return -EACCES; 2566 /*FALLTHRU*/ 2567 case S_IFIFO: 2568 case S_IFSOCK: 2569 flag &= ~O_TRUNC; 2570 break; 2571 } 2572 2573 error = inode_permission(inode, acc_mode); 2574 if (error) 2575 return error; 2576 2577 /* 2578 * An append-only file must be opened in append mode for writing. 2579 */ 2580 if (IS_APPEND(inode)) { 2581 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 2582 return -EPERM; 2583 if (flag & O_TRUNC) 2584 return -EPERM; 2585 } 2586 2587 /* O_NOATIME can only be set by the owner or superuser */ 2588 if (flag & O_NOATIME && !inode_owner_or_capable(inode)) 2589 return -EPERM; 2590 2591 return 0; 2592 } 2593 2594 static int handle_truncate(struct file *filp) 2595 { 2596 struct path *path = &filp->f_path; 2597 struct inode *inode = path->dentry->d_inode; 2598 int error = get_write_access(inode); 2599 if (error) 2600 return error; 2601 /* 2602 * Refuse to truncate files with mandatory locks held on them. 2603 */ 2604 error = locks_verify_locked(filp); 2605 if (!error) 2606 error = security_path_truncate(path); 2607 if (!error) { 2608 error = do_truncate(path->dentry, 0, 2609 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 2610 filp); 2611 } 2612 put_write_access(inode); 2613 return error; 2614 } 2615 2616 static inline int open_to_namei_flags(int flag) 2617 { 2618 if ((flag & O_ACCMODE) == 3) 2619 flag--; 2620 return flag; 2621 } 2622 2623 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode) 2624 { 2625 int error = security_path_mknod(dir, dentry, mode, 0); 2626 if (error) 2627 return error; 2628 2629 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC); 2630 if (error) 2631 return error; 2632 2633 return security_inode_create(dir->dentry->d_inode, dentry, mode); 2634 } 2635 2636 /* 2637 * Attempt to atomically look up, create and open a file from a negative 2638 * dentry. 2639 * 2640 * Returns 0 if successful. The file will have been created and attached to 2641 * @file by the filesystem calling finish_open(). 2642 * 2643 * Returns 1 if the file was looked up only or didn't need creating. The 2644 * caller will need to perform the open themselves. @path will have been 2645 * updated to point to the new dentry. This may be negative. 2646 * 2647 * Returns an error code otherwise. 2648 */ 2649 static int atomic_open(struct nameidata *nd, struct dentry *dentry, 2650 struct path *path, struct file *file, 2651 const struct open_flags *op, 2652 bool got_write, bool need_lookup, 2653 int *opened) 2654 { 2655 struct inode *dir = nd->path.dentry->d_inode; 2656 unsigned open_flag = open_to_namei_flags(op->open_flag); 2657 umode_t mode; 2658 int error; 2659 int acc_mode; 2660 int create_error = 0; 2661 struct dentry *const DENTRY_NOT_SET = (void *) -1UL; 2662 bool excl; 2663 2664 BUG_ON(dentry->d_inode); 2665 2666 /* Don't create child dentry for a dead directory. */ 2667 if (unlikely(IS_DEADDIR(dir))) { 2668 error = -ENOENT; 2669 goto out; 2670 } 2671 2672 mode = op->mode; 2673 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir)) 2674 mode &= ~current_umask(); 2675 2676 excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT); 2677 if (excl) 2678 open_flag &= ~O_TRUNC; 2679 2680 /* 2681 * Checking write permission is tricky, bacuse we don't know if we are 2682 * going to actually need it: O_CREAT opens should work as long as the 2683 * file exists. But checking existence breaks atomicity. The trick is 2684 * to check access and if not granted clear O_CREAT from the flags. 2685 * 2686 * Another problem is returing the "right" error value (e.g. for an 2687 * O_EXCL open we want to return EEXIST not EROFS). 2688 */ 2689 if (((open_flag & (O_CREAT | O_TRUNC)) || 2690 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) { 2691 if (!(open_flag & O_CREAT)) { 2692 /* 2693 * No O_CREATE -> atomicity not a requirement -> fall 2694 * back to lookup + open 2695 */ 2696 goto no_open; 2697 } else if (open_flag & (O_EXCL | O_TRUNC)) { 2698 /* Fall back and fail with the right error */ 2699 create_error = -EROFS; 2700 goto no_open; 2701 } else { 2702 /* No side effects, safe to clear O_CREAT */ 2703 create_error = -EROFS; 2704 open_flag &= ~O_CREAT; 2705 } 2706 } 2707 2708 if (open_flag & O_CREAT) { 2709 error = may_o_create(&nd->path, dentry, mode); 2710 if (error) { 2711 create_error = error; 2712 if (open_flag & O_EXCL) 2713 goto no_open; 2714 open_flag &= ~O_CREAT; 2715 } 2716 } 2717 2718 if (nd->flags & LOOKUP_DIRECTORY) 2719 open_flag |= O_DIRECTORY; 2720 2721 file->f_path.dentry = DENTRY_NOT_SET; 2722 file->f_path.mnt = nd->path.mnt; 2723 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode, 2724 opened); 2725 if (error < 0) { 2726 if (create_error && error == -ENOENT) 2727 error = create_error; 2728 goto out; 2729 } 2730 2731 if (error) { /* returned 1, that is */ 2732 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) { 2733 error = -EIO; 2734 goto out; 2735 } 2736 if (file->f_path.dentry) { 2737 dput(dentry); 2738 dentry = file->f_path.dentry; 2739 } 2740 if (*opened & FILE_CREATED) 2741 fsnotify_create(dir, dentry); 2742 if (!dentry->d_inode) { 2743 WARN_ON(*opened & FILE_CREATED); 2744 if (create_error) { 2745 error = create_error; 2746 goto out; 2747 } 2748 } else { 2749 if (excl && !(*opened & FILE_CREATED)) { 2750 error = -EEXIST; 2751 goto out; 2752 } 2753 } 2754 goto looked_up; 2755 } 2756 2757 /* 2758 * We didn't have the inode before the open, so check open permission 2759 * here. 2760 */ 2761 acc_mode = op->acc_mode; 2762 if (*opened & FILE_CREATED) { 2763 WARN_ON(!(open_flag & O_CREAT)); 2764 fsnotify_create(dir, dentry); 2765 acc_mode = MAY_OPEN; 2766 } 2767 error = may_open(&file->f_path, acc_mode, open_flag); 2768 if (error) 2769 fput(file); 2770 2771 out: 2772 dput(dentry); 2773 return error; 2774 2775 no_open: 2776 if (need_lookup) { 2777 dentry = lookup_real(dir, dentry, nd->flags); 2778 if (IS_ERR(dentry)) 2779 return PTR_ERR(dentry); 2780 2781 if (create_error) { 2782 int open_flag = op->open_flag; 2783 2784 error = create_error; 2785 if ((open_flag & O_EXCL)) { 2786 if (!dentry->d_inode) 2787 goto out; 2788 } else if (!dentry->d_inode) { 2789 goto out; 2790 } else if ((open_flag & O_TRUNC) && 2791 S_ISREG(dentry->d_inode->i_mode)) { 2792 goto out; 2793 } 2794 /* will fail later, go on to get the right error */ 2795 } 2796 } 2797 looked_up: 2798 path->dentry = dentry; 2799 path->mnt = nd->path.mnt; 2800 return 1; 2801 } 2802 2803 /* 2804 * Look up and maybe create and open the last component. 2805 * 2806 * Must be called with i_mutex held on parent. 2807 * 2808 * Returns 0 if the file was successfully atomically created (if necessary) and 2809 * opened. In this case the file will be returned attached to @file. 2810 * 2811 * Returns 1 if the file was not completely opened at this time, though lookups 2812 * and creations will have been performed and the dentry returned in @path will 2813 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't 2814 * specified then a negative dentry may be returned. 2815 * 2816 * An error code is returned otherwise. 2817 * 2818 * FILE_CREATE will be set in @*opened if the dentry was created and will be 2819 * cleared otherwise prior to returning. 2820 */ 2821 static int lookup_open(struct nameidata *nd, struct path *path, 2822 struct file *file, 2823 const struct open_flags *op, 2824 bool got_write, int *opened) 2825 { 2826 struct dentry *dir = nd->path.dentry; 2827 struct inode *dir_inode = dir->d_inode; 2828 struct dentry *dentry; 2829 int error; 2830 bool need_lookup; 2831 2832 *opened &= ~FILE_CREATED; 2833 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup); 2834 if (IS_ERR(dentry)) 2835 return PTR_ERR(dentry); 2836 2837 /* Cached positive dentry: will open in f_op->open */ 2838 if (!need_lookup && dentry->d_inode) 2839 goto out_no_open; 2840 2841 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) { 2842 return atomic_open(nd, dentry, path, file, op, got_write, 2843 need_lookup, opened); 2844 } 2845 2846 if (need_lookup) { 2847 BUG_ON(dentry->d_inode); 2848 2849 dentry = lookup_real(dir_inode, dentry, nd->flags); 2850 if (IS_ERR(dentry)) 2851 return PTR_ERR(dentry); 2852 } 2853 2854 /* Negative dentry, just create the file */ 2855 if (!dentry->d_inode && (op->open_flag & O_CREAT)) { 2856 umode_t mode = op->mode; 2857 if (!IS_POSIXACL(dir->d_inode)) 2858 mode &= ~current_umask(); 2859 /* 2860 * This write is needed to ensure that a 2861 * rw->ro transition does not occur between 2862 * the time when the file is created and when 2863 * a permanent write count is taken through 2864 * the 'struct file' in finish_open(). 2865 */ 2866 if (!got_write) { 2867 error = -EROFS; 2868 goto out_dput; 2869 } 2870 *opened |= FILE_CREATED; 2871 error = security_path_mknod(&nd->path, dentry, mode, 0); 2872 if (error) 2873 goto out_dput; 2874 error = vfs_create(dir->d_inode, dentry, mode, 2875 nd->flags & LOOKUP_EXCL); 2876 if (error) 2877 goto out_dput; 2878 } 2879 out_no_open: 2880 path->dentry = dentry; 2881 path->mnt = nd->path.mnt; 2882 return 1; 2883 2884 out_dput: 2885 dput(dentry); 2886 return error; 2887 } 2888 2889 /* 2890 * Handle the last step of open() 2891 */ 2892 static int do_last(struct nameidata *nd, struct path *path, 2893 struct file *file, const struct open_flags *op, 2894 int *opened, struct filename *name) 2895 { 2896 struct dentry *dir = nd->path.dentry; 2897 int open_flag = op->open_flag; 2898 bool will_truncate = (open_flag & O_TRUNC) != 0; 2899 bool got_write = false; 2900 int acc_mode = op->acc_mode; 2901 struct inode *inode; 2902 bool symlink_ok = false; 2903 struct path save_parent = { .dentry = NULL, .mnt = NULL }; 2904 bool retried = false; 2905 int error; 2906 2907 nd->flags &= ~LOOKUP_PARENT; 2908 nd->flags |= op->intent; 2909 2910 if (nd->last_type != LAST_NORM) { 2911 error = handle_dots(nd, nd->last_type); 2912 if (error) 2913 return error; 2914 goto finish_open; 2915 } 2916 2917 if (!(open_flag & O_CREAT)) { 2918 if (nd->last.name[nd->last.len]) 2919 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 2920 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW)) 2921 symlink_ok = true; 2922 /* we _can_ be in RCU mode here */ 2923 error = lookup_fast(nd, path, &inode); 2924 if (likely(!error)) 2925 goto finish_lookup; 2926 2927 if (error < 0) 2928 goto out; 2929 2930 BUG_ON(nd->inode != dir->d_inode); 2931 } else { 2932 /* create side of things */ 2933 /* 2934 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED 2935 * has been cleared when we got to the last component we are 2936 * about to look up 2937 */ 2938 error = complete_walk(nd); 2939 if (error) 2940 return error; 2941 2942 audit_inode(name, dir, LOOKUP_PARENT); 2943 error = -EISDIR; 2944 /* trailing slashes? */ 2945 if (nd->last.name[nd->last.len]) 2946 goto out; 2947 } 2948 2949 retry_lookup: 2950 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) { 2951 error = mnt_want_write(nd->path.mnt); 2952 if (!error) 2953 got_write = true; 2954 /* 2955 * do _not_ fail yet - we might not need that or fail with 2956 * a different error; let lookup_open() decide; we'll be 2957 * dropping this one anyway. 2958 */ 2959 } 2960 mutex_lock(&dir->d_inode->i_mutex); 2961 error = lookup_open(nd, path, file, op, got_write, opened); 2962 mutex_unlock(&dir->d_inode->i_mutex); 2963 2964 if (error <= 0) { 2965 if (error) 2966 goto out; 2967 2968 if ((*opened & FILE_CREATED) || 2969 !S_ISREG(file_inode(file)->i_mode)) 2970 will_truncate = false; 2971 2972 audit_inode(name, file->f_path.dentry, 0); 2973 goto opened; 2974 } 2975 2976 if (*opened & FILE_CREATED) { 2977 /* Don't check for write permission, don't truncate */ 2978 open_flag &= ~O_TRUNC; 2979 will_truncate = false; 2980 acc_mode = MAY_OPEN; 2981 path_to_nameidata(path, nd); 2982 goto finish_open_created; 2983 } 2984 2985 /* 2986 * create/update audit record if it already exists. 2987 */ 2988 if (d_is_positive(path->dentry)) 2989 audit_inode(name, path->dentry, 0); 2990 2991 /* 2992 * If atomic_open() acquired write access it is dropped now due to 2993 * possible mount and symlink following (this might be optimized away if 2994 * necessary...) 2995 */ 2996 if (got_write) { 2997 mnt_drop_write(nd->path.mnt); 2998 got_write = false; 2999 } 3000 3001 error = -EEXIST; 3002 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT)) 3003 goto exit_dput; 3004 3005 error = follow_managed(path, nd->flags); 3006 if (error < 0) 3007 goto exit_dput; 3008 3009 if (error) 3010 nd->flags |= LOOKUP_JUMPED; 3011 3012 BUG_ON(nd->flags & LOOKUP_RCU); 3013 inode = path->dentry->d_inode; 3014 finish_lookup: 3015 /* we _can_ be in RCU mode here */ 3016 error = -ENOENT; 3017 if (!inode || d_is_negative(path->dentry)) { 3018 path_to_nameidata(path, nd); 3019 goto out; 3020 } 3021 3022 if (should_follow_link(path->dentry, !symlink_ok)) { 3023 if (nd->flags & LOOKUP_RCU) { 3024 if (unlikely(unlazy_walk(nd, path->dentry))) { 3025 error = -ECHILD; 3026 goto out; 3027 } 3028 } 3029 BUG_ON(inode != path->dentry->d_inode); 3030 return 1; 3031 } 3032 3033 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) { 3034 path_to_nameidata(path, nd); 3035 } else { 3036 save_parent.dentry = nd->path.dentry; 3037 save_parent.mnt = mntget(path->mnt); 3038 nd->path.dentry = path->dentry; 3039 3040 } 3041 nd->inode = inode; 3042 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */ 3043 finish_open: 3044 error = complete_walk(nd); 3045 if (error) { 3046 path_put(&save_parent); 3047 return error; 3048 } 3049 audit_inode(name, nd->path.dentry, 0); 3050 error = -EISDIR; 3051 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry)) 3052 goto out; 3053 error = -ENOTDIR; 3054 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry)) 3055 goto out; 3056 if (!S_ISREG(nd->inode->i_mode)) 3057 will_truncate = false; 3058 3059 if (will_truncate) { 3060 error = mnt_want_write(nd->path.mnt); 3061 if (error) 3062 goto out; 3063 got_write = true; 3064 } 3065 finish_open_created: 3066 error = may_open(&nd->path, acc_mode, open_flag); 3067 if (error) 3068 goto out; 3069 file->f_path.mnt = nd->path.mnt; 3070 error = finish_open(file, nd->path.dentry, NULL, opened); 3071 if (error) { 3072 if (error == -EOPENSTALE) 3073 goto stale_open; 3074 goto out; 3075 } 3076 opened: 3077 error = open_check_o_direct(file); 3078 if (error) 3079 goto exit_fput; 3080 error = ima_file_check(file, op->acc_mode); 3081 if (error) 3082 goto exit_fput; 3083 3084 if (will_truncate) { 3085 error = handle_truncate(file); 3086 if (error) 3087 goto exit_fput; 3088 } 3089 out: 3090 if (got_write) 3091 mnt_drop_write(nd->path.mnt); 3092 path_put(&save_parent); 3093 terminate_walk(nd); 3094 return error; 3095 3096 exit_dput: 3097 path_put_conditional(path, nd); 3098 goto out; 3099 exit_fput: 3100 fput(file); 3101 goto out; 3102 3103 stale_open: 3104 /* If no saved parent or already retried then can't retry */ 3105 if (!save_parent.dentry || retried) 3106 goto out; 3107 3108 BUG_ON(save_parent.dentry != dir); 3109 path_put(&nd->path); 3110 nd->path = save_parent; 3111 nd->inode = dir->d_inode; 3112 save_parent.mnt = NULL; 3113 save_parent.dentry = NULL; 3114 if (got_write) { 3115 mnt_drop_write(nd->path.mnt); 3116 got_write = false; 3117 } 3118 retried = true; 3119 goto retry_lookup; 3120 } 3121 3122 static int do_tmpfile(int dfd, struct filename *pathname, 3123 struct nameidata *nd, int flags, 3124 const struct open_flags *op, 3125 struct file *file, int *opened) 3126 { 3127 static const struct qstr name = QSTR_INIT("/", 1); 3128 struct dentry *dentry, *child; 3129 struct inode *dir; 3130 int error = path_lookupat(dfd, pathname->name, 3131 flags | LOOKUP_DIRECTORY, nd); 3132 if (unlikely(error)) 3133 return error; 3134 error = mnt_want_write(nd->path.mnt); 3135 if (unlikely(error)) 3136 goto out; 3137 /* we want directory to be writable */ 3138 error = inode_permission(nd->inode, MAY_WRITE | MAY_EXEC); 3139 if (error) 3140 goto out2; 3141 dentry = nd->path.dentry; 3142 dir = dentry->d_inode; 3143 if (!dir->i_op->tmpfile) { 3144 error = -EOPNOTSUPP; 3145 goto out2; 3146 } 3147 child = d_alloc(dentry, &name); 3148 if (unlikely(!child)) { 3149 error = -ENOMEM; 3150 goto out2; 3151 } 3152 nd->flags &= ~LOOKUP_DIRECTORY; 3153 nd->flags |= op->intent; 3154 dput(nd->path.dentry); 3155 nd->path.dentry = child; 3156 error = dir->i_op->tmpfile(dir, nd->path.dentry, op->mode); 3157 if (error) 3158 goto out2; 3159 audit_inode(pathname, nd->path.dentry, 0); 3160 error = may_open(&nd->path, op->acc_mode, op->open_flag); 3161 if (error) 3162 goto out2; 3163 file->f_path.mnt = nd->path.mnt; 3164 error = finish_open(file, nd->path.dentry, NULL, opened); 3165 if (error) 3166 goto out2; 3167 error = open_check_o_direct(file); 3168 if (error) { 3169 fput(file); 3170 } else if (!(op->open_flag & O_EXCL)) { 3171 struct inode *inode = file_inode(file); 3172 spin_lock(&inode->i_lock); 3173 inode->i_state |= I_LINKABLE; 3174 spin_unlock(&inode->i_lock); 3175 } 3176 out2: 3177 mnt_drop_write(nd->path.mnt); 3178 out: 3179 path_put(&nd->path); 3180 return error; 3181 } 3182 3183 static struct file *path_openat(int dfd, struct filename *pathname, 3184 struct nameidata *nd, const struct open_flags *op, int flags) 3185 { 3186 struct file *base = NULL; 3187 struct file *file; 3188 struct path path; 3189 int opened = 0; 3190 int error; 3191 3192 file = get_empty_filp(); 3193 if (IS_ERR(file)) 3194 return file; 3195 3196 file->f_flags = op->open_flag; 3197 3198 if (unlikely(file->f_flags & __O_TMPFILE)) { 3199 error = do_tmpfile(dfd, pathname, nd, flags, op, file, &opened); 3200 goto out; 3201 } 3202 3203 error = path_init(dfd, pathname->name, flags | LOOKUP_PARENT, nd, &base); 3204 if (unlikely(error)) 3205 goto out; 3206 3207 current->total_link_count = 0; 3208 error = link_path_walk(pathname->name, nd); 3209 if (unlikely(error)) 3210 goto out; 3211 3212 error = do_last(nd, &path, file, op, &opened, pathname); 3213 while (unlikely(error > 0)) { /* trailing symlink */ 3214 struct path link = path; 3215 void *cookie; 3216 if (!(nd->flags & LOOKUP_FOLLOW)) { 3217 path_put_conditional(&path, nd); 3218 path_put(&nd->path); 3219 error = -ELOOP; 3220 break; 3221 } 3222 error = may_follow_link(&link, nd); 3223 if (unlikely(error)) 3224 break; 3225 nd->flags |= LOOKUP_PARENT; 3226 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL); 3227 error = follow_link(&link, nd, &cookie); 3228 if (unlikely(error)) 3229 break; 3230 error = do_last(nd, &path, file, op, &opened, pathname); 3231 put_link(nd, &link, cookie); 3232 } 3233 out: 3234 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) 3235 path_put(&nd->root); 3236 if (base) 3237 fput(base); 3238 if (!(opened & FILE_OPENED)) { 3239 BUG_ON(!error); 3240 put_filp(file); 3241 } 3242 if (unlikely(error)) { 3243 if (error == -EOPENSTALE) { 3244 if (flags & LOOKUP_RCU) 3245 error = -ECHILD; 3246 else 3247 error = -ESTALE; 3248 } 3249 file = ERR_PTR(error); 3250 } 3251 return file; 3252 } 3253 3254 struct file *do_filp_open(int dfd, struct filename *pathname, 3255 const struct open_flags *op) 3256 { 3257 struct nameidata nd; 3258 int flags = op->lookup_flags; 3259 struct file *filp; 3260 3261 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU); 3262 if (unlikely(filp == ERR_PTR(-ECHILD))) 3263 filp = path_openat(dfd, pathname, &nd, op, flags); 3264 if (unlikely(filp == ERR_PTR(-ESTALE))) 3265 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL); 3266 return filp; 3267 } 3268 3269 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt, 3270 const char *name, const struct open_flags *op) 3271 { 3272 struct nameidata nd; 3273 struct file *file; 3274 struct filename filename = { .name = name }; 3275 int flags = op->lookup_flags | LOOKUP_ROOT; 3276 3277 nd.root.mnt = mnt; 3278 nd.root.dentry = dentry; 3279 3280 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN) 3281 return ERR_PTR(-ELOOP); 3282 3283 file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_RCU); 3284 if (unlikely(file == ERR_PTR(-ECHILD))) 3285 file = path_openat(-1, &filename, &nd, op, flags); 3286 if (unlikely(file == ERR_PTR(-ESTALE))) 3287 file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_REVAL); 3288 return file; 3289 } 3290 3291 struct dentry *kern_path_create(int dfd, const char *pathname, 3292 struct path *path, unsigned int lookup_flags) 3293 { 3294 struct dentry *dentry = ERR_PTR(-EEXIST); 3295 struct nameidata nd; 3296 int err2; 3297 int error; 3298 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY); 3299 3300 /* 3301 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any 3302 * other flags passed in are ignored! 3303 */ 3304 lookup_flags &= LOOKUP_REVAL; 3305 3306 error = do_path_lookup(dfd, pathname, LOOKUP_PARENT|lookup_flags, &nd); 3307 if (error) 3308 return ERR_PTR(error); 3309 3310 /* 3311 * Yucky last component or no last component at all? 3312 * (foo/., foo/.., /////) 3313 */ 3314 if (nd.last_type != LAST_NORM) 3315 goto out; 3316 nd.flags &= ~LOOKUP_PARENT; 3317 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL; 3318 3319 /* don't fail immediately if it's r/o, at least try to report other errors */ 3320 err2 = mnt_want_write(nd.path.mnt); 3321 /* 3322 * Do the final lookup. 3323 */ 3324 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 3325 dentry = lookup_hash(&nd); 3326 if (IS_ERR(dentry)) 3327 goto unlock; 3328 3329 error = -EEXIST; 3330 if (d_is_positive(dentry)) 3331 goto fail; 3332 3333 /* 3334 * Special case - lookup gave negative, but... we had foo/bar/ 3335 * From the vfs_mknod() POV we just have a negative dentry - 3336 * all is fine. Let's be bastards - you had / on the end, you've 3337 * been asking for (non-existent) directory. -ENOENT for you. 3338 */ 3339 if (unlikely(!is_dir && nd.last.name[nd.last.len])) { 3340 error = -ENOENT; 3341 goto fail; 3342 } 3343 if (unlikely(err2)) { 3344 error = err2; 3345 goto fail; 3346 } 3347 *path = nd.path; 3348 return dentry; 3349 fail: 3350 dput(dentry); 3351 dentry = ERR_PTR(error); 3352 unlock: 3353 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 3354 if (!err2) 3355 mnt_drop_write(nd.path.mnt); 3356 out: 3357 path_put(&nd.path); 3358 return dentry; 3359 } 3360 EXPORT_SYMBOL(kern_path_create); 3361 3362 void done_path_create(struct path *path, struct dentry *dentry) 3363 { 3364 dput(dentry); 3365 mutex_unlock(&path->dentry->d_inode->i_mutex); 3366 mnt_drop_write(path->mnt); 3367 path_put(path); 3368 } 3369 EXPORT_SYMBOL(done_path_create); 3370 3371 struct dentry *user_path_create(int dfd, const char __user *pathname, 3372 struct path *path, unsigned int lookup_flags) 3373 { 3374 struct filename *tmp = getname(pathname); 3375 struct dentry *res; 3376 if (IS_ERR(tmp)) 3377 return ERR_CAST(tmp); 3378 res = kern_path_create(dfd, tmp->name, path, lookup_flags); 3379 putname(tmp); 3380 return res; 3381 } 3382 EXPORT_SYMBOL(user_path_create); 3383 3384 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 3385 { 3386 int error = may_create(dir, dentry); 3387 3388 if (error) 3389 return error; 3390 3391 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD)) 3392 return -EPERM; 3393 3394 if (!dir->i_op->mknod) 3395 return -EPERM; 3396 3397 error = devcgroup_inode_mknod(mode, dev); 3398 if (error) 3399 return error; 3400 3401 error = security_inode_mknod(dir, dentry, mode, dev); 3402 if (error) 3403 return error; 3404 3405 error = dir->i_op->mknod(dir, dentry, mode, dev); 3406 if (!error) 3407 fsnotify_create(dir, dentry); 3408 return error; 3409 } 3410 EXPORT_SYMBOL(vfs_mknod); 3411 3412 static int may_mknod(umode_t mode) 3413 { 3414 switch (mode & S_IFMT) { 3415 case S_IFREG: 3416 case S_IFCHR: 3417 case S_IFBLK: 3418 case S_IFIFO: 3419 case S_IFSOCK: 3420 case 0: /* zero mode translates to S_IFREG */ 3421 return 0; 3422 case S_IFDIR: 3423 return -EPERM; 3424 default: 3425 return -EINVAL; 3426 } 3427 } 3428 3429 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode, 3430 unsigned, dev) 3431 { 3432 struct dentry *dentry; 3433 struct path path; 3434 int error; 3435 unsigned int lookup_flags = 0; 3436 3437 error = may_mknod(mode); 3438 if (error) 3439 return error; 3440 retry: 3441 dentry = user_path_create(dfd, filename, &path, lookup_flags); 3442 if (IS_ERR(dentry)) 3443 return PTR_ERR(dentry); 3444 3445 if (!IS_POSIXACL(path.dentry->d_inode)) 3446 mode &= ~current_umask(); 3447 error = security_path_mknod(&path, dentry, mode, dev); 3448 if (error) 3449 goto out; 3450 switch (mode & S_IFMT) { 3451 case 0: case S_IFREG: 3452 error = vfs_create(path.dentry->d_inode,dentry,mode,true); 3453 break; 3454 case S_IFCHR: case S_IFBLK: 3455 error = vfs_mknod(path.dentry->d_inode,dentry,mode, 3456 new_decode_dev(dev)); 3457 break; 3458 case S_IFIFO: case S_IFSOCK: 3459 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0); 3460 break; 3461 } 3462 out: 3463 done_path_create(&path, dentry); 3464 if (retry_estale(error, lookup_flags)) { 3465 lookup_flags |= LOOKUP_REVAL; 3466 goto retry; 3467 } 3468 return error; 3469 } 3470 3471 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev) 3472 { 3473 return sys_mknodat(AT_FDCWD, filename, mode, dev); 3474 } 3475 3476 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 3477 { 3478 int error = may_create(dir, dentry); 3479 unsigned max_links = dir->i_sb->s_max_links; 3480 3481 if (error) 3482 return error; 3483 3484 if (!dir->i_op->mkdir) 3485 return -EPERM; 3486 3487 mode &= (S_IRWXUGO|S_ISVTX); 3488 error = security_inode_mkdir(dir, dentry, mode); 3489 if (error) 3490 return error; 3491 3492 if (max_links && dir->i_nlink >= max_links) 3493 return -EMLINK; 3494 3495 error = dir->i_op->mkdir(dir, dentry, mode); 3496 if (!error) 3497 fsnotify_mkdir(dir, dentry); 3498 return error; 3499 } 3500 EXPORT_SYMBOL(vfs_mkdir); 3501 3502 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode) 3503 { 3504 struct dentry *dentry; 3505 struct path path; 3506 int error; 3507 unsigned int lookup_flags = LOOKUP_DIRECTORY; 3508 3509 retry: 3510 dentry = user_path_create(dfd, pathname, &path, lookup_flags); 3511 if (IS_ERR(dentry)) 3512 return PTR_ERR(dentry); 3513 3514 if (!IS_POSIXACL(path.dentry->d_inode)) 3515 mode &= ~current_umask(); 3516 error = security_path_mkdir(&path, dentry, mode); 3517 if (!error) 3518 error = vfs_mkdir(path.dentry->d_inode, dentry, mode); 3519 done_path_create(&path, dentry); 3520 if (retry_estale(error, lookup_flags)) { 3521 lookup_flags |= LOOKUP_REVAL; 3522 goto retry; 3523 } 3524 return error; 3525 } 3526 3527 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode) 3528 { 3529 return sys_mkdirat(AT_FDCWD, pathname, mode); 3530 } 3531 3532 /* 3533 * The dentry_unhash() helper will try to drop the dentry early: we 3534 * should have a usage count of 1 if we're the only user of this 3535 * dentry, and if that is true (possibly after pruning the dcache), 3536 * then we drop the dentry now. 3537 * 3538 * A low-level filesystem can, if it choses, legally 3539 * do a 3540 * 3541 * if (!d_unhashed(dentry)) 3542 * return -EBUSY; 3543 * 3544 * if it cannot handle the case of removing a directory 3545 * that is still in use by something else.. 3546 */ 3547 void dentry_unhash(struct dentry *dentry) 3548 { 3549 shrink_dcache_parent(dentry); 3550 spin_lock(&dentry->d_lock); 3551 if (dentry->d_lockref.count == 1) 3552 __d_drop(dentry); 3553 spin_unlock(&dentry->d_lock); 3554 } 3555 EXPORT_SYMBOL(dentry_unhash); 3556 3557 int vfs_rmdir(struct inode *dir, struct dentry *dentry) 3558 { 3559 int error = may_delete(dir, dentry, 1); 3560 3561 if (error) 3562 return error; 3563 3564 if (!dir->i_op->rmdir) 3565 return -EPERM; 3566 3567 dget(dentry); 3568 mutex_lock(&dentry->d_inode->i_mutex); 3569 3570 error = -EBUSY; 3571 if (d_mountpoint(dentry)) 3572 goto out; 3573 3574 error = security_inode_rmdir(dir, dentry); 3575 if (error) 3576 goto out; 3577 3578 shrink_dcache_parent(dentry); 3579 error = dir->i_op->rmdir(dir, dentry); 3580 if (error) 3581 goto out; 3582 3583 dentry->d_inode->i_flags |= S_DEAD; 3584 dont_mount(dentry); 3585 3586 out: 3587 mutex_unlock(&dentry->d_inode->i_mutex); 3588 dput(dentry); 3589 if (!error) 3590 d_delete(dentry); 3591 return error; 3592 } 3593 EXPORT_SYMBOL(vfs_rmdir); 3594 3595 static long do_rmdir(int dfd, const char __user *pathname) 3596 { 3597 int error = 0; 3598 struct filename *name; 3599 struct dentry *dentry; 3600 struct nameidata nd; 3601 unsigned int lookup_flags = 0; 3602 retry: 3603 name = user_path_parent(dfd, pathname, &nd, lookup_flags); 3604 if (IS_ERR(name)) 3605 return PTR_ERR(name); 3606 3607 switch(nd.last_type) { 3608 case LAST_DOTDOT: 3609 error = -ENOTEMPTY; 3610 goto exit1; 3611 case LAST_DOT: 3612 error = -EINVAL; 3613 goto exit1; 3614 case LAST_ROOT: 3615 error = -EBUSY; 3616 goto exit1; 3617 } 3618 3619 nd.flags &= ~LOOKUP_PARENT; 3620 error = mnt_want_write(nd.path.mnt); 3621 if (error) 3622 goto exit1; 3623 3624 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 3625 dentry = lookup_hash(&nd); 3626 error = PTR_ERR(dentry); 3627 if (IS_ERR(dentry)) 3628 goto exit2; 3629 if (!dentry->d_inode) { 3630 error = -ENOENT; 3631 goto exit3; 3632 } 3633 error = security_path_rmdir(&nd.path, dentry); 3634 if (error) 3635 goto exit3; 3636 error = vfs_rmdir(nd.path.dentry->d_inode, dentry); 3637 exit3: 3638 dput(dentry); 3639 exit2: 3640 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 3641 mnt_drop_write(nd.path.mnt); 3642 exit1: 3643 path_put(&nd.path); 3644 putname(name); 3645 if (retry_estale(error, lookup_flags)) { 3646 lookup_flags |= LOOKUP_REVAL; 3647 goto retry; 3648 } 3649 return error; 3650 } 3651 3652 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 3653 { 3654 return do_rmdir(AT_FDCWD, pathname); 3655 } 3656 3657 /** 3658 * vfs_unlink - unlink a filesystem object 3659 * @dir: parent directory 3660 * @dentry: victim 3661 * @delegated_inode: returns victim inode, if the inode is delegated. 3662 * 3663 * The caller must hold dir->i_mutex. 3664 * 3665 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and 3666 * return a reference to the inode in delegated_inode. The caller 3667 * should then break the delegation on that inode and retry. Because 3668 * breaking a delegation may take a long time, the caller should drop 3669 * dir->i_mutex before doing so. 3670 * 3671 * Alternatively, a caller may pass NULL for delegated_inode. This may 3672 * be appropriate for callers that expect the underlying filesystem not 3673 * to be NFS exported. 3674 */ 3675 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode) 3676 { 3677 struct inode *target = dentry->d_inode; 3678 int error = may_delete(dir, dentry, 0); 3679 3680 if (error) 3681 return error; 3682 3683 if (!dir->i_op->unlink) 3684 return -EPERM; 3685 3686 mutex_lock(&target->i_mutex); 3687 if (d_mountpoint(dentry)) 3688 error = -EBUSY; 3689 else { 3690 error = security_inode_unlink(dir, dentry); 3691 if (!error) { 3692 error = try_break_deleg(target, delegated_inode); 3693 if (error) 3694 goto out; 3695 error = dir->i_op->unlink(dir, dentry); 3696 if (!error) 3697 dont_mount(dentry); 3698 } 3699 } 3700 out: 3701 mutex_unlock(&target->i_mutex); 3702 3703 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 3704 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) { 3705 fsnotify_link_count(target); 3706 d_delete(dentry); 3707 } 3708 3709 return error; 3710 } 3711 EXPORT_SYMBOL(vfs_unlink); 3712 3713 /* 3714 * Make sure that the actual truncation of the file will occur outside its 3715 * directory's i_mutex. Truncate can take a long time if there is a lot of 3716 * writeout happening, and we don't want to prevent access to the directory 3717 * while waiting on the I/O. 3718 */ 3719 static long do_unlinkat(int dfd, const char __user *pathname) 3720 { 3721 int error; 3722 struct filename *name; 3723 struct dentry *dentry; 3724 struct nameidata nd; 3725 struct inode *inode = NULL; 3726 struct inode *delegated_inode = NULL; 3727 unsigned int lookup_flags = 0; 3728 retry: 3729 name = user_path_parent(dfd, pathname, &nd, lookup_flags); 3730 if (IS_ERR(name)) 3731 return PTR_ERR(name); 3732 3733 error = -EISDIR; 3734 if (nd.last_type != LAST_NORM) 3735 goto exit1; 3736 3737 nd.flags &= ~LOOKUP_PARENT; 3738 error = mnt_want_write(nd.path.mnt); 3739 if (error) 3740 goto exit1; 3741 retry_deleg: 3742 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 3743 dentry = lookup_hash(&nd); 3744 error = PTR_ERR(dentry); 3745 if (!IS_ERR(dentry)) { 3746 /* Why not before? Because we want correct error value */ 3747 if (nd.last.name[nd.last.len]) 3748 goto slashes; 3749 inode = dentry->d_inode; 3750 if (d_is_negative(dentry)) 3751 goto slashes; 3752 ihold(inode); 3753 error = security_path_unlink(&nd.path, dentry); 3754 if (error) 3755 goto exit2; 3756 error = vfs_unlink(nd.path.dentry->d_inode, dentry, &delegated_inode); 3757 exit2: 3758 dput(dentry); 3759 } 3760 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 3761 if (inode) 3762 iput(inode); /* truncate the inode here */ 3763 inode = NULL; 3764 if (delegated_inode) { 3765 error = break_deleg_wait(&delegated_inode); 3766 if (!error) 3767 goto retry_deleg; 3768 } 3769 mnt_drop_write(nd.path.mnt); 3770 exit1: 3771 path_put(&nd.path); 3772 putname(name); 3773 if (retry_estale(error, lookup_flags)) { 3774 lookup_flags |= LOOKUP_REVAL; 3775 inode = NULL; 3776 goto retry; 3777 } 3778 return error; 3779 3780 slashes: 3781 if (d_is_negative(dentry)) 3782 error = -ENOENT; 3783 else if (d_is_dir(dentry)) 3784 error = -EISDIR; 3785 else 3786 error = -ENOTDIR; 3787 goto exit2; 3788 } 3789 3790 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 3791 { 3792 if ((flag & ~AT_REMOVEDIR) != 0) 3793 return -EINVAL; 3794 3795 if (flag & AT_REMOVEDIR) 3796 return do_rmdir(dfd, pathname); 3797 3798 return do_unlinkat(dfd, pathname); 3799 } 3800 3801 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 3802 { 3803 return do_unlinkat(AT_FDCWD, pathname); 3804 } 3805 3806 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname) 3807 { 3808 int error = may_create(dir, dentry); 3809 3810 if (error) 3811 return error; 3812 3813 if (!dir->i_op->symlink) 3814 return -EPERM; 3815 3816 error = security_inode_symlink(dir, dentry, oldname); 3817 if (error) 3818 return error; 3819 3820 error = dir->i_op->symlink(dir, dentry, oldname); 3821 if (!error) 3822 fsnotify_create(dir, dentry); 3823 return error; 3824 } 3825 EXPORT_SYMBOL(vfs_symlink); 3826 3827 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 3828 int, newdfd, const char __user *, newname) 3829 { 3830 int error; 3831 struct filename *from; 3832 struct dentry *dentry; 3833 struct path path; 3834 unsigned int lookup_flags = 0; 3835 3836 from = getname(oldname); 3837 if (IS_ERR(from)) 3838 return PTR_ERR(from); 3839 retry: 3840 dentry = user_path_create(newdfd, newname, &path, lookup_flags); 3841 error = PTR_ERR(dentry); 3842 if (IS_ERR(dentry)) 3843 goto out_putname; 3844 3845 error = security_path_symlink(&path, dentry, from->name); 3846 if (!error) 3847 error = vfs_symlink(path.dentry->d_inode, dentry, from->name); 3848 done_path_create(&path, dentry); 3849 if (retry_estale(error, lookup_flags)) { 3850 lookup_flags |= LOOKUP_REVAL; 3851 goto retry; 3852 } 3853 out_putname: 3854 putname(from); 3855 return error; 3856 } 3857 3858 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 3859 { 3860 return sys_symlinkat(oldname, AT_FDCWD, newname); 3861 } 3862 3863 /** 3864 * vfs_link - create a new link 3865 * @old_dentry: object to be linked 3866 * @dir: new parent 3867 * @new_dentry: where to create the new link 3868 * @delegated_inode: returns inode needing a delegation break 3869 * 3870 * The caller must hold dir->i_mutex 3871 * 3872 * If vfs_link discovers a delegation on the to-be-linked file in need 3873 * of breaking, it will return -EWOULDBLOCK and return a reference to the 3874 * inode in delegated_inode. The caller should then break the delegation 3875 * and retry. Because breaking a delegation may take a long time, the 3876 * caller should drop the i_mutex before doing so. 3877 * 3878 * Alternatively, a caller may pass NULL for delegated_inode. This may 3879 * be appropriate for callers that expect the underlying filesystem not 3880 * to be NFS exported. 3881 */ 3882 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode) 3883 { 3884 struct inode *inode = old_dentry->d_inode; 3885 unsigned max_links = dir->i_sb->s_max_links; 3886 int error; 3887 3888 if (!inode) 3889 return -ENOENT; 3890 3891 error = may_create(dir, new_dentry); 3892 if (error) 3893 return error; 3894 3895 if (dir->i_sb != inode->i_sb) 3896 return -EXDEV; 3897 3898 /* 3899 * A link to an append-only or immutable file cannot be created. 3900 */ 3901 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 3902 return -EPERM; 3903 if (!dir->i_op->link) 3904 return -EPERM; 3905 if (S_ISDIR(inode->i_mode)) 3906 return -EPERM; 3907 3908 error = security_inode_link(old_dentry, dir, new_dentry); 3909 if (error) 3910 return error; 3911 3912 mutex_lock(&inode->i_mutex); 3913 /* Make sure we don't allow creating hardlink to an unlinked file */ 3914 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE)) 3915 error = -ENOENT; 3916 else if (max_links && inode->i_nlink >= max_links) 3917 error = -EMLINK; 3918 else { 3919 error = try_break_deleg(inode, delegated_inode); 3920 if (!error) 3921 error = dir->i_op->link(old_dentry, dir, new_dentry); 3922 } 3923 3924 if (!error && (inode->i_state & I_LINKABLE)) { 3925 spin_lock(&inode->i_lock); 3926 inode->i_state &= ~I_LINKABLE; 3927 spin_unlock(&inode->i_lock); 3928 } 3929 mutex_unlock(&inode->i_mutex); 3930 if (!error) 3931 fsnotify_link(dir, inode, new_dentry); 3932 return error; 3933 } 3934 EXPORT_SYMBOL(vfs_link); 3935 3936 /* 3937 * Hardlinks are often used in delicate situations. We avoid 3938 * security-related surprises by not following symlinks on the 3939 * newname. --KAB 3940 * 3941 * We don't follow them on the oldname either to be compatible 3942 * with linux 2.0, and to avoid hard-linking to directories 3943 * and other special files. --ADM 3944 */ 3945 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 3946 int, newdfd, const char __user *, newname, int, flags) 3947 { 3948 struct dentry *new_dentry; 3949 struct path old_path, new_path; 3950 struct inode *delegated_inode = NULL; 3951 int how = 0; 3952 int error; 3953 3954 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) 3955 return -EINVAL; 3956 /* 3957 * To use null names we require CAP_DAC_READ_SEARCH 3958 * This ensures that not everyone will be able to create 3959 * handlink using the passed filedescriptor. 3960 */ 3961 if (flags & AT_EMPTY_PATH) { 3962 if (!capable(CAP_DAC_READ_SEARCH)) 3963 return -ENOENT; 3964 how = LOOKUP_EMPTY; 3965 } 3966 3967 if (flags & AT_SYMLINK_FOLLOW) 3968 how |= LOOKUP_FOLLOW; 3969 retry: 3970 error = user_path_at(olddfd, oldname, how, &old_path); 3971 if (error) 3972 return error; 3973 3974 new_dentry = user_path_create(newdfd, newname, &new_path, 3975 (how & LOOKUP_REVAL)); 3976 error = PTR_ERR(new_dentry); 3977 if (IS_ERR(new_dentry)) 3978 goto out; 3979 3980 error = -EXDEV; 3981 if (old_path.mnt != new_path.mnt) 3982 goto out_dput; 3983 error = may_linkat(&old_path); 3984 if (unlikely(error)) 3985 goto out_dput; 3986 error = security_path_link(old_path.dentry, &new_path, new_dentry); 3987 if (error) 3988 goto out_dput; 3989 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode); 3990 out_dput: 3991 done_path_create(&new_path, new_dentry); 3992 if (delegated_inode) { 3993 error = break_deleg_wait(&delegated_inode); 3994 if (!error) { 3995 path_put(&old_path); 3996 goto retry; 3997 } 3998 } 3999 if (retry_estale(error, how)) { 4000 path_put(&old_path); 4001 how |= LOOKUP_REVAL; 4002 goto retry; 4003 } 4004 out: 4005 path_put(&old_path); 4006 4007 return error; 4008 } 4009 4010 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 4011 { 4012 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 4013 } 4014 4015 /** 4016 * vfs_rename - rename a filesystem object 4017 * @old_dir: parent of source 4018 * @old_dentry: source 4019 * @new_dir: parent of destination 4020 * @new_dentry: destination 4021 * @delegated_inode: returns an inode needing a delegation break 4022 * @flags: rename flags 4023 * 4024 * The caller must hold multiple mutexes--see lock_rename()). 4025 * 4026 * If vfs_rename discovers a delegation in need of breaking at either 4027 * the source or destination, it will return -EWOULDBLOCK and return a 4028 * reference to the inode in delegated_inode. The caller should then 4029 * break the delegation and retry. Because breaking a delegation may 4030 * take a long time, the caller should drop all locks before doing 4031 * so. 4032 * 4033 * Alternatively, a caller may pass NULL for delegated_inode. This may 4034 * be appropriate for callers that expect the underlying filesystem not 4035 * to be NFS exported. 4036 * 4037 * The worst of all namespace operations - renaming directory. "Perverted" 4038 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 4039 * Problems: 4040 * a) we can get into loop creation. 4041 * b) race potential - two innocent renames can create a loop together. 4042 * That's where 4.4 screws up. Current fix: serialization on 4043 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 4044 * story. 4045 * c) we have to lock _four_ objects - parents and victim (if it exists), 4046 * and source (if it is not a directory). 4047 * And that - after we got ->i_mutex on parents (until then we don't know 4048 * whether the target exists). Solution: try to be smart with locking 4049 * order for inodes. We rely on the fact that tree topology may change 4050 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 4051 * move will be locked. Thus we can rank directories by the tree 4052 * (ancestors first) and rank all non-directories after them. 4053 * That works since everybody except rename does "lock parent, lookup, 4054 * lock child" and rename is under ->s_vfs_rename_mutex. 4055 * HOWEVER, it relies on the assumption that any object with ->lookup() 4056 * has no more than 1 dentry. If "hybrid" objects will ever appear, 4057 * we'd better make sure that there's no link(2) for them. 4058 * d) conversion from fhandle to dentry may come in the wrong moment - when 4059 * we are removing the target. Solution: we will have to grab ->i_mutex 4060 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 4061 * ->i_mutex on parents, which works but leads to some truly excessive 4062 * locking]. 4063 */ 4064 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry, 4065 struct inode *new_dir, struct dentry *new_dentry, 4066 struct inode **delegated_inode, unsigned int flags) 4067 { 4068 int error; 4069 bool is_dir = d_is_dir(old_dentry); 4070 const unsigned char *old_name; 4071 struct inode *source = old_dentry->d_inode; 4072 struct inode *target = new_dentry->d_inode; 4073 bool new_is_dir = false; 4074 unsigned max_links = new_dir->i_sb->s_max_links; 4075 4076 if (source == target) 4077 return 0; 4078 4079 error = may_delete(old_dir, old_dentry, is_dir); 4080 if (error) 4081 return error; 4082 4083 if (!target) { 4084 error = may_create(new_dir, new_dentry); 4085 } else { 4086 new_is_dir = d_is_dir(new_dentry); 4087 4088 if (!(flags & RENAME_EXCHANGE)) 4089 error = may_delete(new_dir, new_dentry, is_dir); 4090 else 4091 error = may_delete(new_dir, new_dentry, new_is_dir); 4092 } 4093 if (error) 4094 return error; 4095 4096 if (!old_dir->i_op->rename && !old_dir->i_op->rename2) 4097 return -EPERM; 4098 4099 if (flags && !old_dir->i_op->rename2) 4100 return -EINVAL; 4101 4102 /* 4103 * If we are going to change the parent - check write permissions, 4104 * we'll need to flip '..'. 4105 */ 4106 if (new_dir != old_dir) { 4107 if (is_dir) { 4108 error = inode_permission(source, MAY_WRITE); 4109 if (error) 4110 return error; 4111 } 4112 if ((flags & RENAME_EXCHANGE) && new_is_dir) { 4113 error = inode_permission(target, MAY_WRITE); 4114 if (error) 4115 return error; 4116 } 4117 } 4118 4119 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry, 4120 flags); 4121 if (error) 4122 return error; 4123 4124 old_name = fsnotify_oldname_init(old_dentry->d_name.name); 4125 dget(new_dentry); 4126 if (!is_dir || (flags & RENAME_EXCHANGE)) 4127 lock_two_nondirectories(source, target); 4128 else if (target) 4129 mutex_lock(&target->i_mutex); 4130 4131 error = -EBUSY; 4132 if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry)) 4133 goto out; 4134 4135 if (max_links && new_dir != old_dir) { 4136 error = -EMLINK; 4137 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links) 4138 goto out; 4139 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir && 4140 old_dir->i_nlink >= max_links) 4141 goto out; 4142 } 4143 if (is_dir && !(flags & RENAME_EXCHANGE) && target) 4144 shrink_dcache_parent(new_dentry); 4145 if (!is_dir) { 4146 error = try_break_deleg(source, delegated_inode); 4147 if (error) 4148 goto out; 4149 } 4150 if (target && !new_is_dir) { 4151 error = try_break_deleg(target, delegated_inode); 4152 if (error) 4153 goto out; 4154 } 4155 if (!old_dir->i_op->rename2) { 4156 error = old_dir->i_op->rename(old_dir, old_dentry, 4157 new_dir, new_dentry); 4158 } else { 4159 WARN_ON(old_dir->i_op->rename != NULL); 4160 error = old_dir->i_op->rename2(old_dir, old_dentry, 4161 new_dir, new_dentry, flags); 4162 } 4163 if (error) 4164 goto out; 4165 4166 if (!(flags & RENAME_EXCHANGE) && target) { 4167 if (is_dir) 4168 target->i_flags |= S_DEAD; 4169 dont_mount(new_dentry); 4170 } 4171 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) { 4172 if (!(flags & RENAME_EXCHANGE)) 4173 d_move(old_dentry, new_dentry); 4174 else 4175 d_exchange(old_dentry, new_dentry); 4176 } 4177 out: 4178 if (!is_dir || (flags & RENAME_EXCHANGE)) 4179 unlock_two_nondirectories(source, target); 4180 else if (target) 4181 mutex_unlock(&target->i_mutex); 4182 dput(new_dentry); 4183 if (!error) { 4184 fsnotify_move(old_dir, new_dir, old_name, is_dir, 4185 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry); 4186 if (flags & RENAME_EXCHANGE) { 4187 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name, 4188 new_is_dir, NULL, new_dentry); 4189 } 4190 } 4191 fsnotify_oldname_free(old_name); 4192 4193 return error; 4194 } 4195 EXPORT_SYMBOL(vfs_rename); 4196 4197 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname, 4198 int, newdfd, const char __user *, newname, unsigned int, flags) 4199 { 4200 struct dentry *old_dir, *new_dir; 4201 struct dentry *old_dentry, *new_dentry; 4202 struct dentry *trap; 4203 struct nameidata oldnd, newnd; 4204 struct inode *delegated_inode = NULL; 4205 struct filename *from; 4206 struct filename *to; 4207 unsigned int lookup_flags = 0; 4208 bool should_retry = false; 4209 int error; 4210 4211 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE)) 4212 return -EINVAL; 4213 4214 if ((flags & RENAME_NOREPLACE) && (flags & RENAME_EXCHANGE)) 4215 return -EINVAL; 4216 4217 retry: 4218 from = user_path_parent(olddfd, oldname, &oldnd, lookup_flags); 4219 if (IS_ERR(from)) { 4220 error = PTR_ERR(from); 4221 goto exit; 4222 } 4223 4224 to = user_path_parent(newdfd, newname, &newnd, lookup_flags); 4225 if (IS_ERR(to)) { 4226 error = PTR_ERR(to); 4227 goto exit1; 4228 } 4229 4230 error = -EXDEV; 4231 if (oldnd.path.mnt != newnd.path.mnt) 4232 goto exit2; 4233 4234 old_dir = oldnd.path.dentry; 4235 error = -EBUSY; 4236 if (oldnd.last_type != LAST_NORM) 4237 goto exit2; 4238 4239 new_dir = newnd.path.dentry; 4240 if (flags & RENAME_NOREPLACE) 4241 error = -EEXIST; 4242 if (newnd.last_type != LAST_NORM) 4243 goto exit2; 4244 4245 error = mnt_want_write(oldnd.path.mnt); 4246 if (error) 4247 goto exit2; 4248 4249 oldnd.flags &= ~LOOKUP_PARENT; 4250 newnd.flags &= ~LOOKUP_PARENT; 4251 if (!(flags & RENAME_EXCHANGE)) 4252 newnd.flags |= LOOKUP_RENAME_TARGET; 4253 4254 retry_deleg: 4255 trap = lock_rename(new_dir, old_dir); 4256 4257 old_dentry = lookup_hash(&oldnd); 4258 error = PTR_ERR(old_dentry); 4259 if (IS_ERR(old_dentry)) 4260 goto exit3; 4261 /* source must exist */ 4262 error = -ENOENT; 4263 if (d_is_negative(old_dentry)) 4264 goto exit4; 4265 new_dentry = lookup_hash(&newnd); 4266 error = PTR_ERR(new_dentry); 4267 if (IS_ERR(new_dentry)) 4268 goto exit4; 4269 error = -EEXIST; 4270 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry)) 4271 goto exit5; 4272 if (flags & RENAME_EXCHANGE) { 4273 error = -ENOENT; 4274 if (d_is_negative(new_dentry)) 4275 goto exit5; 4276 4277 if (!d_is_dir(new_dentry)) { 4278 error = -ENOTDIR; 4279 if (newnd.last.name[newnd.last.len]) 4280 goto exit5; 4281 } 4282 } 4283 /* unless the source is a directory trailing slashes give -ENOTDIR */ 4284 if (!d_is_dir(old_dentry)) { 4285 error = -ENOTDIR; 4286 if (oldnd.last.name[oldnd.last.len]) 4287 goto exit5; 4288 if (!(flags & RENAME_EXCHANGE) && newnd.last.name[newnd.last.len]) 4289 goto exit5; 4290 } 4291 /* source should not be ancestor of target */ 4292 error = -EINVAL; 4293 if (old_dentry == trap) 4294 goto exit5; 4295 /* target should not be an ancestor of source */ 4296 if (!(flags & RENAME_EXCHANGE)) 4297 error = -ENOTEMPTY; 4298 if (new_dentry == trap) 4299 goto exit5; 4300 4301 error = security_path_rename(&oldnd.path, old_dentry, 4302 &newnd.path, new_dentry, flags); 4303 if (error) 4304 goto exit5; 4305 error = vfs_rename(old_dir->d_inode, old_dentry, 4306 new_dir->d_inode, new_dentry, 4307 &delegated_inode, flags); 4308 exit5: 4309 dput(new_dentry); 4310 exit4: 4311 dput(old_dentry); 4312 exit3: 4313 unlock_rename(new_dir, old_dir); 4314 if (delegated_inode) { 4315 error = break_deleg_wait(&delegated_inode); 4316 if (!error) 4317 goto retry_deleg; 4318 } 4319 mnt_drop_write(oldnd.path.mnt); 4320 exit2: 4321 if (retry_estale(error, lookup_flags)) 4322 should_retry = true; 4323 path_put(&newnd.path); 4324 putname(to); 4325 exit1: 4326 path_put(&oldnd.path); 4327 putname(from); 4328 if (should_retry) { 4329 should_retry = false; 4330 lookup_flags |= LOOKUP_REVAL; 4331 goto retry; 4332 } 4333 exit: 4334 return error; 4335 } 4336 4337 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 4338 int, newdfd, const char __user *, newname) 4339 { 4340 return sys_renameat2(olddfd, oldname, newdfd, newname, 0); 4341 } 4342 4343 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 4344 { 4345 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 4346 } 4347 4348 int readlink_copy(char __user *buffer, int buflen, const char *link) 4349 { 4350 int len = PTR_ERR(link); 4351 if (IS_ERR(link)) 4352 goto out; 4353 4354 len = strlen(link); 4355 if (len > (unsigned) buflen) 4356 len = buflen; 4357 if (copy_to_user(buffer, link, len)) 4358 len = -EFAULT; 4359 out: 4360 return len; 4361 } 4362 EXPORT_SYMBOL(readlink_copy); 4363 4364 /* 4365 * A helper for ->readlink(). This should be used *ONLY* for symlinks that 4366 * have ->follow_link() touching nd only in nd_set_link(). Using (or not 4367 * using) it for any given inode is up to filesystem. 4368 */ 4369 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4370 { 4371 struct nameidata nd; 4372 void *cookie; 4373 int res; 4374 4375 nd.depth = 0; 4376 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd); 4377 if (IS_ERR(cookie)) 4378 return PTR_ERR(cookie); 4379 4380 res = readlink_copy(buffer, buflen, nd_get_link(&nd)); 4381 if (dentry->d_inode->i_op->put_link) 4382 dentry->d_inode->i_op->put_link(dentry, &nd, cookie); 4383 return res; 4384 } 4385 EXPORT_SYMBOL(generic_readlink); 4386 4387 /* get the link contents into pagecache */ 4388 static char *page_getlink(struct dentry * dentry, struct page **ppage) 4389 { 4390 char *kaddr; 4391 struct page *page; 4392 struct address_space *mapping = dentry->d_inode->i_mapping; 4393 page = read_mapping_page(mapping, 0, NULL); 4394 if (IS_ERR(page)) 4395 return (char*)page; 4396 *ppage = page; 4397 kaddr = kmap(page); 4398 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1); 4399 return kaddr; 4400 } 4401 4402 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4403 { 4404 struct page *page = NULL; 4405 int res = readlink_copy(buffer, buflen, page_getlink(dentry, &page)); 4406 if (page) { 4407 kunmap(page); 4408 page_cache_release(page); 4409 } 4410 return res; 4411 } 4412 EXPORT_SYMBOL(page_readlink); 4413 4414 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd) 4415 { 4416 struct page *page = NULL; 4417 nd_set_link(nd, page_getlink(dentry, &page)); 4418 return page; 4419 } 4420 EXPORT_SYMBOL(page_follow_link_light); 4421 4422 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie) 4423 { 4424 struct page *page = cookie; 4425 4426 if (page) { 4427 kunmap(page); 4428 page_cache_release(page); 4429 } 4430 } 4431 EXPORT_SYMBOL(page_put_link); 4432 4433 /* 4434 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS 4435 */ 4436 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs) 4437 { 4438 struct address_space *mapping = inode->i_mapping; 4439 struct page *page; 4440 void *fsdata; 4441 int err; 4442 char *kaddr; 4443 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE; 4444 if (nofs) 4445 flags |= AOP_FLAG_NOFS; 4446 4447 retry: 4448 err = pagecache_write_begin(NULL, mapping, 0, len-1, 4449 flags, &page, &fsdata); 4450 if (err) 4451 goto fail; 4452 4453 kaddr = kmap_atomic(page); 4454 memcpy(kaddr, symname, len-1); 4455 kunmap_atomic(kaddr); 4456 4457 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1, 4458 page, fsdata); 4459 if (err < 0) 4460 goto fail; 4461 if (err < len-1) 4462 goto retry; 4463 4464 mark_inode_dirty(inode); 4465 return 0; 4466 fail: 4467 return err; 4468 } 4469 EXPORT_SYMBOL(__page_symlink); 4470 4471 int page_symlink(struct inode *inode, const char *symname, int len) 4472 { 4473 return __page_symlink(inode, symname, len, 4474 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS)); 4475 } 4476 EXPORT_SYMBOL(page_symlink); 4477 4478 const struct inode_operations page_symlink_inode_operations = { 4479 .readlink = generic_readlink, 4480 .follow_link = page_follow_link_light, 4481 .put_link = page_put_link, 4482 }; 4483 EXPORT_SYMBOL(page_symlink_inode_operations); 4484