1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/namei.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * Some corrections by tytso. 10 */ 11 12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 13 * lookup logic. 14 */ 15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 16 */ 17 18 #include <linux/init.h> 19 #include <linux/export.h> 20 #include <linux/kernel.h> 21 #include <linux/slab.h> 22 #include <linux/fs.h> 23 #include <linux/namei.h> 24 #include <linux/pagemap.h> 25 #include <linux/fsnotify.h> 26 #include <linux/personality.h> 27 #include <linux/security.h> 28 #include <linux/ima.h> 29 #include <linux/syscalls.h> 30 #include <linux/mount.h> 31 #include <linux/audit.h> 32 #include <linux/capability.h> 33 #include <linux/file.h> 34 #include <linux/fcntl.h> 35 #include <linux/device_cgroup.h> 36 #include <linux/fs_struct.h> 37 #include <linux/posix_acl.h> 38 #include <linux/hash.h> 39 #include <linux/bitops.h> 40 #include <linux/init_task.h> 41 #include <linux/uaccess.h> 42 43 #include "internal.h" 44 #include "mount.h" 45 46 /* [Feb-1997 T. Schoebel-Theuer] 47 * Fundamental changes in the pathname lookup mechanisms (namei) 48 * were necessary because of omirr. The reason is that omirr needs 49 * to know the _real_ pathname, not the user-supplied one, in case 50 * of symlinks (and also when transname replacements occur). 51 * 52 * The new code replaces the old recursive symlink resolution with 53 * an iterative one (in case of non-nested symlink chains). It does 54 * this with calls to <fs>_follow_link(). 55 * As a side effect, dir_namei(), _namei() and follow_link() are now 56 * replaced with a single function lookup_dentry() that can handle all 57 * the special cases of the former code. 58 * 59 * With the new dcache, the pathname is stored at each inode, at least as 60 * long as the refcount of the inode is positive. As a side effect, the 61 * size of the dcache depends on the inode cache and thus is dynamic. 62 * 63 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 64 * resolution to correspond with current state of the code. 65 * 66 * Note that the symlink resolution is not *completely* iterative. 67 * There is still a significant amount of tail- and mid- recursion in 68 * the algorithm. Also, note that <fs>_readlink() is not used in 69 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 70 * may return different results than <fs>_follow_link(). Many virtual 71 * filesystems (including /proc) exhibit this behavior. 72 */ 73 74 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 75 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 76 * and the name already exists in form of a symlink, try to create the new 77 * name indicated by the symlink. The old code always complained that the 78 * name already exists, due to not following the symlink even if its target 79 * is nonexistent. The new semantics affects also mknod() and link() when 80 * the name is a symlink pointing to a non-existent name. 81 * 82 * I don't know which semantics is the right one, since I have no access 83 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 84 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 85 * "old" one. Personally, I think the new semantics is much more logical. 86 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 87 * file does succeed in both HP-UX and SunOs, but not in Solaris 88 * and in the old Linux semantics. 89 */ 90 91 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 92 * semantics. See the comments in "open_namei" and "do_link" below. 93 * 94 * [10-Sep-98 Alan Modra] Another symlink change. 95 */ 96 97 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 98 * inside the path - always follow. 99 * in the last component in creation/removal/renaming - never follow. 100 * if LOOKUP_FOLLOW passed - follow. 101 * if the pathname has trailing slashes - follow. 102 * otherwise - don't follow. 103 * (applied in that order). 104 * 105 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 106 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 107 * During the 2.4 we need to fix the userland stuff depending on it - 108 * hopefully we will be able to get rid of that wart in 2.5. So far only 109 * XEmacs seems to be relying on it... 110 */ 111 /* 112 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 113 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 114 * any extra contention... 115 */ 116 117 /* In order to reduce some races, while at the same time doing additional 118 * checking and hopefully speeding things up, we copy filenames to the 119 * kernel data space before using them.. 120 * 121 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 122 * PATH_MAX includes the nul terminator --RR. 123 */ 124 125 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname)) 126 127 struct filename * 128 getname_flags(const char __user *filename, int flags, int *empty) 129 { 130 struct filename *result; 131 char *kname; 132 int len; 133 134 result = audit_reusename(filename); 135 if (result) 136 return result; 137 138 result = __getname(); 139 if (unlikely(!result)) 140 return ERR_PTR(-ENOMEM); 141 142 /* 143 * First, try to embed the struct filename inside the names_cache 144 * allocation 145 */ 146 kname = (char *)result->iname; 147 result->name = kname; 148 149 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX); 150 if (unlikely(len < 0)) { 151 __putname(result); 152 return ERR_PTR(len); 153 } 154 155 /* 156 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a 157 * separate struct filename so we can dedicate the entire 158 * names_cache allocation for the pathname, and re-do the copy from 159 * userland. 160 */ 161 if (unlikely(len == EMBEDDED_NAME_MAX)) { 162 const size_t size = offsetof(struct filename, iname[1]); 163 kname = (char *)result; 164 165 /* 166 * size is chosen that way we to guarantee that 167 * result->iname[0] is within the same object and that 168 * kname can't be equal to result->iname, no matter what. 169 */ 170 result = kzalloc(size, GFP_KERNEL); 171 if (unlikely(!result)) { 172 __putname(kname); 173 return ERR_PTR(-ENOMEM); 174 } 175 result->name = kname; 176 len = strncpy_from_user(kname, filename, PATH_MAX); 177 if (unlikely(len < 0)) { 178 __putname(kname); 179 kfree(result); 180 return ERR_PTR(len); 181 } 182 if (unlikely(len == PATH_MAX)) { 183 __putname(kname); 184 kfree(result); 185 return ERR_PTR(-ENAMETOOLONG); 186 } 187 } 188 189 result->refcnt = 1; 190 /* The empty path is special. */ 191 if (unlikely(!len)) { 192 if (empty) 193 *empty = 1; 194 if (!(flags & LOOKUP_EMPTY)) { 195 putname(result); 196 return ERR_PTR(-ENOENT); 197 } 198 } 199 200 result->uptr = filename; 201 result->aname = NULL; 202 audit_getname(result); 203 return result; 204 } 205 206 struct filename * 207 getname(const char __user * filename) 208 { 209 return getname_flags(filename, 0, NULL); 210 } 211 212 struct filename * 213 getname_kernel(const char * filename) 214 { 215 struct filename *result; 216 int len = strlen(filename) + 1; 217 218 result = __getname(); 219 if (unlikely(!result)) 220 return ERR_PTR(-ENOMEM); 221 222 if (len <= EMBEDDED_NAME_MAX) { 223 result->name = (char *)result->iname; 224 } else if (len <= PATH_MAX) { 225 const size_t size = offsetof(struct filename, iname[1]); 226 struct filename *tmp; 227 228 tmp = kmalloc(size, GFP_KERNEL); 229 if (unlikely(!tmp)) { 230 __putname(result); 231 return ERR_PTR(-ENOMEM); 232 } 233 tmp->name = (char *)result; 234 result = tmp; 235 } else { 236 __putname(result); 237 return ERR_PTR(-ENAMETOOLONG); 238 } 239 memcpy((char *)result->name, filename, len); 240 result->uptr = NULL; 241 result->aname = NULL; 242 result->refcnt = 1; 243 audit_getname(result); 244 245 return result; 246 } 247 248 void putname(struct filename *name) 249 { 250 BUG_ON(name->refcnt <= 0); 251 252 if (--name->refcnt > 0) 253 return; 254 255 if (name->name != name->iname) { 256 __putname(name->name); 257 kfree(name); 258 } else 259 __putname(name); 260 } 261 262 static int check_acl(struct inode *inode, int mask) 263 { 264 #ifdef CONFIG_FS_POSIX_ACL 265 struct posix_acl *acl; 266 267 if (mask & MAY_NOT_BLOCK) { 268 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS); 269 if (!acl) 270 return -EAGAIN; 271 /* no ->get_acl() calls in RCU mode... */ 272 if (is_uncached_acl(acl)) 273 return -ECHILD; 274 return posix_acl_permission(inode, acl, mask); 275 } 276 277 acl = get_acl(inode, ACL_TYPE_ACCESS); 278 if (IS_ERR(acl)) 279 return PTR_ERR(acl); 280 if (acl) { 281 int error = posix_acl_permission(inode, acl, mask); 282 posix_acl_release(acl); 283 return error; 284 } 285 #endif 286 287 return -EAGAIN; 288 } 289 290 /* 291 * This does the basic UNIX permission checking. 292 * 293 * Note that the POSIX ACL check cares about the MAY_NOT_BLOCK bit, 294 * for RCU walking. 295 */ 296 static int acl_permission_check(struct inode *inode, int mask) 297 { 298 unsigned int mode = inode->i_mode; 299 300 /* Are we the owner? If so, ACL's don't matter */ 301 if (likely(uid_eq(current_fsuid(), inode->i_uid))) { 302 mask &= 7; 303 mode >>= 6; 304 return (mask & ~mode) ? -EACCES : 0; 305 } 306 307 /* Do we have ACL's? */ 308 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) { 309 int error = check_acl(inode, mask); 310 if (error != -EAGAIN) 311 return error; 312 } 313 314 /* Only RWX matters for group/other mode bits */ 315 mask &= 7; 316 317 /* 318 * Are the group permissions different from 319 * the other permissions in the bits we care 320 * about? Need to check group ownership if so. 321 */ 322 if (mask & (mode ^ (mode >> 3))) { 323 if (in_group_p(inode->i_gid)) 324 mode >>= 3; 325 } 326 327 /* Bits in 'mode' clear that we require? */ 328 return (mask & ~mode) ? -EACCES : 0; 329 } 330 331 /** 332 * generic_permission - check for access rights on a Posix-like filesystem 333 * @inode: inode to check access rights for 334 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, 335 * %MAY_NOT_BLOCK ...) 336 * 337 * Used to check for read/write/execute permissions on a file. 338 * We use "fsuid" for this, letting us set arbitrary permissions 339 * for filesystem access without changing the "normal" uids which 340 * are used for other things. 341 * 342 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk 343 * request cannot be satisfied (eg. requires blocking or too much complexity). 344 * It would then be called again in ref-walk mode. 345 */ 346 int generic_permission(struct inode *inode, int mask) 347 { 348 int ret; 349 350 /* 351 * Do the basic permission checks. 352 */ 353 ret = acl_permission_check(inode, mask); 354 if (ret != -EACCES) 355 return ret; 356 357 if (S_ISDIR(inode->i_mode)) { 358 /* DACs are overridable for directories */ 359 if (!(mask & MAY_WRITE)) 360 if (capable_wrt_inode_uidgid(inode, 361 CAP_DAC_READ_SEARCH)) 362 return 0; 363 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE)) 364 return 0; 365 return -EACCES; 366 } 367 368 /* 369 * Searching includes executable on directories, else just read. 370 */ 371 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 372 if (mask == MAY_READ) 373 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH)) 374 return 0; 375 /* 376 * Read/write DACs are always overridable. 377 * Executable DACs are overridable when there is 378 * at least one exec bit set. 379 */ 380 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO)) 381 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE)) 382 return 0; 383 384 return -EACCES; 385 } 386 EXPORT_SYMBOL(generic_permission); 387 388 /* 389 * We _really_ want to just do "generic_permission()" without 390 * even looking at the inode->i_op values. So we keep a cache 391 * flag in inode->i_opflags, that says "this has not special 392 * permission function, use the fast case". 393 */ 394 static inline int do_inode_permission(struct inode *inode, int mask) 395 { 396 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) { 397 if (likely(inode->i_op->permission)) 398 return inode->i_op->permission(inode, mask); 399 400 /* This gets set once for the inode lifetime */ 401 spin_lock(&inode->i_lock); 402 inode->i_opflags |= IOP_FASTPERM; 403 spin_unlock(&inode->i_lock); 404 } 405 return generic_permission(inode, mask); 406 } 407 408 /** 409 * sb_permission - Check superblock-level permissions 410 * @sb: Superblock of inode to check permission on 411 * @inode: Inode to check permission on 412 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 413 * 414 * Separate out file-system wide checks from inode-specific permission checks. 415 */ 416 static int sb_permission(struct super_block *sb, struct inode *inode, int mask) 417 { 418 if (unlikely(mask & MAY_WRITE)) { 419 umode_t mode = inode->i_mode; 420 421 /* Nobody gets write access to a read-only fs. */ 422 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 423 return -EROFS; 424 } 425 return 0; 426 } 427 428 /** 429 * inode_permission - Check for access rights to a given inode 430 * @inode: Inode to check permission on 431 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 432 * 433 * Check for read/write/execute permissions on an inode. We use fs[ug]id for 434 * this, letting us set arbitrary permissions for filesystem access without 435 * changing the "normal" UIDs which are used for other things. 436 * 437 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 438 */ 439 int inode_permission(struct inode *inode, int mask) 440 { 441 int retval; 442 443 retval = sb_permission(inode->i_sb, inode, mask); 444 if (retval) 445 return retval; 446 447 if (unlikely(mask & MAY_WRITE)) { 448 /* 449 * Nobody gets write access to an immutable file. 450 */ 451 if (IS_IMMUTABLE(inode)) 452 return -EPERM; 453 454 /* 455 * Updating mtime will likely cause i_uid and i_gid to be 456 * written back improperly if their true value is unknown 457 * to the vfs. 458 */ 459 if (HAS_UNMAPPED_ID(inode)) 460 return -EACCES; 461 } 462 463 retval = do_inode_permission(inode, mask); 464 if (retval) 465 return retval; 466 467 retval = devcgroup_inode_permission(inode, mask); 468 if (retval) 469 return retval; 470 471 return security_inode_permission(inode, mask); 472 } 473 EXPORT_SYMBOL(inode_permission); 474 475 /** 476 * path_get - get a reference to a path 477 * @path: path to get the reference to 478 * 479 * Given a path increment the reference count to the dentry and the vfsmount. 480 */ 481 void path_get(const struct path *path) 482 { 483 mntget(path->mnt); 484 dget(path->dentry); 485 } 486 EXPORT_SYMBOL(path_get); 487 488 /** 489 * path_put - put a reference to a path 490 * @path: path to put the reference to 491 * 492 * Given a path decrement the reference count to the dentry and the vfsmount. 493 */ 494 void path_put(const struct path *path) 495 { 496 dput(path->dentry); 497 mntput(path->mnt); 498 } 499 EXPORT_SYMBOL(path_put); 500 501 #define EMBEDDED_LEVELS 2 502 struct nameidata { 503 struct path path; 504 struct qstr last; 505 struct path root; 506 struct inode *inode; /* path.dentry.d_inode */ 507 unsigned int flags; 508 unsigned seq, m_seq, r_seq; 509 int last_type; 510 unsigned depth; 511 int total_link_count; 512 struct saved { 513 struct path link; 514 struct delayed_call done; 515 const char *name; 516 unsigned seq; 517 } *stack, internal[EMBEDDED_LEVELS]; 518 struct filename *name; 519 struct nameidata *saved; 520 unsigned root_seq; 521 int dfd; 522 kuid_t dir_uid; 523 umode_t dir_mode; 524 } __randomize_layout; 525 526 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name) 527 { 528 struct nameidata *old = current->nameidata; 529 p->stack = p->internal; 530 p->dfd = dfd; 531 p->name = name; 532 p->total_link_count = old ? old->total_link_count : 0; 533 p->saved = old; 534 current->nameidata = p; 535 } 536 537 static void restore_nameidata(void) 538 { 539 struct nameidata *now = current->nameidata, *old = now->saved; 540 541 current->nameidata = old; 542 if (old) 543 old->total_link_count = now->total_link_count; 544 if (now->stack != now->internal) 545 kfree(now->stack); 546 } 547 548 static bool nd_alloc_stack(struct nameidata *nd) 549 { 550 struct saved *p; 551 552 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved), 553 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL); 554 if (unlikely(!p)) 555 return false; 556 memcpy(p, nd->internal, sizeof(nd->internal)); 557 nd->stack = p; 558 return true; 559 } 560 561 /** 562 * path_connected - Verify that a dentry is below mnt.mnt_root 563 * 564 * Rename can sometimes move a file or directory outside of a bind 565 * mount, path_connected allows those cases to be detected. 566 */ 567 static bool path_connected(struct vfsmount *mnt, struct dentry *dentry) 568 { 569 struct super_block *sb = mnt->mnt_sb; 570 571 /* Bind mounts and multi-root filesystems can have disconnected paths */ 572 if (!(sb->s_iflags & SB_I_MULTIROOT) && (mnt->mnt_root == sb->s_root)) 573 return true; 574 575 return is_subdir(dentry, mnt->mnt_root); 576 } 577 578 static void drop_links(struct nameidata *nd) 579 { 580 int i = nd->depth; 581 while (i--) { 582 struct saved *last = nd->stack + i; 583 do_delayed_call(&last->done); 584 clear_delayed_call(&last->done); 585 } 586 } 587 588 static void terminate_walk(struct nameidata *nd) 589 { 590 drop_links(nd); 591 if (!(nd->flags & LOOKUP_RCU)) { 592 int i; 593 path_put(&nd->path); 594 for (i = 0; i < nd->depth; i++) 595 path_put(&nd->stack[i].link); 596 if (nd->flags & LOOKUP_ROOT_GRABBED) { 597 path_put(&nd->root); 598 nd->flags &= ~LOOKUP_ROOT_GRABBED; 599 } 600 } else { 601 nd->flags &= ~LOOKUP_RCU; 602 rcu_read_unlock(); 603 } 604 nd->depth = 0; 605 } 606 607 /* path_put is needed afterwards regardless of success or failure */ 608 static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq) 609 { 610 int res = __legitimize_mnt(path->mnt, mseq); 611 if (unlikely(res)) { 612 if (res > 0) 613 path->mnt = NULL; 614 path->dentry = NULL; 615 return false; 616 } 617 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) { 618 path->dentry = NULL; 619 return false; 620 } 621 return !read_seqcount_retry(&path->dentry->d_seq, seq); 622 } 623 624 static inline bool legitimize_path(struct nameidata *nd, 625 struct path *path, unsigned seq) 626 { 627 return __legitimize_path(path, seq, nd->m_seq); 628 } 629 630 static bool legitimize_links(struct nameidata *nd) 631 { 632 int i; 633 for (i = 0; i < nd->depth; i++) { 634 struct saved *last = nd->stack + i; 635 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) { 636 drop_links(nd); 637 nd->depth = i + 1; 638 return false; 639 } 640 } 641 return true; 642 } 643 644 static bool legitimize_root(struct nameidata *nd) 645 { 646 /* 647 * For scoped-lookups (where nd->root has been zeroed), we need to 648 * restart the whole lookup from scratch -- because set_root() is wrong 649 * for these lookups (nd->dfd is the root, not the filesystem root). 650 */ 651 if (!nd->root.mnt && (nd->flags & LOOKUP_IS_SCOPED)) 652 return false; 653 /* Nothing to do if nd->root is zero or is managed by the VFS user. */ 654 if (!nd->root.mnt || (nd->flags & LOOKUP_ROOT)) 655 return true; 656 nd->flags |= LOOKUP_ROOT_GRABBED; 657 return legitimize_path(nd, &nd->root, nd->root_seq); 658 } 659 660 /* 661 * Path walking has 2 modes, rcu-walk and ref-walk (see 662 * Documentation/filesystems/path-lookup.txt). In situations when we can't 663 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab 664 * normal reference counts on dentries and vfsmounts to transition to ref-walk 665 * mode. Refcounts are grabbed at the last known good point before rcu-walk 666 * got stuck, so ref-walk may continue from there. If this is not successful 667 * (eg. a seqcount has changed), then failure is returned and it's up to caller 668 * to restart the path walk from the beginning in ref-walk mode. 669 */ 670 671 /** 672 * unlazy_walk - try to switch to ref-walk mode. 673 * @nd: nameidata pathwalk data 674 * Returns: 0 on success, -ECHILD on failure 675 * 676 * unlazy_walk attempts to legitimize the current nd->path and nd->root 677 * for ref-walk mode. 678 * Must be called from rcu-walk context. 679 * Nothing should touch nameidata between unlazy_walk() failure and 680 * terminate_walk(). 681 */ 682 static int unlazy_walk(struct nameidata *nd) 683 { 684 struct dentry *parent = nd->path.dentry; 685 686 BUG_ON(!(nd->flags & LOOKUP_RCU)); 687 688 nd->flags &= ~LOOKUP_RCU; 689 if (unlikely(!legitimize_links(nd))) 690 goto out1; 691 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq))) 692 goto out; 693 if (unlikely(!legitimize_root(nd))) 694 goto out; 695 rcu_read_unlock(); 696 BUG_ON(nd->inode != parent->d_inode); 697 return 0; 698 699 out1: 700 nd->path.mnt = NULL; 701 nd->path.dentry = NULL; 702 out: 703 rcu_read_unlock(); 704 return -ECHILD; 705 } 706 707 /** 708 * unlazy_child - try to switch to ref-walk mode. 709 * @nd: nameidata pathwalk data 710 * @dentry: child of nd->path.dentry 711 * @seq: seq number to check dentry against 712 * Returns: 0 on success, -ECHILD on failure 713 * 714 * unlazy_child attempts to legitimize the current nd->path, nd->root and dentry 715 * for ref-walk mode. @dentry must be a path found by a do_lookup call on 716 * @nd. Must be called from rcu-walk context. 717 * Nothing should touch nameidata between unlazy_child() failure and 718 * terminate_walk(). 719 */ 720 static int unlazy_child(struct nameidata *nd, struct dentry *dentry, unsigned seq) 721 { 722 BUG_ON(!(nd->flags & LOOKUP_RCU)); 723 724 nd->flags &= ~LOOKUP_RCU; 725 if (unlikely(!legitimize_links(nd))) 726 goto out2; 727 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq))) 728 goto out2; 729 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref))) 730 goto out1; 731 732 /* 733 * We need to move both the parent and the dentry from the RCU domain 734 * to be properly refcounted. And the sequence number in the dentry 735 * validates *both* dentry counters, since we checked the sequence 736 * number of the parent after we got the child sequence number. So we 737 * know the parent must still be valid if the child sequence number is 738 */ 739 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) 740 goto out; 741 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) 742 goto out_dput; 743 /* 744 * Sequence counts matched. Now make sure that the root is 745 * still valid and get it if required. 746 */ 747 if (unlikely(!legitimize_root(nd))) 748 goto out_dput; 749 rcu_read_unlock(); 750 return 0; 751 752 out2: 753 nd->path.mnt = NULL; 754 out1: 755 nd->path.dentry = NULL; 756 out: 757 rcu_read_unlock(); 758 return -ECHILD; 759 out_dput: 760 rcu_read_unlock(); 761 dput(dentry); 762 return -ECHILD; 763 } 764 765 static inline int d_revalidate(struct dentry *dentry, unsigned int flags) 766 { 767 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) 768 return dentry->d_op->d_revalidate(dentry, flags); 769 else 770 return 1; 771 } 772 773 /** 774 * complete_walk - successful completion of path walk 775 * @nd: pointer nameidata 776 * 777 * If we had been in RCU mode, drop out of it and legitimize nd->path. 778 * Revalidate the final result, unless we'd already done that during 779 * the path walk or the filesystem doesn't ask for it. Return 0 on 780 * success, -error on failure. In case of failure caller does not 781 * need to drop nd->path. 782 */ 783 static int complete_walk(struct nameidata *nd) 784 { 785 struct dentry *dentry = nd->path.dentry; 786 int status; 787 788 if (nd->flags & LOOKUP_RCU) { 789 /* 790 * We don't want to zero nd->root for scoped-lookups or 791 * externally-managed nd->root. 792 */ 793 if (!(nd->flags & (LOOKUP_ROOT | LOOKUP_IS_SCOPED))) 794 nd->root.mnt = NULL; 795 if (unlikely(unlazy_walk(nd))) 796 return -ECHILD; 797 } 798 799 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) { 800 /* 801 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't 802 * ever step outside the root during lookup" and should already 803 * be guaranteed by the rest of namei, we want to avoid a namei 804 * BUG resulting in userspace being given a path that was not 805 * scoped within the root at some point during the lookup. 806 * 807 * So, do a final sanity-check to make sure that in the 808 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED) 809 * we won't silently return an fd completely outside of the 810 * requested root to userspace. 811 * 812 * Userspace could move the path outside the root after this 813 * check, but as discussed elsewhere this is not a concern (the 814 * resolved file was inside the root at some point). 815 */ 816 if (!path_is_under(&nd->path, &nd->root)) 817 return -EXDEV; 818 } 819 820 if (likely(!(nd->flags & LOOKUP_JUMPED))) 821 return 0; 822 823 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE))) 824 return 0; 825 826 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags); 827 if (status > 0) 828 return 0; 829 830 if (!status) 831 status = -ESTALE; 832 833 return status; 834 } 835 836 static int set_root(struct nameidata *nd) 837 { 838 struct fs_struct *fs = current->fs; 839 840 /* 841 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we 842 * still have to ensure it doesn't happen because it will cause a breakout 843 * from the dirfd. 844 */ 845 if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED)) 846 return -ENOTRECOVERABLE; 847 848 if (nd->flags & LOOKUP_RCU) { 849 unsigned seq; 850 851 do { 852 seq = read_seqcount_begin(&fs->seq); 853 nd->root = fs->root; 854 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq); 855 } while (read_seqcount_retry(&fs->seq, seq)); 856 } else { 857 get_fs_root(fs, &nd->root); 858 nd->flags |= LOOKUP_ROOT_GRABBED; 859 } 860 return 0; 861 } 862 863 static int nd_jump_root(struct nameidata *nd) 864 { 865 if (unlikely(nd->flags & LOOKUP_BENEATH)) 866 return -EXDEV; 867 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) { 868 /* Absolute path arguments to path_init() are allowed. */ 869 if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt) 870 return -EXDEV; 871 } 872 if (!nd->root.mnt) { 873 int error = set_root(nd); 874 if (error) 875 return error; 876 } 877 if (nd->flags & LOOKUP_RCU) { 878 struct dentry *d; 879 nd->path = nd->root; 880 d = nd->path.dentry; 881 nd->inode = d->d_inode; 882 nd->seq = nd->root_seq; 883 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq))) 884 return -ECHILD; 885 } else { 886 path_put(&nd->path); 887 nd->path = nd->root; 888 path_get(&nd->path); 889 nd->inode = nd->path.dentry->d_inode; 890 } 891 nd->flags |= LOOKUP_JUMPED; 892 return 0; 893 } 894 895 /* 896 * Helper to directly jump to a known parsed path from ->get_link, 897 * caller must have taken a reference to path beforehand. 898 */ 899 int nd_jump_link(struct path *path) 900 { 901 int error = -ELOOP; 902 struct nameidata *nd = current->nameidata; 903 904 if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS)) 905 goto err; 906 907 error = -EXDEV; 908 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) { 909 if (nd->path.mnt != path->mnt) 910 goto err; 911 } 912 /* Not currently safe for scoped-lookups. */ 913 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) 914 goto err; 915 916 path_put(&nd->path); 917 nd->path = *path; 918 nd->inode = nd->path.dentry->d_inode; 919 nd->flags |= LOOKUP_JUMPED; 920 return 0; 921 922 err: 923 path_put(path); 924 return error; 925 } 926 927 static inline void put_link(struct nameidata *nd) 928 { 929 struct saved *last = nd->stack + --nd->depth; 930 do_delayed_call(&last->done); 931 if (!(nd->flags & LOOKUP_RCU)) 932 path_put(&last->link); 933 } 934 935 int sysctl_protected_symlinks __read_mostly = 0; 936 int sysctl_protected_hardlinks __read_mostly = 0; 937 int sysctl_protected_fifos __read_mostly; 938 int sysctl_protected_regular __read_mostly; 939 940 /** 941 * may_follow_link - Check symlink following for unsafe situations 942 * @nd: nameidata pathwalk data 943 * 944 * In the case of the sysctl_protected_symlinks sysctl being enabled, 945 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is 946 * in a sticky world-writable directory. This is to protect privileged 947 * processes from failing races against path names that may change out 948 * from under them by way of other users creating malicious symlinks. 949 * It will permit symlinks to be followed only when outside a sticky 950 * world-writable directory, or when the uid of the symlink and follower 951 * match, or when the directory owner matches the symlink's owner. 952 * 953 * Returns 0 if following the symlink is allowed, -ve on error. 954 */ 955 static inline int may_follow_link(struct nameidata *nd, const struct inode *inode) 956 { 957 if (!sysctl_protected_symlinks) 958 return 0; 959 960 /* Allowed if owner and follower match. */ 961 if (uid_eq(current_cred()->fsuid, inode->i_uid)) 962 return 0; 963 964 /* Allowed if parent directory not sticky and world-writable. */ 965 if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH)) 966 return 0; 967 968 /* Allowed if parent directory and link owner match. */ 969 if (uid_valid(nd->dir_uid) && uid_eq(nd->dir_uid, inode->i_uid)) 970 return 0; 971 972 if (nd->flags & LOOKUP_RCU) 973 return -ECHILD; 974 975 audit_inode(nd->name, nd->stack[0].link.dentry, 0); 976 audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link"); 977 return -EACCES; 978 } 979 980 /** 981 * safe_hardlink_source - Check for safe hardlink conditions 982 * @inode: the source inode to hardlink from 983 * 984 * Return false if at least one of the following conditions: 985 * - inode is not a regular file 986 * - inode is setuid 987 * - inode is setgid and group-exec 988 * - access failure for read and write 989 * 990 * Otherwise returns true. 991 */ 992 static bool safe_hardlink_source(struct inode *inode) 993 { 994 umode_t mode = inode->i_mode; 995 996 /* Special files should not get pinned to the filesystem. */ 997 if (!S_ISREG(mode)) 998 return false; 999 1000 /* Setuid files should not get pinned to the filesystem. */ 1001 if (mode & S_ISUID) 1002 return false; 1003 1004 /* Executable setgid files should not get pinned to the filesystem. */ 1005 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) 1006 return false; 1007 1008 /* Hardlinking to unreadable or unwritable sources is dangerous. */ 1009 if (inode_permission(inode, MAY_READ | MAY_WRITE)) 1010 return false; 1011 1012 return true; 1013 } 1014 1015 /** 1016 * may_linkat - Check permissions for creating a hardlink 1017 * @link: the source to hardlink from 1018 * 1019 * Block hardlink when all of: 1020 * - sysctl_protected_hardlinks enabled 1021 * - fsuid does not match inode 1022 * - hardlink source is unsafe (see safe_hardlink_source() above) 1023 * - not CAP_FOWNER in a namespace with the inode owner uid mapped 1024 * 1025 * Returns 0 if successful, -ve on error. 1026 */ 1027 int may_linkat(struct path *link) 1028 { 1029 struct inode *inode = link->dentry->d_inode; 1030 1031 /* Inode writeback is not safe when the uid or gid are invalid. */ 1032 if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid)) 1033 return -EOVERFLOW; 1034 1035 if (!sysctl_protected_hardlinks) 1036 return 0; 1037 1038 /* Source inode owner (or CAP_FOWNER) can hardlink all they like, 1039 * otherwise, it must be a safe source. 1040 */ 1041 if (safe_hardlink_source(inode) || inode_owner_or_capable(inode)) 1042 return 0; 1043 1044 audit_log_path_denied(AUDIT_ANOM_LINK, "linkat"); 1045 return -EPERM; 1046 } 1047 1048 /** 1049 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory 1050 * should be allowed, or not, on files that already 1051 * exist. 1052 * @dir_mode: mode bits of directory 1053 * @dir_uid: owner of directory 1054 * @inode: the inode of the file to open 1055 * 1056 * Block an O_CREAT open of a FIFO (or a regular file) when: 1057 * - sysctl_protected_fifos (or sysctl_protected_regular) is enabled 1058 * - the file already exists 1059 * - we are in a sticky directory 1060 * - we don't own the file 1061 * - the owner of the directory doesn't own the file 1062 * - the directory is world writable 1063 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2 1064 * the directory doesn't have to be world writable: being group writable will 1065 * be enough. 1066 * 1067 * Returns 0 if the open is allowed, -ve on error. 1068 */ 1069 static int may_create_in_sticky(umode_t dir_mode, kuid_t dir_uid, 1070 struct inode * const inode) 1071 { 1072 if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) || 1073 (!sysctl_protected_regular && S_ISREG(inode->i_mode)) || 1074 likely(!(dir_mode & S_ISVTX)) || 1075 uid_eq(inode->i_uid, dir_uid) || 1076 uid_eq(current_fsuid(), inode->i_uid)) 1077 return 0; 1078 1079 if (likely(dir_mode & 0002) || 1080 (dir_mode & 0020 && 1081 ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) || 1082 (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) { 1083 const char *operation = S_ISFIFO(inode->i_mode) ? 1084 "sticky_create_fifo" : 1085 "sticky_create_regular"; 1086 audit_log_path_denied(AUDIT_ANOM_CREAT, operation); 1087 return -EACCES; 1088 } 1089 return 0; 1090 } 1091 1092 /* 1093 * follow_up - Find the mountpoint of path's vfsmount 1094 * 1095 * Given a path, find the mountpoint of its source file system. 1096 * Replace @path with the path of the mountpoint in the parent mount. 1097 * Up is towards /. 1098 * 1099 * Return 1 if we went up a level and 0 if we were already at the 1100 * root. 1101 */ 1102 int follow_up(struct path *path) 1103 { 1104 struct mount *mnt = real_mount(path->mnt); 1105 struct mount *parent; 1106 struct dentry *mountpoint; 1107 1108 read_seqlock_excl(&mount_lock); 1109 parent = mnt->mnt_parent; 1110 if (parent == mnt) { 1111 read_sequnlock_excl(&mount_lock); 1112 return 0; 1113 } 1114 mntget(&parent->mnt); 1115 mountpoint = dget(mnt->mnt_mountpoint); 1116 read_sequnlock_excl(&mount_lock); 1117 dput(path->dentry); 1118 path->dentry = mountpoint; 1119 mntput(path->mnt); 1120 path->mnt = &parent->mnt; 1121 return 1; 1122 } 1123 EXPORT_SYMBOL(follow_up); 1124 1125 static bool choose_mountpoint_rcu(struct mount *m, const struct path *root, 1126 struct path *path, unsigned *seqp) 1127 { 1128 while (mnt_has_parent(m)) { 1129 struct dentry *mountpoint = m->mnt_mountpoint; 1130 1131 m = m->mnt_parent; 1132 if (unlikely(root->dentry == mountpoint && 1133 root->mnt == &m->mnt)) 1134 break; 1135 if (mountpoint != m->mnt.mnt_root) { 1136 path->mnt = &m->mnt; 1137 path->dentry = mountpoint; 1138 *seqp = read_seqcount_begin(&mountpoint->d_seq); 1139 return true; 1140 } 1141 } 1142 return false; 1143 } 1144 1145 static bool choose_mountpoint(struct mount *m, const struct path *root, 1146 struct path *path) 1147 { 1148 bool found; 1149 1150 rcu_read_lock(); 1151 while (1) { 1152 unsigned seq, mseq = read_seqbegin(&mount_lock); 1153 1154 found = choose_mountpoint_rcu(m, root, path, &seq); 1155 if (unlikely(!found)) { 1156 if (!read_seqretry(&mount_lock, mseq)) 1157 break; 1158 } else { 1159 if (likely(__legitimize_path(path, seq, mseq))) 1160 break; 1161 rcu_read_unlock(); 1162 path_put(path); 1163 rcu_read_lock(); 1164 } 1165 } 1166 rcu_read_unlock(); 1167 return found; 1168 } 1169 1170 /* 1171 * Perform an automount 1172 * - return -EISDIR to tell follow_managed() to stop and return the path we 1173 * were called with. 1174 */ 1175 static int follow_automount(struct path *path, int *count, unsigned lookup_flags) 1176 { 1177 struct dentry *dentry = path->dentry; 1178 1179 /* We don't want to mount if someone's just doing a stat - 1180 * unless they're stat'ing a directory and appended a '/' to 1181 * the name. 1182 * 1183 * We do, however, want to mount if someone wants to open or 1184 * create a file of any type under the mountpoint, wants to 1185 * traverse through the mountpoint or wants to open the 1186 * mounted directory. Also, autofs may mark negative dentries 1187 * as being automount points. These will need the attentions 1188 * of the daemon to instantiate them before they can be used. 1189 */ 1190 if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY | 1191 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) && 1192 dentry->d_inode) 1193 return -EISDIR; 1194 1195 if (count && (*count)++ >= MAXSYMLINKS) 1196 return -ELOOP; 1197 1198 return finish_automount(dentry->d_op->d_automount(path), path); 1199 } 1200 1201 /* 1202 * mount traversal - out-of-line part. One note on ->d_flags accesses - 1203 * dentries are pinned but not locked here, so negative dentry can go 1204 * positive right under us. Use of smp_load_acquire() provides a barrier 1205 * sufficient for ->d_inode and ->d_flags consistency. 1206 */ 1207 static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped, 1208 int *count, unsigned lookup_flags) 1209 { 1210 struct vfsmount *mnt = path->mnt; 1211 bool need_mntput = false; 1212 int ret = 0; 1213 1214 while (flags & DCACHE_MANAGED_DENTRY) { 1215 /* Allow the filesystem to manage the transit without i_mutex 1216 * being held. */ 1217 if (flags & DCACHE_MANAGE_TRANSIT) { 1218 ret = path->dentry->d_op->d_manage(path, false); 1219 flags = smp_load_acquire(&path->dentry->d_flags); 1220 if (ret < 0) 1221 break; 1222 } 1223 1224 if (flags & DCACHE_MOUNTED) { // something's mounted on it.. 1225 struct vfsmount *mounted = lookup_mnt(path); 1226 if (mounted) { // ... in our namespace 1227 dput(path->dentry); 1228 if (need_mntput) 1229 mntput(path->mnt); 1230 path->mnt = mounted; 1231 path->dentry = dget(mounted->mnt_root); 1232 // here we know it's positive 1233 flags = path->dentry->d_flags; 1234 need_mntput = true; 1235 continue; 1236 } 1237 } 1238 1239 if (!(flags & DCACHE_NEED_AUTOMOUNT)) 1240 break; 1241 1242 // uncovered automount point 1243 ret = follow_automount(path, count, lookup_flags); 1244 flags = smp_load_acquire(&path->dentry->d_flags); 1245 if (ret < 0) 1246 break; 1247 } 1248 1249 if (ret == -EISDIR) 1250 ret = 0; 1251 // possible if you race with several mount --move 1252 if (need_mntput && path->mnt == mnt) 1253 mntput(path->mnt); 1254 if (!ret && unlikely(d_flags_negative(flags))) 1255 ret = -ENOENT; 1256 *jumped = need_mntput; 1257 return ret; 1258 } 1259 1260 static inline int traverse_mounts(struct path *path, bool *jumped, 1261 int *count, unsigned lookup_flags) 1262 { 1263 unsigned flags = smp_load_acquire(&path->dentry->d_flags); 1264 1265 /* fastpath */ 1266 if (likely(!(flags & DCACHE_MANAGED_DENTRY))) { 1267 *jumped = false; 1268 if (unlikely(d_flags_negative(flags))) 1269 return -ENOENT; 1270 return 0; 1271 } 1272 return __traverse_mounts(path, flags, jumped, count, lookup_flags); 1273 } 1274 1275 int follow_down_one(struct path *path) 1276 { 1277 struct vfsmount *mounted; 1278 1279 mounted = lookup_mnt(path); 1280 if (mounted) { 1281 dput(path->dentry); 1282 mntput(path->mnt); 1283 path->mnt = mounted; 1284 path->dentry = dget(mounted->mnt_root); 1285 return 1; 1286 } 1287 return 0; 1288 } 1289 EXPORT_SYMBOL(follow_down_one); 1290 1291 /* 1292 * Follow down to the covering mount currently visible to userspace. At each 1293 * point, the filesystem owning that dentry may be queried as to whether the 1294 * caller is permitted to proceed or not. 1295 */ 1296 int follow_down(struct path *path) 1297 { 1298 struct vfsmount *mnt = path->mnt; 1299 bool jumped; 1300 int ret = traverse_mounts(path, &jumped, NULL, 0); 1301 1302 if (path->mnt != mnt) 1303 mntput(mnt); 1304 return ret; 1305 } 1306 EXPORT_SYMBOL(follow_down); 1307 1308 /* 1309 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if 1310 * we meet a managed dentry that would need blocking. 1311 */ 1312 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path, 1313 struct inode **inode, unsigned *seqp) 1314 { 1315 struct dentry *dentry = path->dentry; 1316 unsigned int flags = dentry->d_flags; 1317 1318 if (likely(!(flags & DCACHE_MANAGED_DENTRY))) 1319 return true; 1320 1321 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1322 return false; 1323 1324 for (;;) { 1325 /* 1326 * Don't forget we might have a non-mountpoint managed dentry 1327 * that wants to block transit. 1328 */ 1329 if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) { 1330 int res = dentry->d_op->d_manage(path, true); 1331 if (res) 1332 return res == -EISDIR; 1333 flags = dentry->d_flags; 1334 } 1335 1336 if (flags & DCACHE_MOUNTED) { 1337 struct mount *mounted = __lookup_mnt(path->mnt, dentry); 1338 if (mounted) { 1339 path->mnt = &mounted->mnt; 1340 dentry = path->dentry = mounted->mnt.mnt_root; 1341 nd->flags |= LOOKUP_JUMPED; 1342 *seqp = read_seqcount_begin(&dentry->d_seq); 1343 *inode = dentry->d_inode; 1344 /* 1345 * We don't need to re-check ->d_seq after this 1346 * ->d_inode read - there will be an RCU delay 1347 * between mount hash removal and ->mnt_root 1348 * becoming unpinned. 1349 */ 1350 flags = dentry->d_flags; 1351 continue; 1352 } 1353 if (read_seqretry(&mount_lock, nd->m_seq)) 1354 return false; 1355 } 1356 return !(flags & DCACHE_NEED_AUTOMOUNT); 1357 } 1358 } 1359 1360 static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry, 1361 struct path *path, struct inode **inode, 1362 unsigned int *seqp) 1363 { 1364 bool jumped; 1365 int ret; 1366 1367 path->mnt = nd->path.mnt; 1368 path->dentry = dentry; 1369 if (nd->flags & LOOKUP_RCU) { 1370 unsigned int seq = *seqp; 1371 if (unlikely(!*inode)) 1372 return -ENOENT; 1373 if (likely(__follow_mount_rcu(nd, path, inode, seqp))) 1374 return 0; 1375 if (unlazy_child(nd, dentry, seq)) 1376 return -ECHILD; 1377 // *path might've been clobbered by __follow_mount_rcu() 1378 path->mnt = nd->path.mnt; 1379 path->dentry = dentry; 1380 } 1381 ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags); 1382 if (jumped) { 1383 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1384 ret = -EXDEV; 1385 else 1386 nd->flags |= LOOKUP_JUMPED; 1387 } 1388 if (unlikely(ret)) { 1389 dput(path->dentry); 1390 if (path->mnt != nd->path.mnt) 1391 mntput(path->mnt); 1392 } else { 1393 *inode = d_backing_inode(path->dentry); 1394 *seqp = 0; /* out of RCU mode, so the value doesn't matter */ 1395 } 1396 return ret; 1397 } 1398 1399 /* 1400 * This looks up the name in dcache and possibly revalidates the found dentry. 1401 * NULL is returned if the dentry does not exist in the cache. 1402 */ 1403 static struct dentry *lookup_dcache(const struct qstr *name, 1404 struct dentry *dir, 1405 unsigned int flags) 1406 { 1407 struct dentry *dentry = d_lookup(dir, name); 1408 if (dentry) { 1409 int error = d_revalidate(dentry, flags); 1410 if (unlikely(error <= 0)) { 1411 if (!error) 1412 d_invalidate(dentry); 1413 dput(dentry); 1414 return ERR_PTR(error); 1415 } 1416 } 1417 return dentry; 1418 } 1419 1420 /* 1421 * Parent directory has inode locked exclusive. This is one 1422 * and only case when ->lookup() gets called on non in-lookup 1423 * dentries - as the matter of fact, this only gets called 1424 * when directory is guaranteed to have no in-lookup children 1425 * at all. 1426 */ 1427 static struct dentry *__lookup_hash(const struct qstr *name, 1428 struct dentry *base, unsigned int flags) 1429 { 1430 struct dentry *dentry = lookup_dcache(name, base, flags); 1431 struct dentry *old; 1432 struct inode *dir = base->d_inode; 1433 1434 if (dentry) 1435 return dentry; 1436 1437 /* Don't create child dentry for a dead directory. */ 1438 if (unlikely(IS_DEADDIR(dir))) 1439 return ERR_PTR(-ENOENT); 1440 1441 dentry = d_alloc(base, name); 1442 if (unlikely(!dentry)) 1443 return ERR_PTR(-ENOMEM); 1444 1445 old = dir->i_op->lookup(dir, dentry, flags); 1446 if (unlikely(old)) { 1447 dput(dentry); 1448 dentry = old; 1449 } 1450 return dentry; 1451 } 1452 1453 static struct dentry *lookup_fast(struct nameidata *nd, 1454 struct inode **inode, 1455 unsigned *seqp) 1456 { 1457 struct dentry *dentry, *parent = nd->path.dentry; 1458 int status = 1; 1459 1460 /* 1461 * Rename seqlock is not required here because in the off chance 1462 * of a false negative due to a concurrent rename, the caller is 1463 * going to fall back to non-racy lookup. 1464 */ 1465 if (nd->flags & LOOKUP_RCU) { 1466 unsigned seq; 1467 dentry = __d_lookup_rcu(parent, &nd->last, &seq); 1468 if (unlikely(!dentry)) { 1469 if (unlazy_walk(nd)) 1470 return ERR_PTR(-ECHILD); 1471 return NULL; 1472 } 1473 1474 /* 1475 * This sequence count validates that the inode matches 1476 * the dentry name information from lookup. 1477 */ 1478 *inode = d_backing_inode(dentry); 1479 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) 1480 return ERR_PTR(-ECHILD); 1481 1482 /* 1483 * This sequence count validates that the parent had no 1484 * changes while we did the lookup of the dentry above. 1485 * 1486 * The memory barrier in read_seqcount_begin of child is 1487 * enough, we can use __read_seqcount_retry here. 1488 */ 1489 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq))) 1490 return ERR_PTR(-ECHILD); 1491 1492 *seqp = seq; 1493 status = d_revalidate(dentry, nd->flags); 1494 if (likely(status > 0)) 1495 return dentry; 1496 if (unlazy_child(nd, dentry, seq)) 1497 return ERR_PTR(-ECHILD); 1498 if (unlikely(status == -ECHILD)) 1499 /* we'd been told to redo it in non-rcu mode */ 1500 status = d_revalidate(dentry, nd->flags); 1501 } else { 1502 dentry = __d_lookup(parent, &nd->last); 1503 if (unlikely(!dentry)) 1504 return NULL; 1505 status = d_revalidate(dentry, nd->flags); 1506 } 1507 if (unlikely(status <= 0)) { 1508 if (!status) 1509 d_invalidate(dentry); 1510 dput(dentry); 1511 return ERR_PTR(status); 1512 } 1513 return dentry; 1514 } 1515 1516 /* Fast lookup failed, do it the slow way */ 1517 static struct dentry *__lookup_slow(const struct qstr *name, 1518 struct dentry *dir, 1519 unsigned int flags) 1520 { 1521 struct dentry *dentry, *old; 1522 struct inode *inode = dir->d_inode; 1523 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 1524 1525 /* Don't go there if it's already dead */ 1526 if (unlikely(IS_DEADDIR(inode))) 1527 return ERR_PTR(-ENOENT); 1528 again: 1529 dentry = d_alloc_parallel(dir, name, &wq); 1530 if (IS_ERR(dentry)) 1531 return dentry; 1532 if (unlikely(!d_in_lookup(dentry))) { 1533 int error = d_revalidate(dentry, flags); 1534 if (unlikely(error <= 0)) { 1535 if (!error) { 1536 d_invalidate(dentry); 1537 dput(dentry); 1538 goto again; 1539 } 1540 dput(dentry); 1541 dentry = ERR_PTR(error); 1542 } 1543 } else { 1544 old = inode->i_op->lookup(inode, dentry, flags); 1545 d_lookup_done(dentry); 1546 if (unlikely(old)) { 1547 dput(dentry); 1548 dentry = old; 1549 } 1550 } 1551 return dentry; 1552 } 1553 1554 static struct dentry *lookup_slow(const struct qstr *name, 1555 struct dentry *dir, 1556 unsigned int flags) 1557 { 1558 struct inode *inode = dir->d_inode; 1559 struct dentry *res; 1560 inode_lock_shared(inode); 1561 res = __lookup_slow(name, dir, flags); 1562 inode_unlock_shared(inode); 1563 return res; 1564 } 1565 1566 static inline int may_lookup(struct nameidata *nd) 1567 { 1568 if (nd->flags & LOOKUP_RCU) { 1569 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK); 1570 if (err != -ECHILD) 1571 return err; 1572 if (unlazy_walk(nd)) 1573 return -ECHILD; 1574 } 1575 return inode_permission(nd->inode, MAY_EXEC); 1576 } 1577 1578 static int reserve_stack(struct nameidata *nd, struct path *link, unsigned seq) 1579 { 1580 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) 1581 return -ELOOP; 1582 1583 if (likely(nd->depth != EMBEDDED_LEVELS)) 1584 return 0; 1585 if (likely(nd->stack != nd->internal)) 1586 return 0; 1587 if (likely(nd_alloc_stack(nd))) 1588 return 0; 1589 1590 if (nd->flags & LOOKUP_RCU) { 1591 // we need to grab link before we do unlazy. And we can't skip 1592 // unlazy even if we fail to grab the link - cleanup needs it 1593 bool grabbed_link = legitimize_path(nd, link, seq); 1594 1595 if (unlazy_walk(nd) != 0 || !grabbed_link) 1596 return -ECHILD; 1597 1598 if (nd_alloc_stack(nd)) 1599 return 0; 1600 } 1601 return -ENOMEM; 1602 } 1603 1604 enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4}; 1605 1606 static const char *pick_link(struct nameidata *nd, struct path *link, 1607 struct inode *inode, unsigned seq, int flags) 1608 { 1609 struct saved *last; 1610 const char *res; 1611 int error = reserve_stack(nd, link, seq); 1612 1613 if (unlikely(error)) { 1614 if (!(nd->flags & LOOKUP_RCU)) 1615 path_put(link); 1616 return ERR_PTR(error); 1617 } 1618 last = nd->stack + nd->depth++; 1619 last->link = *link; 1620 clear_delayed_call(&last->done); 1621 last->seq = seq; 1622 1623 if (flags & WALK_TRAILING) { 1624 error = may_follow_link(nd, inode); 1625 if (unlikely(error)) 1626 return ERR_PTR(error); 1627 } 1628 1629 if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS)) 1630 return ERR_PTR(-ELOOP); 1631 1632 if (!(nd->flags & LOOKUP_RCU)) { 1633 touch_atime(&last->link); 1634 cond_resched(); 1635 } else if (atime_needs_update(&last->link, inode)) { 1636 if (unlikely(unlazy_walk(nd))) 1637 return ERR_PTR(-ECHILD); 1638 touch_atime(&last->link); 1639 } 1640 1641 error = security_inode_follow_link(link->dentry, inode, 1642 nd->flags & LOOKUP_RCU); 1643 if (unlikely(error)) 1644 return ERR_PTR(error); 1645 1646 res = READ_ONCE(inode->i_link); 1647 if (!res) { 1648 const char * (*get)(struct dentry *, struct inode *, 1649 struct delayed_call *); 1650 get = inode->i_op->get_link; 1651 if (nd->flags & LOOKUP_RCU) { 1652 res = get(NULL, inode, &last->done); 1653 if (res == ERR_PTR(-ECHILD)) { 1654 if (unlikely(unlazy_walk(nd))) 1655 return ERR_PTR(-ECHILD); 1656 res = get(link->dentry, inode, &last->done); 1657 } 1658 } else { 1659 res = get(link->dentry, inode, &last->done); 1660 } 1661 if (!res) 1662 goto all_done; 1663 if (IS_ERR(res)) 1664 return res; 1665 } 1666 if (*res == '/') { 1667 error = nd_jump_root(nd); 1668 if (unlikely(error)) 1669 return ERR_PTR(error); 1670 while (unlikely(*++res == '/')) 1671 ; 1672 } 1673 if (*res) 1674 return res; 1675 all_done: // pure jump 1676 put_link(nd); 1677 return NULL; 1678 } 1679 1680 /* 1681 * Do we need to follow links? We _really_ want to be able 1682 * to do this check without having to look at inode->i_op, 1683 * so we keep a cache of "no, this doesn't need follow_link" 1684 * for the common case. 1685 */ 1686 static const char *step_into(struct nameidata *nd, int flags, 1687 struct dentry *dentry, struct inode *inode, unsigned seq) 1688 { 1689 struct path path; 1690 int err = handle_mounts(nd, dentry, &path, &inode, &seq); 1691 1692 if (err < 0) 1693 return ERR_PTR(err); 1694 if (likely(!d_is_symlink(path.dentry)) || 1695 ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) || 1696 (flags & WALK_NOFOLLOW)) { 1697 /* not a symlink or should not follow */ 1698 if (!(nd->flags & LOOKUP_RCU)) { 1699 dput(nd->path.dentry); 1700 if (nd->path.mnt != path.mnt) 1701 mntput(nd->path.mnt); 1702 } 1703 nd->path = path; 1704 nd->inode = inode; 1705 nd->seq = seq; 1706 return NULL; 1707 } 1708 if (nd->flags & LOOKUP_RCU) { 1709 /* make sure that d_is_symlink above matches inode */ 1710 if (read_seqcount_retry(&path.dentry->d_seq, seq)) 1711 return ERR_PTR(-ECHILD); 1712 } else { 1713 if (path.mnt == nd->path.mnt) 1714 mntget(path.mnt); 1715 } 1716 return pick_link(nd, &path, inode, seq, flags); 1717 } 1718 1719 static struct dentry *follow_dotdot_rcu(struct nameidata *nd, 1720 struct inode **inodep, 1721 unsigned *seqp) 1722 { 1723 struct dentry *parent, *old; 1724 1725 if (path_equal(&nd->path, &nd->root)) 1726 goto in_root; 1727 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) { 1728 struct path path; 1729 unsigned seq; 1730 if (!choose_mountpoint_rcu(real_mount(nd->path.mnt), 1731 &nd->root, &path, &seq)) 1732 goto in_root; 1733 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1734 return ERR_PTR(-ECHILD); 1735 nd->path = path; 1736 nd->inode = path.dentry->d_inode; 1737 nd->seq = seq; 1738 if (unlikely(read_seqretry(&mount_lock, nd->m_seq))) 1739 return ERR_PTR(-ECHILD); 1740 /* we know that mountpoint was pinned */ 1741 } 1742 old = nd->path.dentry; 1743 parent = old->d_parent; 1744 *inodep = parent->d_inode; 1745 *seqp = read_seqcount_begin(&parent->d_seq); 1746 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq))) 1747 return ERR_PTR(-ECHILD); 1748 if (unlikely(!path_connected(nd->path.mnt, parent))) 1749 return ERR_PTR(-ECHILD); 1750 return parent; 1751 in_root: 1752 if (unlikely(read_seqretry(&mount_lock, nd->m_seq))) 1753 return ERR_PTR(-ECHILD); 1754 if (unlikely(nd->flags & LOOKUP_BENEATH)) 1755 return ERR_PTR(-ECHILD); 1756 return NULL; 1757 } 1758 1759 static struct dentry *follow_dotdot(struct nameidata *nd, 1760 struct inode **inodep, 1761 unsigned *seqp) 1762 { 1763 struct dentry *parent; 1764 1765 if (path_equal(&nd->path, &nd->root)) 1766 goto in_root; 1767 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) { 1768 struct path path; 1769 1770 if (!choose_mountpoint(real_mount(nd->path.mnt), 1771 &nd->root, &path)) 1772 goto in_root; 1773 path_put(&nd->path); 1774 nd->path = path; 1775 nd->inode = path.dentry->d_inode; 1776 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1777 return ERR_PTR(-EXDEV); 1778 } 1779 /* rare case of legitimate dget_parent()... */ 1780 parent = dget_parent(nd->path.dentry); 1781 if (unlikely(!path_connected(nd->path.mnt, parent))) { 1782 dput(parent); 1783 return ERR_PTR(-ENOENT); 1784 } 1785 *seqp = 0; 1786 *inodep = parent->d_inode; 1787 return parent; 1788 1789 in_root: 1790 if (unlikely(nd->flags & LOOKUP_BENEATH)) 1791 return ERR_PTR(-EXDEV); 1792 dget(nd->path.dentry); 1793 return NULL; 1794 } 1795 1796 static const char *handle_dots(struct nameidata *nd, int type) 1797 { 1798 if (type == LAST_DOTDOT) { 1799 const char *error = NULL; 1800 struct dentry *parent; 1801 struct inode *inode; 1802 unsigned seq; 1803 1804 if (!nd->root.mnt) { 1805 error = ERR_PTR(set_root(nd)); 1806 if (error) 1807 return error; 1808 } 1809 if (nd->flags & LOOKUP_RCU) 1810 parent = follow_dotdot_rcu(nd, &inode, &seq); 1811 else 1812 parent = follow_dotdot(nd, &inode, &seq); 1813 if (IS_ERR(parent)) 1814 return ERR_CAST(parent); 1815 if (unlikely(!parent)) 1816 error = step_into(nd, WALK_NOFOLLOW, 1817 nd->path.dentry, nd->inode, nd->seq); 1818 else 1819 error = step_into(nd, WALK_NOFOLLOW, 1820 parent, inode, seq); 1821 if (unlikely(error)) 1822 return error; 1823 1824 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) { 1825 /* 1826 * If there was a racing rename or mount along our 1827 * path, then we can't be sure that ".." hasn't jumped 1828 * above nd->root (and so userspace should retry or use 1829 * some fallback). 1830 */ 1831 smp_rmb(); 1832 if (unlikely(__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq))) 1833 return ERR_PTR(-EAGAIN); 1834 if (unlikely(__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq))) 1835 return ERR_PTR(-EAGAIN); 1836 } 1837 } 1838 return NULL; 1839 } 1840 1841 static const char *walk_component(struct nameidata *nd, int flags) 1842 { 1843 struct dentry *dentry; 1844 struct inode *inode; 1845 unsigned seq; 1846 /* 1847 * "." and ".." are special - ".." especially so because it has 1848 * to be able to know about the current root directory and 1849 * parent relationships. 1850 */ 1851 if (unlikely(nd->last_type != LAST_NORM)) { 1852 if (!(flags & WALK_MORE) && nd->depth) 1853 put_link(nd); 1854 return handle_dots(nd, nd->last_type); 1855 } 1856 dentry = lookup_fast(nd, &inode, &seq); 1857 if (IS_ERR(dentry)) 1858 return ERR_CAST(dentry); 1859 if (unlikely(!dentry)) { 1860 dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags); 1861 if (IS_ERR(dentry)) 1862 return ERR_CAST(dentry); 1863 } 1864 if (!(flags & WALK_MORE) && nd->depth) 1865 put_link(nd); 1866 return step_into(nd, flags, dentry, inode, seq); 1867 } 1868 1869 /* 1870 * We can do the critical dentry name comparison and hashing 1871 * operations one word at a time, but we are limited to: 1872 * 1873 * - Architectures with fast unaligned word accesses. We could 1874 * do a "get_unaligned()" if this helps and is sufficiently 1875 * fast. 1876 * 1877 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we 1878 * do not trap on the (extremely unlikely) case of a page 1879 * crossing operation. 1880 * 1881 * - Furthermore, we need an efficient 64-bit compile for the 1882 * 64-bit case in order to generate the "number of bytes in 1883 * the final mask". Again, that could be replaced with a 1884 * efficient population count instruction or similar. 1885 */ 1886 #ifdef CONFIG_DCACHE_WORD_ACCESS 1887 1888 #include <asm/word-at-a-time.h> 1889 1890 #ifdef HASH_MIX 1891 1892 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */ 1893 1894 #elif defined(CONFIG_64BIT) 1895 /* 1896 * Register pressure in the mixing function is an issue, particularly 1897 * on 32-bit x86, but almost any function requires one state value and 1898 * one temporary. Instead, use a function designed for two state values 1899 * and no temporaries. 1900 * 1901 * This function cannot create a collision in only two iterations, so 1902 * we have two iterations to achieve avalanche. In those two iterations, 1903 * we have six layers of mixing, which is enough to spread one bit's 1904 * influence out to 2^6 = 64 state bits. 1905 * 1906 * Rotate constants are scored by considering either 64 one-bit input 1907 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the 1908 * probability of that delta causing a change to each of the 128 output 1909 * bits, using a sample of random initial states. 1910 * 1911 * The Shannon entropy of the computed probabilities is then summed 1912 * to produce a score. Ideally, any input change has a 50% chance of 1913 * toggling any given output bit. 1914 * 1915 * Mixing scores (in bits) for (12,45): 1916 * Input delta: 1-bit 2-bit 1917 * 1 round: 713.3 42542.6 1918 * 2 rounds: 2753.7 140389.8 1919 * 3 rounds: 5954.1 233458.2 1920 * 4 rounds: 7862.6 256672.2 1921 * Perfect: 8192 258048 1922 * (64*128) (64*63/2 * 128) 1923 */ 1924 #define HASH_MIX(x, y, a) \ 1925 ( x ^= (a), \ 1926 y ^= x, x = rol64(x,12),\ 1927 x += y, y = rol64(y,45),\ 1928 y *= 9 ) 1929 1930 /* 1931 * Fold two longs into one 32-bit hash value. This must be fast, but 1932 * latency isn't quite as critical, as there is a fair bit of additional 1933 * work done before the hash value is used. 1934 */ 1935 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 1936 { 1937 y ^= x * GOLDEN_RATIO_64; 1938 y *= GOLDEN_RATIO_64; 1939 return y >> 32; 1940 } 1941 1942 #else /* 32-bit case */ 1943 1944 /* 1945 * Mixing scores (in bits) for (7,20): 1946 * Input delta: 1-bit 2-bit 1947 * 1 round: 330.3 9201.6 1948 * 2 rounds: 1246.4 25475.4 1949 * 3 rounds: 1907.1 31295.1 1950 * 4 rounds: 2042.3 31718.6 1951 * Perfect: 2048 31744 1952 * (32*64) (32*31/2 * 64) 1953 */ 1954 #define HASH_MIX(x, y, a) \ 1955 ( x ^= (a), \ 1956 y ^= x, x = rol32(x, 7),\ 1957 x += y, y = rol32(y,20),\ 1958 y *= 9 ) 1959 1960 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 1961 { 1962 /* Use arch-optimized multiply if one exists */ 1963 return __hash_32(y ^ __hash_32(x)); 1964 } 1965 1966 #endif 1967 1968 /* 1969 * Return the hash of a string of known length. This is carfully 1970 * designed to match hash_name(), which is the more critical function. 1971 * In particular, we must end by hashing a final word containing 0..7 1972 * payload bytes, to match the way that hash_name() iterates until it 1973 * finds the delimiter after the name. 1974 */ 1975 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 1976 { 1977 unsigned long a, x = 0, y = (unsigned long)salt; 1978 1979 for (;;) { 1980 if (!len) 1981 goto done; 1982 a = load_unaligned_zeropad(name); 1983 if (len < sizeof(unsigned long)) 1984 break; 1985 HASH_MIX(x, y, a); 1986 name += sizeof(unsigned long); 1987 len -= sizeof(unsigned long); 1988 } 1989 x ^= a & bytemask_from_count(len); 1990 done: 1991 return fold_hash(x, y); 1992 } 1993 EXPORT_SYMBOL(full_name_hash); 1994 1995 /* Return the "hash_len" (hash and length) of a null-terminated string */ 1996 u64 hashlen_string(const void *salt, const char *name) 1997 { 1998 unsigned long a = 0, x = 0, y = (unsigned long)salt; 1999 unsigned long adata, mask, len; 2000 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 2001 2002 len = 0; 2003 goto inside; 2004 2005 do { 2006 HASH_MIX(x, y, a); 2007 len += sizeof(unsigned long); 2008 inside: 2009 a = load_unaligned_zeropad(name+len); 2010 } while (!has_zero(a, &adata, &constants)); 2011 2012 adata = prep_zero_mask(a, adata, &constants); 2013 mask = create_zero_mask(adata); 2014 x ^= a & zero_bytemask(mask); 2015 2016 return hashlen_create(fold_hash(x, y), len + find_zero(mask)); 2017 } 2018 EXPORT_SYMBOL(hashlen_string); 2019 2020 /* 2021 * Calculate the length and hash of the path component, and 2022 * return the "hash_len" as the result. 2023 */ 2024 static inline u64 hash_name(const void *salt, const char *name) 2025 { 2026 unsigned long a = 0, b, x = 0, y = (unsigned long)salt; 2027 unsigned long adata, bdata, mask, len; 2028 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 2029 2030 len = 0; 2031 goto inside; 2032 2033 do { 2034 HASH_MIX(x, y, a); 2035 len += sizeof(unsigned long); 2036 inside: 2037 a = load_unaligned_zeropad(name+len); 2038 b = a ^ REPEAT_BYTE('/'); 2039 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants))); 2040 2041 adata = prep_zero_mask(a, adata, &constants); 2042 bdata = prep_zero_mask(b, bdata, &constants); 2043 mask = create_zero_mask(adata | bdata); 2044 x ^= a & zero_bytemask(mask); 2045 2046 return hashlen_create(fold_hash(x, y), len + find_zero(mask)); 2047 } 2048 2049 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */ 2050 2051 /* Return the hash of a string of known length */ 2052 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 2053 { 2054 unsigned long hash = init_name_hash(salt); 2055 while (len--) 2056 hash = partial_name_hash((unsigned char)*name++, hash); 2057 return end_name_hash(hash); 2058 } 2059 EXPORT_SYMBOL(full_name_hash); 2060 2061 /* Return the "hash_len" (hash and length) of a null-terminated string */ 2062 u64 hashlen_string(const void *salt, const char *name) 2063 { 2064 unsigned long hash = init_name_hash(salt); 2065 unsigned long len = 0, c; 2066 2067 c = (unsigned char)*name; 2068 while (c) { 2069 len++; 2070 hash = partial_name_hash(c, hash); 2071 c = (unsigned char)name[len]; 2072 } 2073 return hashlen_create(end_name_hash(hash), len); 2074 } 2075 EXPORT_SYMBOL(hashlen_string); 2076 2077 /* 2078 * We know there's a real path component here of at least 2079 * one character. 2080 */ 2081 static inline u64 hash_name(const void *salt, const char *name) 2082 { 2083 unsigned long hash = init_name_hash(salt); 2084 unsigned long len = 0, c; 2085 2086 c = (unsigned char)*name; 2087 do { 2088 len++; 2089 hash = partial_name_hash(c, hash); 2090 c = (unsigned char)name[len]; 2091 } while (c && c != '/'); 2092 return hashlen_create(end_name_hash(hash), len); 2093 } 2094 2095 #endif 2096 2097 /* 2098 * Name resolution. 2099 * This is the basic name resolution function, turning a pathname into 2100 * the final dentry. We expect 'base' to be positive and a directory. 2101 * 2102 * Returns 0 and nd will have valid dentry and mnt on success. 2103 * Returns error and drops reference to input namei data on failure. 2104 */ 2105 static int link_path_walk(const char *name, struct nameidata *nd) 2106 { 2107 int depth = 0; // depth <= nd->depth 2108 int err; 2109 2110 nd->last_type = LAST_ROOT; 2111 nd->flags |= LOOKUP_PARENT; 2112 if (IS_ERR(name)) 2113 return PTR_ERR(name); 2114 while (*name=='/') 2115 name++; 2116 if (!*name) 2117 return 0; 2118 2119 /* At this point we know we have a real path component. */ 2120 for(;;) { 2121 const char *link; 2122 u64 hash_len; 2123 int type; 2124 2125 err = may_lookup(nd); 2126 if (err) 2127 return err; 2128 2129 hash_len = hash_name(nd->path.dentry, name); 2130 2131 type = LAST_NORM; 2132 if (name[0] == '.') switch (hashlen_len(hash_len)) { 2133 case 2: 2134 if (name[1] == '.') { 2135 type = LAST_DOTDOT; 2136 nd->flags |= LOOKUP_JUMPED; 2137 } 2138 break; 2139 case 1: 2140 type = LAST_DOT; 2141 } 2142 if (likely(type == LAST_NORM)) { 2143 struct dentry *parent = nd->path.dentry; 2144 nd->flags &= ~LOOKUP_JUMPED; 2145 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { 2146 struct qstr this = { { .hash_len = hash_len }, .name = name }; 2147 err = parent->d_op->d_hash(parent, &this); 2148 if (err < 0) 2149 return err; 2150 hash_len = this.hash_len; 2151 name = this.name; 2152 } 2153 } 2154 2155 nd->last.hash_len = hash_len; 2156 nd->last.name = name; 2157 nd->last_type = type; 2158 2159 name += hashlen_len(hash_len); 2160 if (!*name) 2161 goto OK; 2162 /* 2163 * If it wasn't NUL, we know it was '/'. Skip that 2164 * slash, and continue until no more slashes. 2165 */ 2166 do { 2167 name++; 2168 } while (unlikely(*name == '/')); 2169 if (unlikely(!*name)) { 2170 OK: 2171 /* pathname or trailing symlink, done */ 2172 if (!depth) { 2173 nd->dir_uid = nd->inode->i_uid; 2174 nd->dir_mode = nd->inode->i_mode; 2175 nd->flags &= ~LOOKUP_PARENT; 2176 return 0; 2177 } 2178 /* last component of nested symlink */ 2179 name = nd->stack[--depth].name; 2180 link = walk_component(nd, 0); 2181 } else { 2182 /* not the last component */ 2183 link = walk_component(nd, WALK_MORE); 2184 } 2185 if (unlikely(link)) { 2186 if (IS_ERR(link)) 2187 return PTR_ERR(link); 2188 /* a symlink to follow */ 2189 nd->stack[depth++].name = name; 2190 name = link; 2191 continue; 2192 } 2193 if (unlikely(!d_can_lookup(nd->path.dentry))) { 2194 if (nd->flags & LOOKUP_RCU) { 2195 if (unlazy_walk(nd)) 2196 return -ECHILD; 2197 } 2198 return -ENOTDIR; 2199 } 2200 } 2201 } 2202 2203 /* must be paired with terminate_walk() */ 2204 static const char *path_init(struct nameidata *nd, unsigned flags) 2205 { 2206 int error; 2207 const char *s = nd->name->name; 2208 2209 if (!*s) 2210 flags &= ~LOOKUP_RCU; 2211 if (flags & LOOKUP_RCU) 2212 rcu_read_lock(); 2213 2214 nd->flags = flags | LOOKUP_JUMPED; 2215 nd->depth = 0; 2216 2217 nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount); 2218 nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount); 2219 smp_rmb(); 2220 2221 if (flags & LOOKUP_ROOT) { 2222 struct dentry *root = nd->root.dentry; 2223 struct inode *inode = root->d_inode; 2224 if (*s && unlikely(!d_can_lookup(root))) 2225 return ERR_PTR(-ENOTDIR); 2226 nd->path = nd->root; 2227 nd->inode = inode; 2228 if (flags & LOOKUP_RCU) { 2229 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 2230 nd->root_seq = nd->seq; 2231 } else { 2232 path_get(&nd->path); 2233 } 2234 return s; 2235 } 2236 2237 nd->root.mnt = NULL; 2238 nd->path.mnt = NULL; 2239 nd->path.dentry = NULL; 2240 2241 /* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */ 2242 if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) { 2243 error = nd_jump_root(nd); 2244 if (unlikely(error)) 2245 return ERR_PTR(error); 2246 return s; 2247 } 2248 2249 /* Relative pathname -- get the starting-point it is relative to. */ 2250 if (nd->dfd == AT_FDCWD) { 2251 if (flags & LOOKUP_RCU) { 2252 struct fs_struct *fs = current->fs; 2253 unsigned seq; 2254 2255 do { 2256 seq = read_seqcount_begin(&fs->seq); 2257 nd->path = fs->pwd; 2258 nd->inode = nd->path.dentry->d_inode; 2259 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 2260 } while (read_seqcount_retry(&fs->seq, seq)); 2261 } else { 2262 get_fs_pwd(current->fs, &nd->path); 2263 nd->inode = nd->path.dentry->d_inode; 2264 } 2265 } else { 2266 /* Caller must check execute permissions on the starting path component */ 2267 struct fd f = fdget_raw(nd->dfd); 2268 struct dentry *dentry; 2269 2270 if (!f.file) 2271 return ERR_PTR(-EBADF); 2272 2273 dentry = f.file->f_path.dentry; 2274 2275 if (*s && unlikely(!d_can_lookup(dentry))) { 2276 fdput(f); 2277 return ERR_PTR(-ENOTDIR); 2278 } 2279 2280 nd->path = f.file->f_path; 2281 if (flags & LOOKUP_RCU) { 2282 nd->inode = nd->path.dentry->d_inode; 2283 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 2284 } else { 2285 path_get(&nd->path); 2286 nd->inode = nd->path.dentry->d_inode; 2287 } 2288 fdput(f); 2289 } 2290 2291 /* For scoped-lookups we need to set the root to the dirfd as well. */ 2292 if (flags & LOOKUP_IS_SCOPED) { 2293 nd->root = nd->path; 2294 if (flags & LOOKUP_RCU) { 2295 nd->root_seq = nd->seq; 2296 } else { 2297 path_get(&nd->root); 2298 nd->flags |= LOOKUP_ROOT_GRABBED; 2299 } 2300 } 2301 return s; 2302 } 2303 2304 static inline const char *lookup_last(struct nameidata *nd) 2305 { 2306 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len]) 2307 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 2308 2309 return walk_component(nd, WALK_TRAILING); 2310 } 2311 2312 static int handle_lookup_down(struct nameidata *nd) 2313 { 2314 if (!(nd->flags & LOOKUP_RCU)) 2315 dget(nd->path.dentry); 2316 return PTR_ERR(step_into(nd, WALK_NOFOLLOW, 2317 nd->path.dentry, nd->inode, nd->seq)); 2318 } 2319 2320 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2321 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path) 2322 { 2323 const char *s = path_init(nd, flags); 2324 int err; 2325 2326 if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) { 2327 err = handle_lookup_down(nd); 2328 if (unlikely(err < 0)) 2329 s = ERR_PTR(err); 2330 } 2331 2332 while (!(err = link_path_walk(s, nd)) && 2333 (s = lookup_last(nd)) != NULL) 2334 ; 2335 if (!err) 2336 err = complete_walk(nd); 2337 2338 if (!err && nd->flags & LOOKUP_DIRECTORY) 2339 if (!d_can_lookup(nd->path.dentry)) 2340 err = -ENOTDIR; 2341 if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) { 2342 err = handle_lookup_down(nd); 2343 nd->flags &= ~LOOKUP_JUMPED; // no d_weak_revalidate(), please... 2344 } 2345 if (!err) { 2346 *path = nd->path; 2347 nd->path.mnt = NULL; 2348 nd->path.dentry = NULL; 2349 } 2350 terminate_walk(nd); 2351 return err; 2352 } 2353 2354 int filename_lookup(int dfd, struct filename *name, unsigned flags, 2355 struct path *path, struct path *root) 2356 { 2357 int retval; 2358 struct nameidata nd; 2359 if (IS_ERR(name)) 2360 return PTR_ERR(name); 2361 if (unlikely(root)) { 2362 nd.root = *root; 2363 flags |= LOOKUP_ROOT; 2364 } 2365 set_nameidata(&nd, dfd, name); 2366 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path); 2367 if (unlikely(retval == -ECHILD)) 2368 retval = path_lookupat(&nd, flags, path); 2369 if (unlikely(retval == -ESTALE)) 2370 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path); 2371 2372 if (likely(!retval)) 2373 audit_inode(name, path->dentry, 2374 flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0); 2375 restore_nameidata(); 2376 putname(name); 2377 return retval; 2378 } 2379 2380 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2381 static int path_parentat(struct nameidata *nd, unsigned flags, 2382 struct path *parent) 2383 { 2384 const char *s = path_init(nd, flags); 2385 int err = link_path_walk(s, nd); 2386 if (!err) 2387 err = complete_walk(nd); 2388 if (!err) { 2389 *parent = nd->path; 2390 nd->path.mnt = NULL; 2391 nd->path.dentry = NULL; 2392 } 2393 terminate_walk(nd); 2394 return err; 2395 } 2396 2397 static struct filename *filename_parentat(int dfd, struct filename *name, 2398 unsigned int flags, struct path *parent, 2399 struct qstr *last, int *type) 2400 { 2401 int retval; 2402 struct nameidata nd; 2403 2404 if (IS_ERR(name)) 2405 return name; 2406 set_nameidata(&nd, dfd, name); 2407 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent); 2408 if (unlikely(retval == -ECHILD)) 2409 retval = path_parentat(&nd, flags, parent); 2410 if (unlikely(retval == -ESTALE)) 2411 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent); 2412 if (likely(!retval)) { 2413 *last = nd.last; 2414 *type = nd.last_type; 2415 audit_inode(name, parent->dentry, AUDIT_INODE_PARENT); 2416 } else { 2417 putname(name); 2418 name = ERR_PTR(retval); 2419 } 2420 restore_nameidata(); 2421 return name; 2422 } 2423 2424 /* does lookup, returns the object with parent locked */ 2425 struct dentry *kern_path_locked(const char *name, struct path *path) 2426 { 2427 struct filename *filename; 2428 struct dentry *d; 2429 struct qstr last; 2430 int type; 2431 2432 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path, 2433 &last, &type); 2434 if (IS_ERR(filename)) 2435 return ERR_CAST(filename); 2436 if (unlikely(type != LAST_NORM)) { 2437 path_put(path); 2438 putname(filename); 2439 return ERR_PTR(-EINVAL); 2440 } 2441 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 2442 d = __lookup_hash(&last, path->dentry, 0); 2443 if (IS_ERR(d)) { 2444 inode_unlock(path->dentry->d_inode); 2445 path_put(path); 2446 } 2447 putname(filename); 2448 return d; 2449 } 2450 2451 int kern_path(const char *name, unsigned int flags, struct path *path) 2452 { 2453 return filename_lookup(AT_FDCWD, getname_kernel(name), 2454 flags, path, NULL); 2455 } 2456 EXPORT_SYMBOL(kern_path); 2457 2458 /** 2459 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 2460 * @dentry: pointer to dentry of the base directory 2461 * @mnt: pointer to vfs mount of the base directory 2462 * @name: pointer to file name 2463 * @flags: lookup flags 2464 * @path: pointer to struct path to fill 2465 */ 2466 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 2467 const char *name, unsigned int flags, 2468 struct path *path) 2469 { 2470 struct path root = {.mnt = mnt, .dentry = dentry}; 2471 /* the first argument of filename_lookup() is ignored with root */ 2472 return filename_lookup(AT_FDCWD, getname_kernel(name), 2473 flags , path, &root); 2474 } 2475 EXPORT_SYMBOL(vfs_path_lookup); 2476 2477 static int lookup_one_len_common(const char *name, struct dentry *base, 2478 int len, struct qstr *this) 2479 { 2480 this->name = name; 2481 this->len = len; 2482 this->hash = full_name_hash(base, name, len); 2483 if (!len) 2484 return -EACCES; 2485 2486 if (unlikely(name[0] == '.')) { 2487 if (len < 2 || (len == 2 && name[1] == '.')) 2488 return -EACCES; 2489 } 2490 2491 while (len--) { 2492 unsigned int c = *(const unsigned char *)name++; 2493 if (c == '/' || c == '\0') 2494 return -EACCES; 2495 } 2496 /* 2497 * See if the low-level filesystem might want 2498 * to use its own hash.. 2499 */ 2500 if (base->d_flags & DCACHE_OP_HASH) { 2501 int err = base->d_op->d_hash(base, this); 2502 if (err < 0) 2503 return err; 2504 } 2505 2506 return inode_permission(base->d_inode, MAY_EXEC); 2507 } 2508 2509 /** 2510 * try_lookup_one_len - filesystem helper to lookup single pathname component 2511 * @name: pathname component to lookup 2512 * @base: base directory to lookup from 2513 * @len: maximum length @len should be interpreted to 2514 * 2515 * Look up a dentry by name in the dcache, returning NULL if it does not 2516 * currently exist. The function does not try to create a dentry. 2517 * 2518 * Note that this routine is purely a helper for filesystem usage and should 2519 * not be called by generic code. 2520 * 2521 * The caller must hold base->i_mutex. 2522 */ 2523 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len) 2524 { 2525 struct qstr this; 2526 int err; 2527 2528 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2529 2530 err = lookup_one_len_common(name, base, len, &this); 2531 if (err) 2532 return ERR_PTR(err); 2533 2534 return lookup_dcache(&this, base, 0); 2535 } 2536 EXPORT_SYMBOL(try_lookup_one_len); 2537 2538 /** 2539 * lookup_one_len - filesystem helper to lookup single pathname component 2540 * @name: pathname component to lookup 2541 * @base: base directory to lookup from 2542 * @len: maximum length @len should be interpreted to 2543 * 2544 * Note that this routine is purely a helper for filesystem usage and should 2545 * not be called by generic code. 2546 * 2547 * The caller must hold base->i_mutex. 2548 */ 2549 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 2550 { 2551 struct dentry *dentry; 2552 struct qstr this; 2553 int err; 2554 2555 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2556 2557 err = lookup_one_len_common(name, base, len, &this); 2558 if (err) 2559 return ERR_PTR(err); 2560 2561 dentry = lookup_dcache(&this, base, 0); 2562 return dentry ? dentry : __lookup_slow(&this, base, 0); 2563 } 2564 EXPORT_SYMBOL(lookup_one_len); 2565 2566 /** 2567 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component 2568 * @name: pathname component to lookup 2569 * @base: base directory to lookup from 2570 * @len: maximum length @len should be interpreted to 2571 * 2572 * Note that this routine is purely a helper for filesystem usage and should 2573 * not be called by generic code. 2574 * 2575 * Unlike lookup_one_len, it should be called without the parent 2576 * i_mutex held, and will take the i_mutex itself if necessary. 2577 */ 2578 struct dentry *lookup_one_len_unlocked(const char *name, 2579 struct dentry *base, int len) 2580 { 2581 struct qstr this; 2582 int err; 2583 struct dentry *ret; 2584 2585 err = lookup_one_len_common(name, base, len, &this); 2586 if (err) 2587 return ERR_PTR(err); 2588 2589 ret = lookup_dcache(&this, base, 0); 2590 if (!ret) 2591 ret = lookup_slow(&this, base, 0); 2592 return ret; 2593 } 2594 EXPORT_SYMBOL(lookup_one_len_unlocked); 2595 2596 /* 2597 * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT) 2598 * on negatives. Returns known positive or ERR_PTR(); that's what 2599 * most of the users want. Note that pinned negative with unlocked parent 2600 * _can_ become positive at any time, so callers of lookup_one_len_unlocked() 2601 * need to be very careful; pinned positives have ->d_inode stable, so 2602 * this one avoids such problems. 2603 */ 2604 struct dentry *lookup_positive_unlocked(const char *name, 2605 struct dentry *base, int len) 2606 { 2607 struct dentry *ret = lookup_one_len_unlocked(name, base, len); 2608 if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) { 2609 dput(ret); 2610 ret = ERR_PTR(-ENOENT); 2611 } 2612 return ret; 2613 } 2614 EXPORT_SYMBOL(lookup_positive_unlocked); 2615 2616 #ifdef CONFIG_UNIX98_PTYS 2617 int path_pts(struct path *path) 2618 { 2619 /* Find something mounted on "pts" in the same directory as 2620 * the input path. 2621 */ 2622 struct dentry *parent = dget_parent(path->dentry); 2623 struct dentry *child; 2624 struct qstr this = QSTR_INIT("pts", 3); 2625 2626 if (unlikely(!path_connected(path->mnt, parent))) { 2627 dput(parent); 2628 return -ENOENT; 2629 } 2630 dput(path->dentry); 2631 path->dentry = parent; 2632 child = d_hash_and_lookup(parent, &this); 2633 if (!child) 2634 return -ENOENT; 2635 2636 path->dentry = child; 2637 dput(parent); 2638 follow_down(path); 2639 return 0; 2640 } 2641 #endif 2642 2643 int user_path_at_empty(int dfd, const char __user *name, unsigned flags, 2644 struct path *path, int *empty) 2645 { 2646 return filename_lookup(dfd, getname_flags(name, flags, empty), 2647 flags, path, NULL); 2648 } 2649 EXPORT_SYMBOL(user_path_at_empty); 2650 2651 int __check_sticky(struct inode *dir, struct inode *inode) 2652 { 2653 kuid_t fsuid = current_fsuid(); 2654 2655 if (uid_eq(inode->i_uid, fsuid)) 2656 return 0; 2657 if (uid_eq(dir->i_uid, fsuid)) 2658 return 0; 2659 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER); 2660 } 2661 EXPORT_SYMBOL(__check_sticky); 2662 2663 /* 2664 * Check whether we can remove a link victim from directory dir, check 2665 * whether the type of victim is right. 2666 * 1. We can't do it if dir is read-only (done in permission()) 2667 * 2. We should have write and exec permissions on dir 2668 * 3. We can't remove anything from append-only dir 2669 * 4. We can't do anything with immutable dir (done in permission()) 2670 * 5. If the sticky bit on dir is set we should either 2671 * a. be owner of dir, or 2672 * b. be owner of victim, or 2673 * c. have CAP_FOWNER capability 2674 * 6. If the victim is append-only or immutable we can't do antyhing with 2675 * links pointing to it. 2676 * 7. If the victim has an unknown uid or gid we can't change the inode. 2677 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR. 2678 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR. 2679 * 10. We can't remove a root or mountpoint. 2680 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by 2681 * nfs_async_unlink(). 2682 */ 2683 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir) 2684 { 2685 struct inode *inode = d_backing_inode(victim); 2686 int error; 2687 2688 if (d_is_negative(victim)) 2689 return -ENOENT; 2690 BUG_ON(!inode); 2691 2692 BUG_ON(victim->d_parent->d_inode != dir); 2693 2694 /* Inode writeback is not safe when the uid or gid are invalid. */ 2695 if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid)) 2696 return -EOVERFLOW; 2697 2698 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 2699 2700 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 2701 if (error) 2702 return error; 2703 if (IS_APPEND(dir)) 2704 return -EPERM; 2705 2706 if (check_sticky(dir, inode) || IS_APPEND(inode) || 2707 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode)) 2708 return -EPERM; 2709 if (isdir) { 2710 if (!d_is_dir(victim)) 2711 return -ENOTDIR; 2712 if (IS_ROOT(victim)) 2713 return -EBUSY; 2714 } else if (d_is_dir(victim)) 2715 return -EISDIR; 2716 if (IS_DEADDIR(dir)) 2717 return -ENOENT; 2718 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 2719 return -EBUSY; 2720 return 0; 2721 } 2722 2723 /* Check whether we can create an object with dentry child in directory 2724 * dir. 2725 * 1. We can't do it if child already exists (open has special treatment for 2726 * this case, but since we are inlined it's OK) 2727 * 2. We can't do it if dir is read-only (done in permission()) 2728 * 3. We can't do it if the fs can't represent the fsuid or fsgid. 2729 * 4. We should have write and exec permissions on dir 2730 * 5. We can't do it if dir is immutable (done in permission()) 2731 */ 2732 static inline int may_create(struct inode *dir, struct dentry *child) 2733 { 2734 struct user_namespace *s_user_ns; 2735 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE); 2736 if (child->d_inode) 2737 return -EEXIST; 2738 if (IS_DEADDIR(dir)) 2739 return -ENOENT; 2740 s_user_ns = dir->i_sb->s_user_ns; 2741 if (!kuid_has_mapping(s_user_ns, current_fsuid()) || 2742 !kgid_has_mapping(s_user_ns, current_fsgid())) 2743 return -EOVERFLOW; 2744 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 2745 } 2746 2747 /* 2748 * p1 and p2 should be directories on the same fs. 2749 */ 2750 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 2751 { 2752 struct dentry *p; 2753 2754 if (p1 == p2) { 2755 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2756 return NULL; 2757 } 2758 2759 mutex_lock(&p1->d_sb->s_vfs_rename_mutex); 2760 2761 p = d_ancestor(p2, p1); 2762 if (p) { 2763 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT); 2764 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD); 2765 return p; 2766 } 2767 2768 p = d_ancestor(p1, p2); 2769 if (p) { 2770 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2771 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD); 2772 return p; 2773 } 2774 2775 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2776 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2); 2777 return NULL; 2778 } 2779 EXPORT_SYMBOL(lock_rename); 2780 2781 void unlock_rename(struct dentry *p1, struct dentry *p2) 2782 { 2783 inode_unlock(p1->d_inode); 2784 if (p1 != p2) { 2785 inode_unlock(p2->d_inode); 2786 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex); 2787 } 2788 } 2789 EXPORT_SYMBOL(unlock_rename); 2790 2791 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2792 bool want_excl) 2793 { 2794 int error = may_create(dir, dentry); 2795 if (error) 2796 return error; 2797 2798 if (!dir->i_op->create) 2799 return -EACCES; /* shouldn't it be ENOSYS? */ 2800 mode &= S_IALLUGO; 2801 mode |= S_IFREG; 2802 error = security_inode_create(dir, dentry, mode); 2803 if (error) 2804 return error; 2805 error = dir->i_op->create(dir, dentry, mode, want_excl); 2806 if (!error) 2807 fsnotify_create(dir, dentry); 2808 return error; 2809 } 2810 EXPORT_SYMBOL(vfs_create); 2811 2812 int vfs_mkobj(struct dentry *dentry, umode_t mode, 2813 int (*f)(struct dentry *, umode_t, void *), 2814 void *arg) 2815 { 2816 struct inode *dir = dentry->d_parent->d_inode; 2817 int error = may_create(dir, dentry); 2818 if (error) 2819 return error; 2820 2821 mode &= S_IALLUGO; 2822 mode |= S_IFREG; 2823 error = security_inode_create(dir, dentry, mode); 2824 if (error) 2825 return error; 2826 error = f(dentry, mode, arg); 2827 if (!error) 2828 fsnotify_create(dir, dentry); 2829 return error; 2830 } 2831 EXPORT_SYMBOL(vfs_mkobj); 2832 2833 bool may_open_dev(const struct path *path) 2834 { 2835 return !(path->mnt->mnt_flags & MNT_NODEV) && 2836 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV); 2837 } 2838 2839 static int may_open(const struct path *path, int acc_mode, int flag) 2840 { 2841 struct dentry *dentry = path->dentry; 2842 struct inode *inode = dentry->d_inode; 2843 int error; 2844 2845 if (!inode) 2846 return -ENOENT; 2847 2848 switch (inode->i_mode & S_IFMT) { 2849 case S_IFLNK: 2850 return -ELOOP; 2851 case S_IFDIR: 2852 if (acc_mode & MAY_WRITE) 2853 return -EISDIR; 2854 if (acc_mode & MAY_EXEC) 2855 return -EACCES; 2856 break; 2857 case S_IFBLK: 2858 case S_IFCHR: 2859 if (!may_open_dev(path)) 2860 return -EACCES; 2861 fallthrough; 2862 case S_IFIFO: 2863 case S_IFSOCK: 2864 if (acc_mode & MAY_EXEC) 2865 return -EACCES; 2866 flag &= ~O_TRUNC; 2867 break; 2868 case S_IFREG: 2869 if ((acc_mode & MAY_EXEC) && path_noexec(path)) 2870 return -EACCES; 2871 break; 2872 } 2873 2874 error = inode_permission(inode, MAY_OPEN | acc_mode); 2875 if (error) 2876 return error; 2877 2878 /* 2879 * An append-only file must be opened in append mode for writing. 2880 */ 2881 if (IS_APPEND(inode)) { 2882 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 2883 return -EPERM; 2884 if (flag & O_TRUNC) 2885 return -EPERM; 2886 } 2887 2888 /* O_NOATIME can only be set by the owner or superuser */ 2889 if (flag & O_NOATIME && !inode_owner_or_capable(inode)) 2890 return -EPERM; 2891 2892 return 0; 2893 } 2894 2895 static int handle_truncate(struct file *filp) 2896 { 2897 const struct path *path = &filp->f_path; 2898 struct inode *inode = path->dentry->d_inode; 2899 int error = get_write_access(inode); 2900 if (error) 2901 return error; 2902 /* 2903 * Refuse to truncate files with mandatory locks held on them. 2904 */ 2905 error = locks_verify_locked(filp); 2906 if (!error) 2907 error = security_path_truncate(path); 2908 if (!error) { 2909 error = do_truncate(path->dentry, 0, 2910 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 2911 filp); 2912 } 2913 put_write_access(inode); 2914 return error; 2915 } 2916 2917 static inline int open_to_namei_flags(int flag) 2918 { 2919 if ((flag & O_ACCMODE) == 3) 2920 flag--; 2921 return flag; 2922 } 2923 2924 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode) 2925 { 2926 struct user_namespace *s_user_ns; 2927 int error = security_path_mknod(dir, dentry, mode, 0); 2928 if (error) 2929 return error; 2930 2931 s_user_ns = dir->dentry->d_sb->s_user_ns; 2932 if (!kuid_has_mapping(s_user_ns, current_fsuid()) || 2933 !kgid_has_mapping(s_user_ns, current_fsgid())) 2934 return -EOVERFLOW; 2935 2936 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC); 2937 if (error) 2938 return error; 2939 2940 return security_inode_create(dir->dentry->d_inode, dentry, mode); 2941 } 2942 2943 /* 2944 * Attempt to atomically look up, create and open a file from a negative 2945 * dentry. 2946 * 2947 * Returns 0 if successful. The file will have been created and attached to 2948 * @file by the filesystem calling finish_open(). 2949 * 2950 * If the file was looked up only or didn't need creating, FMODE_OPENED won't 2951 * be set. The caller will need to perform the open themselves. @path will 2952 * have been updated to point to the new dentry. This may be negative. 2953 * 2954 * Returns an error code otherwise. 2955 */ 2956 static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry, 2957 struct file *file, 2958 int open_flag, umode_t mode) 2959 { 2960 struct dentry *const DENTRY_NOT_SET = (void *) -1UL; 2961 struct inode *dir = nd->path.dentry->d_inode; 2962 int error; 2963 2964 if (nd->flags & LOOKUP_DIRECTORY) 2965 open_flag |= O_DIRECTORY; 2966 2967 file->f_path.dentry = DENTRY_NOT_SET; 2968 file->f_path.mnt = nd->path.mnt; 2969 error = dir->i_op->atomic_open(dir, dentry, file, 2970 open_to_namei_flags(open_flag), mode); 2971 d_lookup_done(dentry); 2972 if (!error) { 2973 if (file->f_mode & FMODE_OPENED) { 2974 if (unlikely(dentry != file->f_path.dentry)) { 2975 dput(dentry); 2976 dentry = dget(file->f_path.dentry); 2977 } 2978 } else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) { 2979 error = -EIO; 2980 } else { 2981 if (file->f_path.dentry) { 2982 dput(dentry); 2983 dentry = file->f_path.dentry; 2984 } 2985 if (unlikely(d_is_negative(dentry))) 2986 error = -ENOENT; 2987 } 2988 } 2989 if (error) { 2990 dput(dentry); 2991 dentry = ERR_PTR(error); 2992 } 2993 return dentry; 2994 } 2995 2996 /* 2997 * Look up and maybe create and open the last component. 2998 * 2999 * Must be called with parent locked (exclusive in O_CREAT case). 3000 * 3001 * Returns 0 on success, that is, if 3002 * the file was successfully atomically created (if necessary) and opened, or 3003 * the file was not completely opened at this time, though lookups and 3004 * creations were performed. 3005 * These case are distinguished by presence of FMODE_OPENED on file->f_mode. 3006 * In the latter case dentry returned in @path might be negative if O_CREAT 3007 * hadn't been specified. 3008 * 3009 * An error code is returned on failure. 3010 */ 3011 static struct dentry *lookup_open(struct nameidata *nd, struct file *file, 3012 const struct open_flags *op, 3013 bool got_write) 3014 { 3015 struct dentry *dir = nd->path.dentry; 3016 struct inode *dir_inode = dir->d_inode; 3017 int open_flag = op->open_flag; 3018 struct dentry *dentry; 3019 int error, create_error = 0; 3020 umode_t mode = op->mode; 3021 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 3022 3023 if (unlikely(IS_DEADDIR(dir_inode))) 3024 return ERR_PTR(-ENOENT); 3025 3026 file->f_mode &= ~FMODE_CREATED; 3027 dentry = d_lookup(dir, &nd->last); 3028 for (;;) { 3029 if (!dentry) { 3030 dentry = d_alloc_parallel(dir, &nd->last, &wq); 3031 if (IS_ERR(dentry)) 3032 return dentry; 3033 } 3034 if (d_in_lookup(dentry)) 3035 break; 3036 3037 error = d_revalidate(dentry, nd->flags); 3038 if (likely(error > 0)) 3039 break; 3040 if (error) 3041 goto out_dput; 3042 d_invalidate(dentry); 3043 dput(dentry); 3044 dentry = NULL; 3045 } 3046 if (dentry->d_inode) { 3047 /* Cached positive dentry: will open in f_op->open */ 3048 return dentry; 3049 } 3050 3051 /* 3052 * Checking write permission is tricky, bacuse we don't know if we are 3053 * going to actually need it: O_CREAT opens should work as long as the 3054 * file exists. But checking existence breaks atomicity. The trick is 3055 * to check access and if not granted clear O_CREAT from the flags. 3056 * 3057 * Another problem is returing the "right" error value (e.g. for an 3058 * O_EXCL open we want to return EEXIST not EROFS). 3059 */ 3060 if (unlikely(!got_write)) 3061 open_flag &= ~O_TRUNC; 3062 if (open_flag & O_CREAT) { 3063 if (open_flag & O_EXCL) 3064 open_flag &= ~O_TRUNC; 3065 if (!IS_POSIXACL(dir->d_inode)) 3066 mode &= ~current_umask(); 3067 if (likely(got_write)) 3068 create_error = may_o_create(&nd->path, dentry, mode); 3069 else 3070 create_error = -EROFS; 3071 } 3072 if (create_error) 3073 open_flag &= ~O_CREAT; 3074 if (dir_inode->i_op->atomic_open) { 3075 dentry = atomic_open(nd, dentry, file, open_flag, mode); 3076 if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT)) 3077 dentry = ERR_PTR(create_error); 3078 return dentry; 3079 } 3080 3081 if (d_in_lookup(dentry)) { 3082 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry, 3083 nd->flags); 3084 d_lookup_done(dentry); 3085 if (unlikely(res)) { 3086 if (IS_ERR(res)) { 3087 error = PTR_ERR(res); 3088 goto out_dput; 3089 } 3090 dput(dentry); 3091 dentry = res; 3092 } 3093 } 3094 3095 /* Negative dentry, just create the file */ 3096 if (!dentry->d_inode && (open_flag & O_CREAT)) { 3097 file->f_mode |= FMODE_CREATED; 3098 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE); 3099 if (!dir_inode->i_op->create) { 3100 error = -EACCES; 3101 goto out_dput; 3102 } 3103 error = dir_inode->i_op->create(dir_inode, dentry, mode, 3104 open_flag & O_EXCL); 3105 if (error) 3106 goto out_dput; 3107 } 3108 if (unlikely(create_error) && !dentry->d_inode) { 3109 error = create_error; 3110 goto out_dput; 3111 } 3112 return dentry; 3113 3114 out_dput: 3115 dput(dentry); 3116 return ERR_PTR(error); 3117 } 3118 3119 static const char *open_last_lookups(struct nameidata *nd, 3120 struct file *file, const struct open_flags *op) 3121 { 3122 struct dentry *dir = nd->path.dentry; 3123 int open_flag = op->open_flag; 3124 bool got_write = false; 3125 unsigned seq; 3126 struct inode *inode; 3127 struct dentry *dentry; 3128 const char *res; 3129 int error; 3130 3131 nd->flags |= op->intent; 3132 3133 if (nd->last_type != LAST_NORM) { 3134 if (nd->depth) 3135 put_link(nd); 3136 return handle_dots(nd, nd->last_type); 3137 } 3138 3139 if (!(open_flag & O_CREAT)) { 3140 if (nd->last.name[nd->last.len]) 3141 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 3142 /* we _can_ be in RCU mode here */ 3143 dentry = lookup_fast(nd, &inode, &seq); 3144 if (IS_ERR(dentry)) 3145 return ERR_CAST(dentry); 3146 if (likely(dentry)) 3147 goto finish_lookup; 3148 3149 BUG_ON(nd->flags & LOOKUP_RCU); 3150 } else { 3151 /* create side of things */ 3152 if (nd->flags & LOOKUP_RCU) { 3153 error = unlazy_walk(nd); 3154 if (unlikely(error)) 3155 return ERR_PTR(error); 3156 } 3157 audit_inode(nd->name, dir, AUDIT_INODE_PARENT); 3158 /* trailing slashes? */ 3159 if (unlikely(nd->last.name[nd->last.len])) 3160 return ERR_PTR(-EISDIR); 3161 } 3162 3163 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) { 3164 error = mnt_want_write(nd->path.mnt); 3165 if (!error) 3166 got_write = true; 3167 /* 3168 * do _not_ fail yet - we might not need that or fail with 3169 * a different error; let lookup_open() decide; we'll be 3170 * dropping this one anyway. 3171 */ 3172 } 3173 if (open_flag & O_CREAT) 3174 inode_lock(dir->d_inode); 3175 else 3176 inode_lock_shared(dir->d_inode); 3177 dentry = lookup_open(nd, file, op, got_write); 3178 if (!IS_ERR(dentry) && (file->f_mode & FMODE_CREATED)) 3179 fsnotify_create(dir->d_inode, dentry); 3180 if (open_flag & O_CREAT) 3181 inode_unlock(dir->d_inode); 3182 else 3183 inode_unlock_shared(dir->d_inode); 3184 3185 if (got_write) 3186 mnt_drop_write(nd->path.mnt); 3187 3188 if (IS_ERR(dentry)) 3189 return ERR_CAST(dentry); 3190 3191 if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) { 3192 dput(nd->path.dentry); 3193 nd->path.dentry = dentry; 3194 return NULL; 3195 } 3196 3197 finish_lookup: 3198 if (nd->depth) 3199 put_link(nd); 3200 res = step_into(nd, WALK_TRAILING, dentry, inode, seq); 3201 if (unlikely(res)) 3202 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL); 3203 return res; 3204 } 3205 3206 /* 3207 * Handle the last step of open() 3208 */ 3209 static int do_open(struct nameidata *nd, 3210 struct file *file, const struct open_flags *op) 3211 { 3212 int open_flag = op->open_flag; 3213 bool do_truncate; 3214 int acc_mode; 3215 int error; 3216 3217 if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) { 3218 error = complete_walk(nd); 3219 if (error) 3220 return error; 3221 } 3222 if (!(file->f_mode & FMODE_CREATED)) 3223 audit_inode(nd->name, nd->path.dentry, 0); 3224 if (open_flag & O_CREAT) { 3225 if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED)) 3226 return -EEXIST; 3227 if (d_is_dir(nd->path.dentry)) 3228 return -EISDIR; 3229 error = may_create_in_sticky(nd->dir_mode, nd->dir_uid, 3230 d_backing_inode(nd->path.dentry)); 3231 if (unlikely(error)) 3232 return error; 3233 } 3234 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry)) 3235 return -ENOTDIR; 3236 3237 do_truncate = false; 3238 acc_mode = op->acc_mode; 3239 if (file->f_mode & FMODE_CREATED) { 3240 /* Don't check for write permission, don't truncate */ 3241 open_flag &= ~O_TRUNC; 3242 acc_mode = 0; 3243 } else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) { 3244 error = mnt_want_write(nd->path.mnt); 3245 if (error) 3246 return error; 3247 do_truncate = true; 3248 } 3249 error = may_open(&nd->path, acc_mode, open_flag); 3250 if (!error && !(file->f_mode & FMODE_OPENED)) 3251 error = vfs_open(&nd->path, file); 3252 if (!error) 3253 error = ima_file_check(file, op->acc_mode); 3254 if (!error && do_truncate) 3255 error = handle_truncate(file); 3256 if (unlikely(error > 0)) { 3257 WARN_ON(1); 3258 error = -EINVAL; 3259 } 3260 if (do_truncate) 3261 mnt_drop_write(nd->path.mnt); 3262 return error; 3263 } 3264 3265 struct dentry *vfs_tmpfile(struct dentry *dentry, umode_t mode, int open_flag) 3266 { 3267 struct dentry *child = NULL; 3268 struct inode *dir = dentry->d_inode; 3269 struct inode *inode; 3270 int error; 3271 3272 /* we want directory to be writable */ 3273 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 3274 if (error) 3275 goto out_err; 3276 error = -EOPNOTSUPP; 3277 if (!dir->i_op->tmpfile) 3278 goto out_err; 3279 error = -ENOMEM; 3280 child = d_alloc(dentry, &slash_name); 3281 if (unlikely(!child)) 3282 goto out_err; 3283 error = dir->i_op->tmpfile(dir, child, mode); 3284 if (error) 3285 goto out_err; 3286 error = -ENOENT; 3287 inode = child->d_inode; 3288 if (unlikely(!inode)) 3289 goto out_err; 3290 if (!(open_flag & O_EXCL)) { 3291 spin_lock(&inode->i_lock); 3292 inode->i_state |= I_LINKABLE; 3293 spin_unlock(&inode->i_lock); 3294 } 3295 ima_post_create_tmpfile(inode); 3296 return child; 3297 3298 out_err: 3299 dput(child); 3300 return ERR_PTR(error); 3301 } 3302 EXPORT_SYMBOL(vfs_tmpfile); 3303 3304 static int do_tmpfile(struct nameidata *nd, unsigned flags, 3305 const struct open_flags *op, 3306 struct file *file) 3307 { 3308 struct dentry *child; 3309 struct path path; 3310 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path); 3311 if (unlikely(error)) 3312 return error; 3313 error = mnt_want_write(path.mnt); 3314 if (unlikely(error)) 3315 goto out; 3316 child = vfs_tmpfile(path.dentry, op->mode, op->open_flag); 3317 error = PTR_ERR(child); 3318 if (IS_ERR(child)) 3319 goto out2; 3320 dput(path.dentry); 3321 path.dentry = child; 3322 audit_inode(nd->name, child, 0); 3323 /* Don't check for other permissions, the inode was just created */ 3324 error = may_open(&path, 0, op->open_flag); 3325 if (error) 3326 goto out2; 3327 file->f_path.mnt = path.mnt; 3328 error = finish_open(file, child, NULL); 3329 out2: 3330 mnt_drop_write(path.mnt); 3331 out: 3332 path_put(&path); 3333 return error; 3334 } 3335 3336 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file) 3337 { 3338 struct path path; 3339 int error = path_lookupat(nd, flags, &path); 3340 if (!error) { 3341 audit_inode(nd->name, path.dentry, 0); 3342 error = vfs_open(&path, file); 3343 path_put(&path); 3344 } 3345 return error; 3346 } 3347 3348 static struct file *path_openat(struct nameidata *nd, 3349 const struct open_flags *op, unsigned flags) 3350 { 3351 struct file *file; 3352 int error; 3353 3354 file = alloc_empty_file(op->open_flag, current_cred()); 3355 if (IS_ERR(file)) 3356 return file; 3357 3358 if (unlikely(file->f_flags & __O_TMPFILE)) { 3359 error = do_tmpfile(nd, flags, op, file); 3360 } else if (unlikely(file->f_flags & O_PATH)) { 3361 error = do_o_path(nd, flags, file); 3362 } else { 3363 const char *s = path_init(nd, flags); 3364 while (!(error = link_path_walk(s, nd)) && 3365 (s = open_last_lookups(nd, file, op)) != NULL) 3366 ; 3367 if (!error) 3368 error = do_open(nd, file, op); 3369 terminate_walk(nd); 3370 } 3371 if (likely(!error)) { 3372 if (likely(file->f_mode & FMODE_OPENED)) 3373 return file; 3374 WARN_ON(1); 3375 error = -EINVAL; 3376 } 3377 fput(file); 3378 if (error == -EOPENSTALE) { 3379 if (flags & LOOKUP_RCU) 3380 error = -ECHILD; 3381 else 3382 error = -ESTALE; 3383 } 3384 return ERR_PTR(error); 3385 } 3386 3387 struct file *do_filp_open(int dfd, struct filename *pathname, 3388 const struct open_flags *op) 3389 { 3390 struct nameidata nd; 3391 int flags = op->lookup_flags; 3392 struct file *filp; 3393 3394 set_nameidata(&nd, dfd, pathname); 3395 filp = path_openat(&nd, op, flags | LOOKUP_RCU); 3396 if (unlikely(filp == ERR_PTR(-ECHILD))) 3397 filp = path_openat(&nd, op, flags); 3398 if (unlikely(filp == ERR_PTR(-ESTALE))) 3399 filp = path_openat(&nd, op, flags | LOOKUP_REVAL); 3400 restore_nameidata(); 3401 return filp; 3402 } 3403 3404 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt, 3405 const char *name, const struct open_flags *op) 3406 { 3407 struct nameidata nd; 3408 struct file *file; 3409 struct filename *filename; 3410 int flags = op->lookup_flags | LOOKUP_ROOT; 3411 3412 nd.root.mnt = mnt; 3413 nd.root.dentry = dentry; 3414 3415 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN) 3416 return ERR_PTR(-ELOOP); 3417 3418 filename = getname_kernel(name); 3419 if (IS_ERR(filename)) 3420 return ERR_CAST(filename); 3421 3422 set_nameidata(&nd, -1, filename); 3423 file = path_openat(&nd, op, flags | LOOKUP_RCU); 3424 if (unlikely(file == ERR_PTR(-ECHILD))) 3425 file = path_openat(&nd, op, flags); 3426 if (unlikely(file == ERR_PTR(-ESTALE))) 3427 file = path_openat(&nd, op, flags | LOOKUP_REVAL); 3428 restore_nameidata(); 3429 putname(filename); 3430 return file; 3431 } 3432 3433 static struct dentry *filename_create(int dfd, struct filename *name, 3434 struct path *path, unsigned int lookup_flags) 3435 { 3436 struct dentry *dentry = ERR_PTR(-EEXIST); 3437 struct qstr last; 3438 int type; 3439 int err2; 3440 int error; 3441 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY); 3442 3443 /* 3444 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any 3445 * other flags passed in are ignored! 3446 */ 3447 lookup_flags &= LOOKUP_REVAL; 3448 3449 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type); 3450 if (IS_ERR(name)) 3451 return ERR_CAST(name); 3452 3453 /* 3454 * Yucky last component or no last component at all? 3455 * (foo/., foo/.., /////) 3456 */ 3457 if (unlikely(type != LAST_NORM)) 3458 goto out; 3459 3460 /* don't fail immediately if it's r/o, at least try to report other errors */ 3461 err2 = mnt_want_write(path->mnt); 3462 /* 3463 * Do the final lookup. 3464 */ 3465 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL; 3466 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 3467 dentry = __lookup_hash(&last, path->dentry, lookup_flags); 3468 if (IS_ERR(dentry)) 3469 goto unlock; 3470 3471 error = -EEXIST; 3472 if (d_is_positive(dentry)) 3473 goto fail; 3474 3475 /* 3476 * Special case - lookup gave negative, but... we had foo/bar/ 3477 * From the vfs_mknod() POV we just have a negative dentry - 3478 * all is fine. Let's be bastards - you had / on the end, you've 3479 * been asking for (non-existent) directory. -ENOENT for you. 3480 */ 3481 if (unlikely(!is_dir && last.name[last.len])) { 3482 error = -ENOENT; 3483 goto fail; 3484 } 3485 if (unlikely(err2)) { 3486 error = err2; 3487 goto fail; 3488 } 3489 putname(name); 3490 return dentry; 3491 fail: 3492 dput(dentry); 3493 dentry = ERR_PTR(error); 3494 unlock: 3495 inode_unlock(path->dentry->d_inode); 3496 if (!err2) 3497 mnt_drop_write(path->mnt); 3498 out: 3499 path_put(path); 3500 putname(name); 3501 return dentry; 3502 } 3503 3504 struct dentry *kern_path_create(int dfd, const char *pathname, 3505 struct path *path, unsigned int lookup_flags) 3506 { 3507 return filename_create(dfd, getname_kernel(pathname), 3508 path, lookup_flags); 3509 } 3510 EXPORT_SYMBOL(kern_path_create); 3511 3512 void done_path_create(struct path *path, struct dentry *dentry) 3513 { 3514 dput(dentry); 3515 inode_unlock(path->dentry->d_inode); 3516 mnt_drop_write(path->mnt); 3517 path_put(path); 3518 } 3519 EXPORT_SYMBOL(done_path_create); 3520 3521 inline struct dentry *user_path_create(int dfd, const char __user *pathname, 3522 struct path *path, unsigned int lookup_flags) 3523 { 3524 return filename_create(dfd, getname(pathname), path, lookup_flags); 3525 } 3526 EXPORT_SYMBOL(user_path_create); 3527 3528 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 3529 { 3530 bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV; 3531 int error = may_create(dir, dentry); 3532 3533 if (error) 3534 return error; 3535 3536 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout && 3537 !capable(CAP_MKNOD)) 3538 return -EPERM; 3539 3540 if (!dir->i_op->mknod) 3541 return -EPERM; 3542 3543 error = devcgroup_inode_mknod(mode, dev); 3544 if (error) 3545 return error; 3546 3547 error = security_inode_mknod(dir, dentry, mode, dev); 3548 if (error) 3549 return error; 3550 3551 error = dir->i_op->mknod(dir, dentry, mode, dev); 3552 if (!error) 3553 fsnotify_create(dir, dentry); 3554 return error; 3555 } 3556 EXPORT_SYMBOL(vfs_mknod); 3557 3558 static int may_mknod(umode_t mode) 3559 { 3560 switch (mode & S_IFMT) { 3561 case S_IFREG: 3562 case S_IFCHR: 3563 case S_IFBLK: 3564 case S_IFIFO: 3565 case S_IFSOCK: 3566 case 0: /* zero mode translates to S_IFREG */ 3567 return 0; 3568 case S_IFDIR: 3569 return -EPERM; 3570 default: 3571 return -EINVAL; 3572 } 3573 } 3574 3575 static long do_mknodat(int dfd, const char __user *filename, umode_t mode, 3576 unsigned int dev) 3577 { 3578 struct dentry *dentry; 3579 struct path path; 3580 int error; 3581 unsigned int lookup_flags = 0; 3582 3583 error = may_mknod(mode); 3584 if (error) 3585 return error; 3586 retry: 3587 dentry = user_path_create(dfd, filename, &path, lookup_flags); 3588 if (IS_ERR(dentry)) 3589 return PTR_ERR(dentry); 3590 3591 if (!IS_POSIXACL(path.dentry->d_inode)) 3592 mode &= ~current_umask(); 3593 error = security_path_mknod(&path, dentry, mode, dev); 3594 if (error) 3595 goto out; 3596 switch (mode & S_IFMT) { 3597 case 0: case S_IFREG: 3598 error = vfs_create(path.dentry->d_inode,dentry,mode,true); 3599 if (!error) 3600 ima_post_path_mknod(dentry); 3601 break; 3602 case S_IFCHR: case S_IFBLK: 3603 error = vfs_mknod(path.dentry->d_inode,dentry,mode, 3604 new_decode_dev(dev)); 3605 break; 3606 case S_IFIFO: case S_IFSOCK: 3607 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0); 3608 break; 3609 } 3610 out: 3611 done_path_create(&path, dentry); 3612 if (retry_estale(error, lookup_flags)) { 3613 lookup_flags |= LOOKUP_REVAL; 3614 goto retry; 3615 } 3616 return error; 3617 } 3618 3619 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode, 3620 unsigned int, dev) 3621 { 3622 return do_mknodat(dfd, filename, mode, dev); 3623 } 3624 3625 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev) 3626 { 3627 return do_mknodat(AT_FDCWD, filename, mode, dev); 3628 } 3629 3630 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 3631 { 3632 int error = may_create(dir, dentry); 3633 unsigned max_links = dir->i_sb->s_max_links; 3634 3635 if (error) 3636 return error; 3637 3638 if (!dir->i_op->mkdir) 3639 return -EPERM; 3640 3641 mode &= (S_IRWXUGO|S_ISVTX); 3642 error = security_inode_mkdir(dir, dentry, mode); 3643 if (error) 3644 return error; 3645 3646 if (max_links && dir->i_nlink >= max_links) 3647 return -EMLINK; 3648 3649 error = dir->i_op->mkdir(dir, dentry, mode); 3650 if (!error) 3651 fsnotify_mkdir(dir, dentry); 3652 return error; 3653 } 3654 EXPORT_SYMBOL(vfs_mkdir); 3655 3656 static long do_mkdirat(int dfd, const char __user *pathname, umode_t mode) 3657 { 3658 struct dentry *dentry; 3659 struct path path; 3660 int error; 3661 unsigned int lookup_flags = LOOKUP_DIRECTORY; 3662 3663 retry: 3664 dentry = user_path_create(dfd, pathname, &path, lookup_flags); 3665 if (IS_ERR(dentry)) 3666 return PTR_ERR(dentry); 3667 3668 if (!IS_POSIXACL(path.dentry->d_inode)) 3669 mode &= ~current_umask(); 3670 error = security_path_mkdir(&path, dentry, mode); 3671 if (!error) 3672 error = vfs_mkdir(path.dentry->d_inode, dentry, mode); 3673 done_path_create(&path, dentry); 3674 if (retry_estale(error, lookup_flags)) { 3675 lookup_flags |= LOOKUP_REVAL; 3676 goto retry; 3677 } 3678 return error; 3679 } 3680 3681 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode) 3682 { 3683 return do_mkdirat(dfd, pathname, mode); 3684 } 3685 3686 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode) 3687 { 3688 return do_mkdirat(AT_FDCWD, pathname, mode); 3689 } 3690 3691 int vfs_rmdir(struct inode *dir, struct dentry *dentry) 3692 { 3693 int error = may_delete(dir, dentry, 1); 3694 3695 if (error) 3696 return error; 3697 3698 if (!dir->i_op->rmdir) 3699 return -EPERM; 3700 3701 dget(dentry); 3702 inode_lock(dentry->d_inode); 3703 3704 error = -EBUSY; 3705 if (is_local_mountpoint(dentry)) 3706 goto out; 3707 3708 error = security_inode_rmdir(dir, dentry); 3709 if (error) 3710 goto out; 3711 3712 error = dir->i_op->rmdir(dir, dentry); 3713 if (error) 3714 goto out; 3715 3716 shrink_dcache_parent(dentry); 3717 dentry->d_inode->i_flags |= S_DEAD; 3718 dont_mount(dentry); 3719 detach_mounts(dentry); 3720 fsnotify_rmdir(dir, dentry); 3721 3722 out: 3723 inode_unlock(dentry->d_inode); 3724 dput(dentry); 3725 if (!error) 3726 d_delete(dentry); 3727 return error; 3728 } 3729 EXPORT_SYMBOL(vfs_rmdir); 3730 3731 long do_rmdir(int dfd, struct filename *name) 3732 { 3733 int error = 0; 3734 struct dentry *dentry; 3735 struct path path; 3736 struct qstr last; 3737 int type; 3738 unsigned int lookup_flags = 0; 3739 retry: 3740 name = filename_parentat(dfd, name, lookup_flags, 3741 &path, &last, &type); 3742 if (IS_ERR(name)) 3743 return PTR_ERR(name); 3744 3745 switch (type) { 3746 case LAST_DOTDOT: 3747 error = -ENOTEMPTY; 3748 goto exit1; 3749 case LAST_DOT: 3750 error = -EINVAL; 3751 goto exit1; 3752 case LAST_ROOT: 3753 error = -EBUSY; 3754 goto exit1; 3755 } 3756 3757 error = mnt_want_write(path.mnt); 3758 if (error) 3759 goto exit1; 3760 3761 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 3762 dentry = __lookup_hash(&last, path.dentry, lookup_flags); 3763 error = PTR_ERR(dentry); 3764 if (IS_ERR(dentry)) 3765 goto exit2; 3766 if (!dentry->d_inode) { 3767 error = -ENOENT; 3768 goto exit3; 3769 } 3770 error = security_path_rmdir(&path, dentry); 3771 if (error) 3772 goto exit3; 3773 error = vfs_rmdir(path.dentry->d_inode, dentry); 3774 exit3: 3775 dput(dentry); 3776 exit2: 3777 inode_unlock(path.dentry->d_inode); 3778 mnt_drop_write(path.mnt); 3779 exit1: 3780 path_put(&path); 3781 if (retry_estale(error, lookup_flags)) { 3782 lookup_flags |= LOOKUP_REVAL; 3783 goto retry; 3784 } 3785 putname(name); 3786 return error; 3787 } 3788 3789 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 3790 { 3791 return do_rmdir(AT_FDCWD, getname(pathname)); 3792 } 3793 3794 /** 3795 * vfs_unlink - unlink a filesystem object 3796 * @dir: parent directory 3797 * @dentry: victim 3798 * @delegated_inode: returns victim inode, if the inode is delegated. 3799 * 3800 * The caller must hold dir->i_mutex. 3801 * 3802 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and 3803 * return a reference to the inode in delegated_inode. The caller 3804 * should then break the delegation on that inode and retry. Because 3805 * breaking a delegation may take a long time, the caller should drop 3806 * dir->i_mutex before doing so. 3807 * 3808 * Alternatively, a caller may pass NULL for delegated_inode. This may 3809 * be appropriate for callers that expect the underlying filesystem not 3810 * to be NFS exported. 3811 */ 3812 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode) 3813 { 3814 struct inode *target = dentry->d_inode; 3815 int error = may_delete(dir, dentry, 0); 3816 3817 if (error) 3818 return error; 3819 3820 if (!dir->i_op->unlink) 3821 return -EPERM; 3822 3823 inode_lock(target); 3824 if (is_local_mountpoint(dentry)) 3825 error = -EBUSY; 3826 else { 3827 error = security_inode_unlink(dir, dentry); 3828 if (!error) { 3829 error = try_break_deleg(target, delegated_inode); 3830 if (error) 3831 goto out; 3832 error = dir->i_op->unlink(dir, dentry); 3833 if (!error) { 3834 dont_mount(dentry); 3835 detach_mounts(dentry); 3836 fsnotify_unlink(dir, dentry); 3837 } 3838 } 3839 } 3840 out: 3841 inode_unlock(target); 3842 3843 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 3844 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) { 3845 fsnotify_link_count(target); 3846 d_delete(dentry); 3847 } 3848 3849 return error; 3850 } 3851 EXPORT_SYMBOL(vfs_unlink); 3852 3853 /* 3854 * Make sure that the actual truncation of the file will occur outside its 3855 * directory's i_mutex. Truncate can take a long time if there is a lot of 3856 * writeout happening, and we don't want to prevent access to the directory 3857 * while waiting on the I/O. 3858 */ 3859 long do_unlinkat(int dfd, struct filename *name) 3860 { 3861 int error; 3862 struct dentry *dentry; 3863 struct path path; 3864 struct qstr last; 3865 int type; 3866 struct inode *inode = NULL; 3867 struct inode *delegated_inode = NULL; 3868 unsigned int lookup_flags = 0; 3869 retry: 3870 name = filename_parentat(dfd, name, lookup_flags, &path, &last, &type); 3871 if (IS_ERR(name)) 3872 return PTR_ERR(name); 3873 3874 error = -EISDIR; 3875 if (type != LAST_NORM) 3876 goto exit1; 3877 3878 error = mnt_want_write(path.mnt); 3879 if (error) 3880 goto exit1; 3881 retry_deleg: 3882 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 3883 dentry = __lookup_hash(&last, path.dentry, lookup_flags); 3884 error = PTR_ERR(dentry); 3885 if (!IS_ERR(dentry)) { 3886 /* Why not before? Because we want correct error value */ 3887 if (last.name[last.len]) 3888 goto slashes; 3889 inode = dentry->d_inode; 3890 if (d_is_negative(dentry)) 3891 goto slashes; 3892 ihold(inode); 3893 error = security_path_unlink(&path, dentry); 3894 if (error) 3895 goto exit2; 3896 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode); 3897 exit2: 3898 dput(dentry); 3899 } 3900 inode_unlock(path.dentry->d_inode); 3901 if (inode) 3902 iput(inode); /* truncate the inode here */ 3903 inode = NULL; 3904 if (delegated_inode) { 3905 error = break_deleg_wait(&delegated_inode); 3906 if (!error) 3907 goto retry_deleg; 3908 } 3909 mnt_drop_write(path.mnt); 3910 exit1: 3911 path_put(&path); 3912 if (retry_estale(error, lookup_flags)) { 3913 lookup_flags |= LOOKUP_REVAL; 3914 inode = NULL; 3915 goto retry; 3916 } 3917 putname(name); 3918 return error; 3919 3920 slashes: 3921 if (d_is_negative(dentry)) 3922 error = -ENOENT; 3923 else if (d_is_dir(dentry)) 3924 error = -EISDIR; 3925 else 3926 error = -ENOTDIR; 3927 goto exit2; 3928 } 3929 3930 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 3931 { 3932 if ((flag & ~AT_REMOVEDIR) != 0) 3933 return -EINVAL; 3934 3935 if (flag & AT_REMOVEDIR) 3936 return do_rmdir(dfd, getname(pathname)); 3937 return do_unlinkat(dfd, getname(pathname)); 3938 } 3939 3940 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 3941 { 3942 return do_unlinkat(AT_FDCWD, getname(pathname)); 3943 } 3944 3945 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname) 3946 { 3947 int error = may_create(dir, dentry); 3948 3949 if (error) 3950 return error; 3951 3952 if (!dir->i_op->symlink) 3953 return -EPERM; 3954 3955 error = security_inode_symlink(dir, dentry, oldname); 3956 if (error) 3957 return error; 3958 3959 error = dir->i_op->symlink(dir, dentry, oldname); 3960 if (!error) 3961 fsnotify_create(dir, dentry); 3962 return error; 3963 } 3964 EXPORT_SYMBOL(vfs_symlink); 3965 3966 static long do_symlinkat(const char __user *oldname, int newdfd, 3967 const char __user *newname) 3968 { 3969 int error; 3970 struct filename *from; 3971 struct dentry *dentry; 3972 struct path path; 3973 unsigned int lookup_flags = 0; 3974 3975 from = getname(oldname); 3976 if (IS_ERR(from)) 3977 return PTR_ERR(from); 3978 retry: 3979 dentry = user_path_create(newdfd, newname, &path, lookup_flags); 3980 error = PTR_ERR(dentry); 3981 if (IS_ERR(dentry)) 3982 goto out_putname; 3983 3984 error = security_path_symlink(&path, dentry, from->name); 3985 if (!error) 3986 error = vfs_symlink(path.dentry->d_inode, dentry, from->name); 3987 done_path_create(&path, dentry); 3988 if (retry_estale(error, lookup_flags)) { 3989 lookup_flags |= LOOKUP_REVAL; 3990 goto retry; 3991 } 3992 out_putname: 3993 putname(from); 3994 return error; 3995 } 3996 3997 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 3998 int, newdfd, const char __user *, newname) 3999 { 4000 return do_symlinkat(oldname, newdfd, newname); 4001 } 4002 4003 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 4004 { 4005 return do_symlinkat(oldname, AT_FDCWD, newname); 4006 } 4007 4008 /** 4009 * vfs_link - create a new link 4010 * @old_dentry: object to be linked 4011 * @dir: new parent 4012 * @new_dentry: where to create the new link 4013 * @delegated_inode: returns inode needing a delegation break 4014 * 4015 * The caller must hold dir->i_mutex 4016 * 4017 * If vfs_link discovers a delegation on the to-be-linked file in need 4018 * of breaking, it will return -EWOULDBLOCK and return a reference to the 4019 * inode in delegated_inode. The caller should then break the delegation 4020 * and retry. Because breaking a delegation may take a long time, the 4021 * caller should drop the i_mutex before doing so. 4022 * 4023 * Alternatively, a caller may pass NULL for delegated_inode. This may 4024 * be appropriate for callers that expect the underlying filesystem not 4025 * to be NFS exported. 4026 */ 4027 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode) 4028 { 4029 struct inode *inode = old_dentry->d_inode; 4030 unsigned max_links = dir->i_sb->s_max_links; 4031 int error; 4032 4033 if (!inode) 4034 return -ENOENT; 4035 4036 error = may_create(dir, new_dentry); 4037 if (error) 4038 return error; 4039 4040 if (dir->i_sb != inode->i_sb) 4041 return -EXDEV; 4042 4043 /* 4044 * A link to an append-only or immutable file cannot be created. 4045 */ 4046 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 4047 return -EPERM; 4048 /* 4049 * Updating the link count will likely cause i_uid and i_gid to 4050 * be writen back improperly if their true value is unknown to 4051 * the vfs. 4052 */ 4053 if (HAS_UNMAPPED_ID(inode)) 4054 return -EPERM; 4055 if (!dir->i_op->link) 4056 return -EPERM; 4057 if (S_ISDIR(inode->i_mode)) 4058 return -EPERM; 4059 4060 error = security_inode_link(old_dentry, dir, new_dentry); 4061 if (error) 4062 return error; 4063 4064 inode_lock(inode); 4065 /* Make sure we don't allow creating hardlink to an unlinked file */ 4066 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE)) 4067 error = -ENOENT; 4068 else if (max_links && inode->i_nlink >= max_links) 4069 error = -EMLINK; 4070 else { 4071 error = try_break_deleg(inode, delegated_inode); 4072 if (!error) 4073 error = dir->i_op->link(old_dentry, dir, new_dentry); 4074 } 4075 4076 if (!error && (inode->i_state & I_LINKABLE)) { 4077 spin_lock(&inode->i_lock); 4078 inode->i_state &= ~I_LINKABLE; 4079 spin_unlock(&inode->i_lock); 4080 } 4081 inode_unlock(inode); 4082 if (!error) 4083 fsnotify_link(dir, inode, new_dentry); 4084 return error; 4085 } 4086 EXPORT_SYMBOL(vfs_link); 4087 4088 /* 4089 * Hardlinks are often used in delicate situations. We avoid 4090 * security-related surprises by not following symlinks on the 4091 * newname. --KAB 4092 * 4093 * We don't follow them on the oldname either to be compatible 4094 * with linux 2.0, and to avoid hard-linking to directories 4095 * and other special files. --ADM 4096 */ 4097 static int do_linkat(int olddfd, const char __user *oldname, int newdfd, 4098 const char __user *newname, int flags) 4099 { 4100 struct dentry *new_dentry; 4101 struct path old_path, new_path; 4102 struct inode *delegated_inode = NULL; 4103 int how = 0; 4104 int error; 4105 4106 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) 4107 return -EINVAL; 4108 /* 4109 * To use null names we require CAP_DAC_READ_SEARCH 4110 * This ensures that not everyone will be able to create 4111 * handlink using the passed filedescriptor. 4112 */ 4113 if (flags & AT_EMPTY_PATH) { 4114 if (!capable(CAP_DAC_READ_SEARCH)) 4115 return -ENOENT; 4116 how = LOOKUP_EMPTY; 4117 } 4118 4119 if (flags & AT_SYMLINK_FOLLOW) 4120 how |= LOOKUP_FOLLOW; 4121 retry: 4122 error = user_path_at(olddfd, oldname, how, &old_path); 4123 if (error) 4124 return error; 4125 4126 new_dentry = user_path_create(newdfd, newname, &new_path, 4127 (how & LOOKUP_REVAL)); 4128 error = PTR_ERR(new_dentry); 4129 if (IS_ERR(new_dentry)) 4130 goto out; 4131 4132 error = -EXDEV; 4133 if (old_path.mnt != new_path.mnt) 4134 goto out_dput; 4135 error = may_linkat(&old_path); 4136 if (unlikely(error)) 4137 goto out_dput; 4138 error = security_path_link(old_path.dentry, &new_path, new_dentry); 4139 if (error) 4140 goto out_dput; 4141 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode); 4142 out_dput: 4143 done_path_create(&new_path, new_dentry); 4144 if (delegated_inode) { 4145 error = break_deleg_wait(&delegated_inode); 4146 if (!error) { 4147 path_put(&old_path); 4148 goto retry; 4149 } 4150 } 4151 if (retry_estale(error, how)) { 4152 path_put(&old_path); 4153 how |= LOOKUP_REVAL; 4154 goto retry; 4155 } 4156 out: 4157 path_put(&old_path); 4158 4159 return error; 4160 } 4161 4162 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 4163 int, newdfd, const char __user *, newname, int, flags) 4164 { 4165 return do_linkat(olddfd, oldname, newdfd, newname, flags); 4166 } 4167 4168 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 4169 { 4170 return do_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 4171 } 4172 4173 /** 4174 * vfs_rename - rename a filesystem object 4175 * @old_dir: parent of source 4176 * @old_dentry: source 4177 * @new_dir: parent of destination 4178 * @new_dentry: destination 4179 * @delegated_inode: returns an inode needing a delegation break 4180 * @flags: rename flags 4181 * 4182 * The caller must hold multiple mutexes--see lock_rename()). 4183 * 4184 * If vfs_rename discovers a delegation in need of breaking at either 4185 * the source or destination, it will return -EWOULDBLOCK and return a 4186 * reference to the inode in delegated_inode. The caller should then 4187 * break the delegation and retry. Because breaking a delegation may 4188 * take a long time, the caller should drop all locks before doing 4189 * so. 4190 * 4191 * Alternatively, a caller may pass NULL for delegated_inode. This may 4192 * be appropriate for callers that expect the underlying filesystem not 4193 * to be NFS exported. 4194 * 4195 * The worst of all namespace operations - renaming directory. "Perverted" 4196 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 4197 * Problems: 4198 * 4199 * a) we can get into loop creation. 4200 * b) race potential - two innocent renames can create a loop together. 4201 * That's where 4.4 screws up. Current fix: serialization on 4202 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 4203 * story. 4204 * c) we have to lock _four_ objects - parents and victim (if it exists), 4205 * and source (if it is not a directory). 4206 * And that - after we got ->i_mutex on parents (until then we don't know 4207 * whether the target exists). Solution: try to be smart with locking 4208 * order for inodes. We rely on the fact that tree topology may change 4209 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 4210 * move will be locked. Thus we can rank directories by the tree 4211 * (ancestors first) and rank all non-directories after them. 4212 * That works since everybody except rename does "lock parent, lookup, 4213 * lock child" and rename is under ->s_vfs_rename_mutex. 4214 * HOWEVER, it relies on the assumption that any object with ->lookup() 4215 * has no more than 1 dentry. If "hybrid" objects will ever appear, 4216 * we'd better make sure that there's no link(2) for them. 4217 * d) conversion from fhandle to dentry may come in the wrong moment - when 4218 * we are removing the target. Solution: we will have to grab ->i_mutex 4219 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 4220 * ->i_mutex on parents, which works but leads to some truly excessive 4221 * locking]. 4222 */ 4223 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry, 4224 struct inode *new_dir, struct dentry *new_dentry, 4225 struct inode **delegated_inode, unsigned int flags) 4226 { 4227 int error; 4228 bool is_dir = d_is_dir(old_dentry); 4229 struct inode *source = old_dentry->d_inode; 4230 struct inode *target = new_dentry->d_inode; 4231 bool new_is_dir = false; 4232 unsigned max_links = new_dir->i_sb->s_max_links; 4233 struct name_snapshot old_name; 4234 4235 if (source == target) 4236 return 0; 4237 4238 error = may_delete(old_dir, old_dentry, is_dir); 4239 if (error) 4240 return error; 4241 4242 if (!target) { 4243 error = may_create(new_dir, new_dentry); 4244 } else { 4245 new_is_dir = d_is_dir(new_dentry); 4246 4247 if (!(flags & RENAME_EXCHANGE)) 4248 error = may_delete(new_dir, new_dentry, is_dir); 4249 else 4250 error = may_delete(new_dir, new_dentry, new_is_dir); 4251 } 4252 if (error) 4253 return error; 4254 4255 if (!old_dir->i_op->rename) 4256 return -EPERM; 4257 4258 /* 4259 * If we are going to change the parent - check write permissions, 4260 * we'll need to flip '..'. 4261 */ 4262 if (new_dir != old_dir) { 4263 if (is_dir) { 4264 error = inode_permission(source, MAY_WRITE); 4265 if (error) 4266 return error; 4267 } 4268 if ((flags & RENAME_EXCHANGE) && new_is_dir) { 4269 error = inode_permission(target, MAY_WRITE); 4270 if (error) 4271 return error; 4272 } 4273 } 4274 4275 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry, 4276 flags); 4277 if (error) 4278 return error; 4279 4280 take_dentry_name_snapshot(&old_name, old_dentry); 4281 dget(new_dentry); 4282 if (!is_dir || (flags & RENAME_EXCHANGE)) 4283 lock_two_nondirectories(source, target); 4284 else if (target) 4285 inode_lock(target); 4286 4287 error = -EBUSY; 4288 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry)) 4289 goto out; 4290 4291 if (max_links && new_dir != old_dir) { 4292 error = -EMLINK; 4293 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links) 4294 goto out; 4295 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir && 4296 old_dir->i_nlink >= max_links) 4297 goto out; 4298 } 4299 if (!is_dir) { 4300 error = try_break_deleg(source, delegated_inode); 4301 if (error) 4302 goto out; 4303 } 4304 if (target && !new_is_dir) { 4305 error = try_break_deleg(target, delegated_inode); 4306 if (error) 4307 goto out; 4308 } 4309 error = old_dir->i_op->rename(old_dir, old_dentry, 4310 new_dir, new_dentry, flags); 4311 if (error) 4312 goto out; 4313 4314 if (!(flags & RENAME_EXCHANGE) && target) { 4315 if (is_dir) { 4316 shrink_dcache_parent(new_dentry); 4317 target->i_flags |= S_DEAD; 4318 } 4319 dont_mount(new_dentry); 4320 detach_mounts(new_dentry); 4321 } 4322 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) { 4323 if (!(flags & RENAME_EXCHANGE)) 4324 d_move(old_dentry, new_dentry); 4325 else 4326 d_exchange(old_dentry, new_dentry); 4327 } 4328 out: 4329 if (!is_dir || (flags & RENAME_EXCHANGE)) 4330 unlock_two_nondirectories(source, target); 4331 else if (target) 4332 inode_unlock(target); 4333 dput(new_dentry); 4334 if (!error) { 4335 fsnotify_move(old_dir, new_dir, &old_name.name, is_dir, 4336 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry); 4337 if (flags & RENAME_EXCHANGE) { 4338 fsnotify_move(new_dir, old_dir, &old_dentry->d_name, 4339 new_is_dir, NULL, new_dentry); 4340 } 4341 } 4342 release_dentry_name_snapshot(&old_name); 4343 4344 return error; 4345 } 4346 EXPORT_SYMBOL(vfs_rename); 4347 4348 static int do_renameat2(int olddfd, const char __user *oldname, int newdfd, 4349 const char __user *newname, unsigned int flags) 4350 { 4351 struct dentry *old_dentry, *new_dentry; 4352 struct dentry *trap; 4353 struct path old_path, new_path; 4354 struct qstr old_last, new_last; 4355 int old_type, new_type; 4356 struct inode *delegated_inode = NULL; 4357 struct filename *from; 4358 struct filename *to; 4359 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET; 4360 bool should_retry = false; 4361 int error; 4362 4363 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 4364 return -EINVAL; 4365 4366 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) && 4367 (flags & RENAME_EXCHANGE)) 4368 return -EINVAL; 4369 4370 if (flags & RENAME_EXCHANGE) 4371 target_flags = 0; 4372 4373 retry: 4374 from = filename_parentat(olddfd, getname(oldname), lookup_flags, 4375 &old_path, &old_last, &old_type); 4376 if (IS_ERR(from)) { 4377 error = PTR_ERR(from); 4378 goto exit; 4379 } 4380 4381 to = filename_parentat(newdfd, getname(newname), lookup_flags, 4382 &new_path, &new_last, &new_type); 4383 if (IS_ERR(to)) { 4384 error = PTR_ERR(to); 4385 goto exit1; 4386 } 4387 4388 error = -EXDEV; 4389 if (old_path.mnt != new_path.mnt) 4390 goto exit2; 4391 4392 error = -EBUSY; 4393 if (old_type != LAST_NORM) 4394 goto exit2; 4395 4396 if (flags & RENAME_NOREPLACE) 4397 error = -EEXIST; 4398 if (new_type != LAST_NORM) 4399 goto exit2; 4400 4401 error = mnt_want_write(old_path.mnt); 4402 if (error) 4403 goto exit2; 4404 4405 retry_deleg: 4406 trap = lock_rename(new_path.dentry, old_path.dentry); 4407 4408 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags); 4409 error = PTR_ERR(old_dentry); 4410 if (IS_ERR(old_dentry)) 4411 goto exit3; 4412 /* source must exist */ 4413 error = -ENOENT; 4414 if (d_is_negative(old_dentry)) 4415 goto exit4; 4416 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags); 4417 error = PTR_ERR(new_dentry); 4418 if (IS_ERR(new_dentry)) 4419 goto exit4; 4420 error = -EEXIST; 4421 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry)) 4422 goto exit5; 4423 if (flags & RENAME_EXCHANGE) { 4424 error = -ENOENT; 4425 if (d_is_negative(new_dentry)) 4426 goto exit5; 4427 4428 if (!d_is_dir(new_dentry)) { 4429 error = -ENOTDIR; 4430 if (new_last.name[new_last.len]) 4431 goto exit5; 4432 } 4433 } 4434 /* unless the source is a directory trailing slashes give -ENOTDIR */ 4435 if (!d_is_dir(old_dentry)) { 4436 error = -ENOTDIR; 4437 if (old_last.name[old_last.len]) 4438 goto exit5; 4439 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len]) 4440 goto exit5; 4441 } 4442 /* source should not be ancestor of target */ 4443 error = -EINVAL; 4444 if (old_dentry == trap) 4445 goto exit5; 4446 /* target should not be an ancestor of source */ 4447 if (!(flags & RENAME_EXCHANGE)) 4448 error = -ENOTEMPTY; 4449 if (new_dentry == trap) 4450 goto exit5; 4451 4452 error = security_path_rename(&old_path, old_dentry, 4453 &new_path, new_dentry, flags); 4454 if (error) 4455 goto exit5; 4456 error = vfs_rename(old_path.dentry->d_inode, old_dentry, 4457 new_path.dentry->d_inode, new_dentry, 4458 &delegated_inode, flags); 4459 exit5: 4460 dput(new_dentry); 4461 exit4: 4462 dput(old_dentry); 4463 exit3: 4464 unlock_rename(new_path.dentry, old_path.dentry); 4465 if (delegated_inode) { 4466 error = break_deleg_wait(&delegated_inode); 4467 if (!error) 4468 goto retry_deleg; 4469 } 4470 mnt_drop_write(old_path.mnt); 4471 exit2: 4472 if (retry_estale(error, lookup_flags)) 4473 should_retry = true; 4474 path_put(&new_path); 4475 putname(to); 4476 exit1: 4477 path_put(&old_path); 4478 putname(from); 4479 if (should_retry) { 4480 should_retry = false; 4481 lookup_flags |= LOOKUP_REVAL; 4482 goto retry; 4483 } 4484 exit: 4485 return error; 4486 } 4487 4488 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname, 4489 int, newdfd, const char __user *, newname, unsigned int, flags) 4490 { 4491 return do_renameat2(olddfd, oldname, newdfd, newname, flags); 4492 } 4493 4494 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 4495 int, newdfd, const char __user *, newname) 4496 { 4497 return do_renameat2(olddfd, oldname, newdfd, newname, 0); 4498 } 4499 4500 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 4501 { 4502 return do_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 4503 } 4504 4505 int readlink_copy(char __user *buffer, int buflen, const char *link) 4506 { 4507 int len = PTR_ERR(link); 4508 if (IS_ERR(link)) 4509 goto out; 4510 4511 len = strlen(link); 4512 if (len > (unsigned) buflen) 4513 len = buflen; 4514 if (copy_to_user(buffer, link, len)) 4515 len = -EFAULT; 4516 out: 4517 return len; 4518 } 4519 4520 /** 4521 * vfs_readlink - copy symlink body into userspace buffer 4522 * @dentry: dentry on which to get symbolic link 4523 * @buffer: user memory pointer 4524 * @buflen: size of buffer 4525 * 4526 * Does not touch atime. That's up to the caller if necessary 4527 * 4528 * Does not call security hook. 4529 */ 4530 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4531 { 4532 struct inode *inode = d_inode(dentry); 4533 DEFINE_DELAYED_CALL(done); 4534 const char *link; 4535 int res; 4536 4537 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) { 4538 if (unlikely(inode->i_op->readlink)) 4539 return inode->i_op->readlink(dentry, buffer, buflen); 4540 4541 if (!d_is_symlink(dentry)) 4542 return -EINVAL; 4543 4544 spin_lock(&inode->i_lock); 4545 inode->i_opflags |= IOP_DEFAULT_READLINK; 4546 spin_unlock(&inode->i_lock); 4547 } 4548 4549 link = READ_ONCE(inode->i_link); 4550 if (!link) { 4551 link = inode->i_op->get_link(dentry, inode, &done); 4552 if (IS_ERR(link)) 4553 return PTR_ERR(link); 4554 } 4555 res = readlink_copy(buffer, buflen, link); 4556 do_delayed_call(&done); 4557 return res; 4558 } 4559 EXPORT_SYMBOL(vfs_readlink); 4560 4561 /** 4562 * vfs_get_link - get symlink body 4563 * @dentry: dentry on which to get symbolic link 4564 * @done: caller needs to free returned data with this 4565 * 4566 * Calls security hook and i_op->get_link() on the supplied inode. 4567 * 4568 * It does not touch atime. That's up to the caller if necessary. 4569 * 4570 * Does not work on "special" symlinks like /proc/$$/fd/N 4571 */ 4572 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done) 4573 { 4574 const char *res = ERR_PTR(-EINVAL); 4575 struct inode *inode = d_inode(dentry); 4576 4577 if (d_is_symlink(dentry)) { 4578 res = ERR_PTR(security_inode_readlink(dentry)); 4579 if (!res) 4580 res = inode->i_op->get_link(dentry, inode, done); 4581 } 4582 return res; 4583 } 4584 EXPORT_SYMBOL(vfs_get_link); 4585 4586 /* get the link contents into pagecache */ 4587 const char *page_get_link(struct dentry *dentry, struct inode *inode, 4588 struct delayed_call *callback) 4589 { 4590 char *kaddr; 4591 struct page *page; 4592 struct address_space *mapping = inode->i_mapping; 4593 4594 if (!dentry) { 4595 page = find_get_page(mapping, 0); 4596 if (!page) 4597 return ERR_PTR(-ECHILD); 4598 if (!PageUptodate(page)) { 4599 put_page(page); 4600 return ERR_PTR(-ECHILD); 4601 } 4602 } else { 4603 page = read_mapping_page(mapping, 0, NULL); 4604 if (IS_ERR(page)) 4605 return (char*)page; 4606 } 4607 set_delayed_call(callback, page_put_link, page); 4608 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM); 4609 kaddr = page_address(page); 4610 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1); 4611 return kaddr; 4612 } 4613 4614 EXPORT_SYMBOL(page_get_link); 4615 4616 void page_put_link(void *arg) 4617 { 4618 put_page(arg); 4619 } 4620 EXPORT_SYMBOL(page_put_link); 4621 4622 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4623 { 4624 DEFINE_DELAYED_CALL(done); 4625 int res = readlink_copy(buffer, buflen, 4626 page_get_link(dentry, d_inode(dentry), 4627 &done)); 4628 do_delayed_call(&done); 4629 return res; 4630 } 4631 EXPORT_SYMBOL(page_readlink); 4632 4633 /* 4634 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS 4635 */ 4636 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs) 4637 { 4638 struct address_space *mapping = inode->i_mapping; 4639 struct page *page; 4640 void *fsdata; 4641 int err; 4642 unsigned int flags = 0; 4643 if (nofs) 4644 flags |= AOP_FLAG_NOFS; 4645 4646 retry: 4647 err = pagecache_write_begin(NULL, mapping, 0, len-1, 4648 flags, &page, &fsdata); 4649 if (err) 4650 goto fail; 4651 4652 memcpy(page_address(page), symname, len-1); 4653 4654 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1, 4655 page, fsdata); 4656 if (err < 0) 4657 goto fail; 4658 if (err < len-1) 4659 goto retry; 4660 4661 mark_inode_dirty(inode); 4662 return 0; 4663 fail: 4664 return err; 4665 } 4666 EXPORT_SYMBOL(__page_symlink); 4667 4668 int page_symlink(struct inode *inode, const char *symname, int len) 4669 { 4670 return __page_symlink(inode, symname, len, 4671 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS)); 4672 } 4673 EXPORT_SYMBOL(page_symlink); 4674 4675 const struct inode_operations page_symlink_inode_operations = { 4676 .get_link = page_get_link, 4677 }; 4678 EXPORT_SYMBOL(page_symlink_inode_operations); 4679