xref: /openbmc/linux/fs/namei.c (revision a17627ef)
1 /*
2  *  linux/fs/namei.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * Some corrections by tytso.
9  */
10 
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12  * lookup logic.
13  */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15  */
16 
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/quotaops.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/syscalls.h>
28 #include <linux/mount.h>
29 #include <linux/audit.h>
30 #include <linux/capability.h>
31 #include <linux/file.h>
32 #include <linux/fcntl.h>
33 #include <linux/namei.h>
34 #include <asm/namei.h>
35 #include <asm/uaccess.h>
36 
37 #define ACC_MODE(x) ("\000\004\002\006"[(x)&O_ACCMODE])
38 
39 /* [Feb-1997 T. Schoebel-Theuer]
40  * Fundamental changes in the pathname lookup mechanisms (namei)
41  * were necessary because of omirr.  The reason is that omirr needs
42  * to know the _real_ pathname, not the user-supplied one, in case
43  * of symlinks (and also when transname replacements occur).
44  *
45  * The new code replaces the old recursive symlink resolution with
46  * an iterative one (in case of non-nested symlink chains).  It does
47  * this with calls to <fs>_follow_link().
48  * As a side effect, dir_namei(), _namei() and follow_link() are now
49  * replaced with a single function lookup_dentry() that can handle all
50  * the special cases of the former code.
51  *
52  * With the new dcache, the pathname is stored at each inode, at least as
53  * long as the refcount of the inode is positive.  As a side effect, the
54  * size of the dcache depends on the inode cache and thus is dynamic.
55  *
56  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
57  * resolution to correspond with current state of the code.
58  *
59  * Note that the symlink resolution is not *completely* iterative.
60  * There is still a significant amount of tail- and mid- recursion in
61  * the algorithm.  Also, note that <fs>_readlink() is not used in
62  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
63  * may return different results than <fs>_follow_link().  Many virtual
64  * filesystems (including /proc) exhibit this behavior.
65  */
66 
67 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
68  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
69  * and the name already exists in form of a symlink, try to create the new
70  * name indicated by the symlink. The old code always complained that the
71  * name already exists, due to not following the symlink even if its target
72  * is nonexistent.  The new semantics affects also mknod() and link() when
73  * the name is a symlink pointing to a non-existant name.
74  *
75  * I don't know which semantics is the right one, since I have no access
76  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
77  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
78  * "old" one. Personally, I think the new semantics is much more logical.
79  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
80  * file does succeed in both HP-UX and SunOs, but not in Solaris
81  * and in the old Linux semantics.
82  */
83 
84 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
85  * semantics.  See the comments in "open_namei" and "do_link" below.
86  *
87  * [10-Sep-98 Alan Modra] Another symlink change.
88  */
89 
90 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
91  *	inside the path - always follow.
92  *	in the last component in creation/removal/renaming - never follow.
93  *	if LOOKUP_FOLLOW passed - follow.
94  *	if the pathname has trailing slashes - follow.
95  *	otherwise - don't follow.
96  * (applied in that order).
97  *
98  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
99  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
100  * During the 2.4 we need to fix the userland stuff depending on it -
101  * hopefully we will be able to get rid of that wart in 2.5. So far only
102  * XEmacs seems to be relying on it...
103  */
104 /*
105  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
106  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
107  * any extra contention...
108  */
109 
110 /* In order to reduce some races, while at the same time doing additional
111  * checking and hopefully speeding things up, we copy filenames to the
112  * kernel data space before using them..
113  *
114  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
115  * PATH_MAX includes the nul terminator --RR.
116  */
117 static int do_getname(const char __user *filename, char *page)
118 {
119 	int retval;
120 	unsigned long len = PATH_MAX;
121 
122 	if (!segment_eq(get_fs(), KERNEL_DS)) {
123 		if ((unsigned long) filename >= TASK_SIZE)
124 			return -EFAULT;
125 		if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
126 			len = TASK_SIZE - (unsigned long) filename;
127 	}
128 
129 	retval = strncpy_from_user(page, filename, len);
130 	if (retval > 0) {
131 		if (retval < len)
132 			return 0;
133 		return -ENAMETOOLONG;
134 	} else if (!retval)
135 		retval = -ENOENT;
136 	return retval;
137 }
138 
139 char * getname(const char __user * filename)
140 {
141 	char *tmp, *result;
142 
143 	result = ERR_PTR(-ENOMEM);
144 	tmp = __getname();
145 	if (tmp)  {
146 		int retval = do_getname(filename, tmp);
147 
148 		result = tmp;
149 		if (retval < 0) {
150 			__putname(tmp);
151 			result = ERR_PTR(retval);
152 		}
153 	}
154 	audit_getname(result);
155 	return result;
156 }
157 
158 #ifdef CONFIG_AUDITSYSCALL
159 void putname(const char *name)
160 {
161 	if (unlikely(!audit_dummy_context()))
162 		audit_putname(name);
163 	else
164 		__putname(name);
165 }
166 EXPORT_SYMBOL(putname);
167 #endif
168 
169 
170 /**
171  * generic_permission  -  check for access rights on a Posix-like filesystem
172  * @inode:	inode to check access rights for
173  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
174  * @check_acl:	optional callback to check for Posix ACLs
175  *
176  * Used to check for read/write/execute permissions on a file.
177  * We use "fsuid" for this, letting us set arbitrary permissions
178  * for filesystem access without changing the "normal" uids which
179  * are used for other things..
180  */
181 int generic_permission(struct inode *inode, int mask,
182 		int (*check_acl)(struct inode *inode, int mask))
183 {
184 	umode_t			mode = inode->i_mode;
185 
186 	if (current->fsuid == inode->i_uid)
187 		mode >>= 6;
188 	else {
189 		if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
190 			int error = check_acl(inode, mask);
191 			if (error == -EACCES)
192 				goto check_capabilities;
193 			else if (error != -EAGAIN)
194 				return error;
195 		}
196 
197 		if (in_group_p(inode->i_gid))
198 			mode >>= 3;
199 	}
200 
201 	/*
202 	 * If the DACs are ok we don't need any capability check.
203 	 */
204 	if (((mode & mask & (MAY_READ|MAY_WRITE|MAY_EXEC)) == mask))
205 		return 0;
206 
207  check_capabilities:
208 	/*
209 	 * Read/write DACs are always overridable.
210 	 * Executable DACs are overridable if at least one exec bit is set.
211 	 */
212 	if (!(mask & MAY_EXEC) ||
213 	    (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))
214 		if (capable(CAP_DAC_OVERRIDE))
215 			return 0;
216 
217 	/*
218 	 * Searching includes executable on directories, else just read.
219 	 */
220 	if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE)))
221 		if (capable(CAP_DAC_READ_SEARCH))
222 			return 0;
223 
224 	return -EACCES;
225 }
226 
227 int permission(struct inode *inode, int mask, struct nameidata *nd)
228 {
229 	umode_t mode = inode->i_mode;
230 	int retval, submask;
231 
232 	if (mask & MAY_WRITE) {
233 
234 		/*
235 		 * Nobody gets write access to a read-only fs.
236 		 */
237 		if (IS_RDONLY(inode) &&
238 		    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
239 			return -EROFS;
240 
241 		/*
242 		 * Nobody gets write access to an immutable file.
243 		 */
244 		if (IS_IMMUTABLE(inode))
245 			return -EACCES;
246 	}
247 
248 
249 	/*
250 	 * MAY_EXEC on regular files requires special handling: We override
251 	 * filesystem execute permissions if the mode bits aren't set or
252 	 * the fs is mounted with the "noexec" flag.
253 	 */
254 	if ((mask & MAY_EXEC) && S_ISREG(mode) && (!(mode & S_IXUGO) ||
255 			(nd && nd->mnt && (nd->mnt->mnt_flags & MNT_NOEXEC))))
256 		return -EACCES;
257 
258 	/* Ordinary permission routines do not understand MAY_APPEND. */
259 	submask = mask & ~MAY_APPEND;
260 	if (inode->i_op && inode->i_op->permission)
261 		retval = inode->i_op->permission(inode, submask, nd);
262 	else
263 		retval = generic_permission(inode, submask, NULL);
264 	if (retval)
265 		return retval;
266 
267 	return security_inode_permission(inode, mask, nd);
268 }
269 
270 /**
271  * vfs_permission  -  check for access rights to a given path
272  * @nd:		lookup result that describes the path
273  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
274  *
275  * Used to check for read/write/execute permissions on a path.
276  * We use "fsuid" for this, letting us set arbitrary permissions
277  * for filesystem access without changing the "normal" uids which
278  * are used for other things.
279  */
280 int vfs_permission(struct nameidata *nd, int mask)
281 {
282 	return permission(nd->dentry->d_inode, mask, nd);
283 }
284 
285 /**
286  * file_permission  -  check for additional access rights to a given file
287  * @file:	file to check access rights for
288  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
289  *
290  * Used to check for read/write/execute permissions on an already opened
291  * file.
292  *
293  * Note:
294  *	Do not use this function in new code.  All access checks should
295  *	be done using vfs_permission().
296  */
297 int file_permission(struct file *file, int mask)
298 {
299 	return permission(file->f_path.dentry->d_inode, mask, NULL);
300 }
301 
302 /*
303  * get_write_access() gets write permission for a file.
304  * put_write_access() releases this write permission.
305  * This is used for regular files.
306  * We cannot support write (and maybe mmap read-write shared) accesses and
307  * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode
308  * can have the following values:
309  * 0: no writers, no VM_DENYWRITE mappings
310  * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist
311  * > 0: (i_writecount) users are writing to the file.
312  *
313  * Normally we operate on that counter with atomic_{inc,dec} and it's safe
314  * except for the cases where we don't hold i_writecount yet. Then we need to
315  * use {get,deny}_write_access() - these functions check the sign and refuse
316  * to do the change if sign is wrong. Exclusion between them is provided by
317  * the inode->i_lock spinlock.
318  */
319 
320 int get_write_access(struct inode * inode)
321 {
322 	spin_lock(&inode->i_lock);
323 	if (atomic_read(&inode->i_writecount) < 0) {
324 		spin_unlock(&inode->i_lock);
325 		return -ETXTBSY;
326 	}
327 	atomic_inc(&inode->i_writecount);
328 	spin_unlock(&inode->i_lock);
329 
330 	return 0;
331 }
332 
333 int deny_write_access(struct file * file)
334 {
335 	struct inode *inode = file->f_path.dentry->d_inode;
336 
337 	spin_lock(&inode->i_lock);
338 	if (atomic_read(&inode->i_writecount) > 0) {
339 		spin_unlock(&inode->i_lock);
340 		return -ETXTBSY;
341 	}
342 	atomic_dec(&inode->i_writecount);
343 	spin_unlock(&inode->i_lock);
344 
345 	return 0;
346 }
347 
348 void path_release(struct nameidata *nd)
349 {
350 	dput(nd->dentry);
351 	mntput(nd->mnt);
352 }
353 
354 /*
355  * umount() mustn't call path_release()/mntput() as that would clear
356  * mnt_expiry_mark
357  */
358 void path_release_on_umount(struct nameidata *nd)
359 {
360 	dput(nd->dentry);
361 	mntput_no_expire(nd->mnt);
362 }
363 
364 /**
365  * release_open_intent - free up open intent resources
366  * @nd: pointer to nameidata
367  */
368 void release_open_intent(struct nameidata *nd)
369 {
370 	if (nd->intent.open.file->f_path.dentry == NULL)
371 		put_filp(nd->intent.open.file);
372 	else
373 		fput(nd->intent.open.file);
374 }
375 
376 static inline struct dentry *
377 do_revalidate(struct dentry *dentry, struct nameidata *nd)
378 {
379 	int status = dentry->d_op->d_revalidate(dentry, nd);
380 	if (unlikely(status <= 0)) {
381 		/*
382 		 * The dentry failed validation.
383 		 * If d_revalidate returned 0 attempt to invalidate
384 		 * the dentry otherwise d_revalidate is asking us
385 		 * to return a fail status.
386 		 */
387 		if (!status) {
388 			if (!d_invalidate(dentry)) {
389 				dput(dentry);
390 				dentry = NULL;
391 			}
392 		} else {
393 			dput(dentry);
394 			dentry = ERR_PTR(status);
395 		}
396 	}
397 	return dentry;
398 }
399 
400 /*
401  * Internal lookup() using the new generic dcache.
402  * SMP-safe
403  */
404 static struct dentry * cached_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd)
405 {
406 	struct dentry * dentry = __d_lookup(parent, name);
407 
408 	/* lockess __d_lookup may fail due to concurrent d_move()
409 	 * in some unrelated directory, so try with d_lookup
410 	 */
411 	if (!dentry)
412 		dentry = d_lookup(parent, name);
413 
414 	if (dentry && dentry->d_op && dentry->d_op->d_revalidate)
415 		dentry = do_revalidate(dentry, nd);
416 
417 	return dentry;
418 }
419 
420 /*
421  * Short-cut version of permission(), for calling by
422  * path_walk(), when dcache lock is held.  Combines parts
423  * of permission() and generic_permission(), and tests ONLY for
424  * MAY_EXEC permission.
425  *
426  * If appropriate, check DAC only.  If not appropriate, or
427  * short-cut DAC fails, then call permission() to do more
428  * complete permission check.
429  */
430 static int exec_permission_lite(struct inode *inode,
431 				       struct nameidata *nd)
432 {
433 	umode_t	mode = inode->i_mode;
434 
435 	if (inode->i_op && inode->i_op->permission)
436 		return -EAGAIN;
437 
438 	if (current->fsuid == inode->i_uid)
439 		mode >>= 6;
440 	else if (in_group_p(inode->i_gid))
441 		mode >>= 3;
442 
443 	if (mode & MAY_EXEC)
444 		goto ok;
445 
446 	if ((inode->i_mode & S_IXUGO) && capable(CAP_DAC_OVERRIDE))
447 		goto ok;
448 
449 	if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_OVERRIDE))
450 		goto ok;
451 
452 	if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_READ_SEARCH))
453 		goto ok;
454 
455 	return -EACCES;
456 ok:
457 	return security_inode_permission(inode, MAY_EXEC, nd);
458 }
459 
460 /*
461  * This is called when everything else fails, and we actually have
462  * to go to the low-level filesystem to find out what we should do..
463  *
464  * We get the directory semaphore, and after getting that we also
465  * make sure that nobody added the entry to the dcache in the meantime..
466  * SMP-safe
467  */
468 static struct dentry * real_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd)
469 {
470 	struct dentry * result;
471 	struct inode *dir = parent->d_inode;
472 
473 	mutex_lock(&dir->i_mutex);
474 	/*
475 	 * First re-do the cached lookup just in case it was created
476 	 * while we waited for the directory semaphore..
477 	 *
478 	 * FIXME! This could use version numbering or similar to
479 	 * avoid unnecessary cache lookups.
480 	 *
481 	 * The "dcache_lock" is purely to protect the RCU list walker
482 	 * from concurrent renames at this point (we mustn't get false
483 	 * negatives from the RCU list walk here, unlike the optimistic
484 	 * fast walk).
485 	 *
486 	 * so doing d_lookup() (with seqlock), instead of lockfree __d_lookup
487 	 */
488 	result = d_lookup(parent, name);
489 	if (!result) {
490 		struct dentry * dentry = d_alloc(parent, name);
491 		result = ERR_PTR(-ENOMEM);
492 		if (dentry) {
493 			result = dir->i_op->lookup(dir, dentry, nd);
494 			if (result)
495 				dput(dentry);
496 			else
497 				result = dentry;
498 		}
499 		mutex_unlock(&dir->i_mutex);
500 		return result;
501 	}
502 
503 	/*
504 	 * Uhhuh! Nasty case: the cache was re-populated while
505 	 * we waited on the semaphore. Need to revalidate.
506 	 */
507 	mutex_unlock(&dir->i_mutex);
508 	if (result->d_op && result->d_op->d_revalidate) {
509 		result = do_revalidate(result, nd);
510 		if (!result)
511 			result = ERR_PTR(-ENOENT);
512 	}
513 	return result;
514 }
515 
516 static int __emul_lookup_dentry(const char *, struct nameidata *);
517 
518 /* SMP-safe */
519 static __always_inline int
520 walk_init_root(const char *name, struct nameidata *nd)
521 {
522 	struct fs_struct *fs = current->fs;
523 
524 	read_lock(&fs->lock);
525 	if (fs->altroot && !(nd->flags & LOOKUP_NOALT)) {
526 		nd->mnt = mntget(fs->altrootmnt);
527 		nd->dentry = dget(fs->altroot);
528 		read_unlock(&fs->lock);
529 		if (__emul_lookup_dentry(name,nd))
530 			return 0;
531 		read_lock(&fs->lock);
532 	}
533 	nd->mnt = mntget(fs->rootmnt);
534 	nd->dentry = dget(fs->root);
535 	read_unlock(&fs->lock);
536 	return 1;
537 }
538 
539 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
540 {
541 	int res = 0;
542 	char *name;
543 	if (IS_ERR(link))
544 		goto fail;
545 
546 	if (*link == '/') {
547 		path_release(nd);
548 		if (!walk_init_root(link, nd))
549 			/* weird __emul_prefix() stuff did it */
550 			goto out;
551 	}
552 	res = link_path_walk(link, nd);
553 out:
554 	if (nd->depth || res || nd->last_type!=LAST_NORM)
555 		return res;
556 	/*
557 	 * If it is an iterative symlinks resolution in open_namei() we
558 	 * have to copy the last component. And all that crap because of
559 	 * bloody create() on broken symlinks. Furrfu...
560 	 */
561 	name = __getname();
562 	if (unlikely(!name)) {
563 		path_release(nd);
564 		return -ENOMEM;
565 	}
566 	strcpy(name, nd->last.name);
567 	nd->last.name = name;
568 	return 0;
569 fail:
570 	path_release(nd);
571 	return PTR_ERR(link);
572 }
573 
574 static inline void dput_path(struct path *path, struct nameidata *nd)
575 {
576 	dput(path->dentry);
577 	if (path->mnt != nd->mnt)
578 		mntput(path->mnt);
579 }
580 
581 static inline void path_to_nameidata(struct path *path, struct nameidata *nd)
582 {
583 	dput(nd->dentry);
584 	if (nd->mnt != path->mnt)
585 		mntput(nd->mnt);
586 	nd->mnt = path->mnt;
587 	nd->dentry = path->dentry;
588 }
589 
590 static __always_inline int __do_follow_link(struct path *path, struct nameidata *nd)
591 {
592 	int error;
593 	void *cookie;
594 	struct dentry *dentry = path->dentry;
595 
596 	touch_atime(path->mnt, dentry);
597 	nd_set_link(nd, NULL);
598 
599 	if (path->mnt != nd->mnt) {
600 		path_to_nameidata(path, nd);
601 		dget(dentry);
602 	}
603 	mntget(path->mnt);
604 	cookie = dentry->d_inode->i_op->follow_link(dentry, nd);
605 	error = PTR_ERR(cookie);
606 	if (!IS_ERR(cookie)) {
607 		char *s = nd_get_link(nd);
608 		error = 0;
609 		if (s)
610 			error = __vfs_follow_link(nd, s);
611 		if (dentry->d_inode->i_op->put_link)
612 			dentry->d_inode->i_op->put_link(dentry, nd, cookie);
613 	}
614 	dput(dentry);
615 	mntput(path->mnt);
616 
617 	return error;
618 }
619 
620 /*
621  * This limits recursive symlink follows to 8, while
622  * limiting consecutive symlinks to 40.
623  *
624  * Without that kind of total limit, nasty chains of consecutive
625  * symlinks can cause almost arbitrarily long lookups.
626  */
627 static inline int do_follow_link(struct path *path, struct nameidata *nd)
628 {
629 	int err = -ELOOP;
630 	if (current->link_count >= MAX_NESTED_LINKS)
631 		goto loop;
632 	if (current->total_link_count >= 40)
633 		goto loop;
634 	BUG_ON(nd->depth >= MAX_NESTED_LINKS);
635 	cond_resched();
636 	err = security_inode_follow_link(path->dentry, nd);
637 	if (err)
638 		goto loop;
639 	current->link_count++;
640 	current->total_link_count++;
641 	nd->depth++;
642 	err = __do_follow_link(path, nd);
643 	current->link_count--;
644 	nd->depth--;
645 	return err;
646 loop:
647 	dput_path(path, nd);
648 	path_release(nd);
649 	return err;
650 }
651 
652 int follow_up(struct vfsmount **mnt, struct dentry **dentry)
653 {
654 	struct vfsmount *parent;
655 	struct dentry *mountpoint;
656 	spin_lock(&vfsmount_lock);
657 	parent=(*mnt)->mnt_parent;
658 	if (parent == *mnt) {
659 		spin_unlock(&vfsmount_lock);
660 		return 0;
661 	}
662 	mntget(parent);
663 	mountpoint=dget((*mnt)->mnt_mountpoint);
664 	spin_unlock(&vfsmount_lock);
665 	dput(*dentry);
666 	*dentry = mountpoint;
667 	mntput(*mnt);
668 	*mnt = parent;
669 	return 1;
670 }
671 
672 /* no need for dcache_lock, as serialization is taken care in
673  * namespace.c
674  */
675 static int __follow_mount(struct path *path)
676 {
677 	int res = 0;
678 	while (d_mountpoint(path->dentry)) {
679 		struct vfsmount *mounted = lookup_mnt(path->mnt, path->dentry);
680 		if (!mounted)
681 			break;
682 		dput(path->dentry);
683 		if (res)
684 			mntput(path->mnt);
685 		path->mnt = mounted;
686 		path->dentry = dget(mounted->mnt_root);
687 		res = 1;
688 	}
689 	return res;
690 }
691 
692 static void follow_mount(struct vfsmount **mnt, struct dentry **dentry)
693 {
694 	while (d_mountpoint(*dentry)) {
695 		struct vfsmount *mounted = lookup_mnt(*mnt, *dentry);
696 		if (!mounted)
697 			break;
698 		dput(*dentry);
699 		mntput(*mnt);
700 		*mnt = mounted;
701 		*dentry = dget(mounted->mnt_root);
702 	}
703 }
704 
705 /* no need for dcache_lock, as serialization is taken care in
706  * namespace.c
707  */
708 int follow_down(struct vfsmount **mnt, struct dentry **dentry)
709 {
710 	struct vfsmount *mounted;
711 
712 	mounted = lookup_mnt(*mnt, *dentry);
713 	if (mounted) {
714 		dput(*dentry);
715 		mntput(*mnt);
716 		*mnt = mounted;
717 		*dentry = dget(mounted->mnt_root);
718 		return 1;
719 	}
720 	return 0;
721 }
722 
723 static __always_inline void follow_dotdot(struct nameidata *nd)
724 {
725 	struct fs_struct *fs = current->fs;
726 
727 	while(1) {
728 		struct vfsmount *parent;
729 		struct dentry *old = nd->dentry;
730 
731                 read_lock(&fs->lock);
732 		if (nd->dentry == fs->root &&
733 		    nd->mnt == fs->rootmnt) {
734                         read_unlock(&fs->lock);
735 			break;
736 		}
737                 read_unlock(&fs->lock);
738 		spin_lock(&dcache_lock);
739 		if (nd->dentry != nd->mnt->mnt_root) {
740 			nd->dentry = dget(nd->dentry->d_parent);
741 			spin_unlock(&dcache_lock);
742 			dput(old);
743 			break;
744 		}
745 		spin_unlock(&dcache_lock);
746 		spin_lock(&vfsmount_lock);
747 		parent = nd->mnt->mnt_parent;
748 		if (parent == nd->mnt) {
749 			spin_unlock(&vfsmount_lock);
750 			break;
751 		}
752 		mntget(parent);
753 		nd->dentry = dget(nd->mnt->mnt_mountpoint);
754 		spin_unlock(&vfsmount_lock);
755 		dput(old);
756 		mntput(nd->mnt);
757 		nd->mnt = parent;
758 	}
759 	follow_mount(&nd->mnt, &nd->dentry);
760 }
761 
762 /*
763  *  It's more convoluted than I'd like it to be, but... it's still fairly
764  *  small and for now I'd prefer to have fast path as straight as possible.
765  *  It _is_ time-critical.
766  */
767 static int do_lookup(struct nameidata *nd, struct qstr *name,
768 		     struct path *path)
769 {
770 	struct vfsmount *mnt = nd->mnt;
771 	struct dentry *dentry = __d_lookup(nd->dentry, name);
772 
773 	if (!dentry)
774 		goto need_lookup;
775 	if (dentry->d_op && dentry->d_op->d_revalidate)
776 		goto need_revalidate;
777 done:
778 	path->mnt = mnt;
779 	path->dentry = dentry;
780 	__follow_mount(path);
781 	return 0;
782 
783 need_lookup:
784 	dentry = real_lookup(nd->dentry, name, nd);
785 	if (IS_ERR(dentry))
786 		goto fail;
787 	goto done;
788 
789 need_revalidate:
790 	dentry = do_revalidate(dentry, nd);
791 	if (!dentry)
792 		goto need_lookup;
793 	if (IS_ERR(dentry))
794 		goto fail;
795 	goto done;
796 
797 fail:
798 	return PTR_ERR(dentry);
799 }
800 
801 /*
802  * Name resolution.
803  * This is the basic name resolution function, turning a pathname into
804  * the final dentry. We expect 'base' to be positive and a directory.
805  *
806  * Returns 0 and nd will have valid dentry and mnt on success.
807  * Returns error and drops reference to input namei data on failure.
808  */
809 static fastcall int __link_path_walk(const char * name, struct nameidata *nd)
810 {
811 	struct path next;
812 	struct inode *inode;
813 	int err;
814 	unsigned int lookup_flags = nd->flags;
815 
816 	while (*name=='/')
817 		name++;
818 	if (!*name)
819 		goto return_reval;
820 
821 	inode = nd->dentry->d_inode;
822 	if (nd->depth)
823 		lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE);
824 
825 	/* At this point we know we have a real path component. */
826 	for(;;) {
827 		unsigned long hash;
828 		struct qstr this;
829 		unsigned int c;
830 
831 		nd->flags |= LOOKUP_CONTINUE;
832 		err = exec_permission_lite(inode, nd);
833 		if (err == -EAGAIN)
834 			err = vfs_permission(nd, MAY_EXEC);
835  		if (err)
836 			break;
837 
838 		this.name = name;
839 		c = *(const unsigned char *)name;
840 
841 		hash = init_name_hash();
842 		do {
843 			name++;
844 			hash = partial_name_hash(c, hash);
845 			c = *(const unsigned char *)name;
846 		} while (c && (c != '/'));
847 		this.len = name - (const char *) this.name;
848 		this.hash = end_name_hash(hash);
849 
850 		/* remove trailing slashes? */
851 		if (!c)
852 			goto last_component;
853 		while (*++name == '/');
854 		if (!*name)
855 			goto last_with_slashes;
856 
857 		/*
858 		 * "." and ".." are special - ".." especially so because it has
859 		 * to be able to know about the current root directory and
860 		 * parent relationships.
861 		 */
862 		if (this.name[0] == '.') switch (this.len) {
863 			default:
864 				break;
865 			case 2:
866 				if (this.name[1] != '.')
867 					break;
868 				follow_dotdot(nd);
869 				inode = nd->dentry->d_inode;
870 				/* fallthrough */
871 			case 1:
872 				continue;
873 		}
874 		/*
875 		 * See if the low-level filesystem might want
876 		 * to use its own hash..
877 		 */
878 		if (nd->dentry->d_op && nd->dentry->d_op->d_hash) {
879 			err = nd->dentry->d_op->d_hash(nd->dentry, &this);
880 			if (err < 0)
881 				break;
882 		}
883 		/* This does the actual lookups.. */
884 		err = do_lookup(nd, &this, &next);
885 		if (err)
886 			break;
887 
888 		err = -ENOENT;
889 		inode = next.dentry->d_inode;
890 		if (!inode)
891 			goto out_dput;
892 		err = -ENOTDIR;
893 		if (!inode->i_op)
894 			goto out_dput;
895 
896 		if (inode->i_op->follow_link) {
897 			err = do_follow_link(&next, nd);
898 			if (err)
899 				goto return_err;
900 			err = -ENOENT;
901 			inode = nd->dentry->d_inode;
902 			if (!inode)
903 				break;
904 			err = -ENOTDIR;
905 			if (!inode->i_op)
906 				break;
907 		} else
908 			path_to_nameidata(&next, nd);
909 		err = -ENOTDIR;
910 		if (!inode->i_op->lookup)
911 			break;
912 		continue;
913 		/* here ends the main loop */
914 
915 last_with_slashes:
916 		lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
917 last_component:
918 		/* Clear LOOKUP_CONTINUE iff it was previously unset */
919 		nd->flags &= lookup_flags | ~LOOKUP_CONTINUE;
920 		if (lookup_flags & LOOKUP_PARENT)
921 			goto lookup_parent;
922 		if (this.name[0] == '.') switch (this.len) {
923 			default:
924 				break;
925 			case 2:
926 				if (this.name[1] != '.')
927 					break;
928 				follow_dotdot(nd);
929 				inode = nd->dentry->d_inode;
930 				/* fallthrough */
931 			case 1:
932 				goto return_reval;
933 		}
934 		if (nd->dentry->d_op && nd->dentry->d_op->d_hash) {
935 			err = nd->dentry->d_op->d_hash(nd->dentry, &this);
936 			if (err < 0)
937 				break;
938 		}
939 		err = do_lookup(nd, &this, &next);
940 		if (err)
941 			break;
942 		inode = next.dentry->d_inode;
943 		if ((lookup_flags & LOOKUP_FOLLOW)
944 		    && inode && inode->i_op && inode->i_op->follow_link) {
945 			err = do_follow_link(&next, nd);
946 			if (err)
947 				goto return_err;
948 			inode = nd->dentry->d_inode;
949 		} else
950 			path_to_nameidata(&next, nd);
951 		err = -ENOENT;
952 		if (!inode)
953 			break;
954 		if (lookup_flags & LOOKUP_DIRECTORY) {
955 			err = -ENOTDIR;
956 			if (!inode->i_op || !inode->i_op->lookup)
957 				break;
958 		}
959 		goto return_base;
960 lookup_parent:
961 		nd->last = this;
962 		nd->last_type = LAST_NORM;
963 		if (this.name[0] != '.')
964 			goto return_base;
965 		if (this.len == 1)
966 			nd->last_type = LAST_DOT;
967 		else if (this.len == 2 && this.name[1] == '.')
968 			nd->last_type = LAST_DOTDOT;
969 		else
970 			goto return_base;
971 return_reval:
972 		/*
973 		 * We bypassed the ordinary revalidation routines.
974 		 * We may need to check the cached dentry for staleness.
975 		 */
976 		if (nd->dentry && nd->dentry->d_sb &&
977 		    (nd->dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)) {
978 			err = -ESTALE;
979 			/* Note: we do not d_invalidate() */
980 			if (!nd->dentry->d_op->d_revalidate(nd->dentry, nd))
981 				break;
982 		}
983 return_base:
984 		return 0;
985 out_dput:
986 		dput_path(&next, nd);
987 		break;
988 	}
989 	path_release(nd);
990 return_err:
991 	return err;
992 }
993 
994 /*
995  * Wrapper to retry pathname resolution whenever the underlying
996  * file system returns an ESTALE.
997  *
998  * Retry the whole path once, forcing real lookup requests
999  * instead of relying on the dcache.
1000  */
1001 int fastcall link_path_walk(const char *name, struct nameidata *nd)
1002 {
1003 	struct nameidata save = *nd;
1004 	int result;
1005 
1006 	/* make sure the stuff we saved doesn't go away */
1007 	dget(save.dentry);
1008 	mntget(save.mnt);
1009 
1010 	result = __link_path_walk(name, nd);
1011 	if (result == -ESTALE) {
1012 		*nd = save;
1013 		dget(nd->dentry);
1014 		mntget(nd->mnt);
1015 		nd->flags |= LOOKUP_REVAL;
1016 		result = __link_path_walk(name, nd);
1017 	}
1018 
1019 	dput(save.dentry);
1020 	mntput(save.mnt);
1021 
1022 	return result;
1023 }
1024 
1025 int fastcall path_walk(const char * name, struct nameidata *nd)
1026 {
1027 	current->total_link_count = 0;
1028 	return link_path_walk(name, nd);
1029 }
1030 
1031 /*
1032  * SMP-safe: Returns 1 and nd will have valid dentry and mnt, if
1033  * everything is done. Returns 0 and drops input nd, if lookup failed;
1034  */
1035 static int __emul_lookup_dentry(const char *name, struct nameidata *nd)
1036 {
1037 	if (path_walk(name, nd))
1038 		return 0;		/* something went wrong... */
1039 
1040 	if (!nd->dentry->d_inode || S_ISDIR(nd->dentry->d_inode->i_mode)) {
1041 		struct dentry *old_dentry = nd->dentry;
1042 		struct vfsmount *old_mnt = nd->mnt;
1043 		struct qstr last = nd->last;
1044 		int last_type = nd->last_type;
1045 		struct fs_struct *fs = current->fs;
1046 
1047 		/*
1048 		 * NAME was not found in alternate root or it's a directory.
1049 		 * Try to find it in the normal root:
1050 		 */
1051 		nd->last_type = LAST_ROOT;
1052 		read_lock(&fs->lock);
1053 		nd->mnt = mntget(fs->rootmnt);
1054 		nd->dentry = dget(fs->root);
1055 		read_unlock(&fs->lock);
1056 		if (path_walk(name, nd) == 0) {
1057 			if (nd->dentry->d_inode) {
1058 				dput(old_dentry);
1059 				mntput(old_mnt);
1060 				return 1;
1061 			}
1062 			path_release(nd);
1063 		}
1064 		nd->dentry = old_dentry;
1065 		nd->mnt = old_mnt;
1066 		nd->last = last;
1067 		nd->last_type = last_type;
1068 	}
1069 	return 1;
1070 }
1071 
1072 void set_fs_altroot(void)
1073 {
1074 	char *emul = __emul_prefix();
1075 	struct nameidata nd;
1076 	struct vfsmount *mnt = NULL, *oldmnt;
1077 	struct dentry *dentry = NULL, *olddentry;
1078 	int err;
1079 	struct fs_struct *fs = current->fs;
1080 
1081 	if (!emul)
1082 		goto set_it;
1083 	err = path_lookup(emul, LOOKUP_FOLLOW|LOOKUP_DIRECTORY|LOOKUP_NOALT, &nd);
1084 	if (!err) {
1085 		mnt = nd.mnt;
1086 		dentry = nd.dentry;
1087 	}
1088 set_it:
1089 	write_lock(&fs->lock);
1090 	oldmnt = fs->altrootmnt;
1091 	olddentry = fs->altroot;
1092 	fs->altrootmnt = mnt;
1093 	fs->altroot = dentry;
1094 	write_unlock(&fs->lock);
1095 	if (olddentry) {
1096 		dput(olddentry);
1097 		mntput(oldmnt);
1098 	}
1099 }
1100 
1101 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1102 static int fastcall do_path_lookup(int dfd, const char *name,
1103 				unsigned int flags, struct nameidata *nd)
1104 {
1105 	int retval = 0;
1106 	int fput_needed;
1107 	struct file *file;
1108 	struct fs_struct *fs = current->fs;
1109 
1110 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
1111 	nd->flags = flags;
1112 	nd->depth = 0;
1113 
1114 	if (*name=='/') {
1115 		read_lock(&fs->lock);
1116 		if (fs->altroot && !(nd->flags & LOOKUP_NOALT)) {
1117 			nd->mnt = mntget(fs->altrootmnt);
1118 			nd->dentry = dget(fs->altroot);
1119 			read_unlock(&fs->lock);
1120 			if (__emul_lookup_dentry(name,nd))
1121 				goto out; /* found in altroot */
1122 			read_lock(&fs->lock);
1123 		}
1124 		nd->mnt = mntget(fs->rootmnt);
1125 		nd->dentry = dget(fs->root);
1126 		read_unlock(&fs->lock);
1127 	} else if (dfd == AT_FDCWD) {
1128 		read_lock(&fs->lock);
1129 		nd->mnt = mntget(fs->pwdmnt);
1130 		nd->dentry = dget(fs->pwd);
1131 		read_unlock(&fs->lock);
1132 	} else {
1133 		struct dentry *dentry;
1134 
1135 		file = fget_light(dfd, &fput_needed);
1136 		retval = -EBADF;
1137 		if (!file)
1138 			goto out_fail;
1139 
1140 		dentry = file->f_path.dentry;
1141 
1142 		retval = -ENOTDIR;
1143 		if (!S_ISDIR(dentry->d_inode->i_mode))
1144 			goto fput_fail;
1145 
1146 		retval = file_permission(file, MAY_EXEC);
1147 		if (retval)
1148 			goto fput_fail;
1149 
1150 		nd->mnt = mntget(file->f_path.mnt);
1151 		nd->dentry = dget(dentry);
1152 
1153 		fput_light(file, fput_needed);
1154 	}
1155 
1156 	retval = path_walk(name, nd);
1157 out:
1158 	if (unlikely(!retval && !audit_dummy_context() && nd->dentry &&
1159 				nd->dentry->d_inode))
1160 		audit_inode(name, nd->dentry->d_inode);
1161 out_fail:
1162 	return retval;
1163 
1164 fput_fail:
1165 	fput_light(file, fput_needed);
1166 	goto out_fail;
1167 }
1168 
1169 int fastcall path_lookup(const char *name, unsigned int flags,
1170 			struct nameidata *nd)
1171 {
1172 	return do_path_lookup(AT_FDCWD, name, flags, nd);
1173 }
1174 
1175 static int __path_lookup_intent_open(int dfd, const char *name,
1176 		unsigned int lookup_flags, struct nameidata *nd,
1177 		int open_flags, int create_mode)
1178 {
1179 	struct file *filp = get_empty_filp();
1180 	int err;
1181 
1182 	if (filp == NULL)
1183 		return -ENFILE;
1184 	nd->intent.open.file = filp;
1185 	nd->intent.open.flags = open_flags;
1186 	nd->intent.open.create_mode = create_mode;
1187 	err = do_path_lookup(dfd, name, lookup_flags|LOOKUP_OPEN, nd);
1188 	if (IS_ERR(nd->intent.open.file)) {
1189 		if (err == 0) {
1190 			err = PTR_ERR(nd->intent.open.file);
1191 			path_release(nd);
1192 		}
1193 	} else if (err != 0)
1194 		release_open_intent(nd);
1195 	return err;
1196 }
1197 
1198 /**
1199  * path_lookup_open - lookup a file path with open intent
1200  * @dfd: the directory to use as base, or AT_FDCWD
1201  * @name: pointer to file name
1202  * @lookup_flags: lookup intent flags
1203  * @nd: pointer to nameidata
1204  * @open_flags: open intent flags
1205  */
1206 int path_lookup_open(int dfd, const char *name, unsigned int lookup_flags,
1207 		struct nameidata *nd, int open_flags)
1208 {
1209 	return __path_lookup_intent_open(dfd, name, lookup_flags, nd,
1210 			open_flags, 0);
1211 }
1212 
1213 /**
1214  * path_lookup_create - lookup a file path with open + create intent
1215  * @dfd: the directory to use as base, or AT_FDCWD
1216  * @name: pointer to file name
1217  * @lookup_flags: lookup intent flags
1218  * @nd: pointer to nameidata
1219  * @open_flags: open intent flags
1220  * @create_mode: create intent flags
1221  */
1222 static int path_lookup_create(int dfd, const char *name,
1223 			      unsigned int lookup_flags, struct nameidata *nd,
1224 			      int open_flags, int create_mode)
1225 {
1226 	return __path_lookup_intent_open(dfd, name, lookup_flags|LOOKUP_CREATE,
1227 			nd, open_flags, create_mode);
1228 }
1229 
1230 int __user_path_lookup_open(const char __user *name, unsigned int lookup_flags,
1231 		struct nameidata *nd, int open_flags)
1232 {
1233 	char *tmp = getname(name);
1234 	int err = PTR_ERR(tmp);
1235 
1236 	if (!IS_ERR(tmp)) {
1237 		err = __path_lookup_intent_open(AT_FDCWD, tmp, lookup_flags, nd, open_flags, 0);
1238 		putname(tmp);
1239 	}
1240 	return err;
1241 }
1242 
1243 static inline struct dentry *__lookup_hash_kern(struct qstr *name, struct dentry *base, struct nameidata *nd)
1244 {
1245 	struct dentry *dentry;
1246 	struct inode *inode;
1247 	int err;
1248 
1249 	inode = base->d_inode;
1250 
1251 	/*
1252 	 * See if the low-level filesystem might want
1253 	 * to use its own hash..
1254 	 */
1255 	if (base->d_op && base->d_op->d_hash) {
1256 		err = base->d_op->d_hash(base, name);
1257 		dentry = ERR_PTR(err);
1258 		if (err < 0)
1259 			goto out;
1260 	}
1261 
1262 	dentry = cached_lookup(base, name, nd);
1263 	if (!dentry) {
1264 		struct dentry *new = d_alloc(base, name);
1265 		dentry = ERR_PTR(-ENOMEM);
1266 		if (!new)
1267 			goto out;
1268 		dentry = inode->i_op->lookup(inode, new, nd);
1269 		if (!dentry)
1270 			dentry = new;
1271 		else
1272 			dput(new);
1273 	}
1274 out:
1275 	return dentry;
1276 }
1277 
1278 /*
1279  * Restricted form of lookup. Doesn't follow links, single-component only,
1280  * needs parent already locked. Doesn't follow mounts.
1281  * SMP-safe.
1282  */
1283 static inline struct dentry * __lookup_hash(struct qstr *name, struct dentry *base, struct nameidata *nd)
1284 {
1285 	struct dentry *dentry;
1286 	struct inode *inode;
1287 	int err;
1288 
1289 	inode = base->d_inode;
1290 
1291 	err = permission(inode, MAY_EXEC, nd);
1292 	dentry = ERR_PTR(err);
1293 	if (err)
1294 		goto out;
1295 
1296 	dentry = __lookup_hash_kern(name, base, nd);
1297 out:
1298 	return dentry;
1299 }
1300 
1301 static struct dentry *lookup_hash(struct nameidata *nd)
1302 {
1303 	return __lookup_hash(&nd->last, nd->dentry, nd);
1304 }
1305 
1306 /* SMP-safe */
1307 static inline int __lookup_one_len(const char *name, struct qstr *this, struct dentry *base, int len)
1308 {
1309 	unsigned long hash;
1310 	unsigned int c;
1311 
1312 	this->name = name;
1313 	this->len = len;
1314 	if (!len)
1315 		return -EACCES;
1316 
1317 	hash = init_name_hash();
1318 	while (len--) {
1319 		c = *(const unsigned char *)name++;
1320 		if (c == '/' || c == '\0')
1321 			return -EACCES;
1322 		hash = partial_name_hash(c, hash);
1323 	}
1324 	this->hash = end_name_hash(hash);
1325 	return 0;
1326 }
1327 
1328 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1329 {
1330 	int err;
1331 	struct qstr this;
1332 
1333 	err = __lookup_one_len(name, &this, base, len);
1334 	if (err)
1335 		return ERR_PTR(err);
1336 	return __lookup_hash(&this, base, NULL);
1337 }
1338 
1339 struct dentry *lookup_one_len_kern(const char *name, struct dentry *base, int len)
1340 {
1341 	int err;
1342 	struct qstr this;
1343 
1344 	err = __lookup_one_len(name, &this, base, len);
1345 	if (err)
1346 		return ERR_PTR(err);
1347 	return __lookup_hash_kern(&this, base, NULL);
1348 }
1349 
1350 int fastcall __user_walk_fd(int dfd, const char __user *name, unsigned flags,
1351 			    struct nameidata *nd)
1352 {
1353 	char *tmp = getname(name);
1354 	int err = PTR_ERR(tmp);
1355 
1356 	if (!IS_ERR(tmp)) {
1357 		err = do_path_lookup(dfd, tmp, flags, nd);
1358 		putname(tmp);
1359 	}
1360 	return err;
1361 }
1362 
1363 int fastcall __user_walk(const char __user *name, unsigned flags, struct nameidata *nd)
1364 {
1365 	return __user_walk_fd(AT_FDCWD, name, flags, nd);
1366 }
1367 
1368 /*
1369  * It's inline, so penalty for filesystems that don't use sticky bit is
1370  * minimal.
1371  */
1372 static inline int check_sticky(struct inode *dir, struct inode *inode)
1373 {
1374 	if (!(dir->i_mode & S_ISVTX))
1375 		return 0;
1376 	if (inode->i_uid == current->fsuid)
1377 		return 0;
1378 	if (dir->i_uid == current->fsuid)
1379 		return 0;
1380 	return !capable(CAP_FOWNER);
1381 }
1382 
1383 /*
1384  *	Check whether we can remove a link victim from directory dir, check
1385  *  whether the type of victim is right.
1386  *  1. We can't do it if dir is read-only (done in permission())
1387  *  2. We should have write and exec permissions on dir
1388  *  3. We can't remove anything from append-only dir
1389  *  4. We can't do anything with immutable dir (done in permission())
1390  *  5. If the sticky bit on dir is set we should either
1391  *	a. be owner of dir, or
1392  *	b. be owner of victim, or
1393  *	c. have CAP_FOWNER capability
1394  *  6. If the victim is append-only or immutable we can't do antyhing with
1395  *     links pointing to it.
1396  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1397  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1398  *  9. We can't remove a root or mountpoint.
1399  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1400  *     nfs_async_unlink().
1401  */
1402 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1403 {
1404 	int error;
1405 
1406 	if (!victim->d_inode)
1407 		return -ENOENT;
1408 
1409 	BUG_ON(victim->d_parent->d_inode != dir);
1410 	audit_inode_child(victim->d_name.name, victim->d_inode, dir);
1411 
1412 	error = permission(dir,MAY_WRITE | MAY_EXEC, NULL);
1413 	if (error)
1414 		return error;
1415 	if (IS_APPEND(dir))
1416 		return -EPERM;
1417 	if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1418 	    IS_IMMUTABLE(victim->d_inode))
1419 		return -EPERM;
1420 	if (isdir) {
1421 		if (!S_ISDIR(victim->d_inode->i_mode))
1422 			return -ENOTDIR;
1423 		if (IS_ROOT(victim))
1424 			return -EBUSY;
1425 	} else if (S_ISDIR(victim->d_inode->i_mode))
1426 		return -EISDIR;
1427 	if (IS_DEADDIR(dir))
1428 		return -ENOENT;
1429 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1430 		return -EBUSY;
1431 	return 0;
1432 }
1433 
1434 /*	Check whether we can create an object with dentry child in directory
1435  *  dir.
1436  *  1. We can't do it if child already exists (open has special treatment for
1437  *     this case, but since we are inlined it's OK)
1438  *  2. We can't do it if dir is read-only (done in permission())
1439  *  3. We should have write and exec permissions on dir
1440  *  4. We can't do it if dir is immutable (done in permission())
1441  */
1442 static inline int may_create(struct inode *dir, struct dentry *child,
1443 			     struct nameidata *nd)
1444 {
1445 	if (child->d_inode)
1446 		return -EEXIST;
1447 	if (IS_DEADDIR(dir))
1448 		return -ENOENT;
1449 	return permission(dir,MAY_WRITE | MAY_EXEC, nd);
1450 }
1451 
1452 /*
1453  * O_DIRECTORY translates into forcing a directory lookup.
1454  */
1455 static inline int lookup_flags(unsigned int f)
1456 {
1457 	unsigned long retval = LOOKUP_FOLLOW;
1458 
1459 	if (f & O_NOFOLLOW)
1460 		retval &= ~LOOKUP_FOLLOW;
1461 
1462 	if (f & O_DIRECTORY)
1463 		retval |= LOOKUP_DIRECTORY;
1464 
1465 	return retval;
1466 }
1467 
1468 /*
1469  * p1 and p2 should be directories on the same fs.
1470  */
1471 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1472 {
1473 	struct dentry *p;
1474 
1475 	if (p1 == p2) {
1476 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1477 		return NULL;
1478 	}
1479 
1480 	mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1481 
1482 	for (p = p1; p->d_parent != p; p = p->d_parent) {
1483 		if (p->d_parent == p2) {
1484 			mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1485 			mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1486 			return p;
1487 		}
1488 	}
1489 
1490 	for (p = p2; p->d_parent != p; p = p->d_parent) {
1491 		if (p->d_parent == p1) {
1492 			mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1493 			mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1494 			return p;
1495 		}
1496 	}
1497 
1498 	mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1499 	mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1500 	return NULL;
1501 }
1502 
1503 void unlock_rename(struct dentry *p1, struct dentry *p2)
1504 {
1505 	mutex_unlock(&p1->d_inode->i_mutex);
1506 	if (p1 != p2) {
1507 		mutex_unlock(&p2->d_inode->i_mutex);
1508 		mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1509 	}
1510 }
1511 
1512 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1513 		struct nameidata *nd)
1514 {
1515 	int error = may_create(dir, dentry, nd);
1516 
1517 	if (error)
1518 		return error;
1519 
1520 	if (!dir->i_op || !dir->i_op->create)
1521 		return -EACCES;	/* shouldn't it be ENOSYS? */
1522 	mode &= S_IALLUGO;
1523 	mode |= S_IFREG;
1524 	error = security_inode_create(dir, dentry, mode);
1525 	if (error)
1526 		return error;
1527 	DQUOT_INIT(dir);
1528 	error = dir->i_op->create(dir, dentry, mode, nd);
1529 	if (!error)
1530 		fsnotify_create(dir, dentry);
1531 	return error;
1532 }
1533 
1534 int may_open(struct nameidata *nd, int acc_mode, int flag)
1535 {
1536 	struct dentry *dentry = nd->dentry;
1537 	struct inode *inode = dentry->d_inode;
1538 	int error;
1539 
1540 	if (!inode)
1541 		return -ENOENT;
1542 
1543 	if (S_ISLNK(inode->i_mode))
1544 		return -ELOOP;
1545 
1546 	if (S_ISDIR(inode->i_mode) && (flag & FMODE_WRITE))
1547 		return -EISDIR;
1548 
1549 	error = vfs_permission(nd, acc_mode);
1550 	if (error)
1551 		return error;
1552 
1553 	/*
1554 	 * FIFO's, sockets and device files are special: they don't
1555 	 * actually live on the filesystem itself, and as such you
1556 	 * can write to them even if the filesystem is read-only.
1557 	 */
1558 	if (S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
1559 	    	flag &= ~O_TRUNC;
1560 	} else if (S_ISBLK(inode->i_mode) || S_ISCHR(inode->i_mode)) {
1561 		if (nd->mnt->mnt_flags & MNT_NODEV)
1562 			return -EACCES;
1563 
1564 		flag &= ~O_TRUNC;
1565 	} else if (IS_RDONLY(inode) && (flag & FMODE_WRITE))
1566 		return -EROFS;
1567 	/*
1568 	 * An append-only file must be opened in append mode for writing.
1569 	 */
1570 	if (IS_APPEND(inode)) {
1571 		if  ((flag & FMODE_WRITE) && !(flag & O_APPEND))
1572 			return -EPERM;
1573 		if (flag & O_TRUNC)
1574 			return -EPERM;
1575 	}
1576 
1577 	/* O_NOATIME can only be set by the owner or superuser */
1578 	if (flag & O_NOATIME)
1579 		if (current->fsuid != inode->i_uid && !capable(CAP_FOWNER))
1580 			return -EPERM;
1581 
1582 	/*
1583 	 * Ensure there are no outstanding leases on the file.
1584 	 */
1585 	error = break_lease(inode, flag);
1586 	if (error)
1587 		return error;
1588 
1589 	if (flag & O_TRUNC) {
1590 		error = get_write_access(inode);
1591 		if (error)
1592 			return error;
1593 
1594 		/*
1595 		 * Refuse to truncate files with mandatory locks held on them.
1596 		 */
1597 		error = locks_verify_locked(inode);
1598 		if (!error) {
1599 			DQUOT_INIT(inode);
1600 
1601 			error = do_truncate(dentry, 0, ATTR_MTIME|ATTR_CTIME, NULL);
1602 		}
1603 		put_write_access(inode);
1604 		if (error)
1605 			return error;
1606 	} else
1607 		if (flag & FMODE_WRITE)
1608 			DQUOT_INIT(inode);
1609 
1610 	return 0;
1611 }
1612 
1613 static int open_namei_create(struct nameidata *nd, struct path *path,
1614 				int flag, int mode)
1615 {
1616 	int error;
1617 	struct dentry *dir = nd->dentry;
1618 
1619 	if (!IS_POSIXACL(dir->d_inode))
1620 		mode &= ~current->fs->umask;
1621 	error = vfs_create(dir->d_inode, path->dentry, mode, nd);
1622 	mutex_unlock(&dir->d_inode->i_mutex);
1623 	dput(nd->dentry);
1624 	nd->dentry = path->dentry;
1625 	if (error)
1626 		return error;
1627 	/* Don't check for write permission, don't truncate */
1628 	return may_open(nd, 0, flag & ~O_TRUNC);
1629 }
1630 
1631 /*
1632  *	open_namei()
1633  *
1634  * namei for open - this is in fact almost the whole open-routine.
1635  *
1636  * Note that the low bits of "flag" aren't the same as in the open
1637  * system call - they are 00 - no permissions needed
1638  *			  01 - read permission needed
1639  *			  10 - write permission needed
1640  *			  11 - read/write permissions needed
1641  * which is a lot more logical, and also allows the "no perm" needed
1642  * for symlinks (where the permissions are checked later).
1643  * SMP-safe
1644  */
1645 int open_namei(int dfd, const char *pathname, int flag,
1646 		int mode, struct nameidata *nd)
1647 {
1648 	int acc_mode, error;
1649 	struct path path;
1650 	struct dentry *dir;
1651 	int count = 0;
1652 
1653 	acc_mode = ACC_MODE(flag);
1654 
1655 	/* O_TRUNC implies we need access checks for write permissions */
1656 	if (flag & O_TRUNC)
1657 		acc_mode |= MAY_WRITE;
1658 
1659 	/* Allow the LSM permission hook to distinguish append
1660 	   access from general write access. */
1661 	if (flag & O_APPEND)
1662 		acc_mode |= MAY_APPEND;
1663 
1664 	/*
1665 	 * The simplest case - just a plain lookup.
1666 	 */
1667 	if (!(flag & O_CREAT)) {
1668 		error = path_lookup_open(dfd, pathname, lookup_flags(flag),
1669 					 nd, flag);
1670 		if (error)
1671 			return error;
1672 		goto ok;
1673 	}
1674 
1675 	/*
1676 	 * Create - we need to know the parent.
1677 	 */
1678 	error = path_lookup_create(dfd,pathname,LOOKUP_PARENT,nd,flag,mode);
1679 	if (error)
1680 		return error;
1681 
1682 	/*
1683 	 * We have the parent and last component. First of all, check
1684 	 * that we are not asked to creat(2) an obvious directory - that
1685 	 * will not do.
1686 	 */
1687 	error = -EISDIR;
1688 	if (nd->last_type != LAST_NORM || nd->last.name[nd->last.len])
1689 		goto exit;
1690 
1691 	dir = nd->dentry;
1692 	nd->flags &= ~LOOKUP_PARENT;
1693 	mutex_lock(&dir->d_inode->i_mutex);
1694 	path.dentry = lookup_hash(nd);
1695 	path.mnt = nd->mnt;
1696 
1697 do_last:
1698 	error = PTR_ERR(path.dentry);
1699 	if (IS_ERR(path.dentry)) {
1700 		mutex_unlock(&dir->d_inode->i_mutex);
1701 		goto exit;
1702 	}
1703 
1704 	if (IS_ERR(nd->intent.open.file)) {
1705 		mutex_unlock(&dir->d_inode->i_mutex);
1706 		error = PTR_ERR(nd->intent.open.file);
1707 		goto exit_dput;
1708 	}
1709 
1710 	/* Negative dentry, just create the file */
1711 	if (!path.dentry->d_inode) {
1712 		error = open_namei_create(nd, &path, flag, mode);
1713 		if (error)
1714 			goto exit;
1715 		return 0;
1716 	}
1717 
1718 	/*
1719 	 * It already exists.
1720 	 */
1721 	mutex_unlock(&dir->d_inode->i_mutex);
1722 	audit_inode(pathname, path.dentry->d_inode);
1723 
1724 	error = -EEXIST;
1725 	if (flag & O_EXCL)
1726 		goto exit_dput;
1727 
1728 	if (__follow_mount(&path)) {
1729 		error = -ELOOP;
1730 		if (flag & O_NOFOLLOW)
1731 			goto exit_dput;
1732 	}
1733 
1734 	error = -ENOENT;
1735 	if (!path.dentry->d_inode)
1736 		goto exit_dput;
1737 	if (path.dentry->d_inode->i_op && path.dentry->d_inode->i_op->follow_link)
1738 		goto do_link;
1739 
1740 	path_to_nameidata(&path, nd);
1741 	error = -EISDIR;
1742 	if (path.dentry->d_inode && S_ISDIR(path.dentry->d_inode->i_mode))
1743 		goto exit;
1744 ok:
1745 	error = may_open(nd, acc_mode, flag);
1746 	if (error)
1747 		goto exit;
1748 	return 0;
1749 
1750 exit_dput:
1751 	dput_path(&path, nd);
1752 exit:
1753 	if (!IS_ERR(nd->intent.open.file))
1754 		release_open_intent(nd);
1755 	path_release(nd);
1756 	return error;
1757 
1758 do_link:
1759 	error = -ELOOP;
1760 	if (flag & O_NOFOLLOW)
1761 		goto exit_dput;
1762 	/*
1763 	 * This is subtle. Instead of calling do_follow_link() we do the
1764 	 * thing by hands. The reason is that this way we have zero link_count
1765 	 * and path_walk() (called from ->follow_link) honoring LOOKUP_PARENT.
1766 	 * After that we have the parent and last component, i.e.
1767 	 * we are in the same situation as after the first path_walk().
1768 	 * Well, almost - if the last component is normal we get its copy
1769 	 * stored in nd->last.name and we will have to putname() it when we
1770 	 * are done. Procfs-like symlinks just set LAST_BIND.
1771 	 */
1772 	nd->flags |= LOOKUP_PARENT;
1773 	error = security_inode_follow_link(path.dentry, nd);
1774 	if (error)
1775 		goto exit_dput;
1776 	error = __do_follow_link(&path, nd);
1777 	if (error) {
1778 		/* Does someone understand code flow here? Or it is only
1779 		 * me so stupid? Anathema to whoever designed this non-sense
1780 		 * with "intent.open".
1781 		 */
1782 		release_open_intent(nd);
1783 		return error;
1784 	}
1785 	nd->flags &= ~LOOKUP_PARENT;
1786 	if (nd->last_type == LAST_BIND)
1787 		goto ok;
1788 	error = -EISDIR;
1789 	if (nd->last_type != LAST_NORM)
1790 		goto exit;
1791 	if (nd->last.name[nd->last.len]) {
1792 		__putname(nd->last.name);
1793 		goto exit;
1794 	}
1795 	error = -ELOOP;
1796 	if (count++==32) {
1797 		__putname(nd->last.name);
1798 		goto exit;
1799 	}
1800 	dir = nd->dentry;
1801 	mutex_lock(&dir->d_inode->i_mutex);
1802 	path.dentry = lookup_hash(nd);
1803 	path.mnt = nd->mnt;
1804 	__putname(nd->last.name);
1805 	goto do_last;
1806 }
1807 
1808 /**
1809  * lookup_create - lookup a dentry, creating it if it doesn't exist
1810  * @nd: nameidata info
1811  * @is_dir: directory flag
1812  *
1813  * Simple function to lookup and return a dentry and create it
1814  * if it doesn't exist.  Is SMP-safe.
1815  *
1816  * Returns with nd->dentry->d_inode->i_mutex locked.
1817  */
1818 struct dentry *lookup_create(struct nameidata *nd, int is_dir)
1819 {
1820 	struct dentry *dentry = ERR_PTR(-EEXIST);
1821 
1822 	mutex_lock_nested(&nd->dentry->d_inode->i_mutex, I_MUTEX_PARENT);
1823 	/*
1824 	 * Yucky last component or no last component at all?
1825 	 * (foo/., foo/.., /////)
1826 	 */
1827 	if (nd->last_type != LAST_NORM)
1828 		goto fail;
1829 	nd->flags &= ~LOOKUP_PARENT;
1830 	nd->flags |= LOOKUP_CREATE;
1831 	nd->intent.open.flags = O_EXCL;
1832 
1833 	/*
1834 	 * Do the final lookup.
1835 	 */
1836 	dentry = lookup_hash(nd);
1837 	if (IS_ERR(dentry))
1838 		goto fail;
1839 
1840 	/*
1841 	 * Special case - lookup gave negative, but... we had foo/bar/
1842 	 * From the vfs_mknod() POV we just have a negative dentry -
1843 	 * all is fine. Let's be bastards - you had / on the end, you've
1844 	 * been asking for (non-existent) directory. -ENOENT for you.
1845 	 */
1846 	if (!is_dir && nd->last.name[nd->last.len] && !dentry->d_inode)
1847 		goto enoent;
1848 	return dentry;
1849 enoent:
1850 	dput(dentry);
1851 	dentry = ERR_PTR(-ENOENT);
1852 fail:
1853 	return dentry;
1854 }
1855 EXPORT_SYMBOL_GPL(lookup_create);
1856 
1857 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1858 {
1859 	int error = may_create(dir, dentry, NULL);
1860 
1861 	if (error)
1862 		return error;
1863 
1864 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
1865 		return -EPERM;
1866 
1867 	if (!dir->i_op || !dir->i_op->mknod)
1868 		return -EPERM;
1869 
1870 	error = security_inode_mknod(dir, dentry, mode, dev);
1871 	if (error)
1872 		return error;
1873 
1874 	DQUOT_INIT(dir);
1875 	error = dir->i_op->mknod(dir, dentry, mode, dev);
1876 	if (!error)
1877 		fsnotify_create(dir, dentry);
1878 	return error;
1879 }
1880 
1881 asmlinkage long sys_mknodat(int dfd, const char __user *filename, int mode,
1882 				unsigned dev)
1883 {
1884 	int error = 0;
1885 	char * tmp;
1886 	struct dentry * dentry;
1887 	struct nameidata nd;
1888 
1889 	if (S_ISDIR(mode))
1890 		return -EPERM;
1891 	tmp = getname(filename);
1892 	if (IS_ERR(tmp))
1893 		return PTR_ERR(tmp);
1894 
1895 	error = do_path_lookup(dfd, tmp, LOOKUP_PARENT, &nd);
1896 	if (error)
1897 		goto out;
1898 	dentry = lookup_create(&nd, 0);
1899 	error = PTR_ERR(dentry);
1900 
1901 	if (!IS_POSIXACL(nd.dentry->d_inode))
1902 		mode &= ~current->fs->umask;
1903 	if (!IS_ERR(dentry)) {
1904 		switch (mode & S_IFMT) {
1905 		case 0: case S_IFREG:
1906 			error = vfs_create(nd.dentry->d_inode,dentry,mode,&nd);
1907 			break;
1908 		case S_IFCHR: case S_IFBLK:
1909 			error = vfs_mknod(nd.dentry->d_inode,dentry,mode,
1910 					new_decode_dev(dev));
1911 			break;
1912 		case S_IFIFO: case S_IFSOCK:
1913 			error = vfs_mknod(nd.dentry->d_inode,dentry,mode,0);
1914 			break;
1915 		case S_IFDIR:
1916 			error = -EPERM;
1917 			break;
1918 		default:
1919 			error = -EINVAL;
1920 		}
1921 		dput(dentry);
1922 	}
1923 	mutex_unlock(&nd.dentry->d_inode->i_mutex);
1924 	path_release(&nd);
1925 out:
1926 	putname(tmp);
1927 
1928 	return error;
1929 }
1930 
1931 asmlinkage long sys_mknod(const char __user *filename, int mode, unsigned dev)
1932 {
1933 	return sys_mknodat(AT_FDCWD, filename, mode, dev);
1934 }
1935 
1936 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1937 {
1938 	int error = may_create(dir, dentry, NULL);
1939 
1940 	if (error)
1941 		return error;
1942 
1943 	if (!dir->i_op || !dir->i_op->mkdir)
1944 		return -EPERM;
1945 
1946 	mode &= (S_IRWXUGO|S_ISVTX);
1947 	error = security_inode_mkdir(dir, dentry, mode);
1948 	if (error)
1949 		return error;
1950 
1951 	DQUOT_INIT(dir);
1952 	error = dir->i_op->mkdir(dir, dentry, mode);
1953 	if (!error)
1954 		fsnotify_mkdir(dir, dentry);
1955 	return error;
1956 }
1957 
1958 asmlinkage long sys_mkdirat(int dfd, const char __user *pathname, int mode)
1959 {
1960 	int error = 0;
1961 	char * tmp;
1962 	struct dentry *dentry;
1963 	struct nameidata nd;
1964 
1965 	tmp = getname(pathname);
1966 	error = PTR_ERR(tmp);
1967 	if (IS_ERR(tmp))
1968 		goto out_err;
1969 
1970 	error = do_path_lookup(dfd, tmp, LOOKUP_PARENT, &nd);
1971 	if (error)
1972 		goto out;
1973 	dentry = lookup_create(&nd, 1);
1974 	error = PTR_ERR(dentry);
1975 	if (IS_ERR(dentry))
1976 		goto out_unlock;
1977 
1978 	if (!IS_POSIXACL(nd.dentry->d_inode))
1979 		mode &= ~current->fs->umask;
1980 	error = vfs_mkdir(nd.dentry->d_inode, dentry, mode);
1981 	dput(dentry);
1982 out_unlock:
1983 	mutex_unlock(&nd.dentry->d_inode->i_mutex);
1984 	path_release(&nd);
1985 out:
1986 	putname(tmp);
1987 out_err:
1988 	return error;
1989 }
1990 
1991 asmlinkage long sys_mkdir(const char __user *pathname, int mode)
1992 {
1993 	return sys_mkdirat(AT_FDCWD, pathname, mode);
1994 }
1995 
1996 /*
1997  * We try to drop the dentry early: we should have
1998  * a usage count of 2 if we're the only user of this
1999  * dentry, and if that is true (possibly after pruning
2000  * the dcache), then we drop the dentry now.
2001  *
2002  * A low-level filesystem can, if it choses, legally
2003  * do a
2004  *
2005  *	if (!d_unhashed(dentry))
2006  *		return -EBUSY;
2007  *
2008  * if it cannot handle the case of removing a directory
2009  * that is still in use by something else..
2010  */
2011 void dentry_unhash(struct dentry *dentry)
2012 {
2013 	dget(dentry);
2014 	shrink_dcache_parent(dentry);
2015 	spin_lock(&dcache_lock);
2016 	spin_lock(&dentry->d_lock);
2017 	if (atomic_read(&dentry->d_count) == 2)
2018 		__d_drop(dentry);
2019 	spin_unlock(&dentry->d_lock);
2020 	spin_unlock(&dcache_lock);
2021 }
2022 
2023 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2024 {
2025 	int error = may_delete(dir, dentry, 1);
2026 
2027 	if (error)
2028 		return error;
2029 
2030 	if (!dir->i_op || !dir->i_op->rmdir)
2031 		return -EPERM;
2032 
2033 	DQUOT_INIT(dir);
2034 
2035 	mutex_lock(&dentry->d_inode->i_mutex);
2036 	dentry_unhash(dentry);
2037 	if (d_mountpoint(dentry))
2038 		error = -EBUSY;
2039 	else {
2040 		error = security_inode_rmdir(dir, dentry);
2041 		if (!error) {
2042 			error = dir->i_op->rmdir(dir, dentry);
2043 			if (!error)
2044 				dentry->d_inode->i_flags |= S_DEAD;
2045 		}
2046 	}
2047 	mutex_unlock(&dentry->d_inode->i_mutex);
2048 	if (!error) {
2049 		d_delete(dentry);
2050 	}
2051 	dput(dentry);
2052 
2053 	return error;
2054 }
2055 
2056 static long do_rmdir(int dfd, const char __user *pathname)
2057 {
2058 	int error = 0;
2059 	char * name;
2060 	struct dentry *dentry;
2061 	struct nameidata nd;
2062 
2063 	name = getname(pathname);
2064 	if(IS_ERR(name))
2065 		return PTR_ERR(name);
2066 
2067 	error = do_path_lookup(dfd, name, LOOKUP_PARENT, &nd);
2068 	if (error)
2069 		goto exit;
2070 
2071 	switch(nd.last_type) {
2072 		case LAST_DOTDOT:
2073 			error = -ENOTEMPTY;
2074 			goto exit1;
2075 		case LAST_DOT:
2076 			error = -EINVAL;
2077 			goto exit1;
2078 		case LAST_ROOT:
2079 			error = -EBUSY;
2080 			goto exit1;
2081 	}
2082 	mutex_lock_nested(&nd.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2083 	dentry = lookup_hash(&nd);
2084 	error = PTR_ERR(dentry);
2085 	if (IS_ERR(dentry))
2086 		goto exit2;
2087 	error = vfs_rmdir(nd.dentry->d_inode, dentry);
2088 	dput(dentry);
2089 exit2:
2090 	mutex_unlock(&nd.dentry->d_inode->i_mutex);
2091 exit1:
2092 	path_release(&nd);
2093 exit:
2094 	putname(name);
2095 	return error;
2096 }
2097 
2098 asmlinkage long sys_rmdir(const char __user *pathname)
2099 {
2100 	return do_rmdir(AT_FDCWD, pathname);
2101 }
2102 
2103 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2104 {
2105 	int error = may_delete(dir, dentry, 0);
2106 
2107 	if (error)
2108 		return error;
2109 
2110 	if (!dir->i_op || !dir->i_op->unlink)
2111 		return -EPERM;
2112 
2113 	DQUOT_INIT(dir);
2114 
2115 	mutex_lock(&dentry->d_inode->i_mutex);
2116 	if (d_mountpoint(dentry))
2117 		error = -EBUSY;
2118 	else {
2119 		error = security_inode_unlink(dir, dentry);
2120 		if (!error)
2121 			error = dir->i_op->unlink(dir, dentry);
2122 	}
2123 	mutex_unlock(&dentry->d_inode->i_mutex);
2124 
2125 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
2126 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2127 		d_delete(dentry);
2128 	}
2129 
2130 	return error;
2131 }
2132 
2133 /*
2134  * Make sure that the actual truncation of the file will occur outside its
2135  * directory's i_mutex.  Truncate can take a long time if there is a lot of
2136  * writeout happening, and we don't want to prevent access to the directory
2137  * while waiting on the I/O.
2138  */
2139 static long do_unlinkat(int dfd, const char __user *pathname)
2140 {
2141 	int error = 0;
2142 	char * name;
2143 	struct dentry *dentry;
2144 	struct nameidata nd;
2145 	struct inode *inode = NULL;
2146 
2147 	name = getname(pathname);
2148 	if(IS_ERR(name))
2149 		return PTR_ERR(name);
2150 
2151 	error = do_path_lookup(dfd, name, LOOKUP_PARENT, &nd);
2152 	if (error)
2153 		goto exit;
2154 	error = -EISDIR;
2155 	if (nd.last_type != LAST_NORM)
2156 		goto exit1;
2157 	mutex_lock_nested(&nd.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2158 	dentry = lookup_hash(&nd);
2159 	error = PTR_ERR(dentry);
2160 	if (!IS_ERR(dentry)) {
2161 		/* Why not before? Because we want correct error value */
2162 		if (nd.last.name[nd.last.len])
2163 			goto slashes;
2164 		inode = dentry->d_inode;
2165 		if (inode)
2166 			atomic_inc(&inode->i_count);
2167 		error = vfs_unlink(nd.dentry->d_inode, dentry);
2168 	exit2:
2169 		dput(dentry);
2170 	}
2171 	mutex_unlock(&nd.dentry->d_inode->i_mutex);
2172 	if (inode)
2173 		iput(inode);	/* truncate the inode here */
2174 exit1:
2175 	path_release(&nd);
2176 exit:
2177 	putname(name);
2178 	return error;
2179 
2180 slashes:
2181 	error = !dentry->d_inode ? -ENOENT :
2182 		S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2183 	goto exit2;
2184 }
2185 
2186 asmlinkage long sys_unlinkat(int dfd, const char __user *pathname, int flag)
2187 {
2188 	if ((flag & ~AT_REMOVEDIR) != 0)
2189 		return -EINVAL;
2190 
2191 	if (flag & AT_REMOVEDIR)
2192 		return do_rmdir(dfd, pathname);
2193 
2194 	return do_unlinkat(dfd, pathname);
2195 }
2196 
2197 asmlinkage long sys_unlink(const char __user *pathname)
2198 {
2199 	return do_unlinkat(AT_FDCWD, pathname);
2200 }
2201 
2202 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname, int mode)
2203 {
2204 	int error = may_create(dir, dentry, NULL);
2205 
2206 	if (error)
2207 		return error;
2208 
2209 	if (!dir->i_op || !dir->i_op->symlink)
2210 		return -EPERM;
2211 
2212 	error = security_inode_symlink(dir, dentry, oldname);
2213 	if (error)
2214 		return error;
2215 
2216 	DQUOT_INIT(dir);
2217 	error = dir->i_op->symlink(dir, dentry, oldname);
2218 	if (!error)
2219 		fsnotify_create(dir, dentry);
2220 	return error;
2221 }
2222 
2223 asmlinkage long sys_symlinkat(const char __user *oldname,
2224 			      int newdfd, const char __user *newname)
2225 {
2226 	int error = 0;
2227 	char * from;
2228 	char * to;
2229 	struct dentry *dentry;
2230 	struct nameidata nd;
2231 
2232 	from = getname(oldname);
2233 	if(IS_ERR(from))
2234 		return PTR_ERR(from);
2235 	to = getname(newname);
2236 	error = PTR_ERR(to);
2237 	if (IS_ERR(to))
2238 		goto out_putname;
2239 
2240 	error = do_path_lookup(newdfd, to, LOOKUP_PARENT, &nd);
2241 	if (error)
2242 		goto out;
2243 	dentry = lookup_create(&nd, 0);
2244 	error = PTR_ERR(dentry);
2245 	if (IS_ERR(dentry))
2246 		goto out_unlock;
2247 
2248 	error = vfs_symlink(nd.dentry->d_inode, dentry, from, S_IALLUGO);
2249 	dput(dentry);
2250 out_unlock:
2251 	mutex_unlock(&nd.dentry->d_inode->i_mutex);
2252 	path_release(&nd);
2253 out:
2254 	putname(to);
2255 out_putname:
2256 	putname(from);
2257 	return error;
2258 }
2259 
2260 asmlinkage long sys_symlink(const char __user *oldname, const char __user *newname)
2261 {
2262 	return sys_symlinkat(oldname, AT_FDCWD, newname);
2263 }
2264 
2265 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2266 {
2267 	struct inode *inode = old_dentry->d_inode;
2268 	int error;
2269 
2270 	if (!inode)
2271 		return -ENOENT;
2272 
2273 	error = may_create(dir, new_dentry, NULL);
2274 	if (error)
2275 		return error;
2276 
2277 	if (dir->i_sb != inode->i_sb)
2278 		return -EXDEV;
2279 
2280 	/*
2281 	 * A link to an append-only or immutable file cannot be created.
2282 	 */
2283 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2284 		return -EPERM;
2285 	if (!dir->i_op || !dir->i_op->link)
2286 		return -EPERM;
2287 	if (S_ISDIR(old_dentry->d_inode->i_mode))
2288 		return -EPERM;
2289 
2290 	error = security_inode_link(old_dentry, dir, new_dentry);
2291 	if (error)
2292 		return error;
2293 
2294 	mutex_lock(&old_dentry->d_inode->i_mutex);
2295 	DQUOT_INIT(dir);
2296 	error = dir->i_op->link(old_dentry, dir, new_dentry);
2297 	mutex_unlock(&old_dentry->d_inode->i_mutex);
2298 	if (!error)
2299 		fsnotify_create(dir, new_dentry);
2300 	return error;
2301 }
2302 
2303 /*
2304  * Hardlinks are often used in delicate situations.  We avoid
2305  * security-related surprises by not following symlinks on the
2306  * newname.  --KAB
2307  *
2308  * We don't follow them on the oldname either to be compatible
2309  * with linux 2.0, and to avoid hard-linking to directories
2310  * and other special files.  --ADM
2311  */
2312 asmlinkage long sys_linkat(int olddfd, const char __user *oldname,
2313 			   int newdfd, const char __user *newname,
2314 			   int flags)
2315 {
2316 	struct dentry *new_dentry;
2317 	struct nameidata nd, old_nd;
2318 	int error;
2319 	char * to;
2320 
2321 	if ((flags & ~AT_SYMLINK_FOLLOW) != 0)
2322 		return -EINVAL;
2323 
2324 	to = getname(newname);
2325 	if (IS_ERR(to))
2326 		return PTR_ERR(to);
2327 
2328 	error = __user_walk_fd(olddfd, oldname,
2329 			       flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0,
2330 			       &old_nd);
2331 	if (error)
2332 		goto exit;
2333 	error = do_path_lookup(newdfd, to, LOOKUP_PARENT, &nd);
2334 	if (error)
2335 		goto out;
2336 	error = -EXDEV;
2337 	if (old_nd.mnt != nd.mnt)
2338 		goto out_release;
2339 	new_dentry = lookup_create(&nd, 0);
2340 	error = PTR_ERR(new_dentry);
2341 	if (IS_ERR(new_dentry))
2342 		goto out_unlock;
2343 	error = vfs_link(old_nd.dentry, nd.dentry->d_inode, new_dentry);
2344 	dput(new_dentry);
2345 out_unlock:
2346 	mutex_unlock(&nd.dentry->d_inode->i_mutex);
2347 out_release:
2348 	path_release(&nd);
2349 out:
2350 	path_release(&old_nd);
2351 exit:
2352 	putname(to);
2353 
2354 	return error;
2355 }
2356 
2357 asmlinkage long sys_link(const char __user *oldname, const char __user *newname)
2358 {
2359 	return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
2360 }
2361 
2362 /*
2363  * The worst of all namespace operations - renaming directory. "Perverted"
2364  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
2365  * Problems:
2366  *	a) we can get into loop creation. Check is done in is_subdir().
2367  *	b) race potential - two innocent renames can create a loop together.
2368  *	   That's where 4.4 screws up. Current fix: serialization on
2369  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
2370  *	   story.
2371  *	c) we have to lock _three_ objects - parents and victim (if it exists).
2372  *	   And that - after we got ->i_mutex on parents (until then we don't know
2373  *	   whether the target exists).  Solution: try to be smart with locking
2374  *	   order for inodes.  We rely on the fact that tree topology may change
2375  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
2376  *	   move will be locked.  Thus we can rank directories by the tree
2377  *	   (ancestors first) and rank all non-directories after them.
2378  *	   That works since everybody except rename does "lock parent, lookup,
2379  *	   lock child" and rename is under ->s_vfs_rename_mutex.
2380  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
2381  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
2382  *	   we'd better make sure that there's no link(2) for them.
2383  *	d) some filesystems don't support opened-but-unlinked directories,
2384  *	   either because of layout or because they are not ready to deal with
2385  *	   all cases correctly. The latter will be fixed (taking this sort of
2386  *	   stuff into VFS), but the former is not going away. Solution: the same
2387  *	   trick as in rmdir().
2388  *	e) conversion from fhandle to dentry may come in the wrong moment - when
2389  *	   we are removing the target. Solution: we will have to grab ->i_mutex
2390  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
2391  *	   ->i_mutex on parents, which works but leads to some truely excessive
2392  *	   locking].
2393  */
2394 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
2395 			  struct inode *new_dir, struct dentry *new_dentry)
2396 {
2397 	int error = 0;
2398 	struct inode *target;
2399 
2400 	/*
2401 	 * If we are going to change the parent - check write permissions,
2402 	 * we'll need to flip '..'.
2403 	 */
2404 	if (new_dir != old_dir) {
2405 		error = permission(old_dentry->d_inode, MAY_WRITE, NULL);
2406 		if (error)
2407 			return error;
2408 	}
2409 
2410 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2411 	if (error)
2412 		return error;
2413 
2414 	target = new_dentry->d_inode;
2415 	if (target) {
2416 		mutex_lock(&target->i_mutex);
2417 		dentry_unhash(new_dentry);
2418 	}
2419 	if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2420 		error = -EBUSY;
2421 	else
2422 		error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2423 	if (target) {
2424 		if (!error)
2425 			target->i_flags |= S_DEAD;
2426 		mutex_unlock(&target->i_mutex);
2427 		if (d_unhashed(new_dentry))
2428 			d_rehash(new_dentry);
2429 		dput(new_dentry);
2430 	}
2431 	if (!error)
2432 		if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2433 			d_move(old_dentry,new_dentry);
2434 	return error;
2435 }
2436 
2437 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
2438 			    struct inode *new_dir, struct dentry *new_dentry)
2439 {
2440 	struct inode *target;
2441 	int error;
2442 
2443 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2444 	if (error)
2445 		return error;
2446 
2447 	dget(new_dentry);
2448 	target = new_dentry->d_inode;
2449 	if (target)
2450 		mutex_lock(&target->i_mutex);
2451 	if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2452 		error = -EBUSY;
2453 	else
2454 		error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2455 	if (!error) {
2456 		if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2457 			d_move(old_dentry, new_dentry);
2458 	}
2459 	if (target)
2460 		mutex_unlock(&target->i_mutex);
2461 	dput(new_dentry);
2462 	return error;
2463 }
2464 
2465 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2466 	       struct inode *new_dir, struct dentry *new_dentry)
2467 {
2468 	int error;
2469 	int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
2470 	const char *old_name;
2471 
2472 	if (old_dentry->d_inode == new_dentry->d_inode)
2473  		return 0;
2474 
2475 	error = may_delete(old_dir, old_dentry, is_dir);
2476 	if (error)
2477 		return error;
2478 
2479 	if (!new_dentry->d_inode)
2480 		error = may_create(new_dir, new_dentry, NULL);
2481 	else
2482 		error = may_delete(new_dir, new_dentry, is_dir);
2483 	if (error)
2484 		return error;
2485 
2486 	if (!old_dir->i_op || !old_dir->i_op->rename)
2487 		return -EPERM;
2488 
2489 	DQUOT_INIT(old_dir);
2490 	DQUOT_INIT(new_dir);
2491 
2492 	old_name = fsnotify_oldname_init(old_dentry->d_name.name);
2493 
2494 	if (is_dir)
2495 		error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
2496 	else
2497 		error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
2498 	if (!error) {
2499 		const char *new_name = old_dentry->d_name.name;
2500 		fsnotify_move(old_dir, new_dir, old_name, new_name, is_dir,
2501 			      new_dentry->d_inode, old_dentry->d_inode);
2502 	}
2503 	fsnotify_oldname_free(old_name);
2504 
2505 	return error;
2506 }
2507 
2508 static int do_rename(int olddfd, const char *oldname,
2509 			int newdfd, const char *newname)
2510 {
2511 	int error = 0;
2512 	struct dentry * old_dir, * new_dir;
2513 	struct dentry * old_dentry, *new_dentry;
2514 	struct dentry * trap;
2515 	struct nameidata oldnd, newnd;
2516 
2517 	error = do_path_lookup(olddfd, oldname, LOOKUP_PARENT, &oldnd);
2518 	if (error)
2519 		goto exit;
2520 
2521 	error = do_path_lookup(newdfd, newname, LOOKUP_PARENT, &newnd);
2522 	if (error)
2523 		goto exit1;
2524 
2525 	error = -EXDEV;
2526 	if (oldnd.mnt != newnd.mnt)
2527 		goto exit2;
2528 
2529 	old_dir = oldnd.dentry;
2530 	error = -EBUSY;
2531 	if (oldnd.last_type != LAST_NORM)
2532 		goto exit2;
2533 
2534 	new_dir = newnd.dentry;
2535 	if (newnd.last_type != LAST_NORM)
2536 		goto exit2;
2537 
2538 	trap = lock_rename(new_dir, old_dir);
2539 
2540 	old_dentry = lookup_hash(&oldnd);
2541 	error = PTR_ERR(old_dentry);
2542 	if (IS_ERR(old_dentry))
2543 		goto exit3;
2544 	/* source must exist */
2545 	error = -ENOENT;
2546 	if (!old_dentry->d_inode)
2547 		goto exit4;
2548 	/* unless the source is a directory trailing slashes give -ENOTDIR */
2549 	if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
2550 		error = -ENOTDIR;
2551 		if (oldnd.last.name[oldnd.last.len])
2552 			goto exit4;
2553 		if (newnd.last.name[newnd.last.len])
2554 			goto exit4;
2555 	}
2556 	/* source should not be ancestor of target */
2557 	error = -EINVAL;
2558 	if (old_dentry == trap)
2559 		goto exit4;
2560 	new_dentry = lookup_hash(&newnd);
2561 	error = PTR_ERR(new_dentry);
2562 	if (IS_ERR(new_dentry))
2563 		goto exit4;
2564 	/* target should not be an ancestor of source */
2565 	error = -ENOTEMPTY;
2566 	if (new_dentry == trap)
2567 		goto exit5;
2568 
2569 	error = vfs_rename(old_dir->d_inode, old_dentry,
2570 				   new_dir->d_inode, new_dentry);
2571 exit5:
2572 	dput(new_dentry);
2573 exit4:
2574 	dput(old_dentry);
2575 exit3:
2576 	unlock_rename(new_dir, old_dir);
2577 exit2:
2578 	path_release(&newnd);
2579 exit1:
2580 	path_release(&oldnd);
2581 exit:
2582 	return error;
2583 }
2584 
2585 asmlinkage long sys_renameat(int olddfd, const char __user *oldname,
2586 			     int newdfd, const char __user *newname)
2587 {
2588 	int error;
2589 	char * from;
2590 	char * to;
2591 
2592 	from = getname(oldname);
2593 	if(IS_ERR(from))
2594 		return PTR_ERR(from);
2595 	to = getname(newname);
2596 	error = PTR_ERR(to);
2597 	if (!IS_ERR(to)) {
2598 		error = do_rename(olddfd, from, newdfd, to);
2599 		putname(to);
2600 	}
2601 	putname(from);
2602 	return error;
2603 }
2604 
2605 asmlinkage long sys_rename(const char __user *oldname, const char __user *newname)
2606 {
2607 	return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
2608 }
2609 
2610 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
2611 {
2612 	int len;
2613 
2614 	len = PTR_ERR(link);
2615 	if (IS_ERR(link))
2616 		goto out;
2617 
2618 	len = strlen(link);
2619 	if (len > (unsigned) buflen)
2620 		len = buflen;
2621 	if (copy_to_user(buffer, link, len))
2622 		len = -EFAULT;
2623 out:
2624 	return len;
2625 }
2626 
2627 /*
2628  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
2629  * have ->follow_link() touching nd only in nd_set_link().  Using (or not
2630  * using) it for any given inode is up to filesystem.
2631  */
2632 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2633 {
2634 	struct nameidata nd;
2635 	void *cookie;
2636 
2637 	nd.depth = 0;
2638 	cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
2639 	if (!IS_ERR(cookie)) {
2640 		int res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
2641 		if (dentry->d_inode->i_op->put_link)
2642 			dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
2643 		cookie = ERR_PTR(res);
2644 	}
2645 	return PTR_ERR(cookie);
2646 }
2647 
2648 int vfs_follow_link(struct nameidata *nd, const char *link)
2649 {
2650 	return __vfs_follow_link(nd, link);
2651 }
2652 
2653 /* get the link contents into pagecache */
2654 static char *page_getlink(struct dentry * dentry, struct page **ppage)
2655 {
2656 	struct page * page;
2657 	struct address_space *mapping = dentry->d_inode->i_mapping;
2658 	page = read_mapping_page(mapping, 0, NULL);
2659 	if (IS_ERR(page))
2660 		return (char*)page;
2661 	*ppage = page;
2662 	return kmap(page);
2663 }
2664 
2665 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2666 {
2667 	struct page *page = NULL;
2668 	char *s = page_getlink(dentry, &page);
2669 	int res = vfs_readlink(dentry,buffer,buflen,s);
2670 	if (page) {
2671 		kunmap(page);
2672 		page_cache_release(page);
2673 	}
2674 	return res;
2675 }
2676 
2677 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
2678 {
2679 	struct page *page = NULL;
2680 	nd_set_link(nd, page_getlink(dentry, &page));
2681 	return page;
2682 }
2683 
2684 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2685 {
2686 	struct page *page = cookie;
2687 
2688 	if (page) {
2689 		kunmap(page);
2690 		page_cache_release(page);
2691 	}
2692 }
2693 
2694 int __page_symlink(struct inode *inode, const char *symname, int len,
2695 		gfp_t gfp_mask)
2696 {
2697 	struct address_space *mapping = inode->i_mapping;
2698 	struct page *page;
2699 	int err;
2700 	char *kaddr;
2701 
2702 retry:
2703 	err = -ENOMEM;
2704 	page = find_or_create_page(mapping, 0, gfp_mask);
2705 	if (!page)
2706 		goto fail;
2707 	err = mapping->a_ops->prepare_write(NULL, page, 0, len-1);
2708 	if (err == AOP_TRUNCATED_PAGE) {
2709 		page_cache_release(page);
2710 		goto retry;
2711 	}
2712 	if (err)
2713 		goto fail_map;
2714 	kaddr = kmap_atomic(page, KM_USER0);
2715 	memcpy(kaddr, symname, len-1);
2716 	kunmap_atomic(kaddr, KM_USER0);
2717 	err = mapping->a_ops->commit_write(NULL, page, 0, len-1);
2718 	if (err == AOP_TRUNCATED_PAGE) {
2719 		page_cache_release(page);
2720 		goto retry;
2721 	}
2722 	if (err)
2723 		goto fail_map;
2724 	/*
2725 	 * Notice that we are _not_ going to block here - end of page is
2726 	 * unmapped, so this will only try to map the rest of page, see
2727 	 * that it is unmapped (typically even will not look into inode -
2728 	 * ->i_size will be enough for everything) and zero it out.
2729 	 * OTOH it's obviously correct and should make the page up-to-date.
2730 	 */
2731 	if (!PageUptodate(page)) {
2732 		err = mapping->a_ops->readpage(NULL, page);
2733 		if (err != AOP_TRUNCATED_PAGE)
2734 			wait_on_page_locked(page);
2735 	} else {
2736 		unlock_page(page);
2737 	}
2738 	page_cache_release(page);
2739 	if (err < 0)
2740 		goto fail;
2741 	mark_inode_dirty(inode);
2742 	return 0;
2743 fail_map:
2744 	unlock_page(page);
2745 	page_cache_release(page);
2746 fail:
2747 	return err;
2748 }
2749 
2750 int page_symlink(struct inode *inode, const char *symname, int len)
2751 {
2752 	return __page_symlink(inode, symname, len,
2753 			mapping_gfp_mask(inode->i_mapping));
2754 }
2755 
2756 const struct inode_operations page_symlink_inode_operations = {
2757 	.readlink	= generic_readlink,
2758 	.follow_link	= page_follow_link_light,
2759 	.put_link	= page_put_link,
2760 };
2761 
2762 EXPORT_SYMBOL(__user_walk);
2763 EXPORT_SYMBOL(__user_walk_fd);
2764 EXPORT_SYMBOL(follow_down);
2765 EXPORT_SYMBOL(follow_up);
2766 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
2767 EXPORT_SYMBOL(getname);
2768 EXPORT_SYMBOL(lock_rename);
2769 EXPORT_SYMBOL(lookup_one_len);
2770 EXPORT_SYMBOL(page_follow_link_light);
2771 EXPORT_SYMBOL(page_put_link);
2772 EXPORT_SYMBOL(page_readlink);
2773 EXPORT_SYMBOL(__page_symlink);
2774 EXPORT_SYMBOL(page_symlink);
2775 EXPORT_SYMBOL(page_symlink_inode_operations);
2776 EXPORT_SYMBOL(path_lookup);
2777 EXPORT_SYMBOL(path_release);
2778 EXPORT_SYMBOL(path_walk);
2779 EXPORT_SYMBOL(permission);
2780 EXPORT_SYMBOL(vfs_permission);
2781 EXPORT_SYMBOL(file_permission);
2782 EXPORT_SYMBOL(unlock_rename);
2783 EXPORT_SYMBOL(vfs_create);
2784 EXPORT_SYMBOL(vfs_follow_link);
2785 EXPORT_SYMBOL(vfs_link);
2786 EXPORT_SYMBOL(vfs_mkdir);
2787 EXPORT_SYMBOL(vfs_mknod);
2788 EXPORT_SYMBOL(generic_permission);
2789 EXPORT_SYMBOL(vfs_readlink);
2790 EXPORT_SYMBOL(vfs_rename);
2791 EXPORT_SYMBOL(vfs_rmdir);
2792 EXPORT_SYMBOL(vfs_symlink);
2793 EXPORT_SYMBOL(vfs_unlink);
2794 EXPORT_SYMBOL(dentry_unhash);
2795 EXPORT_SYMBOL(generic_readlink);
2796