xref: /openbmc/linux/fs/namei.c (revision 9f69e8a7)
1 /*
2  *  linux/fs/namei.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * Some corrections by tytso.
9  */
10 
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12  * lookup logic.
13  */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15  */
16 
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <asm/uaccess.h>
39 
40 #include "internal.h"
41 #include "mount.h"
42 
43 /* [Feb-1997 T. Schoebel-Theuer]
44  * Fundamental changes in the pathname lookup mechanisms (namei)
45  * were necessary because of omirr.  The reason is that omirr needs
46  * to know the _real_ pathname, not the user-supplied one, in case
47  * of symlinks (and also when transname replacements occur).
48  *
49  * The new code replaces the old recursive symlink resolution with
50  * an iterative one (in case of non-nested symlink chains).  It does
51  * this with calls to <fs>_follow_link().
52  * As a side effect, dir_namei(), _namei() and follow_link() are now
53  * replaced with a single function lookup_dentry() that can handle all
54  * the special cases of the former code.
55  *
56  * With the new dcache, the pathname is stored at each inode, at least as
57  * long as the refcount of the inode is positive.  As a side effect, the
58  * size of the dcache depends on the inode cache and thus is dynamic.
59  *
60  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
61  * resolution to correspond with current state of the code.
62  *
63  * Note that the symlink resolution is not *completely* iterative.
64  * There is still a significant amount of tail- and mid- recursion in
65  * the algorithm.  Also, note that <fs>_readlink() is not used in
66  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
67  * may return different results than <fs>_follow_link().  Many virtual
68  * filesystems (including /proc) exhibit this behavior.
69  */
70 
71 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
72  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
73  * and the name already exists in form of a symlink, try to create the new
74  * name indicated by the symlink. The old code always complained that the
75  * name already exists, due to not following the symlink even if its target
76  * is nonexistent.  The new semantics affects also mknod() and link() when
77  * the name is a symlink pointing to a non-existent name.
78  *
79  * I don't know which semantics is the right one, since I have no access
80  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
81  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
82  * "old" one. Personally, I think the new semantics is much more logical.
83  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
84  * file does succeed in both HP-UX and SunOs, but not in Solaris
85  * and in the old Linux semantics.
86  */
87 
88 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
89  * semantics.  See the comments in "open_namei" and "do_link" below.
90  *
91  * [10-Sep-98 Alan Modra] Another symlink change.
92  */
93 
94 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
95  *	inside the path - always follow.
96  *	in the last component in creation/removal/renaming - never follow.
97  *	if LOOKUP_FOLLOW passed - follow.
98  *	if the pathname has trailing slashes - follow.
99  *	otherwise - don't follow.
100  * (applied in that order).
101  *
102  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
103  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
104  * During the 2.4 we need to fix the userland stuff depending on it -
105  * hopefully we will be able to get rid of that wart in 2.5. So far only
106  * XEmacs seems to be relying on it...
107  */
108 /*
109  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
110  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
111  * any extra contention...
112  */
113 
114 /* In order to reduce some races, while at the same time doing additional
115  * checking and hopefully speeding things up, we copy filenames to the
116  * kernel data space before using them..
117  *
118  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
119  * PATH_MAX includes the nul terminator --RR.
120  */
121 
122 #define EMBEDDED_NAME_MAX	(PATH_MAX - offsetof(struct filename, iname))
123 
124 struct filename *
125 getname_flags(const char __user *filename, int flags, int *empty)
126 {
127 	struct filename *result;
128 	char *kname;
129 	int len;
130 
131 	result = audit_reusename(filename);
132 	if (result)
133 		return result;
134 
135 	result = __getname();
136 	if (unlikely(!result))
137 		return ERR_PTR(-ENOMEM);
138 
139 	/*
140 	 * First, try to embed the struct filename inside the names_cache
141 	 * allocation
142 	 */
143 	kname = (char *)result->iname;
144 	result->name = kname;
145 
146 	len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
147 	if (unlikely(len < 0)) {
148 		__putname(result);
149 		return ERR_PTR(len);
150 	}
151 
152 	/*
153 	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
154 	 * separate struct filename so we can dedicate the entire
155 	 * names_cache allocation for the pathname, and re-do the copy from
156 	 * userland.
157 	 */
158 	if (unlikely(len == EMBEDDED_NAME_MAX)) {
159 		const size_t size = offsetof(struct filename, iname[1]);
160 		kname = (char *)result;
161 
162 		/*
163 		 * size is chosen that way we to guarantee that
164 		 * result->iname[0] is within the same object and that
165 		 * kname can't be equal to result->iname, no matter what.
166 		 */
167 		result = kzalloc(size, GFP_KERNEL);
168 		if (unlikely(!result)) {
169 			__putname(kname);
170 			return ERR_PTR(-ENOMEM);
171 		}
172 		result->name = kname;
173 		len = strncpy_from_user(kname, filename, PATH_MAX);
174 		if (unlikely(len < 0)) {
175 			__putname(kname);
176 			kfree(result);
177 			return ERR_PTR(len);
178 		}
179 		if (unlikely(len == PATH_MAX)) {
180 			__putname(kname);
181 			kfree(result);
182 			return ERR_PTR(-ENAMETOOLONG);
183 		}
184 	}
185 
186 	result->refcnt = 1;
187 	/* The empty path is special. */
188 	if (unlikely(!len)) {
189 		if (empty)
190 			*empty = 1;
191 		if (!(flags & LOOKUP_EMPTY)) {
192 			putname(result);
193 			return ERR_PTR(-ENOENT);
194 		}
195 	}
196 
197 	result->uptr = filename;
198 	result->aname = NULL;
199 	audit_getname(result);
200 	return result;
201 }
202 
203 struct filename *
204 getname(const char __user * filename)
205 {
206 	return getname_flags(filename, 0, NULL);
207 }
208 
209 struct filename *
210 getname_kernel(const char * filename)
211 {
212 	struct filename *result;
213 	int len = strlen(filename) + 1;
214 
215 	result = __getname();
216 	if (unlikely(!result))
217 		return ERR_PTR(-ENOMEM);
218 
219 	if (len <= EMBEDDED_NAME_MAX) {
220 		result->name = (char *)result->iname;
221 	} else if (len <= PATH_MAX) {
222 		struct filename *tmp;
223 
224 		tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
225 		if (unlikely(!tmp)) {
226 			__putname(result);
227 			return ERR_PTR(-ENOMEM);
228 		}
229 		tmp->name = (char *)result;
230 		result = tmp;
231 	} else {
232 		__putname(result);
233 		return ERR_PTR(-ENAMETOOLONG);
234 	}
235 	memcpy((char *)result->name, filename, len);
236 	result->uptr = NULL;
237 	result->aname = NULL;
238 	result->refcnt = 1;
239 	audit_getname(result);
240 
241 	return result;
242 }
243 
244 void putname(struct filename *name)
245 {
246 	BUG_ON(name->refcnt <= 0);
247 
248 	if (--name->refcnt > 0)
249 		return;
250 
251 	if (name->name != name->iname) {
252 		__putname(name->name);
253 		kfree(name);
254 	} else
255 		__putname(name);
256 }
257 
258 static int check_acl(struct inode *inode, int mask)
259 {
260 #ifdef CONFIG_FS_POSIX_ACL
261 	struct posix_acl *acl;
262 
263 	if (mask & MAY_NOT_BLOCK) {
264 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
265 	        if (!acl)
266 	                return -EAGAIN;
267 		/* no ->get_acl() calls in RCU mode... */
268 		if (acl == ACL_NOT_CACHED)
269 			return -ECHILD;
270 	        return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
271 	}
272 
273 	acl = get_acl(inode, ACL_TYPE_ACCESS);
274 	if (IS_ERR(acl))
275 		return PTR_ERR(acl);
276 	if (acl) {
277 	        int error = posix_acl_permission(inode, acl, mask);
278 	        posix_acl_release(acl);
279 	        return error;
280 	}
281 #endif
282 
283 	return -EAGAIN;
284 }
285 
286 /*
287  * This does the basic permission checking
288  */
289 static int acl_permission_check(struct inode *inode, int mask)
290 {
291 	unsigned int mode = inode->i_mode;
292 
293 	if (likely(uid_eq(current_fsuid(), inode->i_uid)))
294 		mode >>= 6;
295 	else {
296 		if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
297 			int error = check_acl(inode, mask);
298 			if (error != -EAGAIN)
299 				return error;
300 		}
301 
302 		if (in_group_p(inode->i_gid))
303 			mode >>= 3;
304 	}
305 
306 	/*
307 	 * If the DACs are ok we don't need any capability check.
308 	 */
309 	if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
310 		return 0;
311 	return -EACCES;
312 }
313 
314 /**
315  * generic_permission -  check for access rights on a Posix-like filesystem
316  * @inode:	inode to check access rights for
317  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
318  *
319  * Used to check for read/write/execute permissions on a file.
320  * We use "fsuid" for this, letting us set arbitrary permissions
321  * for filesystem access without changing the "normal" uids which
322  * are used for other things.
323  *
324  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
325  * request cannot be satisfied (eg. requires blocking or too much complexity).
326  * It would then be called again in ref-walk mode.
327  */
328 int generic_permission(struct inode *inode, int mask)
329 {
330 	int ret;
331 
332 	/*
333 	 * Do the basic permission checks.
334 	 */
335 	ret = acl_permission_check(inode, mask);
336 	if (ret != -EACCES)
337 		return ret;
338 
339 	if (S_ISDIR(inode->i_mode)) {
340 		/* DACs are overridable for directories */
341 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
342 			return 0;
343 		if (!(mask & MAY_WRITE))
344 			if (capable_wrt_inode_uidgid(inode,
345 						     CAP_DAC_READ_SEARCH))
346 				return 0;
347 		return -EACCES;
348 	}
349 	/*
350 	 * Read/write DACs are always overridable.
351 	 * Executable DACs are overridable when there is
352 	 * at least one exec bit set.
353 	 */
354 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
355 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
356 			return 0;
357 
358 	/*
359 	 * Searching includes executable on directories, else just read.
360 	 */
361 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
362 	if (mask == MAY_READ)
363 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
364 			return 0;
365 
366 	return -EACCES;
367 }
368 EXPORT_SYMBOL(generic_permission);
369 
370 /*
371  * We _really_ want to just do "generic_permission()" without
372  * even looking at the inode->i_op values. So we keep a cache
373  * flag in inode->i_opflags, that says "this has not special
374  * permission function, use the fast case".
375  */
376 static inline int do_inode_permission(struct inode *inode, int mask)
377 {
378 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
379 		if (likely(inode->i_op->permission))
380 			return inode->i_op->permission(inode, mask);
381 
382 		/* This gets set once for the inode lifetime */
383 		spin_lock(&inode->i_lock);
384 		inode->i_opflags |= IOP_FASTPERM;
385 		spin_unlock(&inode->i_lock);
386 	}
387 	return generic_permission(inode, mask);
388 }
389 
390 /**
391  * __inode_permission - Check for access rights to a given inode
392  * @inode: Inode to check permission on
393  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
394  *
395  * Check for read/write/execute permissions on an inode.
396  *
397  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
398  *
399  * This does not check for a read-only file system.  You probably want
400  * inode_permission().
401  */
402 int __inode_permission(struct inode *inode, int mask)
403 {
404 	int retval;
405 
406 	if (unlikely(mask & MAY_WRITE)) {
407 		/*
408 		 * Nobody gets write access to an immutable file.
409 		 */
410 		if (IS_IMMUTABLE(inode))
411 			return -EACCES;
412 	}
413 
414 	retval = do_inode_permission(inode, mask);
415 	if (retval)
416 		return retval;
417 
418 	retval = devcgroup_inode_permission(inode, mask);
419 	if (retval)
420 		return retval;
421 
422 	return security_inode_permission(inode, mask);
423 }
424 EXPORT_SYMBOL(__inode_permission);
425 
426 /**
427  * sb_permission - Check superblock-level permissions
428  * @sb: Superblock of inode to check permission on
429  * @inode: Inode to check permission on
430  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
431  *
432  * Separate out file-system wide checks from inode-specific permission checks.
433  */
434 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
435 {
436 	if (unlikely(mask & MAY_WRITE)) {
437 		umode_t mode = inode->i_mode;
438 
439 		/* Nobody gets write access to a read-only fs. */
440 		if ((sb->s_flags & MS_RDONLY) &&
441 		    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
442 			return -EROFS;
443 	}
444 	return 0;
445 }
446 
447 /**
448  * inode_permission - Check for access rights to a given inode
449  * @inode: Inode to check permission on
450  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
451  *
452  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
453  * this, letting us set arbitrary permissions for filesystem access without
454  * changing the "normal" UIDs which are used for other things.
455  *
456  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
457  */
458 int inode_permission(struct inode *inode, int mask)
459 {
460 	int retval;
461 
462 	retval = sb_permission(inode->i_sb, inode, mask);
463 	if (retval)
464 		return retval;
465 	return __inode_permission(inode, mask);
466 }
467 EXPORT_SYMBOL(inode_permission);
468 
469 /**
470  * path_get - get a reference to a path
471  * @path: path to get the reference to
472  *
473  * Given a path increment the reference count to the dentry and the vfsmount.
474  */
475 void path_get(const struct path *path)
476 {
477 	mntget(path->mnt);
478 	dget(path->dentry);
479 }
480 EXPORT_SYMBOL(path_get);
481 
482 /**
483  * path_put - put a reference to a path
484  * @path: path to put the reference to
485  *
486  * Given a path decrement the reference count to the dentry and the vfsmount.
487  */
488 void path_put(const struct path *path)
489 {
490 	dput(path->dentry);
491 	mntput(path->mnt);
492 }
493 EXPORT_SYMBOL(path_put);
494 
495 struct nameidata {
496 	struct path	path;
497 	struct qstr	last;
498 	struct path	root;
499 	struct inode	*inode; /* path.dentry.d_inode */
500 	unsigned int	flags;
501 	unsigned	seq, m_seq;
502 	int		last_type;
503 	unsigned	depth;
504 	struct file	*base;
505 	char *saved_names[MAX_NESTED_LINKS + 1];
506 };
507 
508 /*
509  * Path walking has 2 modes, rcu-walk and ref-walk (see
510  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
511  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
512  * normal reference counts on dentries and vfsmounts to transition to rcu-walk
513  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
514  * got stuck, so ref-walk may continue from there. If this is not successful
515  * (eg. a seqcount has changed), then failure is returned and it's up to caller
516  * to restart the path walk from the beginning in ref-walk mode.
517  */
518 
519 /**
520  * unlazy_walk - try to switch to ref-walk mode.
521  * @nd: nameidata pathwalk data
522  * @dentry: child of nd->path.dentry or NULL
523  * Returns: 0 on success, -ECHILD on failure
524  *
525  * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
526  * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
527  * @nd or NULL.  Must be called from rcu-walk context.
528  */
529 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
530 {
531 	struct fs_struct *fs = current->fs;
532 	struct dentry *parent = nd->path.dentry;
533 
534 	BUG_ON(!(nd->flags & LOOKUP_RCU));
535 
536 	/*
537 	 * After legitimizing the bastards, terminate_walk()
538 	 * will do the right thing for non-RCU mode, and all our
539 	 * subsequent exit cases should rcu_read_unlock()
540 	 * before returning.  Do vfsmount first; if dentry
541 	 * can't be legitimized, just set nd->path.dentry to NULL
542 	 * and rely on dput(NULL) being a no-op.
543 	 */
544 	if (!legitimize_mnt(nd->path.mnt, nd->m_seq))
545 		return -ECHILD;
546 	nd->flags &= ~LOOKUP_RCU;
547 
548 	if (!lockref_get_not_dead(&parent->d_lockref)) {
549 		nd->path.dentry = NULL;
550 		goto out;
551 	}
552 
553 	/*
554 	 * For a negative lookup, the lookup sequence point is the parents
555 	 * sequence point, and it only needs to revalidate the parent dentry.
556 	 *
557 	 * For a positive lookup, we need to move both the parent and the
558 	 * dentry from the RCU domain to be properly refcounted. And the
559 	 * sequence number in the dentry validates *both* dentry counters,
560 	 * since we checked the sequence number of the parent after we got
561 	 * the child sequence number. So we know the parent must still
562 	 * be valid if the child sequence number is still valid.
563 	 */
564 	if (!dentry) {
565 		if (read_seqcount_retry(&parent->d_seq, nd->seq))
566 			goto out;
567 		BUG_ON(nd->inode != parent->d_inode);
568 	} else {
569 		if (!lockref_get_not_dead(&dentry->d_lockref))
570 			goto out;
571 		if (read_seqcount_retry(&dentry->d_seq, nd->seq))
572 			goto drop_dentry;
573 	}
574 
575 	/*
576 	 * Sequence counts matched. Now make sure that the root is
577 	 * still valid and get it if required.
578 	 */
579 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
580 		spin_lock(&fs->lock);
581 		if (nd->root.mnt != fs->root.mnt || nd->root.dentry != fs->root.dentry)
582 			goto unlock_and_drop_dentry;
583 		path_get(&nd->root);
584 		spin_unlock(&fs->lock);
585 	}
586 
587 	rcu_read_unlock();
588 	return 0;
589 
590 unlock_and_drop_dentry:
591 	spin_unlock(&fs->lock);
592 drop_dentry:
593 	rcu_read_unlock();
594 	dput(dentry);
595 	goto drop_root_mnt;
596 out:
597 	rcu_read_unlock();
598 drop_root_mnt:
599 	if (!(nd->flags & LOOKUP_ROOT))
600 		nd->root.mnt = NULL;
601 	return -ECHILD;
602 }
603 
604 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
605 {
606 	return dentry->d_op->d_revalidate(dentry, flags);
607 }
608 
609 /**
610  * complete_walk - successful completion of path walk
611  * @nd:  pointer nameidata
612  *
613  * If we had been in RCU mode, drop out of it and legitimize nd->path.
614  * Revalidate the final result, unless we'd already done that during
615  * the path walk or the filesystem doesn't ask for it.  Return 0 on
616  * success, -error on failure.  In case of failure caller does not
617  * need to drop nd->path.
618  */
619 static int complete_walk(struct nameidata *nd)
620 {
621 	struct dentry *dentry = nd->path.dentry;
622 	int status;
623 
624 	if (nd->flags & LOOKUP_RCU) {
625 		nd->flags &= ~LOOKUP_RCU;
626 		if (!(nd->flags & LOOKUP_ROOT))
627 			nd->root.mnt = NULL;
628 
629 		if (!legitimize_mnt(nd->path.mnt, nd->m_seq)) {
630 			rcu_read_unlock();
631 			return -ECHILD;
632 		}
633 		if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) {
634 			rcu_read_unlock();
635 			mntput(nd->path.mnt);
636 			return -ECHILD;
637 		}
638 		if (read_seqcount_retry(&dentry->d_seq, nd->seq)) {
639 			rcu_read_unlock();
640 			dput(dentry);
641 			mntput(nd->path.mnt);
642 			return -ECHILD;
643 		}
644 		rcu_read_unlock();
645 	}
646 
647 	if (likely(!(nd->flags & LOOKUP_JUMPED)))
648 		return 0;
649 
650 	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
651 		return 0;
652 
653 	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
654 	if (status > 0)
655 		return 0;
656 
657 	if (!status)
658 		status = -ESTALE;
659 
660 	path_put(&nd->path);
661 	return status;
662 }
663 
664 static __always_inline void set_root(struct nameidata *nd)
665 {
666 	get_fs_root(current->fs, &nd->root);
667 }
668 
669 static int link_path_walk(const char *, struct nameidata *);
670 
671 static __always_inline unsigned set_root_rcu(struct nameidata *nd)
672 {
673 	struct fs_struct *fs = current->fs;
674 	unsigned seq, res;
675 
676 	do {
677 		seq = read_seqcount_begin(&fs->seq);
678 		nd->root = fs->root;
679 		res = __read_seqcount_begin(&nd->root.dentry->d_seq);
680 	} while (read_seqcount_retry(&fs->seq, seq));
681 	return res;
682 }
683 
684 static void path_put_conditional(struct path *path, struct nameidata *nd)
685 {
686 	dput(path->dentry);
687 	if (path->mnt != nd->path.mnt)
688 		mntput(path->mnt);
689 }
690 
691 static inline void path_to_nameidata(const struct path *path,
692 					struct nameidata *nd)
693 {
694 	if (!(nd->flags & LOOKUP_RCU)) {
695 		dput(nd->path.dentry);
696 		if (nd->path.mnt != path->mnt)
697 			mntput(nd->path.mnt);
698 	}
699 	nd->path.mnt = path->mnt;
700 	nd->path.dentry = path->dentry;
701 }
702 
703 /*
704  * Helper to directly jump to a known parsed path from ->follow_link,
705  * caller must have taken a reference to path beforehand.
706  */
707 void nd_jump_link(struct nameidata *nd, struct path *path)
708 {
709 	path_put(&nd->path);
710 
711 	nd->path = *path;
712 	nd->inode = nd->path.dentry->d_inode;
713 	nd->flags |= LOOKUP_JUMPED;
714 }
715 
716 void nd_set_link(struct nameidata *nd, char *path)
717 {
718 	nd->saved_names[nd->depth] = path;
719 }
720 EXPORT_SYMBOL(nd_set_link);
721 
722 char *nd_get_link(struct nameidata *nd)
723 {
724 	return nd->saved_names[nd->depth];
725 }
726 EXPORT_SYMBOL(nd_get_link);
727 
728 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
729 {
730 	struct inode *inode = link->dentry->d_inode;
731 	if (inode->i_op->put_link)
732 		inode->i_op->put_link(link->dentry, nd, cookie);
733 	path_put(link);
734 }
735 
736 int sysctl_protected_symlinks __read_mostly = 0;
737 int sysctl_protected_hardlinks __read_mostly = 0;
738 
739 /**
740  * may_follow_link - Check symlink following for unsafe situations
741  * @link: The path of the symlink
742  * @nd: nameidata pathwalk data
743  *
744  * In the case of the sysctl_protected_symlinks sysctl being enabled,
745  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
746  * in a sticky world-writable directory. This is to protect privileged
747  * processes from failing races against path names that may change out
748  * from under them by way of other users creating malicious symlinks.
749  * It will permit symlinks to be followed only when outside a sticky
750  * world-writable directory, or when the uid of the symlink and follower
751  * match, or when the directory owner matches the symlink's owner.
752  *
753  * Returns 0 if following the symlink is allowed, -ve on error.
754  */
755 static inline int may_follow_link(struct path *link, struct nameidata *nd)
756 {
757 	const struct inode *inode;
758 	const struct inode *parent;
759 
760 	if (!sysctl_protected_symlinks)
761 		return 0;
762 
763 	/* Allowed if owner and follower match. */
764 	inode = link->dentry->d_inode;
765 	if (uid_eq(current_cred()->fsuid, inode->i_uid))
766 		return 0;
767 
768 	/* Allowed if parent directory not sticky and world-writable. */
769 	parent = nd->path.dentry->d_inode;
770 	if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
771 		return 0;
772 
773 	/* Allowed if parent directory and link owner match. */
774 	if (uid_eq(parent->i_uid, inode->i_uid))
775 		return 0;
776 
777 	audit_log_link_denied("follow_link", link);
778 	path_put_conditional(link, nd);
779 	path_put(&nd->path);
780 	return -EACCES;
781 }
782 
783 /**
784  * safe_hardlink_source - Check for safe hardlink conditions
785  * @inode: the source inode to hardlink from
786  *
787  * Return false if at least one of the following conditions:
788  *    - inode is not a regular file
789  *    - inode is setuid
790  *    - inode is setgid and group-exec
791  *    - access failure for read and write
792  *
793  * Otherwise returns true.
794  */
795 static bool safe_hardlink_source(struct inode *inode)
796 {
797 	umode_t mode = inode->i_mode;
798 
799 	/* Special files should not get pinned to the filesystem. */
800 	if (!S_ISREG(mode))
801 		return false;
802 
803 	/* Setuid files should not get pinned to the filesystem. */
804 	if (mode & S_ISUID)
805 		return false;
806 
807 	/* Executable setgid files should not get pinned to the filesystem. */
808 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
809 		return false;
810 
811 	/* Hardlinking to unreadable or unwritable sources is dangerous. */
812 	if (inode_permission(inode, MAY_READ | MAY_WRITE))
813 		return false;
814 
815 	return true;
816 }
817 
818 /**
819  * may_linkat - Check permissions for creating a hardlink
820  * @link: the source to hardlink from
821  *
822  * Block hardlink when all of:
823  *  - sysctl_protected_hardlinks enabled
824  *  - fsuid does not match inode
825  *  - hardlink source is unsafe (see safe_hardlink_source() above)
826  *  - not CAP_FOWNER
827  *
828  * Returns 0 if successful, -ve on error.
829  */
830 static int may_linkat(struct path *link)
831 {
832 	const struct cred *cred;
833 	struct inode *inode;
834 
835 	if (!sysctl_protected_hardlinks)
836 		return 0;
837 
838 	cred = current_cred();
839 	inode = link->dentry->d_inode;
840 
841 	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
842 	 * otherwise, it must be a safe source.
843 	 */
844 	if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) ||
845 	    capable(CAP_FOWNER))
846 		return 0;
847 
848 	audit_log_link_denied("linkat", link);
849 	return -EPERM;
850 }
851 
852 static __always_inline int
853 follow_link(struct path *link, struct nameidata *nd, void **p)
854 {
855 	struct dentry *dentry = link->dentry;
856 	int error;
857 	char *s;
858 
859 	BUG_ON(nd->flags & LOOKUP_RCU);
860 
861 	if (link->mnt == nd->path.mnt)
862 		mntget(link->mnt);
863 
864 	error = -ELOOP;
865 	if (unlikely(current->total_link_count >= 40))
866 		goto out_put_nd_path;
867 
868 	cond_resched();
869 	current->total_link_count++;
870 
871 	touch_atime(link);
872 	nd_set_link(nd, NULL);
873 
874 	error = security_inode_follow_link(link->dentry, nd);
875 	if (error)
876 		goto out_put_nd_path;
877 
878 	nd->last_type = LAST_BIND;
879 	*p = dentry->d_inode->i_op->follow_link(dentry, nd);
880 	error = PTR_ERR(*p);
881 	if (IS_ERR(*p))
882 		goto out_put_nd_path;
883 
884 	error = 0;
885 	s = nd_get_link(nd);
886 	if (s) {
887 		if (unlikely(IS_ERR(s))) {
888 			path_put(&nd->path);
889 			put_link(nd, link, *p);
890 			return PTR_ERR(s);
891 		}
892 		if (*s == '/') {
893 			if (!nd->root.mnt)
894 				set_root(nd);
895 			path_put(&nd->path);
896 			nd->path = nd->root;
897 			path_get(&nd->root);
898 			nd->flags |= LOOKUP_JUMPED;
899 		}
900 		nd->inode = nd->path.dentry->d_inode;
901 		error = link_path_walk(s, nd);
902 		if (unlikely(error))
903 			put_link(nd, link, *p);
904 	}
905 
906 	return error;
907 
908 out_put_nd_path:
909 	*p = NULL;
910 	path_put(&nd->path);
911 	path_put(link);
912 	return error;
913 }
914 
915 static int follow_up_rcu(struct path *path)
916 {
917 	struct mount *mnt = real_mount(path->mnt);
918 	struct mount *parent;
919 	struct dentry *mountpoint;
920 
921 	parent = mnt->mnt_parent;
922 	if (&parent->mnt == path->mnt)
923 		return 0;
924 	mountpoint = mnt->mnt_mountpoint;
925 	path->dentry = mountpoint;
926 	path->mnt = &parent->mnt;
927 	return 1;
928 }
929 
930 /*
931  * follow_up - Find the mountpoint of path's vfsmount
932  *
933  * Given a path, find the mountpoint of its source file system.
934  * Replace @path with the path of the mountpoint in the parent mount.
935  * Up is towards /.
936  *
937  * Return 1 if we went up a level and 0 if we were already at the
938  * root.
939  */
940 int follow_up(struct path *path)
941 {
942 	struct mount *mnt = real_mount(path->mnt);
943 	struct mount *parent;
944 	struct dentry *mountpoint;
945 
946 	read_seqlock_excl(&mount_lock);
947 	parent = mnt->mnt_parent;
948 	if (parent == mnt) {
949 		read_sequnlock_excl(&mount_lock);
950 		return 0;
951 	}
952 	mntget(&parent->mnt);
953 	mountpoint = dget(mnt->mnt_mountpoint);
954 	read_sequnlock_excl(&mount_lock);
955 	dput(path->dentry);
956 	path->dentry = mountpoint;
957 	mntput(path->mnt);
958 	path->mnt = &parent->mnt;
959 	return 1;
960 }
961 EXPORT_SYMBOL(follow_up);
962 
963 /*
964  * Perform an automount
965  * - return -EISDIR to tell follow_managed() to stop and return the path we
966  *   were called with.
967  */
968 static int follow_automount(struct path *path, unsigned flags,
969 			    bool *need_mntput)
970 {
971 	struct vfsmount *mnt;
972 	int err;
973 
974 	if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
975 		return -EREMOTE;
976 
977 	/* We don't want to mount if someone's just doing a stat -
978 	 * unless they're stat'ing a directory and appended a '/' to
979 	 * the name.
980 	 *
981 	 * We do, however, want to mount if someone wants to open or
982 	 * create a file of any type under the mountpoint, wants to
983 	 * traverse through the mountpoint or wants to open the
984 	 * mounted directory.  Also, autofs may mark negative dentries
985 	 * as being automount points.  These will need the attentions
986 	 * of the daemon to instantiate them before they can be used.
987 	 */
988 	if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
989 		     LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
990 	    path->dentry->d_inode)
991 		return -EISDIR;
992 
993 	current->total_link_count++;
994 	if (current->total_link_count >= 40)
995 		return -ELOOP;
996 
997 	mnt = path->dentry->d_op->d_automount(path);
998 	if (IS_ERR(mnt)) {
999 		/*
1000 		 * The filesystem is allowed to return -EISDIR here to indicate
1001 		 * it doesn't want to automount.  For instance, autofs would do
1002 		 * this so that its userspace daemon can mount on this dentry.
1003 		 *
1004 		 * However, we can only permit this if it's a terminal point in
1005 		 * the path being looked up; if it wasn't then the remainder of
1006 		 * the path is inaccessible and we should say so.
1007 		 */
1008 		if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
1009 			return -EREMOTE;
1010 		return PTR_ERR(mnt);
1011 	}
1012 
1013 	if (!mnt) /* mount collision */
1014 		return 0;
1015 
1016 	if (!*need_mntput) {
1017 		/* lock_mount() may release path->mnt on error */
1018 		mntget(path->mnt);
1019 		*need_mntput = true;
1020 	}
1021 	err = finish_automount(mnt, path);
1022 
1023 	switch (err) {
1024 	case -EBUSY:
1025 		/* Someone else made a mount here whilst we were busy */
1026 		return 0;
1027 	case 0:
1028 		path_put(path);
1029 		path->mnt = mnt;
1030 		path->dentry = dget(mnt->mnt_root);
1031 		return 0;
1032 	default:
1033 		return err;
1034 	}
1035 
1036 }
1037 
1038 /*
1039  * Handle a dentry that is managed in some way.
1040  * - Flagged for transit management (autofs)
1041  * - Flagged as mountpoint
1042  * - Flagged as automount point
1043  *
1044  * This may only be called in refwalk mode.
1045  *
1046  * Serialization is taken care of in namespace.c
1047  */
1048 static int follow_managed(struct path *path, unsigned flags)
1049 {
1050 	struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1051 	unsigned managed;
1052 	bool need_mntput = false;
1053 	int ret = 0;
1054 
1055 	/* Given that we're not holding a lock here, we retain the value in a
1056 	 * local variable for each dentry as we look at it so that we don't see
1057 	 * the components of that value change under us */
1058 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1059 	       managed &= DCACHE_MANAGED_DENTRY,
1060 	       unlikely(managed != 0)) {
1061 		/* Allow the filesystem to manage the transit without i_mutex
1062 		 * being held. */
1063 		if (managed & DCACHE_MANAGE_TRANSIT) {
1064 			BUG_ON(!path->dentry->d_op);
1065 			BUG_ON(!path->dentry->d_op->d_manage);
1066 			ret = path->dentry->d_op->d_manage(path->dentry, false);
1067 			if (ret < 0)
1068 				break;
1069 		}
1070 
1071 		/* Transit to a mounted filesystem. */
1072 		if (managed & DCACHE_MOUNTED) {
1073 			struct vfsmount *mounted = lookup_mnt(path);
1074 			if (mounted) {
1075 				dput(path->dentry);
1076 				if (need_mntput)
1077 					mntput(path->mnt);
1078 				path->mnt = mounted;
1079 				path->dentry = dget(mounted->mnt_root);
1080 				need_mntput = true;
1081 				continue;
1082 			}
1083 
1084 			/* Something is mounted on this dentry in another
1085 			 * namespace and/or whatever was mounted there in this
1086 			 * namespace got unmounted before lookup_mnt() could
1087 			 * get it */
1088 		}
1089 
1090 		/* Handle an automount point */
1091 		if (managed & DCACHE_NEED_AUTOMOUNT) {
1092 			ret = follow_automount(path, flags, &need_mntput);
1093 			if (ret < 0)
1094 				break;
1095 			continue;
1096 		}
1097 
1098 		/* We didn't change the current path point */
1099 		break;
1100 	}
1101 
1102 	if (need_mntput && path->mnt == mnt)
1103 		mntput(path->mnt);
1104 	if (ret == -EISDIR)
1105 		ret = 0;
1106 	return ret < 0 ? ret : need_mntput;
1107 }
1108 
1109 int follow_down_one(struct path *path)
1110 {
1111 	struct vfsmount *mounted;
1112 
1113 	mounted = lookup_mnt(path);
1114 	if (mounted) {
1115 		dput(path->dentry);
1116 		mntput(path->mnt);
1117 		path->mnt = mounted;
1118 		path->dentry = dget(mounted->mnt_root);
1119 		return 1;
1120 	}
1121 	return 0;
1122 }
1123 EXPORT_SYMBOL(follow_down_one);
1124 
1125 static inline int managed_dentry_rcu(struct dentry *dentry)
1126 {
1127 	return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1128 		dentry->d_op->d_manage(dentry, true) : 0;
1129 }
1130 
1131 /*
1132  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1133  * we meet a managed dentry that would need blocking.
1134  */
1135 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1136 			       struct inode **inode)
1137 {
1138 	for (;;) {
1139 		struct mount *mounted;
1140 		/*
1141 		 * Don't forget we might have a non-mountpoint managed dentry
1142 		 * that wants to block transit.
1143 		 */
1144 		switch (managed_dentry_rcu(path->dentry)) {
1145 		case -ECHILD:
1146 		default:
1147 			return false;
1148 		case -EISDIR:
1149 			return true;
1150 		case 0:
1151 			break;
1152 		}
1153 
1154 		if (!d_mountpoint(path->dentry))
1155 			return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1156 
1157 		mounted = __lookup_mnt(path->mnt, path->dentry);
1158 		if (!mounted)
1159 			break;
1160 		path->mnt = &mounted->mnt;
1161 		path->dentry = mounted->mnt.mnt_root;
1162 		nd->flags |= LOOKUP_JUMPED;
1163 		nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1164 		/*
1165 		 * Update the inode too. We don't need to re-check the
1166 		 * dentry sequence number here after this d_inode read,
1167 		 * because a mount-point is always pinned.
1168 		 */
1169 		*inode = path->dentry->d_inode;
1170 	}
1171 	return !read_seqretry(&mount_lock, nd->m_seq) &&
1172 		!(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1173 }
1174 
1175 static int follow_dotdot_rcu(struct nameidata *nd)
1176 {
1177 	struct inode *inode = nd->inode;
1178 	if (!nd->root.mnt)
1179 		set_root_rcu(nd);
1180 
1181 	while (1) {
1182 		if (nd->path.dentry == nd->root.dentry &&
1183 		    nd->path.mnt == nd->root.mnt) {
1184 			break;
1185 		}
1186 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1187 			struct dentry *old = nd->path.dentry;
1188 			struct dentry *parent = old->d_parent;
1189 			unsigned seq;
1190 
1191 			inode = parent->d_inode;
1192 			seq = read_seqcount_begin(&parent->d_seq);
1193 			if (read_seqcount_retry(&old->d_seq, nd->seq))
1194 				goto failed;
1195 			nd->path.dentry = parent;
1196 			nd->seq = seq;
1197 			break;
1198 		}
1199 		if (!follow_up_rcu(&nd->path))
1200 			break;
1201 		inode = nd->path.dentry->d_inode;
1202 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1203 	}
1204 	while (d_mountpoint(nd->path.dentry)) {
1205 		struct mount *mounted;
1206 		mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1207 		if (!mounted)
1208 			break;
1209 		nd->path.mnt = &mounted->mnt;
1210 		nd->path.dentry = mounted->mnt.mnt_root;
1211 		inode = nd->path.dentry->d_inode;
1212 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1213 		if (read_seqretry(&mount_lock, nd->m_seq))
1214 			goto failed;
1215 	}
1216 	nd->inode = inode;
1217 	return 0;
1218 
1219 failed:
1220 	nd->flags &= ~LOOKUP_RCU;
1221 	if (!(nd->flags & LOOKUP_ROOT))
1222 		nd->root.mnt = NULL;
1223 	rcu_read_unlock();
1224 	return -ECHILD;
1225 }
1226 
1227 /*
1228  * Follow down to the covering mount currently visible to userspace.  At each
1229  * point, the filesystem owning that dentry may be queried as to whether the
1230  * caller is permitted to proceed or not.
1231  */
1232 int follow_down(struct path *path)
1233 {
1234 	unsigned managed;
1235 	int ret;
1236 
1237 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1238 	       unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1239 		/* Allow the filesystem to manage the transit without i_mutex
1240 		 * being held.
1241 		 *
1242 		 * We indicate to the filesystem if someone is trying to mount
1243 		 * something here.  This gives autofs the chance to deny anyone
1244 		 * other than its daemon the right to mount on its
1245 		 * superstructure.
1246 		 *
1247 		 * The filesystem may sleep at this point.
1248 		 */
1249 		if (managed & DCACHE_MANAGE_TRANSIT) {
1250 			BUG_ON(!path->dentry->d_op);
1251 			BUG_ON(!path->dentry->d_op->d_manage);
1252 			ret = path->dentry->d_op->d_manage(
1253 				path->dentry, false);
1254 			if (ret < 0)
1255 				return ret == -EISDIR ? 0 : ret;
1256 		}
1257 
1258 		/* Transit to a mounted filesystem. */
1259 		if (managed & DCACHE_MOUNTED) {
1260 			struct vfsmount *mounted = lookup_mnt(path);
1261 			if (!mounted)
1262 				break;
1263 			dput(path->dentry);
1264 			mntput(path->mnt);
1265 			path->mnt = mounted;
1266 			path->dentry = dget(mounted->mnt_root);
1267 			continue;
1268 		}
1269 
1270 		/* Don't handle automount points here */
1271 		break;
1272 	}
1273 	return 0;
1274 }
1275 EXPORT_SYMBOL(follow_down);
1276 
1277 /*
1278  * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1279  */
1280 static void follow_mount(struct path *path)
1281 {
1282 	while (d_mountpoint(path->dentry)) {
1283 		struct vfsmount *mounted = lookup_mnt(path);
1284 		if (!mounted)
1285 			break;
1286 		dput(path->dentry);
1287 		mntput(path->mnt);
1288 		path->mnt = mounted;
1289 		path->dentry = dget(mounted->mnt_root);
1290 	}
1291 }
1292 
1293 static void follow_dotdot(struct nameidata *nd)
1294 {
1295 	if (!nd->root.mnt)
1296 		set_root(nd);
1297 
1298 	while(1) {
1299 		struct dentry *old = nd->path.dentry;
1300 
1301 		if (nd->path.dentry == nd->root.dentry &&
1302 		    nd->path.mnt == nd->root.mnt) {
1303 			break;
1304 		}
1305 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1306 			/* rare case of legitimate dget_parent()... */
1307 			nd->path.dentry = dget_parent(nd->path.dentry);
1308 			dput(old);
1309 			break;
1310 		}
1311 		if (!follow_up(&nd->path))
1312 			break;
1313 	}
1314 	follow_mount(&nd->path);
1315 	nd->inode = nd->path.dentry->d_inode;
1316 }
1317 
1318 /*
1319  * This looks up the name in dcache, possibly revalidates the old dentry and
1320  * allocates a new one if not found or not valid.  In the need_lookup argument
1321  * returns whether i_op->lookup is necessary.
1322  *
1323  * dir->d_inode->i_mutex must be held
1324  */
1325 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1326 				    unsigned int flags, bool *need_lookup)
1327 {
1328 	struct dentry *dentry;
1329 	int error;
1330 
1331 	*need_lookup = false;
1332 	dentry = d_lookup(dir, name);
1333 	if (dentry) {
1334 		if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1335 			error = d_revalidate(dentry, flags);
1336 			if (unlikely(error <= 0)) {
1337 				if (error < 0) {
1338 					dput(dentry);
1339 					return ERR_PTR(error);
1340 				} else {
1341 					d_invalidate(dentry);
1342 					dput(dentry);
1343 					dentry = NULL;
1344 				}
1345 			}
1346 		}
1347 	}
1348 
1349 	if (!dentry) {
1350 		dentry = d_alloc(dir, name);
1351 		if (unlikely(!dentry))
1352 			return ERR_PTR(-ENOMEM);
1353 
1354 		*need_lookup = true;
1355 	}
1356 	return dentry;
1357 }
1358 
1359 /*
1360  * Call i_op->lookup on the dentry.  The dentry must be negative and
1361  * unhashed.
1362  *
1363  * dir->d_inode->i_mutex must be held
1364  */
1365 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1366 				  unsigned int flags)
1367 {
1368 	struct dentry *old;
1369 
1370 	/* Don't create child dentry for a dead directory. */
1371 	if (unlikely(IS_DEADDIR(dir))) {
1372 		dput(dentry);
1373 		return ERR_PTR(-ENOENT);
1374 	}
1375 
1376 	old = dir->i_op->lookup(dir, dentry, flags);
1377 	if (unlikely(old)) {
1378 		dput(dentry);
1379 		dentry = old;
1380 	}
1381 	return dentry;
1382 }
1383 
1384 static struct dentry *__lookup_hash(struct qstr *name,
1385 		struct dentry *base, unsigned int flags)
1386 {
1387 	bool need_lookup;
1388 	struct dentry *dentry;
1389 
1390 	dentry = lookup_dcache(name, base, flags, &need_lookup);
1391 	if (!need_lookup)
1392 		return dentry;
1393 
1394 	return lookup_real(base->d_inode, dentry, flags);
1395 }
1396 
1397 /*
1398  *  It's more convoluted than I'd like it to be, but... it's still fairly
1399  *  small and for now I'd prefer to have fast path as straight as possible.
1400  *  It _is_ time-critical.
1401  */
1402 static int lookup_fast(struct nameidata *nd,
1403 		       struct path *path, struct inode **inode)
1404 {
1405 	struct vfsmount *mnt = nd->path.mnt;
1406 	struct dentry *dentry, *parent = nd->path.dentry;
1407 	int need_reval = 1;
1408 	int status = 1;
1409 	int err;
1410 
1411 	/*
1412 	 * Rename seqlock is not required here because in the off chance
1413 	 * of a false negative due to a concurrent rename, we're going to
1414 	 * do the non-racy lookup, below.
1415 	 */
1416 	if (nd->flags & LOOKUP_RCU) {
1417 		unsigned seq;
1418 		bool negative;
1419 		dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1420 		if (!dentry)
1421 			goto unlazy;
1422 
1423 		/*
1424 		 * This sequence count validates that the inode matches
1425 		 * the dentry name information from lookup.
1426 		 */
1427 		*inode = dentry->d_inode;
1428 		negative = d_is_negative(dentry);
1429 		if (read_seqcount_retry(&dentry->d_seq, seq))
1430 			return -ECHILD;
1431 		if (negative)
1432 			return -ENOENT;
1433 
1434 		/*
1435 		 * This sequence count validates that the parent had no
1436 		 * changes while we did the lookup of the dentry above.
1437 		 *
1438 		 * The memory barrier in read_seqcount_begin of child is
1439 		 *  enough, we can use __read_seqcount_retry here.
1440 		 */
1441 		if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1442 			return -ECHILD;
1443 		nd->seq = seq;
1444 
1445 		if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1446 			status = d_revalidate(dentry, nd->flags);
1447 			if (unlikely(status <= 0)) {
1448 				if (status != -ECHILD)
1449 					need_reval = 0;
1450 				goto unlazy;
1451 			}
1452 		}
1453 		path->mnt = mnt;
1454 		path->dentry = dentry;
1455 		if (likely(__follow_mount_rcu(nd, path, inode)))
1456 			return 0;
1457 unlazy:
1458 		if (unlazy_walk(nd, dentry))
1459 			return -ECHILD;
1460 	} else {
1461 		dentry = __d_lookup(parent, &nd->last);
1462 	}
1463 
1464 	if (unlikely(!dentry))
1465 		goto need_lookup;
1466 
1467 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1468 		status = d_revalidate(dentry, nd->flags);
1469 	if (unlikely(status <= 0)) {
1470 		if (status < 0) {
1471 			dput(dentry);
1472 			return status;
1473 		}
1474 		d_invalidate(dentry);
1475 		dput(dentry);
1476 		goto need_lookup;
1477 	}
1478 
1479 	if (unlikely(d_is_negative(dentry))) {
1480 		dput(dentry);
1481 		return -ENOENT;
1482 	}
1483 	path->mnt = mnt;
1484 	path->dentry = dentry;
1485 	err = follow_managed(path, nd->flags);
1486 	if (unlikely(err < 0)) {
1487 		path_put_conditional(path, nd);
1488 		return err;
1489 	}
1490 	if (err)
1491 		nd->flags |= LOOKUP_JUMPED;
1492 	*inode = path->dentry->d_inode;
1493 	return 0;
1494 
1495 need_lookup:
1496 	return 1;
1497 }
1498 
1499 /* Fast lookup failed, do it the slow way */
1500 static int lookup_slow(struct nameidata *nd, struct path *path)
1501 {
1502 	struct dentry *dentry, *parent;
1503 	int err;
1504 
1505 	parent = nd->path.dentry;
1506 	BUG_ON(nd->inode != parent->d_inode);
1507 
1508 	mutex_lock(&parent->d_inode->i_mutex);
1509 	dentry = __lookup_hash(&nd->last, parent, nd->flags);
1510 	mutex_unlock(&parent->d_inode->i_mutex);
1511 	if (IS_ERR(dentry))
1512 		return PTR_ERR(dentry);
1513 	path->mnt = nd->path.mnt;
1514 	path->dentry = dentry;
1515 	err = follow_managed(path, nd->flags);
1516 	if (unlikely(err < 0)) {
1517 		path_put_conditional(path, nd);
1518 		return err;
1519 	}
1520 	if (err)
1521 		nd->flags |= LOOKUP_JUMPED;
1522 	return 0;
1523 }
1524 
1525 static inline int may_lookup(struct nameidata *nd)
1526 {
1527 	if (nd->flags & LOOKUP_RCU) {
1528 		int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1529 		if (err != -ECHILD)
1530 			return err;
1531 		if (unlazy_walk(nd, NULL))
1532 			return -ECHILD;
1533 	}
1534 	return inode_permission(nd->inode, MAY_EXEC);
1535 }
1536 
1537 static inline int handle_dots(struct nameidata *nd, int type)
1538 {
1539 	if (type == LAST_DOTDOT) {
1540 		if (nd->flags & LOOKUP_RCU) {
1541 			if (follow_dotdot_rcu(nd))
1542 				return -ECHILD;
1543 		} else
1544 			follow_dotdot(nd);
1545 	}
1546 	return 0;
1547 }
1548 
1549 static void terminate_walk(struct nameidata *nd)
1550 {
1551 	if (!(nd->flags & LOOKUP_RCU)) {
1552 		path_put(&nd->path);
1553 	} else {
1554 		nd->flags &= ~LOOKUP_RCU;
1555 		if (!(nd->flags & LOOKUP_ROOT))
1556 			nd->root.mnt = NULL;
1557 		rcu_read_unlock();
1558 	}
1559 }
1560 
1561 /*
1562  * Do we need to follow links? We _really_ want to be able
1563  * to do this check without having to look at inode->i_op,
1564  * so we keep a cache of "no, this doesn't need follow_link"
1565  * for the common case.
1566  */
1567 static inline int should_follow_link(struct dentry *dentry, int follow)
1568 {
1569 	return unlikely(d_is_symlink(dentry)) ? follow : 0;
1570 }
1571 
1572 static inline int walk_component(struct nameidata *nd, struct path *path,
1573 		int follow)
1574 {
1575 	struct inode *inode;
1576 	int err;
1577 	/*
1578 	 * "." and ".." are special - ".." especially so because it has
1579 	 * to be able to know about the current root directory and
1580 	 * parent relationships.
1581 	 */
1582 	if (unlikely(nd->last_type != LAST_NORM))
1583 		return handle_dots(nd, nd->last_type);
1584 	err = lookup_fast(nd, path, &inode);
1585 	if (unlikely(err)) {
1586 		if (err < 0)
1587 			goto out_err;
1588 
1589 		err = lookup_slow(nd, path);
1590 		if (err < 0)
1591 			goto out_err;
1592 
1593 		inode = path->dentry->d_inode;
1594 		err = -ENOENT;
1595 		if (d_is_negative(path->dentry))
1596 			goto out_path_put;
1597 	}
1598 
1599 	if (should_follow_link(path->dentry, follow)) {
1600 		if (nd->flags & LOOKUP_RCU) {
1601 			if (unlikely(nd->path.mnt != path->mnt ||
1602 				     unlazy_walk(nd, path->dentry))) {
1603 				err = -ECHILD;
1604 				goto out_err;
1605 			}
1606 		}
1607 		BUG_ON(inode != path->dentry->d_inode);
1608 		return 1;
1609 	}
1610 	path_to_nameidata(path, nd);
1611 	nd->inode = inode;
1612 	return 0;
1613 
1614 out_path_put:
1615 	path_to_nameidata(path, nd);
1616 out_err:
1617 	terminate_walk(nd);
1618 	return err;
1619 }
1620 
1621 /*
1622  * This limits recursive symlink follows to 8, while
1623  * limiting consecutive symlinks to 40.
1624  *
1625  * Without that kind of total limit, nasty chains of consecutive
1626  * symlinks can cause almost arbitrarily long lookups.
1627  */
1628 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1629 {
1630 	int res;
1631 
1632 	if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1633 		path_put_conditional(path, nd);
1634 		path_put(&nd->path);
1635 		return -ELOOP;
1636 	}
1637 	BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1638 
1639 	nd->depth++;
1640 	current->link_count++;
1641 
1642 	do {
1643 		struct path link = *path;
1644 		void *cookie;
1645 
1646 		res = follow_link(&link, nd, &cookie);
1647 		if (res)
1648 			break;
1649 		res = walk_component(nd, path, LOOKUP_FOLLOW);
1650 		put_link(nd, &link, cookie);
1651 	} while (res > 0);
1652 
1653 	current->link_count--;
1654 	nd->depth--;
1655 	return res;
1656 }
1657 
1658 /*
1659  * We can do the critical dentry name comparison and hashing
1660  * operations one word at a time, but we are limited to:
1661  *
1662  * - Architectures with fast unaligned word accesses. We could
1663  *   do a "get_unaligned()" if this helps and is sufficiently
1664  *   fast.
1665  *
1666  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1667  *   do not trap on the (extremely unlikely) case of a page
1668  *   crossing operation.
1669  *
1670  * - Furthermore, we need an efficient 64-bit compile for the
1671  *   64-bit case in order to generate the "number of bytes in
1672  *   the final mask". Again, that could be replaced with a
1673  *   efficient population count instruction or similar.
1674  */
1675 #ifdef CONFIG_DCACHE_WORD_ACCESS
1676 
1677 #include <asm/word-at-a-time.h>
1678 
1679 #ifdef CONFIG_64BIT
1680 
1681 static inline unsigned int fold_hash(unsigned long hash)
1682 {
1683 	return hash_64(hash, 32);
1684 }
1685 
1686 #else	/* 32-bit case */
1687 
1688 #define fold_hash(x) (x)
1689 
1690 #endif
1691 
1692 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1693 {
1694 	unsigned long a, mask;
1695 	unsigned long hash = 0;
1696 
1697 	for (;;) {
1698 		a = load_unaligned_zeropad(name);
1699 		if (len < sizeof(unsigned long))
1700 			break;
1701 		hash += a;
1702 		hash *= 9;
1703 		name += sizeof(unsigned long);
1704 		len -= sizeof(unsigned long);
1705 		if (!len)
1706 			goto done;
1707 	}
1708 	mask = bytemask_from_count(len);
1709 	hash += mask & a;
1710 done:
1711 	return fold_hash(hash);
1712 }
1713 EXPORT_SYMBOL(full_name_hash);
1714 
1715 /*
1716  * Calculate the length and hash of the path component, and
1717  * return the "hash_len" as the result.
1718  */
1719 static inline u64 hash_name(const char *name)
1720 {
1721 	unsigned long a, b, adata, bdata, mask, hash, len;
1722 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1723 
1724 	hash = a = 0;
1725 	len = -sizeof(unsigned long);
1726 	do {
1727 		hash = (hash + a) * 9;
1728 		len += sizeof(unsigned long);
1729 		a = load_unaligned_zeropad(name+len);
1730 		b = a ^ REPEAT_BYTE('/');
1731 	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1732 
1733 	adata = prep_zero_mask(a, adata, &constants);
1734 	bdata = prep_zero_mask(b, bdata, &constants);
1735 
1736 	mask = create_zero_mask(adata | bdata);
1737 
1738 	hash += a & zero_bytemask(mask);
1739 	len += find_zero(mask);
1740 	return hashlen_create(fold_hash(hash), len);
1741 }
1742 
1743 #else
1744 
1745 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1746 {
1747 	unsigned long hash = init_name_hash();
1748 	while (len--)
1749 		hash = partial_name_hash(*name++, hash);
1750 	return end_name_hash(hash);
1751 }
1752 EXPORT_SYMBOL(full_name_hash);
1753 
1754 /*
1755  * We know there's a real path component here of at least
1756  * one character.
1757  */
1758 static inline u64 hash_name(const char *name)
1759 {
1760 	unsigned long hash = init_name_hash();
1761 	unsigned long len = 0, c;
1762 
1763 	c = (unsigned char)*name;
1764 	do {
1765 		len++;
1766 		hash = partial_name_hash(c, hash);
1767 		c = (unsigned char)name[len];
1768 	} while (c && c != '/');
1769 	return hashlen_create(end_name_hash(hash), len);
1770 }
1771 
1772 #endif
1773 
1774 /*
1775  * Name resolution.
1776  * This is the basic name resolution function, turning a pathname into
1777  * the final dentry. We expect 'base' to be positive and a directory.
1778  *
1779  * Returns 0 and nd will have valid dentry and mnt on success.
1780  * Returns error and drops reference to input namei data on failure.
1781  */
1782 static int link_path_walk(const char *name, struct nameidata *nd)
1783 {
1784 	struct path next;
1785 	int err;
1786 
1787 	while (*name=='/')
1788 		name++;
1789 	if (!*name)
1790 		return 0;
1791 
1792 	/* At this point we know we have a real path component. */
1793 	for(;;) {
1794 		u64 hash_len;
1795 		int type;
1796 
1797 		err = may_lookup(nd);
1798  		if (err)
1799 			break;
1800 
1801 		hash_len = hash_name(name);
1802 
1803 		type = LAST_NORM;
1804 		if (name[0] == '.') switch (hashlen_len(hash_len)) {
1805 			case 2:
1806 				if (name[1] == '.') {
1807 					type = LAST_DOTDOT;
1808 					nd->flags |= LOOKUP_JUMPED;
1809 				}
1810 				break;
1811 			case 1:
1812 				type = LAST_DOT;
1813 		}
1814 		if (likely(type == LAST_NORM)) {
1815 			struct dentry *parent = nd->path.dentry;
1816 			nd->flags &= ~LOOKUP_JUMPED;
1817 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1818 				struct qstr this = { { .hash_len = hash_len }, .name = name };
1819 				err = parent->d_op->d_hash(parent, &this);
1820 				if (err < 0)
1821 					break;
1822 				hash_len = this.hash_len;
1823 				name = this.name;
1824 			}
1825 		}
1826 
1827 		nd->last.hash_len = hash_len;
1828 		nd->last.name = name;
1829 		nd->last_type = type;
1830 
1831 		name += hashlen_len(hash_len);
1832 		if (!*name)
1833 			return 0;
1834 		/*
1835 		 * If it wasn't NUL, we know it was '/'. Skip that
1836 		 * slash, and continue until no more slashes.
1837 		 */
1838 		do {
1839 			name++;
1840 		} while (unlikely(*name == '/'));
1841 		if (!*name)
1842 			return 0;
1843 
1844 		err = walk_component(nd, &next, LOOKUP_FOLLOW);
1845 		if (err < 0)
1846 			return err;
1847 
1848 		if (err) {
1849 			err = nested_symlink(&next, nd);
1850 			if (err)
1851 				return err;
1852 		}
1853 		if (!d_can_lookup(nd->path.dentry)) {
1854 			err = -ENOTDIR;
1855 			break;
1856 		}
1857 	}
1858 	terminate_walk(nd);
1859 	return err;
1860 }
1861 
1862 static int path_init(int dfd, const struct filename *name, unsigned int flags,
1863 		     struct nameidata *nd)
1864 {
1865 	int retval = 0;
1866 	const char *s = name->name;
1867 
1868 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
1869 	nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
1870 	nd->depth = 0;
1871 	nd->base = NULL;
1872 	if (flags & LOOKUP_ROOT) {
1873 		struct dentry *root = nd->root.dentry;
1874 		struct inode *inode = root->d_inode;
1875 		if (*s) {
1876 			if (!d_can_lookup(root))
1877 				return -ENOTDIR;
1878 			retval = inode_permission(inode, MAY_EXEC);
1879 			if (retval)
1880 				return retval;
1881 		}
1882 		nd->path = nd->root;
1883 		nd->inode = inode;
1884 		if (flags & LOOKUP_RCU) {
1885 			rcu_read_lock();
1886 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1887 			nd->m_seq = read_seqbegin(&mount_lock);
1888 		} else {
1889 			path_get(&nd->path);
1890 		}
1891 		goto done;
1892 	}
1893 
1894 	nd->root.mnt = NULL;
1895 
1896 	nd->m_seq = read_seqbegin(&mount_lock);
1897 	if (*s == '/') {
1898 		if (flags & LOOKUP_RCU) {
1899 			rcu_read_lock();
1900 			nd->seq = set_root_rcu(nd);
1901 		} else {
1902 			set_root(nd);
1903 			path_get(&nd->root);
1904 		}
1905 		nd->path = nd->root;
1906 	} else if (dfd == AT_FDCWD) {
1907 		if (flags & LOOKUP_RCU) {
1908 			struct fs_struct *fs = current->fs;
1909 			unsigned seq;
1910 
1911 			rcu_read_lock();
1912 
1913 			do {
1914 				seq = read_seqcount_begin(&fs->seq);
1915 				nd->path = fs->pwd;
1916 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1917 			} while (read_seqcount_retry(&fs->seq, seq));
1918 		} else {
1919 			get_fs_pwd(current->fs, &nd->path);
1920 		}
1921 	} else {
1922 		/* Caller must check execute permissions on the starting path component */
1923 		struct fd f = fdget_raw(dfd);
1924 		struct dentry *dentry;
1925 
1926 		if (!f.file)
1927 			return -EBADF;
1928 
1929 		dentry = f.file->f_path.dentry;
1930 
1931 		if (*s) {
1932 			if (!d_can_lookup(dentry)) {
1933 				fdput(f);
1934 				return -ENOTDIR;
1935 			}
1936 		}
1937 
1938 		nd->path = f.file->f_path;
1939 		if (flags & LOOKUP_RCU) {
1940 			if (f.flags & FDPUT_FPUT)
1941 				nd->base = f.file;
1942 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1943 			rcu_read_lock();
1944 		} else {
1945 			path_get(&nd->path);
1946 			fdput(f);
1947 		}
1948 	}
1949 
1950 	nd->inode = nd->path.dentry->d_inode;
1951 	if (!(flags & LOOKUP_RCU))
1952 		goto done;
1953 	if (likely(!read_seqcount_retry(&nd->path.dentry->d_seq, nd->seq)))
1954 		goto done;
1955 	if (!(nd->flags & LOOKUP_ROOT))
1956 		nd->root.mnt = NULL;
1957 	rcu_read_unlock();
1958 	return -ECHILD;
1959 done:
1960 	current->total_link_count = 0;
1961 	return link_path_walk(s, nd);
1962 }
1963 
1964 static void path_cleanup(struct nameidata *nd)
1965 {
1966 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1967 		path_put(&nd->root);
1968 		nd->root.mnt = NULL;
1969 	}
1970 	if (unlikely(nd->base))
1971 		fput(nd->base);
1972 }
1973 
1974 static inline int lookup_last(struct nameidata *nd, struct path *path)
1975 {
1976 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1977 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1978 
1979 	nd->flags &= ~LOOKUP_PARENT;
1980 	return walk_component(nd, path, nd->flags & LOOKUP_FOLLOW);
1981 }
1982 
1983 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1984 static int path_lookupat(int dfd, const struct filename *name,
1985 				unsigned int flags, struct nameidata *nd)
1986 {
1987 	struct path path;
1988 	int err;
1989 
1990 	/*
1991 	 * Path walking is largely split up into 2 different synchronisation
1992 	 * schemes, rcu-walk and ref-walk (explained in
1993 	 * Documentation/filesystems/path-lookup.txt). These share much of the
1994 	 * path walk code, but some things particularly setup, cleanup, and
1995 	 * following mounts are sufficiently divergent that functions are
1996 	 * duplicated. Typically there is a function foo(), and its RCU
1997 	 * analogue, foo_rcu().
1998 	 *
1999 	 * -ECHILD is the error number of choice (just to avoid clashes) that
2000 	 * is returned if some aspect of an rcu-walk fails. Such an error must
2001 	 * be handled by restarting a traditional ref-walk (which will always
2002 	 * be able to complete).
2003 	 */
2004 	err = path_init(dfd, name, flags, nd);
2005 	if (!err && !(flags & LOOKUP_PARENT)) {
2006 		err = lookup_last(nd, &path);
2007 		while (err > 0) {
2008 			void *cookie;
2009 			struct path link = path;
2010 			err = may_follow_link(&link, nd);
2011 			if (unlikely(err))
2012 				break;
2013 			nd->flags |= LOOKUP_PARENT;
2014 			err = follow_link(&link, nd, &cookie);
2015 			if (err)
2016 				break;
2017 			err = lookup_last(nd, &path);
2018 			put_link(nd, &link, cookie);
2019 		}
2020 	}
2021 
2022 	if (!err)
2023 		err = complete_walk(nd);
2024 
2025 	if (!err && nd->flags & LOOKUP_DIRECTORY) {
2026 		if (!d_can_lookup(nd->path.dentry)) {
2027 			path_put(&nd->path);
2028 			err = -ENOTDIR;
2029 		}
2030 	}
2031 
2032 	path_cleanup(nd);
2033 	return err;
2034 }
2035 
2036 static int filename_lookup(int dfd, struct filename *name,
2037 				unsigned int flags, struct nameidata *nd)
2038 {
2039 	int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd);
2040 	if (unlikely(retval == -ECHILD))
2041 		retval = path_lookupat(dfd, name, flags, nd);
2042 	if (unlikely(retval == -ESTALE))
2043 		retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd);
2044 
2045 	if (likely(!retval))
2046 		audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT);
2047 	return retval;
2048 }
2049 
2050 /* does lookup, returns the object with parent locked */
2051 struct dentry *kern_path_locked(const char *name, struct path *path)
2052 {
2053 	struct filename *filename = getname_kernel(name);
2054 	struct nameidata nd;
2055 	struct dentry *d;
2056 	int err;
2057 
2058 	if (IS_ERR(filename))
2059 		return ERR_CAST(filename);
2060 
2061 	err = filename_lookup(AT_FDCWD, filename, LOOKUP_PARENT, &nd);
2062 	if (err) {
2063 		d = ERR_PTR(err);
2064 		goto out;
2065 	}
2066 	if (nd.last_type != LAST_NORM) {
2067 		path_put(&nd.path);
2068 		d = ERR_PTR(-EINVAL);
2069 		goto out;
2070 	}
2071 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2072 	d = __lookup_hash(&nd.last, nd.path.dentry, 0);
2073 	if (IS_ERR(d)) {
2074 		mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2075 		path_put(&nd.path);
2076 		goto out;
2077 	}
2078 	*path = nd.path;
2079 out:
2080 	putname(filename);
2081 	return d;
2082 }
2083 
2084 int kern_path(const char *name, unsigned int flags, struct path *path)
2085 {
2086 	struct nameidata nd;
2087 	struct filename *filename = getname_kernel(name);
2088 	int res = PTR_ERR(filename);
2089 
2090 	if (!IS_ERR(filename)) {
2091 		res = filename_lookup(AT_FDCWD, filename, flags, &nd);
2092 		putname(filename);
2093 		if (!res)
2094 			*path = nd.path;
2095 	}
2096 	return res;
2097 }
2098 EXPORT_SYMBOL(kern_path);
2099 
2100 /**
2101  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2102  * @dentry:  pointer to dentry of the base directory
2103  * @mnt: pointer to vfs mount of the base directory
2104  * @name: pointer to file name
2105  * @flags: lookup flags
2106  * @path: pointer to struct path to fill
2107  */
2108 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2109 		    const char *name, unsigned int flags,
2110 		    struct path *path)
2111 {
2112 	struct filename *filename = getname_kernel(name);
2113 	int err = PTR_ERR(filename);
2114 
2115 	BUG_ON(flags & LOOKUP_PARENT);
2116 
2117 	/* the first argument of filename_lookup() is ignored with LOOKUP_ROOT */
2118 	if (!IS_ERR(filename)) {
2119 		struct nameidata nd;
2120 		nd.root.dentry = dentry;
2121 		nd.root.mnt = mnt;
2122 		err = filename_lookup(AT_FDCWD, filename,
2123 				      flags | LOOKUP_ROOT, &nd);
2124 		if (!err)
2125 			*path = nd.path;
2126 		putname(filename);
2127 	}
2128 	return err;
2129 }
2130 EXPORT_SYMBOL(vfs_path_lookup);
2131 
2132 /*
2133  * Restricted form of lookup. Doesn't follow links, single-component only,
2134  * needs parent already locked. Doesn't follow mounts.
2135  * SMP-safe.
2136  */
2137 static struct dentry *lookup_hash(struct nameidata *nd)
2138 {
2139 	return __lookup_hash(&nd->last, nd->path.dentry, nd->flags);
2140 }
2141 
2142 /**
2143  * lookup_one_len - filesystem helper to lookup single pathname component
2144  * @name:	pathname component to lookup
2145  * @base:	base directory to lookup from
2146  * @len:	maximum length @len should be interpreted to
2147  *
2148  * Note that this routine is purely a helper for filesystem usage and should
2149  * not be called by generic code.
2150  */
2151 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2152 {
2153 	struct qstr this;
2154 	unsigned int c;
2155 	int err;
2156 
2157 	WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2158 
2159 	this.name = name;
2160 	this.len = len;
2161 	this.hash = full_name_hash(name, len);
2162 	if (!len)
2163 		return ERR_PTR(-EACCES);
2164 
2165 	if (unlikely(name[0] == '.')) {
2166 		if (len < 2 || (len == 2 && name[1] == '.'))
2167 			return ERR_PTR(-EACCES);
2168 	}
2169 
2170 	while (len--) {
2171 		c = *(const unsigned char *)name++;
2172 		if (c == '/' || c == '\0')
2173 			return ERR_PTR(-EACCES);
2174 	}
2175 	/*
2176 	 * See if the low-level filesystem might want
2177 	 * to use its own hash..
2178 	 */
2179 	if (base->d_flags & DCACHE_OP_HASH) {
2180 		int err = base->d_op->d_hash(base, &this);
2181 		if (err < 0)
2182 			return ERR_PTR(err);
2183 	}
2184 
2185 	err = inode_permission(base->d_inode, MAY_EXEC);
2186 	if (err)
2187 		return ERR_PTR(err);
2188 
2189 	return __lookup_hash(&this, base, 0);
2190 }
2191 EXPORT_SYMBOL(lookup_one_len);
2192 
2193 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2194 		 struct path *path, int *empty)
2195 {
2196 	struct nameidata nd;
2197 	struct filename *tmp = getname_flags(name, flags, empty);
2198 	int err = PTR_ERR(tmp);
2199 	if (!IS_ERR(tmp)) {
2200 
2201 		BUG_ON(flags & LOOKUP_PARENT);
2202 
2203 		err = filename_lookup(dfd, tmp, flags, &nd);
2204 		putname(tmp);
2205 		if (!err)
2206 			*path = nd.path;
2207 	}
2208 	return err;
2209 }
2210 
2211 int user_path_at(int dfd, const char __user *name, unsigned flags,
2212 		 struct path *path)
2213 {
2214 	return user_path_at_empty(dfd, name, flags, path, NULL);
2215 }
2216 EXPORT_SYMBOL(user_path_at);
2217 
2218 /*
2219  * NB: most callers don't do anything directly with the reference to the
2220  *     to struct filename, but the nd->last pointer points into the name string
2221  *     allocated by getname. So we must hold the reference to it until all
2222  *     path-walking is complete.
2223  */
2224 static struct filename *
2225 user_path_parent(int dfd, const char __user *path, struct nameidata *nd,
2226 		 unsigned int flags)
2227 {
2228 	struct filename *s = getname(path);
2229 	int error;
2230 
2231 	/* only LOOKUP_REVAL is allowed in extra flags */
2232 	flags &= LOOKUP_REVAL;
2233 
2234 	if (IS_ERR(s))
2235 		return s;
2236 
2237 	error = filename_lookup(dfd, s, flags | LOOKUP_PARENT, nd);
2238 	if (error) {
2239 		putname(s);
2240 		return ERR_PTR(error);
2241 	}
2242 
2243 	return s;
2244 }
2245 
2246 /**
2247  * mountpoint_last - look up last component for umount
2248  * @nd:   pathwalk nameidata - currently pointing at parent directory of "last"
2249  * @path: pointer to container for result
2250  *
2251  * This is a special lookup_last function just for umount. In this case, we
2252  * need to resolve the path without doing any revalidation.
2253  *
2254  * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2255  * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2256  * in almost all cases, this lookup will be served out of the dcache. The only
2257  * cases where it won't are if nd->last refers to a symlink or the path is
2258  * bogus and it doesn't exist.
2259  *
2260  * Returns:
2261  * -error: if there was an error during lookup. This includes -ENOENT if the
2262  *         lookup found a negative dentry. The nd->path reference will also be
2263  *         put in this case.
2264  *
2265  * 0:      if we successfully resolved nd->path and found it to not to be a
2266  *         symlink that needs to be followed. "path" will also be populated.
2267  *         The nd->path reference will also be put.
2268  *
2269  * 1:      if we successfully resolved nd->last and found it to be a symlink
2270  *         that needs to be followed. "path" will be populated with the path
2271  *         to the link, and nd->path will *not* be put.
2272  */
2273 static int
2274 mountpoint_last(struct nameidata *nd, struct path *path)
2275 {
2276 	int error = 0;
2277 	struct dentry *dentry;
2278 	struct dentry *dir = nd->path.dentry;
2279 
2280 	/* If we're in rcuwalk, drop out of it to handle last component */
2281 	if (nd->flags & LOOKUP_RCU) {
2282 		if (unlazy_walk(nd, NULL)) {
2283 			error = -ECHILD;
2284 			goto out;
2285 		}
2286 	}
2287 
2288 	nd->flags &= ~LOOKUP_PARENT;
2289 
2290 	if (unlikely(nd->last_type != LAST_NORM)) {
2291 		error = handle_dots(nd, nd->last_type);
2292 		if (error)
2293 			goto out;
2294 		dentry = dget(nd->path.dentry);
2295 		goto done;
2296 	}
2297 
2298 	mutex_lock(&dir->d_inode->i_mutex);
2299 	dentry = d_lookup(dir, &nd->last);
2300 	if (!dentry) {
2301 		/*
2302 		 * No cached dentry. Mounted dentries are pinned in the cache,
2303 		 * so that means that this dentry is probably a symlink or the
2304 		 * path doesn't actually point to a mounted dentry.
2305 		 */
2306 		dentry = d_alloc(dir, &nd->last);
2307 		if (!dentry) {
2308 			error = -ENOMEM;
2309 			mutex_unlock(&dir->d_inode->i_mutex);
2310 			goto out;
2311 		}
2312 		dentry = lookup_real(dir->d_inode, dentry, nd->flags);
2313 		error = PTR_ERR(dentry);
2314 		if (IS_ERR(dentry)) {
2315 			mutex_unlock(&dir->d_inode->i_mutex);
2316 			goto out;
2317 		}
2318 	}
2319 	mutex_unlock(&dir->d_inode->i_mutex);
2320 
2321 done:
2322 	if (d_is_negative(dentry)) {
2323 		error = -ENOENT;
2324 		dput(dentry);
2325 		goto out;
2326 	}
2327 	path->dentry = dentry;
2328 	path->mnt = nd->path.mnt;
2329 	if (should_follow_link(dentry, nd->flags & LOOKUP_FOLLOW))
2330 		return 1;
2331 	mntget(path->mnt);
2332 	follow_mount(path);
2333 	error = 0;
2334 out:
2335 	terminate_walk(nd);
2336 	return error;
2337 }
2338 
2339 /**
2340  * path_mountpoint - look up a path to be umounted
2341  * @dfd:	directory file descriptor to start walk from
2342  * @name:	full pathname to walk
2343  * @path:	pointer to container for result
2344  * @flags:	lookup flags
2345  *
2346  * Look up the given name, but don't attempt to revalidate the last component.
2347  * Returns 0 and "path" will be valid on success; Returns error otherwise.
2348  */
2349 static int
2350 path_mountpoint(int dfd, const struct filename *name, struct path *path,
2351 		unsigned int flags)
2352 {
2353 	struct nameidata nd;
2354 	int err;
2355 
2356 	err = path_init(dfd, name, flags, &nd);
2357 	if (unlikely(err))
2358 		goto out;
2359 
2360 	err = mountpoint_last(&nd, path);
2361 	while (err > 0) {
2362 		void *cookie;
2363 		struct path link = *path;
2364 		err = may_follow_link(&link, &nd);
2365 		if (unlikely(err))
2366 			break;
2367 		nd.flags |= LOOKUP_PARENT;
2368 		err = follow_link(&link, &nd, &cookie);
2369 		if (err)
2370 			break;
2371 		err = mountpoint_last(&nd, path);
2372 		put_link(&nd, &link, cookie);
2373 	}
2374 out:
2375 	path_cleanup(&nd);
2376 	return err;
2377 }
2378 
2379 static int
2380 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2381 			unsigned int flags)
2382 {
2383 	int error;
2384 	if (IS_ERR(name))
2385 		return PTR_ERR(name);
2386 	error = path_mountpoint(dfd, name, path, flags | LOOKUP_RCU);
2387 	if (unlikely(error == -ECHILD))
2388 		error = path_mountpoint(dfd, name, path, flags);
2389 	if (unlikely(error == -ESTALE))
2390 		error = path_mountpoint(dfd, name, path, flags | LOOKUP_REVAL);
2391 	if (likely(!error))
2392 		audit_inode(name, path->dentry, 0);
2393 	putname(name);
2394 	return error;
2395 }
2396 
2397 /**
2398  * user_path_mountpoint_at - lookup a path from userland in order to umount it
2399  * @dfd:	directory file descriptor
2400  * @name:	pathname from userland
2401  * @flags:	lookup flags
2402  * @path:	pointer to container to hold result
2403  *
2404  * A umount is a special case for path walking. We're not actually interested
2405  * in the inode in this situation, and ESTALE errors can be a problem. We
2406  * simply want track down the dentry and vfsmount attached at the mountpoint
2407  * and avoid revalidating the last component.
2408  *
2409  * Returns 0 and populates "path" on success.
2410  */
2411 int
2412 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2413 			struct path *path)
2414 {
2415 	return filename_mountpoint(dfd, getname(name), path, flags);
2416 }
2417 
2418 int
2419 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2420 			unsigned int flags)
2421 {
2422 	return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2423 }
2424 EXPORT_SYMBOL(kern_path_mountpoint);
2425 
2426 int __check_sticky(struct inode *dir, struct inode *inode)
2427 {
2428 	kuid_t fsuid = current_fsuid();
2429 
2430 	if (uid_eq(inode->i_uid, fsuid))
2431 		return 0;
2432 	if (uid_eq(dir->i_uid, fsuid))
2433 		return 0;
2434 	return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2435 }
2436 EXPORT_SYMBOL(__check_sticky);
2437 
2438 /*
2439  *	Check whether we can remove a link victim from directory dir, check
2440  *  whether the type of victim is right.
2441  *  1. We can't do it if dir is read-only (done in permission())
2442  *  2. We should have write and exec permissions on dir
2443  *  3. We can't remove anything from append-only dir
2444  *  4. We can't do anything with immutable dir (done in permission())
2445  *  5. If the sticky bit on dir is set we should either
2446  *	a. be owner of dir, or
2447  *	b. be owner of victim, or
2448  *	c. have CAP_FOWNER capability
2449  *  6. If the victim is append-only or immutable we can't do antyhing with
2450  *     links pointing to it.
2451  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2452  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2453  *  9. We can't remove a root or mountpoint.
2454  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2455  *     nfs_async_unlink().
2456  */
2457 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2458 {
2459 	struct inode *inode = victim->d_inode;
2460 	int error;
2461 
2462 	if (d_is_negative(victim))
2463 		return -ENOENT;
2464 	BUG_ON(!inode);
2465 
2466 	BUG_ON(victim->d_parent->d_inode != dir);
2467 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2468 
2469 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2470 	if (error)
2471 		return error;
2472 	if (IS_APPEND(dir))
2473 		return -EPERM;
2474 
2475 	if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2476 	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2477 		return -EPERM;
2478 	if (isdir) {
2479 		if (!d_is_dir(victim))
2480 			return -ENOTDIR;
2481 		if (IS_ROOT(victim))
2482 			return -EBUSY;
2483 	} else if (d_is_dir(victim))
2484 		return -EISDIR;
2485 	if (IS_DEADDIR(dir))
2486 		return -ENOENT;
2487 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2488 		return -EBUSY;
2489 	return 0;
2490 }
2491 
2492 /*	Check whether we can create an object with dentry child in directory
2493  *  dir.
2494  *  1. We can't do it if child already exists (open has special treatment for
2495  *     this case, but since we are inlined it's OK)
2496  *  2. We can't do it if dir is read-only (done in permission())
2497  *  3. We should have write and exec permissions on dir
2498  *  4. We can't do it if dir is immutable (done in permission())
2499  */
2500 static inline int may_create(struct inode *dir, struct dentry *child)
2501 {
2502 	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2503 	if (child->d_inode)
2504 		return -EEXIST;
2505 	if (IS_DEADDIR(dir))
2506 		return -ENOENT;
2507 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2508 }
2509 
2510 /*
2511  * p1 and p2 should be directories on the same fs.
2512  */
2513 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2514 {
2515 	struct dentry *p;
2516 
2517 	if (p1 == p2) {
2518 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2519 		return NULL;
2520 	}
2521 
2522 	mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2523 
2524 	p = d_ancestor(p2, p1);
2525 	if (p) {
2526 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2527 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2528 		return p;
2529 	}
2530 
2531 	p = d_ancestor(p1, p2);
2532 	if (p) {
2533 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2534 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2535 		return p;
2536 	}
2537 
2538 	mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2539 	mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT2);
2540 	return NULL;
2541 }
2542 EXPORT_SYMBOL(lock_rename);
2543 
2544 void unlock_rename(struct dentry *p1, struct dentry *p2)
2545 {
2546 	mutex_unlock(&p1->d_inode->i_mutex);
2547 	if (p1 != p2) {
2548 		mutex_unlock(&p2->d_inode->i_mutex);
2549 		mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2550 	}
2551 }
2552 EXPORT_SYMBOL(unlock_rename);
2553 
2554 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2555 		bool want_excl)
2556 {
2557 	int error = may_create(dir, dentry);
2558 	if (error)
2559 		return error;
2560 
2561 	if (!dir->i_op->create)
2562 		return -EACCES;	/* shouldn't it be ENOSYS? */
2563 	mode &= S_IALLUGO;
2564 	mode |= S_IFREG;
2565 	error = security_inode_create(dir, dentry, mode);
2566 	if (error)
2567 		return error;
2568 	error = dir->i_op->create(dir, dentry, mode, want_excl);
2569 	if (!error)
2570 		fsnotify_create(dir, dentry);
2571 	return error;
2572 }
2573 EXPORT_SYMBOL(vfs_create);
2574 
2575 static int may_open(struct path *path, int acc_mode, int flag)
2576 {
2577 	struct dentry *dentry = path->dentry;
2578 	struct inode *inode = dentry->d_inode;
2579 	int error;
2580 
2581 	/* O_PATH? */
2582 	if (!acc_mode)
2583 		return 0;
2584 
2585 	if (!inode)
2586 		return -ENOENT;
2587 
2588 	switch (inode->i_mode & S_IFMT) {
2589 	case S_IFLNK:
2590 		return -ELOOP;
2591 	case S_IFDIR:
2592 		if (acc_mode & MAY_WRITE)
2593 			return -EISDIR;
2594 		break;
2595 	case S_IFBLK:
2596 	case S_IFCHR:
2597 		if (path->mnt->mnt_flags & MNT_NODEV)
2598 			return -EACCES;
2599 		/*FALLTHRU*/
2600 	case S_IFIFO:
2601 	case S_IFSOCK:
2602 		flag &= ~O_TRUNC;
2603 		break;
2604 	}
2605 
2606 	error = inode_permission(inode, acc_mode);
2607 	if (error)
2608 		return error;
2609 
2610 	/*
2611 	 * An append-only file must be opened in append mode for writing.
2612 	 */
2613 	if (IS_APPEND(inode)) {
2614 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2615 			return -EPERM;
2616 		if (flag & O_TRUNC)
2617 			return -EPERM;
2618 	}
2619 
2620 	/* O_NOATIME can only be set by the owner or superuser */
2621 	if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2622 		return -EPERM;
2623 
2624 	return 0;
2625 }
2626 
2627 static int handle_truncate(struct file *filp)
2628 {
2629 	struct path *path = &filp->f_path;
2630 	struct inode *inode = path->dentry->d_inode;
2631 	int error = get_write_access(inode);
2632 	if (error)
2633 		return error;
2634 	/*
2635 	 * Refuse to truncate files with mandatory locks held on them.
2636 	 */
2637 	error = locks_verify_locked(filp);
2638 	if (!error)
2639 		error = security_path_truncate(path);
2640 	if (!error) {
2641 		error = do_truncate(path->dentry, 0,
2642 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2643 				    filp);
2644 	}
2645 	put_write_access(inode);
2646 	return error;
2647 }
2648 
2649 static inline int open_to_namei_flags(int flag)
2650 {
2651 	if ((flag & O_ACCMODE) == 3)
2652 		flag--;
2653 	return flag;
2654 }
2655 
2656 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2657 {
2658 	int error = security_path_mknod(dir, dentry, mode, 0);
2659 	if (error)
2660 		return error;
2661 
2662 	error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2663 	if (error)
2664 		return error;
2665 
2666 	return security_inode_create(dir->dentry->d_inode, dentry, mode);
2667 }
2668 
2669 /*
2670  * Attempt to atomically look up, create and open a file from a negative
2671  * dentry.
2672  *
2673  * Returns 0 if successful.  The file will have been created and attached to
2674  * @file by the filesystem calling finish_open().
2675  *
2676  * Returns 1 if the file was looked up only or didn't need creating.  The
2677  * caller will need to perform the open themselves.  @path will have been
2678  * updated to point to the new dentry.  This may be negative.
2679  *
2680  * Returns an error code otherwise.
2681  */
2682 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2683 			struct path *path, struct file *file,
2684 			const struct open_flags *op,
2685 			bool got_write, bool need_lookup,
2686 			int *opened)
2687 {
2688 	struct inode *dir =  nd->path.dentry->d_inode;
2689 	unsigned open_flag = open_to_namei_flags(op->open_flag);
2690 	umode_t mode;
2691 	int error;
2692 	int acc_mode;
2693 	int create_error = 0;
2694 	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2695 	bool excl;
2696 
2697 	BUG_ON(dentry->d_inode);
2698 
2699 	/* Don't create child dentry for a dead directory. */
2700 	if (unlikely(IS_DEADDIR(dir))) {
2701 		error = -ENOENT;
2702 		goto out;
2703 	}
2704 
2705 	mode = op->mode;
2706 	if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2707 		mode &= ~current_umask();
2708 
2709 	excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT);
2710 	if (excl)
2711 		open_flag &= ~O_TRUNC;
2712 
2713 	/*
2714 	 * Checking write permission is tricky, bacuse we don't know if we are
2715 	 * going to actually need it: O_CREAT opens should work as long as the
2716 	 * file exists.  But checking existence breaks atomicity.  The trick is
2717 	 * to check access and if not granted clear O_CREAT from the flags.
2718 	 *
2719 	 * Another problem is returing the "right" error value (e.g. for an
2720 	 * O_EXCL open we want to return EEXIST not EROFS).
2721 	 */
2722 	if (((open_flag & (O_CREAT | O_TRUNC)) ||
2723 	    (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2724 		if (!(open_flag & O_CREAT)) {
2725 			/*
2726 			 * No O_CREATE -> atomicity not a requirement -> fall
2727 			 * back to lookup + open
2728 			 */
2729 			goto no_open;
2730 		} else if (open_flag & (O_EXCL | O_TRUNC)) {
2731 			/* Fall back and fail with the right error */
2732 			create_error = -EROFS;
2733 			goto no_open;
2734 		} else {
2735 			/* No side effects, safe to clear O_CREAT */
2736 			create_error = -EROFS;
2737 			open_flag &= ~O_CREAT;
2738 		}
2739 	}
2740 
2741 	if (open_flag & O_CREAT) {
2742 		error = may_o_create(&nd->path, dentry, mode);
2743 		if (error) {
2744 			create_error = error;
2745 			if (open_flag & O_EXCL)
2746 				goto no_open;
2747 			open_flag &= ~O_CREAT;
2748 		}
2749 	}
2750 
2751 	if (nd->flags & LOOKUP_DIRECTORY)
2752 		open_flag |= O_DIRECTORY;
2753 
2754 	file->f_path.dentry = DENTRY_NOT_SET;
2755 	file->f_path.mnt = nd->path.mnt;
2756 	error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2757 				      opened);
2758 	if (error < 0) {
2759 		if (create_error && error == -ENOENT)
2760 			error = create_error;
2761 		goto out;
2762 	}
2763 
2764 	if (error) {	/* returned 1, that is */
2765 		if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2766 			error = -EIO;
2767 			goto out;
2768 		}
2769 		if (file->f_path.dentry) {
2770 			dput(dentry);
2771 			dentry = file->f_path.dentry;
2772 		}
2773 		if (*opened & FILE_CREATED)
2774 			fsnotify_create(dir, dentry);
2775 		if (!dentry->d_inode) {
2776 			WARN_ON(*opened & FILE_CREATED);
2777 			if (create_error) {
2778 				error = create_error;
2779 				goto out;
2780 			}
2781 		} else {
2782 			if (excl && !(*opened & FILE_CREATED)) {
2783 				error = -EEXIST;
2784 				goto out;
2785 			}
2786 		}
2787 		goto looked_up;
2788 	}
2789 
2790 	/*
2791 	 * We didn't have the inode before the open, so check open permission
2792 	 * here.
2793 	 */
2794 	acc_mode = op->acc_mode;
2795 	if (*opened & FILE_CREATED) {
2796 		WARN_ON(!(open_flag & O_CREAT));
2797 		fsnotify_create(dir, dentry);
2798 		acc_mode = MAY_OPEN;
2799 	}
2800 	error = may_open(&file->f_path, acc_mode, open_flag);
2801 	if (error)
2802 		fput(file);
2803 
2804 out:
2805 	dput(dentry);
2806 	return error;
2807 
2808 no_open:
2809 	if (need_lookup) {
2810 		dentry = lookup_real(dir, dentry, nd->flags);
2811 		if (IS_ERR(dentry))
2812 			return PTR_ERR(dentry);
2813 
2814 		if (create_error) {
2815 			int open_flag = op->open_flag;
2816 
2817 			error = create_error;
2818 			if ((open_flag & O_EXCL)) {
2819 				if (!dentry->d_inode)
2820 					goto out;
2821 			} else if (!dentry->d_inode) {
2822 				goto out;
2823 			} else if ((open_flag & O_TRUNC) &&
2824 				   d_is_reg(dentry)) {
2825 				goto out;
2826 			}
2827 			/* will fail later, go on to get the right error */
2828 		}
2829 	}
2830 looked_up:
2831 	path->dentry = dentry;
2832 	path->mnt = nd->path.mnt;
2833 	return 1;
2834 }
2835 
2836 /*
2837  * Look up and maybe create and open the last component.
2838  *
2839  * Must be called with i_mutex held on parent.
2840  *
2841  * Returns 0 if the file was successfully atomically created (if necessary) and
2842  * opened.  In this case the file will be returned attached to @file.
2843  *
2844  * Returns 1 if the file was not completely opened at this time, though lookups
2845  * and creations will have been performed and the dentry returned in @path will
2846  * be positive upon return if O_CREAT was specified.  If O_CREAT wasn't
2847  * specified then a negative dentry may be returned.
2848  *
2849  * An error code is returned otherwise.
2850  *
2851  * FILE_CREATE will be set in @*opened if the dentry was created and will be
2852  * cleared otherwise prior to returning.
2853  */
2854 static int lookup_open(struct nameidata *nd, struct path *path,
2855 			struct file *file,
2856 			const struct open_flags *op,
2857 			bool got_write, int *opened)
2858 {
2859 	struct dentry *dir = nd->path.dentry;
2860 	struct inode *dir_inode = dir->d_inode;
2861 	struct dentry *dentry;
2862 	int error;
2863 	bool need_lookup;
2864 
2865 	*opened &= ~FILE_CREATED;
2866 	dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2867 	if (IS_ERR(dentry))
2868 		return PTR_ERR(dentry);
2869 
2870 	/* Cached positive dentry: will open in f_op->open */
2871 	if (!need_lookup && dentry->d_inode)
2872 		goto out_no_open;
2873 
2874 	if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2875 		return atomic_open(nd, dentry, path, file, op, got_write,
2876 				   need_lookup, opened);
2877 	}
2878 
2879 	if (need_lookup) {
2880 		BUG_ON(dentry->d_inode);
2881 
2882 		dentry = lookup_real(dir_inode, dentry, nd->flags);
2883 		if (IS_ERR(dentry))
2884 			return PTR_ERR(dentry);
2885 	}
2886 
2887 	/* Negative dentry, just create the file */
2888 	if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2889 		umode_t mode = op->mode;
2890 		if (!IS_POSIXACL(dir->d_inode))
2891 			mode &= ~current_umask();
2892 		/*
2893 		 * This write is needed to ensure that a
2894 		 * rw->ro transition does not occur between
2895 		 * the time when the file is created and when
2896 		 * a permanent write count is taken through
2897 		 * the 'struct file' in finish_open().
2898 		 */
2899 		if (!got_write) {
2900 			error = -EROFS;
2901 			goto out_dput;
2902 		}
2903 		*opened |= FILE_CREATED;
2904 		error = security_path_mknod(&nd->path, dentry, mode, 0);
2905 		if (error)
2906 			goto out_dput;
2907 		error = vfs_create(dir->d_inode, dentry, mode,
2908 				   nd->flags & LOOKUP_EXCL);
2909 		if (error)
2910 			goto out_dput;
2911 	}
2912 out_no_open:
2913 	path->dentry = dentry;
2914 	path->mnt = nd->path.mnt;
2915 	return 1;
2916 
2917 out_dput:
2918 	dput(dentry);
2919 	return error;
2920 }
2921 
2922 /*
2923  * Handle the last step of open()
2924  */
2925 static int do_last(struct nameidata *nd, struct path *path,
2926 		   struct file *file, const struct open_flags *op,
2927 		   int *opened, struct filename *name)
2928 {
2929 	struct dentry *dir = nd->path.dentry;
2930 	int open_flag = op->open_flag;
2931 	bool will_truncate = (open_flag & O_TRUNC) != 0;
2932 	bool got_write = false;
2933 	int acc_mode = op->acc_mode;
2934 	struct inode *inode;
2935 	bool symlink_ok = false;
2936 	struct path save_parent = { .dentry = NULL, .mnt = NULL };
2937 	bool retried = false;
2938 	int error;
2939 
2940 	nd->flags &= ~LOOKUP_PARENT;
2941 	nd->flags |= op->intent;
2942 
2943 	if (nd->last_type != LAST_NORM) {
2944 		error = handle_dots(nd, nd->last_type);
2945 		if (error)
2946 			return error;
2947 		goto finish_open;
2948 	}
2949 
2950 	if (!(open_flag & O_CREAT)) {
2951 		if (nd->last.name[nd->last.len])
2952 			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2953 		if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2954 			symlink_ok = true;
2955 		/* we _can_ be in RCU mode here */
2956 		error = lookup_fast(nd, path, &inode);
2957 		if (likely(!error))
2958 			goto finish_lookup;
2959 
2960 		if (error < 0)
2961 			goto out;
2962 
2963 		BUG_ON(nd->inode != dir->d_inode);
2964 	} else {
2965 		/* create side of things */
2966 		/*
2967 		 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
2968 		 * has been cleared when we got to the last component we are
2969 		 * about to look up
2970 		 */
2971 		error = complete_walk(nd);
2972 		if (error)
2973 			return error;
2974 
2975 		audit_inode(name, dir, LOOKUP_PARENT);
2976 		error = -EISDIR;
2977 		/* trailing slashes? */
2978 		if (nd->last.name[nd->last.len])
2979 			goto out;
2980 	}
2981 
2982 retry_lookup:
2983 	if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
2984 		error = mnt_want_write(nd->path.mnt);
2985 		if (!error)
2986 			got_write = true;
2987 		/*
2988 		 * do _not_ fail yet - we might not need that or fail with
2989 		 * a different error; let lookup_open() decide; we'll be
2990 		 * dropping this one anyway.
2991 		 */
2992 	}
2993 	mutex_lock(&dir->d_inode->i_mutex);
2994 	error = lookup_open(nd, path, file, op, got_write, opened);
2995 	mutex_unlock(&dir->d_inode->i_mutex);
2996 
2997 	if (error <= 0) {
2998 		if (error)
2999 			goto out;
3000 
3001 		if ((*opened & FILE_CREATED) ||
3002 		    !S_ISREG(file_inode(file)->i_mode))
3003 			will_truncate = false;
3004 
3005 		audit_inode(name, file->f_path.dentry, 0);
3006 		goto opened;
3007 	}
3008 
3009 	if (*opened & FILE_CREATED) {
3010 		/* Don't check for write permission, don't truncate */
3011 		open_flag &= ~O_TRUNC;
3012 		will_truncate = false;
3013 		acc_mode = MAY_OPEN;
3014 		path_to_nameidata(path, nd);
3015 		goto finish_open_created;
3016 	}
3017 
3018 	/*
3019 	 * create/update audit record if it already exists.
3020 	 */
3021 	if (d_is_positive(path->dentry))
3022 		audit_inode(name, path->dentry, 0);
3023 
3024 	/*
3025 	 * If atomic_open() acquired write access it is dropped now due to
3026 	 * possible mount and symlink following (this might be optimized away if
3027 	 * necessary...)
3028 	 */
3029 	if (got_write) {
3030 		mnt_drop_write(nd->path.mnt);
3031 		got_write = false;
3032 	}
3033 
3034 	error = -EEXIST;
3035 	if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))
3036 		goto exit_dput;
3037 
3038 	error = follow_managed(path, nd->flags);
3039 	if (error < 0)
3040 		goto exit_dput;
3041 
3042 	if (error)
3043 		nd->flags |= LOOKUP_JUMPED;
3044 
3045 	BUG_ON(nd->flags & LOOKUP_RCU);
3046 	inode = path->dentry->d_inode;
3047 	error = -ENOENT;
3048 	if (d_is_negative(path->dentry)) {
3049 		path_to_nameidata(path, nd);
3050 		goto out;
3051 	}
3052 finish_lookup:
3053 	/* we _can_ be in RCU mode here */
3054 	if (should_follow_link(path->dentry, !symlink_ok)) {
3055 		if (nd->flags & LOOKUP_RCU) {
3056 			if (unlikely(nd->path.mnt != path->mnt ||
3057 				     unlazy_walk(nd, path->dentry))) {
3058 				error = -ECHILD;
3059 				goto out;
3060 			}
3061 		}
3062 		BUG_ON(inode != path->dentry->d_inode);
3063 		return 1;
3064 	}
3065 
3066 	if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) {
3067 		path_to_nameidata(path, nd);
3068 	} else {
3069 		save_parent.dentry = nd->path.dentry;
3070 		save_parent.mnt = mntget(path->mnt);
3071 		nd->path.dentry = path->dentry;
3072 
3073 	}
3074 	nd->inode = inode;
3075 	/* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
3076 finish_open:
3077 	error = complete_walk(nd);
3078 	if (error) {
3079 		path_put(&save_parent);
3080 		return error;
3081 	}
3082 	audit_inode(name, nd->path.dentry, 0);
3083 	error = -EISDIR;
3084 	if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3085 		goto out;
3086 	error = -ENOTDIR;
3087 	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3088 		goto out;
3089 	if (!d_is_reg(nd->path.dentry))
3090 		will_truncate = false;
3091 
3092 	if (will_truncate) {
3093 		error = mnt_want_write(nd->path.mnt);
3094 		if (error)
3095 			goto out;
3096 		got_write = true;
3097 	}
3098 finish_open_created:
3099 	error = may_open(&nd->path, acc_mode, open_flag);
3100 	if (error)
3101 		goto out;
3102 
3103 	BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3104 	error = vfs_open(&nd->path, file, current_cred());
3105 	if (!error) {
3106 		*opened |= FILE_OPENED;
3107 	} else {
3108 		if (error == -EOPENSTALE)
3109 			goto stale_open;
3110 		goto out;
3111 	}
3112 opened:
3113 	error = open_check_o_direct(file);
3114 	if (error)
3115 		goto exit_fput;
3116 	error = ima_file_check(file, op->acc_mode, *opened);
3117 	if (error)
3118 		goto exit_fput;
3119 
3120 	if (will_truncate) {
3121 		error = handle_truncate(file);
3122 		if (error)
3123 			goto exit_fput;
3124 	}
3125 out:
3126 	if (got_write)
3127 		mnt_drop_write(nd->path.mnt);
3128 	path_put(&save_parent);
3129 	terminate_walk(nd);
3130 	return error;
3131 
3132 exit_dput:
3133 	path_put_conditional(path, nd);
3134 	goto out;
3135 exit_fput:
3136 	fput(file);
3137 	goto out;
3138 
3139 stale_open:
3140 	/* If no saved parent or already retried then can't retry */
3141 	if (!save_parent.dentry || retried)
3142 		goto out;
3143 
3144 	BUG_ON(save_parent.dentry != dir);
3145 	path_put(&nd->path);
3146 	nd->path = save_parent;
3147 	nd->inode = dir->d_inode;
3148 	save_parent.mnt = NULL;
3149 	save_parent.dentry = NULL;
3150 	if (got_write) {
3151 		mnt_drop_write(nd->path.mnt);
3152 		got_write = false;
3153 	}
3154 	retried = true;
3155 	goto retry_lookup;
3156 }
3157 
3158 static int do_tmpfile(int dfd, struct filename *pathname,
3159 		struct nameidata *nd, int flags,
3160 		const struct open_flags *op,
3161 		struct file *file, int *opened)
3162 {
3163 	static const struct qstr name = QSTR_INIT("/", 1);
3164 	struct dentry *dentry, *child;
3165 	struct inode *dir;
3166 	int error = path_lookupat(dfd, pathname,
3167 				  flags | LOOKUP_DIRECTORY, nd);
3168 	if (unlikely(error))
3169 		return error;
3170 	error = mnt_want_write(nd->path.mnt);
3171 	if (unlikely(error))
3172 		goto out;
3173 	/* we want directory to be writable */
3174 	error = inode_permission(nd->inode, MAY_WRITE | MAY_EXEC);
3175 	if (error)
3176 		goto out2;
3177 	dentry = nd->path.dentry;
3178 	dir = dentry->d_inode;
3179 	if (!dir->i_op->tmpfile) {
3180 		error = -EOPNOTSUPP;
3181 		goto out2;
3182 	}
3183 	child = d_alloc(dentry, &name);
3184 	if (unlikely(!child)) {
3185 		error = -ENOMEM;
3186 		goto out2;
3187 	}
3188 	nd->flags &= ~LOOKUP_DIRECTORY;
3189 	nd->flags |= op->intent;
3190 	dput(nd->path.dentry);
3191 	nd->path.dentry = child;
3192 	error = dir->i_op->tmpfile(dir, nd->path.dentry, op->mode);
3193 	if (error)
3194 		goto out2;
3195 	audit_inode(pathname, nd->path.dentry, 0);
3196 	/* Don't check for other permissions, the inode was just created */
3197 	error = may_open(&nd->path, MAY_OPEN, op->open_flag);
3198 	if (error)
3199 		goto out2;
3200 	file->f_path.mnt = nd->path.mnt;
3201 	error = finish_open(file, nd->path.dentry, NULL, opened);
3202 	if (error)
3203 		goto out2;
3204 	error = open_check_o_direct(file);
3205 	if (error) {
3206 		fput(file);
3207 	} else if (!(op->open_flag & O_EXCL)) {
3208 		struct inode *inode = file_inode(file);
3209 		spin_lock(&inode->i_lock);
3210 		inode->i_state |= I_LINKABLE;
3211 		spin_unlock(&inode->i_lock);
3212 	}
3213 out2:
3214 	mnt_drop_write(nd->path.mnt);
3215 out:
3216 	path_put(&nd->path);
3217 	return error;
3218 }
3219 
3220 static struct file *path_openat(int dfd, struct filename *pathname,
3221 		struct nameidata *nd, const struct open_flags *op, int flags)
3222 {
3223 	struct file *file;
3224 	struct path path;
3225 	int opened = 0;
3226 	int error;
3227 
3228 	file = get_empty_filp();
3229 	if (IS_ERR(file))
3230 		return file;
3231 
3232 	file->f_flags = op->open_flag;
3233 
3234 	if (unlikely(file->f_flags & __O_TMPFILE)) {
3235 		error = do_tmpfile(dfd, pathname, nd, flags, op, file, &opened);
3236 		goto out2;
3237 	}
3238 
3239 	error = path_init(dfd, pathname, flags, nd);
3240 	if (unlikely(error))
3241 		goto out;
3242 
3243 	error = do_last(nd, &path, file, op, &opened, pathname);
3244 	while (unlikely(error > 0)) { /* trailing symlink */
3245 		struct path link = path;
3246 		void *cookie;
3247 		if (!(nd->flags & LOOKUP_FOLLOW)) {
3248 			path_put_conditional(&path, nd);
3249 			path_put(&nd->path);
3250 			error = -ELOOP;
3251 			break;
3252 		}
3253 		error = may_follow_link(&link, nd);
3254 		if (unlikely(error))
3255 			break;
3256 		nd->flags |= LOOKUP_PARENT;
3257 		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3258 		error = follow_link(&link, nd, &cookie);
3259 		if (unlikely(error))
3260 			break;
3261 		error = do_last(nd, &path, file, op, &opened, pathname);
3262 		put_link(nd, &link, cookie);
3263 	}
3264 out:
3265 	path_cleanup(nd);
3266 out2:
3267 	if (!(opened & FILE_OPENED)) {
3268 		BUG_ON(!error);
3269 		put_filp(file);
3270 	}
3271 	if (unlikely(error)) {
3272 		if (error == -EOPENSTALE) {
3273 			if (flags & LOOKUP_RCU)
3274 				error = -ECHILD;
3275 			else
3276 				error = -ESTALE;
3277 		}
3278 		file = ERR_PTR(error);
3279 	}
3280 	return file;
3281 }
3282 
3283 struct file *do_filp_open(int dfd, struct filename *pathname,
3284 		const struct open_flags *op)
3285 {
3286 	struct nameidata nd;
3287 	int flags = op->lookup_flags;
3288 	struct file *filp;
3289 
3290 	filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
3291 	if (unlikely(filp == ERR_PTR(-ECHILD)))
3292 		filp = path_openat(dfd, pathname, &nd, op, flags);
3293 	if (unlikely(filp == ERR_PTR(-ESTALE)))
3294 		filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
3295 	return filp;
3296 }
3297 
3298 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3299 		const char *name, const struct open_flags *op)
3300 {
3301 	struct nameidata nd;
3302 	struct file *file;
3303 	struct filename *filename;
3304 	int flags = op->lookup_flags | LOOKUP_ROOT;
3305 
3306 	nd.root.mnt = mnt;
3307 	nd.root.dentry = dentry;
3308 
3309 	if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3310 		return ERR_PTR(-ELOOP);
3311 
3312 	filename = getname_kernel(name);
3313 	if (unlikely(IS_ERR(filename)))
3314 		return ERR_CAST(filename);
3315 
3316 	file = path_openat(-1, filename, &nd, op, flags | LOOKUP_RCU);
3317 	if (unlikely(file == ERR_PTR(-ECHILD)))
3318 		file = path_openat(-1, filename, &nd, op, flags);
3319 	if (unlikely(file == ERR_PTR(-ESTALE)))
3320 		file = path_openat(-1, filename, &nd, op, flags | LOOKUP_REVAL);
3321 	putname(filename);
3322 	return file;
3323 }
3324 
3325 static struct dentry *filename_create(int dfd, struct filename *name,
3326 				struct path *path, unsigned int lookup_flags)
3327 {
3328 	struct dentry *dentry = ERR_PTR(-EEXIST);
3329 	struct nameidata nd;
3330 	int err2;
3331 	int error;
3332 	bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3333 
3334 	/*
3335 	 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3336 	 * other flags passed in are ignored!
3337 	 */
3338 	lookup_flags &= LOOKUP_REVAL;
3339 
3340 	error = filename_lookup(dfd, name, LOOKUP_PARENT|lookup_flags, &nd);
3341 	if (error)
3342 		return ERR_PTR(error);
3343 
3344 	/*
3345 	 * Yucky last component or no last component at all?
3346 	 * (foo/., foo/.., /////)
3347 	 */
3348 	if (nd.last_type != LAST_NORM)
3349 		goto out;
3350 	nd.flags &= ~LOOKUP_PARENT;
3351 	nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3352 
3353 	/* don't fail immediately if it's r/o, at least try to report other errors */
3354 	err2 = mnt_want_write(nd.path.mnt);
3355 	/*
3356 	 * Do the final lookup.
3357 	 */
3358 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3359 	dentry = lookup_hash(&nd);
3360 	if (IS_ERR(dentry))
3361 		goto unlock;
3362 
3363 	error = -EEXIST;
3364 	if (d_is_positive(dentry))
3365 		goto fail;
3366 
3367 	/*
3368 	 * Special case - lookup gave negative, but... we had foo/bar/
3369 	 * From the vfs_mknod() POV we just have a negative dentry -
3370 	 * all is fine. Let's be bastards - you had / on the end, you've
3371 	 * been asking for (non-existent) directory. -ENOENT for you.
3372 	 */
3373 	if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
3374 		error = -ENOENT;
3375 		goto fail;
3376 	}
3377 	if (unlikely(err2)) {
3378 		error = err2;
3379 		goto fail;
3380 	}
3381 	*path = nd.path;
3382 	return dentry;
3383 fail:
3384 	dput(dentry);
3385 	dentry = ERR_PTR(error);
3386 unlock:
3387 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3388 	if (!err2)
3389 		mnt_drop_write(nd.path.mnt);
3390 out:
3391 	path_put(&nd.path);
3392 	return dentry;
3393 }
3394 
3395 struct dentry *kern_path_create(int dfd, const char *pathname,
3396 				struct path *path, unsigned int lookup_flags)
3397 {
3398 	struct filename *filename = getname_kernel(pathname);
3399 	struct dentry *res;
3400 
3401 	if (IS_ERR(filename))
3402 		return ERR_CAST(filename);
3403 	res = filename_create(dfd, filename, path, lookup_flags);
3404 	putname(filename);
3405 	return res;
3406 }
3407 EXPORT_SYMBOL(kern_path_create);
3408 
3409 void done_path_create(struct path *path, struct dentry *dentry)
3410 {
3411 	dput(dentry);
3412 	mutex_unlock(&path->dentry->d_inode->i_mutex);
3413 	mnt_drop_write(path->mnt);
3414 	path_put(path);
3415 }
3416 EXPORT_SYMBOL(done_path_create);
3417 
3418 struct dentry *user_path_create(int dfd, const char __user *pathname,
3419 				struct path *path, unsigned int lookup_flags)
3420 {
3421 	struct filename *tmp = getname(pathname);
3422 	struct dentry *res;
3423 	if (IS_ERR(tmp))
3424 		return ERR_CAST(tmp);
3425 	res = filename_create(dfd, tmp, path, lookup_flags);
3426 	putname(tmp);
3427 	return res;
3428 }
3429 EXPORT_SYMBOL(user_path_create);
3430 
3431 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3432 {
3433 	int error = may_create(dir, dentry);
3434 
3435 	if (error)
3436 		return error;
3437 
3438 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3439 		return -EPERM;
3440 
3441 	if (!dir->i_op->mknod)
3442 		return -EPERM;
3443 
3444 	error = devcgroup_inode_mknod(mode, dev);
3445 	if (error)
3446 		return error;
3447 
3448 	error = security_inode_mknod(dir, dentry, mode, dev);
3449 	if (error)
3450 		return error;
3451 
3452 	error = dir->i_op->mknod(dir, dentry, mode, dev);
3453 	if (!error)
3454 		fsnotify_create(dir, dentry);
3455 	return error;
3456 }
3457 EXPORT_SYMBOL(vfs_mknod);
3458 
3459 static int may_mknod(umode_t mode)
3460 {
3461 	switch (mode & S_IFMT) {
3462 	case S_IFREG:
3463 	case S_IFCHR:
3464 	case S_IFBLK:
3465 	case S_IFIFO:
3466 	case S_IFSOCK:
3467 	case 0: /* zero mode translates to S_IFREG */
3468 		return 0;
3469 	case S_IFDIR:
3470 		return -EPERM;
3471 	default:
3472 		return -EINVAL;
3473 	}
3474 }
3475 
3476 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3477 		unsigned, dev)
3478 {
3479 	struct dentry *dentry;
3480 	struct path path;
3481 	int error;
3482 	unsigned int lookup_flags = 0;
3483 
3484 	error = may_mknod(mode);
3485 	if (error)
3486 		return error;
3487 retry:
3488 	dentry = user_path_create(dfd, filename, &path, lookup_flags);
3489 	if (IS_ERR(dentry))
3490 		return PTR_ERR(dentry);
3491 
3492 	if (!IS_POSIXACL(path.dentry->d_inode))
3493 		mode &= ~current_umask();
3494 	error = security_path_mknod(&path, dentry, mode, dev);
3495 	if (error)
3496 		goto out;
3497 	switch (mode & S_IFMT) {
3498 		case 0: case S_IFREG:
3499 			error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3500 			break;
3501 		case S_IFCHR: case S_IFBLK:
3502 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3503 					new_decode_dev(dev));
3504 			break;
3505 		case S_IFIFO: case S_IFSOCK:
3506 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3507 			break;
3508 	}
3509 out:
3510 	done_path_create(&path, dentry);
3511 	if (retry_estale(error, lookup_flags)) {
3512 		lookup_flags |= LOOKUP_REVAL;
3513 		goto retry;
3514 	}
3515 	return error;
3516 }
3517 
3518 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3519 {
3520 	return sys_mknodat(AT_FDCWD, filename, mode, dev);
3521 }
3522 
3523 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3524 {
3525 	int error = may_create(dir, dentry);
3526 	unsigned max_links = dir->i_sb->s_max_links;
3527 
3528 	if (error)
3529 		return error;
3530 
3531 	if (!dir->i_op->mkdir)
3532 		return -EPERM;
3533 
3534 	mode &= (S_IRWXUGO|S_ISVTX);
3535 	error = security_inode_mkdir(dir, dentry, mode);
3536 	if (error)
3537 		return error;
3538 
3539 	if (max_links && dir->i_nlink >= max_links)
3540 		return -EMLINK;
3541 
3542 	error = dir->i_op->mkdir(dir, dentry, mode);
3543 	if (!error)
3544 		fsnotify_mkdir(dir, dentry);
3545 	return error;
3546 }
3547 EXPORT_SYMBOL(vfs_mkdir);
3548 
3549 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3550 {
3551 	struct dentry *dentry;
3552 	struct path path;
3553 	int error;
3554 	unsigned int lookup_flags = LOOKUP_DIRECTORY;
3555 
3556 retry:
3557 	dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3558 	if (IS_ERR(dentry))
3559 		return PTR_ERR(dentry);
3560 
3561 	if (!IS_POSIXACL(path.dentry->d_inode))
3562 		mode &= ~current_umask();
3563 	error = security_path_mkdir(&path, dentry, mode);
3564 	if (!error)
3565 		error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3566 	done_path_create(&path, dentry);
3567 	if (retry_estale(error, lookup_flags)) {
3568 		lookup_flags |= LOOKUP_REVAL;
3569 		goto retry;
3570 	}
3571 	return error;
3572 }
3573 
3574 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3575 {
3576 	return sys_mkdirat(AT_FDCWD, pathname, mode);
3577 }
3578 
3579 /*
3580  * The dentry_unhash() helper will try to drop the dentry early: we
3581  * should have a usage count of 1 if we're the only user of this
3582  * dentry, and if that is true (possibly after pruning the dcache),
3583  * then we drop the dentry now.
3584  *
3585  * A low-level filesystem can, if it choses, legally
3586  * do a
3587  *
3588  *	if (!d_unhashed(dentry))
3589  *		return -EBUSY;
3590  *
3591  * if it cannot handle the case of removing a directory
3592  * that is still in use by something else..
3593  */
3594 void dentry_unhash(struct dentry *dentry)
3595 {
3596 	shrink_dcache_parent(dentry);
3597 	spin_lock(&dentry->d_lock);
3598 	if (dentry->d_lockref.count == 1)
3599 		__d_drop(dentry);
3600 	spin_unlock(&dentry->d_lock);
3601 }
3602 EXPORT_SYMBOL(dentry_unhash);
3603 
3604 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3605 {
3606 	int error = may_delete(dir, dentry, 1);
3607 
3608 	if (error)
3609 		return error;
3610 
3611 	if (!dir->i_op->rmdir)
3612 		return -EPERM;
3613 
3614 	dget(dentry);
3615 	mutex_lock(&dentry->d_inode->i_mutex);
3616 
3617 	error = -EBUSY;
3618 	if (is_local_mountpoint(dentry))
3619 		goto out;
3620 
3621 	error = security_inode_rmdir(dir, dentry);
3622 	if (error)
3623 		goto out;
3624 
3625 	shrink_dcache_parent(dentry);
3626 	error = dir->i_op->rmdir(dir, dentry);
3627 	if (error)
3628 		goto out;
3629 
3630 	dentry->d_inode->i_flags |= S_DEAD;
3631 	dont_mount(dentry);
3632 	detach_mounts(dentry);
3633 
3634 out:
3635 	mutex_unlock(&dentry->d_inode->i_mutex);
3636 	dput(dentry);
3637 	if (!error)
3638 		d_delete(dentry);
3639 	return error;
3640 }
3641 EXPORT_SYMBOL(vfs_rmdir);
3642 
3643 static long do_rmdir(int dfd, const char __user *pathname)
3644 {
3645 	int error = 0;
3646 	struct filename *name;
3647 	struct dentry *dentry;
3648 	struct nameidata nd;
3649 	unsigned int lookup_flags = 0;
3650 retry:
3651 	name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3652 	if (IS_ERR(name))
3653 		return PTR_ERR(name);
3654 
3655 	switch(nd.last_type) {
3656 	case LAST_DOTDOT:
3657 		error = -ENOTEMPTY;
3658 		goto exit1;
3659 	case LAST_DOT:
3660 		error = -EINVAL;
3661 		goto exit1;
3662 	case LAST_ROOT:
3663 		error = -EBUSY;
3664 		goto exit1;
3665 	}
3666 
3667 	nd.flags &= ~LOOKUP_PARENT;
3668 	error = mnt_want_write(nd.path.mnt);
3669 	if (error)
3670 		goto exit1;
3671 
3672 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3673 	dentry = lookup_hash(&nd);
3674 	error = PTR_ERR(dentry);
3675 	if (IS_ERR(dentry))
3676 		goto exit2;
3677 	if (!dentry->d_inode) {
3678 		error = -ENOENT;
3679 		goto exit3;
3680 	}
3681 	error = security_path_rmdir(&nd.path, dentry);
3682 	if (error)
3683 		goto exit3;
3684 	error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
3685 exit3:
3686 	dput(dentry);
3687 exit2:
3688 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3689 	mnt_drop_write(nd.path.mnt);
3690 exit1:
3691 	path_put(&nd.path);
3692 	putname(name);
3693 	if (retry_estale(error, lookup_flags)) {
3694 		lookup_flags |= LOOKUP_REVAL;
3695 		goto retry;
3696 	}
3697 	return error;
3698 }
3699 
3700 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3701 {
3702 	return do_rmdir(AT_FDCWD, pathname);
3703 }
3704 
3705 /**
3706  * vfs_unlink - unlink a filesystem object
3707  * @dir:	parent directory
3708  * @dentry:	victim
3709  * @delegated_inode: returns victim inode, if the inode is delegated.
3710  *
3711  * The caller must hold dir->i_mutex.
3712  *
3713  * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3714  * return a reference to the inode in delegated_inode.  The caller
3715  * should then break the delegation on that inode and retry.  Because
3716  * breaking a delegation may take a long time, the caller should drop
3717  * dir->i_mutex before doing so.
3718  *
3719  * Alternatively, a caller may pass NULL for delegated_inode.  This may
3720  * be appropriate for callers that expect the underlying filesystem not
3721  * to be NFS exported.
3722  */
3723 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3724 {
3725 	struct inode *target = dentry->d_inode;
3726 	int error = may_delete(dir, dentry, 0);
3727 
3728 	if (error)
3729 		return error;
3730 
3731 	if (!dir->i_op->unlink)
3732 		return -EPERM;
3733 
3734 	mutex_lock(&target->i_mutex);
3735 	if (is_local_mountpoint(dentry))
3736 		error = -EBUSY;
3737 	else {
3738 		error = security_inode_unlink(dir, dentry);
3739 		if (!error) {
3740 			error = try_break_deleg(target, delegated_inode);
3741 			if (error)
3742 				goto out;
3743 			error = dir->i_op->unlink(dir, dentry);
3744 			if (!error) {
3745 				dont_mount(dentry);
3746 				detach_mounts(dentry);
3747 			}
3748 		}
3749 	}
3750 out:
3751 	mutex_unlock(&target->i_mutex);
3752 
3753 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
3754 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3755 		fsnotify_link_count(target);
3756 		d_delete(dentry);
3757 	}
3758 
3759 	return error;
3760 }
3761 EXPORT_SYMBOL(vfs_unlink);
3762 
3763 /*
3764  * Make sure that the actual truncation of the file will occur outside its
3765  * directory's i_mutex.  Truncate can take a long time if there is a lot of
3766  * writeout happening, and we don't want to prevent access to the directory
3767  * while waiting on the I/O.
3768  */
3769 static long do_unlinkat(int dfd, const char __user *pathname)
3770 {
3771 	int error;
3772 	struct filename *name;
3773 	struct dentry *dentry;
3774 	struct nameidata nd;
3775 	struct inode *inode = NULL;
3776 	struct inode *delegated_inode = NULL;
3777 	unsigned int lookup_flags = 0;
3778 retry:
3779 	name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3780 	if (IS_ERR(name))
3781 		return PTR_ERR(name);
3782 
3783 	error = -EISDIR;
3784 	if (nd.last_type != LAST_NORM)
3785 		goto exit1;
3786 
3787 	nd.flags &= ~LOOKUP_PARENT;
3788 	error = mnt_want_write(nd.path.mnt);
3789 	if (error)
3790 		goto exit1;
3791 retry_deleg:
3792 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3793 	dentry = lookup_hash(&nd);
3794 	error = PTR_ERR(dentry);
3795 	if (!IS_ERR(dentry)) {
3796 		/* Why not before? Because we want correct error value */
3797 		if (nd.last.name[nd.last.len])
3798 			goto slashes;
3799 		inode = dentry->d_inode;
3800 		if (d_is_negative(dentry))
3801 			goto slashes;
3802 		ihold(inode);
3803 		error = security_path_unlink(&nd.path, dentry);
3804 		if (error)
3805 			goto exit2;
3806 		error = vfs_unlink(nd.path.dentry->d_inode, dentry, &delegated_inode);
3807 exit2:
3808 		dput(dentry);
3809 	}
3810 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3811 	if (inode)
3812 		iput(inode);	/* truncate the inode here */
3813 	inode = NULL;
3814 	if (delegated_inode) {
3815 		error = break_deleg_wait(&delegated_inode);
3816 		if (!error)
3817 			goto retry_deleg;
3818 	}
3819 	mnt_drop_write(nd.path.mnt);
3820 exit1:
3821 	path_put(&nd.path);
3822 	putname(name);
3823 	if (retry_estale(error, lookup_flags)) {
3824 		lookup_flags |= LOOKUP_REVAL;
3825 		inode = NULL;
3826 		goto retry;
3827 	}
3828 	return error;
3829 
3830 slashes:
3831 	if (d_is_negative(dentry))
3832 		error = -ENOENT;
3833 	else if (d_is_dir(dentry))
3834 		error = -EISDIR;
3835 	else
3836 		error = -ENOTDIR;
3837 	goto exit2;
3838 }
3839 
3840 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3841 {
3842 	if ((flag & ~AT_REMOVEDIR) != 0)
3843 		return -EINVAL;
3844 
3845 	if (flag & AT_REMOVEDIR)
3846 		return do_rmdir(dfd, pathname);
3847 
3848 	return do_unlinkat(dfd, pathname);
3849 }
3850 
3851 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3852 {
3853 	return do_unlinkat(AT_FDCWD, pathname);
3854 }
3855 
3856 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3857 {
3858 	int error = may_create(dir, dentry);
3859 
3860 	if (error)
3861 		return error;
3862 
3863 	if (!dir->i_op->symlink)
3864 		return -EPERM;
3865 
3866 	error = security_inode_symlink(dir, dentry, oldname);
3867 	if (error)
3868 		return error;
3869 
3870 	error = dir->i_op->symlink(dir, dentry, oldname);
3871 	if (!error)
3872 		fsnotify_create(dir, dentry);
3873 	return error;
3874 }
3875 EXPORT_SYMBOL(vfs_symlink);
3876 
3877 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3878 		int, newdfd, const char __user *, newname)
3879 {
3880 	int error;
3881 	struct filename *from;
3882 	struct dentry *dentry;
3883 	struct path path;
3884 	unsigned int lookup_flags = 0;
3885 
3886 	from = getname(oldname);
3887 	if (IS_ERR(from))
3888 		return PTR_ERR(from);
3889 retry:
3890 	dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3891 	error = PTR_ERR(dentry);
3892 	if (IS_ERR(dentry))
3893 		goto out_putname;
3894 
3895 	error = security_path_symlink(&path, dentry, from->name);
3896 	if (!error)
3897 		error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3898 	done_path_create(&path, dentry);
3899 	if (retry_estale(error, lookup_flags)) {
3900 		lookup_flags |= LOOKUP_REVAL;
3901 		goto retry;
3902 	}
3903 out_putname:
3904 	putname(from);
3905 	return error;
3906 }
3907 
3908 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3909 {
3910 	return sys_symlinkat(oldname, AT_FDCWD, newname);
3911 }
3912 
3913 /**
3914  * vfs_link - create a new link
3915  * @old_dentry:	object to be linked
3916  * @dir:	new parent
3917  * @new_dentry:	where to create the new link
3918  * @delegated_inode: returns inode needing a delegation break
3919  *
3920  * The caller must hold dir->i_mutex
3921  *
3922  * If vfs_link discovers a delegation on the to-be-linked file in need
3923  * of breaking, it will return -EWOULDBLOCK and return a reference to the
3924  * inode in delegated_inode.  The caller should then break the delegation
3925  * and retry.  Because breaking a delegation may take a long time, the
3926  * caller should drop the i_mutex before doing so.
3927  *
3928  * Alternatively, a caller may pass NULL for delegated_inode.  This may
3929  * be appropriate for callers that expect the underlying filesystem not
3930  * to be NFS exported.
3931  */
3932 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
3933 {
3934 	struct inode *inode = old_dentry->d_inode;
3935 	unsigned max_links = dir->i_sb->s_max_links;
3936 	int error;
3937 
3938 	if (!inode)
3939 		return -ENOENT;
3940 
3941 	error = may_create(dir, new_dentry);
3942 	if (error)
3943 		return error;
3944 
3945 	if (dir->i_sb != inode->i_sb)
3946 		return -EXDEV;
3947 
3948 	/*
3949 	 * A link to an append-only or immutable file cannot be created.
3950 	 */
3951 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3952 		return -EPERM;
3953 	if (!dir->i_op->link)
3954 		return -EPERM;
3955 	if (S_ISDIR(inode->i_mode))
3956 		return -EPERM;
3957 
3958 	error = security_inode_link(old_dentry, dir, new_dentry);
3959 	if (error)
3960 		return error;
3961 
3962 	mutex_lock(&inode->i_mutex);
3963 	/* Make sure we don't allow creating hardlink to an unlinked file */
3964 	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
3965 		error =  -ENOENT;
3966 	else if (max_links && inode->i_nlink >= max_links)
3967 		error = -EMLINK;
3968 	else {
3969 		error = try_break_deleg(inode, delegated_inode);
3970 		if (!error)
3971 			error = dir->i_op->link(old_dentry, dir, new_dentry);
3972 	}
3973 
3974 	if (!error && (inode->i_state & I_LINKABLE)) {
3975 		spin_lock(&inode->i_lock);
3976 		inode->i_state &= ~I_LINKABLE;
3977 		spin_unlock(&inode->i_lock);
3978 	}
3979 	mutex_unlock(&inode->i_mutex);
3980 	if (!error)
3981 		fsnotify_link(dir, inode, new_dentry);
3982 	return error;
3983 }
3984 EXPORT_SYMBOL(vfs_link);
3985 
3986 /*
3987  * Hardlinks are often used in delicate situations.  We avoid
3988  * security-related surprises by not following symlinks on the
3989  * newname.  --KAB
3990  *
3991  * We don't follow them on the oldname either to be compatible
3992  * with linux 2.0, and to avoid hard-linking to directories
3993  * and other special files.  --ADM
3994  */
3995 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3996 		int, newdfd, const char __user *, newname, int, flags)
3997 {
3998 	struct dentry *new_dentry;
3999 	struct path old_path, new_path;
4000 	struct inode *delegated_inode = NULL;
4001 	int how = 0;
4002 	int error;
4003 
4004 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4005 		return -EINVAL;
4006 	/*
4007 	 * To use null names we require CAP_DAC_READ_SEARCH
4008 	 * This ensures that not everyone will be able to create
4009 	 * handlink using the passed filedescriptor.
4010 	 */
4011 	if (flags & AT_EMPTY_PATH) {
4012 		if (!capable(CAP_DAC_READ_SEARCH))
4013 			return -ENOENT;
4014 		how = LOOKUP_EMPTY;
4015 	}
4016 
4017 	if (flags & AT_SYMLINK_FOLLOW)
4018 		how |= LOOKUP_FOLLOW;
4019 retry:
4020 	error = user_path_at(olddfd, oldname, how, &old_path);
4021 	if (error)
4022 		return error;
4023 
4024 	new_dentry = user_path_create(newdfd, newname, &new_path,
4025 					(how & LOOKUP_REVAL));
4026 	error = PTR_ERR(new_dentry);
4027 	if (IS_ERR(new_dentry))
4028 		goto out;
4029 
4030 	error = -EXDEV;
4031 	if (old_path.mnt != new_path.mnt)
4032 		goto out_dput;
4033 	error = may_linkat(&old_path);
4034 	if (unlikely(error))
4035 		goto out_dput;
4036 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
4037 	if (error)
4038 		goto out_dput;
4039 	error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4040 out_dput:
4041 	done_path_create(&new_path, new_dentry);
4042 	if (delegated_inode) {
4043 		error = break_deleg_wait(&delegated_inode);
4044 		if (!error) {
4045 			path_put(&old_path);
4046 			goto retry;
4047 		}
4048 	}
4049 	if (retry_estale(error, how)) {
4050 		path_put(&old_path);
4051 		how |= LOOKUP_REVAL;
4052 		goto retry;
4053 	}
4054 out:
4055 	path_put(&old_path);
4056 
4057 	return error;
4058 }
4059 
4060 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4061 {
4062 	return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4063 }
4064 
4065 /**
4066  * vfs_rename - rename a filesystem object
4067  * @old_dir:	parent of source
4068  * @old_dentry:	source
4069  * @new_dir:	parent of destination
4070  * @new_dentry:	destination
4071  * @delegated_inode: returns an inode needing a delegation break
4072  * @flags:	rename flags
4073  *
4074  * The caller must hold multiple mutexes--see lock_rename()).
4075  *
4076  * If vfs_rename discovers a delegation in need of breaking at either
4077  * the source or destination, it will return -EWOULDBLOCK and return a
4078  * reference to the inode in delegated_inode.  The caller should then
4079  * break the delegation and retry.  Because breaking a delegation may
4080  * take a long time, the caller should drop all locks before doing
4081  * so.
4082  *
4083  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4084  * be appropriate for callers that expect the underlying filesystem not
4085  * to be NFS exported.
4086  *
4087  * The worst of all namespace operations - renaming directory. "Perverted"
4088  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4089  * Problems:
4090  *	a) we can get into loop creation.
4091  *	b) race potential - two innocent renames can create a loop together.
4092  *	   That's where 4.4 screws up. Current fix: serialization on
4093  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4094  *	   story.
4095  *	c) we have to lock _four_ objects - parents and victim (if it exists),
4096  *	   and source (if it is not a directory).
4097  *	   And that - after we got ->i_mutex on parents (until then we don't know
4098  *	   whether the target exists).  Solution: try to be smart with locking
4099  *	   order for inodes.  We rely on the fact that tree topology may change
4100  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
4101  *	   move will be locked.  Thus we can rank directories by the tree
4102  *	   (ancestors first) and rank all non-directories after them.
4103  *	   That works since everybody except rename does "lock parent, lookup,
4104  *	   lock child" and rename is under ->s_vfs_rename_mutex.
4105  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
4106  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
4107  *	   we'd better make sure that there's no link(2) for them.
4108  *	d) conversion from fhandle to dentry may come in the wrong moment - when
4109  *	   we are removing the target. Solution: we will have to grab ->i_mutex
4110  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4111  *	   ->i_mutex on parents, which works but leads to some truly excessive
4112  *	   locking].
4113  */
4114 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4115 	       struct inode *new_dir, struct dentry *new_dentry,
4116 	       struct inode **delegated_inode, unsigned int flags)
4117 {
4118 	int error;
4119 	bool is_dir = d_is_dir(old_dentry);
4120 	const unsigned char *old_name;
4121 	struct inode *source = old_dentry->d_inode;
4122 	struct inode *target = new_dentry->d_inode;
4123 	bool new_is_dir = false;
4124 	unsigned max_links = new_dir->i_sb->s_max_links;
4125 
4126 	if (source == target)
4127 		return 0;
4128 
4129 	error = may_delete(old_dir, old_dentry, is_dir);
4130 	if (error)
4131 		return error;
4132 
4133 	if (!target) {
4134 		error = may_create(new_dir, new_dentry);
4135 	} else {
4136 		new_is_dir = d_is_dir(new_dentry);
4137 
4138 		if (!(flags & RENAME_EXCHANGE))
4139 			error = may_delete(new_dir, new_dentry, is_dir);
4140 		else
4141 			error = may_delete(new_dir, new_dentry, new_is_dir);
4142 	}
4143 	if (error)
4144 		return error;
4145 
4146 	if (!old_dir->i_op->rename && !old_dir->i_op->rename2)
4147 		return -EPERM;
4148 
4149 	if (flags && !old_dir->i_op->rename2)
4150 		return -EINVAL;
4151 
4152 	/*
4153 	 * If we are going to change the parent - check write permissions,
4154 	 * we'll need to flip '..'.
4155 	 */
4156 	if (new_dir != old_dir) {
4157 		if (is_dir) {
4158 			error = inode_permission(source, MAY_WRITE);
4159 			if (error)
4160 				return error;
4161 		}
4162 		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4163 			error = inode_permission(target, MAY_WRITE);
4164 			if (error)
4165 				return error;
4166 		}
4167 	}
4168 
4169 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4170 				      flags);
4171 	if (error)
4172 		return error;
4173 
4174 	old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4175 	dget(new_dentry);
4176 	if (!is_dir || (flags & RENAME_EXCHANGE))
4177 		lock_two_nondirectories(source, target);
4178 	else if (target)
4179 		mutex_lock(&target->i_mutex);
4180 
4181 	error = -EBUSY;
4182 	if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4183 		goto out;
4184 
4185 	if (max_links && new_dir != old_dir) {
4186 		error = -EMLINK;
4187 		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4188 			goto out;
4189 		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4190 		    old_dir->i_nlink >= max_links)
4191 			goto out;
4192 	}
4193 	if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4194 		shrink_dcache_parent(new_dentry);
4195 	if (!is_dir) {
4196 		error = try_break_deleg(source, delegated_inode);
4197 		if (error)
4198 			goto out;
4199 	}
4200 	if (target && !new_is_dir) {
4201 		error = try_break_deleg(target, delegated_inode);
4202 		if (error)
4203 			goto out;
4204 	}
4205 	if (!old_dir->i_op->rename2) {
4206 		error = old_dir->i_op->rename(old_dir, old_dentry,
4207 					      new_dir, new_dentry);
4208 	} else {
4209 		WARN_ON(old_dir->i_op->rename != NULL);
4210 		error = old_dir->i_op->rename2(old_dir, old_dentry,
4211 					       new_dir, new_dentry, flags);
4212 	}
4213 	if (error)
4214 		goto out;
4215 
4216 	if (!(flags & RENAME_EXCHANGE) && target) {
4217 		if (is_dir)
4218 			target->i_flags |= S_DEAD;
4219 		dont_mount(new_dentry);
4220 		detach_mounts(new_dentry);
4221 	}
4222 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4223 		if (!(flags & RENAME_EXCHANGE))
4224 			d_move(old_dentry, new_dentry);
4225 		else
4226 			d_exchange(old_dentry, new_dentry);
4227 	}
4228 out:
4229 	if (!is_dir || (flags & RENAME_EXCHANGE))
4230 		unlock_two_nondirectories(source, target);
4231 	else if (target)
4232 		mutex_unlock(&target->i_mutex);
4233 	dput(new_dentry);
4234 	if (!error) {
4235 		fsnotify_move(old_dir, new_dir, old_name, is_dir,
4236 			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4237 		if (flags & RENAME_EXCHANGE) {
4238 			fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4239 				      new_is_dir, NULL, new_dentry);
4240 		}
4241 	}
4242 	fsnotify_oldname_free(old_name);
4243 
4244 	return error;
4245 }
4246 EXPORT_SYMBOL(vfs_rename);
4247 
4248 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4249 		int, newdfd, const char __user *, newname, unsigned int, flags)
4250 {
4251 	struct dentry *old_dir, *new_dir;
4252 	struct dentry *old_dentry, *new_dentry;
4253 	struct dentry *trap;
4254 	struct nameidata oldnd, newnd;
4255 	struct inode *delegated_inode = NULL;
4256 	struct filename *from;
4257 	struct filename *to;
4258 	unsigned int lookup_flags = 0;
4259 	bool should_retry = false;
4260 	int error;
4261 
4262 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4263 		return -EINVAL;
4264 
4265 	if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4266 	    (flags & RENAME_EXCHANGE))
4267 		return -EINVAL;
4268 
4269 	if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4270 		return -EPERM;
4271 
4272 retry:
4273 	from = user_path_parent(olddfd, oldname, &oldnd, lookup_flags);
4274 	if (IS_ERR(from)) {
4275 		error = PTR_ERR(from);
4276 		goto exit;
4277 	}
4278 
4279 	to = user_path_parent(newdfd, newname, &newnd, lookup_flags);
4280 	if (IS_ERR(to)) {
4281 		error = PTR_ERR(to);
4282 		goto exit1;
4283 	}
4284 
4285 	error = -EXDEV;
4286 	if (oldnd.path.mnt != newnd.path.mnt)
4287 		goto exit2;
4288 
4289 	old_dir = oldnd.path.dentry;
4290 	error = -EBUSY;
4291 	if (oldnd.last_type != LAST_NORM)
4292 		goto exit2;
4293 
4294 	new_dir = newnd.path.dentry;
4295 	if (flags & RENAME_NOREPLACE)
4296 		error = -EEXIST;
4297 	if (newnd.last_type != LAST_NORM)
4298 		goto exit2;
4299 
4300 	error = mnt_want_write(oldnd.path.mnt);
4301 	if (error)
4302 		goto exit2;
4303 
4304 	oldnd.flags &= ~LOOKUP_PARENT;
4305 	newnd.flags &= ~LOOKUP_PARENT;
4306 	if (!(flags & RENAME_EXCHANGE))
4307 		newnd.flags |= LOOKUP_RENAME_TARGET;
4308 
4309 retry_deleg:
4310 	trap = lock_rename(new_dir, old_dir);
4311 
4312 	old_dentry = lookup_hash(&oldnd);
4313 	error = PTR_ERR(old_dentry);
4314 	if (IS_ERR(old_dentry))
4315 		goto exit3;
4316 	/* source must exist */
4317 	error = -ENOENT;
4318 	if (d_is_negative(old_dentry))
4319 		goto exit4;
4320 	new_dentry = lookup_hash(&newnd);
4321 	error = PTR_ERR(new_dentry);
4322 	if (IS_ERR(new_dentry))
4323 		goto exit4;
4324 	error = -EEXIST;
4325 	if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4326 		goto exit5;
4327 	if (flags & RENAME_EXCHANGE) {
4328 		error = -ENOENT;
4329 		if (d_is_negative(new_dentry))
4330 			goto exit5;
4331 
4332 		if (!d_is_dir(new_dentry)) {
4333 			error = -ENOTDIR;
4334 			if (newnd.last.name[newnd.last.len])
4335 				goto exit5;
4336 		}
4337 	}
4338 	/* unless the source is a directory trailing slashes give -ENOTDIR */
4339 	if (!d_is_dir(old_dentry)) {
4340 		error = -ENOTDIR;
4341 		if (oldnd.last.name[oldnd.last.len])
4342 			goto exit5;
4343 		if (!(flags & RENAME_EXCHANGE) && newnd.last.name[newnd.last.len])
4344 			goto exit5;
4345 	}
4346 	/* source should not be ancestor of target */
4347 	error = -EINVAL;
4348 	if (old_dentry == trap)
4349 		goto exit5;
4350 	/* target should not be an ancestor of source */
4351 	if (!(flags & RENAME_EXCHANGE))
4352 		error = -ENOTEMPTY;
4353 	if (new_dentry == trap)
4354 		goto exit5;
4355 
4356 	error = security_path_rename(&oldnd.path, old_dentry,
4357 				     &newnd.path, new_dentry, flags);
4358 	if (error)
4359 		goto exit5;
4360 	error = vfs_rename(old_dir->d_inode, old_dentry,
4361 			   new_dir->d_inode, new_dentry,
4362 			   &delegated_inode, flags);
4363 exit5:
4364 	dput(new_dentry);
4365 exit4:
4366 	dput(old_dentry);
4367 exit3:
4368 	unlock_rename(new_dir, old_dir);
4369 	if (delegated_inode) {
4370 		error = break_deleg_wait(&delegated_inode);
4371 		if (!error)
4372 			goto retry_deleg;
4373 	}
4374 	mnt_drop_write(oldnd.path.mnt);
4375 exit2:
4376 	if (retry_estale(error, lookup_flags))
4377 		should_retry = true;
4378 	path_put(&newnd.path);
4379 	putname(to);
4380 exit1:
4381 	path_put(&oldnd.path);
4382 	putname(from);
4383 	if (should_retry) {
4384 		should_retry = false;
4385 		lookup_flags |= LOOKUP_REVAL;
4386 		goto retry;
4387 	}
4388 exit:
4389 	return error;
4390 }
4391 
4392 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4393 		int, newdfd, const char __user *, newname)
4394 {
4395 	return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4396 }
4397 
4398 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4399 {
4400 	return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4401 }
4402 
4403 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4404 {
4405 	int error = may_create(dir, dentry);
4406 	if (error)
4407 		return error;
4408 
4409 	if (!dir->i_op->mknod)
4410 		return -EPERM;
4411 
4412 	return dir->i_op->mknod(dir, dentry,
4413 				S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4414 }
4415 EXPORT_SYMBOL(vfs_whiteout);
4416 
4417 int readlink_copy(char __user *buffer, int buflen, const char *link)
4418 {
4419 	int len = PTR_ERR(link);
4420 	if (IS_ERR(link))
4421 		goto out;
4422 
4423 	len = strlen(link);
4424 	if (len > (unsigned) buflen)
4425 		len = buflen;
4426 	if (copy_to_user(buffer, link, len))
4427 		len = -EFAULT;
4428 out:
4429 	return len;
4430 }
4431 EXPORT_SYMBOL(readlink_copy);
4432 
4433 /*
4434  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
4435  * have ->follow_link() touching nd only in nd_set_link().  Using (or not
4436  * using) it for any given inode is up to filesystem.
4437  */
4438 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4439 {
4440 	struct nameidata nd;
4441 	void *cookie;
4442 	int res;
4443 
4444 	nd.depth = 0;
4445 	cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
4446 	if (IS_ERR(cookie))
4447 		return PTR_ERR(cookie);
4448 
4449 	res = readlink_copy(buffer, buflen, nd_get_link(&nd));
4450 	if (dentry->d_inode->i_op->put_link)
4451 		dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
4452 	return res;
4453 }
4454 EXPORT_SYMBOL(generic_readlink);
4455 
4456 /* get the link contents into pagecache */
4457 static char *page_getlink(struct dentry * dentry, struct page **ppage)
4458 {
4459 	char *kaddr;
4460 	struct page *page;
4461 	struct address_space *mapping = dentry->d_inode->i_mapping;
4462 	page = read_mapping_page(mapping, 0, NULL);
4463 	if (IS_ERR(page))
4464 		return (char*)page;
4465 	*ppage = page;
4466 	kaddr = kmap(page);
4467 	nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
4468 	return kaddr;
4469 }
4470 
4471 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4472 {
4473 	struct page *page = NULL;
4474 	int res = readlink_copy(buffer, buflen, page_getlink(dentry, &page));
4475 	if (page) {
4476 		kunmap(page);
4477 		page_cache_release(page);
4478 	}
4479 	return res;
4480 }
4481 EXPORT_SYMBOL(page_readlink);
4482 
4483 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
4484 {
4485 	struct page *page = NULL;
4486 	nd_set_link(nd, page_getlink(dentry, &page));
4487 	return page;
4488 }
4489 EXPORT_SYMBOL(page_follow_link_light);
4490 
4491 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
4492 {
4493 	struct page *page = cookie;
4494 
4495 	if (page) {
4496 		kunmap(page);
4497 		page_cache_release(page);
4498 	}
4499 }
4500 EXPORT_SYMBOL(page_put_link);
4501 
4502 /*
4503  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4504  */
4505 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4506 {
4507 	struct address_space *mapping = inode->i_mapping;
4508 	struct page *page;
4509 	void *fsdata;
4510 	int err;
4511 	char *kaddr;
4512 	unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4513 	if (nofs)
4514 		flags |= AOP_FLAG_NOFS;
4515 
4516 retry:
4517 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
4518 				flags, &page, &fsdata);
4519 	if (err)
4520 		goto fail;
4521 
4522 	kaddr = kmap_atomic(page);
4523 	memcpy(kaddr, symname, len-1);
4524 	kunmap_atomic(kaddr);
4525 
4526 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4527 							page, fsdata);
4528 	if (err < 0)
4529 		goto fail;
4530 	if (err < len-1)
4531 		goto retry;
4532 
4533 	mark_inode_dirty(inode);
4534 	return 0;
4535 fail:
4536 	return err;
4537 }
4538 EXPORT_SYMBOL(__page_symlink);
4539 
4540 int page_symlink(struct inode *inode, const char *symname, int len)
4541 {
4542 	return __page_symlink(inode, symname, len,
4543 			!(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
4544 }
4545 EXPORT_SYMBOL(page_symlink);
4546 
4547 const struct inode_operations page_symlink_inode_operations = {
4548 	.readlink	= generic_readlink,
4549 	.follow_link	= page_follow_link_light,
4550 	.put_link	= page_put_link,
4551 };
4552 EXPORT_SYMBOL(page_symlink_inode_operations);
4553