1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/namei.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * Some corrections by tytso. 10 */ 11 12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 13 * lookup logic. 14 */ 15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 16 */ 17 18 #include <linux/init.h> 19 #include <linux/export.h> 20 #include <linux/kernel.h> 21 #include <linux/slab.h> 22 #include <linux/fs.h> 23 #include <linux/namei.h> 24 #include <linux/pagemap.h> 25 #include <linux/fsnotify.h> 26 #include <linux/personality.h> 27 #include <linux/security.h> 28 #include <linux/ima.h> 29 #include <linux/syscalls.h> 30 #include <linux/mount.h> 31 #include <linux/audit.h> 32 #include <linux/capability.h> 33 #include <linux/file.h> 34 #include <linux/fcntl.h> 35 #include <linux/device_cgroup.h> 36 #include <linux/fs_struct.h> 37 #include <linux/posix_acl.h> 38 #include <linux/hash.h> 39 #include <linux/bitops.h> 40 #include <linux/init_task.h> 41 #include <linux/uaccess.h> 42 43 #include "internal.h" 44 #include "mount.h" 45 46 /* [Feb-1997 T. Schoebel-Theuer] 47 * Fundamental changes in the pathname lookup mechanisms (namei) 48 * were necessary because of omirr. The reason is that omirr needs 49 * to know the _real_ pathname, not the user-supplied one, in case 50 * of symlinks (and also when transname replacements occur). 51 * 52 * The new code replaces the old recursive symlink resolution with 53 * an iterative one (in case of non-nested symlink chains). It does 54 * this with calls to <fs>_follow_link(). 55 * As a side effect, dir_namei(), _namei() and follow_link() are now 56 * replaced with a single function lookup_dentry() that can handle all 57 * the special cases of the former code. 58 * 59 * With the new dcache, the pathname is stored at each inode, at least as 60 * long as the refcount of the inode is positive. As a side effect, the 61 * size of the dcache depends on the inode cache and thus is dynamic. 62 * 63 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 64 * resolution to correspond with current state of the code. 65 * 66 * Note that the symlink resolution is not *completely* iterative. 67 * There is still a significant amount of tail- and mid- recursion in 68 * the algorithm. Also, note that <fs>_readlink() is not used in 69 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 70 * may return different results than <fs>_follow_link(). Many virtual 71 * filesystems (including /proc) exhibit this behavior. 72 */ 73 74 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 75 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 76 * and the name already exists in form of a symlink, try to create the new 77 * name indicated by the symlink. The old code always complained that the 78 * name already exists, due to not following the symlink even if its target 79 * is nonexistent. The new semantics affects also mknod() and link() when 80 * the name is a symlink pointing to a non-existent name. 81 * 82 * I don't know which semantics is the right one, since I have no access 83 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 84 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 85 * "old" one. Personally, I think the new semantics is much more logical. 86 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 87 * file does succeed in both HP-UX and SunOs, but not in Solaris 88 * and in the old Linux semantics. 89 */ 90 91 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 92 * semantics. See the comments in "open_namei" and "do_link" below. 93 * 94 * [10-Sep-98 Alan Modra] Another symlink change. 95 */ 96 97 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 98 * inside the path - always follow. 99 * in the last component in creation/removal/renaming - never follow. 100 * if LOOKUP_FOLLOW passed - follow. 101 * if the pathname has trailing slashes - follow. 102 * otherwise - don't follow. 103 * (applied in that order). 104 * 105 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 106 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 107 * During the 2.4 we need to fix the userland stuff depending on it - 108 * hopefully we will be able to get rid of that wart in 2.5. So far only 109 * XEmacs seems to be relying on it... 110 */ 111 /* 112 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 113 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 114 * any extra contention... 115 */ 116 117 /* In order to reduce some races, while at the same time doing additional 118 * checking and hopefully speeding things up, we copy filenames to the 119 * kernel data space before using them.. 120 * 121 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 122 * PATH_MAX includes the nul terminator --RR. 123 */ 124 125 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname)) 126 127 struct filename * 128 getname_flags(const char __user *filename, int flags, int *empty) 129 { 130 struct filename *result; 131 char *kname; 132 int len; 133 134 result = audit_reusename(filename); 135 if (result) 136 return result; 137 138 result = __getname(); 139 if (unlikely(!result)) 140 return ERR_PTR(-ENOMEM); 141 142 /* 143 * First, try to embed the struct filename inside the names_cache 144 * allocation 145 */ 146 kname = (char *)result->iname; 147 result->name = kname; 148 149 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX); 150 if (unlikely(len < 0)) { 151 __putname(result); 152 return ERR_PTR(len); 153 } 154 155 /* 156 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a 157 * separate struct filename so we can dedicate the entire 158 * names_cache allocation for the pathname, and re-do the copy from 159 * userland. 160 */ 161 if (unlikely(len == EMBEDDED_NAME_MAX)) { 162 const size_t size = offsetof(struct filename, iname[1]); 163 kname = (char *)result; 164 165 /* 166 * size is chosen that way we to guarantee that 167 * result->iname[0] is within the same object and that 168 * kname can't be equal to result->iname, no matter what. 169 */ 170 result = kzalloc(size, GFP_KERNEL); 171 if (unlikely(!result)) { 172 __putname(kname); 173 return ERR_PTR(-ENOMEM); 174 } 175 result->name = kname; 176 len = strncpy_from_user(kname, filename, PATH_MAX); 177 if (unlikely(len < 0)) { 178 __putname(kname); 179 kfree(result); 180 return ERR_PTR(len); 181 } 182 if (unlikely(len == PATH_MAX)) { 183 __putname(kname); 184 kfree(result); 185 return ERR_PTR(-ENAMETOOLONG); 186 } 187 } 188 189 result->refcnt = 1; 190 /* The empty path is special. */ 191 if (unlikely(!len)) { 192 if (empty) 193 *empty = 1; 194 if (!(flags & LOOKUP_EMPTY)) { 195 putname(result); 196 return ERR_PTR(-ENOENT); 197 } 198 } 199 200 result->uptr = filename; 201 result->aname = NULL; 202 audit_getname(result); 203 return result; 204 } 205 206 struct filename * 207 getname(const char __user * filename) 208 { 209 return getname_flags(filename, 0, NULL); 210 } 211 212 struct filename * 213 getname_kernel(const char * filename) 214 { 215 struct filename *result; 216 int len = strlen(filename) + 1; 217 218 result = __getname(); 219 if (unlikely(!result)) 220 return ERR_PTR(-ENOMEM); 221 222 if (len <= EMBEDDED_NAME_MAX) { 223 result->name = (char *)result->iname; 224 } else if (len <= PATH_MAX) { 225 const size_t size = offsetof(struct filename, iname[1]); 226 struct filename *tmp; 227 228 tmp = kmalloc(size, GFP_KERNEL); 229 if (unlikely(!tmp)) { 230 __putname(result); 231 return ERR_PTR(-ENOMEM); 232 } 233 tmp->name = (char *)result; 234 result = tmp; 235 } else { 236 __putname(result); 237 return ERR_PTR(-ENAMETOOLONG); 238 } 239 memcpy((char *)result->name, filename, len); 240 result->uptr = NULL; 241 result->aname = NULL; 242 result->refcnt = 1; 243 audit_getname(result); 244 245 return result; 246 } 247 248 void putname(struct filename *name) 249 { 250 BUG_ON(name->refcnt <= 0); 251 252 if (--name->refcnt > 0) 253 return; 254 255 if (name->name != name->iname) { 256 __putname(name->name); 257 kfree(name); 258 } else 259 __putname(name); 260 } 261 262 static int check_acl(struct inode *inode, int mask) 263 { 264 #ifdef CONFIG_FS_POSIX_ACL 265 struct posix_acl *acl; 266 267 if (mask & MAY_NOT_BLOCK) { 268 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS); 269 if (!acl) 270 return -EAGAIN; 271 /* no ->get_acl() calls in RCU mode... */ 272 if (is_uncached_acl(acl)) 273 return -ECHILD; 274 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK); 275 } 276 277 acl = get_acl(inode, ACL_TYPE_ACCESS); 278 if (IS_ERR(acl)) 279 return PTR_ERR(acl); 280 if (acl) { 281 int error = posix_acl_permission(inode, acl, mask); 282 posix_acl_release(acl); 283 return error; 284 } 285 #endif 286 287 return -EAGAIN; 288 } 289 290 /* 291 * This does the basic permission checking 292 */ 293 static int acl_permission_check(struct inode *inode, int mask) 294 { 295 unsigned int mode = inode->i_mode; 296 297 if (likely(uid_eq(current_fsuid(), inode->i_uid))) 298 mode >>= 6; 299 else { 300 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) { 301 int error = check_acl(inode, mask); 302 if (error != -EAGAIN) 303 return error; 304 } 305 306 if (in_group_p(inode->i_gid)) 307 mode >>= 3; 308 } 309 310 /* 311 * If the DACs are ok we don't need any capability check. 312 */ 313 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 314 return 0; 315 return -EACCES; 316 } 317 318 /** 319 * generic_permission - check for access rights on a Posix-like filesystem 320 * @inode: inode to check access rights for 321 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...) 322 * 323 * Used to check for read/write/execute permissions on a file. 324 * We use "fsuid" for this, letting us set arbitrary permissions 325 * for filesystem access without changing the "normal" uids which 326 * are used for other things. 327 * 328 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk 329 * request cannot be satisfied (eg. requires blocking or too much complexity). 330 * It would then be called again in ref-walk mode. 331 */ 332 int generic_permission(struct inode *inode, int mask) 333 { 334 int ret; 335 336 /* 337 * Do the basic permission checks. 338 */ 339 ret = acl_permission_check(inode, mask); 340 if (ret != -EACCES) 341 return ret; 342 343 if (S_ISDIR(inode->i_mode)) { 344 /* DACs are overridable for directories */ 345 if (!(mask & MAY_WRITE)) 346 if (capable_wrt_inode_uidgid(inode, 347 CAP_DAC_READ_SEARCH)) 348 return 0; 349 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE)) 350 return 0; 351 return -EACCES; 352 } 353 354 /* 355 * Searching includes executable on directories, else just read. 356 */ 357 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 358 if (mask == MAY_READ) 359 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH)) 360 return 0; 361 /* 362 * Read/write DACs are always overridable. 363 * Executable DACs are overridable when there is 364 * at least one exec bit set. 365 */ 366 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO)) 367 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE)) 368 return 0; 369 370 return -EACCES; 371 } 372 EXPORT_SYMBOL(generic_permission); 373 374 /* 375 * We _really_ want to just do "generic_permission()" without 376 * even looking at the inode->i_op values. So we keep a cache 377 * flag in inode->i_opflags, that says "this has not special 378 * permission function, use the fast case". 379 */ 380 static inline int do_inode_permission(struct inode *inode, int mask) 381 { 382 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) { 383 if (likely(inode->i_op->permission)) 384 return inode->i_op->permission(inode, mask); 385 386 /* This gets set once for the inode lifetime */ 387 spin_lock(&inode->i_lock); 388 inode->i_opflags |= IOP_FASTPERM; 389 spin_unlock(&inode->i_lock); 390 } 391 return generic_permission(inode, mask); 392 } 393 394 /** 395 * sb_permission - Check superblock-level permissions 396 * @sb: Superblock of inode to check permission on 397 * @inode: Inode to check permission on 398 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 399 * 400 * Separate out file-system wide checks from inode-specific permission checks. 401 */ 402 static int sb_permission(struct super_block *sb, struct inode *inode, int mask) 403 { 404 if (unlikely(mask & MAY_WRITE)) { 405 umode_t mode = inode->i_mode; 406 407 /* Nobody gets write access to a read-only fs. */ 408 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 409 return -EROFS; 410 } 411 return 0; 412 } 413 414 /** 415 * inode_permission - Check for access rights to a given inode 416 * @inode: Inode to check permission on 417 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 418 * 419 * Check for read/write/execute permissions on an inode. We use fs[ug]id for 420 * this, letting us set arbitrary permissions for filesystem access without 421 * changing the "normal" UIDs which are used for other things. 422 * 423 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 424 */ 425 int inode_permission(struct inode *inode, int mask) 426 { 427 int retval; 428 429 retval = sb_permission(inode->i_sb, inode, mask); 430 if (retval) 431 return retval; 432 433 if (unlikely(mask & MAY_WRITE)) { 434 /* 435 * Nobody gets write access to an immutable file. 436 */ 437 if (IS_IMMUTABLE(inode)) 438 return -EPERM; 439 440 /* 441 * Updating mtime will likely cause i_uid and i_gid to be 442 * written back improperly if their true value is unknown 443 * to the vfs. 444 */ 445 if (HAS_UNMAPPED_ID(inode)) 446 return -EACCES; 447 } 448 449 retval = do_inode_permission(inode, mask); 450 if (retval) 451 return retval; 452 453 retval = devcgroup_inode_permission(inode, mask); 454 if (retval) 455 return retval; 456 457 return security_inode_permission(inode, mask); 458 } 459 EXPORT_SYMBOL(inode_permission); 460 461 /** 462 * path_get - get a reference to a path 463 * @path: path to get the reference to 464 * 465 * Given a path increment the reference count to the dentry and the vfsmount. 466 */ 467 void path_get(const struct path *path) 468 { 469 mntget(path->mnt); 470 dget(path->dentry); 471 } 472 EXPORT_SYMBOL(path_get); 473 474 /** 475 * path_put - put a reference to a path 476 * @path: path to put the reference to 477 * 478 * Given a path decrement the reference count to the dentry and the vfsmount. 479 */ 480 void path_put(const struct path *path) 481 { 482 dput(path->dentry); 483 mntput(path->mnt); 484 } 485 EXPORT_SYMBOL(path_put); 486 487 #define EMBEDDED_LEVELS 2 488 struct nameidata { 489 struct path path; 490 struct qstr last; 491 struct path root; 492 struct inode *inode; /* path.dentry.d_inode */ 493 unsigned int flags; 494 unsigned seq, m_seq; 495 int last_type; 496 unsigned depth; 497 int total_link_count; 498 struct saved { 499 struct path link; 500 struct delayed_call done; 501 const char *name; 502 unsigned seq; 503 } *stack, internal[EMBEDDED_LEVELS]; 504 struct filename *name; 505 struct nameidata *saved; 506 struct inode *link_inode; 507 unsigned root_seq; 508 int dfd; 509 } __randomize_layout; 510 511 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name) 512 { 513 struct nameidata *old = current->nameidata; 514 p->stack = p->internal; 515 p->dfd = dfd; 516 p->name = name; 517 p->total_link_count = old ? old->total_link_count : 0; 518 p->saved = old; 519 current->nameidata = p; 520 } 521 522 static void restore_nameidata(void) 523 { 524 struct nameidata *now = current->nameidata, *old = now->saved; 525 526 current->nameidata = old; 527 if (old) 528 old->total_link_count = now->total_link_count; 529 if (now->stack != now->internal) 530 kfree(now->stack); 531 } 532 533 static int __nd_alloc_stack(struct nameidata *nd) 534 { 535 struct saved *p; 536 537 if (nd->flags & LOOKUP_RCU) { 538 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved), 539 GFP_ATOMIC); 540 if (unlikely(!p)) 541 return -ECHILD; 542 } else { 543 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved), 544 GFP_KERNEL); 545 if (unlikely(!p)) 546 return -ENOMEM; 547 } 548 memcpy(p, nd->internal, sizeof(nd->internal)); 549 nd->stack = p; 550 return 0; 551 } 552 553 /** 554 * path_connected - Verify that a path->dentry is below path->mnt.mnt_root 555 * @path: nameidate to verify 556 * 557 * Rename can sometimes move a file or directory outside of a bind 558 * mount, path_connected allows those cases to be detected. 559 */ 560 static bool path_connected(const struct path *path) 561 { 562 struct vfsmount *mnt = path->mnt; 563 struct super_block *sb = mnt->mnt_sb; 564 565 /* Bind mounts and multi-root filesystems can have disconnected paths */ 566 if (!(sb->s_iflags & SB_I_MULTIROOT) && (mnt->mnt_root == sb->s_root)) 567 return true; 568 569 return is_subdir(path->dentry, mnt->mnt_root); 570 } 571 572 static inline int nd_alloc_stack(struct nameidata *nd) 573 { 574 if (likely(nd->depth != EMBEDDED_LEVELS)) 575 return 0; 576 if (likely(nd->stack != nd->internal)) 577 return 0; 578 return __nd_alloc_stack(nd); 579 } 580 581 static void drop_links(struct nameidata *nd) 582 { 583 int i = nd->depth; 584 while (i--) { 585 struct saved *last = nd->stack + i; 586 do_delayed_call(&last->done); 587 clear_delayed_call(&last->done); 588 } 589 } 590 591 static void terminate_walk(struct nameidata *nd) 592 { 593 drop_links(nd); 594 if (!(nd->flags & LOOKUP_RCU)) { 595 int i; 596 path_put(&nd->path); 597 for (i = 0; i < nd->depth; i++) 598 path_put(&nd->stack[i].link); 599 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 600 path_put(&nd->root); 601 nd->root.mnt = NULL; 602 } 603 } else { 604 nd->flags &= ~LOOKUP_RCU; 605 if (!(nd->flags & LOOKUP_ROOT)) 606 nd->root.mnt = NULL; 607 rcu_read_unlock(); 608 } 609 nd->depth = 0; 610 } 611 612 /* path_put is needed afterwards regardless of success or failure */ 613 static bool legitimize_path(struct nameidata *nd, 614 struct path *path, unsigned seq) 615 { 616 int res = __legitimize_mnt(path->mnt, nd->m_seq); 617 if (unlikely(res)) { 618 if (res > 0) 619 path->mnt = NULL; 620 path->dentry = NULL; 621 return false; 622 } 623 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) { 624 path->dentry = NULL; 625 return false; 626 } 627 return !read_seqcount_retry(&path->dentry->d_seq, seq); 628 } 629 630 static bool legitimize_links(struct nameidata *nd) 631 { 632 int i; 633 for (i = 0; i < nd->depth; i++) { 634 struct saved *last = nd->stack + i; 635 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) { 636 drop_links(nd); 637 nd->depth = i + 1; 638 return false; 639 } 640 } 641 return true; 642 } 643 644 /* 645 * Path walking has 2 modes, rcu-walk and ref-walk (see 646 * Documentation/filesystems/path-lookup.txt). In situations when we can't 647 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab 648 * normal reference counts on dentries and vfsmounts to transition to ref-walk 649 * mode. Refcounts are grabbed at the last known good point before rcu-walk 650 * got stuck, so ref-walk may continue from there. If this is not successful 651 * (eg. a seqcount has changed), then failure is returned and it's up to caller 652 * to restart the path walk from the beginning in ref-walk mode. 653 */ 654 655 /** 656 * unlazy_walk - try to switch to ref-walk mode. 657 * @nd: nameidata pathwalk data 658 * Returns: 0 on success, -ECHILD on failure 659 * 660 * unlazy_walk attempts to legitimize the current nd->path and nd->root 661 * for ref-walk mode. 662 * Must be called from rcu-walk context. 663 * Nothing should touch nameidata between unlazy_walk() failure and 664 * terminate_walk(). 665 */ 666 static int unlazy_walk(struct nameidata *nd) 667 { 668 struct dentry *parent = nd->path.dentry; 669 670 BUG_ON(!(nd->flags & LOOKUP_RCU)); 671 672 nd->flags &= ~LOOKUP_RCU; 673 if (unlikely(!legitimize_links(nd))) 674 goto out2; 675 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq))) 676 goto out1; 677 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 678 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) 679 goto out; 680 } 681 rcu_read_unlock(); 682 BUG_ON(nd->inode != parent->d_inode); 683 return 0; 684 685 out2: 686 nd->path.mnt = NULL; 687 nd->path.dentry = NULL; 688 out1: 689 if (!(nd->flags & LOOKUP_ROOT)) 690 nd->root.mnt = NULL; 691 out: 692 rcu_read_unlock(); 693 return -ECHILD; 694 } 695 696 /** 697 * unlazy_child - try to switch to ref-walk mode. 698 * @nd: nameidata pathwalk data 699 * @dentry: child of nd->path.dentry 700 * @seq: seq number to check dentry against 701 * Returns: 0 on success, -ECHILD on failure 702 * 703 * unlazy_child attempts to legitimize the current nd->path, nd->root and dentry 704 * for ref-walk mode. @dentry must be a path found by a do_lookup call on 705 * @nd. Must be called from rcu-walk context. 706 * Nothing should touch nameidata between unlazy_child() failure and 707 * terminate_walk(). 708 */ 709 static int unlazy_child(struct nameidata *nd, struct dentry *dentry, unsigned seq) 710 { 711 BUG_ON(!(nd->flags & LOOKUP_RCU)); 712 713 nd->flags &= ~LOOKUP_RCU; 714 if (unlikely(!legitimize_links(nd))) 715 goto out2; 716 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq))) 717 goto out2; 718 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref))) 719 goto out1; 720 721 /* 722 * We need to move both the parent and the dentry from the RCU domain 723 * to be properly refcounted. And the sequence number in the dentry 724 * validates *both* dentry counters, since we checked the sequence 725 * number of the parent after we got the child sequence number. So we 726 * know the parent must still be valid if the child sequence number is 727 */ 728 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) 729 goto out; 730 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) { 731 rcu_read_unlock(); 732 dput(dentry); 733 goto drop_root_mnt; 734 } 735 /* 736 * Sequence counts matched. Now make sure that the root is 737 * still valid and get it if required. 738 */ 739 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 740 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) { 741 rcu_read_unlock(); 742 dput(dentry); 743 return -ECHILD; 744 } 745 } 746 747 rcu_read_unlock(); 748 return 0; 749 750 out2: 751 nd->path.mnt = NULL; 752 out1: 753 nd->path.dentry = NULL; 754 out: 755 rcu_read_unlock(); 756 drop_root_mnt: 757 if (!(nd->flags & LOOKUP_ROOT)) 758 nd->root.mnt = NULL; 759 return -ECHILD; 760 } 761 762 static inline int d_revalidate(struct dentry *dentry, unsigned int flags) 763 { 764 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) 765 return dentry->d_op->d_revalidate(dentry, flags); 766 else 767 return 1; 768 } 769 770 /** 771 * complete_walk - successful completion of path walk 772 * @nd: pointer nameidata 773 * 774 * If we had been in RCU mode, drop out of it and legitimize nd->path. 775 * Revalidate the final result, unless we'd already done that during 776 * the path walk or the filesystem doesn't ask for it. Return 0 on 777 * success, -error on failure. In case of failure caller does not 778 * need to drop nd->path. 779 */ 780 static int complete_walk(struct nameidata *nd) 781 { 782 struct dentry *dentry = nd->path.dentry; 783 int status; 784 785 if (nd->flags & LOOKUP_RCU) { 786 if (!(nd->flags & LOOKUP_ROOT)) 787 nd->root.mnt = NULL; 788 if (unlikely(unlazy_walk(nd))) 789 return -ECHILD; 790 } 791 792 if (likely(!(nd->flags & LOOKUP_JUMPED))) 793 return 0; 794 795 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE))) 796 return 0; 797 798 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags); 799 if (status > 0) 800 return 0; 801 802 if (!status) 803 status = -ESTALE; 804 805 return status; 806 } 807 808 static void set_root(struct nameidata *nd) 809 { 810 struct fs_struct *fs = current->fs; 811 812 if (nd->flags & LOOKUP_RCU) { 813 unsigned seq; 814 815 do { 816 seq = read_seqcount_begin(&fs->seq); 817 nd->root = fs->root; 818 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq); 819 } while (read_seqcount_retry(&fs->seq, seq)); 820 } else { 821 get_fs_root(fs, &nd->root); 822 } 823 } 824 825 static void path_put_conditional(struct path *path, struct nameidata *nd) 826 { 827 dput(path->dentry); 828 if (path->mnt != nd->path.mnt) 829 mntput(path->mnt); 830 } 831 832 static inline void path_to_nameidata(const struct path *path, 833 struct nameidata *nd) 834 { 835 if (!(nd->flags & LOOKUP_RCU)) { 836 dput(nd->path.dentry); 837 if (nd->path.mnt != path->mnt) 838 mntput(nd->path.mnt); 839 } 840 nd->path.mnt = path->mnt; 841 nd->path.dentry = path->dentry; 842 } 843 844 static int nd_jump_root(struct nameidata *nd) 845 { 846 if (nd->flags & LOOKUP_RCU) { 847 struct dentry *d; 848 nd->path = nd->root; 849 d = nd->path.dentry; 850 nd->inode = d->d_inode; 851 nd->seq = nd->root_seq; 852 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq))) 853 return -ECHILD; 854 } else { 855 path_put(&nd->path); 856 nd->path = nd->root; 857 path_get(&nd->path); 858 nd->inode = nd->path.dentry->d_inode; 859 } 860 nd->flags |= LOOKUP_JUMPED; 861 return 0; 862 } 863 864 /* 865 * Helper to directly jump to a known parsed path from ->get_link, 866 * caller must have taken a reference to path beforehand. 867 */ 868 void nd_jump_link(struct path *path) 869 { 870 struct nameidata *nd = current->nameidata; 871 path_put(&nd->path); 872 873 nd->path = *path; 874 nd->inode = nd->path.dentry->d_inode; 875 nd->flags |= LOOKUP_JUMPED; 876 } 877 878 static inline void put_link(struct nameidata *nd) 879 { 880 struct saved *last = nd->stack + --nd->depth; 881 do_delayed_call(&last->done); 882 if (!(nd->flags & LOOKUP_RCU)) 883 path_put(&last->link); 884 } 885 886 int sysctl_protected_symlinks __read_mostly = 0; 887 int sysctl_protected_hardlinks __read_mostly = 0; 888 int sysctl_protected_fifos __read_mostly; 889 int sysctl_protected_regular __read_mostly; 890 891 /** 892 * may_follow_link - Check symlink following for unsafe situations 893 * @nd: nameidata pathwalk data 894 * 895 * In the case of the sysctl_protected_symlinks sysctl being enabled, 896 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is 897 * in a sticky world-writable directory. This is to protect privileged 898 * processes from failing races against path names that may change out 899 * from under them by way of other users creating malicious symlinks. 900 * It will permit symlinks to be followed only when outside a sticky 901 * world-writable directory, or when the uid of the symlink and follower 902 * match, or when the directory owner matches the symlink's owner. 903 * 904 * Returns 0 if following the symlink is allowed, -ve on error. 905 */ 906 static inline int may_follow_link(struct nameidata *nd) 907 { 908 const struct inode *inode; 909 const struct inode *parent; 910 kuid_t puid; 911 912 if (!sysctl_protected_symlinks) 913 return 0; 914 915 /* Allowed if owner and follower match. */ 916 inode = nd->link_inode; 917 if (uid_eq(current_cred()->fsuid, inode->i_uid)) 918 return 0; 919 920 /* Allowed if parent directory not sticky and world-writable. */ 921 parent = nd->inode; 922 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH)) 923 return 0; 924 925 /* Allowed if parent directory and link owner match. */ 926 puid = parent->i_uid; 927 if (uid_valid(puid) && uid_eq(puid, inode->i_uid)) 928 return 0; 929 930 if (nd->flags & LOOKUP_RCU) 931 return -ECHILD; 932 933 audit_inode(nd->name, nd->stack[0].link.dentry, 0); 934 audit_log_link_denied("follow_link"); 935 return -EACCES; 936 } 937 938 /** 939 * safe_hardlink_source - Check for safe hardlink conditions 940 * @inode: the source inode to hardlink from 941 * 942 * Return false if at least one of the following conditions: 943 * - inode is not a regular file 944 * - inode is setuid 945 * - inode is setgid and group-exec 946 * - access failure for read and write 947 * 948 * Otherwise returns true. 949 */ 950 static bool safe_hardlink_source(struct inode *inode) 951 { 952 umode_t mode = inode->i_mode; 953 954 /* Special files should not get pinned to the filesystem. */ 955 if (!S_ISREG(mode)) 956 return false; 957 958 /* Setuid files should not get pinned to the filesystem. */ 959 if (mode & S_ISUID) 960 return false; 961 962 /* Executable setgid files should not get pinned to the filesystem. */ 963 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) 964 return false; 965 966 /* Hardlinking to unreadable or unwritable sources is dangerous. */ 967 if (inode_permission(inode, MAY_READ | MAY_WRITE)) 968 return false; 969 970 return true; 971 } 972 973 /** 974 * may_linkat - Check permissions for creating a hardlink 975 * @link: the source to hardlink from 976 * 977 * Block hardlink when all of: 978 * - sysctl_protected_hardlinks enabled 979 * - fsuid does not match inode 980 * - hardlink source is unsafe (see safe_hardlink_source() above) 981 * - not CAP_FOWNER in a namespace with the inode owner uid mapped 982 * 983 * Returns 0 if successful, -ve on error. 984 */ 985 static int may_linkat(struct path *link) 986 { 987 struct inode *inode = link->dentry->d_inode; 988 989 /* Inode writeback is not safe when the uid or gid are invalid. */ 990 if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid)) 991 return -EOVERFLOW; 992 993 if (!sysctl_protected_hardlinks) 994 return 0; 995 996 /* Source inode owner (or CAP_FOWNER) can hardlink all they like, 997 * otherwise, it must be a safe source. 998 */ 999 if (safe_hardlink_source(inode) || inode_owner_or_capable(inode)) 1000 return 0; 1001 1002 audit_log_link_denied("linkat"); 1003 return -EPERM; 1004 } 1005 1006 /** 1007 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory 1008 * should be allowed, or not, on files that already 1009 * exist. 1010 * @dir: the sticky parent directory 1011 * @inode: the inode of the file to open 1012 * 1013 * Block an O_CREAT open of a FIFO (or a regular file) when: 1014 * - sysctl_protected_fifos (or sysctl_protected_regular) is enabled 1015 * - the file already exists 1016 * - we are in a sticky directory 1017 * - we don't own the file 1018 * - the owner of the directory doesn't own the file 1019 * - the directory is world writable 1020 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2 1021 * the directory doesn't have to be world writable: being group writable will 1022 * be enough. 1023 * 1024 * Returns 0 if the open is allowed, -ve on error. 1025 */ 1026 static int may_create_in_sticky(struct dentry * const dir, 1027 struct inode * const inode) 1028 { 1029 if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) || 1030 (!sysctl_protected_regular && S_ISREG(inode->i_mode)) || 1031 likely(!(dir->d_inode->i_mode & S_ISVTX)) || 1032 uid_eq(inode->i_uid, dir->d_inode->i_uid) || 1033 uid_eq(current_fsuid(), inode->i_uid)) 1034 return 0; 1035 1036 if (likely(dir->d_inode->i_mode & 0002) || 1037 (dir->d_inode->i_mode & 0020 && 1038 ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) || 1039 (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) { 1040 return -EACCES; 1041 } 1042 return 0; 1043 } 1044 1045 static __always_inline 1046 const char *get_link(struct nameidata *nd) 1047 { 1048 struct saved *last = nd->stack + nd->depth - 1; 1049 struct dentry *dentry = last->link.dentry; 1050 struct inode *inode = nd->link_inode; 1051 int error; 1052 const char *res; 1053 1054 if (!(nd->flags & LOOKUP_RCU)) { 1055 touch_atime(&last->link); 1056 cond_resched(); 1057 } else if (atime_needs_update(&last->link, inode)) { 1058 if (unlikely(unlazy_walk(nd))) 1059 return ERR_PTR(-ECHILD); 1060 touch_atime(&last->link); 1061 } 1062 1063 error = security_inode_follow_link(dentry, inode, 1064 nd->flags & LOOKUP_RCU); 1065 if (unlikely(error)) 1066 return ERR_PTR(error); 1067 1068 nd->last_type = LAST_BIND; 1069 res = READ_ONCE(inode->i_link); 1070 if (!res) { 1071 const char * (*get)(struct dentry *, struct inode *, 1072 struct delayed_call *); 1073 get = inode->i_op->get_link; 1074 if (nd->flags & LOOKUP_RCU) { 1075 res = get(NULL, inode, &last->done); 1076 if (res == ERR_PTR(-ECHILD)) { 1077 if (unlikely(unlazy_walk(nd))) 1078 return ERR_PTR(-ECHILD); 1079 res = get(dentry, inode, &last->done); 1080 } 1081 } else { 1082 res = get(dentry, inode, &last->done); 1083 } 1084 if (IS_ERR_OR_NULL(res)) 1085 return res; 1086 } 1087 if (*res == '/') { 1088 if (!nd->root.mnt) 1089 set_root(nd); 1090 if (unlikely(nd_jump_root(nd))) 1091 return ERR_PTR(-ECHILD); 1092 while (unlikely(*++res == '/')) 1093 ; 1094 } 1095 if (!*res) 1096 res = NULL; 1097 return res; 1098 } 1099 1100 /* 1101 * follow_up - Find the mountpoint of path's vfsmount 1102 * 1103 * Given a path, find the mountpoint of its source file system. 1104 * Replace @path with the path of the mountpoint in the parent mount. 1105 * Up is towards /. 1106 * 1107 * Return 1 if we went up a level and 0 if we were already at the 1108 * root. 1109 */ 1110 int follow_up(struct path *path) 1111 { 1112 struct mount *mnt = real_mount(path->mnt); 1113 struct mount *parent; 1114 struct dentry *mountpoint; 1115 1116 read_seqlock_excl(&mount_lock); 1117 parent = mnt->mnt_parent; 1118 if (parent == mnt) { 1119 read_sequnlock_excl(&mount_lock); 1120 return 0; 1121 } 1122 mntget(&parent->mnt); 1123 mountpoint = dget(mnt->mnt_mountpoint); 1124 read_sequnlock_excl(&mount_lock); 1125 dput(path->dentry); 1126 path->dentry = mountpoint; 1127 mntput(path->mnt); 1128 path->mnt = &parent->mnt; 1129 return 1; 1130 } 1131 EXPORT_SYMBOL(follow_up); 1132 1133 /* 1134 * Perform an automount 1135 * - return -EISDIR to tell follow_managed() to stop and return the path we 1136 * were called with. 1137 */ 1138 static int follow_automount(struct path *path, struct nameidata *nd, 1139 bool *need_mntput) 1140 { 1141 struct vfsmount *mnt; 1142 int err; 1143 1144 if (!path->dentry->d_op || !path->dentry->d_op->d_automount) 1145 return -EREMOTE; 1146 1147 /* We don't want to mount if someone's just doing a stat - 1148 * unless they're stat'ing a directory and appended a '/' to 1149 * the name. 1150 * 1151 * We do, however, want to mount if someone wants to open or 1152 * create a file of any type under the mountpoint, wants to 1153 * traverse through the mountpoint or wants to open the 1154 * mounted directory. Also, autofs may mark negative dentries 1155 * as being automount points. These will need the attentions 1156 * of the daemon to instantiate them before they can be used. 1157 */ 1158 if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY | 1159 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) && 1160 path->dentry->d_inode) 1161 return -EISDIR; 1162 1163 nd->total_link_count++; 1164 if (nd->total_link_count >= 40) 1165 return -ELOOP; 1166 1167 mnt = path->dentry->d_op->d_automount(path); 1168 if (IS_ERR(mnt)) { 1169 /* 1170 * The filesystem is allowed to return -EISDIR here to indicate 1171 * it doesn't want to automount. For instance, autofs would do 1172 * this so that its userspace daemon can mount on this dentry. 1173 * 1174 * However, we can only permit this if it's a terminal point in 1175 * the path being looked up; if it wasn't then the remainder of 1176 * the path is inaccessible and we should say so. 1177 */ 1178 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT)) 1179 return -EREMOTE; 1180 return PTR_ERR(mnt); 1181 } 1182 1183 if (!mnt) /* mount collision */ 1184 return 0; 1185 1186 if (!*need_mntput) { 1187 /* lock_mount() may release path->mnt on error */ 1188 mntget(path->mnt); 1189 *need_mntput = true; 1190 } 1191 err = finish_automount(mnt, path); 1192 1193 switch (err) { 1194 case -EBUSY: 1195 /* Someone else made a mount here whilst we were busy */ 1196 return 0; 1197 case 0: 1198 path_put(path); 1199 path->mnt = mnt; 1200 path->dentry = dget(mnt->mnt_root); 1201 return 0; 1202 default: 1203 return err; 1204 } 1205 1206 } 1207 1208 /* 1209 * Handle a dentry that is managed in some way. 1210 * - Flagged for transit management (autofs) 1211 * - Flagged as mountpoint 1212 * - Flagged as automount point 1213 * 1214 * This may only be called in refwalk mode. 1215 * 1216 * Serialization is taken care of in namespace.c 1217 */ 1218 static int follow_managed(struct path *path, struct nameidata *nd) 1219 { 1220 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */ 1221 unsigned managed; 1222 bool need_mntput = false; 1223 int ret = 0; 1224 1225 /* Given that we're not holding a lock here, we retain the value in a 1226 * local variable for each dentry as we look at it so that we don't see 1227 * the components of that value change under us */ 1228 while (managed = READ_ONCE(path->dentry->d_flags), 1229 managed &= DCACHE_MANAGED_DENTRY, 1230 unlikely(managed != 0)) { 1231 /* Allow the filesystem to manage the transit without i_mutex 1232 * being held. */ 1233 if (managed & DCACHE_MANAGE_TRANSIT) { 1234 BUG_ON(!path->dentry->d_op); 1235 BUG_ON(!path->dentry->d_op->d_manage); 1236 ret = path->dentry->d_op->d_manage(path, false); 1237 if (ret < 0) 1238 break; 1239 } 1240 1241 /* Transit to a mounted filesystem. */ 1242 if (managed & DCACHE_MOUNTED) { 1243 struct vfsmount *mounted = lookup_mnt(path); 1244 if (mounted) { 1245 dput(path->dentry); 1246 if (need_mntput) 1247 mntput(path->mnt); 1248 path->mnt = mounted; 1249 path->dentry = dget(mounted->mnt_root); 1250 need_mntput = true; 1251 continue; 1252 } 1253 1254 /* Something is mounted on this dentry in another 1255 * namespace and/or whatever was mounted there in this 1256 * namespace got unmounted before lookup_mnt() could 1257 * get it */ 1258 } 1259 1260 /* Handle an automount point */ 1261 if (managed & DCACHE_NEED_AUTOMOUNT) { 1262 ret = follow_automount(path, nd, &need_mntput); 1263 if (ret < 0) 1264 break; 1265 continue; 1266 } 1267 1268 /* We didn't change the current path point */ 1269 break; 1270 } 1271 1272 if (need_mntput && path->mnt == mnt) 1273 mntput(path->mnt); 1274 if (ret == -EISDIR || !ret) 1275 ret = 1; 1276 if (need_mntput) 1277 nd->flags |= LOOKUP_JUMPED; 1278 if (unlikely(ret < 0)) 1279 path_put_conditional(path, nd); 1280 return ret; 1281 } 1282 1283 int follow_down_one(struct path *path) 1284 { 1285 struct vfsmount *mounted; 1286 1287 mounted = lookup_mnt(path); 1288 if (mounted) { 1289 dput(path->dentry); 1290 mntput(path->mnt); 1291 path->mnt = mounted; 1292 path->dentry = dget(mounted->mnt_root); 1293 return 1; 1294 } 1295 return 0; 1296 } 1297 EXPORT_SYMBOL(follow_down_one); 1298 1299 static inline int managed_dentry_rcu(const struct path *path) 1300 { 1301 return (path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) ? 1302 path->dentry->d_op->d_manage(path, true) : 0; 1303 } 1304 1305 /* 1306 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if 1307 * we meet a managed dentry that would need blocking. 1308 */ 1309 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path, 1310 struct inode **inode, unsigned *seqp) 1311 { 1312 for (;;) { 1313 struct mount *mounted; 1314 /* 1315 * Don't forget we might have a non-mountpoint managed dentry 1316 * that wants to block transit. 1317 */ 1318 switch (managed_dentry_rcu(path)) { 1319 case -ECHILD: 1320 default: 1321 return false; 1322 case -EISDIR: 1323 return true; 1324 case 0: 1325 break; 1326 } 1327 1328 if (!d_mountpoint(path->dentry)) 1329 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT); 1330 1331 mounted = __lookup_mnt(path->mnt, path->dentry); 1332 if (!mounted) 1333 break; 1334 path->mnt = &mounted->mnt; 1335 path->dentry = mounted->mnt.mnt_root; 1336 nd->flags |= LOOKUP_JUMPED; 1337 *seqp = read_seqcount_begin(&path->dentry->d_seq); 1338 /* 1339 * Update the inode too. We don't need to re-check the 1340 * dentry sequence number here after this d_inode read, 1341 * because a mount-point is always pinned. 1342 */ 1343 *inode = path->dentry->d_inode; 1344 } 1345 return !read_seqretry(&mount_lock, nd->m_seq) && 1346 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT); 1347 } 1348 1349 static int follow_dotdot_rcu(struct nameidata *nd) 1350 { 1351 struct inode *inode = nd->inode; 1352 1353 while (1) { 1354 if (path_equal(&nd->path, &nd->root)) 1355 break; 1356 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1357 struct dentry *old = nd->path.dentry; 1358 struct dentry *parent = old->d_parent; 1359 unsigned seq; 1360 1361 inode = parent->d_inode; 1362 seq = read_seqcount_begin(&parent->d_seq); 1363 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq))) 1364 return -ECHILD; 1365 nd->path.dentry = parent; 1366 nd->seq = seq; 1367 if (unlikely(!path_connected(&nd->path))) 1368 return -ENOENT; 1369 break; 1370 } else { 1371 struct mount *mnt = real_mount(nd->path.mnt); 1372 struct mount *mparent = mnt->mnt_parent; 1373 struct dentry *mountpoint = mnt->mnt_mountpoint; 1374 struct inode *inode2 = mountpoint->d_inode; 1375 unsigned seq = read_seqcount_begin(&mountpoint->d_seq); 1376 if (unlikely(read_seqretry(&mount_lock, nd->m_seq))) 1377 return -ECHILD; 1378 if (&mparent->mnt == nd->path.mnt) 1379 break; 1380 /* we know that mountpoint was pinned */ 1381 nd->path.dentry = mountpoint; 1382 nd->path.mnt = &mparent->mnt; 1383 inode = inode2; 1384 nd->seq = seq; 1385 } 1386 } 1387 while (unlikely(d_mountpoint(nd->path.dentry))) { 1388 struct mount *mounted; 1389 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry); 1390 if (unlikely(read_seqretry(&mount_lock, nd->m_seq))) 1391 return -ECHILD; 1392 if (!mounted) 1393 break; 1394 nd->path.mnt = &mounted->mnt; 1395 nd->path.dentry = mounted->mnt.mnt_root; 1396 inode = nd->path.dentry->d_inode; 1397 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 1398 } 1399 nd->inode = inode; 1400 return 0; 1401 } 1402 1403 /* 1404 * Follow down to the covering mount currently visible to userspace. At each 1405 * point, the filesystem owning that dentry may be queried as to whether the 1406 * caller is permitted to proceed or not. 1407 */ 1408 int follow_down(struct path *path) 1409 { 1410 unsigned managed; 1411 int ret; 1412 1413 while (managed = READ_ONCE(path->dentry->d_flags), 1414 unlikely(managed & DCACHE_MANAGED_DENTRY)) { 1415 /* Allow the filesystem to manage the transit without i_mutex 1416 * being held. 1417 * 1418 * We indicate to the filesystem if someone is trying to mount 1419 * something here. This gives autofs the chance to deny anyone 1420 * other than its daemon the right to mount on its 1421 * superstructure. 1422 * 1423 * The filesystem may sleep at this point. 1424 */ 1425 if (managed & DCACHE_MANAGE_TRANSIT) { 1426 BUG_ON(!path->dentry->d_op); 1427 BUG_ON(!path->dentry->d_op->d_manage); 1428 ret = path->dentry->d_op->d_manage(path, false); 1429 if (ret < 0) 1430 return ret == -EISDIR ? 0 : ret; 1431 } 1432 1433 /* Transit to a mounted filesystem. */ 1434 if (managed & DCACHE_MOUNTED) { 1435 struct vfsmount *mounted = lookup_mnt(path); 1436 if (!mounted) 1437 break; 1438 dput(path->dentry); 1439 mntput(path->mnt); 1440 path->mnt = mounted; 1441 path->dentry = dget(mounted->mnt_root); 1442 continue; 1443 } 1444 1445 /* Don't handle automount points here */ 1446 break; 1447 } 1448 return 0; 1449 } 1450 EXPORT_SYMBOL(follow_down); 1451 1452 /* 1453 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot() 1454 */ 1455 static void follow_mount(struct path *path) 1456 { 1457 while (d_mountpoint(path->dentry)) { 1458 struct vfsmount *mounted = lookup_mnt(path); 1459 if (!mounted) 1460 break; 1461 dput(path->dentry); 1462 mntput(path->mnt); 1463 path->mnt = mounted; 1464 path->dentry = dget(mounted->mnt_root); 1465 } 1466 } 1467 1468 static int path_parent_directory(struct path *path) 1469 { 1470 struct dentry *old = path->dentry; 1471 /* rare case of legitimate dget_parent()... */ 1472 path->dentry = dget_parent(path->dentry); 1473 dput(old); 1474 if (unlikely(!path_connected(path))) 1475 return -ENOENT; 1476 return 0; 1477 } 1478 1479 static int follow_dotdot(struct nameidata *nd) 1480 { 1481 while(1) { 1482 if (path_equal(&nd->path, &nd->root)) 1483 break; 1484 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1485 int ret = path_parent_directory(&nd->path); 1486 if (ret) 1487 return ret; 1488 break; 1489 } 1490 if (!follow_up(&nd->path)) 1491 break; 1492 } 1493 follow_mount(&nd->path); 1494 nd->inode = nd->path.dentry->d_inode; 1495 return 0; 1496 } 1497 1498 /* 1499 * This looks up the name in dcache and possibly revalidates the found dentry. 1500 * NULL is returned if the dentry does not exist in the cache. 1501 */ 1502 static struct dentry *lookup_dcache(const struct qstr *name, 1503 struct dentry *dir, 1504 unsigned int flags) 1505 { 1506 struct dentry *dentry = d_lookup(dir, name); 1507 if (dentry) { 1508 int error = d_revalidate(dentry, flags); 1509 if (unlikely(error <= 0)) { 1510 if (!error) 1511 d_invalidate(dentry); 1512 dput(dentry); 1513 return ERR_PTR(error); 1514 } 1515 } 1516 return dentry; 1517 } 1518 1519 /* 1520 * Parent directory has inode locked exclusive. This is one 1521 * and only case when ->lookup() gets called on non in-lookup 1522 * dentries - as the matter of fact, this only gets called 1523 * when directory is guaranteed to have no in-lookup children 1524 * at all. 1525 */ 1526 static struct dentry *__lookup_hash(const struct qstr *name, 1527 struct dentry *base, unsigned int flags) 1528 { 1529 struct dentry *dentry = lookup_dcache(name, base, flags); 1530 struct dentry *old; 1531 struct inode *dir = base->d_inode; 1532 1533 if (dentry) 1534 return dentry; 1535 1536 /* Don't create child dentry for a dead directory. */ 1537 if (unlikely(IS_DEADDIR(dir))) 1538 return ERR_PTR(-ENOENT); 1539 1540 dentry = d_alloc(base, name); 1541 if (unlikely(!dentry)) 1542 return ERR_PTR(-ENOMEM); 1543 1544 old = dir->i_op->lookup(dir, dentry, flags); 1545 if (unlikely(old)) { 1546 dput(dentry); 1547 dentry = old; 1548 } 1549 return dentry; 1550 } 1551 1552 static int lookup_fast(struct nameidata *nd, 1553 struct path *path, struct inode **inode, 1554 unsigned *seqp) 1555 { 1556 struct vfsmount *mnt = nd->path.mnt; 1557 struct dentry *dentry, *parent = nd->path.dentry; 1558 int status = 1; 1559 int err; 1560 1561 /* 1562 * Rename seqlock is not required here because in the off chance 1563 * of a false negative due to a concurrent rename, the caller is 1564 * going to fall back to non-racy lookup. 1565 */ 1566 if (nd->flags & LOOKUP_RCU) { 1567 unsigned seq; 1568 bool negative; 1569 dentry = __d_lookup_rcu(parent, &nd->last, &seq); 1570 if (unlikely(!dentry)) { 1571 if (unlazy_walk(nd)) 1572 return -ECHILD; 1573 return 0; 1574 } 1575 1576 /* 1577 * This sequence count validates that the inode matches 1578 * the dentry name information from lookup. 1579 */ 1580 *inode = d_backing_inode(dentry); 1581 negative = d_is_negative(dentry); 1582 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) 1583 return -ECHILD; 1584 1585 /* 1586 * This sequence count validates that the parent had no 1587 * changes while we did the lookup of the dentry above. 1588 * 1589 * The memory barrier in read_seqcount_begin of child is 1590 * enough, we can use __read_seqcount_retry here. 1591 */ 1592 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq))) 1593 return -ECHILD; 1594 1595 *seqp = seq; 1596 status = d_revalidate(dentry, nd->flags); 1597 if (likely(status > 0)) { 1598 /* 1599 * Note: do negative dentry check after revalidation in 1600 * case that drops it. 1601 */ 1602 if (unlikely(negative)) 1603 return -ENOENT; 1604 path->mnt = mnt; 1605 path->dentry = dentry; 1606 if (likely(__follow_mount_rcu(nd, path, inode, seqp))) 1607 return 1; 1608 } 1609 if (unlazy_child(nd, dentry, seq)) 1610 return -ECHILD; 1611 if (unlikely(status == -ECHILD)) 1612 /* we'd been told to redo it in non-rcu mode */ 1613 status = d_revalidate(dentry, nd->flags); 1614 } else { 1615 dentry = __d_lookup(parent, &nd->last); 1616 if (unlikely(!dentry)) 1617 return 0; 1618 status = d_revalidate(dentry, nd->flags); 1619 } 1620 if (unlikely(status <= 0)) { 1621 if (!status) 1622 d_invalidate(dentry); 1623 dput(dentry); 1624 return status; 1625 } 1626 if (unlikely(d_is_negative(dentry))) { 1627 dput(dentry); 1628 return -ENOENT; 1629 } 1630 1631 path->mnt = mnt; 1632 path->dentry = dentry; 1633 err = follow_managed(path, nd); 1634 if (likely(err > 0)) 1635 *inode = d_backing_inode(path->dentry); 1636 return err; 1637 } 1638 1639 /* Fast lookup failed, do it the slow way */ 1640 static struct dentry *__lookup_slow(const struct qstr *name, 1641 struct dentry *dir, 1642 unsigned int flags) 1643 { 1644 struct dentry *dentry, *old; 1645 struct inode *inode = dir->d_inode; 1646 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 1647 1648 /* Don't go there if it's already dead */ 1649 if (unlikely(IS_DEADDIR(inode))) 1650 return ERR_PTR(-ENOENT); 1651 again: 1652 dentry = d_alloc_parallel(dir, name, &wq); 1653 if (IS_ERR(dentry)) 1654 return dentry; 1655 if (unlikely(!d_in_lookup(dentry))) { 1656 if (!(flags & LOOKUP_NO_REVAL)) { 1657 int error = d_revalidate(dentry, flags); 1658 if (unlikely(error <= 0)) { 1659 if (!error) { 1660 d_invalidate(dentry); 1661 dput(dentry); 1662 goto again; 1663 } 1664 dput(dentry); 1665 dentry = ERR_PTR(error); 1666 } 1667 } 1668 } else { 1669 old = inode->i_op->lookup(inode, dentry, flags); 1670 d_lookup_done(dentry); 1671 if (unlikely(old)) { 1672 dput(dentry); 1673 dentry = old; 1674 } 1675 } 1676 return dentry; 1677 } 1678 1679 static struct dentry *lookup_slow(const struct qstr *name, 1680 struct dentry *dir, 1681 unsigned int flags) 1682 { 1683 struct inode *inode = dir->d_inode; 1684 struct dentry *res; 1685 inode_lock_shared(inode); 1686 res = __lookup_slow(name, dir, flags); 1687 inode_unlock_shared(inode); 1688 return res; 1689 } 1690 1691 static inline int may_lookup(struct nameidata *nd) 1692 { 1693 if (nd->flags & LOOKUP_RCU) { 1694 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK); 1695 if (err != -ECHILD) 1696 return err; 1697 if (unlazy_walk(nd)) 1698 return -ECHILD; 1699 } 1700 return inode_permission(nd->inode, MAY_EXEC); 1701 } 1702 1703 static inline int handle_dots(struct nameidata *nd, int type) 1704 { 1705 if (type == LAST_DOTDOT) { 1706 if (!nd->root.mnt) 1707 set_root(nd); 1708 if (nd->flags & LOOKUP_RCU) { 1709 return follow_dotdot_rcu(nd); 1710 } else 1711 return follow_dotdot(nd); 1712 } 1713 return 0; 1714 } 1715 1716 static int pick_link(struct nameidata *nd, struct path *link, 1717 struct inode *inode, unsigned seq) 1718 { 1719 int error; 1720 struct saved *last; 1721 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) { 1722 path_to_nameidata(link, nd); 1723 return -ELOOP; 1724 } 1725 if (!(nd->flags & LOOKUP_RCU)) { 1726 if (link->mnt == nd->path.mnt) 1727 mntget(link->mnt); 1728 } 1729 error = nd_alloc_stack(nd); 1730 if (unlikely(error)) { 1731 if (error == -ECHILD) { 1732 if (unlikely(!legitimize_path(nd, link, seq))) { 1733 drop_links(nd); 1734 nd->depth = 0; 1735 nd->flags &= ~LOOKUP_RCU; 1736 nd->path.mnt = NULL; 1737 nd->path.dentry = NULL; 1738 if (!(nd->flags & LOOKUP_ROOT)) 1739 nd->root.mnt = NULL; 1740 rcu_read_unlock(); 1741 } else if (likely(unlazy_walk(nd)) == 0) 1742 error = nd_alloc_stack(nd); 1743 } 1744 if (error) { 1745 path_put(link); 1746 return error; 1747 } 1748 } 1749 1750 last = nd->stack + nd->depth++; 1751 last->link = *link; 1752 clear_delayed_call(&last->done); 1753 nd->link_inode = inode; 1754 last->seq = seq; 1755 return 1; 1756 } 1757 1758 enum {WALK_FOLLOW = 1, WALK_MORE = 2}; 1759 1760 /* 1761 * Do we need to follow links? We _really_ want to be able 1762 * to do this check without having to look at inode->i_op, 1763 * so we keep a cache of "no, this doesn't need follow_link" 1764 * for the common case. 1765 */ 1766 static inline int step_into(struct nameidata *nd, struct path *path, 1767 int flags, struct inode *inode, unsigned seq) 1768 { 1769 if (!(flags & WALK_MORE) && nd->depth) 1770 put_link(nd); 1771 if (likely(!d_is_symlink(path->dentry)) || 1772 !(flags & WALK_FOLLOW || nd->flags & LOOKUP_FOLLOW)) { 1773 /* not a symlink or should not follow */ 1774 path_to_nameidata(path, nd); 1775 nd->inode = inode; 1776 nd->seq = seq; 1777 return 0; 1778 } 1779 /* make sure that d_is_symlink above matches inode */ 1780 if (nd->flags & LOOKUP_RCU) { 1781 if (read_seqcount_retry(&path->dentry->d_seq, seq)) 1782 return -ECHILD; 1783 } 1784 return pick_link(nd, path, inode, seq); 1785 } 1786 1787 static int walk_component(struct nameidata *nd, int flags) 1788 { 1789 struct path path; 1790 struct inode *inode; 1791 unsigned seq; 1792 int err; 1793 /* 1794 * "." and ".." are special - ".." especially so because it has 1795 * to be able to know about the current root directory and 1796 * parent relationships. 1797 */ 1798 if (unlikely(nd->last_type != LAST_NORM)) { 1799 err = handle_dots(nd, nd->last_type); 1800 if (!(flags & WALK_MORE) && nd->depth) 1801 put_link(nd); 1802 return err; 1803 } 1804 err = lookup_fast(nd, &path, &inode, &seq); 1805 if (unlikely(err <= 0)) { 1806 if (err < 0) 1807 return err; 1808 path.dentry = lookup_slow(&nd->last, nd->path.dentry, 1809 nd->flags); 1810 if (IS_ERR(path.dentry)) 1811 return PTR_ERR(path.dentry); 1812 1813 path.mnt = nd->path.mnt; 1814 err = follow_managed(&path, nd); 1815 if (unlikely(err < 0)) 1816 return err; 1817 1818 if (unlikely(d_is_negative(path.dentry))) { 1819 path_to_nameidata(&path, nd); 1820 return -ENOENT; 1821 } 1822 1823 seq = 0; /* we are already out of RCU mode */ 1824 inode = d_backing_inode(path.dentry); 1825 } 1826 1827 return step_into(nd, &path, flags, inode, seq); 1828 } 1829 1830 /* 1831 * We can do the critical dentry name comparison and hashing 1832 * operations one word at a time, but we are limited to: 1833 * 1834 * - Architectures with fast unaligned word accesses. We could 1835 * do a "get_unaligned()" if this helps and is sufficiently 1836 * fast. 1837 * 1838 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we 1839 * do not trap on the (extremely unlikely) case of a page 1840 * crossing operation. 1841 * 1842 * - Furthermore, we need an efficient 64-bit compile for the 1843 * 64-bit case in order to generate the "number of bytes in 1844 * the final mask". Again, that could be replaced with a 1845 * efficient population count instruction or similar. 1846 */ 1847 #ifdef CONFIG_DCACHE_WORD_ACCESS 1848 1849 #include <asm/word-at-a-time.h> 1850 1851 #ifdef HASH_MIX 1852 1853 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */ 1854 1855 #elif defined(CONFIG_64BIT) 1856 /* 1857 * Register pressure in the mixing function is an issue, particularly 1858 * on 32-bit x86, but almost any function requires one state value and 1859 * one temporary. Instead, use a function designed for two state values 1860 * and no temporaries. 1861 * 1862 * This function cannot create a collision in only two iterations, so 1863 * we have two iterations to achieve avalanche. In those two iterations, 1864 * we have six layers of mixing, which is enough to spread one bit's 1865 * influence out to 2^6 = 64 state bits. 1866 * 1867 * Rotate constants are scored by considering either 64 one-bit input 1868 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the 1869 * probability of that delta causing a change to each of the 128 output 1870 * bits, using a sample of random initial states. 1871 * 1872 * The Shannon entropy of the computed probabilities is then summed 1873 * to produce a score. Ideally, any input change has a 50% chance of 1874 * toggling any given output bit. 1875 * 1876 * Mixing scores (in bits) for (12,45): 1877 * Input delta: 1-bit 2-bit 1878 * 1 round: 713.3 42542.6 1879 * 2 rounds: 2753.7 140389.8 1880 * 3 rounds: 5954.1 233458.2 1881 * 4 rounds: 7862.6 256672.2 1882 * Perfect: 8192 258048 1883 * (64*128) (64*63/2 * 128) 1884 */ 1885 #define HASH_MIX(x, y, a) \ 1886 ( x ^= (a), \ 1887 y ^= x, x = rol64(x,12),\ 1888 x += y, y = rol64(y,45),\ 1889 y *= 9 ) 1890 1891 /* 1892 * Fold two longs into one 32-bit hash value. This must be fast, but 1893 * latency isn't quite as critical, as there is a fair bit of additional 1894 * work done before the hash value is used. 1895 */ 1896 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 1897 { 1898 y ^= x * GOLDEN_RATIO_64; 1899 y *= GOLDEN_RATIO_64; 1900 return y >> 32; 1901 } 1902 1903 #else /* 32-bit case */ 1904 1905 /* 1906 * Mixing scores (in bits) for (7,20): 1907 * Input delta: 1-bit 2-bit 1908 * 1 round: 330.3 9201.6 1909 * 2 rounds: 1246.4 25475.4 1910 * 3 rounds: 1907.1 31295.1 1911 * 4 rounds: 2042.3 31718.6 1912 * Perfect: 2048 31744 1913 * (32*64) (32*31/2 * 64) 1914 */ 1915 #define HASH_MIX(x, y, a) \ 1916 ( x ^= (a), \ 1917 y ^= x, x = rol32(x, 7),\ 1918 x += y, y = rol32(y,20),\ 1919 y *= 9 ) 1920 1921 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 1922 { 1923 /* Use arch-optimized multiply if one exists */ 1924 return __hash_32(y ^ __hash_32(x)); 1925 } 1926 1927 #endif 1928 1929 /* 1930 * Return the hash of a string of known length. This is carfully 1931 * designed to match hash_name(), which is the more critical function. 1932 * In particular, we must end by hashing a final word containing 0..7 1933 * payload bytes, to match the way that hash_name() iterates until it 1934 * finds the delimiter after the name. 1935 */ 1936 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 1937 { 1938 unsigned long a, x = 0, y = (unsigned long)salt; 1939 1940 for (;;) { 1941 if (!len) 1942 goto done; 1943 a = load_unaligned_zeropad(name); 1944 if (len < sizeof(unsigned long)) 1945 break; 1946 HASH_MIX(x, y, a); 1947 name += sizeof(unsigned long); 1948 len -= sizeof(unsigned long); 1949 } 1950 x ^= a & bytemask_from_count(len); 1951 done: 1952 return fold_hash(x, y); 1953 } 1954 EXPORT_SYMBOL(full_name_hash); 1955 1956 /* Return the "hash_len" (hash and length) of a null-terminated string */ 1957 u64 hashlen_string(const void *salt, const char *name) 1958 { 1959 unsigned long a = 0, x = 0, y = (unsigned long)salt; 1960 unsigned long adata, mask, len; 1961 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 1962 1963 len = 0; 1964 goto inside; 1965 1966 do { 1967 HASH_MIX(x, y, a); 1968 len += sizeof(unsigned long); 1969 inside: 1970 a = load_unaligned_zeropad(name+len); 1971 } while (!has_zero(a, &adata, &constants)); 1972 1973 adata = prep_zero_mask(a, adata, &constants); 1974 mask = create_zero_mask(adata); 1975 x ^= a & zero_bytemask(mask); 1976 1977 return hashlen_create(fold_hash(x, y), len + find_zero(mask)); 1978 } 1979 EXPORT_SYMBOL(hashlen_string); 1980 1981 /* 1982 * Calculate the length and hash of the path component, and 1983 * return the "hash_len" as the result. 1984 */ 1985 static inline u64 hash_name(const void *salt, const char *name) 1986 { 1987 unsigned long a = 0, b, x = 0, y = (unsigned long)salt; 1988 unsigned long adata, bdata, mask, len; 1989 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 1990 1991 len = 0; 1992 goto inside; 1993 1994 do { 1995 HASH_MIX(x, y, a); 1996 len += sizeof(unsigned long); 1997 inside: 1998 a = load_unaligned_zeropad(name+len); 1999 b = a ^ REPEAT_BYTE('/'); 2000 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants))); 2001 2002 adata = prep_zero_mask(a, adata, &constants); 2003 bdata = prep_zero_mask(b, bdata, &constants); 2004 mask = create_zero_mask(adata | bdata); 2005 x ^= a & zero_bytemask(mask); 2006 2007 return hashlen_create(fold_hash(x, y), len + find_zero(mask)); 2008 } 2009 2010 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */ 2011 2012 /* Return the hash of a string of known length */ 2013 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 2014 { 2015 unsigned long hash = init_name_hash(salt); 2016 while (len--) 2017 hash = partial_name_hash((unsigned char)*name++, hash); 2018 return end_name_hash(hash); 2019 } 2020 EXPORT_SYMBOL(full_name_hash); 2021 2022 /* Return the "hash_len" (hash and length) of a null-terminated string */ 2023 u64 hashlen_string(const void *salt, const char *name) 2024 { 2025 unsigned long hash = init_name_hash(salt); 2026 unsigned long len = 0, c; 2027 2028 c = (unsigned char)*name; 2029 while (c) { 2030 len++; 2031 hash = partial_name_hash(c, hash); 2032 c = (unsigned char)name[len]; 2033 } 2034 return hashlen_create(end_name_hash(hash), len); 2035 } 2036 EXPORT_SYMBOL(hashlen_string); 2037 2038 /* 2039 * We know there's a real path component here of at least 2040 * one character. 2041 */ 2042 static inline u64 hash_name(const void *salt, const char *name) 2043 { 2044 unsigned long hash = init_name_hash(salt); 2045 unsigned long len = 0, c; 2046 2047 c = (unsigned char)*name; 2048 do { 2049 len++; 2050 hash = partial_name_hash(c, hash); 2051 c = (unsigned char)name[len]; 2052 } while (c && c != '/'); 2053 return hashlen_create(end_name_hash(hash), len); 2054 } 2055 2056 #endif 2057 2058 /* 2059 * Name resolution. 2060 * This is the basic name resolution function, turning a pathname into 2061 * the final dentry. We expect 'base' to be positive and a directory. 2062 * 2063 * Returns 0 and nd will have valid dentry and mnt on success. 2064 * Returns error and drops reference to input namei data on failure. 2065 */ 2066 static int link_path_walk(const char *name, struct nameidata *nd) 2067 { 2068 int err; 2069 2070 if (IS_ERR(name)) 2071 return PTR_ERR(name); 2072 while (*name=='/') 2073 name++; 2074 if (!*name) 2075 return 0; 2076 2077 /* At this point we know we have a real path component. */ 2078 for(;;) { 2079 u64 hash_len; 2080 int type; 2081 2082 err = may_lookup(nd); 2083 if (err) 2084 return err; 2085 2086 hash_len = hash_name(nd->path.dentry, name); 2087 2088 type = LAST_NORM; 2089 if (name[0] == '.') switch (hashlen_len(hash_len)) { 2090 case 2: 2091 if (name[1] == '.') { 2092 type = LAST_DOTDOT; 2093 nd->flags |= LOOKUP_JUMPED; 2094 } 2095 break; 2096 case 1: 2097 type = LAST_DOT; 2098 } 2099 if (likely(type == LAST_NORM)) { 2100 struct dentry *parent = nd->path.dentry; 2101 nd->flags &= ~LOOKUP_JUMPED; 2102 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { 2103 struct qstr this = { { .hash_len = hash_len }, .name = name }; 2104 err = parent->d_op->d_hash(parent, &this); 2105 if (err < 0) 2106 return err; 2107 hash_len = this.hash_len; 2108 name = this.name; 2109 } 2110 } 2111 2112 nd->last.hash_len = hash_len; 2113 nd->last.name = name; 2114 nd->last_type = type; 2115 2116 name += hashlen_len(hash_len); 2117 if (!*name) 2118 goto OK; 2119 /* 2120 * If it wasn't NUL, we know it was '/'. Skip that 2121 * slash, and continue until no more slashes. 2122 */ 2123 do { 2124 name++; 2125 } while (unlikely(*name == '/')); 2126 if (unlikely(!*name)) { 2127 OK: 2128 /* pathname body, done */ 2129 if (!nd->depth) 2130 return 0; 2131 name = nd->stack[nd->depth - 1].name; 2132 /* trailing symlink, done */ 2133 if (!name) 2134 return 0; 2135 /* last component of nested symlink */ 2136 err = walk_component(nd, WALK_FOLLOW); 2137 } else { 2138 /* not the last component */ 2139 err = walk_component(nd, WALK_FOLLOW | WALK_MORE); 2140 } 2141 if (err < 0) 2142 return err; 2143 2144 if (err) { 2145 const char *s = get_link(nd); 2146 2147 if (IS_ERR(s)) 2148 return PTR_ERR(s); 2149 err = 0; 2150 if (unlikely(!s)) { 2151 /* jumped */ 2152 put_link(nd); 2153 } else { 2154 nd->stack[nd->depth - 1].name = name; 2155 name = s; 2156 continue; 2157 } 2158 } 2159 if (unlikely(!d_can_lookup(nd->path.dentry))) { 2160 if (nd->flags & LOOKUP_RCU) { 2161 if (unlazy_walk(nd)) 2162 return -ECHILD; 2163 } 2164 return -ENOTDIR; 2165 } 2166 } 2167 } 2168 2169 /* must be paired with terminate_walk() */ 2170 static const char *path_init(struct nameidata *nd, unsigned flags) 2171 { 2172 const char *s = nd->name->name; 2173 2174 if (!*s) 2175 flags &= ~LOOKUP_RCU; 2176 if (flags & LOOKUP_RCU) 2177 rcu_read_lock(); 2178 2179 nd->last_type = LAST_ROOT; /* if there are only slashes... */ 2180 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT; 2181 nd->depth = 0; 2182 if (flags & LOOKUP_ROOT) { 2183 struct dentry *root = nd->root.dentry; 2184 struct inode *inode = root->d_inode; 2185 if (*s && unlikely(!d_can_lookup(root))) 2186 return ERR_PTR(-ENOTDIR); 2187 nd->path = nd->root; 2188 nd->inode = inode; 2189 if (flags & LOOKUP_RCU) { 2190 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 2191 nd->root_seq = nd->seq; 2192 nd->m_seq = read_seqbegin(&mount_lock); 2193 } else { 2194 path_get(&nd->path); 2195 } 2196 return s; 2197 } 2198 2199 nd->root.mnt = NULL; 2200 nd->path.mnt = NULL; 2201 nd->path.dentry = NULL; 2202 2203 nd->m_seq = read_seqbegin(&mount_lock); 2204 if (*s == '/') { 2205 set_root(nd); 2206 if (likely(!nd_jump_root(nd))) 2207 return s; 2208 return ERR_PTR(-ECHILD); 2209 } else if (nd->dfd == AT_FDCWD) { 2210 if (flags & LOOKUP_RCU) { 2211 struct fs_struct *fs = current->fs; 2212 unsigned seq; 2213 2214 do { 2215 seq = read_seqcount_begin(&fs->seq); 2216 nd->path = fs->pwd; 2217 nd->inode = nd->path.dentry->d_inode; 2218 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 2219 } while (read_seqcount_retry(&fs->seq, seq)); 2220 } else { 2221 get_fs_pwd(current->fs, &nd->path); 2222 nd->inode = nd->path.dentry->d_inode; 2223 } 2224 return s; 2225 } else { 2226 /* Caller must check execute permissions on the starting path component */ 2227 struct fd f = fdget_raw(nd->dfd); 2228 struct dentry *dentry; 2229 2230 if (!f.file) 2231 return ERR_PTR(-EBADF); 2232 2233 dentry = f.file->f_path.dentry; 2234 2235 if (*s && unlikely(!d_can_lookup(dentry))) { 2236 fdput(f); 2237 return ERR_PTR(-ENOTDIR); 2238 } 2239 2240 nd->path = f.file->f_path; 2241 if (flags & LOOKUP_RCU) { 2242 nd->inode = nd->path.dentry->d_inode; 2243 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 2244 } else { 2245 path_get(&nd->path); 2246 nd->inode = nd->path.dentry->d_inode; 2247 } 2248 fdput(f); 2249 return s; 2250 } 2251 } 2252 2253 static const char *trailing_symlink(struct nameidata *nd) 2254 { 2255 const char *s; 2256 int error = may_follow_link(nd); 2257 if (unlikely(error)) 2258 return ERR_PTR(error); 2259 nd->flags |= LOOKUP_PARENT; 2260 nd->stack[0].name = NULL; 2261 s = get_link(nd); 2262 return s ? s : ""; 2263 } 2264 2265 static inline int lookup_last(struct nameidata *nd) 2266 { 2267 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len]) 2268 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 2269 2270 nd->flags &= ~LOOKUP_PARENT; 2271 return walk_component(nd, 0); 2272 } 2273 2274 static int handle_lookup_down(struct nameidata *nd) 2275 { 2276 struct path path = nd->path; 2277 struct inode *inode = nd->inode; 2278 unsigned seq = nd->seq; 2279 int err; 2280 2281 if (nd->flags & LOOKUP_RCU) { 2282 /* 2283 * don't bother with unlazy_walk on failure - we are 2284 * at the very beginning of walk, so we lose nothing 2285 * if we simply redo everything in non-RCU mode 2286 */ 2287 if (unlikely(!__follow_mount_rcu(nd, &path, &inode, &seq))) 2288 return -ECHILD; 2289 } else { 2290 dget(path.dentry); 2291 err = follow_managed(&path, nd); 2292 if (unlikely(err < 0)) 2293 return err; 2294 inode = d_backing_inode(path.dentry); 2295 seq = 0; 2296 } 2297 path_to_nameidata(&path, nd); 2298 nd->inode = inode; 2299 nd->seq = seq; 2300 return 0; 2301 } 2302 2303 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2304 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path) 2305 { 2306 const char *s = path_init(nd, flags); 2307 int err; 2308 2309 if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) { 2310 err = handle_lookup_down(nd); 2311 if (unlikely(err < 0)) 2312 s = ERR_PTR(err); 2313 } 2314 2315 while (!(err = link_path_walk(s, nd)) 2316 && ((err = lookup_last(nd)) > 0)) { 2317 s = trailing_symlink(nd); 2318 } 2319 if (!err) 2320 err = complete_walk(nd); 2321 2322 if (!err && nd->flags & LOOKUP_DIRECTORY) 2323 if (!d_can_lookup(nd->path.dentry)) 2324 err = -ENOTDIR; 2325 if (!err) { 2326 *path = nd->path; 2327 nd->path.mnt = NULL; 2328 nd->path.dentry = NULL; 2329 } 2330 terminate_walk(nd); 2331 return err; 2332 } 2333 2334 int filename_lookup(int dfd, struct filename *name, unsigned flags, 2335 struct path *path, struct path *root) 2336 { 2337 int retval; 2338 struct nameidata nd; 2339 if (IS_ERR(name)) 2340 return PTR_ERR(name); 2341 if (unlikely(root)) { 2342 nd.root = *root; 2343 flags |= LOOKUP_ROOT; 2344 } 2345 set_nameidata(&nd, dfd, name); 2346 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path); 2347 if (unlikely(retval == -ECHILD)) 2348 retval = path_lookupat(&nd, flags, path); 2349 if (unlikely(retval == -ESTALE)) 2350 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path); 2351 2352 if (likely(!retval)) 2353 audit_inode(name, path->dentry, flags & LOOKUP_PARENT); 2354 restore_nameidata(); 2355 putname(name); 2356 return retval; 2357 } 2358 2359 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2360 static int path_parentat(struct nameidata *nd, unsigned flags, 2361 struct path *parent) 2362 { 2363 const char *s = path_init(nd, flags); 2364 int err = link_path_walk(s, nd); 2365 if (!err) 2366 err = complete_walk(nd); 2367 if (!err) { 2368 *parent = nd->path; 2369 nd->path.mnt = NULL; 2370 nd->path.dentry = NULL; 2371 } 2372 terminate_walk(nd); 2373 return err; 2374 } 2375 2376 static struct filename *filename_parentat(int dfd, struct filename *name, 2377 unsigned int flags, struct path *parent, 2378 struct qstr *last, int *type) 2379 { 2380 int retval; 2381 struct nameidata nd; 2382 2383 if (IS_ERR(name)) 2384 return name; 2385 set_nameidata(&nd, dfd, name); 2386 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent); 2387 if (unlikely(retval == -ECHILD)) 2388 retval = path_parentat(&nd, flags, parent); 2389 if (unlikely(retval == -ESTALE)) 2390 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent); 2391 if (likely(!retval)) { 2392 *last = nd.last; 2393 *type = nd.last_type; 2394 audit_inode(name, parent->dentry, LOOKUP_PARENT); 2395 } else { 2396 putname(name); 2397 name = ERR_PTR(retval); 2398 } 2399 restore_nameidata(); 2400 return name; 2401 } 2402 2403 /* does lookup, returns the object with parent locked */ 2404 struct dentry *kern_path_locked(const char *name, struct path *path) 2405 { 2406 struct filename *filename; 2407 struct dentry *d; 2408 struct qstr last; 2409 int type; 2410 2411 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path, 2412 &last, &type); 2413 if (IS_ERR(filename)) 2414 return ERR_CAST(filename); 2415 if (unlikely(type != LAST_NORM)) { 2416 path_put(path); 2417 putname(filename); 2418 return ERR_PTR(-EINVAL); 2419 } 2420 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 2421 d = __lookup_hash(&last, path->dentry, 0); 2422 if (IS_ERR(d)) { 2423 inode_unlock(path->dentry->d_inode); 2424 path_put(path); 2425 } 2426 putname(filename); 2427 return d; 2428 } 2429 2430 int kern_path(const char *name, unsigned int flags, struct path *path) 2431 { 2432 return filename_lookup(AT_FDCWD, getname_kernel(name), 2433 flags, path, NULL); 2434 } 2435 EXPORT_SYMBOL(kern_path); 2436 2437 /** 2438 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 2439 * @dentry: pointer to dentry of the base directory 2440 * @mnt: pointer to vfs mount of the base directory 2441 * @name: pointer to file name 2442 * @flags: lookup flags 2443 * @path: pointer to struct path to fill 2444 */ 2445 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 2446 const char *name, unsigned int flags, 2447 struct path *path) 2448 { 2449 struct path root = {.mnt = mnt, .dentry = dentry}; 2450 /* the first argument of filename_lookup() is ignored with root */ 2451 return filename_lookup(AT_FDCWD, getname_kernel(name), 2452 flags , path, &root); 2453 } 2454 EXPORT_SYMBOL(vfs_path_lookup); 2455 2456 static int lookup_one_len_common(const char *name, struct dentry *base, 2457 int len, struct qstr *this) 2458 { 2459 this->name = name; 2460 this->len = len; 2461 this->hash = full_name_hash(base, name, len); 2462 if (!len) 2463 return -EACCES; 2464 2465 if (unlikely(name[0] == '.')) { 2466 if (len < 2 || (len == 2 && name[1] == '.')) 2467 return -EACCES; 2468 } 2469 2470 while (len--) { 2471 unsigned int c = *(const unsigned char *)name++; 2472 if (c == '/' || c == '\0') 2473 return -EACCES; 2474 } 2475 /* 2476 * See if the low-level filesystem might want 2477 * to use its own hash.. 2478 */ 2479 if (base->d_flags & DCACHE_OP_HASH) { 2480 int err = base->d_op->d_hash(base, this); 2481 if (err < 0) 2482 return err; 2483 } 2484 2485 return inode_permission(base->d_inode, MAY_EXEC); 2486 } 2487 2488 /** 2489 * try_lookup_one_len - filesystem helper to lookup single pathname component 2490 * @name: pathname component to lookup 2491 * @base: base directory to lookup from 2492 * @len: maximum length @len should be interpreted to 2493 * 2494 * Look up a dentry by name in the dcache, returning NULL if it does not 2495 * currently exist. The function does not try to create a dentry. 2496 * 2497 * Note that this routine is purely a helper for filesystem usage and should 2498 * not be called by generic code. 2499 * 2500 * The caller must hold base->i_mutex. 2501 */ 2502 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len) 2503 { 2504 struct qstr this; 2505 int err; 2506 2507 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2508 2509 err = lookup_one_len_common(name, base, len, &this); 2510 if (err) 2511 return ERR_PTR(err); 2512 2513 return lookup_dcache(&this, base, 0); 2514 } 2515 EXPORT_SYMBOL(try_lookup_one_len); 2516 2517 /** 2518 * lookup_one_len - filesystem helper to lookup single pathname component 2519 * @name: pathname component to lookup 2520 * @base: base directory to lookup from 2521 * @len: maximum length @len should be interpreted to 2522 * 2523 * Note that this routine is purely a helper for filesystem usage and should 2524 * not be called by generic code. 2525 * 2526 * The caller must hold base->i_mutex. 2527 */ 2528 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 2529 { 2530 struct dentry *dentry; 2531 struct qstr this; 2532 int err; 2533 2534 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2535 2536 err = lookup_one_len_common(name, base, len, &this); 2537 if (err) 2538 return ERR_PTR(err); 2539 2540 dentry = lookup_dcache(&this, base, 0); 2541 return dentry ? dentry : __lookup_slow(&this, base, 0); 2542 } 2543 EXPORT_SYMBOL(lookup_one_len); 2544 2545 /** 2546 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component 2547 * @name: pathname component to lookup 2548 * @base: base directory to lookup from 2549 * @len: maximum length @len should be interpreted to 2550 * 2551 * Note that this routine is purely a helper for filesystem usage and should 2552 * not be called by generic code. 2553 * 2554 * Unlike lookup_one_len, it should be called without the parent 2555 * i_mutex held, and will take the i_mutex itself if necessary. 2556 */ 2557 struct dentry *lookup_one_len_unlocked(const char *name, 2558 struct dentry *base, int len) 2559 { 2560 struct qstr this; 2561 int err; 2562 struct dentry *ret; 2563 2564 err = lookup_one_len_common(name, base, len, &this); 2565 if (err) 2566 return ERR_PTR(err); 2567 2568 ret = lookup_dcache(&this, base, 0); 2569 if (!ret) 2570 ret = lookup_slow(&this, base, 0); 2571 return ret; 2572 } 2573 EXPORT_SYMBOL(lookup_one_len_unlocked); 2574 2575 #ifdef CONFIG_UNIX98_PTYS 2576 int path_pts(struct path *path) 2577 { 2578 /* Find something mounted on "pts" in the same directory as 2579 * the input path. 2580 */ 2581 struct dentry *child, *parent; 2582 struct qstr this; 2583 int ret; 2584 2585 ret = path_parent_directory(path); 2586 if (ret) 2587 return ret; 2588 2589 parent = path->dentry; 2590 this.name = "pts"; 2591 this.len = 3; 2592 child = d_hash_and_lookup(parent, &this); 2593 if (!child) 2594 return -ENOENT; 2595 2596 path->dentry = child; 2597 dput(parent); 2598 follow_mount(path); 2599 return 0; 2600 } 2601 #endif 2602 2603 int user_path_at_empty(int dfd, const char __user *name, unsigned flags, 2604 struct path *path, int *empty) 2605 { 2606 return filename_lookup(dfd, getname_flags(name, flags, empty), 2607 flags, path, NULL); 2608 } 2609 EXPORT_SYMBOL(user_path_at_empty); 2610 2611 /** 2612 * mountpoint_last - look up last component for umount 2613 * @nd: pathwalk nameidata - currently pointing at parent directory of "last" 2614 * 2615 * This is a special lookup_last function just for umount. In this case, we 2616 * need to resolve the path without doing any revalidation. 2617 * 2618 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since 2619 * mountpoints are always pinned in the dcache, their ancestors are too. Thus, 2620 * in almost all cases, this lookup will be served out of the dcache. The only 2621 * cases where it won't are if nd->last refers to a symlink or the path is 2622 * bogus and it doesn't exist. 2623 * 2624 * Returns: 2625 * -error: if there was an error during lookup. This includes -ENOENT if the 2626 * lookup found a negative dentry. 2627 * 2628 * 0: if we successfully resolved nd->last and found it to not to be a 2629 * symlink that needs to be followed. 2630 * 2631 * 1: if we successfully resolved nd->last and found it to be a symlink 2632 * that needs to be followed. 2633 */ 2634 static int 2635 mountpoint_last(struct nameidata *nd) 2636 { 2637 int error = 0; 2638 struct dentry *dir = nd->path.dentry; 2639 struct path path; 2640 2641 /* If we're in rcuwalk, drop out of it to handle last component */ 2642 if (nd->flags & LOOKUP_RCU) { 2643 if (unlazy_walk(nd)) 2644 return -ECHILD; 2645 } 2646 2647 nd->flags &= ~LOOKUP_PARENT; 2648 2649 if (unlikely(nd->last_type != LAST_NORM)) { 2650 error = handle_dots(nd, nd->last_type); 2651 if (error) 2652 return error; 2653 path.dentry = dget(nd->path.dentry); 2654 } else { 2655 path.dentry = d_lookup(dir, &nd->last); 2656 if (!path.dentry) { 2657 /* 2658 * No cached dentry. Mounted dentries are pinned in the 2659 * cache, so that means that this dentry is probably 2660 * a symlink or the path doesn't actually point 2661 * to a mounted dentry. 2662 */ 2663 path.dentry = lookup_slow(&nd->last, dir, 2664 nd->flags | LOOKUP_NO_REVAL); 2665 if (IS_ERR(path.dentry)) 2666 return PTR_ERR(path.dentry); 2667 } 2668 } 2669 if (d_is_negative(path.dentry)) { 2670 dput(path.dentry); 2671 return -ENOENT; 2672 } 2673 path.mnt = nd->path.mnt; 2674 return step_into(nd, &path, 0, d_backing_inode(path.dentry), 0); 2675 } 2676 2677 /** 2678 * path_mountpoint - look up a path to be umounted 2679 * @nd: lookup context 2680 * @flags: lookup flags 2681 * @path: pointer to container for result 2682 * 2683 * Look up the given name, but don't attempt to revalidate the last component. 2684 * Returns 0 and "path" will be valid on success; Returns error otherwise. 2685 */ 2686 static int 2687 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path) 2688 { 2689 const char *s = path_init(nd, flags); 2690 int err; 2691 2692 while (!(err = link_path_walk(s, nd)) && 2693 (err = mountpoint_last(nd)) > 0) { 2694 s = trailing_symlink(nd); 2695 } 2696 if (!err) { 2697 *path = nd->path; 2698 nd->path.mnt = NULL; 2699 nd->path.dentry = NULL; 2700 follow_mount(path); 2701 } 2702 terminate_walk(nd); 2703 return err; 2704 } 2705 2706 static int 2707 filename_mountpoint(int dfd, struct filename *name, struct path *path, 2708 unsigned int flags) 2709 { 2710 struct nameidata nd; 2711 int error; 2712 if (IS_ERR(name)) 2713 return PTR_ERR(name); 2714 set_nameidata(&nd, dfd, name); 2715 error = path_mountpoint(&nd, flags | LOOKUP_RCU, path); 2716 if (unlikely(error == -ECHILD)) 2717 error = path_mountpoint(&nd, flags, path); 2718 if (unlikely(error == -ESTALE)) 2719 error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path); 2720 if (likely(!error)) 2721 audit_inode(name, path->dentry, flags & LOOKUP_NO_EVAL); 2722 restore_nameidata(); 2723 putname(name); 2724 return error; 2725 } 2726 2727 /** 2728 * user_path_mountpoint_at - lookup a path from userland in order to umount it 2729 * @dfd: directory file descriptor 2730 * @name: pathname from userland 2731 * @flags: lookup flags 2732 * @path: pointer to container to hold result 2733 * 2734 * A umount is a special case for path walking. We're not actually interested 2735 * in the inode in this situation, and ESTALE errors can be a problem. We 2736 * simply want track down the dentry and vfsmount attached at the mountpoint 2737 * and avoid revalidating the last component. 2738 * 2739 * Returns 0 and populates "path" on success. 2740 */ 2741 int 2742 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags, 2743 struct path *path) 2744 { 2745 return filename_mountpoint(dfd, getname(name), path, flags); 2746 } 2747 2748 int 2749 kern_path_mountpoint(int dfd, const char *name, struct path *path, 2750 unsigned int flags) 2751 { 2752 return filename_mountpoint(dfd, getname_kernel(name), path, flags); 2753 } 2754 EXPORT_SYMBOL(kern_path_mountpoint); 2755 2756 int __check_sticky(struct inode *dir, struct inode *inode) 2757 { 2758 kuid_t fsuid = current_fsuid(); 2759 2760 if (uid_eq(inode->i_uid, fsuid)) 2761 return 0; 2762 if (uid_eq(dir->i_uid, fsuid)) 2763 return 0; 2764 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER); 2765 } 2766 EXPORT_SYMBOL(__check_sticky); 2767 2768 /* 2769 * Check whether we can remove a link victim from directory dir, check 2770 * whether the type of victim is right. 2771 * 1. We can't do it if dir is read-only (done in permission()) 2772 * 2. We should have write and exec permissions on dir 2773 * 3. We can't remove anything from append-only dir 2774 * 4. We can't do anything with immutable dir (done in permission()) 2775 * 5. If the sticky bit on dir is set we should either 2776 * a. be owner of dir, or 2777 * b. be owner of victim, or 2778 * c. have CAP_FOWNER capability 2779 * 6. If the victim is append-only or immutable we can't do antyhing with 2780 * links pointing to it. 2781 * 7. If the victim has an unknown uid or gid we can't change the inode. 2782 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR. 2783 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR. 2784 * 10. We can't remove a root or mountpoint. 2785 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by 2786 * nfs_async_unlink(). 2787 */ 2788 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir) 2789 { 2790 struct inode *inode = d_backing_inode(victim); 2791 int error; 2792 2793 if (d_is_negative(victim)) 2794 return -ENOENT; 2795 BUG_ON(!inode); 2796 2797 BUG_ON(victim->d_parent->d_inode != dir); 2798 2799 /* Inode writeback is not safe when the uid or gid are invalid. */ 2800 if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid)) 2801 return -EOVERFLOW; 2802 2803 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 2804 2805 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 2806 if (error) 2807 return error; 2808 if (IS_APPEND(dir)) 2809 return -EPERM; 2810 2811 if (check_sticky(dir, inode) || IS_APPEND(inode) || 2812 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode)) 2813 return -EPERM; 2814 if (isdir) { 2815 if (!d_is_dir(victim)) 2816 return -ENOTDIR; 2817 if (IS_ROOT(victim)) 2818 return -EBUSY; 2819 } else if (d_is_dir(victim)) 2820 return -EISDIR; 2821 if (IS_DEADDIR(dir)) 2822 return -ENOENT; 2823 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 2824 return -EBUSY; 2825 return 0; 2826 } 2827 2828 /* Check whether we can create an object with dentry child in directory 2829 * dir. 2830 * 1. We can't do it if child already exists (open has special treatment for 2831 * this case, but since we are inlined it's OK) 2832 * 2. We can't do it if dir is read-only (done in permission()) 2833 * 3. We can't do it if the fs can't represent the fsuid or fsgid. 2834 * 4. We should have write and exec permissions on dir 2835 * 5. We can't do it if dir is immutable (done in permission()) 2836 */ 2837 static inline int may_create(struct inode *dir, struct dentry *child) 2838 { 2839 struct user_namespace *s_user_ns; 2840 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE); 2841 if (child->d_inode) 2842 return -EEXIST; 2843 if (IS_DEADDIR(dir)) 2844 return -ENOENT; 2845 s_user_ns = dir->i_sb->s_user_ns; 2846 if (!kuid_has_mapping(s_user_ns, current_fsuid()) || 2847 !kgid_has_mapping(s_user_ns, current_fsgid())) 2848 return -EOVERFLOW; 2849 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 2850 } 2851 2852 /* 2853 * p1 and p2 should be directories on the same fs. 2854 */ 2855 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 2856 { 2857 struct dentry *p; 2858 2859 if (p1 == p2) { 2860 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2861 return NULL; 2862 } 2863 2864 mutex_lock(&p1->d_sb->s_vfs_rename_mutex); 2865 2866 p = d_ancestor(p2, p1); 2867 if (p) { 2868 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT); 2869 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD); 2870 return p; 2871 } 2872 2873 p = d_ancestor(p1, p2); 2874 if (p) { 2875 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2876 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD); 2877 return p; 2878 } 2879 2880 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2881 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2); 2882 return NULL; 2883 } 2884 EXPORT_SYMBOL(lock_rename); 2885 2886 void unlock_rename(struct dentry *p1, struct dentry *p2) 2887 { 2888 inode_unlock(p1->d_inode); 2889 if (p1 != p2) { 2890 inode_unlock(p2->d_inode); 2891 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex); 2892 } 2893 } 2894 EXPORT_SYMBOL(unlock_rename); 2895 2896 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2897 bool want_excl) 2898 { 2899 int error = may_create(dir, dentry); 2900 if (error) 2901 return error; 2902 2903 if (!dir->i_op->create) 2904 return -EACCES; /* shouldn't it be ENOSYS? */ 2905 mode &= S_IALLUGO; 2906 mode |= S_IFREG; 2907 error = security_inode_create(dir, dentry, mode); 2908 if (error) 2909 return error; 2910 error = dir->i_op->create(dir, dentry, mode, want_excl); 2911 if (!error) 2912 fsnotify_create(dir, dentry); 2913 return error; 2914 } 2915 EXPORT_SYMBOL(vfs_create); 2916 2917 int vfs_mkobj(struct dentry *dentry, umode_t mode, 2918 int (*f)(struct dentry *, umode_t, void *), 2919 void *arg) 2920 { 2921 struct inode *dir = dentry->d_parent->d_inode; 2922 int error = may_create(dir, dentry); 2923 if (error) 2924 return error; 2925 2926 mode &= S_IALLUGO; 2927 mode |= S_IFREG; 2928 error = security_inode_create(dir, dentry, mode); 2929 if (error) 2930 return error; 2931 error = f(dentry, mode, arg); 2932 if (!error) 2933 fsnotify_create(dir, dentry); 2934 return error; 2935 } 2936 EXPORT_SYMBOL(vfs_mkobj); 2937 2938 bool may_open_dev(const struct path *path) 2939 { 2940 return !(path->mnt->mnt_flags & MNT_NODEV) && 2941 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV); 2942 } 2943 2944 static int may_open(const struct path *path, int acc_mode, int flag) 2945 { 2946 struct dentry *dentry = path->dentry; 2947 struct inode *inode = dentry->d_inode; 2948 int error; 2949 2950 if (!inode) 2951 return -ENOENT; 2952 2953 switch (inode->i_mode & S_IFMT) { 2954 case S_IFLNK: 2955 return -ELOOP; 2956 case S_IFDIR: 2957 if (acc_mode & MAY_WRITE) 2958 return -EISDIR; 2959 break; 2960 case S_IFBLK: 2961 case S_IFCHR: 2962 if (!may_open_dev(path)) 2963 return -EACCES; 2964 /*FALLTHRU*/ 2965 case S_IFIFO: 2966 case S_IFSOCK: 2967 flag &= ~O_TRUNC; 2968 break; 2969 } 2970 2971 error = inode_permission(inode, MAY_OPEN | acc_mode); 2972 if (error) 2973 return error; 2974 2975 /* 2976 * An append-only file must be opened in append mode for writing. 2977 */ 2978 if (IS_APPEND(inode)) { 2979 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 2980 return -EPERM; 2981 if (flag & O_TRUNC) 2982 return -EPERM; 2983 } 2984 2985 /* O_NOATIME can only be set by the owner or superuser */ 2986 if (flag & O_NOATIME && !inode_owner_or_capable(inode)) 2987 return -EPERM; 2988 2989 return 0; 2990 } 2991 2992 static int handle_truncate(struct file *filp) 2993 { 2994 const struct path *path = &filp->f_path; 2995 struct inode *inode = path->dentry->d_inode; 2996 int error = get_write_access(inode); 2997 if (error) 2998 return error; 2999 /* 3000 * Refuse to truncate files with mandatory locks held on them. 3001 */ 3002 error = locks_verify_locked(filp); 3003 if (!error) 3004 error = security_path_truncate(path); 3005 if (!error) { 3006 error = do_truncate(path->dentry, 0, 3007 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 3008 filp); 3009 } 3010 put_write_access(inode); 3011 return error; 3012 } 3013 3014 static inline int open_to_namei_flags(int flag) 3015 { 3016 if ((flag & O_ACCMODE) == 3) 3017 flag--; 3018 return flag; 3019 } 3020 3021 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode) 3022 { 3023 struct user_namespace *s_user_ns; 3024 int error = security_path_mknod(dir, dentry, mode, 0); 3025 if (error) 3026 return error; 3027 3028 s_user_ns = dir->dentry->d_sb->s_user_ns; 3029 if (!kuid_has_mapping(s_user_ns, current_fsuid()) || 3030 !kgid_has_mapping(s_user_ns, current_fsgid())) 3031 return -EOVERFLOW; 3032 3033 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC); 3034 if (error) 3035 return error; 3036 3037 return security_inode_create(dir->dentry->d_inode, dentry, mode); 3038 } 3039 3040 /* 3041 * Attempt to atomically look up, create and open a file from a negative 3042 * dentry. 3043 * 3044 * Returns 0 if successful. The file will have been created and attached to 3045 * @file by the filesystem calling finish_open(). 3046 * 3047 * If the file was looked up only or didn't need creating, FMODE_OPENED won't 3048 * be set. The caller will need to perform the open themselves. @path will 3049 * have been updated to point to the new dentry. This may be negative. 3050 * 3051 * Returns an error code otherwise. 3052 */ 3053 static int atomic_open(struct nameidata *nd, struct dentry *dentry, 3054 struct path *path, struct file *file, 3055 const struct open_flags *op, 3056 int open_flag, umode_t mode) 3057 { 3058 struct dentry *const DENTRY_NOT_SET = (void *) -1UL; 3059 struct inode *dir = nd->path.dentry->d_inode; 3060 int error; 3061 3062 if (!(~open_flag & (O_EXCL | O_CREAT))) /* both O_EXCL and O_CREAT */ 3063 open_flag &= ~O_TRUNC; 3064 3065 if (nd->flags & LOOKUP_DIRECTORY) 3066 open_flag |= O_DIRECTORY; 3067 3068 file->f_path.dentry = DENTRY_NOT_SET; 3069 file->f_path.mnt = nd->path.mnt; 3070 error = dir->i_op->atomic_open(dir, dentry, file, 3071 open_to_namei_flags(open_flag), mode); 3072 d_lookup_done(dentry); 3073 if (!error) { 3074 if (file->f_mode & FMODE_OPENED) { 3075 /* 3076 * We didn't have the inode before the open, so check open 3077 * permission here. 3078 */ 3079 int acc_mode = op->acc_mode; 3080 if (file->f_mode & FMODE_CREATED) { 3081 WARN_ON(!(open_flag & O_CREAT)); 3082 fsnotify_create(dir, dentry); 3083 acc_mode = 0; 3084 } 3085 error = may_open(&file->f_path, acc_mode, open_flag); 3086 if (WARN_ON(error > 0)) 3087 error = -EINVAL; 3088 } else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) { 3089 error = -EIO; 3090 } else { 3091 if (file->f_path.dentry) { 3092 dput(dentry); 3093 dentry = file->f_path.dentry; 3094 } 3095 if (file->f_mode & FMODE_CREATED) 3096 fsnotify_create(dir, dentry); 3097 if (unlikely(d_is_negative(dentry))) { 3098 error = -ENOENT; 3099 } else { 3100 path->dentry = dentry; 3101 path->mnt = nd->path.mnt; 3102 return 0; 3103 } 3104 } 3105 } 3106 dput(dentry); 3107 return error; 3108 } 3109 3110 /* 3111 * Look up and maybe create and open the last component. 3112 * 3113 * Must be called with parent locked (exclusive in O_CREAT case). 3114 * 3115 * Returns 0 on success, that is, if 3116 * the file was successfully atomically created (if necessary) and opened, or 3117 * the file was not completely opened at this time, though lookups and 3118 * creations were performed. 3119 * These case are distinguished by presence of FMODE_OPENED on file->f_mode. 3120 * In the latter case dentry returned in @path might be negative if O_CREAT 3121 * hadn't been specified. 3122 * 3123 * An error code is returned on failure. 3124 */ 3125 static int lookup_open(struct nameidata *nd, struct path *path, 3126 struct file *file, 3127 const struct open_flags *op, 3128 bool got_write) 3129 { 3130 struct dentry *dir = nd->path.dentry; 3131 struct inode *dir_inode = dir->d_inode; 3132 int open_flag = op->open_flag; 3133 struct dentry *dentry; 3134 int error, create_error = 0; 3135 umode_t mode = op->mode; 3136 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 3137 3138 if (unlikely(IS_DEADDIR(dir_inode))) 3139 return -ENOENT; 3140 3141 file->f_mode &= ~FMODE_CREATED; 3142 dentry = d_lookup(dir, &nd->last); 3143 for (;;) { 3144 if (!dentry) { 3145 dentry = d_alloc_parallel(dir, &nd->last, &wq); 3146 if (IS_ERR(dentry)) 3147 return PTR_ERR(dentry); 3148 } 3149 if (d_in_lookup(dentry)) 3150 break; 3151 3152 error = d_revalidate(dentry, nd->flags); 3153 if (likely(error > 0)) 3154 break; 3155 if (error) 3156 goto out_dput; 3157 d_invalidate(dentry); 3158 dput(dentry); 3159 dentry = NULL; 3160 } 3161 if (dentry->d_inode) { 3162 /* Cached positive dentry: will open in f_op->open */ 3163 goto out_no_open; 3164 } 3165 3166 /* 3167 * Checking write permission is tricky, bacuse we don't know if we are 3168 * going to actually need it: O_CREAT opens should work as long as the 3169 * file exists. But checking existence breaks atomicity. The trick is 3170 * to check access and if not granted clear O_CREAT from the flags. 3171 * 3172 * Another problem is returing the "right" error value (e.g. for an 3173 * O_EXCL open we want to return EEXIST not EROFS). 3174 */ 3175 if (open_flag & O_CREAT) { 3176 if (!IS_POSIXACL(dir->d_inode)) 3177 mode &= ~current_umask(); 3178 if (unlikely(!got_write)) { 3179 create_error = -EROFS; 3180 open_flag &= ~O_CREAT; 3181 if (open_flag & (O_EXCL | O_TRUNC)) 3182 goto no_open; 3183 /* No side effects, safe to clear O_CREAT */ 3184 } else { 3185 create_error = may_o_create(&nd->path, dentry, mode); 3186 if (create_error) { 3187 open_flag &= ~O_CREAT; 3188 if (open_flag & O_EXCL) 3189 goto no_open; 3190 } 3191 } 3192 } else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) && 3193 unlikely(!got_write)) { 3194 /* 3195 * No O_CREATE -> atomicity not a requirement -> fall 3196 * back to lookup + open 3197 */ 3198 goto no_open; 3199 } 3200 3201 if (dir_inode->i_op->atomic_open) { 3202 error = atomic_open(nd, dentry, path, file, op, open_flag, 3203 mode); 3204 if (unlikely(error == -ENOENT) && create_error) 3205 error = create_error; 3206 return error; 3207 } 3208 3209 no_open: 3210 if (d_in_lookup(dentry)) { 3211 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry, 3212 nd->flags); 3213 d_lookup_done(dentry); 3214 if (unlikely(res)) { 3215 if (IS_ERR(res)) { 3216 error = PTR_ERR(res); 3217 goto out_dput; 3218 } 3219 dput(dentry); 3220 dentry = res; 3221 } 3222 } 3223 3224 /* Negative dentry, just create the file */ 3225 if (!dentry->d_inode && (open_flag & O_CREAT)) { 3226 file->f_mode |= FMODE_CREATED; 3227 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE); 3228 if (!dir_inode->i_op->create) { 3229 error = -EACCES; 3230 goto out_dput; 3231 } 3232 error = dir_inode->i_op->create(dir_inode, dentry, mode, 3233 open_flag & O_EXCL); 3234 if (error) 3235 goto out_dput; 3236 fsnotify_create(dir_inode, dentry); 3237 } 3238 if (unlikely(create_error) && !dentry->d_inode) { 3239 error = create_error; 3240 goto out_dput; 3241 } 3242 out_no_open: 3243 path->dentry = dentry; 3244 path->mnt = nd->path.mnt; 3245 return 0; 3246 3247 out_dput: 3248 dput(dentry); 3249 return error; 3250 } 3251 3252 /* 3253 * Handle the last step of open() 3254 */ 3255 static int do_last(struct nameidata *nd, 3256 struct file *file, const struct open_flags *op) 3257 { 3258 struct dentry *dir = nd->path.dentry; 3259 int open_flag = op->open_flag; 3260 bool will_truncate = (open_flag & O_TRUNC) != 0; 3261 bool got_write = false; 3262 int acc_mode = op->acc_mode; 3263 unsigned seq; 3264 struct inode *inode; 3265 struct path path; 3266 int error; 3267 3268 nd->flags &= ~LOOKUP_PARENT; 3269 nd->flags |= op->intent; 3270 3271 if (nd->last_type != LAST_NORM) { 3272 error = handle_dots(nd, nd->last_type); 3273 if (unlikely(error)) 3274 return error; 3275 goto finish_open; 3276 } 3277 3278 if (!(open_flag & O_CREAT)) { 3279 if (nd->last.name[nd->last.len]) 3280 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 3281 /* we _can_ be in RCU mode here */ 3282 error = lookup_fast(nd, &path, &inode, &seq); 3283 if (likely(error > 0)) 3284 goto finish_lookup; 3285 3286 if (error < 0) 3287 return error; 3288 3289 BUG_ON(nd->inode != dir->d_inode); 3290 BUG_ON(nd->flags & LOOKUP_RCU); 3291 } else { 3292 /* create side of things */ 3293 /* 3294 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED 3295 * has been cleared when we got to the last component we are 3296 * about to look up 3297 */ 3298 error = complete_walk(nd); 3299 if (error) 3300 return error; 3301 3302 audit_inode(nd->name, dir, LOOKUP_PARENT); 3303 /* trailing slashes? */ 3304 if (unlikely(nd->last.name[nd->last.len])) 3305 return -EISDIR; 3306 } 3307 3308 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) { 3309 error = mnt_want_write(nd->path.mnt); 3310 if (!error) 3311 got_write = true; 3312 /* 3313 * do _not_ fail yet - we might not need that or fail with 3314 * a different error; let lookup_open() decide; we'll be 3315 * dropping this one anyway. 3316 */ 3317 } 3318 if (open_flag & O_CREAT) 3319 inode_lock(dir->d_inode); 3320 else 3321 inode_lock_shared(dir->d_inode); 3322 error = lookup_open(nd, &path, file, op, got_write); 3323 if (open_flag & O_CREAT) 3324 inode_unlock(dir->d_inode); 3325 else 3326 inode_unlock_shared(dir->d_inode); 3327 3328 if (error) 3329 goto out; 3330 3331 if (file->f_mode & FMODE_OPENED) { 3332 if ((file->f_mode & FMODE_CREATED) || 3333 !S_ISREG(file_inode(file)->i_mode)) 3334 will_truncate = false; 3335 3336 audit_inode(nd->name, file->f_path.dentry, 0); 3337 goto opened; 3338 } 3339 3340 if (file->f_mode & FMODE_CREATED) { 3341 /* Don't check for write permission, don't truncate */ 3342 open_flag &= ~O_TRUNC; 3343 will_truncate = false; 3344 acc_mode = 0; 3345 path_to_nameidata(&path, nd); 3346 goto finish_open_created; 3347 } 3348 3349 /* 3350 * If atomic_open() acquired write access it is dropped now due to 3351 * possible mount and symlink following (this might be optimized away if 3352 * necessary...) 3353 */ 3354 if (got_write) { 3355 mnt_drop_write(nd->path.mnt); 3356 got_write = false; 3357 } 3358 3359 error = follow_managed(&path, nd); 3360 if (unlikely(error < 0)) 3361 return error; 3362 3363 if (unlikely(d_is_negative(path.dentry))) { 3364 path_to_nameidata(&path, nd); 3365 return -ENOENT; 3366 } 3367 3368 /* 3369 * create/update audit record if it already exists. 3370 */ 3371 audit_inode(nd->name, path.dentry, 0); 3372 3373 if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) { 3374 path_to_nameidata(&path, nd); 3375 return -EEXIST; 3376 } 3377 3378 seq = 0; /* out of RCU mode, so the value doesn't matter */ 3379 inode = d_backing_inode(path.dentry); 3380 finish_lookup: 3381 error = step_into(nd, &path, 0, inode, seq); 3382 if (unlikely(error)) 3383 return error; 3384 finish_open: 3385 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */ 3386 error = complete_walk(nd); 3387 if (error) 3388 return error; 3389 audit_inode(nd->name, nd->path.dentry, 0); 3390 if (open_flag & O_CREAT) { 3391 error = -EISDIR; 3392 if (d_is_dir(nd->path.dentry)) 3393 goto out; 3394 error = may_create_in_sticky(dir, 3395 d_backing_inode(nd->path.dentry)); 3396 if (unlikely(error)) 3397 goto out; 3398 } 3399 error = -ENOTDIR; 3400 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry)) 3401 goto out; 3402 if (!d_is_reg(nd->path.dentry)) 3403 will_truncate = false; 3404 3405 if (will_truncate) { 3406 error = mnt_want_write(nd->path.mnt); 3407 if (error) 3408 goto out; 3409 got_write = true; 3410 } 3411 finish_open_created: 3412 error = may_open(&nd->path, acc_mode, open_flag); 3413 if (error) 3414 goto out; 3415 BUG_ON(file->f_mode & FMODE_OPENED); /* once it's opened, it's opened */ 3416 error = vfs_open(&nd->path, file); 3417 if (error) 3418 goto out; 3419 opened: 3420 error = ima_file_check(file, op->acc_mode); 3421 if (!error && will_truncate) 3422 error = handle_truncate(file); 3423 out: 3424 if (unlikely(error > 0)) { 3425 WARN_ON(1); 3426 error = -EINVAL; 3427 } 3428 if (got_write) 3429 mnt_drop_write(nd->path.mnt); 3430 return error; 3431 } 3432 3433 struct dentry *vfs_tmpfile(struct dentry *dentry, umode_t mode, int open_flag) 3434 { 3435 struct dentry *child = NULL; 3436 struct inode *dir = dentry->d_inode; 3437 struct inode *inode; 3438 int error; 3439 3440 /* we want directory to be writable */ 3441 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 3442 if (error) 3443 goto out_err; 3444 error = -EOPNOTSUPP; 3445 if (!dir->i_op->tmpfile) 3446 goto out_err; 3447 error = -ENOMEM; 3448 child = d_alloc(dentry, &slash_name); 3449 if (unlikely(!child)) 3450 goto out_err; 3451 error = dir->i_op->tmpfile(dir, child, mode); 3452 if (error) 3453 goto out_err; 3454 error = -ENOENT; 3455 inode = child->d_inode; 3456 if (unlikely(!inode)) 3457 goto out_err; 3458 if (!(open_flag & O_EXCL)) { 3459 spin_lock(&inode->i_lock); 3460 inode->i_state |= I_LINKABLE; 3461 spin_unlock(&inode->i_lock); 3462 } 3463 ima_post_create_tmpfile(inode); 3464 return child; 3465 3466 out_err: 3467 dput(child); 3468 return ERR_PTR(error); 3469 } 3470 EXPORT_SYMBOL(vfs_tmpfile); 3471 3472 static int do_tmpfile(struct nameidata *nd, unsigned flags, 3473 const struct open_flags *op, 3474 struct file *file) 3475 { 3476 struct dentry *child; 3477 struct path path; 3478 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path); 3479 if (unlikely(error)) 3480 return error; 3481 error = mnt_want_write(path.mnt); 3482 if (unlikely(error)) 3483 goto out; 3484 child = vfs_tmpfile(path.dentry, op->mode, op->open_flag); 3485 error = PTR_ERR(child); 3486 if (IS_ERR(child)) 3487 goto out2; 3488 dput(path.dentry); 3489 path.dentry = child; 3490 audit_inode(nd->name, child, 0); 3491 /* Don't check for other permissions, the inode was just created */ 3492 error = may_open(&path, 0, op->open_flag); 3493 if (error) 3494 goto out2; 3495 file->f_path.mnt = path.mnt; 3496 error = finish_open(file, child, NULL); 3497 out2: 3498 mnt_drop_write(path.mnt); 3499 out: 3500 path_put(&path); 3501 return error; 3502 } 3503 3504 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file) 3505 { 3506 struct path path; 3507 int error = path_lookupat(nd, flags, &path); 3508 if (!error) { 3509 audit_inode(nd->name, path.dentry, 0); 3510 error = vfs_open(&path, file); 3511 path_put(&path); 3512 } 3513 return error; 3514 } 3515 3516 static struct file *path_openat(struct nameidata *nd, 3517 const struct open_flags *op, unsigned flags) 3518 { 3519 struct file *file; 3520 int error; 3521 3522 file = alloc_empty_file(op->open_flag, current_cred()); 3523 if (IS_ERR(file)) 3524 return file; 3525 3526 if (unlikely(file->f_flags & __O_TMPFILE)) { 3527 error = do_tmpfile(nd, flags, op, file); 3528 } else if (unlikely(file->f_flags & O_PATH)) { 3529 error = do_o_path(nd, flags, file); 3530 } else { 3531 const char *s = path_init(nd, flags); 3532 while (!(error = link_path_walk(s, nd)) && 3533 (error = do_last(nd, file, op)) > 0) { 3534 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL); 3535 s = trailing_symlink(nd); 3536 } 3537 terminate_walk(nd); 3538 } 3539 if (likely(!error)) { 3540 if (likely(file->f_mode & FMODE_OPENED)) 3541 return file; 3542 WARN_ON(1); 3543 error = -EINVAL; 3544 } 3545 fput(file); 3546 if (error == -EOPENSTALE) { 3547 if (flags & LOOKUP_RCU) 3548 error = -ECHILD; 3549 else 3550 error = -ESTALE; 3551 } 3552 return ERR_PTR(error); 3553 } 3554 3555 struct file *do_filp_open(int dfd, struct filename *pathname, 3556 const struct open_flags *op) 3557 { 3558 struct nameidata nd; 3559 int flags = op->lookup_flags; 3560 struct file *filp; 3561 3562 set_nameidata(&nd, dfd, pathname); 3563 filp = path_openat(&nd, op, flags | LOOKUP_RCU); 3564 if (unlikely(filp == ERR_PTR(-ECHILD))) 3565 filp = path_openat(&nd, op, flags); 3566 if (unlikely(filp == ERR_PTR(-ESTALE))) 3567 filp = path_openat(&nd, op, flags | LOOKUP_REVAL); 3568 restore_nameidata(); 3569 return filp; 3570 } 3571 3572 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt, 3573 const char *name, const struct open_flags *op) 3574 { 3575 struct nameidata nd; 3576 struct file *file; 3577 struct filename *filename; 3578 int flags = op->lookup_flags | LOOKUP_ROOT; 3579 3580 nd.root.mnt = mnt; 3581 nd.root.dentry = dentry; 3582 3583 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN) 3584 return ERR_PTR(-ELOOP); 3585 3586 filename = getname_kernel(name); 3587 if (IS_ERR(filename)) 3588 return ERR_CAST(filename); 3589 3590 set_nameidata(&nd, -1, filename); 3591 file = path_openat(&nd, op, flags | LOOKUP_RCU); 3592 if (unlikely(file == ERR_PTR(-ECHILD))) 3593 file = path_openat(&nd, op, flags); 3594 if (unlikely(file == ERR_PTR(-ESTALE))) 3595 file = path_openat(&nd, op, flags | LOOKUP_REVAL); 3596 restore_nameidata(); 3597 putname(filename); 3598 return file; 3599 } 3600 3601 static struct dentry *filename_create(int dfd, struct filename *name, 3602 struct path *path, unsigned int lookup_flags) 3603 { 3604 struct dentry *dentry = ERR_PTR(-EEXIST); 3605 struct qstr last; 3606 int type; 3607 int err2; 3608 int error; 3609 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY); 3610 3611 /* 3612 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any 3613 * other flags passed in are ignored! 3614 */ 3615 lookup_flags &= LOOKUP_REVAL; 3616 3617 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type); 3618 if (IS_ERR(name)) 3619 return ERR_CAST(name); 3620 3621 /* 3622 * Yucky last component or no last component at all? 3623 * (foo/., foo/.., /////) 3624 */ 3625 if (unlikely(type != LAST_NORM)) 3626 goto out; 3627 3628 /* don't fail immediately if it's r/o, at least try to report other errors */ 3629 err2 = mnt_want_write(path->mnt); 3630 /* 3631 * Do the final lookup. 3632 */ 3633 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL; 3634 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 3635 dentry = __lookup_hash(&last, path->dentry, lookup_flags); 3636 if (IS_ERR(dentry)) 3637 goto unlock; 3638 3639 error = -EEXIST; 3640 if (d_is_positive(dentry)) 3641 goto fail; 3642 3643 /* 3644 * Special case - lookup gave negative, but... we had foo/bar/ 3645 * From the vfs_mknod() POV we just have a negative dentry - 3646 * all is fine. Let's be bastards - you had / on the end, you've 3647 * been asking for (non-existent) directory. -ENOENT for you. 3648 */ 3649 if (unlikely(!is_dir && last.name[last.len])) { 3650 error = -ENOENT; 3651 goto fail; 3652 } 3653 if (unlikely(err2)) { 3654 error = err2; 3655 goto fail; 3656 } 3657 putname(name); 3658 return dentry; 3659 fail: 3660 dput(dentry); 3661 dentry = ERR_PTR(error); 3662 unlock: 3663 inode_unlock(path->dentry->d_inode); 3664 if (!err2) 3665 mnt_drop_write(path->mnt); 3666 out: 3667 path_put(path); 3668 putname(name); 3669 return dentry; 3670 } 3671 3672 struct dentry *kern_path_create(int dfd, const char *pathname, 3673 struct path *path, unsigned int lookup_flags) 3674 { 3675 return filename_create(dfd, getname_kernel(pathname), 3676 path, lookup_flags); 3677 } 3678 EXPORT_SYMBOL(kern_path_create); 3679 3680 void done_path_create(struct path *path, struct dentry *dentry) 3681 { 3682 dput(dentry); 3683 inode_unlock(path->dentry->d_inode); 3684 mnt_drop_write(path->mnt); 3685 path_put(path); 3686 } 3687 EXPORT_SYMBOL(done_path_create); 3688 3689 inline struct dentry *user_path_create(int dfd, const char __user *pathname, 3690 struct path *path, unsigned int lookup_flags) 3691 { 3692 return filename_create(dfd, getname(pathname), path, lookup_flags); 3693 } 3694 EXPORT_SYMBOL(user_path_create); 3695 3696 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 3697 { 3698 int error = may_create(dir, dentry); 3699 3700 if (error) 3701 return error; 3702 3703 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD)) 3704 return -EPERM; 3705 3706 if (!dir->i_op->mknod) 3707 return -EPERM; 3708 3709 error = devcgroup_inode_mknod(mode, dev); 3710 if (error) 3711 return error; 3712 3713 error = security_inode_mknod(dir, dentry, mode, dev); 3714 if (error) 3715 return error; 3716 3717 error = dir->i_op->mknod(dir, dentry, mode, dev); 3718 if (!error) 3719 fsnotify_create(dir, dentry); 3720 return error; 3721 } 3722 EXPORT_SYMBOL(vfs_mknod); 3723 3724 static int may_mknod(umode_t mode) 3725 { 3726 switch (mode & S_IFMT) { 3727 case S_IFREG: 3728 case S_IFCHR: 3729 case S_IFBLK: 3730 case S_IFIFO: 3731 case S_IFSOCK: 3732 case 0: /* zero mode translates to S_IFREG */ 3733 return 0; 3734 case S_IFDIR: 3735 return -EPERM; 3736 default: 3737 return -EINVAL; 3738 } 3739 } 3740 3741 long do_mknodat(int dfd, const char __user *filename, umode_t mode, 3742 unsigned int dev) 3743 { 3744 struct dentry *dentry; 3745 struct path path; 3746 int error; 3747 unsigned int lookup_flags = 0; 3748 3749 error = may_mknod(mode); 3750 if (error) 3751 return error; 3752 retry: 3753 dentry = user_path_create(dfd, filename, &path, lookup_flags); 3754 if (IS_ERR(dentry)) 3755 return PTR_ERR(dentry); 3756 3757 if (!IS_POSIXACL(path.dentry->d_inode)) 3758 mode &= ~current_umask(); 3759 error = security_path_mknod(&path, dentry, mode, dev); 3760 if (error) 3761 goto out; 3762 switch (mode & S_IFMT) { 3763 case 0: case S_IFREG: 3764 error = vfs_create(path.dentry->d_inode,dentry,mode,true); 3765 if (!error) 3766 ima_post_path_mknod(dentry); 3767 break; 3768 case S_IFCHR: case S_IFBLK: 3769 error = vfs_mknod(path.dentry->d_inode,dentry,mode, 3770 new_decode_dev(dev)); 3771 break; 3772 case S_IFIFO: case S_IFSOCK: 3773 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0); 3774 break; 3775 } 3776 out: 3777 done_path_create(&path, dentry); 3778 if (retry_estale(error, lookup_flags)) { 3779 lookup_flags |= LOOKUP_REVAL; 3780 goto retry; 3781 } 3782 return error; 3783 } 3784 3785 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode, 3786 unsigned int, dev) 3787 { 3788 return do_mknodat(dfd, filename, mode, dev); 3789 } 3790 3791 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev) 3792 { 3793 return do_mknodat(AT_FDCWD, filename, mode, dev); 3794 } 3795 3796 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 3797 { 3798 int error = may_create(dir, dentry); 3799 unsigned max_links = dir->i_sb->s_max_links; 3800 3801 if (error) 3802 return error; 3803 3804 if (!dir->i_op->mkdir) 3805 return -EPERM; 3806 3807 mode &= (S_IRWXUGO|S_ISVTX); 3808 error = security_inode_mkdir(dir, dentry, mode); 3809 if (error) 3810 return error; 3811 3812 if (max_links && dir->i_nlink >= max_links) 3813 return -EMLINK; 3814 3815 error = dir->i_op->mkdir(dir, dentry, mode); 3816 if (!error) 3817 fsnotify_mkdir(dir, dentry); 3818 return error; 3819 } 3820 EXPORT_SYMBOL(vfs_mkdir); 3821 3822 long do_mkdirat(int dfd, const char __user *pathname, umode_t mode) 3823 { 3824 struct dentry *dentry; 3825 struct path path; 3826 int error; 3827 unsigned int lookup_flags = LOOKUP_DIRECTORY; 3828 3829 retry: 3830 dentry = user_path_create(dfd, pathname, &path, lookup_flags); 3831 if (IS_ERR(dentry)) 3832 return PTR_ERR(dentry); 3833 3834 if (!IS_POSIXACL(path.dentry->d_inode)) 3835 mode &= ~current_umask(); 3836 error = security_path_mkdir(&path, dentry, mode); 3837 if (!error) 3838 error = vfs_mkdir(path.dentry->d_inode, dentry, mode); 3839 done_path_create(&path, dentry); 3840 if (retry_estale(error, lookup_flags)) { 3841 lookup_flags |= LOOKUP_REVAL; 3842 goto retry; 3843 } 3844 return error; 3845 } 3846 3847 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode) 3848 { 3849 return do_mkdirat(dfd, pathname, mode); 3850 } 3851 3852 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode) 3853 { 3854 return do_mkdirat(AT_FDCWD, pathname, mode); 3855 } 3856 3857 int vfs_rmdir(struct inode *dir, struct dentry *dentry) 3858 { 3859 int error = may_delete(dir, dentry, 1); 3860 3861 if (error) 3862 return error; 3863 3864 if (!dir->i_op->rmdir) 3865 return -EPERM; 3866 3867 dget(dentry); 3868 inode_lock(dentry->d_inode); 3869 3870 error = -EBUSY; 3871 if (is_local_mountpoint(dentry)) 3872 goto out; 3873 3874 error = security_inode_rmdir(dir, dentry); 3875 if (error) 3876 goto out; 3877 3878 error = dir->i_op->rmdir(dir, dentry); 3879 if (error) 3880 goto out; 3881 3882 shrink_dcache_parent(dentry); 3883 dentry->d_inode->i_flags |= S_DEAD; 3884 dont_mount(dentry); 3885 detach_mounts(dentry); 3886 3887 out: 3888 inode_unlock(dentry->d_inode); 3889 dput(dentry); 3890 if (!error) 3891 d_delete(dentry); 3892 return error; 3893 } 3894 EXPORT_SYMBOL(vfs_rmdir); 3895 3896 long do_rmdir(int dfd, const char __user *pathname) 3897 { 3898 int error = 0; 3899 struct filename *name; 3900 struct dentry *dentry; 3901 struct path path; 3902 struct qstr last; 3903 int type; 3904 unsigned int lookup_flags = 0; 3905 retry: 3906 name = filename_parentat(dfd, getname(pathname), lookup_flags, 3907 &path, &last, &type); 3908 if (IS_ERR(name)) 3909 return PTR_ERR(name); 3910 3911 switch (type) { 3912 case LAST_DOTDOT: 3913 error = -ENOTEMPTY; 3914 goto exit1; 3915 case LAST_DOT: 3916 error = -EINVAL; 3917 goto exit1; 3918 case LAST_ROOT: 3919 error = -EBUSY; 3920 goto exit1; 3921 } 3922 3923 error = mnt_want_write(path.mnt); 3924 if (error) 3925 goto exit1; 3926 3927 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 3928 dentry = __lookup_hash(&last, path.dentry, lookup_flags); 3929 error = PTR_ERR(dentry); 3930 if (IS_ERR(dentry)) 3931 goto exit2; 3932 if (!dentry->d_inode) { 3933 error = -ENOENT; 3934 goto exit3; 3935 } 3936 error = security_path_rmdir(&path, dentry); 3937 if (error) 3938 goto exit3; 3939 error = vfs_rmdir(path.dentry->d_inode, dentry); 3940 exit3: 3941 dput(dentry); 3942 exit2: 3943 inode_unlock(path.dentry->d_inode); 3944 mnt_drop_write(path.mnt); 3945 exit1: 3946 path_put(&path); 3947 putname(name); 3948 if (retry_estale(error, lookup_flags)) { 3949 lookup_flags |= LOOKUP_REVAL; 3950 goto retry; 3951 } 3952 return error; 3953 } 3954 3955 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 3956 { 3957 return do_rmdir(AT_FDCWD, pathname); 3958 } 3959 3960 /** 3961 * vfs_unlink - unlink a filesystem object 3962 * @dir: parent directory 3963 * @dentry: victim 3964 * @delegated_inode: returns victim inode, if the inode is delegated. 3965 * 3966 * The caller must hold dir->i_mutex. 3967 * 3968 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and 3969 * return a reference to the inode in delegated_inode. The caller 3970 * should then break the delegation on that inode and retry. Because 3971 * breaking a delegation may take a long time, the caller should drop 3972 * dir->i_mutex before doing so. 3973 * 3974 * Alternatively, a caller may pass NULL for delegated_inode. This may 3975 * be appropriate for callers that expect the underlying filesystem not 3976 * to be NFS exported. 3977 */ 3978 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode) 3979 { 3980 struct inode *target = dentry->d_inode; 3981 int error = may_delete(dir, dentry, 0); 3982 3983 if (error) 3984 return error; 3985 3986 if (!dir->i_op->unlink) 3987 return -EPERM; 3988 3989 inode_lock(target); 3990 if (is_local_mountpoint(dentry)) 3991 error = -EBUSY; 3992 else { 3993 error = security_inode_unlink(dir, dentry); 3994 if (!error) { 3995 error = try_break_deleg(target, delegated_inode); 3996 if (error) 3997 goto out; 3998 error = dir->i_op->unlink(dir, dentry); 3999 if (!error) { 4000 dont_mount(dentry); 4001 detach_mounts(dentry); 4002 } 4003 } 4004 } 4005 out: 4006 inode_unlock(target); 4007 4008 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 4009 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) { 4010 fsnotify_link_count(target); 4011 d_delete(dentry); 4012 } 4013 4014 return error; 4015 } 4016 EXPORT_SYMBOL(vfs_unlink); 4017 4018 /* 4019 * Make sure that the actual truncation of the file will occur outside its 4020 * directory's i_mutex. Truncate can take a long time if there is a lot of 4021 * writeout happening, and we don't want to prevent access to the directory 4022 * while waiting on the I/O. 4023 */ 4024 long do_unlinkat(int dfd, struct filename *name) 4025 { 4026 int error; 4027 struct dentry *dentry; 4028 struct path path; 4029 struct qstr last; 4030 int type; 4031 struct inode *inode = NULL; 4032 struct inode *delegated_inode = NULL; 4033 unsigned int lookup_flags = 0; 4034 retry: 4035 name = filename_parentat(dfd, name, lookup_flags, &path, &last, &type); 4036 if (IS_ERR(name)) 4037 return PTR_ERR(name); 4038 4039 error = -EISDIR; 4040 if (type != LAST_NORM) 4041 goto exit1; 4042 4043 error = mnt_want_write(path.mnt); 4044 if (error) 4045 goto exit1; 4046 retry_deleg: 4047 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 4048 dentry = __lookup_hash(&last, path.dentry, lookup_flags); 4049 error = PTR_ERR(dentry); 4050 if (!IS_ERR(dentry)) { 4051 /* Why not before? Because we want correct error value */ 4052 if (last.name[last.len]) 4053 goto slashes; 4054 inode = dentry->d_inode; 4055 if (d_is_negative(dentry)) 4056 goto slashes; 4057 ihold(inode); 4058 error = security_path_unlink(&path, dentry); 4059 if (error) 4060 goto exit2; 4061 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode); 4062 exit2: 4063 dput(dentry); 4064 } 4065 inode_unlock(path.dentry->d_inode); 4066 if (inode) 4067 iput(inode); /* truncate the inode here */ 4068 inode = NULL; 4069 if (delegated_inode) { 4070 error = break_deleg_wait(&delegated_inode); 4071 if (!error) 4072 goto retry_deleg; 4073 } 4074 mnt_drop_write(path.mnt); 4075 exit1: 4076 path_put(&path); 4077 if (retry_estale(error, lookup_flags)) { 4078 lookup_flags |= LOOKUP_REVAL; 4079 inode = NULL; 4080 goto retry; 4081 } 4082 putname(name); 4083 return error; 4084 4085 slashes: 4086 if (d_is_negative(dentry)) 4087 error = -ENOENT; 4088 else if (d_is_dir(dentry)) 4089 error = -EISDIR; 4090 else 4091 error = -ENOTDIR; 4092 goto exit2; 4093 } 4094 4095 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 4096 { 4097 if ((flag & ~AT_REMOVEDIR) != 0) 4098 return -EINVAL; 4099 4100 if (flag & AT_REMOVEDIR) 4101 return do_rmdir(dfd, pathname); 4102 4103 return do_unlinkat(dfd, getname(pathname)); 4104 } 4105 4106 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 4107 { 4108 return do_unlinkat(AT_FDCWD, getname(pathname)); 4109 } 4110 4111 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname) 4112 { 4113 int error = may_create(dir, dentry); 4114 4115 if (error) 4116 return error; 4117 4118 if (!dir->i_op->symlink) 4119 return -EPERM; 4120 4121 error = security_inode_symlink(dir, dentry, oldname); 4122 if (error) 4123 return error; 4124 4125 error = dir->i_op->symlink(dir, dentry, oldname); 4126 if (!error) 4127 fsnotify_create(dir, dentry); 4128 return error; 4129 } 4130 EXPORT_SYMBOL(vfs_symlink); 4131 4132 long do_symlinkat(const char __user *oldname, int newdfd, 4133 const char __user *newname) 4134 { 4135 int error; 4136 struct filename *from; 4137 struct dentry *dentry; 4138 struct path path; 4139 unsigned int lookup_flags = 0; 4140 4141 from = getname(oldname); 4142 if (IS_ERR(from)) 4143 return PTR_ERR(from); 4144 retry: 4145 dentry = user_path_create(newdfd, newname, &path, lookup_flags); 4146 error = PTR_ERR(dentry); 4147 if (IS_ERR(dentry)) 4148 goto out_putname; 4149 4150 error = security_path_symlink(&path, dentry, from->name); 4151 if (!error) 4152 error = vfs_symlink(path.dentry->d_inode, dentry, from->name); 4153 done_path_create(&path, dentry); 4154 if (retry_estale(error, lookup_flags)) { 4155 lookup_flags |= LOOKUP_REVAL; 4156 goto retry; 4157 } 4158 out_putname: 4159 putname(from); 4160 return error; 4161 } 4162 4163 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 4164 int, newdfd, const char __user *, newname) 4165 { 4166 return do_symlinkat(oldname, newdfd, newname); 4167 } 4168 4169 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 4170 { 4171 return do_symlinkat(oldname, AT_FDCWD, newname); 4172 } 4173 4174 /** 4175 * vfs_link - create a new link 4176 * @old_dentry: object to be linked 4177 * @dir: new parent 4178 * @new_dentry: where to create the new link 4179 * @delegated_inode: returns inode needing a delegation break 4180 * 4181 * The caller must hold dir->i_mutex 4182 * 4183 * If vfs_link discovers a delegation on the to-be-linked file in need 4184 * of breaking, it will return -EWOULDBLOCK and return a reference to the 4185 * inode in delegated_inode. The caller should then break the delegation 4186 * and retry. Because breaking a delegation may take a long time, the 4187 * caller should drop the i_mutex before doing so. 4188 * 4189 * Alternatively, a caller may pass NULL for delegated_inode. This may 4190 * be appropriate for callers that expect the underlying filesystem not 4191 * to be NFS exported. 4192 */ 4193 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode) 4194 { 4195 struct inode *inode = old_dentry->d_inode; 4196 unsigned max_links = dir->i_sb->s_max_links; 4197 int error; 4198 4199 if (!inode) 4200 return -ENOENT; 4201 4202 error = may_create(dir, new_dentry); 4203 if (error) 4204 return error; 4205 4206 if (dir->i_sb != inode->i_sb) 4207 return -EXDEV; 4208 4209 /* 4210 * A link to an append-only or immutable file cannot be created. 4211 */ 4212 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 4213 return -EPERM; 4214 /* 4215 * Updating the link count will likely cause i_uid and i_gid to 4216 * be writen back improperly if their true value is unknown to 4217 * the vfs. 4218 */ 4219 if (HAS_UNMAPPED_ID(inode)) 4220 return -EPERM; 4221 if (!dir->i_op->link) 4222 return -EPERM; 4223 if (S_ISDIR(inode->i_mode)) 4224 return -EPERM; 4225 4226 error = security_inode_link(old_dentry, dir, new_dentry); 4227 if (error) 4228 return error; 4229 4230 inode_lock(inode); 4231 /* Make sure we don't allow creating hardlink to an unlinked file */ 4232 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE)) 4233 error = -ENOENT; 4234 else if (max_links && inode->i_nlink >= max_links) 4235 error = -EMLINK; 4236 else { 4237 error = try_break_deleg(inode, delegated_inode); 4238 if (!error) 4239 error = dir->i_op->link(old_dentry, dir, new_dentry); 4240 } 4241 4242 if (!error && (inode->i_state & I_LINKABLE)) { 4243 spin_lock(&inode->i_lock); 4244 inode->i_state &= ~I_LINKABLE; 4245 spin_unlock(&inode->i_lock); 4246 } 4247 inode_unlock(inode); 4248 if (!error) 4249 fsnotify_link(dir, inode, new_dentry); 4250 return error; 4251 } 4252 EXPORT_SYMBOL(vfs_link); 4253 4254 /* 4255 * Hardlinks are often used in delicate situations. We avoid 4256 * security-related surprises by not following symlinks on the 4257 * newname. --KAB 4258 * 4259 * We don't follow them on the oldname either to be compatible 4260 * with linux 2.0, and to avoid hard-linking to directories 4261 * and other special files. --ADM 4262 */ 4263 int do_linkat(int olddfd, const char __user *oldname, int newdfd, 4264 const char __user *newname, int flags) 4265 { 4266 struct dentry *new_dentry; 4267 struct path old_path, new_path; 4268 struct inode *delegated_inode = NULL; 4269 int how = 0; 4270 int error; 4271 4272 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) 4273 return -EINVAL; 4274 /* 4275 * To use null names we require CAP_DAC_READ_SEARCH 4276 * This ensures that not everyone will be able to create 4277 * handlink using the passed filedescriptor. 4278 */ 4279 if (flags & AT_EMPTY_PATH) { 4280 if (!capable(CAP_DAC_READ_SEARCH)) 4281 return -ENOENT; 4282 how = LOOKUP_EMPTY; 4283 } 4284 4285 if (flags & AT_SYMLINK_FOLLOW) 4286 how |= LOOKUP_FOLLOW; 4287 retry: 4288 error = user_path_at(olddfd, oldname, how, &old_path); 4289 if (error) 4290 return error; 4291 4292 new_dentry = user_path_create(newdfd, newname, &new_path, 4293 (how & LOOKUP_REVAL)); 4294 error = PTR_ERR(new_dentry); 4295 if (IS_ERR(new_dentry)) 4296 goto out; 4297 4298 error = -EXDEV; 4299 if (old_path.mnt != new_path.mnt) 4300 goto out_dput; 4301 error = may_linkat(&old_path); 4302 if (unlikely(error)) 4303 goto out_dput; 4304 error = security_path_link(old_path.dentry, &new_path, new_dentry); 4305 if (error) 4306 goto out_dput; 4307 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode); 4308 out_dput: 4309 done_path_create(&new_path, new_dentry); 4310 if (delegated_inode) { 4311 error = break_deleg_wait(&delegated_inode); 4312 if (!error) { 4313 path_put(&old_path); 4314 goto retry; 4315 } 4316 } 4317 if (retry_estale(error, how)) { 4318 path_put(&old_path); 4319 how |= LOOKUP_REVAL; 4320 goto retry; 4321 } 4322 out: 4323 path_put(&old_path); 4324 4325 return error; 4326 } 4327 4328 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 4329 int, newdfd, const char __user *, newname, int, flags) 4330 { 4331 return do_linkat(olddfd, oldname, newdfd, newname, flags); 4332 } 4333 4334 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 4335 { 4336 return do_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 4337 } 4338 4339 /** 4340 * vfs_rename - rename a filesystem object 4341 * @old_dir: parent of source 4342 * @old_dentry: source 4343 * @new_dir: parent of destination 4344 * @new_dentry: destination 4345 * @delegated_inode: returns an inode needing a delegation break 4346 * @flags: rename flags 4347 * 4348 * The caller must hold multiple mutexes--see lock_rename()). 4349 * 4350 * If vfs_rename discovers a delegation in need of breaking at either 4351 * the source or destination, it will return -EWOULDBLOCK and return a 4352 * reference to the inode in delegated_inode. The caller should then 4353 * break the delegation and retry. Because breaking a delegation may 4354 * take a long time, the caller should drop all locks before doing 4355 * so. 4356 * 4357 * Alternatively, a caller may pass NULL for delegated_inode. This may 4358 * be appropriate for callers that expect the underlying filesystem not 4359 * to be NFS exported. 4360 * 4361 * The worst of all namespace operations - renaming directory. "Perverted" 4362 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 4363 * Problems: 4364 * 4365 * a) we can get into loop creation. 4366 * b) race potential - two innocent renames can create a loop together. 4367 * That's where 4.4 screws up. Current fix: serialization on 4368 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 4369 * story. 4370 * c) we have to lock _four_ objects - parents and victim (if it exists), 4371 * and source (if it is not a directory). 4372 * And that - after we got ->i_mutex on parents (until then we don't know 4373 * whether the target exists). Solution: try to be smart with locking 4374 * order for inodes. We rely on the fact that tree topology may change 4375 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 4376 * move will be locked. Thus we can rank directories by the tree 4377 * (ancestors first) and rank all non-directories after them. 4378 * That works since everybody except rename does "lock parent, lookup, 4379 * lock child" and rename is under ->s_vfs_rename_mutex. 4380 * HOWEVER, it relies on the assumption that any object with ->lookup() 4381 * has no more than 1 dentry. If "hybrid" objects will ever appear, 4382 * we'd better make sure that there's no link(2) for them. 4383 * d) conversion from fhandle to dentry may come in the wrong moment - when 4384 * we are removing the target. Solution: we will have to grab ->i_mutex 4385 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 4386 * ->i_mutex on parents, which works but leads to some truly excessive 4387 * locking]. 4388 */ 4389 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry, 4390 struct inode *new_dir, struct dentry *new_dentry, 4391 struct inode **delegated_inode, unsigned int flags) 4392 { 4393 int error; 4394 bool is_dir = d_is_dir(old_dentry); 4395 struct inode *source = old_dentry->d_inode; 4396 struct inode *target = new_dentry->d_inode; 4397 bool new_is_dir = false; 4398 unsigned max_links = new_dir->i_sb->s_max_links; 4399 struct name_snapshot old_name; 4400 4401 if (source == target) 4402 return 0; 4403 4404 error = may_delete(old_dir, old_dentry, is_dir); 4405 if (error) 4406 return error; 4407 4408 if (!target) { 4409 error = may_create(new_dir, new_dentry); 4410 } else { 4411 new_is_dir = d_is_dir(new_dentry); 4412 4413 if (!(flags & RENAME_EXCHANGE)) 4414 error = may_delete(new_dir, new_dentry, is_dir); 4415 else 4416 error = may_delete(new_dir, new_dentry, new_is_dir); 4417 } 4418 if (error) 4419 return error; 4420 4421 if (!old_dir->i_op->rename) 4422 return -EPERM; 4423 4424 /* 4425 * If we are going to change the parent - check write permissions, 4426 * we'll need to flip '..'. 4427 */ 4428 if (new_dir != old_dir) { 4429 if (is_dir) { 4430 error = inode_permission(source, MAY_WRITE); 4431 if (error) 4432 return error; 4433 } 4434 if ((flags & RENAME_EXCHANGE) && new_is_dir) { 4435 error = inode_permission(target, MAY_WRITE); 4436 if (error) 4437 return error; 4438 } 4439 } 4440 4441 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry, 4442 flags); 4443 if (error) 4444 return error; 4445 4446 take_dentry_name_snapshot(&old_name, old_dentry); 4447 dget(new_dentry); 4448 if (!is_dir || (flags & RENAME_EXCHANGE)) 4449 lock_two_nondirectories(source, target); 4450 else if (target) 4451 inode_lock(target); 4452 4453 error = -EBUSY; 4454 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry)) 4455 goto out; 4456 4457 if (max_links && new_dir != old_dir) { 4458 error = -EMLINK; 4459 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links) 4460 goto out; 4461 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir && 4462 old_dir->i_nlink >= max_links) 4463 goto out; 4464 } 4465 if (!is_dir) { 4466 error = try_break_deleg(source, delegated_inode); 4467 if (error) 4468 goto out; 4469 } 4470 if (target && !new_is_dir) { 4471 error = try_break_deleg(target, delegated_inode); 4472 if (error) 4473 goto out; 4474 } 4475 error = old_dir->i_op->rename(old_dir, old_dentry, 4476 new_dir, new_dentry, flags); 4477 if (error) 4478 goto out; 4479 4480 if (!(flags & RENAME_EXCHANGE) && target) { 4481 if (is_dir) { 4482 shrink_dcache_parent(new_dentry); 4483 target->i_flags |= S_DEAD; 4484 } 4485 dont_mount(new_dentry); 4486 detach_mounts(new_dentry); 4487 } 4488 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) { 4489 if (!(flags & RENAME_EXCHANGE)) 4490 d_move(old_dentry, new_dentry); 4491 else 4492 d_exchange(old_dentry, new_dentry); 4493 } 4494 out: 4495 if (!is_dir || (flags & RENAME_EXCHANGE)) 4496 unlock_two_nondirectories(source, target); 4497 else if (target) 4498 inode_unlock(target); 4499 dput(new_dentry); 4500 if (!error) { 4501 fsnotify_move(old_dir, new_dir, &old_name.name, is_dir, 4502 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry); 4503 if (flags & RENAME_EXCHANGE) { 4504 fsnotify_move(new_dir, old_dir, &old_dentry->d_name, 4505 new_is_dir, NULL, new_dentry); 4506 } 4507 } 4508 release_dentry_name_snapshot(&old_name); 4509 4510 return error; 4511 } 4512 EXPORT_SYMBOL(vfs_rename); 4513 4514 static int do_renameat2(int olddfd, const char __user *oldname, int newdfd, 4515 const char __user *newname, unsigned int flags) 4516 { 4517 struct dentry *old_dentry, *new_dentry; 4518 struct dentry *trap; 4519 struct path old_path, new_path; 4520 struct qstr old_last, new_last; 4521 int old_type, new_type; 4522 struct inode *delegated_inode = NULL; 4523 struct filename *from; 4524 struct filename *to; 4525 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET; 4526 bool should_retry = false; 4527 int error; 4528 4529 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 4530 return -EINVAL; 4531 4532 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) && 4533 (flags & RENAME_EXCHANGE)) 4534 return -EINVAL; 4535 4536 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD)) 4537 return -EPERM; 4538 4539 if (flags & RENAME_EXCHANGE) 4540 target_flags = 0; 4541 4542 retry: 4543 from = filename_parentat(olddfd, getname(oldname), lookup_flags, 4544 &old_path, &old_last, &old_type); 4545 if (IS_ERR(from)) { 4546 error = PTR_ERR(from); 4547 goto exit; 4548 } 4549 4550 to = filename_parentat(newdfd, getname(newname), lookup_flags, 4551 &new_path, &new_last, &new_type); 4552 if (IS_ERR(to)) { 4553 error = PTR_ERR(to); 4554 goto exit1; 4555 } 4556 4557 error = -EXDEV; 4558 if (old_path.mnt != new_path.mnt) 4559 goto exit2; 4560 4561 error = -EBUSY; 4562 if (old_type != LAST_NORM) 4563 goto exit2; 4564 4565 if (flags & RENAME_NOREPLACE) 4566 error = -EEXIST; 4567 if (new_type != LAST_NORM) 4568 goto exit2; 4569 4570 error = mnt_want_write(old_path.mnt); 4571 if (error) 4572 goto exit2; 4573 4574 retry_deleg: 4575 trap = lock_rename(new_path.dentry, old_path.dentry); 4576 4577 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags); 4578 error = PTR_ERR(old_dentry); 4579 if (IS_ERR(old_dentry)) 4580 goto exit3; 4581 /* source must exist */ 4582 error = -ENOENT; 4583 if (d_is_negative(old_dentry)) 4584 goto exit4; 4585 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags); 4586 error = PTR_ERR(new_dentry); 4587 if (IS_ERR(new_dentry)) 4588 goto exit4; 4589 error = -EEXIST; 4590 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry)) 4591 goto exit5; 4592 if (flags & RENAME_EXCHANGE) { 4593 error = -ENOENT; 4594 if (d_is_negative(new_dentry)) 4595 goto exit5; 4596 4597 if (!d_is_dir(new_dentry)) { 4598 error = -ENOTDIR; 4599 if (new_last.name[new_last.len]) 4600 goto exit5; 4601 } 4602 } 4603 /* unless the source is a directory trailing slashes give -ENOTDIR */ 4604 if (!d_is_dir(old_dentry)) { 4605 error = -ENOTDIR; 4606 if (old_last.name[old_last.len]) 4607 goto exit5; 4608 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len]) 4609 goto exit5; 4610 } 4611 /* source should not be ancestor of target */ 4612 error = -EINVAL; 4613 if (old_dentry == trap) 4614 goto exit5; 4615 /* target should not be an ancestor of source */ 4616 if (!(flags & RENAME_EXCHANGE)) 4617 error = -ENOTEMPTY; 4618 if (new_dentry == trap) 4619 goto exit5; 4620 4621 error = security_path_rename(&old_path, old_dentry, 4622 &new_path, new_dentry, flags); 4623 if (error) 4624 goto exit5; 4625 error = vfs_rename(old_path.dentry->d_inode, old_dentry, 4626 new_path.dentry->d_inode, new_dentry, 4627 &delegated_inode, flags); 4628 exit5: 4629 dput(new_dentry); 4630 exit4: 4631 dput(old_dentry); 4632 exit3: 4633 unlock_rename(new_path.dentry, old_path.dentry); 4634 if (delegated_inode) { 4635 error = break_deleg_wait(&delegated_inode); 4636 if (!error) 4637 goto retry_deleg; 4638 } 4639 mnt_drop_write(old_path.mnt); 4640 exit2: 4641 if (retry_estale(error, lookup_flags)) 4642 should_retry = true; 4643 path_put(&new_path); 4644 putname(to); 4645 exit1: 4646 path_put(&old_path); 4647 putname(from); 4648 if (should_retry) { 4649 should_retry = false; 4650 lookup_flags |= LOOKUP_REVAL; 4651 goto retry; 4652 } 4653 exit: 4654 return error; 4655 } 4656 4657 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname, 4658 int, newdfd, const char __user *, newname, unsigned int, flags) 4659 { 4660 return do_renameat2(olddfd, oldname, newdfd, newname, flags); 4661 } 4662 4663 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 4664 int, newdfd, const char __user *, newname) 4665 { 4666 return do_renameat2(olddfd, oldname, newdfd, newname, 0); 4667 } 4668 4669 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 4670 { 4671 return do_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 4672 } 4673 4674 int vfs_whiteout(struct inode *dir, struct dentry *dentry) 4675 { 4676 int error = may_create(dir, dentry); 4677 if (error) 4678 return error; 4679 4680 if (!dir->i_op->mknod) 4681 return -EPERM; 4682 4683 return dir->i_op->mknod(dir, dentry, 4684 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 4685 } 4686 EXPORT_SYMBOL(vfs_whiteout); 4687 4688 int readlink_copy(char __user *buffer, int buflen, const char *link) 4689 { 4690 int len = PTR_ERR(link); 4691 if (IS_ERR(link)) 4692 goto out; 4693 4694 len = strlen(link); 4695 if (len > (unsigned) buflen) 4696 len = buflen; 4697 if (copy_to_user(buffer, link, len)) 4698 len = -EFAULT; 4699 out: 4700 return len; 4701 } 4702 4703 /** 4704 * vfs_readlink - copy symlink body into userspace buffer 4705 * @dentry: dentry on which to get symbolic link 4706 * @buffer: user memory pointer 4707 * @buflen: size of buffer 4708 * 4709 * Does not touch atime. That's up to the caller if necessary 4710 * 4711 * Does not call security hook. 4712 */ 4713 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4714 { 4715 struct inode *inode = d_inode(dentry); 4716 DEFINE_DELAYED_CALL(done); 4717 const char *link; 4718 int res; 4719 4720 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) { 4721 if (unlikely(inode->i_op->readlink)) 4722 return inode->i_op->readlink(dentry, buffer, buflen); 4723 4724 if (!d_is_symlink(dentry)) 4725 return -EINVAL; 4726 4727 spin_lock(&inode->i_lock); 4728 inode->i_opflags |= IOP_DEFAULT_READLINK; 4729 spin_unlock(&inode->i_lock); 4730 } 4731 4732 link = READ_ONCE(inode->i_link); 4733 if (!link) { 4734 link = inode->i_op->get_link(dentry, inode, &done); 4735 if (IS_ERR(link)) 4736 return PTR_ERR(link); 4737 } 4738 res = readlink_copy(buffer, buflen, link); 4739 do_delayed_call(&done); 4740 return res; 4741 } 4742 EXPORT_SYMBOL(vfs_readlink); 4743 4744 /** 4745 * vfs_get_link - get symlink body 4746 * @dentry: dentry on which to get symbolic link 4747 * @done: caller needs to free returned data with this 4748 * 4749 * Calls security hook and i_op->get_link() on the supplied inode. 4750 * 4751 * It does not touch atime. That's up to the caller if necessary. 4752 * 4753 * Does not work on "special" symlinks like /proc/$$/fd/N 4754 */ 4755 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done) 4756 { 4757 const char *res = ERR_PTR(-EINVAL); 4758 struct inode *inode = d_inode(dentry); 4759 4760 if (d_is_symlink(dentry)) { 4761 res = ERR_PTR(security_inode_readlink(dentry)); 4762 if (!res) 4763 res = inode->i_op->get_link(dentry, inode, done); 4764 } 4765 return res; 4766 } 4767 EXPORT_SYMBOL(vfs_get_link); 4768 4769 /* get the link contents into pagecache */ 4770 const char *page_get_link(struct dentry *dentry, struct inode *inode, 4771 struct delayed_call *callback) 4772 { 4773 char *kaddr; 4774 struct page *page; 4775 struct address_space *mapping = inode->i_mapping; 4776 4777 if (!dentry) { 4778 page = find_get_page(mapping, 0); 4779 if (!page) 4780 return ERR_PTR(-ECHILD); 4781 if (!PageUptodate(page)) { 4782 put_page(page); 4783 return ERR_PTR(-ECHILD); 4784 } 4785 } else { 4786 page = read_mapping_page(mapping, 0, NULL); 4787 if (IS_ERR(page)) 4788 return (char*)page; 4789 } 4790 set_delayed_call(callback, page_put_link, page); 4791 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM); 4792 kaddr = page_address(page); 4793 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1); 4794 return kaddr; 4795 } 4796 4797 EXPORT_SYMBOL(page_get_link); 4798 4799 void page_put_link(void *arg) 4800 { 4801 put_page(arg); 4802 } 4803 EXPORT_SYMBOL(page_put_link); 4804 4805 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4806 { 4807 DEFINE_DELAYED_CALL(done); 4808 int res = readlink_copy(buffer, buflen, 4809 page_get_link(dentry, d_inode(dentry), 4810 &done)); 4811 do_delayed_call(&done); 4812 return res; 4813 } 4814 EXPORT_SYMBOL(page_readlink); 4815 4816 /* 4817 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS 4818 */ 4819 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs) 4820 { 4821 struct address_space *mapping = inode->i_mapping; 4822 struct page *page; 4823 void *fsdata; 4824 int err; 4825 unsigned int flags = 0; 4826 if (nofs) 4827 flags |= AOP_FLAG_NOFS; 4828 4829 retry: 4830 err = pagecache_write_begin(NULL, mapping, 0, len-1, 4831 flags, &page, &fsdata); 4832 if (err) 4833 goto fail; 4834 4835 memcpy(page_address(page), symname, len-1); 4836 4837 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1, 4838 page, fsdata); 4839 if (err < 0) 4840 goto fail; 4841 if (err < len-1) 4842 goto retry; 4843 4844 mark_inode_dirty(inode); 4845 return 0; 4846 fail: 4847 return err; 4848 } 4849 EXPORT_SYMBOL(__page_symlink); 4850 4851 int page_symlink(struct inode *inode, const char *symname, int len) 4852 { 4853 return __page_symlink(inode, symname, len, 4854 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS)); 4855 } 4856 EXPORT_SYMBOL(page_symlink); 4857 4858 const struct inode_operations page_symlink_inode_operations = { 4859 .get_link = page_get_link, 4860 }; 4861 EXPORT_SYMBOL(page_symlink_inode_operations); 4862