1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/namei.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * Some corrections by tytso. 10 */ 11 12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 13 * lookup logic. 14 */ 15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 16 */ 17 18 #include <linux/init.h> 19 #include <linux/export.h> 20 #include <linux/kernel.h> 21 #include <linux/slab.h> 22 #include <linux/fs.h> 23 #include <linux/namei.h> 24 #include <linux/pagemap.h> 25 #include <linux/fsnotify.h> 26 #include <linux/personality.h> 27 #include <linux/security.h> 28 #include <linux/ima.h> 29 #include <linux/syscalls.h> 30 #include <linux/mount.h> 31 #include <linux/audit.h> 32 #include <linux/capability.h> 33 #include <linux/file.h> 34 #include <linux/fcntl.h> 35 #include <linux/device_cgroup.h> 36 #include <linux/fs_struct.h> 37 #include <linux/posix_acl.h> 38 #include <linux/hash.h> 39 #include <linux/bitops.h> 40 #include <linux/init_task.h> 41 #include <linux/uaccess.h> 42 43 #include "internal.h" 44 #include "mount.h" 45 46 /* [Feb-1997 T. Schoebel-Theuer] 47 * Fundamental changes in the pathname lookup mechanisms (namei) 48 * were necessary because of omirr. The reason is that omirr needs 49 * to know the _real_ pathname, not the user-supplied one, in case 50 * of symlinks (and also when transname replacements occur). 51 * 52 * The new code replaces the old recursive symlink resolution with 53 * an iterative one (in case of non-nested symlink chains). It does 54 * this with calls to <fs>_follow_link(). 55 * As a side effect, dir_namei(), _namei() and follow_link() are now 56 * replaced with a single function lookup_dentry() that can handle all 57 * the special cases of the former code. 58 * 59 * With the new dcache, the pathname is stored at each inode, at least as 60 * long as the refcount of the inode is positive. As a side effect, the 61 * size of the dcache depends on the inode cache and thus is dynamic. 62 * 63 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 64 * resolution to correspond with current state of the code. 65 * 66 * Note that the symlink resolution is not *completely* iterative. 67 * There is still a significant amount of tail- and mid- recursion in 68 * the algorithm. Also, note that <fs>_readlink() is not used in 69 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 70 * may return different results than <fs>_follow_link(). Many virtual 71 * filesystems (including /proc) exhibit this behavior. 72 */ 73 74 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 75 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 76 * and the name already exists in form of a symlink, try to create the new 77 * name indicated by the symlink. The old code always complained that the 78 * name already exists, due to not following the symlink even if its target 79 * is nonexistent. The new semantics affects also mknod() and link() when 80 * the name is a symlink pointing to a non-existent name. 81 * 82 * I don't know which semantics is the right one, since I have no access 83 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 84 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 85 * "old" one. Personally, I think the new semantics is much more logical. 86 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 87 * file does succeed in both HP-UX and SunOs, but not in Solaris 88 * and in the old Linux semantics. 89 */ 90 91 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 92 * semantics. See the comments in "open_namei" and "do_link" below. 93 * 94 * [10-Sep-98 Alan Modra] Another symlink change. 95 */ 96 97 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 98 * inside the path - always follow. 99 * in the last component in creation/removal/renaming - never follow. 100 * if LOOKUP_FOLLOW passed - follow. 101 * if the pathname has trailing slashes - follow. 102 * otherwise - don't follow. 103 * (applied in that order). 104 * 105 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 106 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 107 * During the 2.4 we need to fix the userland stuff depending on it - 108 * hopefully we will be able to get rid of that wart in 2.5. So far only 109 * XEmacs seems to be relying on it... 110 */ 111 /* 112 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 113 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 114 * any extra contention... 115 */ 116 117 /* In order to reduce some races, while at the same time doing additional 118 * checking and hopefully speeding things up, we copy filenames to the 119 * kernel data space before using them.. 120 * 121 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 122 * PATH_MAX includes the nul terminator --RR. 123 */ 124 125 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname)) 126 127 struct filename * 128 getname_flags(const char __user *filename, int flags, int *empty) 129 { 130 struct filename *result; 131 char *kname; 132 int len; 133 134 result = audit_reusename(filename); 135 if (result) 136 return result; 137 138 result = __getname(); 139 if (unlikely(!result)) 140 return ERR_PTR(-ENOMEM); 141 142 /* 143 * First, try to embed the struct filename inside the names_cache 144 * allocation 145 */ 146 kname = (char *)result->iname; 147 result->name = kname; 148 149 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX); 150 if (unlikely(len < 0)) { 151 __putname(result); 152 return ERR_PTR(len); 153 } 154 155 /* 156 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a 157 * separate struct filename so we can dedicate the entire 158 * names_cache allocation for the pathname, and re-do the copy from 159 * userland. 160 */ 161 if (unlikely(len == EMBEDDED_NAME_MAX)) { 162 const size_t size = offsetof(struct filename, iname[1]); 163 kname = (char *)result; 164 165 /* 166 * size is chosen that way we to guarantee that 167 * result->iname[0] is within the same object and that 168 * kname can't be equal to result->iname, no matter what. 169 */ 170 result = kzalloc(size, GFP_KERNEL); 171 if (unlikely(!result)) { 172 __putname(kname); 173 return ERR_PTR(-ENOMEM); 174 } 175 result->name = kname; 176 len = strncpy_from_user(kname, filename, PATH_MAX); 177 if (unlikely(len < 0)) { 178 __putname(kname); 179 kfree(result); 180 return ERR_PTR(len); 181 } 182 if (unlikely(len == PATH_MAX)) { 183 __putname(kname); 184 kfree(result); 185 return ERR_PTR(-ENAMETOOLONG); 186 } 187 } 188 189 result->refcnt = 1; 190 /* The empty path is special. */ 191 if (unlikely(!len)) { 192 if (empty) 193 *empty = 1; 194 if (!(flags & LOOKUP_EMPTY)) { 195 putname(result); 196 return ERR_PTR(-ENOENT); 197 } 198 } 199 200 result->uptr = filename; 201 result->aname = NULL; 202 audit_getname(result); 203 return result; 204 } 205 206 struct filename * 207 getname(const char __user * filename) 208 { 209 return getname_flags(filename, 0, NULL); 210 } 211 212 struct filename * 213 getname_kernel(const char * filename) 214 { 215 struct filename *result; 216 int len = strlen(filename) + 1; 217 218 result = __getname(); 219 if (unlikely(!result)) 220 return ERR_PTR(-ENOMEM); 221 222 if (len <= EMBEDDED_NAME_MAX) { 223 result->name = (char *)result->iname; 224 } else if (len <= PATH_MAX) { 225 const size_t size = offsetof(struct filename, iname[1]); 226 struct filename *tmp; 227 228 tmp = kmalloc(size, GFP_KERNEL); 229 if (unlikely(!tmp)) { 230 __putname(result); 231 return ERR_PTR(-ENOMEM); 232 } 233 tmp->name = (char *)result; 234 result = tmp; 235 } else { 236 __putname(result); 237 return ERR_PTR(-ENAMETOOLONG); 238 } 239 memcpy((char *)result->name, filename, len); 240 result->uptr = NULL; 241 result->aname = NULL; 242 result->refcnt = 1; 243 audit_getname(result); 244 245 return result; 246 } 247 248 void putname(struct filename *name) 249 { 250 BUG_ON(name->refcnt <= 0); 251 252 if (--name->refcnt > 0) 253 return; 254 255 if (name->name != name->iname) { 256 __putname(name->name); 257 kfree(name); 258 } else 259 __putname(name); 260 } 261 262 static int check_acl(struct inode *inode, int mask) 263 { 264 #ifdef CONFIG_FS_POSIX_ACL 265 struct posix_acl *acl; 266 267 if (mask & MAY_NOT_BLOCK) { 268 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS); 269 if (!acl) 270 return -EAGAIN; 271 /* no ->get_acl() calls in RCU mode... */ 272 if (is_uncached_acl(acl)) 273 return -ECHILD; 274 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK); 275 } 276 277 acl = get_acl(inode, ACL_TYPE_ACCESS); 278 if (IS_ERR(acl)) 279 return PTR_ERR(acl); 280 if (acl) { 281 int error = posix_acl_permission(inode, acl, mask); 282 posix_acl_release(acl); 283 return error; 284 } 285 #endif 286 287 return -EAGAIN; 288 } 289 290 /* 291 * This does the basic permission checking 292 */ 293 static int acl_permission_check(struct inode *inode, int mask) 294 { 295 unsigned int mode = inode->i_mode; 296 297 if (likely(uid_eq(current_fsuid(), inode->i_uid))) 298 mode >>= 6; 299 else { 300 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) { 301 int error = check_acl(inode, mask); 302 if (error != -EAGAIN) 303 return error; 304 } 305 306 if (in_group_p(inode->i_gid)) 307 mode >>= 3; 308 } 309 310 /* 311 * If the DACs are ok we don't need any capability check. 312 */ 313 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 314 return 0; 315 return -EACCES; 316 } 317 318 /** 319 * generic_permission - check for access rights on a Posix-like filesystem 320 * @inode: inode to check access rights for 321 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...) 322 * 323 * Used to check for read/write/execute permissions on a file. 324 * We use "fsuid" for this, letting us set arbitrary permissions 325 * for filesystem access without changing the "normal" uids which 326 * are used for other things. 327 * 328 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk 329 * request cannot be satisfied (eg. requires blocking or too much complexity). 330 * It would then be called again in ref-walk mode. 331 */ 332 int generic_permission(struct inode *inode, int mask) 333 { 334 int ret; 335 336 /* 337 * Do the basic permission checks. 338 */ 339 ret = acl_permission_check(inode, mask); 340 if (ret != -EACCES) 341 return ret; 342 343 if (S_ISDIR(inode->i_mode)) { 344 /* DACs are overridable for directories */ 345 if (!(mask & MAY_WRITE)) 346 if (capable_wrt_inode_uidgid(inode, 347 CAP_DAC_READ_SEARCH)) 348 return 0; 349 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE)) 350 return 0; 351 return -EACCES; 352 } 353 354 /* 355 * Searching includes executable on directories, else just read. 356 */ 357 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 358 if (mask == MAY_READ) 359 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH)) 360 return 0; 361 /* 362 * Read/write DACs are always overridable. 363 * Executable DACs are overridable when there is 364 * at least one exec bit set. 365 */ 366 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO)) 367 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE)) 368 return 0; 369 370 return -EACCES; 371 } 372 EXPORT_SYMBOL(generic_permission); 373 374 /* 375 * We _really_ want to just do "generic_permission()" without 376 * even looking at the inode->i_op values. So we keep a cache 377 * flag in inode->i_opflags, that says "this has not special 378 * permission function, use the fast case". 379 */ 380 static inline int do_inode_permission(struct inode *inode, int mask) 381 { 382 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) { 383 if (likely(inode->i_op->permission)) 384 return inode->i_op->permission(inode, mask); 385 386 /* This gets set once for the inode lifetime */ 387 spin_lock(&inode->i_lock); 388 inode->i_opflags |= IOP_FASTPERM; 389 spin_unlock(&inode->i_lock); 390 } 391 return generic_permission(inode, mask); 392 } 393 394 /** 395 * sb_permission - Check superblock-level permissions 396 * @sb: Superblock of inode to check permission on 397 * @inode: Inode to check permission on 398 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 399 * 400 * Separate out file-system wide checks from inode-specific permission checks. 401 */ 402 static int sb_permission(struct super_block *sb, struct inode *inode, int mask) 403 { 404 if (unlikely(mask & MAY_WRITE)) { 405 umode_t mode = inode->i_mode; 406 407 /* Nobody gets write access to a read-only fs. */ 408 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 409 return -EROFS; 410 } 411 return 0; 412 } 413 414 /** 415 * inode_permission - Check for access rights to a given inode 416 * @inode: Inode to check permission on 417 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 418 * 419 * Check for read/write/execute permissions on an inode. We use fs[ug]id for 420 * this, letting us set arbitrary permissions for filesystem access without 421 * changing the "normal" UIDs which are used for other things. 422 * 423 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 424 */ 425 int inode_permission(struct inode *inode, int mask) 426 { 427 int retval; 428 429 retval = sb_permission(inode->i_sb, inode, mask); 430 if (retval) 431 return retval; 432 433 if (unlikely(mask & MAY_WRITE)) { 434 /* 435 * Nobody gets write access to an immutable file. 436 */ 437 if (IS_IMMUTABLE(inode)) 438 return -EPERM; 439 440 /* 441 * Updating mtime will likely cause i_uid and i_gid to be 442 * written back improperly if their true value is unknown 443 * to the vfs. 444 */ 445 if (HAS_UNMAPPED_ID(inode)) 446 return -EACCES; 447 } 448 449 retval = do_inode_permission(inode, mask); 450 if (retval) 451 return retval; 452 453 retval = devcgroup_inode_permission(inode, mask); 454 if (retval) 455 return retval; 456 457 return security_inode_permission(inode, mask); 458 } 459 EXPORT_SYMBOL(inode_permission); 460 461 /** 462 * path_get - get a reference to a path 463 * @path: path to get the reference to 464 * 465 * Given a path increment the reference count to the dentry and the vfsmount. 466 */ 467 void path_get(const struct path *path) 468 { 469 mntget(path->mnt); 470 dget(path->dentry); 471 } 472 EXPORT_SYMBOL(path_get); 473 474 /** 475 * path_put - put a reference to a path 476 * @path: path to put the reference to 477 * 478 * Given a path decrement the reference count to the dentry and the vfsmount. 479 */ 480 void path_put(const struct path *path) 481 { 482 dput(path->dentry); 483 mntput(path->mnt); 484 } 485 EXPORT_SYMBOL(path_put); 486 487 #define EMBEDDED_LEVELS 2 488 struct nameidata { 489 struct path path; 490 struct qstr last; 491 struct path root; 492 struct inode *inode; /* path.dentry.d_inode */ 493 unsigned int flags; 494 unsigned seq, m_seq, r_seq; 495 int last_type; 496 unsigned depth; 497 int total_link_count; 498 struct saved { 499 struct path link; 500 struct delayed_call done; 501 const char *name; 502 unsigned seq; 503 } *stack, internal[EMBEDDED_LEVELS]; 504 struct filename *name; 505 struct nameidata *saved; 506 unsigned root_seq; 507 int dfd; 508 kuid_t dir_uid; 509 umode_t dir_mode; 510 } __randomize_layout; 511 512 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name) 513 { 514 struct nameidata *old = current->nameidata; 515 p->stack = p->internal; 516 p->dfd = dfd; 517 p->name = name; 518 p->total_link_count = old ? old->total_link_count : 0; 519 p->saved = old; 520 current->nameidata = p; 521 } 522 523 static void restore_nameidata(void) 524 { 525 struct nameidata *now = current->nameidata, *old = now->saved; 526 527 current->nameidata = old; 528 if (old) 529 old->total_link_count = now->total_link_count; 530 if (now->stack != now->internal) 531 kfree(now->stack); 532 } 533 534 static bool nd_alloc_stack(struct nameidata *nd) 535 { 536 struct saved *p; 537 538 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved), 539 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL); 540 if (unlikely(!p)) 541 return false; 542 memcpy(p, nd->internal, sizeof(nd->internal)); 543 nd->stack = p; 544 return true; 545 } 546 547 /** 548 * path_connected - Verify that a dentry is below mnt.mnt_root 549 * 550 * Rename can sometimes move a file or directory outside of a bind 551 * mount, path_connected allows those cases to be detected. 552 */ 553 static bool path_connected(struct vfsmount *mnt, struct dentry *dentry) 554 { 555 struct super_block *sb = mnt->mnt_sb; 556 557 /* Bind mounts and multi-root filesystems can have disconnected paths */ 558 if (!(sb->s_iflags & SB_I_MULTIROOT) && (mnt->mnt_root == sb->s_root)) 559 return true; 560 561 return is_subdir(dentry, mnt->mnt_root); 562 } 563 564 static void drop_links(struct nameidata *nd) 565 { 566 int i = nd->depth; 567 while (i--) { 568 struct saved *last = nd->stack + i; 569 do_delayed_call(&last->done); 570 clear_delayed_call(&last->done); 571 } 572 } 573 574 static void terminate_walk(struct nameidata *nd) 575 { 576 drop_links(nd); 577 if (!(nd->flags & LOOKUP_RCU)) { 578 int i; 579 path_put(&nd->path); 580 for (i = 0; i < nd->depth; i++) 581 path_put(&nd->stack[i].link); 582 if (nd->flags & LOOKUP_ROOT_GRABBED) { 583 path_put(&nd->root); 584 nd->flags &= ~LOOKUP_ROOT_GRABBED; 585 } 586 } else { 587 nd->flags &= ~LOOKUP_RCU; 588 rcu_read_unlock(); 589 } 590 nd->depth = 0; 591 } 592 593 /* path_put is needed afterwards regardless of success or failure */ 594 static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq) 595 { 596 int res = __legitimize_mnt(path->mnt, mseq); 597 if (unlikely(res)) { 598 if (res > 0) 599 path->mnt = NULL; 600 path->dentry = NULL; 601 return false; 602 } 603 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) { 604 path->dentry = NULL; 605 return false; 606 } 607 return !read_seqcount_retry(&path->dentry->d_seq, seq); 608 } 609 610 static inline bool legitimize_path(struct nameidata *nd, 611 struct path *path, unsigned seq) 612 { 613 return __legitimize_path(path, seq, nd->m_seq); 614 } 615 616 static bool legitimize_links(struct nameidata *nd) 617 { 618 int i; 619 for (i = 0; i < nd->depth; i++) { 620 struct saved *last = nd->stack + i; 621 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) { 622 drop_links(nd); 623 nd->depth = i + 1; 624 return false; 625 } 626 } 627 return true; 628 } 629 630 static bool legitimize_root(struct nameidata *nd) 631 { 632 /* 633 * For scoped-lookups (where nd->root has been zeroed), we need to 634 * restart the whole lookup from scratch -- because set_root() is wrong 635 * for these lookups (nd->dfd is the root, not the filesystem root). 636 */ 637 if (!nd->root.mnt && (nd->flags & LOOKUP_IS_SCOPED)) 638 return false; 639 /* Nothing to do if nd->root is zero or is managed by the VFS user. */ 640 if (!nd->root.mnt || (nd->flags & LOOKUP_ROOT)) 641 return true; 642 nd->flags |= LOOKUP_ROOT_GRABBED; 643 return legitimize_path(nd, &nd->root, nd->root_seq); 644 } 645 646 /* 647 * Path walking has 2 modes, rcu-walk and ref-walk (see 648 * Documentation/filesystems/path-lookup.txt). In situations when we can't 649 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab 650 * normal reference counts on dentries and vfsmounts to transition to ref-walk 651 * mode. Refcounts are grabbed at the last known good point before rcu-walk 652 * got stuck, so ref-walk may continue from there. If this is not successful 653 * (eg. a seqcount has changed), then failure is returned and it's up to caller 654 * to restart the path walk from the beginning in ref-walk mode. 655 */ 656 657 /** 658 * unlazy_walk - try to switch to ref-walk mode. 659 * @nd: nameidata pathwalk data 660 * Returns: 0 on success, -ECHILD on failure 661 * 662 * unlazy_walk attempts to legitimize the current nd->path and nd->root 663 * for ref-walk mode. 664 * Must be called from rcu-walk context. 665 * Nothing should touch nameidata between unlazy_walk() failure and 666 * terminate_walk(). 667 */ 668 static int unlazy_walk(struct nameidata *nd) 669 { 670 struct dentry *parent = nd->path.dentry; 671 672 BUG_ON(!(nd->flags & LOOKUP_RCU)); 673 674 nd->flags &= ~LOOKUP_RCU; 675 if (unlikely(!legitimize_links(nd))) 676 goto out1; 677 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq))) 678 goto out; 679 if (unlikely(!legitimize_root(nd))) 680 goto out; 681 rcu_read_unlock(); 682 BUG_ON(nd->inode != parent->d_inode); 683 return 0; 684 685 out1: 686 nd->path.mnt = NULL; 687 nd->path.dentry = NULL; 688 out: 689 rcu_read_unlock(); 690 return -ECHILD; 691 } 692 693 /** 694 * unlazy_child - try to switch to ref-walk mode. 695 * @nd: nameidata pathwalk data 696 * @dentry: child of nd->path.dentry 697 * @seq: seq number to check dentry against 698 * Returns: 0 on success, -ECHILD on failure 699 * 700 * unlazy_child attempts to legitimize the current nd->path, nd->root and dentry 701 * for ref-walk mode. @dentry must be a path found by a do_lookup call on 702 * @nd. Must be called from rcu-walk context. 703 * Nothing should touch nameidata between unlazy_child() failure and 704 * terminate_walk(). 705 */ 706 static int unlazy_child(struct nameidata *nd, struct dentry *dentry, unsigned seq) 707 { 708 BUG_ON(!(nd->flags & LOOKUP_RCU)); 709 710 nd->flags &= ~LOOKUP_RCU; 711 if (unlikely(!legitimize_links(nd))) 712 goto out2; 713 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq))) 714 goto out2; 715 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref))) 716 goto out1; 717 718 /* 719 * We need to move both the parent and the dentry from the RCU domain 720 * to be properly refcounted. And the sequence number in the dentry 721 * validates *both* dentry counters, since we checked the sequence 722 * number of the parent after we got the child sequence number. So we 723 * know the parent must still be valid if the child sequence number is 724 */ 725 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) 726 goto out; 727 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) 728 goto out_dput; 729 /* 730 * Sequence counts matched. Now make sure that the root is 731 * still valid and get it if required. 732 */ 733 if (unlikely(!legitimize_root(nd))) 734 goto out_dput; 735 rcu_read_unlock(); 736 return 0; 737 738 out2: 739 nd->path.mnt = NULL; 740 out1: 741 nd->path.dentry = NULL; 742 out: 743 rcu_read_unlock(); 744 return -ECHILD; 745 out_dput: 746 rcu_read_unlock(); 747 dput(dentry); 748 return -ECHILD; 749 } 750 751 static inline int d_revalidate(struct dentry *dentry, unsigned int flags) 752 { 753 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) 754 return dentry->d_op->d_revalidate(dentry, flags); 755 else 756 return 1; 757 } 758 759 /** 760 * complete_walk - successful completion of path walk 761 * @nd: pointer nameidata 762 * 763 * If we had been in RCU mode, drop out of it and legitimize nd->path. 764 * Revalidate the final result, unless we'd already done that during 765 * the path walk or the filesystem doesn't ask for it. Return 0 on 766 * success, -error on failure. In case of failure caller does not 767 * need to drop nd->path. 768 */ 769 static int complete_walk(struct nameidata *nd) 770 { 771 struct dentry *dentry = nd->path.dentry; 772 int status; 773 774 if (nd->flags & LOOKUP_RCU) { 775 /* 776 * We don't want to zero nd->root for scoped-lookups or 777 * externally-managed nd->root. 778 */ 779 if (!(nd->flags & (LOOKUP_ROOT | LOOKUP_IS_SCOPED))) 780 nd->root.mnt = NULL; 781 if (unlikely(unlazy_walk(nd))) 782 return -ECHILD; 783 } 784 785 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) { 786 /* 787 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't 788 * ever step outside the root during lookup" and should already 789 * be guaranteed by the rest of namei, we want to avoid a namei 790 * BUG resulting in userspace being given a path that was not 791 * scoped within the root at some point during the lookup. 792 * 793 * So, do a final sanity-check to make sure that in the 794 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED) 795 * we won't silently return an fd completely outside of the 796 * requested root to userspace. 797 * 798 * Userspace could move the path outside the root after this 799 * check, but as discussed elsewhere this is not a concern (the 800 * resolved file was inside the root at some point). 801 */ 802 if (!path_is_under(&nd->path, &nd->root)) 803 return -EXDEV; 804 } 805 806 if (likely(!(nd->flags & LOOKUP_JUMPED))) 807 return 0; 808 809 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE))) 810 return 0; 811 812 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags); 813 if (status > 0) 814 return 0; 815 816 if (!status) 817 status = -ESTALE; 818 819 return status; 820 } 821 822 static int set_root(struct nameidata *nd) 823 { 824 struct fs_struct *fs = current->fs; 825 826 /* 827 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we 828 * still have to ensure it doesn't happen because it will cause a breakout 829 * from the dirfd. 830 */ 831 if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED)) 832 return -ENOTRECOVERABLE; 833 834 if (nd->flags & LOOKUP_RCU) { 835 unsigned seq; 836 837 do { 838 seq = read_seqcount_begin(&fs->seq); 839 nd->root = fs->root; 840 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq); 841 } while (read_seqcount_retry(&fs->seq, seq)); 842 } else { 843 get_fs_root(fs, &nd->root); 844 nd->flags |= LOOKUP_ROOT_GRABBED; 845 } 846 return 0; 847 } 848 849 static int nd_jump_root(struct nameidata *nd) 850 { 851 if (unlikely(nd->flags & LOOKUP_BENEATH)) 852 return -EXDEV; 853 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) { 854 /* Absolute path arguments to path_init() are allowed. */ 855 if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt) 856 return -EXDEV; 857 } 858 if (!nd->root.mnt) { 859 int error = set_root(nd); 860 if (error) 861 return error; 862 } 863 if (nd->flags & LOOKUP_RCU) { 864 struct dentry *d; 865 nd->path = nd->root; 866 d = nd->path.dentry; 867 nd->inode = d->d_inode; 868 nd->seq = nd->root_seq; 869 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq))) 870 return -ECHILD; 871 } else { 872 path_put(&nd->path); 873 nd->path = nd->root; 874 path_get(&nd->path); 875 nd->inode = nd->path.dentry->d_inode; 876 } 877 nd->flags |= LOOKUP_JUMPED; 878 return 0; 879 } 880 881 /* 882 * Helper to directly jump to a known parsed path from ->get_link, 883 * caller must have taken a reference to path beforehand. 884 */ 885 int nd_jump_link(struct path *path) 886 { 887 int error = -ELOOP; 888 struct nameidata *nd = current->nameidata; 889 890 if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS)) 891 goto err; 892 893 error = -EXDEV; 894 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) { 895 if (nd->path.mnt != path->mnt) 896 goto err; 897 } 898 /* Not currently safe for scoped-lookups. */ 899 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) 900 goto err; 901 902 path_put(&nd->path); 903 nd->path = *path; 904 nd->inode = nd->path.dentry->d_inode; 905 nd->flags |= LOOKUP_JUMPED; 906 return 0; 907 908 err: 909 path_put(path); 910 return error; 911 } 912 913 static inline void put_link(struct nameidata *nd) 914 { 915 struct saved *last = nd->stack + --nd->depth; 916 do_delayed_call(&last->done); 917 if (!(nd->flags & LOOKUP_RCU)) 918 path_put(&last->link); 919 } 920 921 int sysctl_protected_symlinks __read_mostly = 0; 922 int sysctl_protected_hardlinks __read_mostly = 0; 923 int sysctl_protected_fifos __read_mostly; 924 int sysctl_protected_regular __read_mostly; 925 926 /** 927 * may_follow_link - Check symlink following for unsafe situations 928 * @nd: nameidata pathwalk data 929 * 930 * In the case of the sysctl_protected_symlinks sysctl being enabled, 931 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is 932 * in a sticky world-writable directory. This is to protect privileged 933 * processes from failing races against path names that may change out 934 * from under them by way of other users creating malicious symlinks. 935 * It will permit symlinks to be followed only when outside a sticky 936 * world-writable directory, or when the uid of the symlink and follower 937 * match, or when the directory owner matches the symlink's owner. 938 * 939 * Returns 0 if following the symlink is allowed, -ve on error. 940 */ 941 static inline int may_follow_link(struct nameidata *nd, const struct inode *inode) 942 { 943 if (!sysctl_protected_symlinks) 944 return 0; 945 946 /* Allowed if owner and follower match. */ 947 if (uid_eq(current_cred()->fsuid, inode->i_uid)) 948 return 0; 949 950 /* Allowed if parent directory not sticky and world-writable. */ 951 if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH)) 952 return 0; 953 954 /* Allowed if parent directory and link owner match. */ 955 if (uid_valid(nd->dir_uid) && uid_eq(nd->dir_uid, inode->i_uid)) 956 return 0; 957 958 if (nd->flags & LOOKUP_RCU) 959 return -ECHILD; 960 961 audit_inode(nd->name, nd->stack[0].link.dentry, 0); 962 audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link"); 963 return -EACCES; 964 } 965 966 /** 967 * safe_hardlink_source - Check for safe hardlink conditions 968 * @inode: the source inode to hardlink from 969 * 970 * Return false if at least one of the following conditions: 971 * - inode is not a regular file 972 * - inode is setuid 973 * - inode is setgid and group-exec 974 * - access failure for read and write 975 * 976 * Otherwise returns true. 977 */ 978 static bool safe_hardlink_source(struct inode *inode) 979 { 980 umode_t mode = inode->i_mode; 981 982 /* Special files should not get pinned to the filesystem. */ 983 if (!S_ISREG(mode)) 984 return false; 985 986 /* Setuid files should not get pinned to the filesystem. */ 987 if (mode & S_ISUID) 988 return false; 989 990 /* Executable setgid files should not get pinned to the filesystem. */ 991 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) 992 return false; 993 994 /* Hardlinking to unreadable or unwritable sources is dangerous. */ 995 if (inode_permission(inode, MAY_READ | MAY_WRITE)) 996 return false; 997 998 return true; 999 } 1000 1001 /** 1002 * may_linkat - Check permissions for creating a hardlink 1003 * @link: the source to hardlink from 1004 * 1005 * Block hardlink when all of: 1006 * - sysctl_protected_hardlinks enabled 1007 * - fsuid does not match inode 1008 * - hardlink source is unsafe (see safe_hardlink_source() above) 1009 * - not CAP_FOWNER in a namespace with the inode owner uid mapped 1010 * 1011 * Returns 0 if successful, -ve on error. 1012 */ 1013 static int may_linkat(struct path *link) 1014 { 1015 struct inode *inode = link->dentry->d_inode; 1016 1017 /* Inode writeback is not safe when the uid or gid are invalid. */ 1018 if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid)) 1019 return -EOVERFLOW; 1020 1021 if (!sysctl_protected_hardlinks) 1022 return 0; 1023 1024 /* Source inode owner (or CAP_FOWNER) can hardlink all they like, 1025 * otherwise, it must be a safe source. 1026 */ 1027 if (safe_hardlink_source(inode) || inode_owner_or_capable(inode)) 1028 return 0; 1029 1030 audit_log_path_denied(AUDIT_ANOM_LINK, "linkat"); 1031 return -EPERM; 1032 } 1033 1034 /** 1035 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory 1036 * should be allowed, or not, on files that already 1037 * exist. 1038 * @dir_mode: mode bits of directory 1039 * @dir_uid: owner of directory 1040 * @inode: the inode of the file to open 1041 * 1042 * Block an O_CREAT open of a FIFO (or a regular file) when: 1043 * - sysctl_protected_fifos (or sysctl_protected_regular) is enabled 1044 * - the file already exists 1045 * - we are in a sticky directory 1046 * - we don't own the file 1047 * - the owner of the directory doesn't own the file 1048 * - the directory is world writable 1049 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2 1050 * the directory doesn't have to be world writable: being group writable will 1051 * be enough. 1052 * 1053 * Returns 0 if the open is allowed, -ve on error. 1054 */ 1055 static int may_create_in_sticky(umode_t dir_mode, kuid_t dir_uid, 1056 struct inode * const inode) 1057 { 1058 if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) || 1059 (!sysctl_protected_regular && S_ISREG(inode->i_mode)) || 1060 likely(!(dir_mode & S_ISVTX)) || 1061 uid_eq(inode->i_uid, dir_uid) || 1062 uid_eq(current_fsuid(), inode->i_uid)) 1063 return 0; 1064 1065 if (likely(dir_mode & 0002) || 1066 (dir_mode & 0020 && 1067 ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) || 1068 (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) { 1069 const char *operation = S_ISFIFO(inode->i_mode) ? 1070 "sticky_create_fifo" : 1071 "sticky_create_regular"; 1072 audit_log_path_denied(AUDIT_ANOM_CREAT, operation); 1073 return -EACCES; 1074 } 1075 return 0; 1076 } 1077 1078 /* 1079 * follow_up - Find the mountpoint of path's vfsmount 1080 * 1081 * Given a path, find the mountpoint of its source file system. 1082 * Replace @path with the path of the mountpoint in the parent mount. 1083 * Up is towards /. 1084 * 1085 * Return 1 if we went up a level and 0 if we were already at the 1086 * root. 1087 */ 1088 int follow_up(struct path *path) 1089 { 1090 struct mount *mnt = real_mount(path->mnt); 1091 struct mount *parent; 1092 struct dentry *mountpoint; 1093 1094 read_seqlock_excl(&mount_lock); 1095 parent = mnt->mnt_parent; 1096 if (parent == mnt) { 1097 read_sequnlock_excl(&mount_lock); 1098 return 0; 1099 } 1100 mntget(&parent->mnt); 1101 mountpoint = dget(mnt->mnt_mountpoint); 1102 read_sequnlock_excl(&mount_lock); 1103 dput(path->dentry); 1104 path->dentry = mountpoint; 1105 mntput(path->mnt); 1106 path->mnt = &parent->mnt; 1107 return 1; 1108 } 1109 EXPORT_SYMBOL(follow_up); 1110 1111 static bool choose_mountpoint_rcu(struct mount *m, const struct path *root, 1112 struct path *path, unsigned *seqp) 1113 { 1114 while (mnt_has_parent(m)) { 1115 struct dentry *mountpoint = m->mnt_mountpoint; 1116 1117 m = m->mnt_parent; 1118 if (unlikely(root->dentry == mountpoint && 1119 root->mnt == &m->mnt)) 1120 break; 1121 if (mountpoint != m->mnt.mnt_root) { 1122 path->mnt = &m->mnt; 1123 path->dentry = mountpoint; 1124 *seqp = read_seqcount_begin(&mountpoint->d_seq); 1125 return true; 1126 } 1127 } 1128 return false; 1129 } 1130 1131 static bool choose_mountpoint(struct mount *m, const struct path *root, 1132 struct path *path) 1133 { 1134 bool found; 1135 1136 rcu_read_lock(); 1137 while (1) { 1138 unsigned seq, mseq = read_seqbegin(&mount_lock); 1139 1140 found = choose_mountpoint_rcu(m, root, path, &seq); 1141 if (unlikely(!found)) { 1142 if (!read_seqretry(&mount_lock, mseq)) 1143 break; 1144 } else { 1145 if (likely(__legitimize_path(path, seq, mseq))) 1146 break; 1147 rcu_read_unlock(); 1148 path_put(path); 1149 rcu_read_lock(); 1150 } 1151 } 1152 rcu_read_unlock(); 1153 return found; 1154 } 1155 1156 /* 1157 * Perform an automount 1158 * - return -EISDIR to tell follow_managed() to stop and return the path we 1159 * were called with. 1160 */ 1161 static int follow_automount(struct path *path, int *count, unsigned lookup_flags) 1162 { 1163 struct dentry *dentry = path->dentry; 1164 1165 /* We don't want to mount if someone's just doing a stat - 1166 * unless they're stat'ing a directory and appended a '/' to 1167 * the name. 1168 * 1169 * We do, however, want to mount if someone wants to open or 1170 * create a file of any type under the mountpoint, wants to 1171 * traverse through the mountpoint or wants to open the 1172 * mounted directory. Also, autofs may mark negative dentries 1173 * as being automount points. These will need the attentions 1174 * of the daemon to instantiate them before they can be used. 1175 */ 1176 if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY | 1177 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) && 1178 dentry->d_inode) 1179 return -EISDIR; 1180 1181 if (count && (*count)++ >= MAXSYMLINKS) 1182 return -ELOOP; 1183 1184 return finish_automount(dentry->d_op->d_automount(path), path); 1185 } 1186 1187 /* 1188 * mount traversal - out-of-line part. One note on ->d_flags accesses - 1189 * dentries are pinned but not locked here, so negative dentry can go 1190 * positive right under us. Use of smp_load_acquire() provides a barrier 1191 * sufficient for ->d_inode and ->d_flags consistency. 1192 */ 1193 static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped, 1194 int *count, unsigned lookup_flags) 1195 { 1196 struct vfsmount *mnt = path->mnt; 1197 bool need_mntput = false; 1198 int ret = 0; 1199 1200 while (flags & DCACHE_MANAGED_DENTRY) { 1201 /* Allow the filesystem to manage the transit without i_mutex 1202 * being held. */ 1203 if (flags & DCACHE_MANAGE_TRANSIT) { 1204 ret = path->dentry->d_op->d_manage(path, false); 1205 flags = smp_load_acquire(&path->dentry->d_flags); 1206 if (ret < 0) 1207 break; 1208 } 1209 1210 if (flags & DCACHE_MOUNTED) { // something's mounted on it.. 1211 struct vfsmount *mounted = lookup_mnt(path); 1212 if (mounted) { // ... in our namespace 1213 dput(path->dentry); 1214 if (need_mntput) 1215 mntput(path->mnt); 1216 path->mnt = mounted; 1217 path->dentry = dget(mounted->mnt_root); 1218 // here we know it's positive 1219 flags = path->dentry->d_flags; 1220 need_mntput = true; 1221 continue; 1222 } 1223 } 1224 1225 if (!(flags & DCACHE_NEED_AUTOMOUNT)) 1226 break; 1227 1228 // uncovered automount point 1229 ret = follow_automount(path, count, lookup_flags); 1230 flags = smp_load_acquire(&path->dentry->d_flags); 1231 if (ret < 0) 1232 break; 1233 } 1234 1235 if (ret == -EISDIR) 1236 ret = 0; 1237 // possible if you race with several mount --move 1238 if (need_mntput && path->mnt == mnt) 1239 mntput(path->mnt); 1240 if (!ret && unlikely(d_flags_negative(flags))) 1241 ret = -ENOENT; 1242 *jumped = need_mntput; 1243 return ret; 1244 } 1245 1246 static inline int traverse_mounts(struct path *path, bool *jumped, 1247 int *count, unsigned lookup_flags) 1248 { 1249 unsigned flags = smp_load_acquire(&path->dentry->d_flags); 1250 1251 /* fastpath */ 1252 if (likely(!(flags & DCACHE_MANAGED_DENTRY))) { 1253 *jumped = false; 1254 if (unlikely(d_flags_negative(flags))) 1255 return -ENOENT; 1256 return 0; 1257 } 1258 return __traverse_mounts(path, flags, jumped, count, lookup_flags); 1259 } 1260 1261 int follow_down_one(struct path *path) 1262 { 1263 struct vfsmount *mounted; 1264 1265 mounted = lookup_mnt(path); 1266 if (mounted) { 1267 dput(path->dentry); 1268 mntput(path->mnt); 1269 path->mnt = mounted; 1270 path->dentry = dget(mounted->mnt_root); 1271 return 1; 1272 } 1273 return 0; 1274 } 1275 EXPORT_SYMBOL(follow_down_one); 1276 1277 /* 1278 * Follow down to the covering mount currently visible to userspace. At each 1279 * point, the filesystem owning that dentry may be queried as to whether the 1280 * caller is permitted to proceed or not. 1281 */ 1282 int follow_down(struct path *path) 1283 { 1284 struct vfsmount *mnt = path->mnt; 1285 bool jumped; 1286 int ret = traverse_mounts(path, &jumped, NULL, 0); 1287 1288 if (path->mnt != mnt) 1289 mntput(mnt); 1290 return ret; 1291 } 1292 EXPORT_SYMBOL(follow_down); 1293 1294 /* 1295 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if 1296 * we meet a managed dentry that would need blocking. 1297 */ 1298 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path, 1299 struct inode **inode, unsigned *seqp) 1300 { 1301 struct dentry *dentry = path->dentry; 1302 unsigned int flags = dentry->d_flags; 1303 1304 if (likely(!(flags & DCACHE_MANAGED_DENTRY))) 1305 return true; 1306 1307 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1308 return false; 1309 1310 for (;;) { 1311 /* 1312 * Don't forget we might have a non-mountpoint managed dentry 1313 * that wants to block transit. 1314 */ 1315 if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) { 1316 int res = dentry->d_op->d_manage(path, true); 1317 if (res) 1318 return res == -EISDIR; 1319 flags = dentry->d_flags; 1320 } 1321 1322 if (flags & DCACHE_MOUNTED) { 1323 struct mount *mounted = __lookup_mnt(path->mnt, dentry); 1324 if (mounted) { 1325 path->mnt = &mounted->mnt; 1326 dentry = path->dentry = mounted->mnt.mnt_root; 1327 nd->flags |= LOOKUP_JUMPED; 1328 *seqp = read_seqcount_begin(&dentry->d_seq); 1329 *inode = dentry->d_inode; 1330 /* 1331 * We don't need to re-check ->d_seq after this 1332 * ->d_inode read - there will be an RCU delay 1333 * between mount hash removal and ->mnt_root 1334 * becoming unpinned. 1335 */ 1336 flags = dentry->d_flags; 1337 continue; 1338 } 1339 if (read_seqretry(&mount_lock, nd->m_seq)) 1340 return false; 1341 } 1342 return !(flags & DCACHE_NEED_AUTOMOUNT); 1343 } 1344 } 1345 1346 static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry, 1347 struct path *path, struct inode **inode, 1348 unsigned int *seqp) 1349 { 1350 bool jumped; 1351 int ret; 1352 1353 path->mnt = nd->path.mnt; 1354 path->dentry = dentry; 1355 if (nd->flags & LOOKUP_RCU) { 1356 unsigned int seq = *seqp; 1357 if (unlikely(!*inode)) 1358 return -ENOENT; 1359 if (likely(__follow_mount_rcu(nd, path, inode, seqp))) 1360 return 0; 1361 if (unlazy_child(nd, dentry, seq)) 1362 return -ECHILD; 1363 // *path might've been clobbered by __follow_mount_rcu() 1364 path->mnt = nd->path.mnt; 1365 path->dentry = dentry; 1366 } 1367 ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags); 1368 if (jumped) { 1369 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1370 ret = -EXDEV; 1371 else 1372 nd->flags |= LOOKUP_JUMPED; 1373 } 1374 if (unlikely(ret)) { 1375 dput(path->dentry); 1376 if (path->mnt != nd->path.mnt) 1377 mntput(path->mnt); 1378 } else { 1379 *inode = d_backing_inode(path->dentry); 1380 *seqp = 0; /* out of RCU mode, so the value doesn't matter */ 1381 } 1382 return ret; 1383 } 1384 1385 /* 1386 * This looks up the name in dcache and possibly revalidates the found dentry. 1387 * NULL is returned if the dentry does not exist in the cache. 1388 */ 1389 static struct dentry *lookup_dcache(const struct qstr *name, 1390 struct dentry *dir, 1391 unsigned int flags) 1392 { 1393 struct dentry *dentry = d_lookup(dir, name); 1394 if (dentry) { 1395 int error = d_revalidate(dentry, flags); 1396 if (unlikely(error <= 0)) { 1397 if (!error) 1398 d_invalidate(dentry); 1399 dput(dentry); 1400 return ERR_PTR(error); 1401 } 1402 } 1403 return dentry; 1404 } 1405 1406 /* 1407 * Parent directory has inode locked exclusive. This is one 1408 * and only case when ->lookup() gets called on non in-lookup 1409 * dentries - as the matter of fact, this only gets called 1410 * when directory is guaranteed to have no in-lookup children 1411 * at all. 1412 */ 1413 static struct dentry *__lookup_hash(const struct qstr *name, 1414 struct dentry *base, unsigned int flags) 1415 { 1416 struct dentry *dentry = lookup_dcache(name, base, flags); 1417 struct dentry *old; 1418 struct inode *dir = base->d_inode; 1419 1420 if (dentry) 1421 return dentry; 1422 1423 /* Don't create child dentry for a dead directory. */ 1424 if (unlikely(IS_DEADDIR(dir))) 1425 return ERR_PTR(-ENOENT); 1426 1427 dentry = d_alloc(base, name); 1428 if (unlikely(!dentry)) 1429 return ERR_PTR(-ENOMEM); 1430 1431 old = dir->i_op->lookup(dir, dentry, flags); 1432 if (unlikely(old)) { 1433 dput(dentry); 1434 dentry = old; 1435 } 1436 return dentry; 1437 } 1438 1439 static struct dentry *lookup_fast(struct nameidata *nd, 1440 struct inode **inode, 1441 unsigned *seqp) 1442 { 1443 struct dentry *dentry, *parent = nd->path.dentry; 1444 int status = 1; 1445 1446 /* 1447 * Rename seqlock is not required here because in the off chance 1448 * of a false negative due to a concurrent rename, the caller is 1449 * going to fall back to non-racy lookup. 1450 */ 1451 if (nd->flags & LOOKUP_RCU) { 1452 unsigned seq; 1453 dentry = __d_lookup_rcu(parent, &nd->last, &seq); 1454 if (unlikely(!dentry)) { 1455 if (unlazy_walk(nd)) 1456 return ERR_PTR(-ECHILD); 1457 return NULL; 1458 } 1459 1460 /* 1461 * This sequence count validates that the inode matches 1462 * the dentry name information from lookup. 1463 */ 1464 *inode = d_backing_inode(dentry); 1465 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) 1466 return ERR_PTR(-ECHILD); 1467 1468 /* 1469 * This sequence count validates that the parent had no 1470 * changes while we did the lookup of the dentry above. 1471 * 1472 * The memory barrier in read_seqcount_begin of child is 1473 * enough, we can use __read_seqcount_retry here. 1474 */ 1475 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq))) 1476 return ERR_PTR(-ECHILD); 1477 1478 *seqp = seq; 1479 status = d_revalidate(dentry, nd->flags); 1480 if (likely(status > 0)) 1481 return dentry; 1482 if (unlazy_child(nd, dentry, seq)) 1483 return ERR_PTR(-ECHILD); 1484 if (unlikely(status == -ECHILD)) 1485 /* we'd been told to redo it in non-rcu mode */ 1486 status = d_revalidate(dentry, nd->flags); 1487 } else { 1488 dentry = __d_lookup(parent, &nd->last); 1489 if (unlikely(!dentry)) 1490 return NULL; 1491 status = d_revalidate(dentry, nd->flags); 1492 } 1493 if (unlikely(status <= 0)) { 1494 if (!status) 1495 d_invalidate(dentry); 1496 dput(dentry); 1497 return ERR_PTR(status); 1498 } 1499 return dentry; 1500 } 1501 1502 /* Fast lookup failed, do it the slow way */ 1503 static struct dentry *__lookup_slow(const struct qstr *name, 1504 struct dentry *dir, 1505 unsigned int flags) 1506 { 1507 struct dentry *dentry, *old; 1508 struct inode *inode = dir->d_inode; 1509 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 1510 1511 /* Don't go there if it's already dead */ 1512 if (unlikely(IS_DEADDIR(inode))) 1513 return ERR_PTR(-ENOENT); 1514 again: 1515 dentry = d_alloc_parallel(dir, name, &wq); 1516 if (IS_ERR(dentry)) 1517 return dentry; 1518 if (unlikely(!d_in_lookup(dentry))) { 1519 int error = d_revalidate(dentry, flags); 1520 if (unlikely(error <= 0)) { 1521 if (!error) { 1522 d_invalidate(dentry); 1523 dput(dentry); 1524 goto again; 1525 } 1526 dput(dentry); 1527 dentry = ERR_PTR(error); 1528 } 1529 } else { 1530 old = inode->i_op->lookup(inode, dentry, flags); 1531 d_lookup_done(dentry); 1532 if (unlikely(old)) { 1533 dput(dentry); 1534 dentry = old; 1535 } 1536 } 1537 return dentry; 1538 } 1539 1540 static struct dentry *lookup_slow(const struct qstr *name, 1541 struct dentry *dir, 1542 unsigned int flags) 1543 { 1544 struct inode *inode = dir->d_inode; 1545 struct dentry *res; 1546 inode_lock_shared(inode); 1547 res = __lookup_slow(name, dir, flags); 1548 inode_unlock_shared(inode); 1549 return res; 1550 } 1551 1552 static inline int may_lookup(struct nameidata *nd) 1553 { 1554 if (nd->flags & LOOKUP_RCU) { 1555 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK); 1556 if (err != -ECHILD) 1557 return err; 1558 if (unlazy_walk(nd)) 1559 return -ECHILD; 1560 } 1561 return inode_permission(nd->inode, MAY_EXEC); 1562 } 1563 1564 static int reserve_stack(struct nameidata *nd, struct path *link, unsigned seq) 1565 { 1566 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) 1567 return -ELOOP; 1568 1569 if (likely(nd->depth != EMBEDDED_LEVELS)) 1570 return 0; 1571 if (likely(nd->stack != nd->internal)) 1572 return 0; 1573 if (likely(nd_alloc_stack(nd))) 1574 return 0; 1575 1576 if (nd->flags & LOOKUP_RCU) { 1577 // we need to grab link before we do unlazy. And we can't skip 1578 // unlazy even if we fail to grab the link - cleanup needs it 1579 bool grabbed_link = legitimize_path(nd, link, seq); 1580 1581 if (unlazy_walk(nd) != 0 || !grabbed_link) 1582 return -ECHILD; 1583 1584 if (nd_alloc_stack(nd)) 1585 return 0; 1586 } 1587 return -ENOMEM; 1588 } 1589 1590 enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4}; 1591 1592 static const char *pick_link(struct nameidata *nd, struct path *link, 1593 struct inode *inode, unsigned seq, int flags) 1594 { 1595 struct saved *last; 1596 const char *res; 1597 int error = reserve_stack(nd, link, seq); 1598 1599 if (unlikely(error)) { 1600 if (!(nd->flags & LOOKUP_RCU)) 1601 path_put(link); 1602 return ERR_PTR(error); 1603 } 1604 last = nd->stack + nd->depth++; 1605 last->link = *link; 1606 clear_delayed_call(&last->done); 1607 last->seq = seq; 1608 1609 if (flags & WALK_TRAILING) { 1610 error = may_follow_link(nd, inode); 1611 if (unlikely(error)) 1612 return ERR_PTR(error); 1613 } 1614 1615 if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS)) 1616 return ERR_PTR(-ELOOP); 1617 1618 if (!(nd->flags & LOOKUP_RCU)) { 1619 touch_atime(&last->link); 1620 cond_resched(); 1621 } else if (atime_needs_update(&last->link, inode)) { 1622 if (unlikely(unlazy_walk(nd))) 1623 return ERR_PTR(-ECHILD); 1624 touch_atime(&last->link); 1625 } 1626 1627 error = security_inode_follow_link(link->dentry, inode, 1628 nd->flags & LOOKUP_RCU); 1629 if (unlikely(error)) 1630 return ERR_PTR(error); 1631 1632 res = READ_ONCE(inode->i_link); 1633 if (!res) { 1634 const char * (*get)(struct dentry *, struct inode *, 1635 struct delayed_call *); 1636 get = inode->i_op->get_link; 1637 if (nd->flags & LOOKUP_RCU) { 1638 res = get(NULL, inode, &last->done); 1639 if (res == ERR_PTR(-ECHILD)) { 1640 if (unlikely(unlazy_walk(nd))) 1641 return ERR_PTR(-ECHILD); 1642 res = get(link->dentry, inode, &last->done); 1643 } 1644 } else { 1645 res = get(link->dentry, inode, &last->done); 1646 } 1647 if (!res) 1648 goto all_done; 1649 if (IS_ERR(res)) 1650 return res; 1651 } 1652 if (*res == '/') { 1653 error = nd_jump_root(nd); 1654 if (unlikely(error)) 1655 return ERR_PTR(error); 1656 while (unlikely(*++res == '/')) 1657 ; 1658 } 1659 if (*res) 1660 return res; 1661 all_done: // pure jump 1662 put_link(nd); 1663 return NULL; 1664 } 1665 1666 /* 1667 * Do we need to follow links? We _really_ want to be able 1668 * to do this check without having to look at inode->i_op, 1669 * so we keep a cache of "no, this doesn't need follow_link" 1670 * for the common case. 1671 */ 1672 static const char *step_into(struct nameidata *nd, int flags, 1673 struct dentry *dentry, struct inode *inode, unsigned seq) 1674 { 1675 struct path path; 1676 int err = handle_mounts(nd, dentry, &path, &inode, &seq); 1677 1678 if (err < 0) 1679 return ERR_PTR(err); 1680 if (likely(!d_is_symlink(path.dentry)) || 1681 ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) || 1682 (flags & WALK_NOFOLLOW)) { 1683 /* not a symlink or should not follow */ 1684 if (!(nd->flags & LOOKUP_RCU)) { 1685 dput(nd->path.dentry); 1686 if (nd->path.mnt != path.mnt) 1687 mntput(nd->path.mnt); 1688 } 1689 nd->path = path; 1690 nd->inode = inode; 1691 nd->seq = seq; 1692 return NULL; 1693 } 1694 if (nd->flags & LOOKUP_RCU) { 1695 /* make sure that d_is_symlink above matches inode */ 1696 if (read_seqcount_retry(&path.dentry->d_seq, seq)) 1697 return ERR_PTR(-ECHILD); 1698 } else { 1699 if (path.mnt == nd->path.mnt) 1700 mntget(path.mnt); 1701 } 1702 return pick_link(nd, &path, inode, seq, flags); 1703 } 1704 1705 static struct dentry *follow_dotdot_rcu(struct nameidata *nd, 1706 struct inode **inodep, 1707 unsigned *seqp) 1708 { 1709 struct dentry *parent, *old; 1710 1711 if (path_equal(&nd->path, &nd->root)) 1712 goto in_root; 1713 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) { 1714 struct path path; 1715 unsigned seq; 1716 if (!choose_mountpoint_rcu(real_mount(nd->path.mnt), 1717 &nd->root, &path, &seq)) 1718 goto in_root; 1719 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1720 return ERR_PTR(-ECHILD); 1721 nd->path = path; 1722 nd->inode = path.dentry->d_inode; 1723 nd->seq = seq; 1724 if (unlikely(read_seqretry(&mount_lock, nd->m_seq))) 1725 return ERR_PTR(-ECHILD); 1726 /* we know that mountpoint was pinned */ 1727 } 1728 old = nd->path.dentry; 1729 parent = old->d_parent; 1730 *inodep = parent->d_inode; 1731 *seqp = read_seqcount_begin(&parent->d_seq); 1732 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq))) 1733 return ERR_PTR(-ECHILD); 1734 if (unlikely(!path_connected(nd->path.mnt, parent))) 1735 return ERR_PTR(-ECHILD); 1736 return parent; 1737 in_root: 1738 if (unlikely(read_seqretry(&mount_lock, nd->m_seq))) 1739 return ERR_PTR(-ECHILD); 1740 if (unlikely(nd->flags & LOOKUP_BENEATH)) 1741 return ERR_PTR(-ECHILD); 1742 return NULL; 1743 } 1744 1745 static struct dentry *follow_dotdot(struct nameidata *nd, 1746 struct inode **inodep, 1747 unsigned *seqp) 1748 { 1749 struct dentry *parent; 1750 1751 if (path_equal(&nd->path, &nd->root)) 1752 goto in_root; 1753 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) { 1754 struct path path; 1755 1756 if (!choose_mountpoint(real_mount(nd->path.mnt), 1757 &nd->root, &path)) 1758 goto in_root; 1759 path_put(&nd->path); 1760 nd->path = path; 1761 nd->inode = path.dentry->d_inode; 1762 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1763 return ERR_PTR(-EXDEV); 1764 } 1765 /* rare case of legitimate dget_parent()... */ 1766 parent = dget_parent(nd->path.dentry); 1767 if (unlikely(!path_connected(nd->path.mnt, parent))) { 1768 dput(parent); 1769 return ERR_PTR(-ENOENT); 1770 } 1771 *seqp = 0; 1772 *inodep = parent->d_inode; 1773 return parent; 1774 1775 in_root: 1776 if (unlikely(nd->flags & LOOKUP_BENEATH)) 1777 return ERR_PTR(-EXDEV); 1778 dget(nd->path.dentry); 1779 return NULL; 1780 } 1781 1782 static const char *handle_dots(struct nameidata *nd, int type) 1783 { 1784 if (type == LAST_DOTDOT) { 1785 const char *error = NULL; 1786 struct dentry *parent; 1787 struct inode *inode; 1788 unsigned seq; 1789 1790 if (!nd->root.mnt) { 1791 error = ERR_PTR(set_root(nd)); 1792 if (error) 1793 return error; 1794 } 1795 if (nd->flags & LOOKUP_RCU) 1796 parent = follow_dotdot_rcu(nd, &inode, &seq); 1797 else 1798 parent = follow_dotdot(nd, &inode, &seq); 1799 if (IS_ERR(parent)) 1800 return ERR_CAST(parent); 1801 if (unlikely(!parent)) 1802 error = step_into(nd, WALK_NOFOLLOW, 1803 nd->path.dentry, nd->inode, nd->seq); 1804 else 1805 error = step_into(nd, WALK_NOFOLLOW, 1806 parent, inode, seq); 1807 if (unlikely(error)) 1808 return error; 1809 1810 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) { 1811 /* 1812 * If there was a racing rename or mount along our 1813 * path, then we can't be sure that ".." hasn't jumped 1814 * above nd->root (and so userspace should retry or use 1815 * some fallback). 1816 */ 1817 smp_rmb(); 1818 if (unlikely(__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq))) 1819 return ERR_PTR(-EAGAIN); 1820 if (unlikely(__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq))) 1821 return ERR_PTR(-EAGAIN); 1822 } 1823 } 1824 return NULL; 1825 } 1826 1827 static const char *walk_component(struct nameidata *nd, int flags) 1828 { 1829 struct dentry *dentry; 1830 struct inode *inode; 1831 unsigned seq; 1832 /* 1833 * "." and ".." are special - ".." especially so because it has 1834 * to be able to know about the current root directory and 1835 * parent relationships. 1836 */ 1837 if (unlikely(nd->last_type != LAST_NORM)) { 1838 if (!(flags & WALK_MORE) && nd->depth) 1839 put_link(nd); 1840 return handle_dots(nd, nd->last_type); 1841 } 1842 dentry = lookup_fast(nd, &inode, &seq); 1843 if (IS_ERR(dentry)) 1844 return ERR_CAST(dentry); 1845 if (unlikely(!dentry)) { 1846 dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags); 1847 if (IS_ERR(dentry)) 1848 return ERR_CAST(dentry); 1849 } 1850 if (!(flags & WALK_MORE) && nd->depth) 1851 put_link(nd); 1852 return step_into(nd, flags, dentry, inode, seq); 1853 } 1854 1855 /* 1856 * We can do the critical dentry name comparison and hashing 1857 * operations one word at a time, but we are limited to: 1858 * 1859 * - Architectures with fast unaligned word accesses. We could 1860 * do a "get_unaligned()" if this helps and is sufficiently 1861 * fast. 1862 * 1863 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we 1864 * do not trap on the (extremely unlikely) case of a page 1865 * crossing operation. 1866 * 1867 * - Furthermore, we need an efficient 64-bit compile for the 1868 * 64-bit case in order to generate the "number of bytes in 1869 * the final mask". Again, that could be replaced with a 1870 * efficient population count instruction or similar. 1871 */ 1872 #ifdef CONFIG_DCACHE_WORD_ACCESS 1873 1874 #include <asm/word-at-a-time.h> 1875 1876 #ifdef HASH_MIX 1877 1878 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */ 1879 1880 #elif defined(CONFIG_64BIT) 1881 /* 1882 * Register pressure in the mixing function is an issue, particularly 1883 * on 32-bit x86, but almost any function requires one state value and 1884 * one temporary. Instead, use a function designed for two state values 1885 * and no temporaries. 1886 * 1887 * This function cannot create a collision in only two iterations, so 1888 * we have two iterations to achieve avalanche. In those two iterations, 1889 * we have six layers of mixing, which is enough to spread one bit's 1890 * influence out to 2^6 = 64 state bits. 1891 * 1892 * Rotate constants are scored by considering either 64 one-bit input 1893 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the 1894 * probability of that delta causing a change to each of the 128 output 1895 * bits, using a sample of random initial states. 1896 * 1897 * The Shannon entropy of the computed probabilities is then summed 1898 * to produce a score. Ideally, any input change has a 50% chance of 1899 * toggling any given output bit. 1900 * 1901 * Mixing scores (in bits) for (12,45): 1902 * Input delta: 1-bit 2-bit 1903 * 1 round: 713.3 42542.6 1904 * 2 rounds: 2753.7 140389.8 1905 * 3 rounds: 5954.1 233458.2 1906 * 4 rounds: 7862.6 256672.2 1907 * Perfect: 8192 258048 1908 * (64*128) (64*63/2 * 128) 1909 */ 1910 #define HASH_MIX(x, y, a) \ 1911 ( x ^= (a), \ 1912 y ^= x, x = rol64(x,12),\ 1913 x += y, y = rol64(y,45),\ 1914 y *= 9 ) 1915 1916 /* 1917 * Fold two longs into one 32-bit hash value. This must be fast, but 1918 * latency isn't quite as critical, as there is a fair bit of additional 1919 * work done before the hash value is used. 1920 */ 1921 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 1922 { 1923 y ^= x * GOLDEN_RATIO_64; 1924 y *= GOLDEN_RATIO_64; 1925 return y >> 32; 1926 } 1927 1928 #else /* 32-bit case */ 1929 1930 /* 1931 * Mixing scores (in bits) for (7,20): 1932 * Input delta: 1-bit 2-bit 1933 * 1 round: 330.3 9201.6 1934 * 2 rounds: 1246.4 25475.4 1935 * 3 rounds: 1907.1 31295.1 1936 * 4 rounds: 2042.3 31718.6 1937 * Perfect: 2048 31744 1938 * (32*64) (32*31/2 * 64) 1939 */ 1940 #define HASH_MIX(x, y, a) \ 1941 ( x ^= (a), \ 1942 y ^= x, x = rol32(x, 7),\ 1943 x += y, y = rol32(y,20),\ 1944 y *= 9 ) 1945 1946 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 1947 { 1948 /* Use arch-optimized multiply if one exists */ 1949 return __hash_32(y ^ __hash_32(x)); 1950 } 1951 1952 #endif 1953 1954 /* 1955 * Return the hash of a string of known length. This is carfully 1956 * designed to match hash_name(), which is the more critical function. 1957 * In particular, we must end by hashing a final word containing 0..7 1958 * payload bytes, to match the way that hash_name() iterates until it 1959 * finds the delimiter after the name. 1960 */ 1961 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 1962 { 1963 unsigned long a, x = 0, y = (unsigned long)salt; 1964 1965 for (;;) { 1966 if (!len) 1967 goto done; 1968 a = load_unaligned_zeropad(name); 1969 if (len < sizeof(unsigned long)) 1970 break; 1971 HASH_MIX(x, y, a); 1972 name += sizeof(unsigned long); 1973 len -= sizeof(unsigned long); 1974 } 1975 x ^= a & bytemask_from_count(len); 1976 done: 1977 return fold_hash(x, y); 1978 } 1979 EXPORT_SYMBOL(full_name_hash); 1980 1981 /* Return the "hash_len" (hash and length) of a null-terminated string */ 1982 u64 hashlen_string(const void *salt, const char *name) 1983 { 1984 unsigned long a = 0, x = 0, y = (unsigned long)salt; 1985 unsigned long adata, mask, len; 1986 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 1987 1988 len = 0; 1989 goto inside; 1990 1991 do { 1992 HASH_MIX(x, y, a); 1993 len += sizeof(unsigned long); 1994 inside: 1995 a = load_unaligned_zeropad(name+len); 1996 } while (!has_zero(a, &adata, &constants)); 1997 1998 adata = prep_zero_mask(a, adata, &constants); 1999 mask = create_zero_mask(adata); 2000 x ^= a & zero_bytemask(mask); 2001 2002 return hashlen_create(fold_hash(x, y), len + find_zero(mask)); 2003 } 2004 EXPORT_SYMBOL(hashlen_string); 2005 2006 /* 2007 * Calculate the length and hash of the path component, and 2008 * return the "hash_len" as the result. 2009 */ 2010 static inline u64 hash_name(const void *salt, const char *name) 2011 { 2012 unsigned long a = 0, b, x = 0, y = (unsigned long)salt; 2013 unsigned long adata, bdata, mask, len; 2014 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 2015 2016 len = 0; 2017 goto inside; 2018 2019 do { 2020 HASH_MIX(x, y, a); 2021 len += sizeof(unsigned long); 2022 inside: 2023 a = load_unaligned_zeropad(name+len); 2024 b = a ^ REPEAT_BYTE('/'); 2025 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants))); 2026 2027 adata = prep_zero_mask(a, adata, &constants); 2028 bdata = prep_zero_mask(b, bdata, &constants); 2029 mask = create_zero_mask(adata | bdata); 2030 x ^= a & zero_bytemask(mask); 2031 2032 return hashlen_create(fold_hash(x, y), len + find_zero(mask)); 2033 } 2034 2035 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */ 2036 2037 /* Return the hash of a string of known length */ 2038 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 2039 { 2040 unsigned long hash = init_name_hash(salt); 2041 while (len--) 2042 hash = partial_name_hash((unsigned char)*name++, hash); 2043 return end_name_hash(hash); 2044 } 2045 EXPORT_SYMBOL(full_name_hash); 2046 2047 /* Return the "hash_len" (hash and length) of a null-terminated string */ 2048 u64 hashlen_string(const void *salt, const char *name) 2049 { 2050 unsigned long hash = init_name_hash(salt); 2051 unsigned long len = 0, c; 2052 2053 c = (unsigned char)*name; 2054 while (c) { 2055 len++; 2056 hash = partial_name_hash(c, hash); 2057 c = (unsigned char)name[len]; 2058 } 2059 return hashlen_create(end_name_hash(hash), len); 2060 } 2061 EXPORT_SYMBOL(hashlen_string); 2062 2063 /* 2064 * We know there's a real path component here of at least 2065 * one character. 2066 */ 2067 static inline u64 hash_name(const void *salt, const char *name) 2068 { 2069 unsigned long hash = init_name_hash(salt); 2070 unsigned long len = 0, c; 2071 2072 c = (unsigned char)*name; 2073 do { 2074 len++; 2075 hash = partial_name_hash(c, hash); 2076 c = (unsigned char)name[len]; 2077 } while (c && c != '/'); 2078 return hashlen_create(end_name_hash(hash), len); 2079 } 2080 2081 #endif 2082 2083 /* 2084 * Name resolution. 2085 * This is the basic name resolution function, turning a pathname into 2086 * the final dentry. We expect 'base' to be positive and a directory. 2087 * 2088 * Returns 0 and nd will have valid dentry and mnt on success. 2089 * Returns error and drops reference to input namei data on failure. 2090 */ 2091 static int link_path_walk(const char *name, struct nameidata *nd) 2092 { 2093 int depth = 0; // depth <= nd->depth 2094 int err; 2095 2096 nd->last_type = LAST_ROOT; 2097 nd->flags |= LOOKUP_PARENT; 2098 if (IS_ERR(name)) 2099 return PTR_ERR(name); 2100 while (*name=='/') 2101 name++; 2102 if (!*name) 2103 return 0; 2104 2105 /* At this point we know we have a real path component. */ 2106 for(;;) { 2107 const char *link; 2108 u64 hash_len; 2109 int type; 2110 2111 err = may_lookup(nd); 2112 if (err) 2113 return err; 2114 2115 hash_len = hash_name(nd->path.dentry, name); 2116 2117 type = LAST_NORM; 2118 if (name[0] == '.') switch (hashlen_len(hash_len)) { 2119 case 2: 2120 if (name[1] == '.') { 2121 type = LAST_DOTDOT; 2122 nd->flags |= LOOKUP_JUMPED; 2123 } 2124 break; 2125 case 1: 2126 type = LAST_DOT; 2127 } 2128 if (likely(type == LAST_NORM)) { 2129 struct dentry *parent = nd->path.dentry; 2130 nd->flags &= ~LOOKUP_JUMPED; 2131 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { 2132 struct qstr this = { { .hash_len = hash_len }, .name = name }; 2133 err = parent->d_op->d_hash(parent, &this); 2134 if (err < 0) 2135 return err; 2136 hash_len = this.hash_len; 2137 name = this.name; 2138 } 2139 } 2140 2141 nd->last.hash_len = hash_len; 2142 nd->last.name = name; 2143 nd->last_type = type; 2144 2145 name += hashlen_len(hash_len); 2146 if (!*name) 2147 goto OK; 2148 /* 2149 * If it wasn't NUL, we know it was '/'. Skip that 2150 * slash, and continue until no more slashes. 2151 */ 2152 do { 2153 name++; 2154 } while (unlikely(*name == '/')); 2155 if (unlikely(!*name)) { 2156 OK: 2157 /* pathname or trailing symlink, done */ 2158 if (!depth) { 2159 nd->dir_uid = nd->inode->i_uid; 2160 nd->dir_mode = nd->inode->i_mode; 2161 nd->flags &= ~LOOKUP_PARENT; 2162 return 0; 2163 } 2164 /* last component of nested symlink */ 2165 name = nd->stack[--depth].name; 2166 link = walk_component(nd, 0); 2167 } else { 2168 /* not the last component */ 2169 link = walk_component(nd, WALK_MORE); 2170 } 2171 if (unlikely(link)) { 2172 if (IS_ERR(link)) 2173 return PTR_ERR(link); 2174 /* a symlink to follow */ 2175 nd->stack[depth++].name = name; 2176 name = link; 2177 continue; 2178 } 2179 if (unlikely(!d_can_lookup(nd->path.dentry))) { 2180 if (nd->flags & LOOKUP_RCU) { 2181 if (unlazy_walk(nd)) 2182 return -ECHILD; 2183 } 2184 return -ENOTDIR; 2185 } 2186 } 2187 } 2188 2189 /* must be paired with terminate_walk() */ 2190 static const char *path_init(struct nameidata *nd, unsigned flags) 2191 { 2192 int error; 2193 const char *s = nd->name->name; 2194 2195 if (!*s) 2196 flags &= ~LOOKUP_RCU; 2197 if (flags & LOOKUP_RCU) 2198 rcu_read_lock(); 2199 2200 nd->flags = flags | LOOKUP_JUMPED; 2201 nd->depth = 0; 2202 2203 nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount); 2204 nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount); 2205 smp_rmb(); 2206 2207 if (flags & LOOKUP_ROOT) { 2208 struct dentry *root = nd->root.dentry; 2209 struct inode *inode = root->d_inode; 2210 if (*s && unlikely(!d_can_lookup(root))) 2211 return ERR_PTR(-ENOTDIR); 2212 nd->path = nd->root; 2213 nd->inode = inode; 2214 if (flags & LOOKUP_RCU) { 2215 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 2216 nd->root_seq = nd->seq; 2217 } else { 2218 path_get(&nd->path); 2219 } 2220 return s; 2221 } 2222 2223 nd->root.mnt = NULL; 2224 nd->path.mnt = NULL; 2225 nd->path.dentry = NULL; 2226 2227 /* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */ 2228 if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) { 2229 error = nd_jump_root(nd); 2230 if (unlikely(error)) 2231 return ERR_PTR(error); 2232 return s; 2233 } 2234 2235 /* Relative pathname -- get the starting-point it is relative to. */ 2236 if (nd->dfd == AT_FDCWD) { 2237 if (flags & LOOKUP_RCU) { 2238 struct fs_struct *fs = current->fs; 2239 unsigned seq; 2240 2241 do { 2242 seq = read_seqcount_begin(&fs->seq); 2243 nd->path = fs->pwd; 2244 nd->inode = nd->path.dentry->d_inode; 2245 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 2246 } while (read_seqcount_retry(&fs->seq, seq)); 2247 } else { 2248 get_fs_pwd(current->fs, &nd->path); 2249 nd->inode = nd->path.dentry->d_inode; 2250 } 2251 } else { 2252 /* Caller must check execute permissions on the starting path component */ 2253 struct fd f = fdget_raw(nd->dfd); 2254 struct dentry *dentry; 2255 2256 if (!f.file) 2257 return ERR_PTR(-EBADF); 2258 2259 dentry = f.file->f_path.dentry; 2260 2261 if (*s && unlikely(!d_can_lookup(dentry))) { 2262 fdput(f); 2263 return ERR_PTR(-ENOTDIR); 2264 } 2265 2266 nd->path = f.file->f_path; 2267 if (flags & LOOKUP_RCU) { 2268 nd->inode = nd->path.dentry->d_inode; 2269 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 2270 } else { 2271 path_get(&nd->path); 2272 nd->inode = nd->path.dentry->d_inode; 2273 } 2274 fdput(f); 2275 } 2276 2277 /* For scoped-lookups we need to set the root to the dirfd as well. */ 2278 if (flags & LOOKUP_IS_SCOPED) { 2279 nd->root = nd->path; 2280 if (flags & LOOKUP_RCU) { 2281 nd->root_seq = nd->seq; 2282 } else { 2283 path_get(&nd->root); 2284 nd->flags |= LOOKUP_ROOT_GRABBED; 2285 } 2286 } 2287 return s; 2288 } 2289 2290 static inline const char *lookup_last(struct nameidata *nd) 2291 { 2292 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len]) 2293 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 2294 2295 return walk_component(nd, WALK_TRAILING); 2296 } 2297 2298 static int handle_lookup_down(struct nameidata *nd) 2299 { 2300 if (!(nd->flags & LOOKUP_RCU)) 2301 dget(nd->path.dentry); 2302 return PTR_ERR(step_into(nd, WALK_NOFOLLOW, 2303 nd->path.dentry, nd->inode, nd->seq)); 2304 } 2305 2306 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2307 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path) 2308 { 2309 const char *s = path_init(nd, flags); 2310 int err; 2311 2312 if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) { 2313 err = handle_lookup_down(nd); 2314 if (unlikely(err < 0)) 2315 s = ERR_PTR(err); 2316 } 2317 2318 while (!(err = link_path_walk(s, nd)) && 2319 (s = lookup_last(nd)) != NULL) 2320 ; 2321 if (!err) 2322 err = complete_walk(nd); 2323 2324 if (!err && nd->flags & LOOKUP_DIRECTORY) 2325 if (!d_can_lookup(nd->path.dentry)) 2326 err = -ENOTDIR; 2327 if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) { 2328 err = handle_lookup_down(nd); 2329 nd->flags &= ~LOOKUP_JUMPED; // no d_weak_revalidate(), please... 2330 } 2331 if (!err) { 2332 *path = nd->path; 2333 nd->path.mnt = NULL; 2334 nd->path.dentry = NULL; 2335 } 2336 terminate_walk(nd); 2337 return err; 2338 } 2339 2340 int filename_lookup(int dfd, struct filename *name, unsigned flags, 2341 struct path *path, struct path *root) 2342 { 2343 int retval; 2344 struct nameidata nd; 2345 if (IS_ERR(name)) 2346 return PTR_ERR(name); 2347 if (unlikely(root)) { 2348 nd.root = *root; 2349 flags |= LOOKUP_ROOT; 2350 } 2351 set_nameidata(&nd, dfd, name); 2352 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path); 2353 if (unlikely(retval == -ECHILD)) 2354 retval = path_lookupat(&nd, flags, path); 2355 if (unlikely(retval == -ESTALE)) 2356 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path); 2357 2358 if (likely(!retval)) 2359 audit_inode(name, path->dentry, 2360 flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0); 2361 restore_nameidata(); 2362 putname(name); 2363 return retval; 2364 } 2365 2366 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2367 static int path_parentat(struct nameidata *nd, unsigned flags, 2368 struct path *parent) 2369 { 2370 const char *s = path_init(nd, flags); 2371 int err = link_path_walk(s, nd); 2372 if (!err) 2373 err = complete_walk(nd); 2374 if (!err) { 2375 *parent = nd->path; 2376 nd->path.mnt = NULL; 2377 nd->path.dentry = NULL; 2378 } 2379 terminate_walk(nd); 2380 return err; 2381 } 2382 2383 static struct filename *filename_parentat(int dfd, struct filename *name, 2384 unsigned int flags, struct path *parent, 2385 struct qstr *last, int *type) 2386 { 2387 int retval; 2388 struct nameidata nd; 2389 2390 if (IS_ERR(name)) 2391 return name; 2392 set_nameidata(&nd, dfd, name); 2393 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent); 2394 if (unlikely(retval == -ECHILD)) 2395 retval = path_parentat(&nd, flags, parent); 2396 if (unlikely(retval == -ESTALE)) 2397 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent); 2398 if (likely(!retval)) { 2399 *last = nd.last; 2400 *type = nd.last_type; 2401 audit_inode(name, parent->dentry, AUDIT_INODE_PARENT); 2402 } else { 2403 putname(name); 2404 name = ERR_PTR(retval); 2405 } 2406 restore_nameidata(); 2407 return name; 2408 } 2409 2410 /* does lookup, returns the object with parent locked */ 2411 struct dentry *kern_path_locked(const char *name, struct path *path) 2412 { 2413 struct filename *filename; 2414 struct dentry *d; 2415 struct qstr last; 2416 int type; 2417 2418 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path, 2419 &last, &type); 2420 if (IS_ERR(filename)) 2421 return ERR_CAST(filename); 2422 if (unlikely(type != LAST_NORM)) { 2423 path_put(path); 2424 putname(filename); 2425 return ERR_PTR(-EINVAL); 2426 } 2427 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 2428 d = __lookup_hash(&last, path->dentry, 0); 2429 if (IS_ERR(d)) { 2430 inode_unlock(path->dentry->d_inode); 2431 path_put(path); 2432 } 2433 putname(filename); 2434 return d; 2435 } 2436 2437 int kern_path(const char *name, unsigned int flags, struct path *path) 2438 { 2439 return filename_lookup(AT_FDCWD, getname_kernel(name), 2440 flags, path, NULL); 2441 } 2442 EXPORT_SYMBOL(kern_path); 2443 2444 /** 2445 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 2446 * @dentry: pointer to dentry of the base directory 2447 * @mnt: pointer to vfs mount of the base directory 2448 * @name: pointer to file name 2449 * @flags: lookup flags 2450 * @path: pointer to struct path to fill 2451 */ 2452 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 2453 const char *name, unsigned int flags, 2454 struct path *path) 2455 { 2456 struct path root = {.mnt = mnt, .dentry = dentry}; 2457 /* the first argument of filename_lookup() is ignored with root */ 2458 return filename_lookup(AT_FDCWD, getname_kernel(name), 2459 flags , path, &root); 2460 } 2461 EXPORT_SYMBOL(vfs_path_lookup); 2462 2463 static int lookup_one_len_common(const char *name, struct dentry *base, 2464 int len, struct qstr *this) 2465 { 2466 this->name = name; 2467 this->len = len; 2468 this->hash = full_name_hash(base, name, len); 2469 if (!len) 2470 return -EACCES; 2471 2472 if (unlikely(name[0] == '.')) { 2473 if (len < 2 || (len == 2 && name[1] == '.')) 2474 return -EACCES; 2475 } 2476 2477 while (len--) { 2478 unsigned int c = *(const unsigned char *)name++; 2479 if (c == '/' || c == '\0') 2480 return -EACCES; 2481 } 2482 /* 2483 * See if the low-level filesystem might want 2484 * to use its own hash.. 2485 */ 2486 if (base->d_flags & DCACHE_OP_HASH) { 2487 int err = base->d_op->d_hash(base, this); 2488 if (err < 0) 2489 return err; 2490 } 2491 2492 return inode_permission(base->d_inode, MAY_EXEC); 2493 } 2494 2495 /** 2496 * try_lookup_one_len - filesystem helper to lookup single pathname component 2497 * @name: pathname component to lookup 2498 * @base: base directory to lookup from 2499 * @len: maximum length @len should be interpreted to 2500 * 2501 * Look up a dentry by name in the dcache, returning NULL if it does not 2502 * currently exist. The function does not try to create a dentry. 2503 * 2504 * Note that this routine is purely a helper for filesystem usage and should 2505 * not be called by generic code. 2506 * 2507 * The caller must hold base->i_mutex. 2508 */ 2509 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len) 2510 { 2511 struct qstr this; 2512 int err; 2513 2514 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2515 2516 err = lookup_one_len_common(name, base, len, &this); 2517 if (err) 2518 return ERR_PTR(err); 2519 2520 return lookup_dcache(&this, base, 0); 2521 } 2522 EXPORT_SYMBOL(try_lookup_one_len); 2523 2524 /** 2525 * lookup_one_len - filesystem helper to lookup single pathname component 2526 * @name: pathname component to lookup 2527 * @base: base directory to lookup from 2528 * @len: maximum length @len should be interpreted to 2529 * 2530 * Note that this routine is purely a helper for filesystem usage and should 2531 * not be called by generic code. 2532 * 2533 * The caller must hold base->i_mutex. 2534 */ 2535 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 2536 { 2537 struct dentry *dentry; 2538 struct qstr this; 2539 int err; 2540 2541 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2542 2543 err = lookup_one_len_common(name, base, len, &this); 2544 if (err) 2545 return ERR_PTR(err); 2546 2547 dentry = lookup_dcache(&this, base, 0); 2548 return dentry ? dentry : __lookup_slow(&this, base, 0); 2549 } 2550 EXPORT_SYMBOL(lookup_one_len); 2551 2552 /** 2553 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component 2554 * @name: pathname component to lookup 2555 * @base: base directory to lookup from 2556 * @len: maximum length @len should be interpreted to 2557 * 2558 * Note that this routine is purely a helper for filesystem usage and should 2559 * not be called by generic code. 2560 * 2561 * Unlike lookup_one_len, it should be called without the parent 2562 * i_mutex held, and will take the i_mutex itself if necessary. 2563 */ 2564 struct dentry *lookup_one_len_unlocked(const char *name, 2565 struct dentry *base, int len) 2566 { 2567 struct qstr this; 2568 int err; 2569 struct dentry *ret; 2570 2571 err = lookup_one_len_common(name, base, len, &this); 2572 if (err) 2573 return ERR_PTR(err); 2574 2575 ret = lookup_dcache(&this, base, 0); 2576 if (!ret) 2577 ret = lookup_slow(&this, base, 0); 2578 return ret; 2579 } 2580 EXPORT_SYMBOL(lookup_one_len_unlocked); 2581 2582 /* 2583 * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT) 2584 * on negatives. Returns known positive or ERR_PTR(); that's what 2585 * most of the users want. Note that pinned negative with unlocked parent 2586 * _can_ become positive at any time, so callers of lookup_one_len_unlocked() 2587 * need to be very careful; pinned positives have ->d_inode stable, so 2588 * this one avoids such problems. 2589 */ 2590 struct dentry *lookup_positive_unlocked(const char *name, 2591 struct dentry *base, int len) 2592 { 2593 struct dentry *ret = lookup_one_len_unlocked(name, base, len); 2594 if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) { 2595 dput(ret); 2596 ret = ERR_PTR(-ENOENT); 2597 } 2598 return ret; 2599 } 2600 EXPORT_SYMBOL(lookup_positive_unlocked); 2601 2602 #ifdef CONFIG_UNIX98_PTYS 2603 int path_pts(struct path *path) 2604 { 2605 /* Find something mounted on "pts" in the same directory as 2606 * the input path. 2607 */ 2608 struct dentry *parent = dget_parent(path->dentry); 2609 struct dentry *child; 2610 struct qstr this = QSTR_INIT("pts", 3); 2611 2612 if (unlikely(!path_connected(path->mnt, parent))) { 2613 dput(parent); 2614 return -ENOENT; 2615 } 2616 dput(path->dentry); 2617 path->dentry = parent; 2618 child = d_hash_and_lookup(parent, &this); 2619 if (!child) 2620 return -ENOENT; 2621 2622 path->dentry = child; 2623 dput(parent); 2624 follow_down(path); 2625 return 0; 2626 } 2627 #endif 2628 2629 int user_path_at_empty(int dfd, const char __user *name, unsigned flags, 2630 struct path *path, int *empty) 2631 { 2632 return filename_lookup(dfd, getname_flags(name, flags, empty), 2633 flags, path, NULL); 2634 } 2635 EXPORT_SYMBOL(user_path_at_empty); 2636 2637 int __check_sticky(struct inode *dir, struct inode *inode) 2638 { 2639 kuid_t fsuid = current_fsuid(); 2640 2641 if (uid_eq(inode->i_uid, fsuid)) 2642 return 0; 2643 if (uid_eq(dir->i_uid, fsuid)) 2644 return 0; 2645 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER); 2646 } 2647 EXPORT_SYMBOL(__check_sticky); 2648 2649 /* 2650 * Check whether we can remove a link victim from directory dir, check 2651 * whether the type of victim is right. 2652 * 1. We can't do it if dir is read-only (done in permission()) 2653 * 2. We should have write and exec permissions on dir 2654 * 3. We can't remove anything from append-only dir 2655 * 4. We can't do anything with immutable dir (done in permission()) 2656 * 5. If the sticky bit on dir is set we should either 2657 * a. be owner of dir, or 2658 * b. be owner of victim, or 2659 * c. have CAP_FOWNER capability 2660 * 6. If the victim is append-only or immutable we can't do antyhing with 2661 * links pointing to it. 2662 * 7. If the victim has an unknown uid or gid we can't change the inode. 2663 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR. 2664 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR. 2665 * 10. We can't remove a root or mountpoint. 2666 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by 2667 * nfs_async_unlink(). 2668 */ 2669 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir) 2670 { 2671 struct inode *inode = d_backing_inode(victim); 2672 int error; 2673 2674 if (d_is_negative(victim)) 2675 return -ENOENT; 2676 BUG_ON(!inode); 2677 2678 BUG_ON(victim->d_parent->d_inode != dir); 2679 2680 /* Inode writeback is not safe when the uid or gid are invalid. */ 2681 if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid)) 2682 return -EOVERFLOW; 2683 2684 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 2685 2686 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 2687 if (error) 2688 return error; 2689 if (IS_APPEND(dir)) 2690 return -EPERM; 2691 2692 if (check_sticky(dir, inode) || IS_APPEND(inode) || 2693 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode)) 2694 return -EPERM; 2695 if (isdir) { 2696 if (!d_is_dir(victim)) 2697 return -ENOTDIR; 2698 if (IS_ROOT(victim)) 2699 return -EBUSY; 2700 } else if (d_is_dir(victim)) 2701 return -EISDIR; 2702 if (IS_DEADDIR(dir)) 2703 return -ENOENT; 2704 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 2705 return -EBUSY; 2706 return 0; 2707 } 2708 2709 /* Check whether we can create an object with dentry child in directory 2710 * dir. 2711 * 1. We can't do it if child already exists (open has special treatment for 2712 * this case, but since we are inlined it's OK) 2713 * 2. We can't do it if dir is read-only (done in permission()) 2714 * 3. We can't do it if the fs can't represent the fsuid or fsgid. 2715 * 4. We should have write and exec permissions on dir 2716 * 5. We can't do it if dir is immutable (done in permission()) 2717 */ 2718 static inline int may_create(struct inode *dir, struct dentry *child) 2719 { 2720 struct user_namespace *s_user_ns; 2721 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE); 2722 if (child->d_inode) 2723 return -EEXIST; 2724 if (IS_DEADDIR(dir)) 2725 return -ENOENT; 2726 s_user_ns = dir->i_sb->s_user_ns; 2727 if (!kuid_has_mapping(s_user_ns, current_fsuid()) || 2728 !kgid_has_mapping(s_user_ns, current_fsgid())) 2729 return -EOVERFLOW; 2730 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 2731 } 2732 2733 /* 2734 * p1 and p2 should be directories on the same fs. 2735 */ 2736 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 2737 { 2738 struct dentry *p; 2739 2740 if (p1 == p2) { 2741 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2742 return NULL; 2743 } 2744 2745 mutex_lock(&p1->d_sb->s_vfs_rename_mutex); 2746 2747 p = d_ancestor(p2, p1); 2748 if (p) { 2749 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT); 2750 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD); 2751 return p; 2752 } 2753 2754 p = d_ancestor(p1, p2); 2755 if (p) { 2756 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2757 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD); 2758 return p; 2759 } 2760 2761 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2762 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2); 2763 return NULL; 2764 } 2765 EXPORT_SYMBOL(lock_rename); 2766 2767 void unlock_rename(struct dentry *p1, struct dentry *p2) 2768 { 2769 inode_unlock(p1->d_inode); 2770 if (p1 != p2) { 2771 inode_unlock(p2->d_inode); 2772 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex); 2773 } 2774 } 2775 EXPORT_SYMBOL(unlock_rename); 2776 2777 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2778 bool want_excl) 2779 { 2780 int error = may_create(dir, dentry); 2781 if (error) 2782 return error; 2783 2784 if (!dir->i_op->create) 2785 return -EACCES; /* shouldn't it be ENOSYS? */ 2786 mode &= S_IALLUGO; 2787 mode |= S_IFREG; 2788 error = security_inode_create(dir, dentry, mode); 2789 if (error) 2790 return error; 2791 error = dir->i_op->create(dir, dentry, mode, want_excl); 2792 if (!error) 2793 fsnotify_create(dir, dentry); 2794 return error; 2795 } 2796 EXPORT_SYMBOL(vfs_create); 2797 2798 int vfs_mkobj(struct dentry *dentry, umode_t mode, 2799 int (*f)(struct dentry *, umode_t, void *), 2800 void *arg) 2801 { 2802 struct inode *dir = dentry->d_parent->d_inode; 2803 int error = may_create(dir, dentry); 2804 if (error) 2805 return error; 2806 2807 mode &= S_IALLUGO; 2808 mode |= S_IFREG; 2809 error = security_inode_create(dir, dentry, mode); 2810 if (error) 2811 return error; 2812 error = f(dentry, mode, arg); 2813 if (!error) 2814 fsnotify_create(dir, dentry); 2815 return error; 2816 } 2817 EXPORT_SYMBOL(vfs_mkobj); 2818 2819 bool may_open_dev(const struct path *path) 2820 { 2821 return !(path->mnt->mnt_flags & MNT_NODEV) && 2822 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV); 2823 } 2824 2825 static int may_open(const struct path *path, int acc_mode, int flag) 2826 { 2827 struct dentry *dentry = path->dentry; 2828 struct inode *inode = dentry->d_inode; 2829 int error; 2830 2831 if (!inode) 2832 return -ENOENT; 2833 2834 switch (inode->i_mode & S_IFMT) { 2835 case S_IFLNK: 2836 return -ELOOP; 2837 case S_IFDIR: 2838 if (acc_mode & MAY_WRITE) 2839 return -EISDIR; 2840 break; 2841 case S_IFBLK: 2842 case S_IFCHR: 2843 if (!may_open_dev(path)) 2844 return -EACCES; 2845 /*FALLTHRU*/ 2846 case S_IFIFO: 2847 case S_IFSOCK: 2848 flag &= ~O_TRUNC; 2849 break; 2850 } 2851 2852 error = inode_permission(inode, MAY_OPEN | acc_mode); 2853 if (error) 2854 return error; 2855 2856 /* 2857 * An append-only file must be opened in append mode for writing. 2858 */ 2859 if (IS_APPEND(inode)) { 2860 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 2861 return -EPERM; 2862 if (flag & O_TRUNC) 2863 return -EPERM; 2864 } 2865 2866 /* O_NOATIME can only be set by the owner or superuser */ 2867 if (flag & O_NOATIME && !inode_owner_or_capable(inode)) 2868 return -EPERM; 2869 2870 return 0; 2871 } 2872 2873 static int handle_truncate(struct file *filp) 2874 { 2875 const struct path *path = &filp->f_path; 2876 struct inode *inode = path->dentry->d_inode; 2877 int error = get_write_access(inode); 2878 if (error) 2879 return error; 2880 /* 2881 * Refuse to truncate files with mandatory locks held on them. 2882 */ 2883 error = locks_verify_locked(filp); 2884 if (!error) 2885 error = security_path_truncate(path); 2886 if (!error) { 2887 error = do_truncate(path->dentry, 0, 2888 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 2889 filp); 2890 } 2891 put_write_access(inode); 2892 return error; 2893 } 2894 2895 static inline int open_to_namei_flags(int flag) 2896 { 2897 if ((flag & O_ACCMODE) == 3) 2898 flag--; 2899 return flag; 2900 } 2901 2902 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode) 2903 { 2904 struct user_namespace *s_user_ns; 2905 int error = security_path_mknod(dir, dentry, mode, 0); 2906 if (error) 2907 return error; 2908 2909 s_user_ns = dir->dentry->d_sb->s_user_ns; 2910 if (!kuid_has_mapping(s_user_ns, current_fsuid()) || 2911 !kgid_has_mapping(s_user_ns, current_fsgid())) 2912 return -EOVERFLOW; 2913 2914 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC); 2915 if (error) 2916 return error; 2917 2918 return security_inode_create(dir->dentry->d_inode, dentry, mode); 2919 } 2920 2921 /* 2922 * Attempt to atomically look up, create and open a file from a negative 2923 * dentry. 2924 * 2925 * Returns 0 if successful. The file will have been created and attached to 2926 * @file by the filesystem calling finish_open(). 2927 * 2928 * If the file was looked up only or didn't need creating, FMODE_OPENED won't 2929 * be set. The caller will need to perform the open themselves. @path will 2930 * have been updated to point to the new dentry. This may be negative. 2931 * 2932 * Returns an error code otherwise. 2933 */ 2934 static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry, 2935 struct file *file, 2936 int open_flag, umode_t mode) 2937 { 2938 struct dentry *const DENTRY_NOT_SET = (void *) -1UL; 2939 struct inode *dir = nd->path.dentry->d_inode; 2940 int error; 2941 2942 if (nd->flags & LOOKUP_DIRECTORY) 2943 open_flag |= O_DIRECTORY; 2944 2945 file->f_path.dentry = DENTRY_NOT_SET; 2946 file->f_path.mnt = nd->path.mnt; 2947 error = dir->i_op->atomic_open(dir, dentry, file, 2948 open_to_namei_flags(open_flag), mode); 2949 d_lookup_done(dentry); 2950 if (!error) { 2951 if (file->f_mode & FMODE_OPENED) { 2952 if (unlikely(dentry != file->f_path.dentry)) { 2953 dput(dentry); 2954 dentry = dget(file->f_path.dentry); 2955 } 2956 } else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) { 2957 error = -EIO; 2958 } else { 2959 if (file->f_path.dentry) { 2960 dput(dentry); 2961 dentry = file->f_path.dentry; 2962 } 2963 if (unlikely(d_is_negative(dentry))) 2964 error = -ENOENT; 2965 } 2966 } 2967 if (error) { 2968 dput(dentry); 2969 dentry = ERR_PTR(error); 2970 } 2971 return dentry; 2972 } 2973 2974 /* 2975 * Look up and maybe create and open the last component. 2976 * 2977 * Must be called with parent locked (exclusive in O_CREAT case). 2978 * 2979 * Returns 0 on success, that is, if 2980 * the file was successfully atomically created (if necessary) and opened, or 2981 * the file was not completely opened at this time, though lookups and 2982 * creations were performed. 2983 * These case are distinguished by presence of FMODE_OPENED on file->f_mode. 2984 * In the latter case dentry returned in @path might be negative if O_CREAT 2985 * hadn't been specified. 2986 * 2987 * An error code is returned on failure. 2988 */ 2989 static struct dentry *lookup_open(struct nameidata *nd, struct file *file, 2990 const struct open_flags *op, 2991 bool got_write) 2992 { 2993 struct dentry *dir = nd->path.dentry; 2994 struct inode *dir_inode = dir->d_inode; 2995 int open_flag = op->open_flag; 2996 struct dentry *dentry; 2997 int error, create_error = 0; 2998 umode_t mode = op->mode; 2999 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 3000 3001 if (unlikely(IS_DEADDIR(dir_inode))) 3002 return ERR_PTR(-ENOENT); 3003 3004 file->f_mode &= ~FMODE_CREATED; 3005 dentry = d_lookup(dir, &nd->last); 3006 for (;;) { 3007 if (!dentry) { 3008 dentry = d_alloc_parallel(dir, &nd->last, &wq); 3009 if (IS_ERR(dentry)) 3010 return dentry; 3011 } 3012 if (d_in_lookup(dentry)) 3013 break; 3014 3015 error = d_revalidate(dentry, nd->flags); 3016 if (likely(error > 0)) 3017 break; 3018 if (error) 3019 goto out_dput; 3020 d_invalidate(dentry); 3021 dput(dentry); 3022 dentry = NULL; 3023 } 3024 if (dentry->d_inode) { 3025 /* Cached positive dentry: will open in f_op->open */ 3026 return dentry; 3027 } 3028 3029 /* 3030 * Checking write permission is tricky, bacuse we don't know if we are 3031 * going to actually need it: O_CREAT opens should work as long as the 3032 * file exists. But checking existence breaks atomicity. The trick is 3033 * to check access and if not granted clear O_CREAT from the flags. 3034 * 3035 * Another problem is returing the "right" error value (e.g. for an 3036 * O_EXCL open we want to return EEXIST not EROFS). 3037 */ 3038 if (unlikely(!got_write)) 3039 open_flag &= ~O_TRUNC; 3040 if (open_flag & O_CREAT) { 3041 if (open_flag & O_EXCL) 3042 open_flag &= ~O_TRUNC; 3043 if (!IS_POSIXACL(dir->d_inode)) 3044 mode &= ~current_umask(); 3045 if (likely(got_write)) 3046 create_error = may_o_create(&nd->path, dentry, mode); 3047 else 3048 create_error = -EROFS; 3049 } 3050 if (create_error) 3051 open_flag &= ~O_CREAT; 3052 if (dir_inode->i_op->atomic_open) { 3053 dentry = atomic_open(nd, dentry, file, open_flag, mode); 3054 if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT)) 3055 dentry = ERR_PTR(create_error); 3056 return dentry; 3057 } 3058 3059 if (d_in_lookup(dentry)) { 3060 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry, 3061 nd->flags); 3062 d_lookup_done(dentry); 3063 if (unlikely(res)) { 3064 if (IS_ERR(res)) { 3065 error = PTR_ERR(res); 3066 goto out_dput; 3067 } 3068 dput(dentry); 3069 dentry = res; 3070 } 3071 } 3072 3073 /* Negative dentry, just create the file */ 3074 if (!dentry->d_inode && (open_flag & O_CREAT)) { 3075 file->f_mode |= FMODE_CREATED; 3076 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE); 3077 if (!dir_inode->i_op->create) { 3078 error = -EACCES; 3079 goto out_dput; 3080 } 3081 error = dir_inode->i_op->create(dir_inode, dentry, mode, 3082 open_flag & O_EXCL); 3083 if (error) 3084 goto out_dput; 3085 } 3086 if (unlikely(create_error) && !dentry->d_inode) { 3087 error = create_error; 3088 goto out_dput; 3089 } 3090 return dentry; 3091 3092 out_dput: 3093 dput(dentry); 3094 return ERR_PTR(error); 3095 } 3096 3097 static const char *open_last_lookups(struct nameidata *nd, 3098 struct file *file, const struct open_flags *op) 3099 { 3100 struct dentry *dir = nd->path.dentry; 3101 int open_flag = op->open_flag; 3102 bool got_write = false; 3103 unsigned seq; 3104 struct inode *inode; 3105 struct dentry *dentry; 3106 const char *res; 3107 int error; 3108 3109 nd->flags |= op->intent; 3110 3111 if (nd->last_type != LAST_NORM) { 3112 if (nd->depth) 3113 put_link(nd); 3114 return handle_dots(nd, nd->last_type); 3115 } 3116 3117 if (!(open_flag & O_CREAT)) { 3118 if (nd->last.name[nd->last.len]) 3119 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 3120 /* we _can_ be in RCU mode here */ 3121 dentry = lookup_fast(nd, &inode, &seq); 3122 if (IS_ERR(dentry)) 3123 return ERR_CAST(dentry); 3124 if (likely(dentry)) 3125 goto finish_lookup; 3126 3127 BUG_ON(nd->flags & LOOKUP_RCU); 3128 } else { 3129 /* create side of things */ 3130 if (nd->flags & LOOKUP_RCU) { 3131 error = unlazy_walk(nd); 3132 if (unlikely(error)) 3133 return ERR_PTR(error); 3134 } 3135 audit_inode(nd->name, dir, AUDIT_INODE_PARENT); 3136 /* trailing slashes? */ 3137 if (unlikely(nd->last.name[nd->last.len])) 3138 return ERR_PTR(-EISDIR); 3139 } 3140 3141 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) { 3142 error = mnt_want_write(nd->path.mnt); 3143 if (!error) 3144 got_write = true; 3145 /* 3146 * do _not_ fail yet - we might not need that or fail with 3147 * a different error; let lookup_open() decide; we'll be 3148 * dropping this one anyway. 3149 */ 3150 } 3151 if (open_flag & O_CREAT) 3152 inode_lock(dir->d_inode); 3153 else 3154 inode_lock_shared(dir->d_inode); 3155 dentry = lookup_open(nd, file, op, got_write); 3156 if (!IS_ERR(dentry) && (file->f_mode & FMODE_CREATED)) 3157 fsnotify_create(dir->d_inode, dentry); 3158 if (open_flag & O_CREAT) 3159 inode_unlock(dir->d_inode); 3160 else 3161 inode_unlock_shared(dir->d_inode); 3162 3163 if (got_write) 3164 mnt_drop_write(nd->path.mnt); 3165 3166 if (IS_ERR(dentry)) 3167 return ERR_CAST(dentry); 3168 3169 if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) { 3170 dput(nd->path.dentry); 3171 nd->path.dentry = dentry; 3172 return NULL; 3173 } 3174 3175 finish_lookup: 3176 if (nd->depth) 3177 put_link(nd); 3178 res = step_into(nd, WALK_TRAILING, dentry, inode, seq); 3179 if (unlikely(res)) 3180 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL); 3181 return res; 3182 } 3183 3184 /* 3185 * Handle the last step of open() 3186 */ 3187 static int do_open(struct nameidata *nd, 3188 struct file *file, const struct open_flags *op) 3189 { 3190 int open_flag = op->open_flag; 3191 bool do_truncate; 3192 int acc_mode; 3193 int error; 3194 3195 if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) { 3196 error = complete_walk(nd); 3197 if (error) 3198 return error; 3199 } 3200 if (!(file->f_mode & FMODE_CREATED)) 3201 audit_inode(nd->name, nd->path.dentry, 0); 3202 if (open_flag & O_CREAT) { 3203 if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED)) 3204 return -EEXIST; 3205 if (d_is_dir(nd->path.dentry)) 3206 return -EISDIR; 3207 error = may_create_in_sticky(nd->dir_mode, nd->dir_uid, 3208 d_backing_inode(nd->path.dentry)); 3209 if (unlikely(error)) 3210 return error; 3211 } 3212 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry)) 3213 return -ENOTDIR; 3214 3215 do_truncate = false; 3216 acc_mode = op->acc_mode; 3217 if (file->f_mode & FMODE_CREATED) { 3218 /* Don't check for write permission, don't truncate */ 3219 open_flag &= ~O_TRUNC; 3220 acc_mode = 0; 3221 } else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) { 3222 error = mnt_want_write(nd->path.mnt); 3223 if (error) 3224 return error; 3225 do_truncate = true; 3226 } 3227 error = may_open(&nd->path, acc_mode, open_flag); 3228 if (!error && !(file->f_mode & FMODE_OPENED)) 3229 error = vfs_open(&nd->path, file); 3230 if (!error) 3231 error = ima_file_check(file, op->acc_mode); 3232 if (!error && do_truncate) 3233 error = handle_truncate(file); 3234 if (unlikely(error > 0)) { 3235 WARN_ON(1); 3236 error = -EINVAL; 3237 } 3238 if (do_truncate) 3239 mnt_drop_write(nd->path.mnt); 3240 return error; 3241 } 3242 3243 struct dentry *vfs_tmpfile(struct dentry *dentry, umode_t mode, int open_flag) 3244 { 3245 struct dentry *child = NULL; 3246 struct inode *dir = dentry->d_inode; 3247 struct inode *inode; 3248 int error; 3249 3250 /* we want directory to be writable */ 3251 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 3252 if (error) 3253 goto out_err; 3254 error = -EOPNOTSUPP; 3255 if (!dir->i_op->tmpfile) 3256 goto out_err; 3257 error = -ENOMEM; 3258 child = d_alloc(dentry, &slash_name); 3259 if (unlikely(!child)) 3260 goto out_err; 3261 error = dir->i_op->tmpfile(dir, child, mode); 3262 if (error) 3263 goto out_err; 3264 error = -ENOENT; 3265 inode = child->d_inode; 3266 if (unlikely(!inode)) 3267 goto out_err; 3268 if (!(open_flag & O_EXCL)) { 3269 spin_lock(&inode->i_lock); 3270 inode->i_state |= I_LINKABLE; 3271 spin_unlock(&inode->i_lock); 3272 } 3273 ima_post_create_tmpfile(inode); 3274 return child; 3275 3276 out_err: 3277 dput(child); 3278 return ERR_PTR(error); 3279 } 3280 EXPORT_SYMBOL(vfs_tmpfile); 3281 3282 static int do_tmpfile(struct nameidata *nd, unsigned flags, 3283 const struct open_flags *op, 3284 struct file *file) 3285 { 3286 struct dentry *child; 3287 struct path path; 3288 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path); 3289 if (unlikely(error)) 3290 return error; 3291 error = mnt_want_write(path.mnt); 3292 if (unlikely(error)) 3293 goto out; 3294 child = vfs_tmpfile(path.dentry, op->mode, op->open_flag); 3295 error = PTR_ERR(child); 3296 if (IS_ERR(child)) 3297 goto out2; 3298 dput(path.dentry); 3299 path.dentry = child; 3300 audit_inode(nd->name, child, 0); 3301 /* Don't check for other permissions, the inode was just created */ 3302 error = may_open(&path, 0, op->open_flag); 3303 if (error) 3304 goto out2; 3305 file->f_path.mnt = path.mnt; 3306 error = finish_open(file, child, NULL); 3307 out2: 3308 mnt_drop_write(path.mnt); 3309 out: 3310 path_put(&path); 3311 return error; 3312 } 3313 3314 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file) 3315 { 3316 struct path path; 3317 int error = path_lookupat(nd, flags, &path); 3318 if (!error) { 3319 audit_inode(nd->name, path.dentry, 0); 3320 error = vfs_open(&path, file); 3321 path_put(&path); 3322 } 3323 return error; 3324 } 3325 3326 static struct file *path_openat(struct nameidata *nd, 3327 const struct open_flags *op, unsigned flags) 3328 { 3329 struct file *file; 3330 int error; 3331 3332 file = alloc_empty_file(op->open_flag, current_cred()); 3333 if (IS_ERR(file)) 3334 return file; 3335 3336 if (unlikely(file->f_flags & __O_TMPFILE)) { 3337 error = do_tmpfile(nd, flags, op, file); 3338 } else if (unlikely(file->f_flags & O_PATH)) { 3339 error = do_o_path(nd, flags, file); 3340 } else { 3341 const char *s = path_init(nd, flags); 3342 while (!(error = link_path_walk(s, nd)) && 3343 (s = open_last_lookups(nd, file, op)) != NULL) 3344 ; 3345 if (!error) 3346 error = do_open(nd, file, op); 3347 terminate_walk(nd); 3348 } 3349 if (likely(!error)) { 3350 if (likely(file->f_mode & FMODE_OPENED)) 3351 return file; 3352 WARN_ON(1); 3353 error = -EINVAL; 3354 } 3355 fput(file); 3356 if (error == -EOPENSTALE) { 3357 if (flags & LOOKUP_RCU) 3358 error = -ECHILD; 3359 else 3360 error = -ESTALE; 3361 } 3362 return ERR_PTR(error); 3363 } 3364 3365 struct file *do_filp_open(int dfd, struct filename *pathname, 3366 const struct open_flags *op) 3367 { 3368 struct nameidata nd; 3369 int flags = op->lookup_flags; 3370 struct file *filp; 3371 3372 set_nameidata(&nd, dfd, pathname); 3373 filp = path_openat(&nd, op, flags | LOOKUP_RCU); 3374 if (unlikely(filp == ERR_PTR(-ECHILD))) 3375 filp = path_openat(&nd, op, flags); 3376 if (unlikely(filp == ERR_PTR(-ESTALE))) 3377 filp = path_openat(&nd, op, flags | LOOKUP_REVAL); 3378 restore_nameidata(); 3379 return filp; 3380 } 3381 3382 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt, 3383 const char *name, const struct open_flags *op) 3384 { 3385 struct nameidata nd; 3386 struct file *file; 3387 struct filename *filename; 3388 int flags = op->lookup_flags | LOOKUP_ROOT; 3389 3390 nd.root.mnt = mnt; 3391 nd.root.dentry = dentry; 3392 3393 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN) 3394 return ERR_PTR(-ELOOP); 3395 3396 filename = getname_kernel(name); 3397 if (IS_ERR(filename)) 3398 return ERR_CAST(filename); 3399 3400 set_nameidata(&nd, -1, filename); 3401 file = path_openat(&nd, op, flags | LOOKUP_RCU); 3402 if (unlikely(file == ERR_PTR(-ECHILD))) 3403 file = path_openat(&nd, op, flags); 3404 if (unlikely(file == ERR_PTR(-ESTALE))) 3405 file = path_openat(&nd, op, flags | LOOKUP_REVAL); 3406 restore_nameidata(); 3407 putname(filename); 3408 return file; 3409 } 3410 3411 static struct dentry *filename_create(int dfd, struct filename *name, 3412 struct path *path, unsigned int lookup_flags) 3413 { 3414 struct dentry *dentry = ERR_PTR(-EEXIST); 3415 struct qstr last; 3416 int type; 3417 int err2; 3418 int error; 3419 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY); 3420 3421 /* 3422 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any 3423 * other flags passed in are ignored! 3424 */ 3425 lookup_flags &= LOOKUP_REVAL; 3426 3427 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type); 3428 if (IS_ERR(name)) 3429 return ERR_CAST(name); 3430 3431 /* 3432 * Yucky last component or no last component at all? 3433 * (foo/., foo/.., /////) 3434 */ 3435 if (unlikely(type != LAST_NORM)) 3436 goto out; 3437 3438 /* don't fail immediately if it's r/o, at least try to report other errors */ 3439 err2 = mnt_want_write(path->mnt); 3440 /* 3441 * Do the final lookup. 3442 */ 3443 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL; 3444 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 3445 dentry = __lookup_hash(&last, path->dentry, lookup_flags); 3446 if (IS_ERR(dentry)) 3447 goto unlock; 3448 3449 error = -EEXIST; 3450 if (d_is_positive(dentry)) 3451 goto fail; 3452 3453 /* 3454 * Special case - lookup gave negative, but... we had foo/bar/ 3455 * From the vfs_mknod() POV we just have a negative dentry - 3456 * all is fine. Let's be bastards - you had / on the end, you've 3457 * been asking for (non-existent) directory. -ENOENT for you. 3458 */ 3459 if (unlikely(!is_dir && last.name[last.len])) { 3460 error = -ENOENT; 3461 goto fail; 3462 } 3463 if (unlikely(err2)) { 3464 error = err2; 3465 goto fail; 3466 } 3467 putname(name); 3468 return dentry; 3469 fail: 3470 dput(dentry); 3471 dentry = ERR_PTR(error); 3472 unlock: 3473 inode_unlock(path->dentry->d_inode); 3474 if (!err2) 3475 mnt_drop_write(path->mnt); 3476 out: 3477 path_put(path); 3478 putname(name); 3479 return dentry; 3480 } 3481 3482 struct dentry *kern_path_create(int dfd, const char *pathname, 3483 struct path *path, unsigned int lookup_flags) 3484 { 3485 return filename_create(dfd, getname_kernel(pathname), 3486 path, lookup_flags); 3487 } 3488 EXPORT_SYMBOL(kern_path_create); 3489 3490 void done_path_create(struct path *path, struct dentry *dentry) 3491 { 3492 dput(dentry); 3493 inode_unlock(path->dentry->d_inode); 3494 mnt_drop_write(path->mnt); 3495 path_put(path); 3496 } 3497 EXPORT_SYMBOL(done_path_create); 3498 3499 inline struct dentry *user_path_create(int dfd, const char __user *pathname, 3500 struct path *path, unsigned int lookup_flags) 3501 { 3502 return filename_create(dfd, getname(pathname), path, lookup_flags); 3503 } 3504 EXPORT_SYMBOL(user_path_create); 3505 3506 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 3507 { 3508 bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV; 3509 int error = may_create(dir, dentry); 3510 3511 if (error) 3512 return error; 3513 3514 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout && 3515 !capable(CAP_MKNOD)) 3516 return -EPERM; 3517 3518 if (!dir->i_op->mknod) 3519 return -EPERM; 3520 3521 error = devcgroup_inode_mknod(mode, dev); 3522 if (error) 3523 return error; 3524 3525 error = security_inode_mknod(dir, dentry, mode, dev); 3526 if (error) 3527 return error; 3528 3529 error = dir->i_op->mknod(dir, dentry, mode, dev); 3530 if (!error) 3531 fsnotify_create(dir, dentry); 3532 return error; 3533 } 3534 EXPORT_SYMBOL(vfs_mknod); 3535 3536 static int may_mknod(umode_t mode) 3537 { 3538 switch (mode & S_IFMT) { 3539 case S_IFREG: 3540 case S_IFCHR: 3541 case S_IFBLK: 3542 case S_IFIFO: 3543 case S_IFSOCK: 3544 case 0: /* zero mode translates to S_IFREG */ 3545 return 0; 3546 case S_IFDIR: 3547 return -EPERM; 3548 default: 3549 return -EINVAL; 3550 } 3551 } 3552 3553 long do_mknodat(int dfd, const char __user *filename, umode_t mode, 3554 unsigned int dev) 3555 { 3556 struct dentry *dentry; 3557 struct path path; 3558 int error; 3559 unsigned int lookup_flags = 0; 3560 3561 error = may_mknod(mode); 3562 if (error) 3563 return error; 3564 retry: 3565 dentry = user_path_create(dfd, filename, &path, lookup_flags); 3566 if (IS_ERR(dentry)) 3567 return PTR_ERR(dentry); 3568 3569 if (!IS_POSIXACL(path.dentry->d_inode)) 3570 mode &= ~current_umask(); 3571 error = security_path_mknod(&path, dentry, mode, dev); 3572 if (error) 3573 goto out; 3574 switch (mode & S_IFMT) { 3575 case 0: case S_IFREG: 3576 error = vfs_create(path.dentry->d_inode,dentry,mode,true); 3577 if (!error) 3578 ima_post_path_mknod(dentry); 3579 break; 3580 case S_IFCHR: case S_IFBLK: 3581 error = vfs_mknod(path.dentry->d_inode,dentry,mode, 3582 new_decode_dev(dev)); 3583 break; 3584 case S_IFIFO: case S_IFSOCK: 3585 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0); 3586 break; 3587 } 3588 out: 3589 done_path_create(&path, dentry); 3590 if (retry_estale(error, lookup_flags)) { 3591 lookup_flags |= LOOKUP_REVAL; 3592 goto retry; 3593 } 3594 return error; 3595 } 3596 3597 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode, 3598 unsigned int, dev) 3599 { 3600 return do_mknodat(dfd, filename, mode, dev); 3601 } 3602 3603 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev) 3604 { 3605 return do_mknodat(AT_FDCWD, filename, mode, dev); 3606 } 3607 3608 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 3609 { 3610 int error = may_create(dir, dentry); 3611 unsigned max_links = dir->i_sb->s_max_links; 3612 3613 if (error) 3614 return error; 3615 3616 if (!dir->i_op->mkdir) 3617 return -EPERM; 3618 3619 mode &= (S_IRWXUGO|S_ISVTX); 3620 error = security_inode_mkdir(dir, dentry, mode); 3621 if (error) 3622 return error; 3623 3624 if (max_links && dir->i_nlink >= max_links) 3625 return -EMLINK; 3626 3627 error = dir->i_op->mkdir(dir, dentry, mode); 3628 if (!error) 3629 fsnotify_mkdir(dir, dentry); 3630 return error; 3631 } 3632 EXPORT_SYMBOL(vfs_mkdir); 3633 3634 long do_mkdirat(int dfd, const char __user *pathname, umode_t mode) 3635 { 3636 struct dentry *dentry; 3637 struct path path; 3638 int error; 3639 unsigned int lookup_flags = LOOKUP_DIRECTORY; 3640 3641 retry: 3642 dentry = user_path_create(dfd, pathname, &path, lookup_flags); 3643 if (IS_ERR(dentry)) 3644 return PTR_ERR(dentry); 3645 3646 if (!IS_POSIXACL(path.dentry->d_inode)) 3647 mode &= ~current_umask(); 3648 error = security_path_mkdir(&path, dentry, mode); 3649 if (!error) 3650 error = vfs_mkdir(path.dentry->d_inode, dentry, mode); 3651 done_path_create(&path, dentry); 3652 if (retry_estale(error, lookup_flags)) { 3653 lookup_flags |= LOOKUP_REVAL; 3654 goto retry; 3655 } 3656 return error; 3657 } 3658 3659 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode) 3660 { 3661 return do_mkdirat(dfd, pathname, mode); 3662 } 3663 3664 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode) 3665 { 3666 return do_mkdirat(AT_FDCWD, pathname, mode); 3667 } 3668 3669 int vfs_rmdir(struct inode *dir, struct dentry *dentry) 3670 { 3671 int error = may_delete(dir, dentry, 1); 3672 3673 if (error) 3674 return error; 3675 3676 if (!dir->i_op->rmdir) 3677 return -EPERM; 3678 3679 dget(dentry); 3680 inode_lock(dentry->d_inode); 3681 3682 error = -EBUSY; 3683 if (is_local_mountpoint(dentry)) 3684 goto out; 3685 3686 error = security_inode_rmdir(dir, dentry); 3687 if (error) 3688 goto out; 3689 3690 error = dir->i_op->rmdir(dir, dentry); 3691 if (error) 3692 goto out; 3693 3694 shrink_dcache_parent(dentry); 3695 dentry->d_inode->i_flags |= S_DEAD; 3696 dont_mount(dentry); 3697 detach_mounts(dentry); 3698 fsnotify_rmdir(dir, dentry); 3699 3700 out: 3701 inode_unlock(dentry->d_inode); 3702 dput(dentry); 3703 if (!error) 3704 d_delete(dentry); 3705 return error; 3706 } 3707 EXPORT_SYMBOL(vfs_rmdir); 3708 3709 long do_rmdir(int dfd, const char __user *pathname) 3710 { 3711 int error = 0; 3712 struct filename *name; 3713 struct dentry *dentry; 3714 struct path path; 3715 struct qstr last; 3716 int type; 3717 unsigned int lookup_flags = 0; 3718 retry: 3719 name = filename_parentat(dfd, getname(pathname), lookup_flags, 3720 &path, &last, &type); 3721 if (IS_ERR(name)) 3722 return PTR_ERR(name); 3723 3724 switch (type) { 3725 case LAST_DOTDOT: 3726 error = -ENOTEMPTY; 3727 goto exit1; 3728 case LAST_DOT: 3729 error = -EINVAL; 3730 goto exit1; 3731 case LAST_ROOT: 3732 error = -EBUSY; 3733 goto exit1; 3734 } 3735 3736 error = mnt_want_write(path.mnt); 3737 if (error) 3738 goto exit1; 3739 3740 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 3741 dentry = __lookup_hash(&last, path.dentry, lookup_flags); 3742 error = PTR_ERR(dentry); 3743 if (IS_ERR(dentry)) 3744 goto exit2; 3745 if (!dentry->d_inode) { 3746 error = -ENOENT; 3747 goto exit3; 3748 } 3749 error = security_path_rmdir(&path, dentry); 3750 if (error) 3751 goto exit3; 3752 error = vfs_rmdir(path.dentry->d_inode, dentry); 3753 exit3: 3754 dput(dentry); 3755 exit2: 3756 inode_unlock(path.dentry->d_inode); 3757 mnt_drop_write(path.mnt); 3758 exit1: 3759 path_put(&path); 3760 putname(name); 3761 if (retry_estale(error, lookup_flags)) { 3762 lookup_flags |= LOOKUP_REVAL; 3763 goto retry; 3764 } 3765 return error; 3766 } 3767 3768 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 3769 { 3770 return do_rmdir(AT_FDCWD, pathname); 3771 } 3772 3773 /** 3774 * vfs_unlink - unlink a filesystem object 3775 * @dir: parent directory 3776 * @dentry: victim 3777 * @delegated_inode: returns victim inode, if the inode is delegated. 3778 * 3779 * The caller must hold dir->i_mutex. 3780 * 3781 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and 3782 * return a reference to the inode in delegated_inode. The caller 3783 * should then break the delegation on that inode and retry. Because 3784 * breaking a delegation may take a long time, the caller should drop 3785 * dir->i_mutex before doing so. 3786 * 3787 * Alternatively, a caller may pass NULL for delegated_inode. This may 3788 * be appropriate for callers that expect the underlying filesystem not 3789 * to be NFS exported. 3790 */ 3791 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode) 3792 { 3793 struct inode *target = dentry->d_inode; 3794 int error = may_delete(dir, dentry, 0); 3795 3796 if (error) 3797 return error; 3798 3799 if (!dir->i_op->unlink) 3800 return -EPERM; 3801 3802 inode_lock(target); 3803 if (is_local_mountpoint(dentry)) 3804 error = -EBUSY; 3805 else { 3806 error = security_inode_unlink(dir, dentry); 3807 if (!error) { 3808 error = try_break_deleg(target, delegated_inode); 3809 if (error) 3810 goto out; 3811 error = dir->i_op->unlink(dir, dentry); 3812 if (!error) { 3813 dont_mount(dentry); 3814 detach_mounts(dentry); 3815 fsnotify_unlink(dir, dentry); 3816 } 3817 } 3818 } 3819 out: 3820 inode_unlock(target); 3821 3822 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 3823 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) { 3824 fsnotify_link_count(target); 3825 d_delete(dentry); 3826 } 3827 3828 return error; 3829 } 3830 EXPORT_SYMBOL(vfs_unlink); 3831 3832 /* 3833 * Make sure that the actual truncation of the file will occur outside its 3834 * directory's i_mutex. Truncate can take a long time if there is a lot of 3835 * writeout happening, and we don't want to prevent access to the directory 3836 * while waiting on the I/O. 3837 */ 3838 long do_unlinkat(int dfd, struct filename *name) 3839 { 3840 int error; 3841 struct dentry *dentry; 3842 struct path path; 3843 struct qstr last; 3844 int type; 3845 struct inode *inode = NULL; 3846 struct inode *delegated_inode = NULL; 3847 unsigned int lookup_flags = 0; 3848 retry: 3849 name = filename_parentat(dfd, name, lookup_flags, &path, &last, &type); 3850 if (IS_ERR(name)) 3851 return PTR_ERR(name); 3852 3853 error = -EISDIR; 3854 if (type != LAST_NORM) 3855 goto exit1; 3856 3857 error = mnt_want_write(path.mnt); 3858 if (error) 3859 goto exit1; 3860 retry_deleg: 3861 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 3862 dentry = __lookup_hash(&last, path.dentry, lookup_flags); 3863 error = PTR_ERR(dentry); 3864 if (!IS_ERR(dentry)) { 3865 /* Why not before? Because we want correct error value */ 3866 if (last.name[last.len]) 3867 goto slashes; 3868 inode = dentry->d_inode; 3869 if (d_is_negative(dentry)) 3870 goto slashes; 3871 ihold(inode); 3872 error = security_path_unlink(&path, dentry); 3873 if (error) 3874 goto exit2; 3875 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode); 3876 exit2: 3877 dput(dentry); 3878 } 3879 inode_unlock(path.dentry->d_inode); 3880 if (inode) 3881 iput(inode); /* truncate the inode here */ 3882 inode = NULL; 3883 if (delegated_inode) { 3884 error = break_deleg_wait(&delegated_inode); 3885 if (!error) 3886 goto retry_deleg; 3887 } 3888 mnt_drop_write(path.mnt); 3889 exit1: 3890 path_put(&path); 3891 if (retry_estale(error, lookup_flags)) { 3892 lookup_flags |= LOOKUP_REVAL; 3893 inode = NULL; 3894 goto retry; 3895 } 3896 putname(name); 3897 return error; 3898 3899 slashes: 3900 if (d_is_negative(dentry)) 3901 error = -ENOENT; 3902 else if (d_is_dir(dentry)) 3903 error = -EISDIR; 3904 else 3905 error = -ENOTDIR; 3906 goto exit2; 3907 } 3908 3909 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 3910 { 3911 if ((flag & ~AT_REMOVEDIR) != 0) 3912 return -EINVAL; 3913 3914 if (flag & AT_REMOVEDIR) 3915 return do_rmdir(dfd, pathname); 3916 3917 return do_unlinkat(dfd, getname(pathname)); 3918 } 3919 3920 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 3921 { 3922 return do_unlinkat(AT_FDCWD, getname(pathname)); 3923 } 3924 3925 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname) 3926 { 3927 int error = may_create(dir, dentry); 3928 3929 if (error) 3930 return error; 3931 3932 if (!dir->i_op->symlink) 3933 return -EPERM; 3934 3935 error = security_inode_symlink(dir, dentry, oldname); 3936 if (error) 3937 return error; 3938 3939 error = dir->i_op->symlink(dir, dentry, oldname); 3940 if (!error) 3941 fsnotify_create(dir, dentry); 3942 return error; 3943 } 3944 EXPORT_SYMBOL(vfs_symlink); 3945 3946 long do_symlinkat(const char __user *oldname, int newdfd, 3947 const char __user *newname) 3948 { 3949 int error; 3950 struct filename *from; 3951 struct dentry *dentry; 3952 struct path path; 3953 unsigned int lookup_flags = 0; 3954 3955 from = getname(oldname); 3956 if (IS_ERR(from)) 3957 return PTR_ERR(from); 3958 retry: 3959 dentry = user_path_create(newdfd, newname, &path, lookup_flags); 3960 error = PTR_ERR(dentry); 3961 if (IS_ERR(dentry)) 3962 goto out_putname; 3963 3964 error = security_path_symlink(&path, dentry, from->name); 3965 if (!error) 3966 error = vfs_symlink(path.dentry->d_inode, dentry, from->name); 3967 done_path_create(&path, dentry); 3968 if (retry_estale(error, lookup_flags)) { 3969 lookup_flags |= LOOKUP_REVAL; 3970 goto retry; 3971 } 3972 out_putname: 3973 putname(from); 3974 return error; 3975 } 3976 3977 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 3978 int, newdfd, const char __user *, newname) 3979 { 3980 return do_symlinkat(oldname, newdfd, newname); 3981 } 3982 3983 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 3984 { 3985 return do_symlinkat(oldname, AT_FDCWD, newname); 3986 } 3987 3988 /** 3989 * vfs_link - create a new link 3990 * @old_dentry: object to be linked 3991 * @dir: new parent 3992 * @new_dentry: where to create the new link 3993 * @delegated_inode: returns inode needing a delegation break 3994 * 3995 * The caller must hold dir->i_mutex 3996 * 3997 * If vfs_link discovers a delegation on the to-be-linked file in need 3998 * of breaking, it will return -EWOULDBLOCK and return a reference to the 3999 * inode in delegated_inode. The caller should then break the delegation 4000 * and retry. Because breaking a delegation may take a long time, the 4001 * caller should drop the i_mutex before doing so. 4002 * 4003 * Alternatively, a caller may pass NULL for delegated_inode. This may 4004 * be appropriate for callers that expect the underlying filesystem not 4005 * to be NFS exported. 4006 */ 4007 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode) 4008 { 4009 struct inode *inode = old_dentry->d_inode; 4010 unsigned max_links = dir->i_sb->s_max_links; 4011 int error; 4012 4013 if (!inode) 4014 return -ENOENT; 4015 4016 error = may_create(dir, new_dentry); 4017 if (error) 4018 return error; 4019 4020 if (dir->i_sb != inode->i_sb) 4021 return -EXDEV; 4022 4023 /* 4024 * A link to an append-only or immutable file cannot be created. 4025 */ 4026 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 4027 return -EPERM; 4028 /* 4029 * Updating the link count will likely cause i_uid and i_gid to 4030 * be writen back improperly if their true value is unknown to 4031 * the vfs. 4032 */ 4033 if (HAS_UNMAPPED_ID(inode)) 4034 return -EPERM; 4035 if (!dir->i_op->link) 4036 return -EPERM; 4037 if (S_ISDIR(inode->i_mode)) 4038 return -EPERM; 4039 4040 error = security_inode_link(old_dentry, dir, new_dentry); 4041 if (error) 4042 return error; 4043 4044 inode_lock(inode); 4045 /* Make sure we don't allow creating hardlink to an unlinked file */ 4046 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE)) 4047 error = -ENOENT; 4048 else if (max_links && inode->i_nlink >= max_links) 4049 error = -EMLINK; 4050 else { 4051 error = try_break_deleg(inode, delegated_inode); 4052 if (!error) 4053 error = dir->i_op->link(old_dentry, dir, new_dentry); 4054 } 4055 4056 if (!error && (inode->i_state & I_LINKABLE)) { 4057 spin_lock(&inode->i_lock); 4058 inode->i_state &= ~I_LINKABLE; 4059 spin_unlock(&inode->i_lock); 4060 } 4061 inode_unlock(inode); 4062 if (!error) 4063 fsnotify_link(dir, inode, new_dentry); 4064 return error; 4065 } 4066 EXPORT_SYMBOL(vfs_link); 4067 4068 /* 4069 * Hardlinks are often used in delicate situations. We avoid 4070 * security-related surprises by not following symlinks on the 4071 * newname. --KAB 4072 * 4073 * We don't follow them on the oldname either to be compatible 4074 * with linux 2.0, and to avoid hard-linking to directories 4075 * and other special files. --ADM 4076 */ 4077 int do_linkat(int olddfd, const char __user *oldname, int newdfd, 4078 const char __user *newname, int flags) 4079 { 4080 struct dentry *new_dentry; 4081 struct path old_path, new_path; 4082 struct inode *delegated_inode = NULL; 4083 int how = 0; 4084 int error; 4085 4086 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) 4087 return -EINVAL; 4088 /* 4089 * To use null names we require CAP_DAC_READ_SEARCH 4090 * This ensures that not everyone will be able to create 4091 * handlink using the passed filedescriptor. 4092 */ 4093 if (flags & AT_EMPTY_PATH) { 4094 if (!capable(CAP_DAC_READ_SEARCH)) 4095 return -ENOENT; 4096 how = LOOKUP_EMPTY; 4097 } 4098 4099 if (flags & AT_SYMLINK_FOLLOW) 4100 how |= LOOKUP_FOLLOW; 4101 retry: 4102 error = user_path_at(olddfd, oldname, how, &old_path); 4103 if (error) 4104 return error; 4105 4106 new_dentry = user_path_create(newdfd, newname, &new_path, 4107 (how & LOOKUP_REVAL)); 4108 error = PTR_ERR(new_dentry); 4109 if (IS_ERR(new_dentry)) 4110 goto out; 4111 4112 error = -EXDEV; 4113 if (old_path.mnt != new_path.mnt) 4114 goto out_dput; 4115 error = may_linkat(&old_path); 4116 if (unlikely(error)) 4117 goto out_dput; 4118 error = security_path_link(old_path.dentry, &new_path, new_dentry); 4119 if (error) 4120 goto out_dput; 4121 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode); 4122 out_dput: 4123 done_path_create(&new_path, new_dentry); 4124 if (delegated_inode) { 4125 error = break_deleg_wait(&delegated_inode); 4126 if (!error) { 4127 path_put(&old_path); 4128 goto retry; 4129 } 4130 } 4131 if (retry_estale(error, how)) { 4132 path_put(&old_path); 4133 how |= LOOKUP_REVAL; 4134 goto retry; 4135 } 4136 out: 4137 path_put(&old_path); 4138 4139 return error; 4140 } 4141 4142 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 4143 int, newdfd, const char __user *, newname, int, flags) 4144 { 4145 return do_linkat(olddfd, oldname, newdfd, newname, flags); 4146 } 4147 4148 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 4149 { 4150 return do_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 4151 } 4152 4153 /** 4154 * vfs_rename - rename a filesystem object 4155 * @old_dir: parent of source 4156 * @old_dentry: source 4157 * @new_dir: parent of destination 4158 * @new_dentry: destination 4159 * @delegated_inode: returns an inode needing a delegation break 4160 * @flags: rename flags 4161 * 4162 * The caller must hold multiple mutexes--see lock_rename()). 4163 * 4164 * If vfs_rename discovers a delegation in need of breaking at either 4165 * the source or destination, it will return -EWOULDBLOCK and return a 4166 * reference to the inode in delegated_inode. The caller should then 4167 * break the delegation and retry. Because breaking a delegation may 4168 * take a long time, the caller should drop all locks before doing 4169 * so. 4170 * 4171 * Alternatively, a caller may pass NULL for delegated_inode. This may 4172 * be appropriate for callers that expect the underlying filesystem not 4173 * to be NFS exported. 4174 * 4175 * The worst of all namespace operations - renaming directory. "Perverted" 4176 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 4177 * Problems: 4178 * 4179 * a) we can get into loop creation. 4180 * b) race potential - two innocent renames can create a loop together. 4181 * That's where 4.4 screws up. Current fix: serialization on 4182 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 4183 * story. 4184 * c) we have to lock _four_ objects - parents and victim (if it exists), 4185 * and source (if it is not a directory). 4186 * And that - after we got ->i_mutex on parents (until then we don't know 4187 * whether the target exists). Solution: try to be smart with locking 4188 * order for inodes. We rely on the fact that tree topology may change 4189 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 4190 * move will be locked. Thus we can rank directories by the tree 4191 * (ancestors first) and rank all non-directories after them. 4192 * That works since everybody except rename does "lock parent, lookup, 4193 * lock child" and rename is under ->s_vfs_rename_mutex. 4194 * HOWEVER, it relies on the assumption that any object with ->lookup() 4195 * has no more than 1 dentry. If "hybrid" objects will ever appear, 4196 * we'd better make sure that there's no link(2) for them. 4197 * d) conversion from fhandle to dentry may come in the wrong moment - when 4198 * we are removing the target. Solution: we will have to grab ->i_mutex 4199 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 4200 * ->i_mutex on parents, which works but leads to some truly excessive 4201 * locking]. 4202 */ 4203 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry, 4204 struct inode *new_dir, struct dentry *new_dentry, 4205 struct inode **delegated_inode, unsigned int flags) 4206 { 4207 int error; 4208 bool is_dir = d_is_dir(old_dentry); 4209 struct inode *source = old_dentry->d_inode; 4210 struct inode *target = new_dentry->d_inode; 4211 bool new_is_dir = false; 4212 unsigned max_links = new_dir->i_sb->s_max_links; 4213 struct name_snapshot old_name; 4214 4215 if (source == target) 4216 return 0; 4217 4218 error = may_delete(old_dir, old_dentry, is_dir); 4219 if (error) 4220 return error; 4221 4222 if (!target) { 4223 error = may_create(new_dir, new_dentry); 4224 } else { 4225 new_is_dir = d_is_dir(new_dentry); 4226 4227 if (!(flags & RENAME_EXCHANGE)) 4228 error = may_delete(new_dir, new_dentry, is_dir); 4229 else 4230 error = may_delete(new_dir, new_dentry, new_is_dir); 4231 } 4232 if (error) 4233 return error; 4234 4235 if (!old_dir->i_op->rename) 4236 return -EPERM; 4237 4238 /* 4239 * If we are going to change the parent - check write permissions, 4240 * we'll need to flip '..'. 4241 */ 4242 if (new_dir != old_dir) { 4243 if (is_dir) { 4244 error = inode_permission(source, MAY_WRITE); 4245 if (error) 4246 return error; 4247 } 4248 if ((flags & RENAME_EXCHANGE) && new_is_dir) { 4249 error = inode_permission(target, MAY_WRITE); 4250 if (error) 4251 return error; 4252 } 4253 } 4254 4255 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry, 4256 flags); 4257 if (error) 4258 return error; 4259 4260 take_dentry_name_snapshot(&old_name, old_dentry); 4261 dget(new_dentry); 4262 if (!is_dir || (flags & RENAME_EXCHANGE)) 4263 lock_two_nondirectories(source, target); 4264 else if (target) 4265 inode_lock(target); 4266 4267 error = -EBUSY; 4268 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry)) 4269 goto out; 4270 4271 if (max_links && new_dir != old_dir) { 4272 error = -EMLINK; 4273 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links) 4274 goto out; 4275 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir && 4276 old_dir->i_nlink >= max_links) 4277 goto out; 4278 } 4279 if (!is_dir) { 4280 error = try_break_deleg(source, delegated_inode); 4281 if (error) 4282 goto out; 4283 } 4284 if (target && !new_is_dir) { 4285 error = try_break_deleg(target, delegated_inode); 4286 if (error) 4287 goto out; 4288 } 4289 error = old_dir->i_op->rename(old_dir, old_dentry, 4290 new_dir, new_dentry, flags); 4291 if (error) 4292 goto out; 4293 4294 if (!(flags & RENAME_EXCHANGE) && target) { 4295 if (is_dir) { 4296 shrink_dcache_parent(new_dentry); 4297 target->i_flags |= S_DEAD; 4298 } 4299 dont_mount(new_dentry); 4300 detach_mounts(new_dentry); 4301 } 4302 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) { 4303 if (!(flags & RENAME_EXCHANGE)) 4304 d_move(old_dentry, new_dentry); 4305 else 4306 d_exchange(old_dentry, new_dentry); 4307 } 4308 out: 4309 if (!is_dir || (flags & RENAME_EXCHANGE)) 4310 unlock_two_nondirectories(source, target); 4311 else if (target) 4312 inode_unlock(target); 4313 dput(new_dentry); 4314 if (!error) { 4315 fsnotify_move(old_dir, new_dir, &old_name.name, is_dir, 4316 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry); 4317 if (flags & RENAME_EXCHANGE) { 4318 fsnotify_move(new_dir, old_dir, &old_dentry->d_name, 4319 new_is_dir, NULL, new_dentry); 4320 } 4321 } 4322 release_dentry_name_snapshot(&old_name); 4323 4324 return error; 4325 } 4326 EXPORT_SYMBOL(vfs_rename); 4327 4328 static int do_renameat2(int olddfd, const char __user *oldname, int newdfd, 4329 const char __user *newname, unsigned int flags) 4330 { 4331 struct dentry *old_dentry, *new_dentry; 4332 struct dentry *trap; 4333 struct path old_path, new_path; 4334 struct qstr old_last, new_last; 4335 int old_type, new_type; 4336 struct inode *delegated_inode = NULL; 4337 struct filename *from; 4338 struct filename *to; 4339 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET; 4340 bool should_retry = false; 4341 int error; 4342 4343 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 4344 return -EINVAL; 4345 4346 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) && 4347 (flags & RENAME_EXCHANGE)) 4348 return -EINVAL; 4349 4350 if (flags & RENAME_EXCHANGE) 4351 target_flags = 0; 4352 4353 retry: 4354 from = filename_parentat(olddfd, getname(oldname), lookup_flags, 4355 &old_path, &old_last, &old_type); 4356 if (IS_ERR(from)) { 4357 error = PTR_ERR(from); 4358 goto exit; 4359 } 4360 4361 to = filename_parentat(newdfd, getname(newname), lookup_flags, 4362 &new_path, &new_last, &new_type); 4363 if (IS_ERR(to)) { 4364 error = PTR_ERR(to); 4365 goto exit1; 4366 } 4367 4368 error = -EXDEV; 4369 if (old_path.mnt != new_path.mnt) 4370 goto exit2; 4371 4372 error = -EBUSY; 4373 if (old_type != LAST_NORM) 4374 goto exit2; 4375 4376 if (flags & RENAME_NOREPLACE) 4377 error = -EEXIST; 4378 if (new_type != LAST_NORM) 4379 goto exit2; 4380 4381 error = mnt_want_write(old_path.mnt); 4382 if (error) 4383 goto exit2; 4384 4385 retry_deleg: 4386 trap = lock_rename(new_path.dentry, old_path.dentry); 4387 4388 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags); 4389 error = PTR_ERR(old_dentry); 4390 if (IS_ERR(old_dentry)) 4391 goto exit3; 4392 /* source must exist */ 4393 error = -ENOENT; 4394 if (d_is_negative(old_dentry)) 4395 goto exit4; 4396 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags); 4397 error = PTR_ERR(new_dentry); 4398 if (IS_ERR(new_dentry)) 4399 goto exit4; 4400 error = -EEXIST; 4401 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry)) 4402 goto exit5; 4403 if (flags & RENAME_EXCHANGE) { 4404 error = -ENOENT; 4405 if (d_is_negative(new_dentry)) 4406 goto exit5; 4407 4408 if (!d_is_dir(new_dentry)) { 4409 error = -ENOTDIR; 4410 if (new_last.name[new_last.len]) 4411 goto exit5; 4412 } 4413 } 4414 /* unless the source is a directory trailing slashes give -ENOTDIR */ 4415 if (!d_is_dir(old_dentry)) { 4416 error = -ENOTDIR; 4417 if (old_last.name[old_last.len]) 4418 goto exit5; 4419 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len]) 4420 goto exit5; 4421 } 4422 /* source should not be ancestor of target */ 4423 error = -EINVAL; 4424 if (old_dentry == trap) 4425 goto exit5; 4426 /* target should not be an ancestor of source */ 4427 if (!(flags & RENAME_EXCHANGE)) 4428 error = -ENOTEMPTY; 4429 if (new_dentry == trap) 4430 goto exit5; 4431 4432 error = security_path_rename(&old_path, old_dentry, 4433 &new_path, new_dentry, flags); 4434 if (error) 4435 goto exit5; 4436 error = vfs_rename(old_path.dentry->d_inode, old_dentry, 4437 new_path.dentry->d_inode, new_dentry, 4438 &delegated_inode, flags); 4439 exit5: 4440 dput(new_dentry); 4441 exit4: 4442 dput(old_dentry); 4443 exit3: 4444 unlock_rename(new_path.dentry, old_path.dentry); 4445 if (delegated_inode) { 4446 error = break_deleg_wait(&delegated_inode); 4447 if (!error) 4448 goto retry_deleg; 4449 } 4450 mnt_drop_write(old_path.mnt); 4451 exit2: 4452 if (retry_estale(error, lookup_flags)) 4453 should_retry = true; 4454 path_put(&new_path); 4455 putname(to); 4456 exit1: 4457 path_put(&old_path); 4458 putname(from); 4459 if (should_retry) { 4460 should_retry = false; 4461 lookup_flags |= LOOKUP_REVAL; 4462 goto retry; 4463 } 4464 exit: 4465 return error; 4466 } 4467 4468 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname, 4469 int, newdfd, const char __user *, newname, unsigned int, flags) 4470 { 4471 return do_renameat2(olddfd, oldname, newdfd, newname, flags); 4472 } 4473 4474 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 4475 int, newdfd, const char __user *, newname) 4476 { 4477 return do_renameat2(olddfd, oldname, newdfd, newname, 0); 4478 } 4479 4480 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 4481 { 4482 return do_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 4483 } 4484 4485 int readlink_copy(char __user *buffer, int buflen, const char *link) 4486 { 4487 int len = PTR_ERR(link); 4488 if (IS_ERR(link)) 4489 goto out; 4490 4491 len = strlen(link); 4492 if (len > (unsigned) buflen) 4493 len = buflen; 4494 if (copy_to_user(buffer, link, len)) 4495 len = -EFAULT; 4496 out: 4497 return len; 4498 } 4499 4500 /** 4501 * vfs_readlink - copy symlink body into userspace buffer 4502 * @dentry: dentry on which to get symbolic link 4503 * @buffer: user memory pointer 4504 * @buflen: size of buffer 4505 * 4506 * Does not touch atime. That's up to the caller if necessary 4507 * 4508 * Does not call security hook. 4509 */ 4510 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4511 { 4512 struct inode *inode = d_inode(dentry); 4513 DEFINE_DELAYED_CALL(done); 4514 const char *link; 4515 int res; 4516 4517 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) { 4518 if (unlikely(inode->i_op->readlink)) 4519 return inode->i_op->readlink(dentry, buffer, buflen); 4520 4521 if (!d_is_symlink(dentry)) 4522 return -EINVAL; 4523 4524 spin_lock(&inode->i_lock); 4525 inode->i_opflags |= IOP_DEFAULT_READLINK; 4526 spin_unlock(&inode->i_lock); 4527 } 4528 4529 link = READ_ONCE(inode->i_link); 4530 if (!link) { 4531 link = inode->i_op->get_link(dentry, inode, &done); 4532 if (IS_ERR(link)) 4533 return PTR_ERR(link); 4534 } 4535 res = readlink_copy(buffer, buflen, link); 4536 do_delayed_call(&done); 4537 return res; 4538 } 4539 EXPORT_SYMBOL(vfs_readlink); 4540 4541 /** 4542 * vfs_get_link - get symlink body 4543 * @dentry: dentry on which to get symbolic link 4544 * @done: caller needs to free returned data with this 4545 * 4546 * Calls security hook and i_op->get_link() on the supplied inode. 4547 * 4548 * It does not touch atime. That's up to the caller if necessary. 4549 * 4550 * Does not work on "special" symlinks like /proc/$$/fd/N 4551 */ 4552 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done) 4553 { 4554 const char *res = ERR_PTR(-EINVAL); 4555 struct inode *inode = d_inode(dentry); 4556 4557 if (d_is_symlink(dentry)) { 4558 res = ERR_PTR(security_inode_readlink(dentry)); 4559 if (!res) 4560 res = inode->i_op->get_link(dentry, inode, done); 4561 } 4562 return res; 4563 } 4564 EXPORT_SYMBOL(vfs_get_link); 4565 4566 /* get the link contents into pagecache */ 4567 const char *page_get_link(struct dentry *dentry, struct inode *inode, 4568 struct delayed_call *callback) 4569 { 4570 char *kaddr; 4571 struct page *page; 4572 struct address_space *mapping = inode->i_mapping; 4573 4574 if (!dentry) { 4575 page = find_get_page(mapping, 0); 4576 if (!page) 4577 return ERR_PTR(-ECHILD); 4578 if (!PageUptodate(page)) { 4579 put_page(page); 4580 return ERR_PTR(-ECHILD); 4581 } 4582 } else { 4583 page = read_mapping_page(mapping, 0, NULL); 4584 if (IS_ERR(page)) 4585 return (char*)page; 4586 } 4587 set_delayed_call(callback, page_put_link, page); 4588 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM); 4589 kaddr = page_address(page); 4590 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1); 4591 return kaddr; 4592 } 4593 4594 EXPORT_SYMBOL(page_get_link); 4595 4596 void page_put_link(void *arg) 4597 { 4598 put_page(arg); 4599 } 4600 EXPORT_SYMBOL(page_put_link); 4601 4602 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4603 { 4604 DEFINE_DELAYED_CALL(done); 4605 int res = readlink_copy(buffer, buflen, 4606 page_get_link(dentry, d_inode(dentry), 4607 &done)); 4608 do_delayed_call(&done); 4609 return res; 4610 } 4611 EXPORT_SYMBOL(page_readlink); 4612 4613 /* 4614 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS 4615 */ 4616 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs) 4617 { 4618 struct address_space *mapping = inode->i_mapping; 4619 struct page *page; 4620 void *fsdata; 4621 int err; 4622 unsigned int flags = 0; 4623 if (nofs) 4624 flags |= AOP_FLAG_NOFS; 4625 4626 retry: 4627 err = pagecache_write_begin(NULL, mapping, 0, len-1, 4628 flags, &page, &fsdata); 4629 if (err) 4630 goto fail; 4631 4632 memcpy(page_address(page), symname, len-1); 4633 4634 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1, 4635 page, fsdata); 4636 if (err < 0) 4637 goto fail; 4638 if (err < len-1) 4639 goto retry; 4640 4641 mark_inode_dirty(inode); 4642 return 0; 4643 fail: 4644 return err; 4645 } 4646 EXPORT_SYMBOL(__page_symlink); 4647 4648 int page_symlink(struct inode *inode, const char *symname, int len) 4649 { 4650 return __page_symlink(inode, symname, len, 4651 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS)); 4652 } 4653 EXPORT_SYMBOL(page_symlink); 4654 4655 const struct inode_operations page_symlink_inode_operations = { 4656 .get_link = page_get_link, 4657 }; 4658 EXPORT_SYMBOL(page_symlink_inode_operations); 4659